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Preface 

Dear Members of the Information Fusion Community: 

It is a pleasure to report to you that the Information Fusion community continues to mature 
and grow, a positive reflection on all members and especially on that subgroup of the community 
that persists in supporting its maturation process. Thanks are due to Dongping Daniel Zhu and X 
RongLi, BelurDasarathy, and the members of the Transitional Board of the International Society 
of Information Fusion (ISIF), for the attention paid to and energy expended on the wide variety of 
tasks and issues involved with trying to get the ISIF established. Tasks of this sort are 'yet 
another thing to do' for those involved but these noble, collective efforts and their results and 
consequences are what give identity and substance to a community. Slowly but persistently this 
community is filling in the "Infrastructure gaps" it has suffered from for some time-we hope soon 
to have a Society, an International Journal, and an Information Analysis Center; we already have 
one University Research Center, which could be expanded to a Consortium framework. 

The ISIF is a particularly welcome and needed infrastructure initiative in our community but it 
will only be as good as the collective efforts of its membership. Being a member of any Society 
results m both an opportunity and an obligation; opportunity for collegiality in its füllest sense 
and obligation to contribute in its fullest sense. Being among the oldest in this community I carl 
tell you that I have always been proud to label myself as a member of the "fusion" community 
smce it is a distinctive, extraordinarily interesting field of specialization, and one with great 
promise. We welcome and encourage you to become "official" members via the ISIF about 
which we will all have considerable discussion at FUSION'99 - give us your thoughts about what 
ISIF should be, and give us your membership; see http://wwwinforfusion org for more 
information. 

In recent visits I have had the opportunity to interact with and learn from Information Fusion 
researchers in Australia, in Spain, and in Norway, and last year I was involved in a technology 
planning task in Sweden. In all cases I was impressed with both the nature of the work and the 
talented people involved in it. I think I can say without reservation that all of the people involved 
m these IF efforts, as well as the cognizant organizational leaders and managers are anxious for 
interaction, and technology and knowledge-sharing, and for a forum to periodically share ideas 
Inspired by this, I have motivated a session on "International Collaboration in IF" for this year's 
conference which I hope will be a standing session for future conferences, and which I hope will 
be one focused forum in which people can both understand what options for collaboration may 
exist and also to act on them. Of course the "FUSION'XX" conferences serve this purpose in the 
large but offering some details on the underlying mechanics regarding programs and activities 
specifically tailored to international collaboration won't hurt. 

Welcome to FUSION'99 

Jim Llinas 
President, International Society of Information Fusion 
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Foreword 
Across Las Vegas desert land, Heat waves shimmering from the sand. 
A fusion caravan comes into view,     Destination - Timbuktu. 

If Shakespeare is correct that "What's past is prologue," then FUSION'98 should be an good 
introduction that brings us together again at FUSION'99 in the Silicon Valley, exactly one year later. 
Clearly, data fusion follows from idea fusion and people fusion 

It gives us great pleasure to introduce this collection of papers presented at the Second International 
Conference on Information Fusion (FUSION'99), organized by the International Society of Information 
Fusion (http://www.inforfusion.org) on July 6 through July 8, 1999, at Sunnyvale Hilton Inn, California, 
USA. These papers reflect the state-of-the-art of sensor, data and information fusion, and cover 
architecture, algorithms and applications in many fields, ranging from target tracking and recognition to 
diagnostic information fusion and image fusion to biomedical and management information fusion. 

Many factors have contributed to FUSION'99. First of all, we'd like to thank the conference sponsors, 
without their support this conference would not have been possible. These sponsors are NASA Ames 
Research Center*, US Army Research Office*, IEEE Signal Processing Society, IEEE Control Systems 
Society, and IEEE Aerospace and Electronic Systems Society. 

We are fortunate to have many renowned people to provide vision and leadership to the conference. 
We are especially grateful to Dr. Yaakov Bar-Shalom of University of Connecticut who serves as 
Honorary Chairman, Franklin White of Navy SPA WAR as Steering Committee Chairman, Dr. Kenneth 
Ford of NASA as Advisory Committee Chairman, Mark Bedworth of DERA, UK and Dr. X. Rong Li of 
University of New Orleans as General Vice Chairmen, and Dr. Pramod Varshney of Syracuse University 
as Technical Program Chairman. We gratefully acknowledge Dr. Bill Sanders of Army Research Office 
for his continued inspiration and support. 

We are very grateful to the many colleagues who are experts in the field and have greatly helped 
organize the conference. In particular, the General Chairman would like to thank all members on the 
Technical Program Committee, led by Dr. Pramod Varshney and Dr. Peter Willett, for their efforts in 
assembling a collection of quality papers, and Dr. Robert Levinson for his tireless effort in printing and 
publishing the Proceedings. We like to acknowledge other Executive Committee members: Dr. Chee-yee 
Chong for managing logistics and finance, Captain Erick Blasch for leading a successful sponsors 
program, Dr. Belur Dasarathy for publicizing the conference to a wide audience, and Dr. Fa-long Luo for 
local arrangements. Last but not the least, Society board directors and liaisons, session chairs, authors, 
and many others have offered valuable assistance. They all helped make the conference a success. 

We also like to thank the following persons: Deborah Jean Gamble-Ly of Creation, Janny Wu, and 
Mike Lee of ComStar for administrative assistance, Maylene Duenas and her staff at NASA for technical 
support, Bob Hamm of OmniPress for publication, and the staff at Zaptron Systems for web site support. 

With the success of FUSION'99, we can expect even greater successes at FUSION'2000 in the new 
millennium. In the words of Sir Winston Churchill: "This is not the end, it is not even the beginning of the 
end, but it is perhaps the end of the beginning. " 

Dongping Daniel Zhu, General Chairman 
Zaptron Systems, Inc. 
Robert Levinson, Publication Chair 
University of California-Santa Cruz 

* The views, opinions, and/or findings contained in this proceedings are those of the authors and should not be construed as an 
official US government or its agency's position, policy, or decision, unless so designated by other documentation. 



Technical Program Chair's Message 

I am delighted to welcome you to FUSION'99. We have assembled an excellent technical 
program consisting of 29 contributed and invited sessions. The conference attracted about 
210 submissions from 22 countries. Each submission was reviewed by the technical program 
committee and only worthy papers were included in the final program. I was extremely 
pleased with the large number of submissions and their high quality. In addition to the 
technical sessions, we feature three plenary talks and a luncheon talk by R. Luo (Taiwan), 
K. Ford (USA), G. Shaw(USA) and F. White(USA). All of these speakers are widely known 
and have significant experience in their areas of expertise. 

It is a pleasure to acknowledge the tireless effort of Peter Willett, the Technical Program 
Vice Chair. He reviewed each and every submission and was instrumental in putting the 
sessions together. I would like to thank the members of the Technical Program Committee 
for their assistance with reviewing: M. Alford (USA), B. Dasarathy (USA), D. McMichael 
(Australia), J. O'Brien (UK), E. Shahbazian (Canada), and P. Svensson (Sweden). 

The efforts of the following persons in organizing invited sessions are greatly appreciated: 
C. Anken, E. Blasch, R. Blum, 0. Drummond, K. Goebel, M. Kokar, M. Larkin, R. Liuzzi, 
J. Llinas, G. Rogova, S. Shah, A. Stoica, and D. Zhu. 

This is the second year for this conference and we have made great strides in this short 
period. I am confident that the conference will continue to grow both in terms of size and 
quality. Thank you all for making this conference a success. 

Pramod E. Varshney 
Technical Program Chair 
Professor 
Syracuse University 
NY, USA 
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1    Plenary Speech I: "Multisensor Fusion and Integration Issues, 
Approaches and Opportunities" 

Dr. Ren C. Luo, Professor and Dean College of Engineering National Chung Cheng University, Taiwan and 
General Chair of MFI'99 - IEEE International Conference on Multisenor Fusion and Integration for 

Intelligent Systems 

1.1    ABSTRACT 

Interest has been growing in the use of multiple sensors to increase the capability of intelligent systems. In 
this presentation, the issues, approaches in dealing with multisensor fusion and integration (MFI) will be 
discussed. The applications and potential opportunities for the implementation of MFI will also be included. 
The issues involved in integrating multiple sensors into the operation of a system are presented in the context 
of the type of information these sensors can uniquely provide. The advantages gained through the synergistic 
use of multisensory information can be decomposed into a combination of four fundamental aspects: the 
redundancy, complementarily, timeliness, and cost of the information can then defined as the degree to which 
each of these four aspects is present in the information provided by the sensors. 

In general, sensory fusion can be accomplished at different levels: data fusion, feature fusion and decision 
fusion. More commonly known is data fusion level, Example of this type of fusion are fusion of multiple 
ultrasonic data, and fusion of images from different imaging sensors. In feature fusion level, features are 
extracted from the raw measurements that are then combined in a quantitative or qualitative manner. For 
example, feature fusion can be used to fuse information from imaging and a non-imaging sensor. Decision 
fusion level can be employed when the sensors available are not compatible or be applicable to many pattern 
recognition problems. 

Typical of the applications that can benefit from the use of multiple sensors are industrial tasks like 
assembly, military command and control for battlefield management, mobile robot navigation, multitarget 
tracking, and aircraft navigation. Common among all of these applications is the requirement that the 
systems intelligently interact with and operate in an unstructured environment without the complete control 
of a human operator. Advances in hardware, software and algorithm have made it possible to employ multiple 
data sources for information gathering and to develop more complex multisensor fusion and integration 
system. An example of applying MFI system in an automations mobile robot/intelligent wheelchair system 
with video demonstration will also be presented. 

1.2    Short Biographical Sketch 

Ren C. Luo (IEEE M'82 - SM'87 - F'92), is currently a Professor and Dean of College of Engineering 
at National Chung Cheng University, he also served as Director of Automation Technologies Program at 
National Science Council and Advisor of Ministry of Economics Affairs in Taiwan, R.O.C. He was a Professor 
in the Department of Electrical and Computer Engineering and the Director of the Center for Robotics and 
Intelligent Machines at North Carolina State University in Raleigh, North Carolina, USA. He received his 
Ph.D degrees from Technische Universitaet Berlin, Berlin, Germany in 1982. 

iFrom 1983 to 1984, he was an Assistant Professor in the Department of Electrical Engineering and 
Computer Science at the University of Illinois at Chicago. From 1984 to 1990, he was Assistant, Associate 
Professor and became Professor since 1991 in the Department of Electrical Computer Engineering at North 
Carolina State University, Raleigh, NC. From 1992 to 1993, he was Toshiba Chair Professor at University of 
Tokyo, Japan. 

Dr. Luo's research interests include: sensor-based intelligent robotics systems, multisensor fusion and 
integration, computer vision, rapid prototyping and advanced manufacturing systems. Dr. Luo has published 
over 170 technical journals, proceedings, and patents in the above-mentioned areas. He authored a book, 
Multisensor Fusion and Integration (Ablex, 1995); and was editor of the book, Robotics and Vision (IEEE, 
1988). Dr. Luo was also guest editors for the Journal of Robotics Systems (John Wiley and Sons. Vol. 7, 3, 
1990), IEEE Transactions on Industrial Electronics in special issues on the topics of multisensor fusion and 
integration for intelligent machines, and editor of IEEE/ASME Transactions on Mechatronics. 
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2    Plenary Speech II: "AI and Space Exploration" 

Dr. Kenneth M. Ford Associate Center Director for Information Technology and Director of NASA's 
Center of Excellence in Information Technology, NASA Ames Research Center, Moffet Field, CA, USA 

2.1 ABSTRACT 

Humans are quintessential^ explorers and makers of things. These traits, which identify us as a species and 
account for our survival, are reflected with particular clarity in the mission and methods of space exploration. 
The romance associated with the Apollo project is being replaced with a different vision, one where we make 
tools to do our exploring for us. We are building computational machines that will carry our curiosity and 
intelligence with them as they extend the human exploration of the universe. 

In order to succeed in places where humans could not possibly survive, these "remote agents" must 
take something of us with them. They must be self-reliant, smart, adaptable and curious. Our mechanical 
explorers cannot be merely passive observers or puppets dancing on tenuous radio tethers from earth. They 
simply will not have time to ask us what to do: the twin constraints of distance and light-speed would render 
them helpless while waiting for our instructions, even if we knew what to tell them. AI plays a central role 
in space exploration because there is, literally, no other way to make it work. Our bodies cannot fly in the 
tenuous Martian atmosphere, endure Jupiter's gravity or the electromagnetic turbulence of Saturn's rings; 
but our machines can, and we will send them there. Once at distant worlds, however, they must deal with 
the details themselves. The only thing we can do is to make them smart enough to cope with the tactics of 
survival. 

How clever will these agents of human exploration need to be? Certainly, cleverer then we can currently 
make them. It will not be enough to be situated and autonomous: they will need to be intelligent and 
inquisitive and thoughtful and quick. NASA is committed to integrating intelligent systems into the very 
center of our long-range strategy to explore the universe. 

In this talk, I will describe the current and future research directions of NASA's expanding information 
technology effort with a particular emphasis on intelligent systems. 

2.2 Short Biographical Sketch 

Kenneth M. Ford is the Associate Center Director for Information Technology at NASA Ames Research 
Center and Director of NASA's Center of Excellence for Information Technology. In these roles, Dr. Ford 
has had the honor and responsibility of helping shape NASA's IT research effort (about 200M dollars effort 
at Ames, but much larger Agency wide). The Ames Research Center has about 5,000 employees, of which 
about a third work in IT and 700 have Ph.D degrees. 

Additionally, Dr. Ford is the Director and Founder of the Institute for the Interdisciplinary Study of 
Human and Machine Cognition (IHMC) at the University of West Florida- a multidisciplinary research unit 
of the State University System. Since its founding in 1990, IHMC has rapidly grown into a well-respected 
research institute investigating a broad range of topics related to understanding cognition in both humans 
and machines with a particular emphasis on building cognitive prostheses to leverage and amplify human 
intellectual capacities. While at the University of West Florida Professor Ford received national and local 
recognition for teaching excellence and in 1997 he was awarded the University's highest research distinction, 
the Research and Creative Activities Award. Dr. Ford has been on a leave absence from the University to 
NASA for the last two years. 

Dr. Ford entered computer science and artificial intelligence through the back door of philosophy. After 
studying epistemology as an undergraduate, he joined the Navy and wound up fixing computers among 
other things. When his Navy stint ended, he earned his doctoral degree in computer science from Tulane 
University in 1988. His research interests, among others, include: artificial intelligence, knowledge-based 
performance support systems, computer-mediated learning, and internet-based applications. Dr. Ford is the 
author of well over 100 scientific papers and the author /editor of five books. 

Dr. Ford is the Editor-in-Chief of AAAI/MIT Press, Executive Editor 
of the International Journal of Expert Systems, Associate Editor of the Journal of Experimental and 

Theoretical Artificial Intelligence, and is a Behavioral and Brain Sciences (BBS) Associate. 



3    Plenary Speech III: "Music Enhances Learning: Keeping Mozart 
in Mind" 

Dr. Gordon Shaw Professor Emeritus, Elementary Particle Theory Theoretical Neurobiology Department 
of Physics and Center for the Neurobiology of Learning and Memory University of California - Irvine CA, 

USA 

3.1 ABSTRACT 

Theoretical studies [Leng and Shaw, 1991], the "Mozart effect," based on the trion model [Shaw et al., 1985] 
predicted that music would enhance spatial-temporal reasoning (the ability to mentally image and transform 
patterns in space and time). Recent supporting experiments involving the Mozart Sonata for Two Pianos in 
D Major-K.448 are: behavioral studies showed that listening to it enhanced spatial-temporal reasoning in 
humans [Rauscher et al., 1993, 1995; Johnson et al., 1998] and in rats [Rauscher et al., 1998]; EEG studies 
[Sarnthein et al., 1997] showed that listening to it results in increased coherence lasting several minutes; 
exposure to it reduced pathological activity in comatose epileptic patients [Hughes et al., 1998]. MRI studies 
[Muftuler et al., 1999] showing excitation of cortex relevant to spatial-temporal reasoning. Studies relevant 
to education are: We [Rauscher et al., 1997] showed that preschool children who were given 6 months of 
piano keyboard training improved dramatically on spatial-temporal reasoning. Second grade children (in 
the inner-city 95 St. School in Los Angeles) given 4 months of piano keyboard training as well as training 
on Peterson's math video software scored striking higher [Graziano et al., 1999] on proportional math and 
fractions. Support for the trion model from cortical data [Bodner et al., 1997] show families of firing patterns 
related by symmetries. Implications for education, basic neuroscience, clinical medicine, and technology are 
discussed. 

3.2 Short Biographical Sketch 

Professor Shaw earned his B.S. from Case Institute of Technology in 1954 and his Ph.D. in Theoretical 
Physics from Cornell University in 1959. He had post-doctoral positions at Indiana University and the 
University of California, San Diego, and a teaching position at Stanford University before joining the new 
UCI campus in 1965. In addition to his research in elementary particle theory, he started working on brain 
theory in 1974. He is a member of the UCI Center for the Neurobiology of Learning and Memory. 
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4.    Plenary Speech IV: "International Fusion: Changes and Approaches " 

Franklin E. White, Jr. 
Director, Program Development, Navy SPAWAR Systems Center, 

Code D101, San Diego, CA, USA, Email: whitefe@spawar.navy.mil 

4.1   ABSTRACT 

In the current Information age, the potential for overwhelming availability of data largely without 
meaning has become a reality. Everywhere individuals and organizations are drowning in data and 
information and starved for knowledge and understanding. This is a problem that has become apparent 
worldwide in developed and developing countries. One of the keys to addressing this is data and 
information fusion. Fusion has long been the domain of a relatively small number of practioners in a 
largely classified endeavors within nations. This speech will address the changes in this world view that 
are coming about and discuss the burgeoning exchange of information about fusion on an increasingly 
global basis. It will also suggest some discipline and approaches essential to making fusion tools useful, 
and discuss some of the needed mechanisms and pitfalls as an international community comes together. 

4.2 Short Biographical Sketch 

Franklin E. White Jr. has spent 30 years with Navy as an officer and scientist. He has focused on 
integration and fusion efforts, has worked with Navy's Command, Control and Intelligence systems and 
is Chairman of the Joint Directors of Laboratories, Data Fusion Group. Mr. White has long term 
experience with Top Level architectures, serving on the team that developed the Copernicus Architecture 
and spending two years on detail to the Intelligence Community Management Staff (CMS) where he 
chaired the working group that developed the INTELINK information sharing concept. He has long been 
a supporter of international cooperation serving for 2 years at RAF Brawdy Wales, UK and temporarily 
at many European sites and is active in many international programs. He has spoken at international CIS 
symposia and AFCEA meetings. He is a long time member of AFCEA , SASA, The Naval Institute and 
Naval Intelligence Professionals and is currently the Director of Program Development at SPAWAR 
Systems Center San Diego. 
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Abstract 

Surface areas, such as airports, harbors, subject to illegal 

activities, violations of navigation laws and possible 
accidents require a constant and effective surveillance 

effort. This can be achieved through a ground-based 

surveillance network consisting of various types of sensors 

managed by suitable control centers; the objective being to 

provide a prompt detection of unusual or unexpected 

events, to optimize the available resources and to support 

the selection and implementation of pre-defined 

emergency programs. This paper presents a suitable 

network structure, with its technical characteristics, 

related to existing equipment used in civilian applications. 

♦ Preventing accidental environment pollution 

and supporting any restoration efforts should such 

events occur; 

♦ Detecting   and   countering   illegal   activities 

(smuggling, narcotics, illegal immigration, etc.). 

The above activities should be exploited in any in 

critical weather situations. 
The continuous surveillance of extensive areas will 

not be effective if assigned solely to naval and 

airborne patrol units, but must rely on the support of 

an integrated network of diversified ground-based 

multi-sensor elements. 

2. System Composition 

Keywords 

Multisensor, Data fusion, Surveillance. 

1. Introduction 

A wide and effective surveillance of critical surface 

areas (harbours, straits, etc.) is essential to: 

♦ Providing maritime traffic control in order to 

prevent collisions (e.g., between ships, running 

aground, striking reefs and structures, etc.); 

♦ Enforcing anti-pollution laws; 

♦ Enforcing navigation laws. 

♦ Organizing and supporting search and rescue 

operations (ship wrecks, accidents, etc.); 

In order to guarantee its effectiveness in any critical 

conditions (of weather and traffic) and to monitor 

both cooperative and non-cooperative units, the 

system needs to receive data from different kinds of 

sensors. Moreover the data received have to be 

collected and managed by an integrated system. 

As shown above, the CAMS system basically 

exploits the following elements: 

♦ differential GPS-based location system, 

♦ DF network, 

♦ radar, 

♦ weather station, 

♦ set infrared sensors 

♦ video-camera 

♦ Control Center Unit. 
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Figure . 1 CAMS System Block Diagram 

Now we can see a brief description of each element. 

2.1. Differential GPS (DGPS) 
The DGPS-based technology is very useful for equip 

all mobile units permanently deployed in the 

controlled area. Also the mobile units not located 

permanently deployed in the area, could be 

temporarily equipped with a portable GPS radio link. 

The Control Center Unit is supplied with a high 

performance GPS receiver that receives information 
from each GPS equipment and processes it using 

differential algorithms. Moreover, each GPS 

performs (real time) the adjustments based on the 

well-known position of the reference GPS receiver 

and other information (ephemeredes). 
This kind of technology can guarantee location 

errors below several centimeters. 

2.2. DF Stations 
The main functions of the DF stations are to 

intercept, determine DOA, monitor and, if requested, 

record (audio) selected emissions of interest, even of 

short duration, in the V/UHF bands and, if 
necessary, also in the HF band (communication 

channels used by large naval units). 
Emitter fixing is also possible, provided the DF 

Stations co-operate. For this purpose, the DF stations 

are grouped together, and each group is connected to 

a Master Station. The Master Station is linked to the 

Control Center Unit. 

2.3. Radar 
This sensor operates in the S and X bands and is 

used for detecting, locating and tracking targets in 

the assigned operations area (even if such targets 

maintain total radio/radar silence). With an antenna 

height of 100m, this radar can ensure detection 

ranges of 45- 50 Km in the S band for average size 

naval units (RCS equal to 1000 sqm), and 20 - 25 

Km in the X band for small size naval units (RCS 

equal to 10 sqm). 

2.4. Weather station 
The weather station supplies the system with data 

relating to sea, wind and visibility conditions. This 

kind of data is very useful both to determine safety 

range to control critical parameter and to record 

weather conditions for statistical analysis of critical 

events. 

2.5. Infrared sensors 
The operator uses the infrared sensors for the 

purpose of sorting tracks (i.e. mobile unit 
discrimination), for accurate target identification 

(optical fingerprinting) and in order to reveal any 

illegal activities. In fact, the very high angular 

discrimination afforded by this equipment can be an 

invaluable asset in separating close targets, in 

critical situations not easily distinguished by other 

sensors, and in identifying target shape and features. 

Finally, more generally, these kinds of sensor allow a 

night vision control of the area. 
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2.6. Video-camera 

Similarly to the infrared sensor, the video camera is 

very useful to sort tracks and for optical target 

identification in low light conditions. 

2.7. Control Center Unit (CCU) 

Control Center Unit is the heart of the system, and it 

is where the data are collected, fused and stored and 

where almost all the processing is performed. 

Further details are given in the following. It consists 

of: 

- Processing Unit 

- Operator  Console  (with   display,   keyboard, 

trackball/mouse) 

- TV Monitor and controls 

- IR Monitor and controls. 

3. CCU measure management 

All sensors are connected to the Control Center Unit 

(CCU) via radio link or via cable.  The CCU's 

purpose is to process the data received from sensors 

in order to detect, identify, track and estimate the 

position and the main kinetic parameters of the 

mobile units, as well as supply scenario assessment 

and to support decision-making process. 

The use of diversified sensor in surveillance systems 

makes it possible to compensate the weak points if 

some with the strong points of others and provides 

further redundancy. This approach increases system 

robustness. 

To   fully  exploit  the   collected   information,   all 

incoming fragments and packets of information must 

be   synergistically  combined.   Below   is   a   brief 

description of the CAMS data fusion process. 

Once the initialization step is completed, the data 

fusion   integration   can   process   the   data.   The 

assessment is basically a step process. 

Each sensor supplies a different set of measurement 

relating   to   the   intercepted   mobile  unit:   radar 

furnishes distance and the azimuth angle, while 

DGPS and DF supplies latitude and longitude. A 

further difference is the refresh rate, which is 

different from a sensor to other. So the first step is to 

normalize the received measurements in terms of 

type and time. 

All  measurements   are  converted   into   standard 

latitude    and    longitude    data    using    normal 

transformation     formula.     In     particular,     the 

measurements received from radar are converted and 

covariant matrix (later needed in the fusion process) 

is generated. 

To calculate the position of each mobile unit at the 

CCUs refresh time, all measurements are linear 

extrapolated using the following formulas. 

Let 

Xm (Ty) = [Nm (TkO, N'm (Tu), Em (Tu), E'm (Ty), Dm 

(T.dXD'.^T,,)] 

the state vector of a mobile unit "m" at Ty instant 

where the letters N-E-D identify the position and the 

letters N'-E'-D' the speed. 

Let Ty the instant when the sensor furnished its 

report, with Tk>= Ty. 

Let Tk be the instant when the CCU updates all data. 

The new position vector at the instant T^ that is 

Xm (T^ = [Nm (TO, Em (Tt), Dm (TO], 

could be obtained using the following formulas: 

Nm (Tk) = Nm (T^ + N'm (TkO * (Tk -Ty) 

Em (TO = Em (Tu) + E'm (Tki) * (Tk -Ty) 

Dm (Tk) = Dm (Tki) + D'm (Tki) * (Tk -Ty) 

All measurements received have to be used for 

updating the exiting tracks or for initializing new 

tracks. Track updating process begins with a "gating 

procedure". This technique is used to eliminate 

unlikely observation-to-track-pairing. A gate is 

located around the predicted track position. Then, if 

a single measurement is within the gate, and if it is 

not within the gate of any other track, the 

measurement will be correlated with the track and 

used to update the track. If more than one 

measurement is within the gate, or worst, if it is 

within the gates of more than one track, further 

correlation logic is required. 
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There are basically two approaches to solving 
resolution. First, the "nearest-neighbor" (NN) 

approach looks for a unique pairing, so that, at the 

most, one measure can be used to update a given 

track. In the second approach, "all neighbors" (AN) 

allows a track to be updated with a combination of 

all measurements within its gate. We have followed 

the first approach. 
First of all it is necessary to calculate a distance 

between measurement and the predicted position of 

track. Since, as described below, Kaiman filter 

technique will be used, the covariance matrix is used 

to calculate this quantity in a statistical way. The 

assignment method is used to compose a matrix 

arranging tracks in one dimension and the 

measurements in the other dimension, and with non- 

zero elements as the appropriate distance functions. 

Zero elements are set as unacceptable because out of 

gating criteria. The optimal solution will give the 

maximum number of possible assignments. Even for 

simple cases, such as three conflicts, the enumerative 

method is too time consuming to be implemented. In 

this application the Munkres optimal assignment 

algorithm, modified by Burgeois and Lassalle has 

been used. 
After the assignment process, using the well-known 

Kaiman filter technique, is possible to determine the 

present state and predict the future state of each 

track, in terms of position and speed. 
In a more complex situation (i.e. to track mobiles 

units with different kinematics characteristics) a 

bank of Kaiman filters could represent a significant 

improvement that can offer unique advantages over 

the single Kaiman filter approach. Each filter could 

be tuned to a particular combination of target class 

and operational parameters. 

Finally, if possible, the tracks are identified by 

comparing the obtained data with the data stored in a 

set of libraries, either automatically or by operator 

aid. 
The CCU data management process is summarized 

in the following diagram. 

Multisensor 
Input Data 

Normalization 

Filtering and 
Prediction 

HUM 'BnuKi 

Track 
Manage 

mmmmsmmm 

Output 
Tracks 

Fig.2 CCU Data Management Block Diagram 

4. CAMS main features 

The main characteristics of CAMS are summarized 

below. 
•/   System configuration guarantees effectiveness in 

critical weather situations and crowded area and 

for cooperative and non-cooperative mobile unit. 

Heterogeneous   types   of  survey   allow   this 

performance. 
S   The situation is represented on a geographic 

map display, where the operator has a clear and 

overall view of the controlled area. 
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•/ The operator can interact with the geographic 

display map using the standard tools: panning, 

zooming, scrolling, etc.... 

S CAMS is able to support query both geographic 

and numeric queries. So the operator can submit 

heterogeneous queries with geographic 

conditions (e.g. all dangerous area) and numeric 

conditions (all mobile unit with speed greater 

then a fixed value), related by logical operator 

(and, or, not). 

S All resources (people, vehicle, etc..) are under 

control, so the system can provide aid to the 

needful and re-routing if necessary; 

S The system is able to control resources the 

situation in real-time. It can analyze the values 

of the significant parameters, such as the 

distance between mobile units, distance between 

mobile unit and reefs or obstacles, Unit velocities 

in a given area, to prevent accident and 

unattended situations. 

•S Based on previous analysis, the system 

automatically produces the safety range for 

controlled parameters, in relation to weather and 

other conditions. If one or more parameter value 

falls out of the calculated range, a warning or an 

alarm is generated. 

■S When a warning or alarm is generated the 

CAMS supports the operator in his decision- 

making processes in order to properly manage 

the situation. This is done relating the current 

situation with a set of libraries of standard 

situations and historical situations. After this 

diagnoses an actual-situation-score is generated 

and the right actions are proposed to operator to 

face the problem. The action selection is based 

on a set of libraries of planned actions. 

S When an unattended situation is detected, all 

relevant data are automatically recorded, such as 

weather conditions, number of units involved, 

speed of each mobile unit, mutual distance and 

so on. Data are also recorded under operator 

command. 

S Recorded data contribute to building historic 

archive. The CAMS supports a statistical 

analysis process of critical situations. It can sort 

data on the basis keywords: date, kind of 

situation, wind speed, wind direction, types of 

resources used and their technical features, etc... 

Afterwards results are shown in a tabular form, 

or plotted. Moreover, this data can be used to 

reproduce the situation of interest in an off-line 

system such as simulator. 

S CAMS has been designed to be upgraded with 

an existing Route Planning Module. This 

module is very useful in furnishing suggestions 

that can improve overall effectiveness. 

Figure 3 shows the main screen mask used by the 

operator to control the situation and interact with the 

system. Special attention has been assigned to the 

man/machine interface to assure a clear and prompt 

understanding in order to reduce reaction time. 

Other information in accessible through secondary 

masks echoed on the main mask. 

#*>'<l <*'»■!#■!■?■ 

W>:' 

Fig.3 CAMS main mask 

5. Application 

The system has been designed to be used in 

Ravenna's harbour. This is located in the north of 

Italy and is characterized by very unique 

topographic, meteorological and traffic conditions. 

The area to control is fairly wide and includes a 

roadstead where the ships wait for the permission to 
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dock and a narrow channel that leads to quay. This 

channel is split up into seven sections and each 

section requires different navigation permission 

depending on to ship tonnage and dimensions. 

Its geographic location (in the north of Italy, near 

Venice) is strongly affected by the weather 

conditions. For most of the day during the year, the 

weather is foggy rainy and, generally visibility is 

usually reduced. 
Finally another important aspect is the type of traffic 

characterizing the harbor. 

Ravenna harbor is one of the most important 

commercial harbors of the Adriatic Sea, and is 

expected to become even more crowded. The 

following tables give an idea of the traffic growth in 

terms of tonnage, ships average tonnage and goods 

tonnage. 

This table shows the number and types of accidents 

that occur in the harbor in the period 1990-1997. 

1990-1997 

Number of Ships +16.3 % 

Average Ships Tonnage +5.5% 

Goods Tonnage +35.6% 

Tab.l Ravenna harbor traffic variations 

To complete the above percentage information it is 

necessary to consider that the number of ships passed 

through the harbor during the period from 1990 to 

1997 is 39.500 units. 
Moreover it is very important to consider the growth 

of dangerous goods passing through the harbor as 

shown in the following table. 

1990-1997 

Petroleum products +26.4% 

Chemical products +3% 

Total +22.7 

Tab.2 Dangerous goods variations 

The above considerations and on the basis of the 

analysis of the accident occurred, illustrated in the 

following table, clearly highlight the need to have an 

integrated and efficient control system. 

1990-1997 

Fire, explosion 13% 

Collision ship/ship 27% 

Collision ship/ barrier 23% 

Criminal intent 37% 

Tab.3 Accident percentage 

To gain a more comprehensive overview of the 

harbor condition, it is necessary to consider all 

events relating to illegal activities, violation of 

navigation rules, as well as violations of 

environment safety laws. 

6. Conclusions 

The use of a ground-based surveillance network, 

similar to the one described above, consents: 
• surveillance of assigned areas, prompt reporting 

of any situation changes or targets of interest 

(continuous monitoring); 

• organization of Search And Rescue (SAR) 

operations support; 
• planning and scheduling support mobile units, 

to minimize for each ships waiting time in the 

roadstead in order to reduce costs; 
• useful aid in decision-making processes during 

emergency conditions and providing a prompt 

reaction; 
• reducing the number of necessary units and 

optimization their employment; 

• reducing patrol mission duration and 

economizing on material and human resources; 

• generating reports and official documents on 

various situations and events; 
• communicating alarm to other departments 

(with different assignments). 

Also, with special attention to unusual, or 

unexpected events,  the use  of computer-assisted 
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multisensor system for surveillance allows to process 

and elaborate statistical data concerning: 

■ available equipment (communications, radar 

systems) and related technical characteristics 

(electrical parameters) 

■ typical operational patterns: such as, number of 

units involved, mobile units reciprocal distances, 

distances between mobile units and reefs, or 

obstacles, mobile units route and speed, weather 

conditions (wind speed, wind direction, etc..) 
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Abstract 

Geospatial databases are needed for many tasks in ci- 
vilian and military applications. Automated building de- 
tection and description systems attempt to construct 3-D 
models using primarily PAN (panchromatic) images. 
These systems can make use of cues derived from other 
sensor modalities to make the task easier and more ro- 
bust. The recent development of hyperspectral sensors 
such as HYDICE (HYperspectral Digital Imagery Col- 
lection Experiment) can provide reasonably accurate 
thematic maps. Such data, however, tends to be of lower 
resolution, have geometric distortions and camera mod- 
els are needed to map points between the different sen- 
sors. We use the thematic map to provide cues for 
presence of buildings in the PAN images for accurate de- 
lineation. It is shown that such cues can not only greatly 
improve the efficiency of the automatic building detection 
system but also improve the quality of the results. Quan- 
titative evaluations are given. 
Key Words: Information Integration, Sensor Fusion, 
HYDICE, Hyperspectral data, 3-D Building Modeling, 
Thematic Map. 

1 Introduction and Overview 

Three-D models of man-made structures in urban and 
sub-urban environments are needed for a variety of tasks. 
The principal sensor products used for this task have 
been panchromatic (PAN) images acquired from an air- 
craft [Noronha & Nevatia, 1997, Collins et al., 1998, 
Grün, et al. 1997, Grün & Nevatia, 1998, Paparoditis et 
al., 1998]. PAN images have many advantages: they are 
relatively easy to acquire at high resolution (say of the or- 
der of 0.5 meters/pixel) and humans find it is easy to vi- 
sualize them and to extract the needed information from 
them. However, their use for automatic extraction has 
proven to be quite difficult. One of the principal causes 
of this difficulty is the high density of features present in 
the images. PAN image pixels encode reflected light in- 
tensity that gives little information to the nature of the 
material reflecting it. While it is possible to apply analy- 
ses that help recover structure from image elements, the 
problem of segmenting aerial scenes accurately remains 
a challenge. 

* This research was supported in part by the U.S. Army Re- 
search Office under grant No. DAAH04-96-1-0444. 

Purdue University 
West Lafayette, Indiana 47907-1285 

landgreb @ ecn.purdue.edu 

In recent years, advances in the solid state electronics 
have made possible the construction of hyperspectral 
sensors with an orders of magnitude increases in the 
number of bands possible, while at the same time provid- 
ing improved signal-to-noise ratios. One such sensor, 
called HYDICE collects data of 210 bands over the range 
0.4-2.5 u m with a field of view 320 pixels wide at an 
IFOV (pixel size) of 1 to 4 m depending on the aircraft 
altitude and ground speed. Given the spectral detail in 
such data it becomes practical and effective to construct 
a thematic map of an area that shows the layout of the 
various types of land cover and distribution of various 
materials in the scene. 

In this paper, we focus on the task of building detection 
and reconstruction with the assistance of corrected and 
geo-referenced thematic maps derived from HYDICE 
data. The complementary qualities of conventional imag- 
es and HYDICE image data provide an opportunity for 
exploiting them in different ways to make the task of au- 
tomatic feature modeling easier. 

Combining the two data sources at the pixel level is dif- 
ficult as there is not a one-to-one correspondences be- 
tween the pixels in the two sources, in general; 
hyperspectral data poses major challenges in terms of 
geometric corrections and terrain normalization. Instead, 
we propose to extract information from each which is 
then combined and perhaps used to guide extraction of 
additional information. In particular, we feel that the 
HYDICE data is suited for detecting possible building 
locations as buildings may be characterized by their roof 
materials. However, hyperspectral analysis results in a 
label for each pixel, but does not, by itself, combine pix- 
els into objects such as buildings. HYDICE image data 
tends to be of lower resolution than conventional PAN 
images. Object boundaries are not likely to be precise 
and it may be difficult to distinguish a building from oth- 
er nearby objects such as roads. PAN images, with much 
higher resolution can provide precise delineation as well 
as distinguish a building from other high objects much 
more reliably. 
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In the next sections, we describe how thematic maps are 
derived and how useful cues can be extracted from the 
HYDICE data. Use of these cues in the building extrac- 
tion process is then described. Results comparing the ef- 
fects of these cues are presented in section 4. Other 
approaches to use of HYDICE data may be found in 
[Ford et el., 1998, Bea & Healey, 1998, Healey, 1999, 
Madhok & Landgrebe, 1999]. 

2 Thematic Maps from HYDICE Data 
The intent for multispectral and hyperspectral image data 
analysis is to rapidly and inexpensively associate a 
ground cover label to each pixel in the image. Given the 
multivariate nature of such data, the process of data anal- 
ysis is one of dividing up the N-dimensional feature 
space into M exhaustive but non-overlapping regions 
where M is the number of classes of materials existing in 
the scene. The process involves defining the M classes of 
interest in a quantitative fashion, such that each pixel in 
the scene, which exists as a discrete location in the N-di- 
mensional space, can be uniquely associated with one of 
the M classes. Frequently, this is done by using a small 
number of samples in the scene, called design samples or 
training samples, to define an N-dimensional probability 
density function for each of the M classes. Then an un- 
known pixel can be evaluated in terms of the likelihood 
of each possible class to determine the most likely class 
membership. 

The onset of high dimensional hyperspectral data, on the 
one hand, greatly increases the potential of such a pro- 
cess. However, it has also introduced significant new 
challenges to the analysis process to achieve this poten- 
tial, because such high dimensional feature spaces are 
much more complex. Not only can a 210-dimensional 
probability distribution not be visualized, but even the 
ordinary rules of geometry of 2- or 3-dimensional space 
do not apply in such high dimensional spaces [Lee & 
Landgrebe, 1993; Jimenez & Landgrebe, 1998]. Much 
progress has been made in recent years in understanding 
such high dimensional spaces and in devising effective 
analysis procedures for them [Landgrebe, 1999]. The 
following example from Fort Hood, Texas, will serve to 
illustrate some of the tools available for this process. 

In this case, bands in the regions where the atmosphere is 
opaque were not considered and 171 bands in the 0.4 to 
2.45 |xm region of the visible and infrared spectrum 
were used. This data set contains 1208 scan lines with 
307 pixels in each scan line. It totals approximately 130 
Megabytes. The primary intent of the analysis of this 
data set was to identify rooftops and other impervious 
materials in the scene. With data this voluminous and 
complex, one might expect a rather complex analysis 
process, however, it has been possible to find quite sim- 

ple and inexpensive means to do so. The steps used and 
the time needed on an inexpensive personal computer for 
this analysis are listed in the following table and are 
briefly described below. 

Table 1: Thematic Classification Time 

Operation CPU time Analyst time 
Display Image 15 sec. 
Define Classes 30 min. 
Feature Extraction 11 sec. 
Reformat 117 sec. 
Classification 86 sec. 
Total 229 sec. 30 min. 

Define Classes 

A software application program called MultiSpec, avail- 
able to anyone at no cost from http://dynamo.ecn.pur- 
due.edu/~biehl/MultiSpec/, was used. The first step is to 
present to the analyst a view of the data set in image form 
so that training samples, examples of each class desired 
in the final thematic map, can be marked. A simulated 
color infrared photograph form is convenient for this pur- 
pose; to do so, bands 60, 27, and 17 are used in Multi- 
Spec for the red, green, and blue colors, respectively. The 
image is shown in Figure 1. (Color versions of the figures 
in this paper are available at http:/Ms.usc.edu/home/iris/ 
huertas/www/hydice.) 

Feature Extraction 

After designating the training areas, a feature extraction 
algorithm is applied to determine a feature subspace that 
is optimal for discriminating between the specific classes 
defined. The algorithm used is called Discriminate Anal- 
ysis Feature Extraction (DAFE). The result is a linear 
combination of the original 171 bands to form 171 new 
bands that automatically occur in descending order of 
their value for producing an effective discrimination. 
From the MultiSpec output, it is seen that the first 15 of 
these new features should be adequate for successfully 
discriminating between the classes. 

Reformatting 

The new features defined above are used to create a 15 
band data set consisting of the first 15 of the new fea- 
tures, thus reducing the dimensionality of the data set 
from 171 to 15. 

Classification 

Having defined the classes and the features, next a clas- 
sification is carried out. The algorithm in MultiSpec used 
was the standard Gaussian maximum likelihood algo- 
rithm in which the mean vector and covariance matrix for 
each class are estimated from the training samples. These 
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Figure 1. Simulated infrared image using HYDICE bands 17, 27 and 60. 

Figure 2. Thematic Map of the classes roof (black), road, lot, field (grays) and shadow (white) 

estimates then allow calculating the likelihood of each 
class for a given pixel. The label of the most likely class 
is assigned to the pixel. 

Hyperspectral data provides the capability to discrimi- 
nate between nearly any set of classes. Research has 
shown that, of all the variables to the data analysis pro- 
cess, the most important one is the size and quality of the 
classifier training set. There are a number of additional 
steps that could be taken to further polish the result, but 
the current result appears to be satisfactory for the cur- 
rent use. 

3 Integration of HYDICE and PAN 
Information 
In order to integrate cues extracted from HYDICE data 
into the building detection and description system we re- 
quire that the thematic map be rectified and registered to 
the PAN imagery as described next. 

Geometric Rectification 

Geometric rectification is needed to correct for the oscil- 
lations and "waviness" introduced by the nature of the 
HYDICE pushbroom sensor. Rectification is performed 
on the thematic map rather than on the hydice data direct- 
ly. The method utilizes ground control points and control 
linear features typically found in urban scenes together 
with the pushbroom sensor model and a gauss-markov 
platform model to yield coordinate relationships be- 
tween ground and image spaces. See [Lee, et al. 1999] 

for details. The accuracies achieved are in the 0.5 to 1 
pixel range. Figure 3 shows a geometrically rectified the- 
matic map of a portion of the Ft. Hood site. Note the 
straight roads. The waviness of the image boundaries 
gives an idea of the extent of rectification required. 

Registration with PAN Images 
The corrected thematic map has the geometric character- 
istics of an orthographic projection. The estimation of 
the sensor parameters, or "camera" model, associated 
with this overhead (nadir) viewpoint is straightforward. 
The camera model allows us to derive the appropriate 
3D- to-2D and 2D-to-image transforms needed to regis- 
ter the available PAN images to the thematic map. We 
use these transforms to project EO 2-D and 3-D features 
onto the thematic map to assist and support the building 
detection system at various stages of processing. We de- 
scribe in more detail, and illustrate these processes, with 
an example, below in section 4. 

Cue Extraction 
Figure 4 shows some of the barrack buildings in Fort 
Hood, Texas. The corresponding thematic map is shown 
in Figure 5. We first extract the roof pixels from the the- 
matic map. These are shown in Figure 6. Many pixels in 
small regions are misclassified or correspond to objects 
made of similar materials as the roofs. The building cues 
extracted from this image are the connected components 
of certain minimum size. These components are shown 

682 



Figure 3. Rectified thematic map. 

Figure 4. Barrack buildings at Fort Hood 

Figure 5. Thematic map. 

in Figure 7; Except for one region, these components 
correspond to building roofs. 

4 Multi-View System 
We next describe the use the HYDICE cues in the multi- 
view building detection system described in [Noronha & 
Nevada, 1997]. This system has three major phases: hy- 

 ■                    1—■ :—:—: ;  

*'H^I ^fc**^'***^*!     .«*■•■^ *   -ii    •■ dH BMft*. 

- '^^W?*               ^^"** 
■             *      / fm m mmtm.                               ~~     *'-*  " •••• 

■Ub"                                    >^UABJ. 
\ . ^^^I.»                                   f ^^^^^BP- 

■ «  ^^ ̂ ^^^m ......           ■ OTH    IPK 
■ t * .:*                              • 

*»■* ■' ""    "                      '-•               •*■   »-    »     VTV . I  . 
-*iT- '^   \""Vv,  ix + *-i   ...,.•»••.*-*•», .«v,*^t 

-   f|| 
^■n 

* • *•*    «« 

Figure 6. Roof Class from Thematic Map 

Figure 7. Building Cues 
pothesis formation, selection and validation. This system 
assumes that the roofs of buildings are rectilinear though 
the roofs need not be horizontal (some forms of gables 
are allowed). Hypotheses are formed by collecting a 
group of lines that form a parallelogram in an image. 
Multiple images and matches between lines are used in 
the hypotheses formation stage. As line evidence can be 
quite fragmented, liberal parameters are used to form hy- 
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potheses. Properties of resulting hypotheses are used to 
select among the competing hypotheses. The selected 
hypotheses are then subjected to a verification process 
where further 3-D evidence, such as presence of walls 
and predicted shadows are examined. 

The cues extracted from the HYDICE data can help im- 
prove the performance of the building description system 
at each of the three stages described above. We show 
some details and results of these processes. 

Hypothesis Formation 

Cues can be used to significantly reduce the number of 
hypotheses that are formed by only considering line seg- 
ments that are within or near the cue regions. The 3-D lo- 
cation of a line segment in the 2-D PAN images is not 
known. To determine whether a line segment is near a 
HYDICE cue region we project the line onto the cue im- 
age at a range of heights, and determine if the projected 
line intersects a cue region. Figure 8 shows the line seg- 
ments detected in the image of Figure 4 (using a Canny 
edge detector); Figure 9 shows the lines that he near the 
HYDICE cues. As can be seen, the number of lines is re- 
duced drastically (84%) by filtering without loosing any 
of the lines needed for forming building hypotheses. 

This not only results in a significant reduction in compu- 
tational complexity but many false hypotheses are elimi- 
nated allowing us to be more liberal in the hypotheses 
formation and thus including hypotheses that may have 
been missed otherwise. 

Figure 8. Line segments from PAN image. 

Hypothesis Selection 

The building detection system applies a series of filters to 
the hypotheses formed. The remaining hypotheses are 
then evaluated in the basis of the geometric evidence (un- 
derlying line segments that support the hypothesized 
roof boundaries), in an attempt to select a set of "strong" 
hypotheses. With HYDICE cues available we skip the 
initial filtering stages and introduce cue evidence into the 

Figure 9. Lines near HYDICE cues. 
roof support analysis. The evidence consists of support 
of a roof hypotheses in terms of the overlap between the 
roof hypotheses and the HYDICE cue regions. The hy- 
potheses are constructed from matching features in mul- 
tiple (two in this example) images and are represented by 
3-D rectilinear components in 3-D world coordinates. 
We can therefore project them directly onto the HYDICE 
cues image to compute roof overlap (See Figure 10). The 
system requires that the overlap be at least 50% of the 
projected roof area. 

Figure 10. A 3-D hypotheses projected on 
PAN image (top) and on cue image. 

Hypotheses Validation 
Just as poor hypotheses can be discarded because they 
lack HYDICE support, the ones that have a large support 
see their confidence increase during the verification 
stage. In this stage, the selected hypotheses are analyzed 
to verify the presence of shadow evidence and wall evi- 
dence. Details of the shadow and wall analysis are given 
in [Lin et al., 1994]. When no evidence of walls or shad- 
ows is found, we require that the HYDICE evidence 
(overlap) be higher, currently 70%, in order to validate a 
hypotheses. The 3-D Models constructed with HYDICE 
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Support from the validated hypotheses are shown in 
Figure 11. For comparison, the model shown in 
Figure 12 was derived without HYDICE support. Note 
that false detections are eliminated with HYDICE cue- 
ing. Also, the object cue on the lower middle in 
(Figure 7) is not found to be a building, even with 
HYDICE support, as the lack of geometric evidence pre- 
vented a hypothesis to be formed there. Also, the build- 
ing components on the top left and on the lower left are 
not found without HYDICE support but found with it. 

Figure 11. 3-D HYDICE assisted model 

Figure 12. Model from PAN without HYDICE cueing 

Once a 3-D model of the buildings is obtained, it is pos- 
sible to reclassify the roof pixels in the thematic map 
more accurately by improving the delineation of the roof 
pixels boundaries and marking missclassified pixels (see 
Figure 13.) 

An evaluation of the quality of results is given next. 

5 System Evaluation 
Table 2 gives a comparison of the number of features and 
final result component counts with and without use of 
HYDICE cues for the Fort Hood example. The two fig- 
ures given for the line segments and linear structures cor- 

Figure 13. Refined roof class 
respond to the two images that were used, one of which 
was shown earlier in Figure 4. 

Table 2: Execution Statistics 

Feature PAN 
Only 

With 
HYDICE 

Line Segments 15938/6976 
Linear Structures 6363/2693 796/652 
Hypotheses 3793 636 
Selected hypotheses 273 172 
Verified hypotheses 115 127 
Final hypotheses 20 (2 false) 24 (0 false) 

To characterize the increase in performance of the sys- 
tem when HYDICE cues are available we use two basic 
metrics (see [Nevatia, 1999] for details), detection rate 
and false alarm rate, as follows: 

Detection Rate = TP 

False Alarm Rate = 

(TP + FN) 

FP 
(TP + FP) 

TP, FP and FN stand for true positives, false positives 
and false negatives. Note that with these definitions, the 
detection rate is computed as a fraction of the reference 
features whereas the false alarm rate is computed as a 
fraction of the detected features. 

In the definitions given above, a feature could be an ob- 
ject, an area element or a volume element. The first level 
of evaluation is to measure the detection and false alarm 
rates at the object levels such as for buildings or wings of 
a complex building. We consider each rectangular part of 
a rectilinear building as a separate object. A building ob- 
ject will be considered to be detected, if any part of it has 
been detected. Consider the reference model shown in 
Figure 14. Table 3 shows a summary of detection and 
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false alarm results for the Ft. Hood example in terms of 
object parts. 

Table 4: Ft Hood Combined Area Evaluation 

Figure 14. Reference model for evaluation. 

Table 3: Component Evaluation 

PAN only 
With 

HYDICE 
Reference Model 26 
TP 20 25 
FP 2 0 
FN 6 1 
Detection Rate 0.769 0.961 
False Alarm Rate 0.09 0.00 

To better reflect the quality of the detected components 
we also compute the accuracy the overlap between the 
footprints of the detected and the reference models and in 
the overlap between the 3-D volume occupied by them. 

The area (volume) elements of the reference model that 
overlap with some area (volume) element of an extracted 
model can be considered to give the true positive (TP) 
values for the area (volume) elements of the reference 
model (the remaining elements of the reference models 
are the false negatives, FN). The area (volume) elements 
of the extracted model that do not overlap with any area 
(volume) element of the reference model give us the false 
positives (FP) for the area (volume) elements of the ex- 
tracted model. 

One way to combine the results of the above area (or vol- 
ume) overlap analysis is to consider each area element as 
an object and count the detection and false alarm rates for 
all the area elements in the models. Table 4 shows these 
results for our Ft. Hood example. Ground detection rate 
is computed for the ground area elements (all elements 
that are not part of other objects); ground false alarm rate 
is not shown. 

To better characterize the accuracy, we compute the de- 
tection rates for the area elements of each reference 

PAN 
Only 

with 
HYDICE 

Detection rate 0.7116 0.8453 
False Alarm rate 0.1510 0.0768 
Ground Detection rate 0.9819 0.9907    • 

building component and the false alarm rates for each ex- 
tracted building component separately. To visualize the 
result we compute a cumulative distribution of the detec- 
tion and false alarm rates. Specifically, we can compute 
the percentage of building components of the reference 
model whose area (volume) elements detection rate (TP) 
is at a give value or higher. A curve plotting such a dis- 
tribution is called a CDR curve [Nevatia, 1999]; 
Figure 15a shows the CDR curve for area elements of 
our Ft. Hood example. Similarly, we can compute the 
percentage of the building components of the extracted 
model whose false alarm rate (FP) is at a given value or 
lower. A curve plotting such a distribution is called a 
CFR curve; Figure 15b shows the CFR curve for the 
area elements of our Ft. Hood example. We also compute 
CDR and CFR curves for the volume elements for the 
reference and extracted building components. These are 
not shown for lack of space. A CDR curve that is consis- 
tently higher than another CDR curve indicates consis- 
tently better performance (similarly, a CFR curve that is 
consistently lower is consistently better). 
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Figure 15. Evaluation curves for area analysis. 

686 



6 Conclusions 
Many challenges remain in terms of data normalization 
and sub-pixel image registration for successful of data 
fusion of PAN and HYDICE types of imagery at the sen- 
sor level. Hyperspectral data however, provides the capa- 
bility to discriminate between nearly any set of classes. 
By introducing an optimal feature design calculation on 
the 171 bands, we have shown that a good classification 
of materials can be achieved for production of a thematic 
map providing effective cues for objects of interest 

We have presented a methodology for detection and re- 
construction of building structures by using conventional 
intensity images with cues data derived from HYDICE 
sensors. Even though the HYDICE data is of a lower res- 
olution and contains some missing elements and arti- 
facts, it has been shown that it can be used to enhance the 
results of PAN image analysis while substantially reduc- 
ing tiie computational complexity. This was accom- 
plished not by combining the information at the sensor 
level but rather by using analysis of one to guide the anal- 
ysis of the other. We believe that this paradigm will be 
suitable for other tasks as well as sensors of different mo- 
dalities become available for more domains. 
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Image Database Indexing using a Combination of Invariant 
Shape and Color Descriptions * 
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Abstract Image and video library applications are 
becoming increasingly popular. The increasing popu- 
larity calls for software tools to help the user query and 
retrieve database images efficiently and effectively. In 
this paper, we present a technique which combines 
shape and color descriptors for invariant, within-a- 
class retrieval of images from digital libraries. We 
demonstrate the technique on a real database contain- 
ing airplane images of similar shape and query im- 
ages that appear different from those in the database 
because of lighting and perspective. We were able to 
achieve a very high retrieval rate. 

Keywords: images, video, libraries, features 

1   Introduction 
Image and video library applications are becom- 
ing increasingly popular as witnessed by many na- 
tional and international research initiatives in these 
areas, an exploding number of professional meet- 
ings devoted to image/video/multi-media, and the 
emergency of commercial companies and prod- 
ucts. The advent of high-speed networks and inex- 
pensive storage devices has enabled the construc- 
tion of large electronic image and video archives 
and greatly facilitated their access on the Internet. 
In line with this, however, is the need for software 
tools to help the user query and retrieve database 
images efficiently and effectively. 

Querying an image library can be difficult and 
one of the main difficulties lies in designing power- 
ful features or descriptors to represent and organize 
images in a library. Many existing image database 
indexing and retrieval systems are only capable of 
between-classes retrieval (e.g., distinguishing fish 
from airplanes).   However, these systems do not 

'Supported in part by a grant from the National Science 
Foundation, IRI-94-11330 

allow the user to retrieve images that are more spe- 
cific. In other words, they are unable to perform 
within-a-class retrieval (e.g., distinguishing differ- 
ent types of airplanes or different species of fish). 
This is because the aggregate features adopted by 
many current systems (such as color histograms 
and low-ordered moments) capture only the gen- 
eral shape of a class and are not descriptive enough 
to distinguish objects within a particular class. 

The within-a-class retrieval problem is further 
complicated if query images depicting objects, 
though belonging to the class of interest, may look 
different due to non-essential or incidental envi- 
ronment changes, such as rigid-body or articulated 
motion, shape deformation, and change in illumi- 
nation and viewpoint. In this paper, we address 
the problem of invariant, within-a-class retrieval of 
images by using a combination of invariant shape 
and color descriptors. By analyzing the shape of 
the object's contour as well as the color and texture 
characteristics of the enclosed area, information 
from multiple sources is fused for a more robust 
description of an object's appearance, this places 
our technique at an advantage over most current 
approaches that exploit either geometric informa- 
tion or color information exclusively. 

The analysis involves projecting the shape and 
color information onto basis functions of finite, 
local support (e.g., splines and wavelets). The 
projection coefficients, in general, are sensitive to 
changes induced by rigid motion, shape deforma- 
tion, and change in illumination and perspective. 
We derive expressions by massaging these sets 
of projection coefficients to cancel out the envi- 
ronmental factors to achieve invariance of the de- 
scriptors. Based on these features, we have con- 
ducted preliminary experiments to recognize dif- 
ferent types of airplanes (many of them having 
very similar shape) under varying illumination and 
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viewing conditions and have achieved good recog- 
nition rates. We show that information fusion has 
helped to improve the accuracy in retrieval and 
shape discrimination. 

2   Technical Description 
In this section, we present the theoretical foun- 
dation of our image-derived, invariant shape and 
color features. Invariant features form a compact, 
intrinsic description of an object, and can be used 
to design retrieval and indexing algorithms that are 
potentially more efficient than, say, aspect-based 
approaches. 

The search for invariant features (e.g., algebraic 
and projective invariants) is a classical problem in 
mathematics dating back to the 18th century. The 
need for invariant image descriptors has long been 
recognized in computer vision. Invariant features 
can be designed based on many different meth- 
ods and made invariant to rigid-body motion, affine 
shape deformation, scene illumination, occlusion, 
and perspective projection. Invariants can be com- 
puted either globally, such is the case in invari- 
ants based on moments or Fourier transform co- 
efficients, or based on local properties such as cur- 
vature and arc length. See [3, 4, 5] for survey and 
discussion on the subject of invariants. 

As mentioned before, our invariant features are 
derived from a localized analysis of an object's 
shape and color. The basic idea is to project an ob- 
ject's exterior contour or interior region onto local- 
ized bases such as wavelets and splines. The coeffi- 
cients are then normalized to eliminate changes in- 
duced by non-essential environmental factors such 
as viewpoint and illumination. We will illustrate 
the mathematical frameworks using a specific sce- 
nario where invariants for curves are sought. The 
particular basis functions used in the illustration 
will be the wavelet bases and spline functions. In- 
terested readers are referred to [1] for more details. 

Several implementation issues arise in this in- 
variant framework which we will briefly discuss 
before describing the invariant expressions them- 
selves. 1 

1. How are contours extracted? 

lA word on the notational convention: matrices and vec- 
tors will be represented by bold-face characters while scalar 
quantities by plain-face characters. 2D quantities will be 
in small letters while 3D and higher-dimensional quantities 
in capital letters. For example, coordinates (bold for vector 
quantities) of a 2D curve (small letter for 2D quantities) will 
be denoted by c. 

Or stated slightly differently, how is the problem 
of segmentation (separating objects from back- 
ground) addressed? Segmentation turns out to be 
an extremely difficult problem and, as fundamen- 
tal a problem as segmentation is, there is no fail- 
proof solution. A "perfect" segmentation scheme 
is like the holy grail of low-level computer vision 
and a panacea to many high level vision problems 
as well. 

We are not in search of this holy-grail, which, 
we believe, is untenable in the foreseeable future. 
In an image database application, the problem of 
object segmentation is simplified because 
• Database images can usually be acquired un- 
der standard imaging conditions which allow the 
ingest and catalog operations to be automated 
or semi-automated. For example, to construct a 
database of airplane images, many books on civil 
and military aircrafts are available with standard 
front, side, and top views taken against a uniform 
or uncluttered background. (The above is also 
true for applications in botany and marine biology.) 
This allows the contours of the objects of interest to 
be extracted automatically or with the aid of stan- 
dard tools such as the flood fill mask in Photoshop. 
Furthermore, the cataloging operations are usually 
done off-line and done only once. Hence, a semi- 
automated scheme will suffice. 
• On the other hand, query images are usually 
taken under different lighting and viewing condi- 
tions. Objects of interest can be embedded deeply 
in cluttered background which makes their extrac- 
tion difficult. However, we can enlist the help 
of the user to specify the object of interest in- 
stead of asking the system to attempt the impos- 
sible task of automated segmentation. A query-by- 
sketch or a "human-in-the-loop" type solution with 
an easy-to-use graphics interface and segmentation 
aids such as the flood fill mask is perfectly ade- 
quate here and does not impose undue burden on 
the user. This proved to be feasible in our experi- 
ments. 
2. How are contours parameterized? 
For a contour based description, a common frame 
of reference is usually needed that allows point cor- 
respondences to be established between two con- 
tours for comparison. The common frame of refer- 
ence comprises a common starting point of traver- 
sal, a common direction of traversal, and a parame- 
terization scheme that traverses to the correspond- 
ing points in the two contours at the same param- 
eter setting.  We will first discuss the parameter- 
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ization issue and then address the issues of point 
correspondence and traversal direction. 

When defining a parameterized curve c(t) = 
[x(t), y(t)]T, most prefer the use of the intrinsic arc 
length parameter because of its simplicity and the 
fact that it is either invariant or transforms linearly 
in rigid-body motion and uniform scaling. How- 
ever, under more general scenarios where shape 
deformation is allowed (e.g., deformation induced 
in an oblique view), intrinsic arc length parame- 
ter is no longer invariant. Such deformation can 
stretch and compress different portions of of an ob- 
ject's shape, and a parameterization based on in- 
trinsic arc length will result in wrong point corre- 
spondence. 

It is well known that many shape deformation 
and distortion resulting from imaging can be mod- 
eled as an affine transform, through which the in- 
trinsic arc length is nonlinearly transformed [2]. 
An alternative parameterization is thus required. 
There are at least two possibilities. The first, 
called affine arc length, is defined [2] as: r = 
Ja y/xy- xy dt where x, y are the first and x, y 
are the second derivatives with respect to any pa- 
rameter t (possibly the intrinsic arc length), and 
(a, b) is the path along a segment of the curve. 

Another possibility [2] is to use the enclosed 
area parameter: a = \ /a

6 \xy - yx\ dt. One can 
interpret the enclosed area parameter as the area of 
the triangular region enclosed by the two line seg- 
ments from the centroid of an object to two points 
a and b on the contour. It can be shown that both 
these parameters transform linearly under a gen- 
eral affine transform [2]. Hence, they can easily 
be made absolutely invariant by normalizing them 
with respect to the total affine arc length or the total 
enclosed area of the whole contour, respectively. 
We use these parameterizations in our experiments. 
3. How are identical traversal direction and 
starting point guaranteed? 
It will be shown that the invariant signatures (to 
be defined later) of two contours are phase-shifted 
versions of each other when only the starting point 
of traversal differs. Furthermore, the same contour 
parameterized in opposite directions produces in- 
variant signatures that are flipped and inverted im- 
ages of each other. Hence, a match can be chosen 
that maximizes certain cross-correlation relations 
between the two signatures. 

Allowing an arbitrary change of origin and 
traversal direction, together with the use of an 
affine invariant parameterization, imply that no 

point correspondence is required in computing 
our invariants. 

Now we are ready to introduce the invariant ex- 
pressions themselves. Our invariants framework is 
very general and considers variation in an object's 
image induced by rigid-body motion, affine defor- 
mation, and changes in parameterization, scene il- 
lumination, and viewpoint. Each formulation can 
be used alone, or in conjunction with others. Due 
to the page limitation, we can only give a brief 
discussion of the invariants under rigid-body and 
affine transform and summarize the invariant ex- 
pressions under change of illumination and view- 
point. Interested readers are referred to [1] for 
more details. 

Invariants under Rigid-Body Motion and Affine 
Transform Consider a 2D curve, c(t) = 
[x(t),y(t)]T where t denotes a parameterization 
which is invariant under affine transform (as de- 
scribed above), and its expansion onto the wavelet 
basis V'o.h = 7755(^r) (where g(t) is the mother 
wavelet) as ua>b = J c{t)ipatbdt. If the curve is al- 
lowed a general affine transform with the possibil- 
ity of being traversed from a different starting point 
and along an opposite direction, then the trans- 
formed curve is denoted by: c'(t) = mc(i') +1 = 
mc(±t + to) + t, where m is any nonsingular 
2x2 matrix, t represents the translational motion, 
to represents a change of the origin in traversal, and 
± represents the possibility of traversing the curve 
either counterclockwise or clockwise: 

=   /(mc(ii + t0) + t)ipa,bdt 
=   mjc(t')^ag(^st±)dt' + ft^bdt 

=   mjc(t')^ag(^±^)dt' 

=   mjc(t')^(t')at±b+t0dt' 

=    ™ua,±b+to • 
(1) 

Note that we use the wavelet property 
Jipa,bdt = 0 to simplify the second term in 
Eq. 1. If m represents a rotation (or the affine 
transform is a rigid-body motion of a translation 
plus a rotation), it is easily seen that an invariant 
expression (this is just one of many possibilities) 
can be derived using the ratio expression 

]muQ|±i,+t0| _ |Uq,±6+to| ,2\ 
|nnic,±d+t0l      |uc>±d+to| ' 

which is a function of the scale a and the displace- 
ment b. If we fix the scale a, by taking the same 

u la,b 

U Lc,d 
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Scenarios Invariant expressions 

Rigid-body motion (using spline basis) Uo,6-Uc,d 

ue,/-u9,ft| 

Affine transform (using wavelet basis) Ua,b     Uc)(|   1 

Ue,f     Ug,h 

Affine transform (using spline basis) 

"a,b     Uc,d     Ue,f 
1            1            1 

Ug.h      Uy      Uk>l 

1     1     1 
Perspective transform 
(using rationed spline basis R) 

St(*(t)-ZiPiRi,k(t)rdt 
where d(f) is the observed image curve, and 
Z)i PiRi,k(t) *s the database curve in rational spline form. 

Change of illumination 
["«X^Uajj.ij- U0fc)6fc]    [uaii6lU02,62- Uajfc,6J 

[ucx.djUc2.d2- UCfc,dJ    [ucj.djUc2.d2- Uc,.l(,J 

Table 1: Other invariant measures 

number of sample points along each curve, we can 
construct a function fa(x) which we call the in- 
variant signature of an object as: 

fa(x) = T^Li   and 

tl<„\—       K.sl       _ |""»a,±»+t0| 
Ja\x) ~ T77    ^1  — ' 

I    atx+XQ | 
|uq,±x+t0| 

\™Ua,±(*+*o)+*o\ 
(3) 

|«o,±(*+a!o)+*ol 

where XQ represents a constant value separating 
the two indices. Then it is easily verified that 
when the direction of traversal is the same for 

both contours, f'a{x) =  ■ l"a'*+f°l ■   = fa(x + 
|uo,i+iO+'ol 

to). If the directions are opposite, then f'a{x) = 
-*+t0| 

|Uo,-x-i0+t0|      "   fa(-X-Xo+t0)' 

coefficient of two signals is defined as 

As the correlation 

Rf(x)g(x){r) 
If(x)g(x + r)dx 

11/11 ■ IMI 

we define the invariant measure Ia(f, f) (or the 
similarity measure) between two objects as 

W,f) = maxr>rl{Rfa{x)fL(x)(T),RMx)i_(T')} 
/o("~x) 

It can be shown [1] that the invariant measure^ m 
Eq. 4 attains the maximum of 1 if two objects are 
identical, but differ in position, orientation, scale, 
and traversal direction and starting point. Due to 
the page limit, we will only summarize other in- 
variant expressions in Table 1 without derivation. 
The entries shown in the table are the invariant ex- 
pressions (similar to Eq. 2). The process of deriv- 

ing invariant signatures (similar to Eq. 3) and in- 
variant measures (similar to Eq. 4) are similar and 
will not be repeated here. 

3   Experimental Results 
In the following, we will present some prelimi- 
nary results. The purpose is to provide a proof- 
of-concept demonstration and to discover research 
issues that need be addressed for a large-scale im- 
plementation and testing. Hence, the database used 
is of a relatively small size. 

The scenario is that of a digital image database 
comprises a collection of sixteen airplanes in 
canonical (top) view (Fig. 1). The airplane con- 
tours were automatically extracted from the images 
and invariant shape and color signatures computed 
off-line. Eleven query images (Fig. 2) were pho- 
tographed of these airplanes from different view- 
points and under varying illumination. The air- 
planes in the query images were extracted using a 
semi-automated process with user assistance. Even 
though the image database is relatively small, it 

. contains objects of very similar appearance (e.g., 
models 5 and 6, and models 3, 7, and 14). Further- 
more, the query images (Fig. 2) differ greatly from 
the database images due to large changes in per- 
spective and illumination. This is in contrast with 
many digital image library retrieval schemes which 
can perform only between-classes (e.g., airplanes 
vs. cars) retrievals with small changes in imaging 
condition. 
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(1) (2) (3) (4) 

*&' • 

*«ZI3»- 

(14) (15) 
Figure 1: A database of airplane models 

We used a two-stage approach in information 
fusion. Features invariant to affine deformation 
and perspective projection were first used to match 
the silhouette of the query airplane with the silhou- 
ettes of those in the database. We then employed 
the illumination invariants computed on objects' 
interior to disambiguate among models with sim- 
ilar shape but different colors. The results show 
that we were able to achieve 100% accuracy us- 
ing our invariants formulation for a database 
comprising very similar models, presented with 
query images of large perspective shape distor- 
tion and change in illumination. 

Table 2 shows the performance of using affine 
and perspective invariants for shape matching un- 

der a large change of viewpoint. For each query 
image (A through K), the affine and perspective in- 
variant signatures were computed, and compared 
with the signatures of all models in the database. 
Correlation coefficients as described in Sec. 2 were 
used to determine the similarity between each pair 
of signatures. Each row in Table 2 refers to a query 
image. Each of the ten columns represents the rank 
given to each airplane model from the database 
(shown in parentheses). The columns are ordered 
from left to right, with the leftmost column being 
the best match found. Only the top ten matches 
are shown. The values (not in parentheses) are the 
correlation coefficients. Entries printed in boldface 
are the expected (correct) matches. 
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(I) (J) (K) 
Figure 2: The same airplanes in varying poses and illumination. 

As can be seen, all query images were identi- 
fied correctly. Fig. 3 shows a sample result. The 
leftmost image is the query image. The top three 
matches are in the next three columns—the query 
image (solid) and estimated image (dashed, us- 
ing perspective invariants) with the corresponding 
database model are shown. 

For this experiment, all query images were cor- 
rectly matched with the models from the database, 
using affine and perspective invariants. However, 
the error values of the top two matches for, say, 
airplane K were very close to each other. This is 
because the top two matches have similar shapes 
and both are similar to the query image. The confi- 
dence in the selected matches can be strengthened 
by testing whether the interior regions of the ob- 
jects are also consistent. Illumination invariants 
readily applies here. 

For illumination  invariants,   a characteristic 

curve was uniquely defined on the surface of each 
airplane model in the database (performed off- 
line), so that its superimposition over the model 
emphasizes important (or interesting) color pat- 
terns in the image. Our perspective invariants 
scheme computed the transformation parameters 
that best match the two given contours. The same 
parameters were used to transform the character- 
istic curve defined for each model to its assumed 
pose in the query image. Hence, the colors defined 
by the characteristic curve in the model should 
match the colors defined by the transformed curve 
in the query image (except for changes due to il- 
lumination). Illumination invariant signatures for 
the query images were then computed, and com- 
pared with the signatures stored in the database us- 
ing Eq. 4. 

We show one result of illumination invariants 
where the (perspective invariant) errors of the 1st 
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Rank (using affine and perspective invariants) 

Image 1 st <ynd 3rd £th 5th 6th ytft gtn 9™ 10™ 

A (1) 
0.8792 

(9) 
0.7210 

(4) 
0.6161 

(6) 
0.4967 

(5) 
0.4663 

(10) 
0.4578 

(2) 
0.4030 

(7) 
0.3248 

(11) 
0.2443 

(14) 
0.2388 

B (1) 
0.9527 

(9) 
0.8532 

(10) 
0.7666 

(4) 
0.7479 

(6) 
0.6630 

(2) 
0.6103 

(5) 
0.5943 

(15) 
0.5364 

(16) 
0.4756 

(7) 
0.4576 

C (1) 
0.8538 

(4) 
0.6806 

(2) 
0.6521 

(9) 
0.6016 

(6) 
0.5623 

(5) 
0.5353 

(10) 
0.4446 

(14) 
0.3359 

(7) 
0.3095 

(11) 
0.2386 

D (2) 
0.9283 

(6) 
0.9002 

(5) 
0.8962 

(4) 
0.8177 

(13) 
0.8097 

(14) 
0.7801 

(1) 
0.7730 

(7) 
0.7663 

(3) 
0.7502 

(12) 
0.7439 

E (2) 
0.9228 

(5) 
0.7747 

(6) 
0.7622 

(14) 
0.6975 

(12) 
0.6167 

(4) 
0.6167 

(3) 
0.6146 

(13) 
0.5902 

(7) 
0.5704 

(15) 
0.4813 

F (4) 
0.6369 

(1) 
0.6002 

(9) 
0.5810 

(6) 
0.5291 

(10) 
0.5205 

(14) 
0.5056 

(5) 
0.4486 

(11) 
0.4283 

(2) 
0.4036 

(7) 
0.3946 

G (6) 
0.8254 

(13) 
0.7293 

(5) 
0.7026 

(4) 
0.6616 

(2) 
0.6460 

(14) 
0.6396 

(12) 
0.6287 

(3) 
0.6035 

(1) 
0.5930 

(7) 
0.5638 

H (7) 
0.8747 

(14) 
0.8552 

(3) 
0.8398 

(11) 
0.8226 

(13) 
0.7848 

(6) 
0.7668 

(12) 
0.7663 

(5) 
0.7282 

(2) 
0.7007 

(4) 
0.6980 

I (13) 
0.8609 

(6) 
0.6890 

(3) 
0.6563 

(14) 
0.6468 

(12) 
0.6343 

(5) 
0.6107 

(7) 
0.5916 

(2) 
0.5849 

(15) 
0.5775 

(1) 
0.5516 

J (14) 
0.8815 

(3) 
0.8017 

(12) 
0.7564 

(13) 
0.7512 

(7) 
0.7055 

(11) 
0.6805 

(6) 
0.6501 

(4) 
0.6346 

(5) 
0.5838 

(15) 
0.5711 

K (14) 
0.8779 

(3) 
0.8558 

(7) 
0.7623 

(13) 
0.7272 

(12) 
0.7270 

(6) 
0.7235 

(11) 
0.7209 

(2) 
0.6503 

(5) 
0.6191 

(4) 
0.5459 

Table 2: Top ten matches between each query image and database models, using affine and perspective in- 
variants. Numbers in parentheses indicate the airplane model selected. The value beneath it is the similarity 
measure between the selected image and query image. The correct airplane model is in boldface. Each row 
corresponds to a query image. The columns are arranged left to right, from the best match to worse. 

and 2nd best matches differ by a small amount (see 
Table 2); in this case, query image K. Figs. 4 (a) 
and (d) show the characteristic curves (the zigzag 
lines) superimposed over the images of models 
14 and 3. The transformed characteristic curves, 
shown in (b) and (e), is superimposed over the 
query image K, using parameters estimated from 
perspective invariants. Finally, (c) and (f) show the 
illumination invariant signatures. Clearly, the sig- 
natures in (c) is much more consistent, which rein- 
forces the results from shape invariants. 

4   The Concluding Remarks 
We present a technique where shape/color infor- 
mation from interior/contour points is used to de- 
scribe an imaged object for database retrieval. The 
technique is superior in that it tolerates changes 
in appearance induced by incidental environmental 
factors and is powerful enough for within-a-class 
retrieval. 
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Figure 3: Query image A, with the top three matches from the database, using perspective invariants. (Solid 
for the query image, dashed for the estimated image using perspective invariants.)  

(a) (b) 

(d)                                      (e)                                                    (f) 
Figure 4: (a),(d) Airplane models with the characteristic curves superimposed, (b),(e) query image with 
the transformed characteristic curves superimposed, and (c),(f) illumination invariant signatures for query 
image K (solid) and for models 14 and 3 (dashed). _^ 

695 



Fusion of multiple cues for video segmentation 

Bikash Sabata and Moises Goldszmidt 
SRI International 

333 Ravenswood Ave 
Menlo Park, CA 94025, U.S.A. 

{sabata, moises}9erg.sri.com 

Abstract The segmentation of video into contigu- 
ous scenes is becoming an important problem in 
many applications. Since video data is a rich source 
of spatio-temporal information, different types of 
features can be computed in the video data. Each 
of these features provide a cue for the segmenta- 
tion of video and is usually sufficient to perform an 
approximate segmentation of video. However, the 
features many times provide conflicting evidence for 
segmentation. Further, since there is strong corre- 
lation between the different features, it is not easy 
to fuse the information from the features to make 
segmentation decisions. We present a method based 
on Bayesian Networks that model the dependence 
between the segmentation decision and the different 
features. This framework using Bayesian Networks 
is promising and provides an extensible mechanism 
for fusion of information. 

Keywords: Video Processing, Bayesian Networks 

1    Introduction 

The information in video data is being used 
increasingly for many decision and interpreta- 
tion tasks. For example, we would like to de- 
termine when one scene ended and a new one 
started so that the relevant segments of the 
video may be retrieved for display. There is a 
critical need for efficient management and pro- 
cessing of video data. However, the sheer vol- 
ume of information in the video data makes 
it difficult to device algorithms that are effi- 
cient and robust. The decisions and interpre- 
tations based on video use the feature vectors 
extracted from the video data.  Each of these 

features provide a cue for the understanding of 
video and is usually sufficient to make an ap- 
proximate interpretation about the content of 
video. However, the features many times pro- 
vide conflicting evidence. Further, since there 
is strong correlation between the different fea- 
tures, it is not easy to fuse the information 
from the features to make interpretations. 

This problem of correlated and conflicting 
evidence from different sources is a common 
occurrence in multisensor systems and other 
complex systems. Our goal is to develop a 
framework to address the problems of infor- 
mation fusion when the features are noisy and 
highly correlated. The source of these fea- 
tures may arise out of processing of different 
sensors and/or different filters applied to sen- 
sor data such as video. In this paper we ad- 
dress the specific problem of segmenting struc- 
tured video that arises in broadcast video and 
movies. However, the techniques for fusion we 
develop are more general. 

We present a method based on Bayesian 
Networks that model the dependence between 
the segmentation decision and the different fea- 
tures. The Bayesian network model also ex- 
plicitly represents the correlations between the 
different features. These correlations may be 
known a priori (because of the domain knowl- 
edge) or may be learned from the data. We in- 
corporate the prior knowledge into the model 
and learn the other dependency structures by 
learning the Bayesian networks from the data. 

In section 2 we present a brief overview of 
the diverse set of techniques used to segment 
video data. The important lesson here is that 
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many of techniques that segment video perform 
reasonably well for restricted classes of videos. 
In different situations different techniques per- 
form better than others. An important conse- 
quence of our framework is that we are able to 
select the best set of techniques that are suffi- 
cient to make reliable and robust decisions for 
a given class of video data. 

In section 3 we present the specific set of 
features we compute in the video to make the 
segmentation decision. A common problem we 
have seen in the past approaches to comput- 
ing the feature vectors in video is that the fea- 
ture vectors are computed in individual frames 
and the temporal dimension is added in as 
a difference operation. We depart from this 
approach and present a novel multi-scale fil- 
ter to compute the color and texture features 
for each individual frame and their variations 
along the time axis. In addition, we com- 
pute features that axe unique to video. These 
include the spatio-temporal motion tracks of 
points in video and edge features in the spatio- 
temporal volumes. 

The Bayesian Network based framework for 
fusion of information from the different fea- 
tures is presented in section 4. In sections 5 
and 6 we present the results of our experiments 
and conclude with some discussions about the 
current and future work. 

2    Background 

The majority of the techniques for video seg- 
mentation use low-level image features such 
as pixel differences, differences in the statisti- 
cal properties of the feature values, histogram 
comparisons, edge differences, and motion vec- 
tors. The key problem is that there are many 
events in the video that have the same charac- 
teristics as scene changes in the low level fea- 
tures. For example, fast camera panning in the 
scene may have the same color histogram char- 
acteristics as a dissolve. Reducing the number 
of false positive triggers is the main objective 
of research activities in this area. 

A large class of segmentation algorithms 
compute the boundary between two segments 

by examining the local pixel values and their 
statistical properties in frames in a tempo- 
ral window 2e around the candidate bound- 
ary frame b. Zhang, Kankanhalli and Smoliar 
[1] compute the number of pixels that change 
value more than a threshold to decide if a 
boundary has been detected at frame i. Yeo [2] 
improves the above technique by taking the dif- 
ference on spatially reduced frames over a sym- 
metric temporal window [b—e, b+e] around the 
candidate frame b. Yeo also detects the gradual 
change regions by detecting the "plateaus" in 
the distance measure over temporal windows. 
Kasturi and Jain [3] segment each frame into 
regions and compare statistical measures of the 
pixels in the regions over the frames. To im- 
prove the computational efficiency, Taniguchi, 
Akutsu and Tonomura [4], take temporal sam- 
ples to process the frames and incrementally 
increase the sampling where a candidate scene 
change is detected. 

Another approach to boundary detection is 
to model the transition in terms of the statis- 
tics of the pixel values of the frames in the 
temporal window constituting the transition. 
Aigrain and Joly [5] and Hampapur, Jain, and 
Weymouth [6] use such model based methods 
to capture the different shot transitions. 

An alternative class of approaches that use 
the pixel information more compactly is the 
histogram of the frames. The histograms could 
be the intensity histograms or the color his- 
tograms. Histograms, of course lose the spatial 
information of the frames entirely, and there- 
fore are robust with respect to camera motions 
and reasonable amounts of noise. 

Zhang, Kankanhalli and Smoliar [1], and 
Yeo [2] compare the histograms by using a 
bin-wise difference of the histograms of the 
two consecutive frames. Ueda, Miyatake and 
Yoshizawa [7] use the rate of change of the 
color histograms to find the shot boundaries. 
Nagasaka and Tanaka [8] compare many differ- 
ent statistical measures for the histogram dis- 
tributions. They report that partitioning the 
frames into 16 regions and using a x2 tes* on 

color histograms of the regions over the frames 
performs the best for shot boundary detection. 
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Their method is robust against zooming and 
panning but fails to detect gradual changes. 
Prior statistical properties of the video are in- 
corporated into the decision process by Swan- 
berg, Shu and Jain [9]. They use intensity his- 
togram differences in regions weighted with the 
likelihood of the region changing in the video. 

In addition to the features in the individ- 
ual frames, the video data also has motion re- 
lated features. Zabih, Miller and Mai [10] use 
a method based on edge tracking over frames 
to determine shot boundaries. The edge dis- 
tances are measured using the Hausdorff dis- 
tance measure. Shahraray [11] uses a method 
similar to the motion vector computation al- 
gorithms in most MPEG codecs to compute 
scene change points. Hsu and Harashima [12] 
model the scene changes and activities as mo- 
tion discontinuities. The motion is character- 
ized by considering the sign of the Gaussian 
and Mean curvature of the spatio-temporal 
surfaces. Clustering and split-and-merge ap- 
proaches are then used to segment the video. 

In summary the past literature has a large 
collection of techniques that extract one of the 
many features from video to detect the segment 
boundaries. Beyond simple ad-hoc schemes 
that try to integrate the information from the 
different features using some kind of weighting 
procedure, we have not seen any effort to use 
sophisticated techniques to fuse the evidence 
from the different cues. 

There are four basic types of features we 
compute and use in the fusion module for mak- 
ing the final segmentation. The first set of fea- 
tures is based on the color distributions in each 
frame of the video. The second feature set is 
based on the response of each frame to a set 
of texture filters. The third feature set scores 
the frames for a segmentation boundary based 
on the tracking of significant point features in 
the video. Finally the fourth feature class com- 
putes the likelihood of a segmentation bound- 
ary by detecting edges in the spatio-temporal 
volume that represents the video. 

The segmentation is computed by compar- 
ing the change across the candidate segment 
boundary. The change can be measured as a 
distance V = F(Sb-e, Sb+e) between the video 
features, Sb-e and Sb+€, in the two temporal in- 
tervals [b-e,b] and [b,b+e] around the bound- 
ary b. Every procedure for segmentation that 
has been discussed in the past literature can 
be mapped to this formulation. The distance 
measure is then compared with a threshold 
value to determine if there exists a boundary 
at b. The different approaches select different 
properties Sb-£ and Sb+e to represent the in- 
tervals and the function that evaluates the dis- 
tance. In section 4 we will present fusion tech- 
niques that either use the V from each module 
for making the fused decision or the individual 
decisions from each module to make the fused 
decision. 

3    Video Features 

The lesson learnt from past work and our ex- 
periments with the various techniques in the 
literature is that although the mechanisms 
don't perform well for all situations, they per- 
form well in a subset of the situations. Our ap- 
proach is to select a set of these methods and 
fuse the output of each module to make the 
final decision about segmentation. In the pro- 
cess, we modified some of these algorithms to 
make them more robust and efficient. In addi- 
tion, we propose some new features from video 
that capture information in video that has not 
been addressed in the past approaches. 

3.1    Color Features 

The most common feature used to segment 
video are the color histograms of each frame. 
Using the results from Nagasaka and Tanaka 
[8], we designed a distance measure based on 
the x2 measure between two histograms. We 
define the histogram of the video frames over 
the temporal intervals [b — e, b] and [b, b + e] 
around the candidate frame b. Further, we 
weigh the contributions of the frames to the 
joint histogram using a Gaussian Mask. This 
method of computing the color feature vec- 
tor for video is novel and inspired from the 
scale space methods in computer vision and 
the multi-scale filters for edge detection. The 
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multi-scale Gaussian windowing approach pro- 
vides a robust mechanism to reliablely estimate 
the scene boundaries in the presence of noise. 

Let ht(i) be the normalized histogram1 of 
the tth frame in the video. The weighted his- 
togram for a temporal window W = [ta,te] is 
then computed as 

*»[*.,*.](*)=   12   wfht(i) 
te[ta,te] 

where wt is the weight associated with the 
tth frame in the window. The weights are 
computed using the one dimensional Gaussian 

function G(x) — e 5^* multiplied with a nor- 
malization factor. The Gaussian window size 
is different for the different scales. The dis- 
tance measure for the Gaussian windowed his- 
tograms for the scale s is given by 

vcolor(s,t) = 53 (h^i) - h[r](j))* 
(h[i)(i) + h[r](i)) (1) 

where 

[l) = [t-e(s),t];   [r] = [t,t + e(s)]. 

The set of distance measures for the different 
scales and colors together form the set of fea- 
tures that capture the relevant color informa- 
tion in video. Figure 1 shows the distance mea- 
sure at three different scales as a function of 
time for an example video. 

Yeo [2] proposed a flash detector by noticing 
that flashes produce two closely spaced sharp 
peaks in the x2 distance scores of the video 
frames. We implemented the above detector 
to give the candidate frames at which flashes 
were detected. 

3.2    Texture Features 

The texture information in each frame can also 
be used to evaluate the continuity of a seg- 
ment. The use of texture information for seg- 
mentation in video is a novel use of texture fil- 
ters. We propose a novel distance measure that 

1 Normalization makes 2^/^(0 = 1 and ht(i) can 
be interpreted as the probability of a pixel taking value 
t in frame t. 

1100      1160      1200      12S0      1300 

Figure 1: Distance score at each frame for three 
different scales. At the noise, fast camera mo- 
tion, and flashes the maxima reduce with in- 
creasing scale, while at true boundaries, the 
maxima remain the same or increase. 

uses the texture energy to compute the dis- 
tance between temporal windows across candi- 
date segment boundaries. The texture energy 
is computed using the Gabor filters proposed 
in [13]. The Gabor energy method measures 
the similarity between neighborhoods in an im- 
age and Gabor masks. Each Gabor mask con- 
sists of Gaussian windowed sinusoidal wave- 
forms with parameters of wavelength A, ori- 
entation 0, phase shift 0, and the standard de- 
viation a. The filter is given by: 

G(x,y) 
(x-X)2+(y-y)2 

=      e 2^ X 

sm(—i —y- '- + <i>) 

A set of filters is generated by varying the 0 and 
A. The texture energy for a filter (fixed 0 and 
A) is calculated as the sum over the phases of 
the squared convolution values. We implement 
a total of twelve filters by quantizing the 0 into 
four values and A into three values. 

Next, similar to the case of the color distance 
measure, we use the texture energy response of 
each frame to find the difference between the 
adjacent group of frames. To compute the dis- 
tance measure at frame i, a Gaussian window 
at scale s is selected around the frame. The 
weighted average texture energy is calculated 
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Figure 2: Distance score at each frame for three 
different scales for one texture filter. 

Figure 3:  Tracking based distance score and 
the percentage missed features at each frame. 

to the left and right of the frame. The nor- 
malized distance between the average texture 
energy is used as the estimate of the change 
across the segment boundary. 

Figure 2 shows the distance measure com- 
puted at the different scales for one of the tex- 
ture filters on an example video. 

3.3    Tracking Based Features 

Motion features are important features as they 
correspond to the real physical phenomenon 
captured by the video sensor. Using tracks of 
objects and points in the video for detecting 
scene changes was used in the past by Zabih, 
Miller and Mai [10] who tracked edge segments 
over frames and used a Hausdorff distance mea- 
sure to evaluate the segment boundaries. 

A critical problem in tracking based systems 
is that of feature selection. We use the method 
proposed by Shi and Tomasi [14] to detect good 
point features to track. The features are se- 
lected from the frames and tracked across the 
video. We assign a score to the tracking of 
the features and use it to evaluate the seg- 
ment boundaries. The score is computed by 
weighting the contribution of each feature that 
is tracked from the last frame to the current 
frame. The weighting function looks at the his- 
tory of the feature and assigns a weight that is 
proportional to the history of the track, how- 
ever, the incremental increase in the weight for 

the feature decreases exponentially with the 
history length. The weight for the ith feature 
is computed as 

Wi =   1-e (2) 

where pi is the number of frames in the past 
through which the ith feature was tracked and 
k is some constant that determines the sensi- 
tivity to the history of the tracks. In addition 
to evaluating the feature tracks in a frame, we 
also measure the fraction of features that can- 
not be tracked in each frame from the past 
frame. This fraction also gives the evidence 
about the boundary between video segments. 

To compute a distance measure across the 
segment boundary, we compute the difference 
between the average track scores in windows on 
either side of the candidate boundary frame. 
At frame i, a window of size S is selected 
around the frame and the average track score 
is calculated to the left and right of the frame. 
The difference between the average track scores 
and the fraction of the missed tracks is used 
as the distance measure of the tracking mod- 
ule. Figure 3 shows the tracking based distance 
scores and the fraction of the point features 
missed in the tracking for each frame. 
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Figure 4: x — t Section through the spatio- 
temporal video volume. The t axis is along the 
horizontal direction. 

Figure 5: Distance score based on the edges in 
spatio-temporal volumes at each frame. 

3.4    Edges In Spatio-Temporal Vol- 
umes 

Video data is three dimensional data where the 
temporal dimension is the third dimension. To 
detect the segmentation boundaries we should 
study the patterns in the data along the tempo- 
ral dimensions. This idea was investigated by 
Otsuji and Tonomura [15] who proposed a pro- 
jection detection filter to detect cuts in video. 
They projected the video data along the x — t 
and y — t planes to generate images that they 
then use to detect cuts. This construction is 
based on the work on spatio-temporal surfaces 
by Baker and Bolles [16]. 

We use a similar idea and generate sections 
through the video volume using planes paral- 
lel to the x — t and the y — t planes (Figure 
4). The edges perpendicular to the t axis in 
these sections indicate possible video segment 
boundaries. The fraction of the pixels at any 
t covered by the horizontal edges is taken as a 
measure of the segment boundary. Averaging 
this measure across many sections gives a prob- 
ability measure of the existence of a segment 
boundary based on the evidence from edges in 
spatio-temporal volumes. Figure 5 shows the 
probability measure evaluated for the different 
frames in an example video. 

4    Bayesian    Network    Based 
Fusion 

We use capital letters X, Y,Z for variable 
names, and lower-case letters x, y, z to denote 
specific values taken by those variables. Sets of 
variables are denoted by boldface capital let- 
ters X, Y, Z and assignments of values to the 
variables in these sets are denoted by boldface 
lowercase letters x, y, z. 

A Bayesian network over a set of variables 
X = {Xi,...,Xn} is an annotated directed 
acyclic graph that encodes a joint probabil- 
ity distribution over X. Formally, a Bayesian 
network is a pair B = (G,L). The first com- 
ponent, G, is a directed acyclic graph whose 
vertices correspond to the random variables 
Xi,... ,Xn, and whose edges represent direct 
dependencies between the variables. The sec- 
ond component of the pair, namely L, repre- 
sents a set of local conditional probability dis- 
tributions (CPDs) Li,...,Ln, where the CPD 
for Xi maps possible values xi of X{ and pa(i) of 
pa(i), the set of parents of X{ in G, to the con- 
ditional probability (density) of Xi given pa(i). 
A Bayesian network B defines a unique joint 
probability distribution (density) over X given 
by the product 

PB(Xu...,Xn) = flLiiXilp&ii)) .      (3) 
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When the variables in X take values from fi- 
nite discrete sets, we typically represent CPDs 
as tables that contain parameters 0Xi\p&^ for 
all possible values of Xi and pa(i). When 
the variables are continuous, we can use var- 
ious parametric and semi-parametric represen- 
tations for these CPDs. 

In this paper, we treat information fu- 
sion as a pattern classification problem. We 
assume that there is one variable A for 
each feature, and a distinguished variable 
Outcome that can take value from the set 
{0,1,2} depending on whether the frame is 
"normal," a "boundary, or a "flash." The 
objective is given a set of vectors X = 
{A\,..,, An, Outcome}, to induce a probabil- 
ity distribution Pr(A\,..., An, Outcome) from 
this data in the form of a Bayesian network. 
Given this network the decision on a new scene 
will be given by: 

argmax   Pr(Outcome 
O 

0|oi,...,o„), 
(4) 

which is the classic definition of a Bayesian 
classifier [17]. Note that we have translated 
the fusion problem to that of inducing a prob- 
ability distribution linking the various features 
with a decision on the nature of the frame. 

There is a recent substantial body of work 
on inducing Bayesian networks from data (see 
[18] for example, and references therein). In 
[19] Friedman et al argue convincingly for us- 
ing specialized graph structures for classifica- 
tion tasks. As an example, consider a graph 
structure where the Outcome variable is the 
root, that is, Pa(Outcome) = 0, and each fea- 
ture has the Outcome variable as its unique 
parent, namely, pa(A) = {Outcome} for all 
1 < i < n. For this type of graph structure, 
Equation 3 yields Pr(Ai,...,An,Outcome) = 
Pr(Outcome)-flLi Pr(A$|Outcome). From the 
definition of conditional probability, we get 
Pi(Outcome\Ai,..., An) = a • Pr(Outcome) • 
Yli=1 Pr(A|Outcome), where a is a normaliza- 
tion constant. This is the definition of the 
naive Bayesian classifier commonly found in 
the literature [17]. 

The naive Bayesian classifier has been used 
extensively for classification.   It has the at- 

Figure 6: A TAN model learned using only fea- 
tures that take color into account. The num- 
bers on the arcs indicate conditional mutual 
information between the features. 

tractive properties of being robust and easy 
to learn—we only need to estimate the CPDs 
Pv(Outcome) and Pr(A | Outcome) for all 
attributes. Nonetheless, the naive Bayesian 
classifier embodies the strong independence as- 
sumption that, given the value of Outcome, 
features are independent of each other. Fried- 
man, Geiger and Goldszmidt [19] suggest the 
removal of these independence assumptions by 
considering a richer class of networks. They 
define the TAN Bayesian classifier that learns 
a network in which each attribute has the class 
and at most one other attribute as parents. 
Thus, the dependence among attributes in a 
TAN network will be represented via a tree 
structure. Figure 6 shows an example of a TAN 
network. 

In a TAN network, an edge from Ai to Ay- 
implies that the influence of Aj on the assess- 
ment of Outcome also depends on the value 
of Aj. For example, in Figure 6, the influ- 
ence of the feature "colorl" on Outcome de- 
pends on the value of "color7," while in the 
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naive Bayesian classifier the influence of each 
feature on Outcome is independent of other 
features. These edges affect the classification 
process in that a value of "colorl" that is typ- 
ically surprising (i.e. P(colorl\Outcome) is 
low) may be unsurprising if the value of its cor- 
related attribute, "color7," is also unlikely (i.e. 
P(colorl\Outcome,color7) is high). In this sit- 
uation, the naive Bayesian classifier will over- 
penalize the probability of the class by consid- 
ering two unlikely observations, while the TAN 
network of Figure 6 will not do so, and thus will 
achieve better accuracy. 

TAN networks have the attractive property 
of being learnable in polynomial time [19]. In 
the next section we show the results of using 
the TAN classifier for fusing the information 
provided by the various filters. As a control, we 
also used the naive Bayes classifier introduced 
above. As is illustrated in the next section, 
the lack of correlation modeling between the 
different features causes a substantial increase 
in the number of false positives (e.g. classifying 
normal frame are boundaries). 

5    Results 

Several experiments were conducted with the 
Bayesian network model induction and seg- 
mentation. However, for the sake of brevity, 
in this paper we will present only an outline 
of our experiments and indicate some of the 
results. This work is still in progress and the 
next section presents the future directions. 

The video segmentation experiments were 
performed on samples of broadcast news video. 
The video segments were processed using the 
different color filters, texture filters, tracking 
algorithm, and the spatio-temporal edge de- 
tectors. We also ran the "flash detector' on 
all the data. In all there were 51 features: 9 
color features, 3 from flash detector output, 36 
from the texture filters, 2 from the tracker and 
1 from the spatio-temporal edge detector. In 
video data the fraction of the frames that are 
segment boundaries and flashes are extremely 
small. This is because video has 30 frames per 
second and scene changes do not typically oc- 

cur more than once in 4-5 seconds. This is a 
tough problem as only approximately 1% of the 
data is of type breaks and flashes. We are not 
interested in accuracy (the percentage of suc- 
cessfully classified frames) as the vast majority 
of the frames are normal (approximately 99%). 
Our criteria must be based on the number of 
false negatives, how many segment boundaries 
or flashes, were missed, and the false positives, 
how many normal frames were confused by our 
model for segment boundaries or flashes. 

The first Bayesian network model was gen- 
erated with the data discretized following the 
method by Fayyad and Irani [20], using the 
routines in the MLC++ package [21]. We first 
trained on the whole data set and tested clas- 
sification on the same dataset. We run the risk 
of over-fitting the data, but given the nature 
of the problem (so few instances) we wanted a 
sanity check. The results where very encourag- 
ing. Only 3 of the 36 events we were interested 
in where missed; namely only 3 false negatives, 
and 27 were false positives. The same experi- 
ment with the naive returned 0 false negatives 
(i.e., not a single segment boundary or a flash 
was missed), however the number of false pos- 
itives jumped to 214 (57 of the normal frames 
were labeled as boundaries and 157 were la- 
beled as scenes with flash). 

We performed a five fold test to check how 
would the model behave against unseen data. 
The folds maintained the proportions of the 
interesting cases in the training data, but nat- 
urally it reduced the number of instances. The 
results show that about 1 in every 6.4 segment 
boundaries are missed, and that about 1 in ev- 
ery 50.3 normal frames were considered to be 
boundaries or flashes. 

To test whether the model was indeed fus- 
ing information we tested the performance of 
the four feature classes in isolation. The results 
reveal that indeed fusion took place. The num- 
ber of false negatives decreased significantly 
for the filters based on "color," "track," and 
"flash," and for "texture" even though the 
number of false negatives for segment bound- 
aries increased by 2 the number of false nega- 
tives for flash decreased by the same amount. 
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It is worth noting that in the case of "texture" 
the number of false positives decreased by al- 
most 40%. 

We attempted to induce a classifier with- 
out discretization. We used Gaussians and lin- 
ear Gaussians as the family of distributions. 
The results where poor and the model failed 
to identify the majority of the scenes of inter- 
est (25 false negatives). This was a surprising 
result for us are we are trying to characterize 
this further at this time. As described in the 
next section, future work includes the explo- 
ration of more sophisticated models, such as 
those described in [22]. 

6    Conclusions & Future Work 

Fusion of information from multiple sensors or 
from different computational modules is be- 
coming important in many applications. In 
particular for multimedia applications (with 
audio and video) the fusion of cues from the dif- 
ferent media channels and from different pro- 
cessing modules is becoming increasingly criti- 
cal. For example, in the domain of multimedia 
information processing, applications requiring 
content based search and retrieval require in- 
terpretation of features in the data from all the 
media sources. In this paper we presented a 
framework based on Bayesian networks for the 
fusion of information from multiple sources. 
This framework is very general and extensi- 
ble. The preliminary results on our fusion ex- 
periments are very encouraging. Currently we 
are applying this framework to the integration 
of multiple cues resulting from the processing 
of audio, video/imagery, speech and text in 
broadcast news video. 

In addition to the fusion framework we also 
presented novel features to evaluate the con- 
tent of video. These included the multi-scale 
color and texture filters and the edges in the 
spatio-temporal volume of data representing 
video. The usual approach to feature detection 
in video is repeated application of the image 
feature detectors to every frame of the video. 
Our approach was to design feature detectors 
specific to video data.  This approach we be- 

lieve is the key to characterizing the structure 
of video data and extracting features that are 
relevant to the content of video. 

In our experiments with the Bayesian net- 
work models we were able to design different 
networks that performed better on one of the 
performance metrics at the expense of others. 
We are currently exploring methods to char- 
acterize the different models and quantify the 
tradeoffs. We are also exploring the use of more 
sophisticated models such as those in [22] that 
include mixtures of Gaussians and also a mix of 
discrete and continuous features. A significant 
step will be to use models that do not consider 
the data to be iid but sequences in time. 

The Bayesian network model also allows us 
to evaluate the contribution of the different fea- 
tures towards the final decision using the value 
of information computations in Bayesian net- 
works. This results in minimal set of features 
necessary to reliably segment video. In addi- 
tion, we will generate a decision tree where the 
output of one feature detector directs the test 
with the next feature detector. Feature com- 
putations tend to be computationally expen- 
sive therefore our goal is to provide a decision 
procedure to determine the redundant compu- 
tations and the most significant computations. 
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Abstract 

Image registration is the process of estimating the affine 

transformation made up of a rotation, a scale change, and a 

translation that maps one «-dimensional image into a 

second «-dimensional image. In practice, n is usually 2 or 

3. Image registration usually plays the part of an important 

and critical first step in applications involving the fusion of 

information from multiple modalities. 

In this paper we introduce two important concepts: (1) non- 

standard quasi-random sampling of «-dimensional images 

using low discrepancy sequences to select a set of k «- 

dimensional points in the image, and (2) the adaptation of a 

PID control strategy that uses the extracted subset of points 

to accurately determine the affine transformation that 

registers one image with another. 

I.     Introduction 

Image registration is the process by which the 

correspondence between all points in two or more 

images of the same scene is determined. Image 

registration is used in image analysis tasks such as 

motion or change detection, fusion of data from 

multiple sensing modalities, and image geometric 

correction. There has been a tremendous increase in 

the need for good image registration techniques due 

to the increased use of temporal and multimodal 2-D 

and 3-D images in medical, remote sensing, and 

industrial applications. The aim of this paper is to 

introduce a couple of novel ideas for solving image 

registration where the images to be registered are an 

affine transformation, consisting of a spatial shift, 

rotation and scale change, apart. The registration 

method introduced here relies on classical control 

based strategies to determine the affine 

transformation parameters and the use of a unique 

sampling technique to perform the registration 

operation only on a subset of image points, thereby 

reducing the computation time. 

The rest of the paper is organized as follows. We 

begin by introducing the theory of classical control 

and explain how this theory can be extended for 

image processing. Next, we introduce low 

discrepancy sequences and illustrate its use in image 

analysis applications. We end this paper by 

describing the registration framework that uses 

classical control theory and low discrepancy 

sequences in a complimentary manner. The objective 

of this paper is to introduce the ideas and illustrate 

the potential of the ideas through simple examples. 

n. Classical Control 

Control is an extremely well developed theory with a 

wide range of practical applications. Usually, this 

describes only the most straightforward control 

problems; a system is given with a specific input - 

output structure. The system could be a plant, an 

engine, a biological object, or any other structure 
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with a clear input - output behavior. The number of 

input - output channels is low or moderate. The 

inputs can be interpreted as control actions on the one 

hand, and noise sources on the other hand. Usually, 

one has information about statistical properties of the 

disturbances. The outputs of the given system consist 

mainly of measurements. These measurements 

describe internal states, which, in most cases, are not 

directly measurable. In the simplest case, a so-called 

set point must be reached and stabilized based on 

appropriate control actions. Even in highly nonlinear 

situations, linear models can successfully be used to 

determine such control strategies. 

The general continuous linear model 

M) = Ax(t) + Bu(t) (1) 

y(t) = Cx(t) + Du(t) 

can be described by: 

matrices A, B, C, and D 

vector xft) of internal states 

vector uft) of control actions 

vector yft) of measurements. 

Additionally, noise terms can be added if necessary. 

The most successful  and very  common control 

strategy is simply a feedback according to 
u(t) = -K(t)x(t) (2) 

The design of a valid control system consists mainly 

of the construction of matrices Kft) making the 

controlled system as efficient as possible. In typical 

applications the matrix Kft) is constant which 

simplifies the algorithms considerably. 

PID controllers form a widely used subclass of 

control systems. More complicated systems are 

controlled by cascaded PID controllers. The term PID 

stands for a combination of P = proportional, / = 

integration, and D = differential components. Let eft) 

be the difference between the set point and the 

current measurement. Clearly, the goal is to reach eft) 

= 0. The PID controller reacts with a control value 

uft) according to (many other notations are used) 
t 

u(t) = Pe(t) +1 fdse(s) + D^^ (3) 
J dt 
0 

The quality of a PID controller depends completely 

on the quality of the choice of parameters (P, I, D). 

The preferable strategy is to tune (auto-tune) the PID 

controller using and observing the real behavior of 

the given system. 

2.1 Control and Image Analysis 

At a first glance, images (at least beyond a certain 

size) don't match the requirements of classical 

control. Each pixel can be interpreted as a separate 

channel. Though these channels are not completely 

independent, the overall degrees of freedom are 

enormous. On the other hand, tasks such as object 

tracking, the determination of sub-pixel accuracy in 

the final phase of pattern matching algorithms, or 

image registration can be formulated in terms of 

classical control theory. Here, we will closely follow 

Hoger and Belhumeur's approach. In [1] they 

describe iterative algorithms capable of tracking 

objects under very general motion models of the 

target (see also [2]). A straightforward reformulation 

and redefinition of the goal leads to a registration 

algorithm. Three new features are added. 

First, Hoger and Bulhumeur's algorithms are tracking 

mechanisms, whereas our strategy tries to register 

two given and similar images. Second, the method 

developed in [1] is a direct consequence of a certain 

minimization routine. The result can be interpreted as 

a control strategy with P=l, 1=0, and D=0. Third, to 

reduce the computational load, our algorithm is based 

on some well-defined parts of given images. More 

precisely, instead of taking into account all pixels in 

the image, we restrict the computation to low 

discrepancy sets. In doing so, there is no significant 

loss of accuracy but a speed up that is in the order of 
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pixels used from the images to be registered. 

m. Low Discrepancy Sequences 

Pseudo-random sequences have been used as a 

deterministic alternative to random sequences for use 

in Monte Carlo methods for solving different 

problems. Recently, it was discovered that there is a 

relationship between low discrepancy sets and the 

efficient evaluation of higher-dimensional integrals. 

Theory suggests that for midsize dimensional 

problems, algorithms based on low discrepancy sets 

should out perform all other existing methods by an 

order of magnitude in terms of the number of samples 

required to characterize the problem. 

Given a function/(ty the problem of calculating the 

integral 

1(f) = Jf(x)ix (4) 

in the most efficient manner is not a well posed 

problem. An approximate strategy could be based on 

the following procedure: 
(A) Construct an infinite sequence fxj, x2, x3,..., x,...} 

of real numbers in [0, 1] that does not depend on a 
specific function/(we do not know anything about/ 

in advance, except some general smoothness 

properties). 
(B) During the n'h step of the algorithm calculate/fc^ 

and the approximation to the integral in (4) as: 

In(0-(f(xi)+-+fM)/n (5) 
If a certain criterion is satisfied stop, else repeat step 

(B). The stopping criterion depends strongly on 

objectives such as accuracy or speed. 

How does this algorithm differ from standard 

methods such as trapezoidal rule which is based on 

equally distributed points in [0, 1]? First, there is no 

relationship between consecutive sets xt(n) = i/n and 

Xi(n)=i/(n+l). In other words, if the approximation 

given in equation (5) fails a given goal, a complete 

recalculation of numerous /values is necessary. On 

the other hand, it is well known that the trapezoidal 

rule gives a 1/n2 rate of convergence for a given 

continuous function/ 

Obviously, the quality of the trapezoidal rule is based 

on a highly homogeneous set of points. To quantify 

the homogeneity of a finite set of points, the 

definition of the so-called discrepancy of a given set 

was introduced ([3], [4]): 

D(x)=su$m(R)-p(R] (6) 

Here, R runs over all rectangles [0, r] with 0<r<l, 

m(R) stands for the length r of the closed interval R, 

and p(R) is the ratio of the number of points of X in 

R and the number of all points of X. The definition 

given in equation (6) can be generalized to the case 

of d dimensions (rf=2, 3, ...), where the term interval 

must be interpreted as an d dimensional rectangle. 

The lower the discrepancy the better or more 

homogeneous the distribution of the set. The 

discrepancy of an infinite sequence X = {xh x2, ..., x„_ 

J, is a new sequence of positive real numbers D(X„), 

where X„ stands for the first n elements of X. Other 
definitions for the discrepancy do exist that avoid the 

worst-case scenario according to (6). 

Clearly, there exist a set of points of given length, 

that realizes the lowest discrepancy. It is well-known 

([5]) that the following inequality holds true for all 

finite sequences X of length n in the d dimensional 

unit cube 

D(x)^Bd- (7) 

Bj depends only on d. Except for the trivial case d=l, 

it is not known whether or not the theoretical lower 

bound is attainable. 

Many schemes to build finite sequences X of length n 

do exist that deliver a slightly worse limit 
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D(x)<SBd 
(log»)1 

There are also infinite sequences X with 

D(Xn),Bdfe£ 

(8) 

(9) 

for all natural numbers «. The latter gave rise to the 

definition of so-called low discrepancy (infinite) 

sequences X. The inequality in equation (9) must be 

valid for all w, where Bj is an appropriately chosen 

constant. Low discrepancy sequences are also known 

as quasi-random sequences. 

On average, a randomly chosen sequence in [0,1] has 

a discrepancy value in the order of l/^i which is far 

beyond the low discrepancy value in the order of 

Qognf/n. 

The relationship between the integration in equation 

(4), its d-dimensional generalization, and the 

approximation given by equation (6) for an infinite 

sequence X={xh x2 ...,x„, ...} is given by the Koksma- 

Hlawka inequality. 
\l(f)-In(f\±v(f)-D (10) 

where, V(f) is the variation of the function in the 

sense of Hardy and Krause. Even if a finite V(f) exists 

(e.g., for smooth functions), the inequality in 

equation (10) is of no practical use. Very often, the 

real value of V(f) is unknown and describes only the 

worst-case. But, at least in principle, a low 

discrepancy set X should be preferred to all other 
sequences. 

3.1 The Halten Low Discrepancy Sequence 

Many of the well-studied low discrepancy sequences 

in the ^-dimensional square can be constructed as 

combinations of 1-dimensional low-discrepancy 

sequences. The most popular low discrepancy 

sequences are based on schemes introduced by 

Richtmeyer [5], Halten [4], Sobol' [6, 7], 

Niederreiter [8], and Faure [9]. The book [7] gives a 

comprehensive introduction into the implementation 

of low discrepancy sequences (Halten and Sobol'). 

We will explain the Halten method here in detail. All 

of our test results are based on Halten and Sobol' 
sequences. 

Halten sequences in 1-d start with the choice of a 

natural number greater than 1. Though not absolutely 

necessary, prime numbers p = 2,3, 5,... are typically 

chosen. If p is a given prime number and x„ the n* 

element of the Halten sequence, the following 

algorithm determines x„. 

(A) write n down in the/?-ary system 

n = nq ... no, n = no + nj • p +... + nq p^ 

(B) Reverse the order of the digits and add the /»-ary 
point 
0.H0«!... nq 

(C)Itis 
xn = n0 • P    + "1P    + • • •+ nqp"W+1) 

The n* element of the Halten sequence can be 

calculated independently of all other elements. As 

mentioned above, in d dimensions one has to 

interpret different 1-dimensional Halten sequences as 

coordinates of points in d dimensions. It is very 

common to start with the first d prime numbers. 

Figure 1 shows the first 100 elements of a Halten 

sequence in the unit square for two different valid 

choices of starting prime numbers (2, 3) and (13, 17). 

Obviously, the first couple performs much better at 

least at the very beginning of the sequence. Because 

of the relatively low number of pixels in typical 

image processing applications, homogeneity (low 

discrepancy value) is always desirable. That is why, 

all experiments were based on the most 

straightforward combination (2, 3). 
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(a) 0») 
Figure 1: Distribution of the Halton sampling 

points on a unit square, (a) With prime numbers 

(2,3). (b) With prime numbers (13,17). 

Halton sequences in 1-D are low-discrepancy sets in 

the sense of equation (8). More precisely, for all n 

and for all Halton sequences X that are based on a 

prime number/? it is ([5]) 

J>(XUB
1
^-       with 

B = 

,logn 
n 

.2 

4(p + l)logp 
p-1 

41ogp 

when p is even 

when p is odd 

A similar result (see [5] again) holds true for Halton 

sequences in d dimensional unit squares. In a 2- 

dimensional unit square for the (p,q) Halton sequence 

with prime numbers p and q the discrepancy is 

/>(*)<; 2 , (log«)2 (-PzL+-P±L) 
{2\ogp     2lognj   \2logq     2Iog» 

f g-1   ,   g + 1 

3.2 Low Discrepancy sequences and images 

Most routines in image processing are based on 

sampled objects where the resolution is limited by 

hardware and can not be influenced by the user. On 

the other hand, low discrepancy sequences are 

inherently continuous. Given a digital image of size 

2^0) x ^(2^ ^ n& p^i dement according to the 

given low discrepancy sequence (x,, x2, ..., x„, ...) in 

the unit square has the coordinates [N^W0] and 

[N^.x,/2'], where xn = (xn
(1), xn

(2)) and [] stands for 

the nearest integer. Because of the homogeneity of 

low    discrepancy    sequences,    double    bits    are 

impossible if n is sufficiently small. The final goal of 

a combination of low discrepancy sequences and 

image processing is the significant reduction of 

information processing necessary for image analysis. 

Good approximations must be delivered with the aid 

of a small percentage of all available pixel values. 

The field of image processing and image 

understanding can potentially take advantage of 

specific properties of low discrepancy sets. To 

illustrate this, we applied the theory of low 

discrepancy sequences to some relatively simple 

image processing and computer vision related 

operations such as the estimation of gray level image 

statistics and fast location of objects in a binary 

image. The results of our experiments are tabulated 

below. In the first experiment, we estimated the 

average number of points as a percentage of Ihe mage 

size needed to estimate the mean of the image with a 

certain accuracy. Accuracy was defined in terms of 

the absolute difference from the true value. The 

image database used in this experiment comprised of 

images of man-made objects, textures, medical 

imagery, fractals etc. 

Method 1.0 

Accuracy 

0.5 

Accuracy 

Halton 0.2 0.7 

Random 0.7 3.3 

Grid 0.6 2.3 

Table 1: % of number of image points required 

for the estimation of the mean gray-scale value of 

an image using different sampling techniques. 

In the second experiment, the objective was to 

determine the number of points needed to locate a 

randomly placed binary rectangle in an image with 

probability beyond 0.5. The image size was 512x512. 

The object was assumed to be located if a point on 

the sequence fell inside the boundaries of the object. 
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Method Number of Points 

Haiton 100 

Random 115 

Grid 114 

Table 2: Number of sample points required for 

locating an arbitrarily placed object in an 512x512 

binary image using different sampling techniques. 

Our experiments show that compared to standard 

methods, the proposed new algorithms require fewer 

points than regular grid-based sampling and random 

sampling to accurately characterize images. Hence 

these algorithms are faster and statistically more 

robust than conventional sampling techniques. 

IV. Image Registration Framework 

This section presents the method used for image 

registration using low discrepancy sequences and a 

control strategy. 

Given two images imageA and imageB, let imageB 

be a shifted, rotated, and scaled version of imageA. 

We assume that the four parameters x, y, 8, and s 

(x-shift, j-shift, ^-rotation, s-scaling factor) are 

relatively close to 0, 0, 0, and 1, respectively. Given 

two reasonably sized regions, regionA and regionB, 

where regionA is part of imageA and regionB is part 

of imageB respectively, regionA matches regionB 

with unknown values x, y, 8, and s. The goal is to 

determine these values accurately. 

4.1 The control strategy 

The goal is to reduce the distance between regionA 

and a shifted, rotated, and scaled version of regionB 

(as part of imageB) with the aid of a step-by-step 

approach. The original situation is described by an 

unknown x, y, 8, and s. The control strategy can be 

divided into two parts ([1]). 

Preparation: 

(1) Calculate the Prewitt derivatives of regionA and 

flatten these derivatives. This results in vectors 

Ixandfy 

(2) Build the matrix 

M0 = 
-ylx + xlv xlx + yly 

Calculate the matrix X = (M0
TM0 ]   M0

T. 

The matrix MoTM0 is 4x4 and non-singular (with 

exception of some pathological situations). 

Control: 

(1) Let (x, y, 8, s) be the current estimates. 

(2) Let p(8, s) be the matrix 

p(9,s) = 

cos(8)/s -sin(8)/s 0   0 
sin(9)/s cos(9)/s 0   0 

0              0 10 

0              0 0   - 

(3) Let e be the flattened difference (pixelwise) 

between regionA and the shifted, rotated, and 

scaled version of regionB. Then 

[Ax, Ay,A<9, As] = p(0, s) *X *e 

and 

ynew=y+*y 
0^=0 +A0 

(4) Calculate the new {xnew,ynew,0new,snew) version 

of regionB, i.e. shift the old regionB by 

(Ax, Ay), rotate it by Ad, and shrink or stretch 

it by the factor As using bilinear interpolation. 

(5) Depending on the value of the norm of e stop 

or go to (3) again. 

Figure 2 shows a typical pair of images that were 
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used for the registration experiments. In this example 

the image shown in Figure 2(b) is a shifted, rotated, 

and scaled version of the image in Figure 2(a). Figure 

3 depicts the typical response of this registration 

algorithm. The (x, y, 0, s) data slowly approach the 

real values which are completely known in this 

example. 

Figure 2: A pair of images used for the 
registration example. The image in (b) is a 
shifted, rotated, and scaled version of the image in 

(a). 

Figure 3:  Response time of the control-based 
registration technique using the entire image. 

More efficient strategies: 

One of the drawbacks of the described algorithm is 

its sluggish convergence behavior. Though (3) is a 

direct consequence of an optimization procedure 

([1]), it is usually not the fastest procedure. The 

performance   increases   by   introducing   constant 

factors kx, ky, k6, and ks. The new estimates are: 
xnew = x-¥kx*lsx 

ynew = y+ky*^y 
eHew = 0+kd*A0 

This is nothing else but four P-controllers acting on 

the four channels x, y, 6, and s. Figure 4 shows the 

same situation as before but with ^-values: kx=5, 

ky=5, k9=5, and ks=5. The performance is 

significantly better than with the choice of (1, 1, 1, 

iXs&Ptf 

1140:0* ̂ Vn»wi\«*»f*VV*>^^ 

t||Vvv^ 
ÖÖ-H 

Figure 4: Response of the registration of the 
images in Figure 2 using a P value of 5 for each of 
the affine parameters to be estimated. 

Autotuning: 
The last remark gives rise to the introduction of 

complete PID-controllers for the four above- 

mentioned channels. The problem is that there is no 

set of P-, I-, and D-components covering all 

situations equally well. In other words, depending on 

the image content different sets of parameters must 

be chosen. In the majority of our experiments the set 
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kx = 5, ky = 5, kd= 5, and ks =5 (where s is measured 

in % times 100) showed an excellent behavior. The I- 

and D-components were set to 0. 

If any of the images being registered is noisy, the D- 

values should be 0 or very close to this value. In case 

of noise-free images or filtered versions of the 

originals a D value different from 0 can result in an 

even more improved speed of convergence. By 

introducing an I term, you can reduce the oscillatory 

behavior seen in figure 4. In general, there is no strict 

method of determining the optimal sets of P-, I-, and 

D-parameters. A successful approach, if applicable, 

can be described as follows. Shift, rotate, and scale 

regionA artificially and measure the speed of 

convergence under different conditions, i.e. different 

sets of parameters. Choose the set with the best 

behavior. 

This method has some obvious similarities to auto- 

tuning that is used commonly in classical control. 

Another method is based on adaptive control, i.e. 

modifications of an initial set of parameters in 

dependence of die norm of the error e. We prefer the 

first procedure to the second one because the auto- 

tuning method produces very similar results for 
images belonging to the same family. 

4.2 Use of Low discrepancy Sequence Points 

A careful study of the developed control strategy 

reveals that the Prewitt derivatives Ix and Iy can 

easily restricted to specific parts of the image without 

changing the algorithms. Earlier we demonstrated 

that deterministic random sequences (low 

discrepancy sets) out perform other choices based on 

the same amount of pixels. More precisely, an 

excellent estimate of the average gray level of a given 

image can be achieved if only a very small 

percentage of all pixel values are considered. The 

well   distributed   Halten   or   SoboF    sequences 

interpreted as pixel positions on an image deliver 

much better results than randomly chosen pixels or 

grid like structures. Another advantage of low 

discrepancy sequences is the ability to add further 

points without loosing results achieved so far. Both 

properties make Haiton, Sobol' and other low 

discrepancy sequences superior to comparable 
choices. 

Figure 5 is the result of the new control strategy 

where only 10% of all points were used. These pixels 

belong to a Halten sequences. Compared to a full set 

of pixels, the speed of convergence is as fast as in the 

original case. Randomly chosen pixels can not 

guarantee this behavior. 

Figure 5: Convergence behavior of the 
registration algorithm using Halton points. 

The described algorithms have their limitations. They 

do not perform well if the shift is beyond +/-4 pixels 

(both in x- and y direction), if the rotation is beyond 

+/-4 degrees, and if the scaling factor is beyond +/- 

4%. Typical region sizes are in the order of 80x80. If 

one can not guarantee these conditions an additional 

step is necessary. Based on pattern matching or 
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similar techniques, a first estimate must be generated 

that satisfies the above mentioned parameters. 

IV. Summary 

In this paper a new image registration technique is 

presented. The problem of finding the affine 

transformation parameters between the images to be 

registered is posed as a classical control problem. An 

efficient and robust image registration is performed 

by sampling the images to be registered using low 

discrepancy sequences and estimating the 

transformation between two subsets using a strategy 

based on the PID control. 
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Video Indexing using Color and Textural Features 

DinkarBhat   JiaWang        Katja Sakiewicz        N. Nandhakumar 
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Abstract - We propose a color and texture based 
descriptor for shots in a video, using an appropriate 
keyframe. The color descriptor is formed through a 
set of histograms computed in different regions of 
the keyframe image, at different tessellation levels. 
The texture descriptor is formed by choosing a set 
of coefficients in the wavelet transform of the 
keyframe. Together they form a descriptor for a 
keyframe, which in turn forms a descriptor for the 
shot. Experiments on videos in the MPEG-7 test 
database suggest that the descriptor is reliable for 
shot retrieval and video indexing. 

Keywords: Image Indexing, Color and Texture 
Features, Multimedia Databases, MPEG-7 

1     Introduction 

Temporally segmenting video into shots 
facilitates non-linear video browsing, editing 
and search ([4],[5]) in digital video 
management systems [4]. Thus, shots form 
basic units of video, but their content 
description for indexing, in terms of color, 
texture, motion, etc, differs considerably 
between systems. This lack of standardization 
results in poor interoperability between 
systems that manage video. With the onset of 
the MPEG-7 (a.k.a "Multimedia Content 
Description Interface") standardization effort, 
formalizing video structure and its description 
has taken a very important role [1],[2]. 

MPEG-7 seeks to standardize a set of 
descriptors that can be used to describe various 
types of multimedia information. These 
descriptors shall be associated with the content 
itself, to allow fast and efficient searching for 
material of a user's interest. Audio-visual 
material that has MPEG-7 data associated with 
it, can be indexed and searched for. This 
'material' may include: still pictures, graphics, 
3D   models,    audio,    speech,    video,    and 

information about how these elements are 
combined in a multimedia presentation. 

In the context of video, MPEG-7 seeks to 
define descriptors for shots that would then 
permit efficient searching and indexing into 
video, and permit interoperability between 
video databases. Several requirements have 
been established for descriptors, including ease 
of computation, expressability, and 
comprehensiveness. In this paper, a descriptor 
for shots is described that we proposed in the 
MPEG-7 evaluation meeting at Lancaster, U.K 
earlier this year [9]. The descriptor uses color 
and textural features of keyframes in shots that 
have been identified using a shot detection 
technique like [6]. 

The color descriptor is composed of a set of 
histograms computed in different regions of a 
keyframe image, at different tessellation levels. 
The texture descriptor is formed by choosing a 
set of coefficients in the wavelet transform of 
the keyframe [8]. The color and texture 
descriptors are combined to form a descriptor 
for a keyframe. We evaluate the shot retrieval 
performance of the descriptor using the 
MPEG-7 test database [3]. Experiments 
suggest the utility of the descriptor in search 
and indexing into video. 

2     Our Approach 

We present a composite descriptor for shots in 
a video. Each shot O in a video consists of a 
set of consecutive image frames 
F = {fi>i = h-,«} • Shot O can be compactly 
described by a set of keyframes: 

R = {ri;i = l,..,m,ri eF,m<n). 
In  this  paper,  we  assume  that  a  shot  is 
represented by a single keyframe, i.e. m-\. 
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The key frame is described by a combination 
of color and texture descriptors. 

The color descriptor is represented at multiple 
tessellations of the keyframe   rt. By using 

multiple tessellations, we obtain varying 
representations of color distribution - at higher 
tessellation, the representation is more local. 
The color at each tessellation level is described 
using a set of histograms computed at different 
image regions. Each histogram is specified by 
the location and size of the image region over 
which it is computed. The size of image 
regions over which the histograms are 
computed is reduced over successive 
tessellations'.  Therefore,  if a histogram is 

denoted   by   A(Pj,Wj,)where   Pj   denotes 

location of the f1 image region, and 
w j, denotes its size, at tessellation level /, then 

color descriptor Ht at level / is given by: 

H,=\jKPi,Wi,) (1) 

where N denotes the number of image regions 
over which histograms are computed. The 
overall color descriptor C, for keyframe r,is 

given by: 

1=1 
(2) 

where L is the total number of tessellation 
levels used. 

The texture descriptor consists of a set of 
coefficients that represent spatial variation of 
detail in the keyframe image, at different 
image resolution(s). Detail images of different 
resolutions are computed using the discrete 
Haar wavelet transform on the luminance 
component. Let the detail images at texture 
resolutions d0,dl,d2—,dn be chosen for 
representation, and at each texture resolution 
only qk highest valued coefficients be 

preserved,   where    k = d0,dl,...dn.    If   the 

1 In the case of regular tessellations where the 
image is subdivided into equal-sized regions, the 
window size is automatically defined by the 
tessellation level. 

quantized detail image at texture resolution 

*/,is represented as Dd,   where  / = 0,l,..,n, 

then the texture descriptor 7) is given by: 

T, = {Dd„Dd, Dd,;qdo,qdl,..q^;d^,dx,..An}  (3). 

The overall descriptor Q,for keyframe r(is 

given by:Q, =(C,,7)). Since we assume that 
the shot is represented by one keyframe, the 
shot descriptor Q is identical to its keyframe 
descriptor. 

3    Descriptor Computation 

In this section, we discuss how the color and 
texture descriptors are computed from a 
keyframe image. 

3.1    Computing the Color Descriptor 

The procedure to compute the color descriptor 
consists of two steps: segmentation of a frame 
image into regions for a fixed number of 
tessellation levels, and computation of the 
color histogram of each region. Figure 1 
depicts two possible structures, quin-tree and 
quad-tree, with regular tessellation, i.e. any 
image region is further sub-divided into equal 
sized regions to obtain at a higher 

7 
3t 

r / 7 
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s 
(a) (b) 

Figure 1: Illustration of Quad-tree and 
Quin-tree tessellation of a keyframe. 

tessellation. Two levels of tessellation are 
shown. Note that in the case of the quin-tree, 
subdivided image regions overlap. 
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3.2    Computing the Texture Descriptor 

The texture descriptor T, is computed using the 
Haar wavelet transform. Intensity of pixels in a 
key frame image is projected onto smoothing 
and detail filters recursively until a multi- 
resolution representation of the image is 
obtained. At a coarse resolution, broader 
details in the image are represented, and at a 
finer scale, smaller details begin to emerge. 
Thus, the wavelet representation is a way of 
describing the texture in the keyframe image. 

If the image intensity data in keyframe rt is 

represented as I(x,y), then the wavelet 
transformation of the image can be expressed 
as: 

Ld(x,y) = [Hx *[Hy * W.J0W41.2 

Dd(x,y) = [Hx *[Gy * W^W+u 

D2
d(x,y) = [Gx *[Hy * W*.y)W4i.2 

Dd(x,y) = [Gx *[Gy *Ld_x(x,y)]i2,]iU2 

where * denotes convolution, i21(^   denotes 

sub-sampling along the x(y) axis, and 
Lo(x,y) = I(x,y). H and G denote the Haar 
low-pass and band-pass filters, composed of 
separable components {Hx, Hy},{Gx ,Gy}, 
respectively. The Haar basis defines filters as 
follows: HX={1 1}, Hy={l if, GX={1 -1), 
Gy={l -if. Ld is the output of low-pass 
filtering, hence it is a low-resolution image at 

resolution d. Dd,Dd,Dd are outputs2 of band- 
pass filtering along specific orientations - 
horizontal, vertical, and diagonal, respectively. 
They represent detail at resolution d, and 
hence, they are referred to as detail images. At 
a resolution d, the original image I(x,y) can 
be reconstructed from the set of images: 

{Ld;D\,Dl,Dlk = l,2..,d}. 

Only the coarse detail of an image is used as 
its texture descriptor. The reason is that during 
retrieval, the broad detail between images are 
compared without considering finer texture. 
Therefore, the descriptor is computed in two 
steps. First, we select appropriate resolutions 
for   representation   given   by    d0,dl,...d„. 

Second, from detail images Dd,Dd ,Dd , we 

select the top (in absolute value) qd ,gd ,qd 

coefficients, respectively, where 
i = d0,dl,...,dn, i.e we quantize the set of 

coefficients. All other coefficients in the detail 

images are set to 0. If Dd,,Dd,,Dd,aie the 
resulting    quantized    detail    images    and 

Dd, = {Ddi, Dd, ,Dd,}, for i = d0, dx,..., d„, 
then: 

T,={Dd0,Ddl,....,Dd.}. 

4     Similarity Measure 

To retrieve shots in a database that are similar 
to a query shot, distance measures are required 
for measuring similarity between shots. Let 
<D,,0? denote the shots being compared. O; 

is   represented   by  keyframe   rt,   andOgis 

represented by rq. The composite descriptor of 

keyframe r,is Clt =(C,,7;), and that of rq is 

Qq ={Cq,Tq). Below, we describe a method 

to compare the two keyframe descriptors. 

4.1    Color Similarity Measure 

To determine whether the two keyframes 
r, and rq are similar in terms of color content, 

the color histogram intersection function [7] is 
applied to corresponding regions of rt and rq as 
follows: 

Ki=n (ä< (PJ 'w j,')' K CP J 'w i,i» 

= |;min(Ä,(ß)(pj,wj)I),^
(p)(pj,wjjl)) 

The  detail   images  are  also  referred  to   as 
horizontal, vertical and diagonal channels. 
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where Ä(P) (.) denotes the value of a histogram 
in binß, and / is the tessellation level of the 

color descriptor at which similarity is 
computed. 

To account for different possible contributions 
of the regions, a weighted similarity measure 
function normalized by total number of image 
regions N at level /, is defined as follows: 

;v<r^) 
Se{CttC.) = y=i w i,i 

N 
(4) 

where 6, is the weight for the y'th region, and 
||.|| denotes magnitude. 5, can be varied, for 
example, to perform home video shot 
boundary detection, the center region in a 
Quin-tree division could be emphasized higher 
than the other four segments since it has a 
higher chance of capturing the object of 
interest. Similarity could also be computed at 
multiple tessellation levels in a hierarchical 
fashion, starting from the coarsest level. 

4.2    Texture Similarity Measure 

To match texture descriptors 7), Tq, we use the 

following distance criterion [8]. It is assumed 
that only one texture resolution d0 is used for 

representation. 

As described earlier, Tt, = {D\, D\, D\}. Let 

Tq ={ßl~ ßl,ßj}where ßi-,1 = 1,2,3 

represent quantized detail images of the query 
(at the same quantization levels as the texture 
representation for keyframe rt), at scale d0. 

The similarity measure is given by: 

SAW,,)=-^Z JX^P*« (*..v).fij (*.*)> 
R*Q m=\ (x,y) 

(5) 
where F(.,.) is a metric defined as: 

F(a,b) = 1 if ab > 0, and 
0, if ab = 0. 

Q=ql+q2+q3,   w^is  a  spatially  varying 

weight function, and R is a normalization 
constant. In the unweighted case R=l, and 

= \;m = 1,2,3; VJC,>\    When    the    two w. 

descriptors are identical, S7.(7),7,
9) = 1.0. If 

coefficients in the two descriptors agree, then 
sr(r„7-,)=o.o. 

Coefficients in 7) with large absolute value are 
important, and if corresponding coefficients in 
Tq do not agree, then the deviation must be 

penalized significantly. Therefore, if weighting 
is desired, a logical way would be to set 

w"xy) = D%o(x,y)\, m=l,2,3. In case multiple 

resolutions      are      adopted,      ST(Tj,Tq)is 

computed individually for each resolution, and 
the results are summed. The resulting value is 
then normalized by the number of texture 
resolutions used. 

4.3    Combined Measure 

To obtain a combined similarity measure, we 
weight the two components appropriately. If 
5(fi/, Qq ) is the aggregate measure, then: 

S(Qi,Qq) = X1Sc(Ci,Cq) + X2ST(Ti,Tq)   (6) 

5. Experiments 

A prototype system for shot retrieval was 
developed based on the proposed descriptor, 
and the similarity scheme described above. For 
the experiments, approximately 400 shots were 
collected from three video files belonging to 
the MPEG-7 test set [3] (Harmony.mpg(Item 
V25), animals.mpg (Item V14) and 
Cml002.mpg(Item V19)). The MPEG-7 test 
set was created to enable uniform comparison 
across different descriptors. The size of each 
keyframe is 160 x 112. The following are the 
parameters for our experiments: 

• The first frame in a shot was used as its 
keyframe. 

• A quin-tree was used, and the number of 
tessellation levels was set to 2, i.e L-2. 

• The number of bins (a) in the color 
histogram was set to 64. 
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• One tessellation level (L=2) was used for 
computing color similarity ( Sc (C,, C ■) ). 

the average A and /values, the performance of 
the retrieval is measured according to the 

(e) <3 (4> 
Figure 2: Keyframe images from selected query shots. 

• One texture resolution was used for the 
texture descriptor( d0 = 3 ). 

• The quantization level used in the texture 

descriptor was 60, q\ =q\ = q\ =60. 

• The values X^ = 0.6,2^ = 0.4 were used 
in equation (6). 

• Similarity measures for color and texture 
are unweighted (in equations (4), (5)). 

• When similarity between shots falls below 
£ =0.31, they are considered dissimilar. 

In our experiments, we used 8 query shots 
whose keyframes are shown in Figure 2. 
Precision-recall metrics are used to measure 
the correctness and completeness of image 
retrieval. Given a query, let A be the set of top 
N similar images returned by the search 
engine, and let / be the ideal set of similar 
images that were pre-determined by visual 
inspection. Note that the number of images in 
A may be less than N, since the images in A 
must have similarity values >£ with respect 
to the query. The precision P and recall R of 
the image retrieval are calculated as follows: 

\lnA\ 
P = 

R = 

Ml ' 
JnA\ 

The average number of images in A for 
queries is  15.25.    The average number 

all 
of 

interpretations showed in Table 1. 

Interpretation P R 
high >0.55 >0.75 
good 0.30 -0.55 0.5 - 0.74 
low <0.3 <0.5 

Table. 1: A sample retrieval performance 
interpretation table. The ranges for 
precision and recall, for each interpretation, 
are arbitrary. 

Experimental results are reported in Table 2, 
which shows the average P and R values for N 
= 40. Apparently, the system does well with 
both precision and recall. The average 
precision P value of 0.87 indicates that among 
the 15.25 retrieved images, 13.26 are similar to 
the query. The average recall value of R=0.61 
indicates that 6.02 of the 9.875 similar images 
are retrieved. 

p 
R 

0.8 
l 

l 
0.3 

0.9 
0.6 

1 
0.6 

0.4 
0.7 

0.9 
1 

_g_ 
1 

0.6 
1 

0.2 
0.87 
0.61 

images in / for all queries is 9.875. Based on 

Table 2: Precision and recall of image 
retrieval using 9 randomly selected 
keyframes as query images, with threshold 
similarity value set at 0.31. 

Figure 3 presents two examples of the retrieval 
results. Figure 4 and Figure 5 show the 
retrieval effectiveness using precision vs. 
recall for query shots (a) and (h). The system 
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successfully retrieved all similar shots from the 
video database. 

5     Discussion 

We presented a color and texture descriptor for 
shots using their keyframes. This descriptor 
allows for efficient browsing and retrieval of 
shots from a database, as demonstrated on 
selected videos in the MPEG-7 test database. 

databases", Pattern Recognition, 30(4), pp 583- 
592,1997. 

[7] M. Swain and D. Ballard, "Color indexing", 
International Journal of Computer Vision, 7(1), 

j   pp: 11-32,1991. 
[8]   E. Stollnitz, T. D. Derose, D. H. Salesin, 

"Wavelets for computer graphics-Theory and 
applications", Morgan Kaufmann Publishers, 
1996. 

[9] D'.'N. Bhat, J. Wang, N. Nandhakumar, MPEG- 
7, Proposal P68, Lancaster, UK, February 1999. 

Future research work would proceed along the 
following directions: a) Development of 
algorithms to combine descriptors from several 
keyframes in a shot, b) Selection of suitable 
parameter values in the descriptor such that 
MPEG-7 compatible databases can 
"communicate", c) Experiments with different 
kinds of video like home video, broadcast 
video, etc, to evaluate the suitability of the 
descriptor for diverse classes of video. 

MPEG-7 is currently in the process of 
developing core experiments for descriptors 
that were deemed important at the evaluation 
meeting. Selected descriptors would then form 
part of the experimentation model (popularly 
known as XM). Design of software 
components that enable diverse descriptors to 
cooperate is a key issue that has to be 
addressed. 
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Figure 3(a): Retrieval results using shot number 42 (represented by 
keyframe 13015) in Harmony.mpg. The query image is shown on the 
top-left. Retrieved shots are shown in row-major form sorted by 
similarity value. 

Figure 3(b): Retrieval results using shot number 97 (represented by 
keyframe 8753) in Cml002.mpg. The query image is shown in a box on 
the top-left. The retrieved shots are shown in row-major form sorted by 
similarity value. 

Figure 4: Retrieval effectiveness using queiy image 
-a" 
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Figure 5: Retrieval effectiveness using query 
image "h" 
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Abstract This paper describes a new methodol- 
ogy for information integration based on the Fisher 
criterion. A system that uses information from 
multiple features or sensors can employ redun- 
dancy, diversity and complementarity to overcome 
the shortcomings of single-sensor systems and im- 
prove performance. In this paper, a general mul- 
tifeature/multisensor framework is proposed which 
does not simply expand the dimensionality of the 
feature space, but which can discern new features to 
provide greater discrimination. Using this frame- 
work, a more focused methodology is described for 
localization of objects in complex scenes by learning 
multiple feature models in images. The methodology 
is based on a modular structure consisting of mul- 
tiple classifiers, each of which solves the problem 
independently based on its input observations. A 
higher level decision integration is obtained through 
a supra-Bayesian scheme. Results of the proposed 
integration scheme are compared to existing com- 
bining techniques. 

Keywords: multisensor fusion, object detection, 
pattern analysis 

1    Introduction 

The automated interpretation of images to detect 
and localize objects is a key component of au- 
tonomous vision systems. Due to the large amount 
of data to be processed, the presence of noise in the 
imagery, the absence of complete information, the 
ill-posed nature of the problems, and inadequate 
modeling of the scene and the sensors, such extrac- 
tion of information is a very complex task. Hu- 
mans are able to detect and recognize as many as 
10,000 distinct objects [2] under varying viewing 

conditions, while a state-of-the-art object recogni- 
tion system can recognize relatively few objects. 
We know very little about the physiological mech- 
anisms with which the human visual system solves 
and uses solutions to lower-level processes such as 
depth and shape in the task of object detection and 
recognition [5]. 

The process of object localization and recogni- 
tion involves processing at all levels of machine vi- 
sion: lower-level vision, as with edge detection and 
image segmentation; mid-level vision, as with rep- 
resentation and description of pattern shape, and 
feature extraction; and higher-level vision, as with 
classification. Since objects are usually character- 
ized by their shape and by the gray-scale repre- 
sentation of the segmented region, detection re- 
sults directly affect the performance of the sys- 
tem. Past research in machine perception has fo- 
cused mainly on the use of a single sensing modal- 
ity, such as a video camera or an infrared camera. 
A great deal of effort has been devoted to inter- 
preting imagery sensed by each (single) modality 
separately. However, techniques which use a sin- 
gle modality work only in highly constrained envi- 
ronments and require enormous amounts of com- 
putational resources. The use of multiple sensing 
modalities and the development of "intelligent" al- 
gorithms to effectively combine these sensors can 
overcome the limitations of current approaches to 
machine vision. In this paper we explore the object 
detection and localization problem through images 
obtained from visual and infrared sensors. 

This paper presents a framework for sensor fu- 
sion along with robust algorithms for the detection 
process. The framework follows the bottom-up ap- 
proach and uses Bayesian statistics to account for 
uncertainties in the process. Multiple features, ex- 
tracted either from single or multiple sensor images 
are used to model the object signature. Information 
from each feature is integrated for focused object 
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analysis. 
The rest of this paper is organized as follows. In 

section 2, the need for sensor fusion and a mod- 
ular framework are discussed, providing the basis 
for the development of the integration framework 
presented in the following section. In section 3, 
a Bayesian approach is presented where the prob- 
lem is formulated as a two-class discrimination case. 
The theoretical foundations for decision fusion are 
discussed and the Fisher criterion is considered for 
determination of the optimal reliability factors. Ex- 
perimental results obtained from both the visual 
imagery database and the FLIR imagery database 
are presented and analyzed in section 4. An ex- 
ample is also presented for detection in registered 
multisensor data. Finally, section 5 presents the 
conclusions of this paper. 

2    Multisensor Fusion 

Multisensor fusion is now widely accepted as be- 
ing indispensable in vision applications, particu- 
larly when any one specific sensor is not guaranteed 
to provide complete discriminatory information be- 
cause of the complexity of the scene, poor imag- 
ing conditions, or the effect of counter-measures or 
noise [6]. Multiple sensing modalities are used with 
great efficacy by several biological perceptual sys- 
tems. The sensing modalities, as well as the manner 
in which the sensed signals are fused, are decided by 
the domain in which the systems function as well 
as by the application. Fusion of multiple sensor 
information for reliable analysis is a problem that 
has been studied in various areas over the years. In 
certain vision system problems, a complete analy- 
sis of a scene is not possible without information 
from multiple sensors. In such cases, the problem 
of multisensor fusion is defined as the integration of 
numerical and spatial sensory data to achieve use- 
ful information about an object or a scene that can- 
not be obtained from single sensor information [13]. 
This realization of the fundamental limitation of 
single sensor information has lead to an increasing 
interest in multisensor systems. Multiple sensor in- 
tegration techniques studied so far can be broadly 
categorized in two classes. 

1. Model-based approaches 

2. Statistical approaches 

Model-based techniques try to model the environ- 
ment in which the system operates and are depen- 
dent on the physics of interactions within the scene 
and the sensor. Similar to physics-based analysis, 

the heat transfer within the environment is modeled 
and the radiation received at the thermal sensor is 
approximated. Similarly, the objects' reflectivity 
is determined by modeling the light source for vi- 
sual sensor information. The information can once 
again be optimally fused. Statistical techniques, 
on the other hand, can be used to model the un- 
certainty of the sensor. This information, in turn, 
provides confidence of information. Bayes' decision 
criteria can be used to optimally combine informa- 
tion in such a case. 

The motivation behind the design of a multi- 
sensor system stems from the realization that sen- 
sor measurements inherently incorporate varying 
degrees of uncertainty and are occasionally spuri- 
ous and incorrect. Further, the spatial and phys- 
ical limitations of sensor devices often mean that 
only partial information can be provided by a sin- 
gle sensor. Inspired by biological organisms, which 
are essentially multisensor perception systems, the 
development of intelligent systems that use mul- 
tiple sources of information to extract knowledge 
about the sensed environment seems a natural step 
forward. The shortcomings of single sensors can 
be overcome by employing redundancy and diver- 
sity [9]. A multisensor fusion framework that in- 
tegrates information at all processing levels would 
benefit from the principles of redundancy and diver- 
sity while managing the computational complexity. 
Such a modular framework, which uses Bayesian 
formulations to detect probable objects and present 
a coherent system with an associated confidence 
and error estimate at each level of the system, is 
proposed in figure 1. The lowest level of the system 

to *o 

Figure 1: System module overview for inr 

formation integration to achieve better detec- 
tion/segmentation. 
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performs multiple feature extraction from images of 
each sensing modality. Multiple features or multi- 
ple sensors are treated the same in this framework. 
Several expert modules are used to characterize the 
distribution of these features, which aid in discrim- 
inating probable objects from the background. De- 
tecting objects in both infrared and visual images 
poses a challenging problem due to enhanced clut- 
ter, the high degree of variations observed in natu- 
ral environments, and faint object signatures. Indi- 
vidual modules are trained to identify varying ob- 
ject signatures. By incorporating different features, 
an object signature can be successfully identified to 
get an initial estimate of probable regions. A prob- 
abilistic combining stage ensures the fusion of mul- 
tiple classifier outputs to maximize the object sig- 
nature. In the event of registered multisensor data, 
the sensor fusion module incorporates a region re- 
finement to obtain the final object segmentation by 
integrating object signature detected by individual 
sensor modules. In the absence of registered data, a 
region refinement stage can be implemented which 
analyses the detected region independent of infor- 
mation from other possible sources. To show the 
efficacy of the proposed framework, examples are 
provided for multisensor integration using range in- 
tensity and infrared images for the problem of ob- 
ject detection. 

3    Information Integration 

As improvements in sensors have been realized 
through the development of imaging technologies, 
the optical limits of sensor resolution have been 
reached. The second generation FLIR is a prime 
example of this. More advanced sensors will pro- 
vide only small improvements over present capa- 
bilities [10]. In order to improve performance, we 
must exploit the use of available multiple sensors, 
as well as integration of spatial and temporal in- 
formation. Data from more than one sensor can 
be fused by several techniques: information/data, 
pixel, feature, and decision-level fusion. Data fu- 
sion refers to the incorporation of object data from 
several sources, e.g., imaging sensor, object infor- 
mation, GPS, digital maps, etc. Pixel fusion in- 
volves the overlay of pixels from disparate sources 
to form an image. Feature fusion correlates infor- 
mation from two or more sources prior to making 
a decision. Decision fusion is a voting scheme in 
which each information source is polled as to the 
presence of objects. 

In most data fusion systems, the information ex- 

tracted from images or sensors is represented as 
measures of belief in an event. The information 
can be either numerical or symbolic. Its represen- 
tation as numerical values leads to a quantification 
of the characteristics that have to be taken into ac- 
count in a fusion process. Indeed, one of the main 
tasks of data fusion is to combine information is- 
sues from several sources to obtain a better deci- 
sion than can be had from one source only, by re- 
ducing imprecision and uncertainty and increasing 
completeness [3]. In any object detection system, 
the events to which degrees of beliefs are assigned 
are related to the absence or presence of objects of 
interest. The degrees of beliefs are modeled in dif- 
ferent ways, depending on the chosen mathematical 
framework, e.g., membership degrees to a fuzzy set 
in fuzzy set theory, necessity functions in possibil- 
ity theory, mass, belief, or plausibility functions in 
Dempster-Shafer evidence theory, or probabilities 
in data fusion methods based on probability and 
Bayesian theory. When several pieces of informa- 
tion have to be combined, these degrees are com- 
bined in the form F(xi,X2,--.,x„), where Xi de- 
notes the representation of information issues from 
source i. The question is: what information combi- 
nation operator F should be chosen? It should be 
emphasized that the problem of data integration is 
very complex and that there are many issues beg- 
ging explanation. These include the effect of indi- 
vidual expert error distributions on the choice of 
fusion strategy, explicit differentiation between de- 
cision ambiguity, competence and confidence, and 
the relationship between dimensionality reduction 
and multiple expert fusion, with its implicit dimen- 
sionality expansion. 

3.1    Theoretical Framework for Fu- 
sion 

The following discussion concentrates on the prob- 
lem of statistical data integration, where a decision 
is to be made based on a group of experts. In the 
general m-class case, we consider that we have n 
experts each representing the given input/source, 
Z, by a distinct vector. Let xt be the measurement 
vector, such as a feature extracted from the image, 
used by the ith classifier. Each class w* is modeled 
by the probability density function p(xi\wk) and its 
prior probability is denoted by P(wk)- The mod- 
els are assumed to be mutually exclusive as each 
model is associated with distinct measurement fea- 
tures/source. According to Bayesian theory, the in- 
put Z should be assigned to class ujj provided the 
posterior probability of the interpretation is maxi- 
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mum, i.e. 

assign      Z -¥ Uj      if 

P(Uj\Xi,...,Xn) 
(1) 

maxP(w*|ari x„) 

Rewriting        the posterior        probability 
P(vk\xi,. ..,xn) using Bayes' theorem, we have 

p(xi,...,ar„) 

where p{x\,..., xn) is the unconditional joint prob- 
ability density function. This can be expressed in 
terms of the conditional distribution as 

m 

p(«i,..... ,xn) - Y^v{xu■ • • ,xn\uj)P(wj).    (3) 
j=i 

Assuming that the features/sources used by the 
classifiers are conditionally statistically indepen- 
dent, we can write the joint distribution as 

n 
p(x1,...,xn\wk) = Y[p(xi\u)k). (4) 

i=l 

Substituting from 4 and 3 into 2, we get 

-P(w*|xi Xn) = =j PJuhiflLMxiM 
zup("i)niM*i\"j) 

Thus the decision rule can be given as: 
(5) 

assign   Z -> wj   if    (6) 
n n 

P(o>j) "[[pixiluj) = rgxP(w*) l[p(xi\wk) 
i=l i=l 

Under the assumption that the posterior probabil- 
ities computed by the respective classifiers will not 
deviate dramatically from the prior probabilities, 
the more commonly used sum rule is derived in [8]. 
Some of the other decision rules used are also dis- 
cussed. They include the max rule, min rule, 
median rule, and the majority vote rule. 

In deriving the decision rule above, it is conceded 
that the conditional independence assumption may 
be deemed unrealistic in many situations. How- 
ever, for applications where the feature extractors 
are distinct, this assumption will hold. Further, 
this assumption will provide an adequate and work- 
able approximation of reality, which may be more 
complex. Finally, most routinely used combining 
schemes are based on this assumption. For the sum 
rule, the assumption that the posterior class proba- 
bilities do not deviate greatly from the priors is un- 
realistic in most applications, and would introduce 

gross approximation errors. On the other hand, the 
product formulation has the drawback that a single 
recognition engine can inhibit the overall fusion by 
outputting a close to zero probability. For the spe- 
cial case of normally distributed assessments of the 
individual classifier outputs about the true class, 
the product formulation provides the final estimate 
by minimizing the variance over all inputs. 

To avoid the zero probability problem, a measure 
of reliability for individual experts/classifiers can 
be considered in which the corresponding classifier 
contributes minimally to the final decision. In such 
a case, the modified product formulation is given 
by 

P(*i xn\uk) = Y[p(xi\wk)
Wi 

(7) 
i=l 

The introduction of weight factors, Wi, clearly re- 
flects the expertise of individual classifiers, but it is 
not clear as to how they should be chosen. Rewrit- 
ing equation 5, we have 

P(uk\xi,...,xn) = P(uk)TlL,P(xi\uk)Wi 

(8) 
For a two-class discrimination, we can write the 
combined probability as 

^("*)[n?=i{%ffi}"'] 
A + B 

P(Uk\Xj). 

P(u)k\xi,...,xn)   = 

A - p^vmn 
n 

P(uck\xi)- = p(-miEf^rtP) 
A similar formulation has been shown in [1, 4] and 
is termed the logarithm opinion pool. The inter- 
pretation of this combined estimate is known to be 
unimodal and less dispersed than the linear combi- 
nation of individual assessments. As pw is a mono- 
tonic function of p, we can simplify equation 9 to 
the logarithmic form as (ignoring the normalizing 
denominator) 

logP(wfc|xi,...,ar„) = (10) 

P(Vk\Xj) 
logPfoJ + JT^M2^ } 

Considering the odds formulation where 0G  = 

l-ClW*!*!!—i*n) Oi   = l-p(Wk\Xi) and Ou.    = 

i-p(uk) > we can rewrite the group estimate as 

iog(%^)=£"«#-)   (11) a i=l 
"O, Uh 
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3.2    Reliability Factors 

To determine the weight factors for optimal dis- 
crimination, we consider the Fisher criterion. The 
reliability factors are computed based on the mea- 
sure of within-class and between-class information, 
as introduced by Fisher [7]. The classifier outputs 
for a given class should be chosen such that they 
are clustered closely as compared to the outputs 
given for any other class. Once again, considering 
equation 11 or 11, let 

^=log{-p(^r}- 
The group estimate can then be written as 

n 

«=1 

(12) 

(13) 

where the decision is based on the maximum yi for 
all classes. In the general case, let fi = {u>i,..., w*} 
be the k classes into which the input Z is to be 
classified. Given the training patterns and the cor- 
responding outputs, let Xu be the set of input be- 
longing to class u) and let Nu be the number of 
patterns. The mean of class w can then be defined 
as 

\iu wZv = i;Zw 
TVJL 

x€X„ 

E*) = WT^        (14) 
x€Xu 

where <f>u is a n x 1 column vector given by: 

x€Xu, 

Similarly, the mean over all classes can be defined 
by 

xex xex 

x€X 

where 0 is again the nxl column vector given by 

* = ££*=£ !>«-£.     <17> xex wen 

The between-class variance is then defined as 

SB(W)    =    J^Na(jjL-^)2 (18) 

Using equation 17, 

£ Na(W
T<fu) = N(WT$) (19) 

u€ft 

the between-class variance can be simplified as 

sB(w) =  J2N»(wTM2 

w€fi 

-    N(WT4>)2 (20) 

The within-class variance is given as 

Sw(W)   =    £ J^i^-yf 
wenzejf„ 

= E E^-^)' 

Simplifying, we get 

Sw(W)   =    ^(W3»2 

xex 

wen 

(21) 

(22) 

(23) 

In trying to minimize the within-class variance 
and maximize the between-class variance, the se- 
lection criterion can be given as 

J(W) = SB (W) - a[Sw (W) - 2WTI]      (24) 

where I is an n x 1 column vector of ones, a 
weights the within-class variance with respect to 
the between-class variance and acts as the regular- 
ization parameter. Differentiation with respect to 
the weight factors and setting the derivative to zero, 
we get 

dj    dsB{w)     dsw(w) 
dw = -m^-a—aw^-2aI     (25) 

Using the identity d^w    = ^> we ^ave 

™%P- = 2 £ N„(WT<£U)<£U - 2N(WT$)4> 

(26) 
wen 

and 

™%P- = 2 £ (WTM - 2 £ WV.)^ 
(27) 

xex wen 

Simplifying equation 25 

1 8J 
2 8W 

=   al (28) 
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Thus the optimal solution for the reliability factors 
W is given by 

r T * 
W   =   a((l+a)£i\U4  4) 

a>€fi 

-   tf^-aj^3»)"1!     (29) 
x€X 

4    Experimental Results 
The features used for robust detection of objects in 
complex scenes included color, regularity, local de- 
viation, and homogeneity in images [12]. The data 
was divided into two distinct sets, one for validat- 
ing the system and the other for testing the system. 
The validation set for both the Colorado(visual) 
and Comanche(FLIR) data consisted of 40 images 
under varying background conditions. Some of the 
images had high clutter and very small objects. A 
separate set of 5 images was used to compute the 
image statistics and estimate the object signature 
distribution parameters using the modified EM al- 
gorithm [11]. The testing set for the Colorado 
data consisted of 65 images of similar objects, once 
again in varying environmental settings and ambi- 
ent conditions. For the Comanche data, a set of 144 
images were used from three distinct sites in vary- 
ing environmental conditions. The validation set 
was used to validate the classifier design and deter- 
mine the confidence/reliability of individual classi- 
fiers. 

The detected regions were individually analyzed 
by performing a connected component analysis on 
the output of pixel classification and regions con- 
sisting of less than 100 pixels were removed. A re- 
gion growing procedure with compactness and edge 
linearity constraints [11] was used to isolate final re- 
gions. An example of a typical visual image and the 
detected object is shown in figure 2. Figure 3 shows 

Figure 2: 
object. 

Typical visual input and detected 

an example of a typical FLIR input image and the 
result of detection and segmentation. 

Based on the computed reliability factors, the 
classification rate of 96.59% and a false alarm of 

Figure 3: Preprocessing steps applied to typi- 
cal FLIR image (a), the results obtained after 
initial detection (b), and the result of final seg- 
mentation (c). 

4.3% was obtained with a threshold of 0.7 in the vi- 
sual dataset. For images from the Comanche FLIR 
dataset, the best results were obtained with a total 
of 143 regions detected, an object classification rate 
of 99.3% and a false alarm of 1.9%. 

In another experiment, the lower level of individ- 
ual classifiers was merged into one classifier and the 
decision integration module was removed. Thus, 
the features were concatenated to give just a single 
feature vector. The same experiments were then 
repeated. This was done to verify the advantage of 
the proposed methodology. The overall detection 
rate in this case dropped to 81.5% for the visual 
data and 83.2% for the FLIR data with a threshold 
of 0.7. 

To further evaluate the developed methodology, 
we compare the results with those obtained by us- 
ing some of the existing classification and com- 
bining schemes. As variants for the integration 
scheme, we consider the Sum Rule [8] which gives 

P(w*|X) = £P<(w*|a:«) (30) 

A modification of that is the weighted sum rule, 
which is simply 

n 

P(uk\X) = J2wiPi(uk\xi) (31) 
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The weights in these experiments were determined 
by cross validation on the validation set for each 
classifier. The third variant would be just to con- 
sider a majority vote, which is 

P(u}k\X) = max Pi(wk\xi) (32) 

Standard classification algorithms were also consid- 
ered. A Nearest Neighbor(NN) algorithm (1-NN 
and 3-NN) was used to estimate the final binary 
decision. The NN classifier assigns a test pattern x 
to the same class Wj as the training pattern x? G x% 
nearest to a; in the feature space. Xt is the set of all 
training patterns belonging to the class w,-. Given 
in the discriminant function form, the classification 
can be given as: 

6NN{X) = ati B gi(x) > gj(x) Vj # i       (33) 

where a* is the assigned label and gi(x) is the dis- 
tance measure and can be written as 

ft(*) = -||*-3?|| (34) 

and 

\\x-^\\<\\x-^\\^eXui^J        (35) 

The decision tree (C4.5) and one level rule induc- 
tion (1-R) algorithms were also used. In all of these 
algorithms, the training patterns were the posterior 
estimates obtained from individual classifiers. Ta- 
bles 1 and 2 present the average results over 20 runs 
for the same visual and FLIR images respectively, 
as used in earlier experiments. 

Algorithm 3000 Data Pts. 
Our Algorithm 96.59% 

Sum Rule 83.6% 
Wtd. Sum Rule 91.5% 

Maj. Vote 76.8% 
1-NN 88.2% 
3-NN 89.2% 
C4.5 85.1% 
1-R 75.9% 

Table 1: Comparison of combining schemes for 
visual data. 

In addition, to demonstrate the generalizability 
of the developed fusion framework, an example of 
multisensor detection is considered. The images 
used in these examples were obtained by a FLIR 

Algorithm 3000 Data Pts. 
Our Algorithm 99.3% 

Sum Rule 87.5% 
Wtd. Sum Rule 93.0% 

Maj. Vote 77.7% 
1-NN 90.9% 
3-NN 92.3% 
C4.5 84.0% 
1-R 84.7% 

Table 2: Comparison of combining schemes for 
FLIR data. 

and range sensor. Three of the features introduced 
earlier, excluding color, were used on the FLIR and 
range intensity images to model the objects of inter- 
est and the background. A validation set consist- 
ing of non-registered images was used to determine 
the weight factor for the integration of features for 
each sensor. The final sensor integration was per- 
formed by considering equal weight contributions. 
In the presense of registered dataset, the weight 
factor contributions for sensor integration can eas- 
ily be computed as discussed in section 3.1. For 
the two examples shown here, the registration was 
performed manually to maximize pixel overlap be- 
tween the two sensor images. Figure 4(a) and (b) 
show the input images, (c) and (d) show the detec- 
tion after multifeature integration, and (e) shows 
the result after sensor integration. 

5    Summary 

In this paper, we have presented a methodology for 
object region localization/detection. Multiple im- 
age statistics are independently computed based on 
generic measures in visual computation. We intro- 
duce a modular computational structure consisting 
of multiple classifiers, each of which attempts to 
solve the global problem based on its input obser- 
vations. A higher level decision integrator oversees 
and collects evidence from each of the individual 
modules and combines it to provide a final deci- 
sion while considering the redundancy and diversity 
of individual classifiers. A Bayesian realization of 
the methodology is presented. Each classifier mod- 
ule models the object signature probability density 
function based on the computed image statistics 
and the final integration is achieved in a supra- 
Bayesian scheme. How the object models benefit 
the object detection process is demonstrated by the 
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Figure 4: Registered multisensor (a) FLIR and 
(b) Range intensity images, (c) and (d) de- 
tected object after feature integration, and (e) 
final detection after sensor integration. 

effectiveness of the computed image features and 
the better understanding of each feature's validity 
with respect to contextual parameters that the use 
of object models provides. The results presented 
here were obtained on images from the Fort Carson 
Colorado dataset and the Comanche FLIR dataset. 
The results are compared to results obtained by us- 
ing some of the existing pattern recognition tech- 
niques. It is seen that considerable improvement is 
obtained through the use of the methodology pre- 
sented in this chapter. This methodology can be 
extended to multiple sensors if the input data is 
registered. An example of multisensor detection 
is presented which shows the efficacy of the pro- 
posed framework. The framework allows for the 
use of maximal information, thus the performance 
would improve as more discriminatory information 
is added through extra classifiers. 
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Abstract 

In a decentralized tracking system, sensor tracks 
are fused into central tracks, which will benefit from 
all the advantages of the sensor tracks. The 
performance of the system could be improved if 
information from the central node is fed back to the 
sensor nodes. However, the problem of cross- 
correlation between the sensor tracks arises and must 
be handled. 

In this paper, three different track fusion 
techniques, for sensor level and central level fusion, 
are investigated. The methods to handle the cross- 
correlations are; calculating decorrelated state 
estimates, using Covariance Intersection (CI) and 
enlarging the covariance matrix to compensate for 
cross-correlation. The fusion algorithms have been 
tested in a fighter aircraft application, consisting of 
one radar sensor and one angle-only measuring 
Infrared Search and Track (IRST) sensor with local 
Kaiman Filters in a hierarchical tracking system with 
feedback. 

The conclusion of this paper is that, in order to get 
a functioning decentralized tracking system with 
feedback, the cross-correlation has to be taken into 
account. The decorrelated state estimate method and 
the Covariance Intersection method manages to do 
this with about the same performance, whereas the 
third method fails to handle the cross-correlation. 

Also, the effect of different measurement and 
feedback rates are investigated. 

Keywords: Track fusion, decentralized tracking, 
hierarchical tracking system, track feedback, 
decorrelation, Covariance Intersection 

1. Introduction 

In air combat, information advantage over the 
opponent is vital for the success of the operation. For 
that reason, modern fighter aircraft have extensive 
sensor suites to track other objects. The multitude of 
sensors makes it impossible for the pilot to use each 
individual sensor efficiently without some sort of data 
processing, i.e. sensor data fusion, and a sensor 
manager [1]. Since system modularity and high 
computational performance are needed in a fighter 
aircraft application, a decentralized tracking approach 
is preferable. 

ISIF©1999 733 

In order to form a unified picture of the vicinity, 
all sensor information is fused into a central track. The 
fused track will then benefit from all advantages of 
the sensor estimates. 

The tracking performance of each individual 
sensor could be increased if information is shared 
between the sensors via track feedback. The problem 
that arises is that tracks from different sensors may be 
based on common data. If the resulting cross- 
correlations are not properly handled, the statistical 
properties of the tracks could be ruined. 

2. The system architecture 

A hierarchical decentralized tracking approach 
(see figure 1) is based on that data (measurements) are 
preprocessed in the sensor nodes, using e.g. Kaiman 
Filters. The sensor nodes will then provide a central 
node with the preprocessed data, which are invoked in 
a central fusion process. The fusion process in the 
central node includes all sensor data and therefore that 
node has the best possible conception of the vicinity. 

Sensor Processor 

Mespur iment^ 
Sensor Level 

Fusion 

Sensor 'roeeesor Central Processor 

 ► 
 ► 

Sensor Level 
Fusion 

 * • 
Central Fuiion 

— I"  > 

Ssnaor Processor 

Senaor  >» 
 > 

Sensor Level 
Fusion 

Figure 1. Architecture of the decentralized tracking 
system with feedback. 

If there is no track feedback to the sensor trackers, 
the only available data in the sensor nodes are the 
measurements that the sensor has made itself. This 
could be a problem if the data (measurement) rate is 
low and the sensor track accuracy thereby is poor. 

Therefore, it would be preferred that the sensor 
trackers also had information from the other sensor 
trackers. If so, the sensor track would not degenerate 
too much between measurement updates, even though 



measurements are made very seldom. This could 
make tracking in the sensor nodes easier and more 
reliable. 

In a hierarchical system, information sharing is 
accomplished by feeding the central tracks back to the 
sensor trackers. Of course, this means that there have 
to be fusion processes in the sensor nodes as well, 
invoking the fed back tracks into the sensor tracks. 
Also, since data are transferred in both directions the 
problem of using the same information several times 
has to be taken care of in the fusion algorithms in the 
central as well as the sensor nodes. However, it is 
possible to deal with this problem in a hierachical 
network. Investigations of other distributed 
architectures can be found in [2] and [3]. 

3. Fusion Algorithms 
To achieve the desired track accuracy and 

statistical properties of the track, a fusion algorithm 
has to be employed both in the sensor nodes and the 
central node of a decentralized tracking system with 
track feedback. 

Since data are distributed in the system, the 
problem of double counting information arises. If this 
problem is not properly handled, the statistical 
properties and the quality of the track could be ruined. 

Three different fusion algorithms, denoted Filter 
A, B and C, are described in the following sections. 
The filters can be used in any of the nodes in the 
system. A fusion node is shown in figure 2. The 
remote tracks to be fused are denoted (x;, P,) and the 
fused tracks, in the node where the fusion takes place, 
are denoted (xtor Ptat) ■ 

Remote Node 

Remote Node 

Remote Tracks 
• (Xi, Pi) 

."£    Local Fusion 
w, Node 

ion   t. 

Fused Tracks 
("tot' ptotL 

Remote Node 

Figure 2. A fusion node in the decentralized tracking 
system. 

3.1 Filter A 
The filter fuses the estimates in the fusion node 

with the estimates reported from other (remote) 
nodes. Since the estimates reported from one node at 
different times are created by partly the same data, 
they are highly correlated. To deal with this problem, 
the old information (i.e. the inverse of the predicted 
covariance matrix times the predicted state estimate) 
is subtracted from the reported new information [4]. 
In this way decorrelated state estimates are formed out 

of the remote tracks. The decorrelated tracks are then 
merged into fused tracks. The update equations are 

pt;Uk\k) = p;0\(k\k-i)+ Eq.l 

^pr\k\k)-p;\k\k-\) 

xtot(k\k) = Ptot{k\k) Eq.2 

,-i 
P~,(*|*-l)-*w,(*|*-l) + 

£ \pr\k\k)xß\k)- 

pr\k\k-i)xß\k-\) 

A system without feedback, using this fusion 
algorithm in the central node, is a decentralized 
Kaiman Filter, which can be derived from a 
centralized Kaiman Filter. It is optimal in the Kaiman 
sense if each sensor has independent measurement 
noise and the kinematic models are linear. 

The term Xj(k\k-1) has to be predicted in the 
fusion node. It is important to use the same kinematic 
model in both the fusion node and in the remote 
nodes. Otherwise, it may lead to numerical problems 
in the filter. Another issue is that different remote 
trackers could use different kinematic models and 
therefore cause problems in the fusion node. 

3.2 Filter B 
This fusion filter is a simplified version of Filter 

A. It is based on the assumption that the tracks to be 
fused are independent stochastic variables. This is an 
unrealistic assumption in a system with feedback. 
However, if no track feedback is used and the tracks 
origin from totally different information sources or 
are sufficiently separated in time, the assumption of 
independent tracks is a realistic approximation. The 
expressions for updating the covariance matrix and 
state vector are 

P">\k) = ^P;\k\k) Eq.3 

xto,(k\k) = Ptot(k\k) ■ ^Pr\k\k) ■ xi(k\k)    Eq. 

To compensate for correlations between object 
tracks and thus maintain consistency, the resulting 
covariance matrix, Ptot, could be enlarged by 
multiplying it by a constant. In the simulations 
presented in this paper, the multiplier 1.3 is used. 
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33 Filter C 

This fusion filter is, unlike the other filters, not 
dependent on whether the tracks to be fused are 
independent or not. The resulting covariance matrix is 
a convex combination of the information matrices of 
the tracks to be fused. The convex combination 
guarantees that the true covariance matrix, regardless 
of what the correlation is, lies within the resulting 
covariance matrix. In existing literature, this method 
of fusing sensor tracks are referred to as Covariance 
Intersection (CI) [5]. 

The expressions for updating the covariance 
matrix and state vector are as follows: 

p,otm) = Y^pr'wk) 

I», = i 

xtot{k\k) = Ptot{k\k) ■ 

Eq.5 

Eq.6 

Eq. 7 

^■p^mv-xiikik) 
i 

The weights, to,-, are chosen by minimizing some 
norm of the resulting covariance matrix, Ptot. 
Depending on the norm that is chosen to be 
minimized, this could be more or less time consuming 
for the system. Consequently, it is very important to 
pick a norm that yields sufficient tracking quality, 
while not being too time consuming to minimize. Two 
examples of norms that could be used are the trace or 
determinant of Ptot. In the simulations in this paper, 
the determinant norm is used. For a more thorough 
investigation of Covariance Intersection, see [5]. 

4. Evaluation 
In this section, prerequisites of the simulations are 

formulated, parameters of the implemented system 
are described and some Measures of Performance 
(MOP) are stated. 

4.1 Prerequisites 

The simulations were made in MatLab5 on a 166 
MHz Pentium PC. In the simulation model, no 
association was conducted. All associations were 
assumed to be correct. 

In the simulations, one radar and one IRST sensor 
were modeled. Plots and data are the result of 20 runs 
Monte Carlo simulations. 

4.2 Sensor Tracking Filters 

The radar node was modeled by an Extended 
Kaiman Filter (EKF) in Cartesian Coordinates. 
Standard deviations for the measurement model were; 

<xd = 20 m (distance), ab = 10 mrad (bearing) and ae 

= 30 mrad (elevation). The process noise in the filter 
had a standard deviation of 30 m/s2 in all directions of 
a Cartesian Coordinate system. The process noise 
models object accelerations up to 3g. The prediction 
interval was 1/3 s and the measurement interval was 5 
s if nothing else is stated. 

The IRST node was modeled by an EKF in 
Modified Spherical Coordinates (MSC) [6]. Standard 
deviations for the measurement model were; o^ = 0.5 
mrad (bearing) and ae = 0.5 mrad (elevation). The 
process noise in the filter had a standard deviation of 
50 m/s in all directions of a Cartesian Coordinate 
system. The prediction interval was 1/9 s and the 
measurement interval was 2 s. 

Both the radar and IRST tracking Kaiman Filters 
are supported by track feedback every 2 s in the 
simulations with feedback, where nothing else is 
stated. 

As a comparison, a central Kaiman Filter was 
modeled. All measurements were reported directly to 
it and invoked into the filter. The filter was an EKF in 
Cartesian Coordinates with the same parameters as 
the radar filter. 

4.3 Simulation Scenario 

In all simulations, the scenario in figure 3 was 
used. The own aircraft starts at the bottom of the 
figure and flies more or less to the north. It is heading 
for the enemy aircraft, which is flying westward. Both 
aircraft trajectories start in the point highlighted by a 
+. The duration of the scenario is 300 s.The aircraft in 
the scenario are maneuvering between 0 and 3g which 
makes their maneuvering quite realistic. In figure 4, 
the accelerations of the target and the own aircraft is 
plotted to give a survey of the maneuvers in the 
scenario. 

Figure 3. Scenario used in the evaluation of the 
fusion algorithms. The own aircraft flies 
northward and the enemy flies westward. 
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Figure 4. Accelerations of the target (above) and the 
own aircraft (below) in the scenario. 

4.4 Measures of Performance 

In this paper, two Measures of Performance 
(MOP) are considered; track deviation and track 
uncertainty consistency. Both the deviation in 
position and velocity are used. The deviations are 
defined as the differences between the estimated and 
the true values; 

5, = 

Av; = 

Eq.8 

Eq.9 

A way to decide if a tracking algorithm is 
performing well, is to check if the error of the 
estimated state vector is statistically corresponding to 
the covariance matrix. Consistency may be checked 
using standard hypothesis testing techniques. The 
measure used to test consistency is the %2(6) 
distributed variable, e(k), the normalized state error 
squared; 

x(k\k) = x{k)-x{k\k) 

t{k) = x (k\k)P   (k\k)x(k\k) 

Eq.10 

Eq. 11 

The statistical 95% interval that e(k) should stay 
within are further on presented as two lines in the 
consistency plots. For a thorough investigation on 
consistency and the theory behind it, see [7]. 

5. Results 

In this section, simulation results are presented 
and comparisons between the different algorithms are 
made. The central fusion is performed in MSC. 
However, it is shown in 5.2 that Cartesian fusion is 
possible. 

In all simulations in this paper, the measurement 
frequencies are 0.2 Hz for the RR and 0.5 Hz for the 

IRST. The feedback rate is 0.5 Hz if no other value is 
stated. 

It is important to make sure that the quality of the 
central track is not degraded as a result of track 
feedback to the sensor tracking filters. Consequently, 
an exploration of the effects of track feedback on the 
central track has to be made. Different parameter 
settings such as measurement interval and feedback 
interval must be studied. 

5.1 Comparison Simulations 

In figure 5, the resulting track quality of a single 
radar with measurement frequency 0.2 Hz is 
presented. 

When the single radar is used, the consistency is 
not very good and the position and velocity deviations 
are far too large to be acceptable. 

iWAAFu,!^.." 

Figure 5. Consistency and track deviations for a 
single radar, using no multisensor 
features. 

In figure 6, the performance of a central Extended 
Kaiman Filter (EKF) that is fusing both the radar and 
the IRST measurements is shown. These simulations 
are used as a comparison to the filter configurations 
tested in the following sections. 

It is interesting to observe that the covariances are 
overestimated in the central EKF (the consistency 
measure e lies below the statistical interval). This 
should be kept in mind when studying the results of 
Filter A, B and C further on in the paper. It can also be 
seen that the errors in the position and velocity 
estimates are considerably lower than for the single 
radar case. The periods with lower tracking quality (in 
the periods 50-90 s and 160-180 s) are caused by the 
fact that the target is maneuvering (compare to figure 
4) and it is consequently more difficult to track the 
target during these periods. 
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Figure 6. Consistency and track deviations for a 
centralized EKF. 

As another comparison, the performance of a 
decentralized system without feedback, using Filter A 
in the central node, is shown in figure 7. It shows that 
this filter has about the same kinematic deviations as 
the central Kaiman Filter. However, the consistency is 
not quite as good as for the central Kaiman Filter. 

\^M^%^ 
Position deviation 

'lH4^Mc^^jw*fa^ 

Elapsed time (s] 

Figure 7. Consistency and track deviations for a 
decentralized tracking system using Filter 
A without feedback. 

5.2 Filter A/Filter A with Feedback 

In figure 8, the results of simulations of a system 
with Filter A in both the sensor nodes and the central 
node are shown. The MOP:s show that the filter is 
consistent and has position and velocity deviations 
comparable to the deviations of the decentralized 
filter without feedback in figure 7. The consistency is 
slightly better in the beginning of the scenario than for 
the filter without feedback. 

Compared to the central Kaiman Filter in figure 6, 
a feedback system using Filter A results in the same 
track deviations. The difference is that the consistency 

is not quite as good, especially when the target is 
maneuvering. 

The conclusion is that Filter A gives a fully 
functioning decentralized system with feedback. 

Consistency 

U^KiaaJ* 
Position deviation 

I 100 

Figure 8. Results of simulations with Filter A in both 
the sensor nodes and the central node. 

In figure 9, the performance of the decentralized 
tracking system when Cartesian fusion is used in the 
central node is exhibited. This will serve as the 
example that the tracking system works in both MSC 
and Cartesian Coordinates. The result of the Cartesian 
fusion does not significantly differ from the MSC 
fusion. Therefore, further results in this paper will be 
based on simulations where MSC is used in the 
central fusion. 
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Figure 9. Results of simulations with Filter A in both 
the sensor nodes and the central node and 
Cartesian fusion in the central node. 

5.3 Filter B/Filter B with Feedback 

In figure 10, the results of simulations of a system 
with Filter B in both the sensor nodes and the central 
node are shown. In the consistency plot, it can be seen 
that the filters do not manage to handle the cross- 
correlation problem and maintain the consistency. 



The deviations are not disastrous, but a filter with 
these properties is totally malfunctioning due to the 
underestimation of the uncertainty. 

Figure 10. Results of simulations with Filter B in both 
the sensor nodes and the central node. 

5.4 Filter C/Filter C with Feedback 

In figure 11, the results of simulations of a system 
with Filter C in both the sensor nodes and the central 
node are shown. The filter handles the cross- 
correlation problem and is fully functional. It 
manages to maintain the same level of consistency as 
Filter A in figure 8. The track deviations are also 
comparable. 

The system has slightly better consistency than the 
system without feedback in figure 7, but the track 
deviations are about the same. 

The conclusion is that Filter C also gives a fully 
functioning decentralized system with feedback with 
performance similar to Filter A. 
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Figure 11. Result of simulations with Filter C in both 
the sensor nodes and the central node. 

5.5 Other System Configurations with Feedback 

Other combinations of the fusion filters than those 
that are shown in 5.2 to 5.4 have also been tested. The 
conclusion is that all combinations of Filter A and 
Filter C result in systems with performance similar to 
the systems in 5.2 and 5.4. All combinations 
involving Filter B fails to produce consistent track 
estimates in accordance with the system in 5.3. 

5.6 The Effect of Different Measurement Rates 

In all simulations in 5.2 to 5.4, the radar measures 
with 0.2 Hz and the IRST measures with 0.5 Hz. The 
results of simulations of the system with Filter A in 
both the sensor nodes and central node with different 
measurement frequencies are shown in figure 12 and 
figure 13. 

In figure 12, the results of simulations with the 
radar measuring with 0.1 Hz and the IRST measuring 
with 1 Hz are shown. Compared to figure 8, we can 
see that the tracking quality is worse due to the lower 
radar measurement frequency. The position deviation 
increases considerably in the intervals between the 
radar measurements. The quality is much worse when 
the target is maneuvering and the angle-only 
measuring IRST has problems with estimating the 
distance to the target. However, the consistency is not 
ruined, so the decreased radar measurement rate does 
not ruin the functionality of the decentralized tracking 
system. 

Position deviation 
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Figure 12. Consistency and track deviations when 
Filter A is used and the measurement 
intervals are 10 s for radar and 1 s for 
IRST. 

In figure 13, the results of simulations with both 
sensors measuring with 1 Hz are presented. Compared 
to figure 8 and figure 12, we can see that the tracking 
quality is much better. Since the radar is measuring 
the distance frequently, the position deviation does 
not increase that much between the measurements. 
There are no problems tracking the target when it is 



maneuvering and the consistency is very good at 
times. 
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Figure 13. Consistency and track deviations when 
Filter A is used and the measurement 
intervals are 1 sfor radar and 1 sfor IRST. 

5.7 The Effect of Different Track Feedback Rates 

In all simulations in 5.2 to 5.4, the track feedback 
rate for both radar and IRST is 0.5 Hz. The results of 
simulations of the system with Filter A in both the 
sensor nodes and central node with feedback 
frequency 0.2 Hz are shown in figure 14. 

The performance shown in figure 14 should be 
compared to the results in figure 8. There are no 
noticeable effect on the central track of changing the 
feedback interval from 0.5 Hz to 0.2 Hz. The reason 
for this is that the information in the central node is 
not decreased as a result of a decreased feedback 
frequency. This is also affirmed by the fact that a 
system without feedback has about the same 
performance, see figure 7. 
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Figure 14. Consistency and track deviations when 
Filter A is used and the feedback intervals 
are 5 sfor both radar and IRST. 

5.8 Benefits of Feedback in the Sensor Tracking Filters 

Direct improvements of track accuracy in the 
central node are not to be expected as a result of track 
feedback, since the information in the system is not 
increased, rather distributed. The real improvements 
can be found in the sensor nodes, which will have 
access to more information as a result of the track 
feedback. In figure 15, the track quality achieved in 
the radar node with track feedback is exhibited. 

There are almost no differences between the track 
quality in figure 15 and the track quality of the central 
fusion in figure 8. The reason is that when track 
feedback is used, all nodes in the tracking system have 
access to the same amount of information. Something 
that effects the sensor track quality is the feedback 
rate. If the feedback rate is decreased, so is the sensor 
track quality due to that the sensor node has access to 
less information. 

W^^^^h^^ 
Position deviation 

400 

300 

200 

I             !             ■              !             ! 

u - 
100 ^vwl^ ^wMm,^^^ 

150 200 
Velocity deviation 

Elapsed time [s] 

Figure 15. Consistency and track deviations in the 
radar node when track feedback is used. 

In figure 5, the track quality for a single radar 
without feedback is shown. Compared to when track 
feedback is used (see figure 15), the result is 
disastrous concerning consistency and track quality. 
The maneuvering target is extremely hard to track if 
one radar without track feedback is used. 

This shows that the benefit of track feedback is 
considerable in the sensor tracking nodes. Since the 
feedback results in sensor tracks of higher quality, the 
ability to associate the right measurement to the right 
track is improved. Thereby, the total tracking 
performance of the system increases. 

This section investigates the improved tracking 
quality in the radar, but in the IRST sensor there may 
be even more enhancements. The IRST sensor does 
not measure any distance to the objects and therefore 
has poor track accuracy in the distance direction. By 
using feedback, the IRST gets the same range 
conception as the rest of the system and thus the 
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association of new measurements can be greatly 
simplified. 

6. Conclusions 
The main conclusion in this paper is that, in a 

decentralized tracking system with feedback, the 
cross-correlation between the tracks must be 
considered. Any combination of Filter A and C 
(estimate decorrelation and Covariance Intersection) 
proves to solve this problem. However, Filter B does 
not handle the cross-correlation and can therefore not 
be used in a system with feedback. The resulting track 
quality and uncertainty consistency for Filter A and C 
are approximately the same. Also, the results are 
about the same in Cartesian Coordinates and MSC. 

The performance of a decentralized system with 
feedback is comparable to a centralized system, with 
respect to the quality of the fused tracks. The main 
benefit from feedback is improved tracking quality in 
the sensors, which for instance leads to enhanced 
measurement-to-track association performance. This 
is especially apparent when the measurement 
frequencies are low. 

Measurement rates can be altered in the tracking 
system without ruining the consistency. Of course, the 
track quality is degraded if the measurement rate is 
decreased as a result of the decline in information in 
the system, but the system is still functioning. 

Feedback rates can be altered in the tracking 
system without ruining the functionality, considering 
consistency and track quality. The only effect is that 
the sensor tracks have access to less information and 
thus have lower quality. 
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for tracking an occulted ground-target in clutter 
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Abstract - An improved version of the In- 
tegrated Probabilistic Data Association Filter 
(IPDAF) and the IJPDAF based on a new con- 
cept of probability of target perceivability has 
been recently introduced for tracking one or sev- 
eral targets by a single sensor. IPDAF and 
IJPDAF algorithms allow to perform online 
track initiation, maintenance, confirmation and 
termination as well using an appropriate target 
perceivability probability decision logic. This pa- 
per deals with the development of a DSN (Dis- 
tributed Sensor Networks) version of the new 
IPDAF algorithm. Simulation results of this 
new DSN/IPDAF algorithm for tracking a sin- 
gle occasionally occulted ground-target in a clut- 
tered urban environment is presented for a sim- 
ple 2D scenario. 

Keywords: Distributed Estimation, Multisensor Tar- 
get Tracking, IPDAF, DSN, perceivability. 

1    Introduction 

A distributed sensor network (DSN) is a set of 
sensors connected by a communication network 
to a set of local processing nodes. These nodes 
process measurements and communicate among 
themselves in order to track the target. An impor- 
tant problem in distributed tracking is how to de- 
cide whether local tracks delivered at the local pro- 
cessing level represent the same target. We assume 
here that this track-to-track association problem 
has been solved (see [6] for discussion). In previ- 
ous works done by K.C. Chang and al. during last 
decade [9, 7, 8, 10, 11, 21], the DSN sensor target 
tracking problem has been solved on the basis of 
classical PDAF and/or JPDAF algorithms (also 
coupled with Interacting Multiple Model (IMM) 
approach for maneuvering target tracking). It has 
already been shown that performances obtained 

with distributed estimation algorithms are very 
close to the optimal performance obtained by a 
centralized estimation algorithm. Moreover it is 
well known that DSN has many advantages over 
a centralized system in terms of reliability, ex- 
tended coverage, better use of information and 
so forth. These Distributed PDAF/JPDAF al- 
gorithms have however been developed with an 
implicit strong assumption that the targets are 
always perceivable by the sensors. A target is 
said to be perceivable if it is present in the en- 
vironment and not hidden/occulted in the field of 
view of the sensor. Of course in many real sit- 
uations and like the one described in this paper, 
this is not always the case. To remove this to- 
tal perceivability assumption, new versions of the 
Integrated Probabilistic Data Association Filter 
(IPDAF) and IJPDAF for a single sensor/tracker 
have been developed recently in [14, 13] which in- 
cludes a more rigourous concept of target perceiv- 
ability [15, 18] into its formalism than privious 
works of Colegrove [12] and Musicki [22]. Her- 
after we extent this new IPDAF for DNS in order 
to extend their application fields to more realistic 
situations. 

2    Problem formulation 

We consider an s-node distributed sensor network 
as in [8] where each node processes the local mea- 
surements from its own sensor based on a local 
IPDAF and sends the local estimates to the fu- 
sion processor periodically. The fusion processor 
then sends back the processed results after each 
communication time. The dynamic of the target 
in track is modeled as 

x(fc + 1) = F(fc)x(fc) + v(fc) (1) 

where x(k) is the state vector and v(fc) is the pro- 
cess noise assumed to be zero-mean and Gaussian 
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with a known covariance matrix Q(fc). The target 
detection probability P\ for each sensor i is as- 
sumed to be known. The equation measurement 
for the target relative to sensor i is 

zi(k) = Hi(k)x{k)+wi(k) (2) 

where H*(fc) is a known observation matrix and 
w^fc) is the corresponding measurement noise 
assumed to be zero-mean, Gaussian with a given 
covariance R*(fc). Furthermore noise sequences 
{v(A;)} and {w^A;)} (fc = 1,2,...) are assumed 
to be mutually independent and independent of 
initial state vector x(0). 

The classical gating technique [4] with a given 
probability P* (i = 1,... ,s) is used for the se- 
lection of measurements. For each sensor i = 
1,... , s, the set of the mk validated measurement 
at time k and the cumulative set of measurements 
are denoted 

Zi{k) = {zi
ji{k)}f=1    and   V* = {V{l))U 

The distributed estimation problem we have 
to solve is the reconstruction of the global 
conditional pdf p(x{k)\Z1'k,... ,Z*'k) from the 
local ones p(x.(k)\Z1>k)l... ,p{x{k)\Zs>k). Un- 
der linear models and Gaussian noise assump- 
tions, this problem reduces to evaluate x(k\k) = 
E[x(k)\Z1'k,... ,Zs'k] from local estimates with 
its covariance P(fc|A;). 

3    The Local IPDAF 

At a given node associated with a sensor s, the 
local tracking is assumed to be done with the new 
IPDAF. This tracking filter is an extension of the 
classical PDAF which integrates the concept of 
target perceivability. 

At any time k, the target state of perceivability 
with respect to a given sensor s and its comple- 
ment is represented by the exhaustive and exclu- 
sive events 

Of    =    {target is perceivable from s} 

Öf.    =    {target is unperceivable from s} 

When there are ms
k validated measurements at 

time k, the intersection of these events with the 
classical data association events involved in the 
PDAF formalism [4] 

0*(fc)    =    {zja (k) comes from target} 

0*(fc)    =    {none of zs
js (k) comes from target} 

defines a new set of integrated association events 

£iit(k) 4 ös
knei(k)     js = i,...,m°k 

£$(k) 4 öjnes(Ä) 
£S(k) 4 OjEnöS(fc) 
£l(k) == ojn^(fc)      js = l,...,ml 

Since any target measurement cannot 
arise without target perceivability, events 
£ij (k),js = 1,... ,mk are impossible and we 
have P{£-i(k)\.} = P{9\.} = 0. Only events 
£§(k), £$(k) and qs(k) (js = l,...,m'k) may 
have a non null probability to occur. The devel- 
opment of a new PDAF (called IPDAF) based 
on these integrated association events yields the 
following updating equations (see [14, 15] for 
complete derivation) which are valid for m| > 0: 

xs(k\k) =   J2 ßl(k)*i(k\k) (3) 
js=0,0 

j*=o,o 

mk 

- zs(k\k)its(k\k)' + J2 ßt (fc)*l WQK W 
3. =5,0 

(4) 

where the conditional estimates and their covari- 
ances are 

xs
G(k\k)=xs(k\k-l) (5) 

xj5(fc|*) = xs{k\k - 1) (6) 

x£ (k\k) = xs(k\k - 1) + Ks(k)zs
js (k) (7) 

P?(k\k)=Ps(k\k-l) (8) 

PS(*|fc) = [I + qs
QK

s(k)Hs(k)]Ps(k\k - 1) (9) 

PI (k\k) = [I - Ks(k)Us(k)]Ps(k\k - 1) (10) 

with the following computations [14, 15, 16] 

% s A 
i-p>dp; 

Ps
9=P{xlz,<i) 

Ps
gg = P{xlz,+2<i) 

Ss(fc) = Us(k)Ps(k\k - l)Hs(fe) + Rs(fe) 

KS(A;) = Ps(fc|A: - lJH'WIS^A)]-1 

zs(k\k-l) = Hs(k)xs(k\k-l) 
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zl(k) = z°jt(k)-z°(k\k-l) 
m'h 

and 

i.=i 

The integrated a posteriori data association prob- 
abilities ßh(k) ± P{eJM\Zs(k),m°k,Z

k-1>°} 
(jg — 0,0,... , ms

k) taking into account the target 
perceivability are given by 

• when mk = 0, 

/%•(*)    =    1-P$_1)0 

/?o(*)    =   -ffc|fc-i,o 

• when m\ > 0, 

#.(*)    =    ?ei.(*)^5-i.ms 

(11) 

(12) 

(13) 

(14) 

/W     =     ?6g(*)(l-^-l.mS)(15) 

where cs is a normalization constant and 

ei.(*) = ^/K(*);0;S'(AO] 
9 

°0W   -    T7S DSD«        S* 
vk      rdrg 

m) = Si pL föp9+a - w?)«] 

Vjf is the volume of the measurement validation 
gate for sensor s [4, 5] and £|, ßp(•) are defined as 

« A     M™fc) 
?fc    MFK -1) 

fj,p(.) = pmf of number of false alarms in Vk 

If a Poisson model with clutter density A" for 
HF is assumed, the predicted and updated con- 
ditional and unconditional target perceivability 
probabilities (P^ A P{0°k\Z

k-^} and P$ A 
P{0%|Z*-S}) can be expressed as [14, 15, 16] 

o' _ A ~ efc)Pfcjfc-i /,fiN 
^iblfc-l.mj -    I _ ,s pO> ViD; 

1      efci/fe|fc-l 

with 

,s     A f PjP/ m£ = 0 
(17) 

■Pfclifc-i = ''"li-Pfc-ilfc-i + ""liCl - pk-i\k-i)   (I8) 

p0.      (1 ~ «)*g-i 
■fir —  Jfe|k 1 " Ä-1 

(19) 

Ps p* mj = 0 
*      [PiP^-^ZZUej,)   m|#0    [   > 

Hence Pj^_x and P^ can be computed on-line 
recursively as soon as the design parameters 
Tfi = ^{OJIO^J, n>21 4 P^Ö^J and PfJJ 
have been set. In practice, the clutter density Xs 

is usually unknown. To implement the IPDAF, 
we have to replace As by its estimation based on 
the Bayesian (conditional mean) estimation, the 
maximum likelihood method or the least squares 
method recently developed in [15,19]. Theoretical 
investigations on design of IPDAF trackers for 
perceivability probability enhancement can be 
found in [17]. 

Finally with some elementary algebra Ps(fc|fc) 
given by (4) can take the following forms depend- 
ing on mk 

• when m% = 0, Ps(k\k) - 

[I + Ä-i,oKs(A0Hs(A;)]Ps Wfc - 1) 

when m\ > 0, Ps(k\k) = 

ß?(k)Ps(k\k-l) 

+ ß^(k)[I + qs
0K

s(k)W(k)}P°(k\k - 1) 

+ (1 - /%'(*) - ßs
0(k))Pc'°(k\k) + Ps(Ai) 

with 

Pc-»(jfc|jb) = [I - Ks(k)Hs(k)]Ps(k\k - 1) 
mk 

p*(k) = K°(k)[J2 ßj.(k)zi(k)ii(ky 

-zs(k)zs(k)'}Ks(k)' 

The local state prediction is done according to 
classical prediction equations, i.e. 

xs(fc + l|A;) = F(fc)xs(fc|fc) 
Ps(fc + l|jfe) = F(k)Ps(k\k)F'(k) + Q(Jfe) 
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4    The Distributed IPDAF 

Given the local statistics delivered by s local 
IPDAF of a s-node sensor network1, we are now 
looking for the solution of the distributed estima- 
tion problem in order to retrieve the optimal global 
target state estimate and its covariance which are 
given by 2 

x(k\k) = E[x(k)\Z1'k,...,Zs'k] 
ml m'k 

= E ••• E ftij.(*)*«.;.(*l*) (21) 
ii=o,o     js=o,o 

with 

ßjuja(k) = P(^(k),... ^(k)^,... ,Zs'k) 

xhJ.(k\k) = E[x(k)\Z1'k,Sj1(k),...,Z'*,Sl{k)} 

and 

m\       m'k 

P(*l*)=   E    E ßh,jAk)?iujMk) 
ji=o,oj3=oß 

ml        m% 

+ E E ßh^faui.mzhjAW 
ji=ö,Oia=o,o 

- x(k\k)x(k\k)'] 

These previous equations are always valid 
whatever the values of m\,... ,ms

k are. If there 
is no validated measurement for a given node at 
a given time, the corresponding summation must 
be only computed from Ö up to 0. 

If we assume the measurement errors from sen- 
sors independent, the joint conditional estimates 
with their covariances can be obtained from the 
optimal distributed fusion equations of Chong 
[9, 8, 2, 6]. 

*i,J.(*l*) = P*J.(*I*)[P(*I* - l)_1x(fc|fc - 1) 

+ J2Pi
ji(k\k)-%(k\k) 

i=i 
s 

-^p^ifc-ir^Mfc-i)] 
i=l 

(22) 

*s represents now the total number of sensors in the 
DSN instead of typical sensor index as in previous section 

2due to space limitation, notation j\, js must actually be 
read ji,... ,js and sometimes Zl'k,Zs<k asZ1'*,... ,Zs'k 

Pi„i._1(*l*) =P(*I* -1)"1 + EP
ä(*I*)

_1 

i=l 

(23) 

When all nodes communicate every scan the 
global and local prior estimates are the same (i.e. 
x'(Jfc|A - 1) = x(*|Jfe - 1) and P^fc - 1) = 
P(A;|fc-l)) and then eqs. (22) and (23) will reduce 
to 

i=\ 

1-, 
(a-l)P(Jfe|Ä-l)_1x(Jb|Ä-l) 

(24) 

Pi1J-r
1(*i*) = Epi<(*i*)~1] 

- {s - 1)P(A|* - 1)_1 

(25) 

The derivation of ßjltj,(k) is quite complicated 
and will not be detailed here. We refer the reader 
to [8] for a complete derivation. Assuming the 
independence between sensor measurements and 
between events 8^ (k),... , ££ (k) given the target 
state, then the final expression for ß3l js (k) is 

ßh,i.W = rK^ (*),••■ ,sL(k))f[$t(
k) 

i=l 

(26) 

where c is a normalization constant such that 

ml mi 

E ••• E /w*) = i 
31=0,0        j,=0,0 

and        where        the        correlation        factor 
7(£ji (*),•••.£j.(*0) is given by 

nP(x(fc)|4(fc),Z^) 
fpixik)^-1,^"-1)^ dx 

nP(x(A;)|Zi.fc-1) 
i=l 

Using the gaussian distribution  approximation 
and moment matching method, it can be shown 
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that "f{S]x (k),... , £JB (k)) can be approximated by 

,\PhJ.(k\kMUi\Pi(k\k-l)\    iDu u 

|P(*I*-I)IIE=IIPJ,(*I*)I 

with 

Djld,±[J2^m'pUk\kf%(k\k) 

- x'(*|Jb - l)'P*(Jfe|Ä! - l)~1xi(A;|*r - 1)] 

+ x(k\k - l)'P(A;|fc - l)-1x(A;|fc - 1) 

— xji,j.(*l*) *JI,j.\k\k)    xji,i,("I*) 

When   all   nodes   communicate   every   scan, 
7(£}1 (k),... , £s

u (k)) will reduce to 

IS-1 \phjM
kw(.k\k-l)\s   -ID,,,. 

with 

Djuu = [^^(fclÄj'P^AI*)-1*^*!*) 
i=l 

- (s - l)x(k\k - l)'P(k\k - l)_1x(fc|fc - 1) 
— xji,i* \k\k) Pji,j, {k\k)    Xj1 tj3 (k\k) 

where Xjj.^Cfclfc) and Pj1,jä
_1(fc|fc) are obtained 

from (24) and (25) respectively. 

5    Simulation results 

A two-dimensional single ground-target tracking 
problem is considered here. The target is assumed 
to move on a road in a town with (nearly) constant 
velocity of 36 km/h during 110 s from crossroad A 
towards the crossroad C as on figure 1. Only three 
buildings Bl, B2 and B3 have been simulated 
in our scenario. The target dynamic model (i.e. 
piecewise constant white acceleration model) with 
discretization over time interval of length T = Is 
is [5] 

x(k + 1) = Fx(A) + Gv(ife) 

where x(k) = [x x y y]' is the target state vector 
at time k and F and G are given by 

F = 

1 T 0    0] 
0 1 0    0 
0 0 1   T 
0 0 0    1 

G = 

T2/2 0 
T 0 
0 r2/2 
0 T 

The process noise v(fc) representing the accelera- 
tion during one period is a zero-mean Gaussian 
white noise having covariance Q„ = diag(qv,qv) 
with qv = (0.001m/s2)2. The magnitude of 
the process noise has been chosen very low 
in order to force the target to move on the 
segment [A;C] (middle of the road). The 
true initial target state is assumed to be 
x(0) = [-800 m 10 m/s - 450 m 0 m/s]'. 

Figure 1: Urban environment scenario 

We have considered a 2-nodes DSN with full 
communication at every scan. The sensor 51 is 
located at position (-850 m, -950 m) and 52 at 
(-100 m, —50 m). It is assumed that only position 
measurements are available, i.e. 

zi(fc) = Hx(fc) + wi(fc) 1,2 

with 

H = 
10   0   0 
0   0   10 

Figure 2 shows the line of sight between sensors 
and the true target position for a given realization 
of the process noise. On average for our scenario, 
the target is occulted by building Bl for sensor 
51 during period [25s; 72s] and by Bl for sensor 
52 during period [50s; 92s]. Thus during period 
[50s; 72s] the target is occulted for both sensors. 

Both sensors have same measurement precision. 
The standard deviation of measurement errors are 
5 meters on x and y coordinates. The detection 
probabilities for both sensors are equal to 0.7 
and the false alarm rates are both equal to 
A = 0.0003F,4/m-2. The initial state estimate 
for both sensors is estimated using the so-called 
two-point differencing technique (TPD) [5, 6] (see 
also [20] for recent advances). 
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Figure 2: Perceivability scenario (top view) 

At each scan, each node will process its own set 
of sensor measurements first using local IPDAF, 
then will send its local processed results to the 
fusion node. After receiving the information 
from local nodes, the fusion node will use the 
the distributed fusion algorithm presented at the 
end of section 4 to construct the global estimate 
and will send the results back to each local node 
at every sampling time. Both local IPDAF use 
the same set of design parameters (Pg = 0.99, 
im = 0.988, 7T2i = 0.05 and P°{0 = 0.5) and the 
true value A for clutter density. 

Simulations were carried out with 50 Monte 
Carlo runs. The results of successful runs for 
decentralized trackers (without fusion) are plotted 
on figures 3 and 4. A successful run is defined 
when the estimated target position is within 30 
m of the true target position for the last three 
scans [7]. Figures 5 and 6 show the averaged 
performances of the successful runs for the decen- 
tralized case. We can observe from figure 5 and 
figure 6 that the target perceivability probabili- 
ties estimated by the local IPDAF fit well their 
true values even when the perceivability mode 
is switching. Obviously in nominal mode (for 
k > 20s), the rms position errors increase with 
time when the target becomes unperceivable by 
the sensors. The maximum of rms errors are ob- 
tained for k around 72 s and 92 s. These instants 
correspond to the end of the unperceivability 
period for each sensor. For the decentralized case, 
out of 50 runs, sensor 1 alone and sensor 2 alone 
only track the occulted target successfully in 29 
and 41 runs, respectively. 

Figures 7 and 8 show the results obtained with 
the distributed IPDAF (distributed communica- 

tion scheme at every scan). According to the re- 
sults plotted on the figures, the distributed IPDAF 
performs better than the single sensor configura- 
tions. In nominal mode, the maximum rms po- 
sition error is now obtained for k = 72 s which 
corresponds to the end of the period where the 
target is unperceivable by both sensors simultane- 
ously which makes sense with the theory. In such 
case, the DIPDAF sucessfully tracks the target in 
48 out of 50 runs. Note also that the quality of 
estimation using both sensors in terms of mean 
square error and in terms of target perceivabil- 
ity estimation is significantly better than with the 
decentralized scheme. In our simulations the aver- 
aged number of false alarms per gate was around 
0.5. The simulations shows the usefulness and the 
improvement of DIPDAF with respect to decen- 
tralized schemes for tracking an occulted ground- 
target in an urban cluttered environment. 
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Figure 3:   Estimated perceivability probabilities 
(decentralized communication case) 
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Figure 4: R.M.S. errors for successful runs (decen- 
tralized communication case) 
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Figure 5:   Averaged perceivability probabilities 
(decentralized communication case) 

Figure 7:   Averaged perceivability probabilities 
(distributed communication case) 
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Figure 6:  Averaged R.M.S. errors for successful 
runs (decentralized communication case) 

Figure 8:  Averaged R.M.S. errors for successful 
runs (distributed communication case) 

6    Conclusion 

From a new formulation of IPDAF based on a 
recent method for target perceivability probabil- 
ity estimation and by following the theoretical ap- 
proach of Chang and al. [8, 11, 21], a distributed 
version of IPDAF (called DIPDAF) has been pro- 
posed here (with implicit assumption of lossless 
communication of sufficient statistics). This algo- 
rithm takes into account the information fusion in 
a distributed sensor network. This new DIPDAF 
is fully coherent and intuitively appealing with the 
Distributed PDAF formulation [2] as soon as the 
target perceivability probabilities for each sensor 
becomes unitary. This filter has been successfully 
implemented for tracking a ground-target occa- 
sionnally occulted in a cluttered urban environ- 
ment on a simple 2-nodes 2D scenario.   Exten- 

sion of this new tracker for tracking maneuvering 
target with or without different local observation 
models could also be developed by taking into ac- 
count methodology described in previous works [7] 
and [1, 3]. Another extension of this algorithm for 
multi-target tracking based on the IJPDAF devel- 
oped in [13] is under investigations. 
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Abstract: In this paper, we consider the prob- 
lem of clutter scattering in a gate under the 
assumptions: l)the number of false validated 
measurements that are generated can be de- 
scribed by a Pois8on model; and 2)false vali- 
dated measurements are generated uniformly. 
Also, we present an efficient method for gen- 
erating the measurements that satisfactorily 
meet the stated assumptions. The method is 
based upon a proposition related to the prin- 
ciple axis theorem which, in turn, is utilized 
as a guideline for the generation of a ran- 
dom vector with a uniform distribution in 
W1. This method not only produces a desir- 
able result within definitely finite steps, but 
also reduces computational loads quite often 
required by an existing technique cited in [7]. 
The efficiency and the feasibility of the pro- 
posed method is demonstrated by an example 
in target tracking. 

Keywords: clutter; target tracking; validation gate; 
Poisson-distributed number; Monte Carlo simula- 
tions 

1    Introduction 

When a target is tracked in a realistic envi- 
ronment, measurements are usually affected by 
uncertainties (e.g. the targets of interest, clut- 

ter, and false alarms). To analyze the perfor- 
mance of a tracking scheme, the error covari- 
ance matrix of a tracking filter usually serves 
as a performance measure. However, the error 
covariance matrices for the probability data as- 
sociation filter (PDAF) and the joint probabil- 
ity data association filter (JPDAF) incorporate 
random terms (see [1]). As a result, to charac- 
terize the statistics of tracking errors, it is es- 
sential to perform Monte Carlo simulations. To 
do these simulations, one must generate false 
measurements in a validation gate to charac- 
terize the clutter. The development of algo- 
rithms for target tracking [6] (for a single taget) 
and [5] (for multiple targets) is based on as- 
sumptions that 1) the number of false validated 
measurements can be described by a suitable 
Poisson model; 2) the false validated measure- 
ments are uniformly distributed in the gate and 
are independent from scan to scan. Following 
this objective, the primary aim of this paper is 
to present a method which can efficiently and 
satisfactorily generate false validated measure- 
ments in accordance to the above assumptions. 

The method proposed in this paper follows 
the same assumptions as in [7]. However, the 
method in [7], when incorporated in evaluat- 
ing the performance of a PDAF or a JPDAF, 
can be computationally expensive because the 
method requires an indefinite number of itera- 
tions to arrive at the desired results.  In view 
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of this drawback, our method provides an effi- 
cient alternative with acceptable accuracy. This 
proposed method consists of two stages. First, 
we use the Poisson-distributed random gener- 
ator in [3] to generate a number of false vali- 
dated measurements in a gate. Secondly, each 
of the innovation corresponding to a false vali- 
dated measurement is generated as follows. We 
transform a positive semi-definite matrix to a 
diagonal form with eigenvalues as diagonal en- 
tries. The criterion to check that a measure- 
ment falls within a gate can be expressed as 
a quadratic inequality of n variables with its 
eigenvalues as coefficients; thus, we can gener- 
ate a random vector in n steps. Subsequently, 
this vector is transformed back to obtain a clut- 
ter. Hence, once the number of clutter points 
in a gate is determined, say m, we can achieve 
the objective in m x (n 4- 2) steps. Our method 
can be easily implemented in a Matlab environ- 
ment. 

The paper is organized as follows. Section 
2 describes the background of the problem and 
gives a brief coverage of some notations used 
throughout the paper. In Section 3, the ex- 
isting method in [7] to generate the false val- 
idated measurements in a gate is summarized. 
The drawbacks of the method are also discussed 
in this section, and then the development to 
yield a computationally more efficient method 
with satisfactory performance is presented. Sec- 
tion 4 presents the Monte Carlo simulation re- 
sults for a target-tracking example using a stan- 
dard PDAF including either the method of [7] 
or the proposed method. The simulation re- 
sults characterize the statistics of actual rms er- 
rors as well as error covariances in the example. 
The approximate computational efforts of these 
methods are compared quantitatively. Finally, 
conclusions are presented in Section 5. 

2    Preliminary 

In target tracking, a gate is formed around a 
predicted target position. Gating is used for 
eliminating measurements which are unlikely to 

belong to a target. Thus, a measurement falling 
within the gate is more likely from the target of 
interest, and hence, is referred to as a validated 
measurement. 

We begin by reviewing quantities to be used 
in defining a gate. At time instant k, let the 
predicted state vector be x(k\k — 1). In addi- 
tion, the measurement is z(k) = Hx{k) + u(k) 
where H is the measurement matrix and u(k) is 
a zero-mean white Gaussian measurement noise 
with a covariance R. The residual vector is 
defined by taking the difference between the 
measurement and predicted measurement,i.e., 
// = z(k)—Hx(k\k— 1). The residual covariance 
matrix S = HPH'+R is positive definite where 
P is the one step prediction covariance matrix, 
and the superscript' denotes the transposition. 
The time index k will be omitted for notational 
convenience. Thus the n-dimensional "g-sigma" 
ellipsoid gate is 

R^ = {^:ß'S-ltx<g2} (1) 

where g is a positive number and determines 
the size of the validation gate. 

When the performance of a filter is evaluated, 
two commonly used assumptions on how clutter 
scatters in a gate are as follows. 

1. The number of false measurements in the 
gate can be described by a Poisson model. 

2. From one scan to another or within a scan, 
the detection of false measurements is uni- 
formly distributed in the gate and the mea- 
surements are independent. 

The first assumption yields a mathematical model 
for generating the number of false validated mea- 
surements at each time instant. Generally, we 
do not have the exact information regarding 
how validated measurements scatter in a gate. 
It is reasonable to assume that each validated 
measurement is likely to be a target of interest. 
For this reason, the second assumption reveals 
that the false validated measurements scatter 
uniformly in a gate. 

Fro brevity, the time index k is omitted from 
some of the notations. In addition, we list the 
following notations for clarity. 
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V: the volume of the n-dimensional "g-sigma" 
ellipsoid B£; 

Ami„(i9-1): the smallest eigenvalue of the ma- 
trix 5-1; 

Amai(iS'_1): the largest eigenvalue of the ma- 
trix 5_1; 

a: the spatial density in a Poisson model; 

U{a, b): a set of random points uniformly dis- 
tributed in the interval (a, b). 

3    Main Results 

In this section, we discuss two methods of gen- 
erating the validated false measurements in a 
gate. These include method A in [7], and the 
proposed method. The main drawbacks of method 
A are presented in Section 3.1. Then, the pro- 
posed method is presented in Section 3.2 to 
overcome the shortcomings of method in Sec- 
tion 3.1. The proposed method is computation- 
ally efficient and yields desired results. 

3.1    Method A [7] 

This method consists of two stages. To gener- 
ate the Poisson-distributed number of false val- 
idated measurements, an algorithm is adopted 
from [3] as follows. 

Stage I. 
Poisson Random Generator (PRG) 

Set Num — — 1, m = exp(aV). 
Repeat the following until m < 1 

Generate 0 uniform on (0,1) 
Set Num = Num + 1, m = m0 

Output Num 

The following procedure distributes the false 
validated measurements uniformly in a gate. 

Stage II. 
1. 1=1; 

2.Repeat until I > Num 
3. Generate random numbers 
4. ßi € Ui-j/XrainiS-^j/Xmi^S-1)), 
5. where 1 < i < n; 
6.Loop: Let /i = \fiifJ>2—ßn]- 
7. Ifß'fl^j/XmaviS-1), 
8. then 
9. 1=1+1; 
10. else 
11. if//S-V<7, 
12. then 
13. 1=1+1; 
14. else go to Loop 
15. end 
16. end. 

Remark 1: Although the work in [7] did not 
indicate the procedure to generate the number 
of false validated measurements by using a Pois- 
son model; however, PRG can be employed in 
general to satisfy assumption 1. 

Remark 2:It is worthwhile to note that the 
verification criterion in line 7 of Stage II needs 
to be satisfied to generate a random vector. As 
a result, the completion of Stage II may require 
an indefinite number of iterations. 

3.2    Method B 

Before we present the proposed method, the fol- 
lowing lemma and proposition serve as a start- 
ing point for the development of the method. 
The lemma is adopted from [4]; it also can be 
found in many other textbooks on linear alge- 
bra. 

Lemma 1. If A is any. n symmetric matrix, 
then there exists an orthogonal matrix L such 
that the matrix L~XAL is a diagonal matrix 
whose entries on the main diagonal are the eigen- 
values of the matrix A. 

Proposition 1. Let A be a n x n symmetric 
matrix. A vector -q = Lx with n'An < 7 is 
uniform in W where L is an orthogonal matrix 
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such that L' — L~x and the matrix 

Ai    0    0 
0    A2    0 

L~lAL = 

0 
0 

0     0 0    A„ 

stage is to generate false measurements satisfy- 
ing eqn.(l) which are uniformly distributed in 
the gate. This is accomplished as follows. 

Stage II. 
1. Obtain the orthogonal matrix L such that 

where X% < A2... < A„ and Xi, 1 < i < n, is an 
eigenvalue of A, and the vector x = [xi...xn]' is 
uniform in K" where 

L-1S~lL = 

*ietf(-(7/Ai)1/2,(7/Ai)1/2) 

Ai    0    0 
0    A2    0 

0     0 

0 
0 

0   An 

and 

xitUi-inlXif^MlXifl2), 

with 2 < i < n, n = (7 - Xix2 -... - Aj_ia;2_i). 

Proof: With lemma 1, rfAr] < 7 can be rewrit- 
ten as the following quadratic form 

Xix\ + Xx2, + ... + Xnxl < 7 

where n = Lx with L' = L~x and the vector 
x = [xi,...,x„]', and Aj, 1 < n, are eigenvalues 
of A satisfying Ai < A2 < ... < Xn. Firstly, let 
xi € C/(-(7/Ai)1/2,(7Ai)1/2)- Subsequently, 
letx2 € t/(-((7-Ai^)/A2)

1/2
)((7-Aia:?)/A2)

1/2). 

By the same reasoning, it follows that each 

xieUi-in/Xi^Mn/Xi)1/2), 

with n = (7 - Aiz? - ... - A?.!), 1 <i <n. 
Thus the vector x is uniform in W. Therefore, 
the vector 7? = Lx with rfAr) < 7 is uniform in 

Some aspects of Proposition 1 are similar to 
the principle axis theorem. The result of Propo- 
sition 1 gives us a guideline for the generation 
of a vector which is uniform in W and satisfies 
eqn.(l). 
As in [7], the proposed method consists of two 
stages. The first stage is to use PRG. Sup- 
pose S~l exists. As S is a n x n matrix, so 
is 5_1. Then, based on the generated num- 
ber of false validated measurements, the second 

where each Aj, 1 < i < n, is an eigenvalue of 
the matrix S~l and Ai < A2... < A„. 
2. 1=1; 

3. Repeat until / > Num 
4. Form the vector x = [xi...xn] 
5. where 
6. xi G E/(-(7/Ai)d/2), (7/AO1/2); and 
7. for 2 < i < n, Xi 6 U(-(Ti/Xi)1/2, (n/Xi)1/2), 
8. with T* = (7 - Aiarf - ... - Aj-io;2^). 
9. ß = Lx. 
10. 1=1+1. 

RemarkrMethod B does not involve a verifi- 
cation criterion in Stage II as required in method 
A; hence it can quickly achieve the objective as 
long as the number of false validated measure- 
ments needed is known. 

4    Illustrative example 

In this section, we present the results of a com- 
puter simulation of an example in order to demon- 
strate the merits of the proposed method. Monte 
Carlo simulations have been carried out to eval- 
uate the performance of a PDAF for target track- 
ing in clutter by incorporating the two methods 
discussed in Section 3.  The reader is referred 
to [1] for general background of a PDAF, as 
well as for details of the mathematical setup, 
on which we shall draw freely for the purpose 
of simulation. To compare the performance of 
the two methods, we examine l)the computa- 
tion time required to produce the result of ac- 
tual tracking error and estimated error variance 
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, and 2) the accuracy of the estimated error vari- 
ance to characterize the tracking error. Simula- 
tions have been carried out in a Matlab environ- 
ment on a Sun workstation in the Department 
of Electrical Engineering at Royal Military Col- 
lege of Canada. 

Assume there is a target with constant veloc- 
ity. Consider a time-invariant kinematic model 
for the target. 

x{k +1) = 

1 T 0 0 " 
0 
0 

1 
0 

0 
1 

0 
T 

x(k) + 

0 0 0 1 _ 

T2/2      0 
T 0 
o r2/2 
0 T 

v(k) 

z(k) = 
10   0   0 
0   0   10 

x(k) + w(k) 

where T represents the sensor sampling period, 
and v(k) and w(k) are mutually independent 
white Gaussian noise vectors with zero mean 
and covariances. 

Q = c<w[v(fc)] = " Q 0 ' 
0 Q . 

r 0 ' 
0 r R — cov[w(k)] = 

This nearly constant-velocity model can be 
normalized by choosing T = 1. We will use this 
normalized model for our numerical example. 
Assume A = 0.01, Pp = 1 (the target detection 
probability), PG = 0.9997 (the probability that 
the target-oriented measurement, assuming the 
target was detected, falls inside the validation 
gate), q=0.15, r=l and a 4-sigma confidence 
ellipse is chosen for the validation gate in our 
numerical example. 

The initial state for the target is set as xt(0) = 
[10; 1; 50; 1.3] where the subscript t refers to the 
target, and the initial state for the estimation 
based on the above model is set as as x(0) = 
xt(0)+[randn(l)*axi;randn(l)*(TX2', randn(l)* 
cryi',randn(l)*cry2]; where ox\ =0.01; <xX2=0.001 

0yi=O.Ol; aj,2=0.001. The initial error covari- 
ance is 

P(0) = 
0 
0 
0 

^2 0 
0 °Jl 
0 0 

0 
0 
0 

T2 7y2 J 

Let us consider the performance criteria: 
the actual average of position rms errors of Monte- 

Carlo runs e0( k) = (l/JVE£i(*i(*)-a*,i (*))*+ 
(yi(k) — yt,\{k))2)ll2, and the average of po- 
sition variances of Monte-Carlo runs ei(fc) = 

(WEiiCPn(*0 + Psz(k))1/2- For this simu- 
lation, N has been chosen as 1000. 

The simulation results of the PDAF algo- 
rithm incorporating method A are shown in fig- 
ure 1. In this case, it took 4.6 hours to obtain 
the results of figure 1. Figure 2 shows the sim- 
ulation results of the PDAF algorithm incorpo- 
rating method B. It took 10 minutes to obtain 
the results of figure 2. 

10 20 30 AO SO 60 70 80 90 IOC 

Figure 1: x-axis:time instant; y-axis:error; 
displays eo(fc); '+' line displays ei(fc) 

line 

Figures 1 and 2 show that ei(fc) can reason- 
ably approximate eo(&). However, to produce 
the results in figure 1 takes much longer than 
those exhibited in figure 2. It can be clearly 
observed that the divergence of tracking errors 
occurs in both cases. Furthermore, the actual 
and the estimated results in both cases are in 
general agreements, i.e., when the actual rms 
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to 20 30 « 50 60 70 80 M ICO 

Figure 2: x-axis:time instant; y-axis:error; '-.' line 
displays e0(k); '+' line displays ei(fc) 

error diverges so does the corresponding esti- 
mated rms error. The results can be attributed 
to the heavily cluttered environment due to q = 
0.15 and can be explained as follows. Suppose 
there are many false validated measurements 
in a gate, then the state estimate may dete- 
riorate and its error covariance may increase. 
Furthermore, this may lead to a larger gate size 
and more false measurements are likely to fall 
in the gate at the next time step. As a re- 
sult, the tracking errors increase as time pro- 
gresses. In figures 1 and 2, the divergence of 
actual rms tracking errors takes place at time 
instant around 25. The divergence of estimated 
covariance error occurs at time instant around 
30 in figure 1, while that of estimated covariance 
error happens at time instant around 40 in fig- 
ure 2. Though figure 1 shows better accuracy 
in the transient region than figure 2, but on the 
whole, the simulation results indicate that the 
proposed method is superior in satisfying the 
assumptions without involving heavy computa- 
tional loads. 

5    Conclusions 

We have presented an efficient method for uni- 
formly generating Poisson-distributed measure- 
ments in a validation gate. Unlike the approach 

in [7], the proposed method is computationally 
inexpensive because it can achieve the objec- 
tive without running into an indefinite number 
of iterations. Apart from the structure of the 
method itself, we have employed a tracking ex- 
ample to demonstrate that a PDAF algorithm 
incorporating the proposed method in Monte 
Carlo simulations efficiently and satisfactorily 
characterizes statistics of tracking errors. In 
light of the result of the example, the proposed 
method provides an effective alternative with 
less computation burden. 
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Abstract In this paper we present an estimation 
algorithm for tracking the motion of a low observ- 
able target in a gravitational field, for example, an 
incoming Ballistic Missile, using angle-only mea- 
surements. The measurements, which are obtained 
from a single stationary sensor, are available only 
for a short time. Also, the target detection prob- 
ability is low and the false alarm density is high. 
The algorithm uses the Probabilistic Data Associa- 
tion algorithm in conjunction with Maximum Like- 
lihood estimation to handle the false alarms and the 
less-than-unity target detection probability. The al- 
gorithm also uses the strength of the signals, or 
Amplitude Information. In addition to the PDA- 
AI/ML estimator, the Cramer-Rao Lower Bound 
in clutter is also presented. It is shown that for 
a ballistic missile in free flight with 0.6 single-scan 
detection probability, one can achieve a track detec- 
tion probability of 0.99 with a negligible probability 
of false track acceptance even at 6dB SNR. 

Keywords: Angle-only tracking, target motion 
analysis and estimation, probabilistic data associa- 
tion, ballistic missile tracking, low-observable tar- 
gets. 

1    Introduction 

A number of tracking algorithms that  use 
radar measurements have been developed for 

'Research sponsored by ONR/BMDO Grant 
N00014-91-J-1950, AFOSR Grant 49620-97-1-0198 and 
ONR Grant N00014-97-1-0502. 

effective defense against tactical ballistic mis- 
siles. Various estimators based on the Ex- 
tended Kaiman Filter (EKF) for the reentry 
phase were implemented in [5] and [7]. How- 
ever, the EKF, which operates in a recursive 
manner, would require a high signal-to-noise 
ratio (SNR) to yield acceptable results. In [8] 
an algorithm was given for acquisition of low 
observable ballistic missiles using an electron- 
ically scanned array (ESA) radar. An opti- 
mal ballistic missile track initiation algorithm 
based on the Maximum Likelihood (ML) esti- 
mator using midcourse observations from pas- 
sive sensors was presented in [9]. Unlike the 
case of a radar, in passive localization (from 
angle-only measurements) the measured range 
of target is not available, making observabil- 
ity (the ability to estimate the full state of the 
target) a crucial problem. Passive target track- 
ing in an underwater environment, which is 
commonly referred to as target motion analysis 
(TMA) is a widely studied estimation problem 
of both theoretical and practical interest [2], 
whereas only a few results about problems in 
passive ranging of ballistic missiles have been 
reported [9]. 

The flight of a Ballistic Missile (BM) con- 
sists of three phases namely, boost phase, bal- 
listic phase (midcourse or free-flight phase, in 
a plane in Earth Centered Inertial (ECI) co- 
ordinates) and terminal phase (reentry phase). 
The passive ranging (also referred to as passive 
localization) for a BM considered here is to de- 
tect and initiate the track before the missile 
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enters the terminal phase using the angle-only 
measurements from a single stationary sensor. 
The motion of such a ballistic missile is char- 
acterized as a free flight in a gravitational field 
[6]. In this paper we show that it is possible 
to have complete observability of this motion 
from a single stationary sensor. Another ma- 
jor concern in such a defense system is that the 
measurements are available only for a short pe- 
riod of time and the estimator has to obtain an 
acceptable estimate using those measurements. 

To account for the measurement origin un- 
certainty, the approach called Probabilistic 
Data Association (PDA) [2], associates prob- 
abilistically all the possible measurements to 
the target of interest. The incorporation of 
feature measurements in addition to the angle- 
only measurements into the PDA technique 
enhances the estimator performance [4]. The 
feature measurement used in this paper is the 
measurement amplitude or amplitude informa- 
tion (AI), which is the intensity of the signal at 
the output of the signal processor. The PDA 
approach in conjunction with ML, based on a 
batch of angle and AI measurements, is devel- 
oped to obtain the track estimate in this pa- 
per. The Cramer-Rao Lower Bound (CRLB), 
which has to incorporate the effect of the false 
alarms (clutter) and the less-than-unity detec- 
tion probability, can quantify such a problem's 
"estimability." 

In Section 2 we present the target, sensor 
and measurement models. In Section 3 we de- 
rive the ML estimator based on PDA combined 
with AI. The numerical implementation of the 
estimator is also presented. The CRLB in clut- 
ter and proof of target observability are given 
in this section. When an estimate is obtained, 
a validation procedure is carried out to check 
if this estimate is acceptable. This is necessary 
due to the possible local minima. In Section 4, 
simulation results are presented. 

2    Problem Formulation 

The focus of this work is to track the motion 
of a free-flight target, for example, a ballistic 

missile, using measurements obtained by a pas- 
sive sensor over a short period of time. This 
is equivalent to estimating the initial state, 
namely, the position and velocity of that tar- 
get. 

In this section we present the target motion 
model, then SNR models of both the target- 
originated and false measurements is given. Fi- 
nally, the observability problem is addressed. 

2.1    Dynamic Model of Ballistic Mis- 
sile Flight 

For track formation and track extension, it has 
been common to model the missile motion as 
a simple quadratic polynomial in each dimen- 
sion. To achieve maximum range for a given 
payload, it is very common to maintain a small 
angle of attack throughout the flight. Never- 
theless, the quadratic model falls far short of 
the mark in modeling the trajectory. However, 
for limited functions such as track formation, it 
is usually accurate enough to model short seg- 
ments within a given missile stage [6]. Satel- 
lite surveillance of ballistic missile launches will 
provide a timely report of each occurrence of a 
missile launch and launch parameters (missile 
type, launch time, launch position and head- 
ing) [6]. Since the motion of the missile occurs 
in a plane in ECI coordinates, in this paper we 
consider a two-dimensinal problem where the 
angle measurements consist of only the eleva- 
tion and the sensor is in the same plane as the 
target. 

We assume that n sets of measurements, 
made at times t = t\, t2,. ■., tn, are available. 

For trajectory estimation, the target motion 
is defined by the 4-dimensional vector 

A 
£o   Vo   £o   rjo (1) 

where £o and »7o are the coordinates of the tar- 
get in the vertical and horizontal directions, 
respectively, at the reference time to- The cor- 
responding velocities at time to are £ and rj, 
respectively. The incoming target in a gravita- 
tional field keeps moving with its initial veloc- 
ity and with a known downward acceleration, 
namely g. 
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The true elevation angle of the target from 
the platform (assumed to be located at the ori- 
gin of the coordinate system) at U is given by 

A 
Bi(x) = /(*,, x) = tan-^fe, x)/r)(tu x)j   (2) 

where 

Z(U,x)   =   &- £o U - O.Sgtf        (3) 

T](ti,x)     =     TJQ-TJQti (4) 

The possible elevation measurements are in 
the interval [0,7r]. Since scanning this entire 
region is not practical, in [4] it was assumed 
that a cueing region within the field of view of 
the sensor is available as surveillance region 

^ = [ei,e2]c[o,7r] (5) 

The set of measurements at U is denoted by 

z(i) = {*i(<)}2i (6) 

where m* is the number of measurements at t{ 
and the pair of elevation and amplitude mea- 
surements Zj (i) is defined by 

*i(0 = \ßij    Rij]' (7) 

The cumulative set of measurements during 
the entire period is 

zn = {z{i))U (8) 

In addition to the above, the following as- 
sumptions about the statistical characteristics 
of the measurements are also made [3]: 

1. The measurements at two different sam- 
pling instants are conditionally indepen- 
dent, i.e., 

p[Z{h),Z{i2)\x]   =   p[Z(h)\x} p[Z(i2)\x] 

V*i ? t2 (9) 

where p[] is the probability density func- 
tion. 

2. A measurement that originated from the 
target at a particular sampling instant is 
received by the sensor only once during 
the corresponding scan with probability 
PD and is corrupted by zero-mean addi- 
tive Gaussian noise with known variance. 
That is, 

ßij = 0i(x) + eij (10) 

where e^ ~ A/"[0, cr|] is the elevation mea- 
surement noise. Due to the presence of 
false measurements, the index j of the true 
measurement is not known. 

3. The false measurements are distributed 
uniformly in the surveillance region, i.e., 

A,~w[Oi,e2] (11) 

4. The number of false measurements at a 
sampling instant is generated according to 
a Poisson law with a known expected num- 
ber of false measurements in the surveil- 
lance region [2]. This is determined by 
the detection threshold at the sensor (the 
exact equations are given in Section 4). 

2.2     SNR Models 

We denote by R the signal-plus-noise to noise 
ratio (SNNR), which is different from the 
signal-to-noise ratio1 (SNR), for example, an 
SNNR value of 7dB corresponds to 6dB SNR 
[8]. With the noise power normalized to unity, 
R is then the intensity of the output of the 
signal processor, consisting of noise only, or 
target-originated signal plus noise. 

The probability density function (pdf) of R 
when the signal is due to noise only is denoted 
by po(R) and the corresponding pdf when the 
signal originated from the target is pi(R). If 
the average signal-to-noise ratio (SNR) is E, 
the pdf of noise-due and target-originated mea- 
surements can be written as 

xThe SNR is defined as 101og10(4r), where A is the 
signal amplitude and cr2 is the variance of noise. 
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po(R) 

Pi(R) 

=   exp(-R),     R>0 

respectively. Here p\ is a Swerling III model 
which is believed to be appropriate for ballistic 
missiles [8]. Note that the noise power in (12) 
is normalized to unity. 

A suitable threshold (low, because we are 
dealing with low SNR), denoted by r, is used to 
declare a detection. Both the probability of de- 
tection, PD and the probability of false alarm 
PFA (defined for a resolution cell) can be eval- 
uated from the probability density functions of 
the measurement amplitudes. They are given 

by 
/oo 

Pl(R)dR (14) 

Po(R)dR (15) 

Clearly, in order to increase PD one has to 
lower the threshold r. However, this increases 
PFA too. Therefore, depending on the SNR we 
have to select r so as to compromise between 
two conflicting requirements. 

The density functions given above corre- 
spond to the signal at the signal processor out- 
put. Those corresponding to the output of the 
threshold detector are truncated versions of the 
previous pdfs [8] 

Po(R)  = 

pl(R)  = 

PFA 
exp (-R),    R > T        (16) 

PD(2 + £)2 
exp 

where PQ(R) is the pdf of the amplitudes of the 
measurements that are due to noise only and 
Pi(R) is the pdf of those originated from the 
target. 

Finally, we define the amplitude likelihood 
ratio p, which will be used in the derivation of 
the estimator, as 

P = 
PUR) 
pTo(R) 

(18) 

3    ML/PDA Estimator 

The detections at a sampling instant consist of 
a number of false measurements and, at most, 
one target-originated measurement. Even if 
the target-originated measurement is detected, 
it cannot be distinguished from the false ones, 
and thus there is no single measurement that 
can be used to accurately estimate the target 
state. In order to resolve this data association 
problem, an ML estimator based on the PDA 
technique, which uses all the measurements in 
a scan, is presented next. 

3.1    PDA-AI/ML Estimator 

If there are rrii detections at tj, we have the 
following mutually exclusive and exhaustive 
events [2]: 

,., A J   {zj(i) is from target}, j = 1,... ,7 
' [ {all measurements are false}, j = 

mi 
0 

(19) 
The pdf of the measurements  (6)  condi- 

tioned on the above events can be written as 

p{Z{i)\ej{i),x) = < 

f   U^pißij)^ 

u-^UTJiPURii), 
{    3=0 

(20) 
where u = UQ is the area of the surveillance 
region. 

Using the total probability theorem, we can 
write the likelihood function of x at U as 

rrii 

p[Z(i)\x]   =   u-^(l-PD)l[pl(Rij)fj,f(mi) 

, uL-^Ppiifirm - 1) 
rrii 

j=l j=l 

(21) 
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where /i/(mj) is the Poisson probability mass 
function (pmf) of the number of false measure- 
ments at tj. 

Dividing the above by p[Z(i)\eo(i),x] • 
fj,f(rrii) we obtain the dimensionless likelihood 
ratio2 $i[Z(i),x] at tj. Then 

$i[Z(i),x]   = 
p[Z(i)\x] 

Pij exp 

p[Z(i)\e0(i),x] -Hf{mi) 

A 

ßij - Oj(x) 

=   (1-PD) + 

1 
(22) 

where A is the expected number of false alarms 
per unit area. 

Alternatively,    we   can   define   the   log- 
likelihood ratio fa [Z(i),x] at t{ as 

<pi[Z(i),x]   =   In 

=   In 

p[Z{i),x 

,x]J p[Z(i)\e0(i) 

\l-Po) + % 

mi 

p[y/2nae 
Pij exp 

ßij - Oj{x) 
ere 

(23) 

Using the conditional independence of mea- 
surements, the likelihood function of x based 
on the entire set of measurements can be writ- 
ten in terms of the individual likelihood func- 
tions as 

p[Z»\x] = f[p[Z(fi\x] (24) 

Then the dimensionless likelihood ratio 
based on the entire data is given by 

$[Zn,x] = f[$i[Z(i),x] (25) 
i=l 

Prom the above, one can write the total log- 
likelihood ratio <p[Zn,x] as 

<j>[Zn,x]   =   f2MZ(i),x] 

2This normalization is convenient, since the numbers 
of detections at each scan may be different. 

= Em 
i=l 

mi 

hv^ePiJeXP{-*t 

(1-PD) + 

ßij-0i{x)' 

ere 

PD 

(26) 

The Maximum Likelihood Estimate (MLE) is 
obtained by finding the vector x that maxi- 
mizes the above total log-likelihood function. 

4    Simulation Results 

In this section, we consider a two-dimensional 
scenario, where the target SNR is as low as 
6dB, to illustrate the operation and perfor- 
mance of the PDA-AI/ML estimator. Simula- 
tion results are obtained using 100 Monte Carlo 
runs with the following scenario: The missile 
enters the sensor surveillance region at to = 0s 
with initial position P^rue = (105m, 105m), and 
initial velocity vjjrue = (1500m/s, 1500m/s) 
and the sensor platform remains stationary at 
(0m, 0m). It is assumed that the target flight 
course and the sensor are co-planar, i.e., this is 
a two dimensional tracking problem. 

The sensor's angular aperture is assumed 
to be 1 x 105^rad, which consisting of 2000 
cells, each of size CQ = 50yiirad. Assuming 
uniform distribution in a cell, the standard 
deviation of angle measurements is given by 
ere = 50/\/l2 = 14.4/irad. The term E in equa- 
tion (13) was taken as 6dB and PD = 0.6 in 
equation (14). For the given values of E and 
PD, equations (14) and (15) give the detection 
threshold r = 3.0866 and the probability of 
false alarm in a cell PFA = 0.0457. 

The expected number of false alarms per 
unit angle can be calculated as 

A   = PFA 

volume of angle cell 
0.0475 

50 x 10-6 

914/rad. (27) 

We can also calculate the expected number 
of false alarms in the entire sensor aperture 
angle, and the value is found to be 95.  This 
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value means that at every sampling time3 there 
are about 95 false alarms which exceed the the 
threshold. 

The scans are made at 10Hz for 10s. Fig. 1 
shows sample sets amplitude measurements 
in one run of the Monte Carlo simulations. 
The target-originated and noise-only measure- 
ments are denoted by "•" and "*", respectively. 
However, note that the index of the target- 
originated measurement is not known to the 
estimator. It can be seen that target-originated 
measurements are detected in 55 times out of 
100 scans. 

Amplitude measurements 

-T 1 r- -i 1 1 1 r- 

' • ■•■: . ■ 1 ■*■.'■"&''■ 

":i!.:iV>!' 

HÜÜäHK ii 
40 50 ( 

Time {0.1 sec.} 

Fig. 1. Amplitude measurements 
("*" — target-originated; "•" — false alarms) 

For the above measurements, the variation 
of the negative log-likelihood function with po- 
sition is shown in Fig. 2. It can be seen that 
the global minimum is located in a narrow val- 
ley around (105m,105m), which makes it dif- 
ficult to find using numerical techniques. For 
initialization, a systematic grid search is per- 
formed to find an approximate minimum point 
to start off the quasi-Newton minimization. 
The grid search procedure is shown in Table 
1, where r is the target range and 0 is the ele- 

3We assume a staring sensor with all the measure- 
ments in frame having the same time tag. The proce- 
dure can be modified for a scanning sensor. 

vation of the target. These evaluations on the 
grid points were the most costly part of the 
numerical calculations - they took up 99.5% of 
the total time per run, which was 12.2min on 
a Pentium 400 processor. However, they are 
parallelizable with a SIMD architecture with 
linear efficiency. With 200 processors, the to- 
tal computation time would be 6s. 

Fig. 2. Variation of negative log-likelihood 

Par am. Region Step-size 

r (m) 105 - 3 x 105 5xl04 

9 (mrad.) 735 - 835 0.2 
£o (m/s) 300 - 3000 300 

Vo (m/s) 300 - 3000 300 

Table 1. Grid search for minimization 
(25 x 104 points) 

The tracks obtained by the maximization 
are validated using a hypothesis testing tech- 
nique [4]. The track acceptance threshold T\ 

was set so that the tracks are accepted with 
99% probability (the track acquisition prob- 
ability .PACQ)- All the tracks obtained with 
the maximization procedure were accepted as 
valid tracks. In Table 2, the average position 
and velocity estimates x and their correspond- 
ing standard deviation a are given over 100 
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Monte Carlo runs. The theoretical standard 
deviations CTCRLB for the scenario under con- 
sideration are given for each component. 

Par am. ■^true X 0"CRLB 

6>(m) 
vo M 

Co (m/s) 
Vo (m/s) 

100,000 
100,000 

1500 
1500 

100,480 
100,480 

1535 
1535 

4487 
4489 
310 
318 

5873 
5875 
398 
399 

Table 2. Results of 100 Monte Carlo runs 

In order to check the efficiency of the estima- 
tor we need to check its consistancy with the 
FIM. This is performed by finding the average 
normalized estimation error squared (NEES) 
[1] and checking whether it falls within the sta- 
tistical bounds for acceptance. The NEES is 
defined as 

a=lx0-x%ue]'p-1[xo x$ue] (28) 

where P~l = J is the FIM. If the estimator 
is unbiased and the errors are Gaussian with 
covariance equal to the CRLB, then a defined 
above is chi-squared distributed with nx (i.e., 
4 in our problem) degrees of freedom. Taking 
the average over N Monte Carlo runs, the 95% 
probability bounds on ä are 

X1N(0-Q25) 

N 
<ä= — 

N 
l£ Z^^iS < 

i=\ 

X1N(0-975) 

N 

(29) 
where c^ is the NEES in the ith Monte-Carlo 
run. If the filter is inefficient or biased then ä 
will lie above the upper bound. In our simu- 
lation the average value of NEES for the ac- 
cepted tracks is found to be 3.48, which is 
within the 95% bound [1]. 

We also carried out a comparison of the 
best negative log-likelihood ratios (score-of- 
goodness) the PDA-AI/ML estimator could 
find in the target-present and target-absent 
scenarios.    In order to get accurate results, 

we constructed target-absent scenarios by elim- 
inating the corresponding target-present sce- 
nario's target-originated measurements. Fig. 3 
shows 100 runs' comparison, where target- 
absent and target-present are denoted by "•" 
and "+", respectively. Among the tracks 
obtained in the target-absent scenarios none 
was accepted as a valid track by the accep- 
tance test. Fig. 3 shows that the negative log- 
likelihood ratios are remarkably well separated 
between the two types of scenarios. It can be 
seen that in the target-absent case the negative 
log-likelihood ratio is around 50, i.e., the esti- 
mated trajectories are e50 times more likely to 
come from noise than from a target and, thus, 
the validation test rejects them. Conversely, 
in the target-present scenarios the estimated 
trajectories are e220 more likely to be target- 
originated than noise originated and the test 
accepts them. 

100 

1 -50 
i 

I-too 
1 
"7 
£-150 
1 
s 
f-200 

Y^^A^J\^^ 

50 
Runs 

Fig. 3 Best negative log-likelihood ratios 
("•" target absent; "+" target present) 

5    Conclusions 

In this paper we presented a PDA-AI/ML al- 
gorithm for detecting the track of a low observ- 
able target in a gravitational field using angle- 
only measurements. The measurements, which 
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are obtained from a single stationary sensor, 
are available only for a short time. Also, the 
low target detection probability and high false 
alarm density present a difficult low-observable 
environment to work with. The algorithm uses 
the Probabilistic Data Association (PDA) al- 
gorithm in conjunction with Maximum Like- 
lihood (ML) estimation to handle the false 
alarms and the less-than-unity target detec- 
tion probability. The algorithm also uses the 
strength of the signals, or Amplitude Informa- 
tion (AI), modeled as Swerling III type, in the 
tracking process itself, in addition to using it 
for thresholding. This is achieved by deriving 
a combined likelihood based on the angle mea- 
surements and the AI, which is then maximized 
using a parallelizable numerical search. 

In addition to the PDA-AI/ML estimator, 
the Cramer-Rao Lower Bound (CRLB) in clut- 
ter is also presented. The proposed estima- 
tor is shown to be efficient, that is, it meets 
the CRLB, even for low-observable fluctuat- 
ing targets with 6dB average signal-to-noise 
ratio (SNR). At this SNR, the target detec- 
tion probability is 0.6 and the expected num- 
ber of false alarms is 95 per scan. A hypothesis 
testing-based track validation (track detection) 
scheme, which confirms the estimated tracks, is 
also presented in this paper. For the ballistic 
missile in free flight with 0.6 single-scan detec- 
tion probability, one can achieve a track detec- 
tion probability of 0.99 with negligible proba- 
bility of false track acceptance. The proposed 
algorithm, which operates in batch mode, can 
also be used to obtain an initial estimate for a 
recursive or sliding-window based estimator. 
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Abstract An observation-to-target as- 
sociation problem is addressed in this 
paper. The Joint Probabilistic Data 
Association method (JPDA) is ex- 
pressed with the concepts of Bayesian 
networks. This is done by assigning a 
manydimensional association vector to 
a root variable of the network. We pro- 
pose a generalized network structure 
which enables applying attribute infor- 
mation in the context of JPDA. A case 
example shows how this approach can 
be used for target identification and 
target tracking purposes. 

Keywords:    JPDA 
tribute fusion 

Bayesian networks,  At- 

1    Introduction 

Modern sensors produce measurements that 
contain attribute and kinematic informa- 
tion. Kinematic information describes the 
position-related state of the targets. At- 
tribute information describes pieces of infor- 
mation that can be used for target identifica- 
tion. Attribute information is usually at dif- 
ferent levels of abstraction which makes the 
identification procedure difficult. 

Data association is a key problem in mul- 
titarget tracking. A well-known approach is 
to apply Joint Probabilistic Data Associa- 
tion method (JPDA) [2] to resolve associa- 

tion ambiquities in the case of closely located 
multiple targets. JPDA defines a set of feasi- 
ble events that are used as hypotheses to ex- 
plain the association event under considera- 
tion. We express the JPDA in a special form 
of Bayesian networks. This enables a direct 
extension to fuse attribute information in the 
framework provided by JPDA. Set of feasible 
events are illustrated by an association ma- 
trix. This matrix defines discrete-valued as- 
sociation vectors which describe feasible as- 
sociation events. The association vector is 
defined at each time instant for validated 
measurements. Finally, the association vec- 
tor is used as a manydimensional root vari- 
able in the Bayesian network which contains 
target's kinematic state vector as a leaf vari- 
able. Thus, kinematic measurements induce 
a joint probability distribution for feasible 
association vectors in the root variable. This 
probability distribution can be used for com- 
puting measurement-to-target probabilities. 

We apply hierarchical attribute structure 
to describe their internal depencies. At- 
tribute hierarchy is implemented as a singly- 
connected Bayesian network. This approach 
enables measurements at different levels of 
abstraction. Furthermore, this makes pos- 
sible a use of incomplete attribute measure- 
ments. The attribute network is integrated 
into larger Bayesian network which performs 
JPDA data asociation procedure for mea- 
surements containing both kinematic and at- 
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Figure 1: Association vector 0. 

tribute information. 
The proposed generalized association net- 

work performs the data association task in 
the cluttered multitarget case. The method 
enables fusion of attribute and kinematic in- 
formation. Additionally, the method allows 
hidden variables that are unobservable but 
are used for explaining the attribute depen- 
dencies. 

2    Joint    Probabilistic   Data 
Association 

Joint Probabilistic Data Association (JPDA) 
[1] is a well-known method for resolving as- 
sociation ambiquities in the case of multiple 
targets. We list here briefly the main princi- 
ples of the algorithm. 

Let T denote a set of possible sources con- 
taining false alarm and T targets. 

r={U;i = 0,...,T} (1) 

where io refers to false alarm hypothesis and 
tj (j = 1...T) refers to jth target. 

2.1    Feasible events 

An association event describes one particu- 
lar way to correlate measurements to tracks. 
Feasible event is an association event which 
fulfills the following conditions [2]: 

• A measurement Z{ can be originated 
only from one source tj (j = 0... T) . 

• A target tj (j = 1... T) can not produce 
more than one measurement at time in- 
stant k. 

Note that a number of detections produced 
by the false alarm io is not limited. 

2.2    Association vector 

An association vector 0 contains m elements. 
m equals to number of detections received at 
the processing time instant. 0:s ith element 
6i indicates the source (target or false alarm) 
to which the ith measurement will be associ- 
ated in that particular event. 

0— [0i,02,... >0m] (2) 

Possible value of 9{ are false alarm to and 
targets that are validated to detection Z{ de- 

noted as 11\,if ...t\\ CT where I is a num- 
ber of validated targets. Thus, the associa- 
tion vector is defined on the following grid: 

ft — jio^!^!.. .ij1 J x |io,i2,i2 •••t^J x • • • 

...x{i0,4,4...i^}  (3) 

The first condition of feasible events is di- 
rectly satisfied since for a given vector 0 only 
one value is assigned to each component 0j. 
The second condition implies that several as- 
sociation points in Q, are not feasible and 
thus impossible. These points correspond to 
events where one target tj (j ^ 0) would be 
associated to more than one detection. This 
condition is fulfilled if all nonzero elements 
of 0 are unequal: 

0i # 0j    if 0i ^ 0 and 0,^0 Vi^j   (4) 

A two-dimensional grid for two detections 
z\ and Z2 is illustrated in figure 1. The fea- 
sible points in fi are drawn as black solid 
points and infeasible points that do not sat- 
isfy the condition (4) are drawn with empty 
circles. The squared point corresponds to 
the association vector that defines the fol- 
lowing detection-to-target association pairs: 
z\ <->• is and z2 ** *o- 

3    JPDA   as   Bayesian   Net- 
works 

A key idea of JPDA is to calculate probabil- 
ities of joint association events. These prob- 
abilities are conditioned on the observations 
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Figure 2: Basic principles of JPDA. 

Zk. This is illustrated with the first graph in 
Fig. 2. Zk is split into current observation 
set Z(k) and past observations Zk~l. These 
two observation sets are assumed to be inde- 
pendent. The past observations do not have 
direct impact to current association assign- 
ments. Such an influence which is not di- 
rectly related to current observations is rep- 
resented by association events' prior proba- 
bilities P(0). Finally, an arc reversal opera- 
tion produces the final graph in Fig. 2 which 
illustrates the basic principles of JPDA. 

As described above the JPDA algorithm 
can be represented solely as a Bayesian net- 
work. A root variable of the network is m- 
dimensional association vector 0 which is de- 
fined on a grid tt determined by the condi- 
tions of feasible events. Association vector's 
probability p(0) is a product of its elements' 
probabilities. The elements 0i may be repre- 
sented as children of 0 as it is shown in Fig. 
3. By its definition 0j defines a cause for 
the detection Zi(k). Such a causality is de- 
scribed in Bayesian networks by setting Zi(k) 
to a direct child of 0j. These two nodes are 
connected via conditional probability den- 
sity function p(zi(k)\0i) which in this case is 
continuous conditioned on the discrete vari- 
able 9i. This connection is actually a col- 
lection of li+1 distinct probability density 
functions, li is a number of validated tar- 
gets and the one extra pdf is due to false 
alarm hypothesis which is always present as 
a possible candidate for 0j. The pdf corre- 
sponding to false alarm hypothesis is uni- 
formly distributed and the others are nor- 
mally distributed. Thus, JPDA is a Bayesian 

network which finally performs marginaliza- 
tion in order to determine the observation- 
to-target association probabilities from the 
determined p(0). 

P® 

Figure 3: Bayesian networks for JPDA. 
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A link from position estimates and obser- 
vations to JPDA is given by the conditional 
probability function p{zi(k)\6i). In a sim- 
ilar way additional non-kinematic observa- 
tions may be caused by the same source de- 
fined by 0j. These observations are linked to 
9i also by a conditional probability function. 
We assume that the additional observation 
is an aircraft type. Since it is independent 
from position it can be represented as an ad- 
ditional children to 0j. Both the association 
vector and the aircraft type are discrete and 
thus the conditional pdf between these two 
variables is purely discrete. 



A(k) 

Za(k) 

(a) (b) (c) 

Figure 4: Hierarchical attribute structure: (a) dependent attributes (b) observations for depen- 
dent attributes (c) temporal dependency. 

4    Attributes' causalities 

4.1    Hierarchical attributes 

An attribute may have a direct influence to 
another attribute, i.e. a value Oj of an at- 
tribute A affects to variable Z?'s probabil- 
ity distribution function p(B). Thus, B is 
a child of A in Bayesian networks. This 
kind of dependency relation is illustrated in 
Fig. 4(a). We model attributes' internal de- 
pendencies with a hierarchical tree which is 
essentially a singly connected Bayesian net- 
work. A root variable of the tree is aircraft 
type and all other variables are used to ex- 
plain this variable. The proper estimation of 
the root variables value is a target identifica- 
tion part of the attribute fusion problem. 

4.2    Sensor model 

Another dependency that has to be taken 
into account is observation's relation to at- 
tribute's correct values. This is essentially a 
sensor modelling task. The detection's mix- 
ing matrix links observation to the corre- 
sponding attribute node. The link is imple- 
mented in a similar way as attributes' inter- 
nal dependencies with conditional probabil- 
ity tables. However, it has a different inter- 
pretation from the semantical point of view. 
The sensor model is illustrated in Fig. 4(b). 

4.3    State evolution model 

A third model of dependency is a temporal 
causality between two adjacent values of the 
same attribute as illustrated in Fig. 4(c). 
In the case of position variable this depen- 
dency is modelled with linear dynamic equa- 
tion and it is evaluated with Kaiman filter. 
All attributes are assumed to remain con- 
stant. 

5    Generalized 
network 

association 

We extend the Bayesian networks perform- 
ing the JPDA algorithm (Fig. 3) by adding 
an extra child to each 6i node. This new 
child node is an aircraft type. As it was 
the case in positional detections this node 
is connected to the JPDA algorithm by the 
conditional probability function p(za(k)\9i). 
In order to define this probability we utilize 
the following causality chain. Q{ defines a 
target £j which has its own target type esti- 
mate presented as a probability distribution 
p(a\ti). Target's correct aircraft type has a 
direct impact to the detected aircraft type 
distribution. This conditional pdf is denoted 
as p(za(k)\a). Thus 

p(za(k)\U) = p(za(k)\a)p(a\ti)p(ti)      (5) 

Now, since U is actually a given value of 6i 
the above equation can written as follows: 

p(za(k)\ei) =p{za{k)\a)p{a\ei)p{Oi)      (6) 
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Figure 5: Generalized association network. 

Probabilities p(za(k)\a) are calculated by 
Bayesian formula as follows: 

p(za(k)\a) = 
p(a\za(k))p{zg(k)) 

EAP(a\za(k))p{za(k)) 
(7) 

Assuming that all aircraft type observations 
are equally likely apriori and applying the 
above formula yields: 

P(za(k)\0i) = 
p(a\zg(k)) 

T,AP(a\za(k)) 
■p(a\0i)p(9i) 

(8) 
Moreover, we model the internal depen- 

dencies of different attributes in the context 
of JPDA algorithm. A hierarchical attribute 
tree is attached to aircraft type node. This 
tree and the possible attribute detections are 
used to determine the probability distribu- 
tion function of aircraft type node based on 
the given attribute detections. This proba- 
bility p(a\za(k)) is then applied to the Eq. 
8. The sensor models are also attached to 
the network. Finally the tenporal dependen- 
cies are taken into account in such a way 
that the aircraft type probability distribution 
PA (A; — 1) is used as a priori distribution for 
the root variable of the attribute network. 
All these dependencies are illustrated in Fig. 
5. 

6 Data association in clut- 
tered multitarget environ- 
ment 

Target tracking has the following steps for 
each time instant: 

• Prediction 

• Validation 

• Association 

• Correction 

Prediction and correction are performed with 
Kaiman filter. Validation is carried out 
based on the position information only. At 
the validation phase a new root variable 0 
will be initialized for the Bayesian network. 
This vector has the same number of compo- 
nents as is the number of received observa- 
tions during the scan period. The valida- 
tion defines the possible values for each com- 
ponent of 0. Additionally a grid defining 
the set of feasible events will be set up dur- 
ing the validation phase. At the association 
stage the constructed network is evaluated 
and a joint probability distribution p(0) will 
be determined. The marginal distributions 
are determined for association probabilities. 
As these probabilities have been determined 

767 



the correction phase follows the basic equa- 
tions of JPDA and Kaiman filter. 

7 Simulations 

A multitarget tracking system that uti- 
lizes the generalized association network pre- 
sented above has been implemented. The 
system is capable to fuse positional detec- 
tions with attribute detections. The at- 
tribute hierarchical tree used in simulations 
is illustrated in Fig. 6. We present here two 
examples describing the central properties 
of the proposed system. The simulation was 
carried out with two crossing targets. The 
targets were of different aircraft type and 
thus the conditional probabilities in their at- 
tribute hierarchy trees were different. These 
probabilities have been used for both simu- 
lating the observation data and for reasoning 
purposes. 

The two crossing targets used in the sim- 
ulation are illustrated in Fig.   7.   The Fig. 
8 illustrates tracking results with JPDA al- 
gorithm that utilizes only the positional de- 
tections. In Fig. 9 the same situation 
has been tracked with generalized association 
network. The track switch that happens in 
the case of ordinary JPDA does not occur in 
the case of additional attribute information. 
This illustrates the system's capabilities to 
handle additional information and hence pro- 
ducing better tracking results. 

Another property of the proposed system 
is that in addition to position tracking pur- 
poses, evidencies on attributes may be yield. 
For example, in Fig. 10 the evolution of tar- 
get identification probabilities are presented. 
In this simulation we used four different air- 
craft types and the correct aircraft type of 
the target is illustrated with the bold line. 

8    Conclusions 

We presented a Bayesian network connected 
with Joint Probabilistic Data Association al- 
gorithm. The proposed method is capable 
to utilize different kind of attributes and use 
the additional information related to them 
in order to gain better tracking performan- 
cies. The network models attributes' internal 

Figure 6: An attribute hierarchy used in sim- 
ulations. 

Figure 7: Two crossing targets. 

Figure 8: Track switch. 
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Figure 9: Non-switching tracks. 

40 45 60 

Figure 10: Type identification probabilities. 

dependencies with a hierchical tree. It also 
contains the sensor models and gives relative 
easy basis to implement even more sophisti- 
cated dependencies. 
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Abstract-Arc adaptive Interacting Multiple-Model 
(IMM) estimator using a small number of models is 
proposed for maneuvering aircraft tracking. It esti- 
mates the difference between the true target control 
parameter and the value currently used in the IMM 
models to improve the estimator's performance. The 
algorithm performance is compared with the per- 
formance of a standard IMM estimator for some 
maneuver scenarios via Monte Carlo simulations. 

Key Words: target tracking, IMM, adaptive estima- 
tion 

1. Introduction 

In recent years the design of reliable and effective 
multiple-model (MM) algorithms for maneuvering 
target tracking is a subject of extensive research (see 
e.g., [1-7]). These algorithms are used to overcome 
problems caused by structural and parametric un- 
certainties. The Interacting Multiple-Model (IMM) 
algorithm is the most commonly used MM estima- 
tion algorithm among them. The lack of knowledge 
about the target's control parameters is overcome in 
it by introducing a set of fixed control parameters. 
This set is expected to cover the range of possible 
parameter changes. A set of models represents the 
system behavior in each fixed control value. Kai- 
man filters based on these models are running in 
parallel and their estimates are finally fused [1-3, 6] 
to compute the overall estimate. When the range of 
the expected control parameter is wide, however, 
IMM needs a large number of models to provide 
consistent estimation. 

One promising solution to this problem is to use 
variable-structure estimation algorithms [5-7]. An 
alternative, nontrivial solution is proposed in this 
paper. It requires a minimal number of models (one 
for rectilinear motion, one for right turn and one for 
left turn) to cover the range of all possible target 
maneuvers. The proposed adaptive IMM algorithm 
estimates the difference between the control pa- 
rameter assumed in the current model and its real 
value. The method has been applied at first for ma- 
rine targets tracking in [10], where the range of the 
control parameter is very narrow. To cover the very 
wide respective range for air targets an additional 
adaptation mechanism is applied. It is concerned 
with the IMM transition probabilities and the fudge 
factor and the noise covariance matrices of the ma- 
neuvering models. The algorithm's performance is 
evaluated by Monte Carlo simulations and the effec- 
tiveness is illustrated by a comparison with 3- and 5- 
model standard IMM algorithm versions. 

2. Aircraft Models 

The target motion is described in the horizontal 
plane xOy by the commonly used model [8]: 

X = V sin q>, 

Y = V cos(p, 

v = gnT, 

<p = -gn*N /v, 

where n*N =nN siny , y = arccos(l/nN ); (X, Y) 
are aircraft mass center coordinates, V and (p are 

aircraft velocity and heading, nN and nT are nor- 

1 Partially supported by the Bulgarian National Science Fund - Contract No. 1-808/98. 
* Supported by ONR via Grant N00014-97-1-0570, NSF via Grant ECS-9734285, and LEQSF via Grant (1996-99)-RD-A-32. 
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mal and tangential g-load factors (NLF and TLF), 
Y is roll angle; g = 9.81 is the load factor. 

The respective discrete-time model has the form 
xk =Xk-\+Tvk_lsin(pk_l, 

Yk^Yk-i+Tv^cosQ^, 

<Pk=<Pk-i+Tgn*NJl_i/vk_1, 

vk =vk-l+TgnTk, 

where  nNk = nNk sinyk ,yk = arccos(l/nNk); 

k is the current discrete time; T is the radar sam- 
pling        interval.        The        state        vector 

xk = {Xk   Yk   q>k   vk) should be estimated in the 

presence of unknown control parameters nN and 

nT based on radar measurements yk, modeled as: 

yk =Hxiik+wk, 

where H is measurement matrix and wk is white 
Gaussian noise with a covariance matrix R: 

H = 10   0   0 
0   10   0 . R = 

3. Extended Model and Adaptive EMM 

The proposed IMM algorithm uses three models to 
cover the possible target motions in the horizontal 
plane: rectilinear motion (i = 1), right turn (i = 2) 
and left turn (i = 3): 

Xi,k = Xi,k-\ + Tvi-k_i ««<pa_i, 
Yi,k =Yi,k-x+Tvik_lcos(pitk_l, 

<Pi.k = <Pi,k-i + Tg{n*Ni + An^^y va_, 
va =vik-i+TgnTJc, 

(1) 

(2) 

(3) 

(4) 

(5) 

The i-th difference &n*N k_x is a measure of the 

mismatch between the NLF currently used by i-th 
model and its true value. The extended state vector 

has the form ^^   ^   %k  v.k   ^J.   It is 

also presumed for all IMM filters that njk =0. 

The EKF for the i-th model have the recursion: 

\k/k = X: *i.*/*-l + Ki,kYi,k > (6) 
xi,k/k-\ = fyxi,k-\/k-l'nN, ,k-l)' (7) 

Yi,k =yk ~ Hixi,k/k-l' 00 

Pi,k,k-i = 0,/,^,*-,,*-, (/,*)' + Qi.k. (9) 

Si^HiPitn-iHi+R, (10) 

Ki,k ~ Pi,k/k-\HiSi    ' 

*i,k/k ~ *i,k/k-l ~^i.k^i^i,k' 

(ID 

(12) 

where xik/k and xik/k_x are the filtered and the 

predicted estimates of xk; fx = dftldxt given by: 

"1   0   TSit/k-PX9,Mk-i ran«,*/t-i 0 

Tg{nNi +A n^t/t.,)      Tg f>' = 0  0 

0  0 
0  0 

"2 
vl.k/k-l 

1 
0 

vi,k/k-\ 

0 
1 

Yt and Sik are the filter residual process and its 

covariance matrix, Pik/k and Qik is the error and 

the system noise covariance matrices, Kik is the 

filter gain matrix, $± > 1 is a fudge factor (FF). 

The estimate An*N k/k has no significant physical 

meaning directly but it contains useful information 
about the maneuver's starting/final times and inten- 
sity. It allows us to develop an adaptive mechanism 
for estimation consistency improvement. They are 
arranged below according to their impact. 

a) The FF is adaptively changed according to the 
final estimate jc(5) in the subsequent times k, k-1: 

0O=1.O6, fori = l; 

*«= 1 + J 
An* 

• < 0O, otherwise 

This adaptive FF is introduced to improve the com- 
mon filter consistency. 

b) The fifth diagonal element of the process noise 
covariance matrix Oih.  i = 1,2,3  of the EKF is 

adaptively changed to provide faster response to the 
maneuvers: 

Q,k=diag[4   ($<%($   |W5;-Wi(5,|) (14) 

c) The transition probabilities are computed as 
follows: 

Prn(k)= Prn(0)e~\Xk<5hXlk(5*, 

Prjj(k)=PrJj(0)e~\Xt<5hXjt<5V'''N-™ j=2,3;   (15) 

Prs(k)=Pra(k) = (l-Prä(k))/2;i*j*l, 

ij.l e[l,3]. 

where n*N max(it is set = 7) is the maximal expected 

value of the NLF nNk, and the standard IMM tran- 

sition probability matrix has the form: 

771 



Pru(k)= Pru(0) = const, 

Prij(k)=Pra(k)=(l-Pru(k))/2;i *j*l, 

iJ.le[l>imax]- 

(16) 

Pr; 

This adaptive transition probability matrix provides 
faster system mode transition. 

4. Performance Evaluation 

The performance of the adaptive IMM filter (de- 
noted below as IMM3a) is evaluated by Monte Carlo 
simulation for 200 independent runs. Its perform- 
ance is compared with that of a 3- and a 5-model 
standard MM (denoted as IMM3 and IMM5). 
IMM3 and IMM5 use: the model (l)-(4) and the 
EKF    equations    (6)-(12),    where    it    is    set 

An*N k/k_x = 0 and in the matrix f' the last row 

and column are excluded. 
It is preset: 

ax = Oy = 100m,(Jv =3° ,<7V = 10m/s, 

(7^=0.2,7=1*. (17) 

% =nN sin(arccos(l/nN )) 

IMM3 and IMM3a use nN=(l   4   -4), whereas 

IMM5usen„=(l   3-3   6   -6)'. 

Example 1. 
To demonstrate the significant role of the proposed 
adaptation, the IMM3 and IMM5 are compared with 
a simplified version of IMM3a (denoted as 
IMM3as), where the adaptive mechanisms (13)-(15) 
and (16) are not included; that is, all algorithms use 
constant transition probabilities (16), a common FF 

<j> = 1.06 and covariance matrices Q k with diago- 

nal elements given in (17). All the IMM algorithms 
are running with the following initial conditions: 

X0 = Y0=0m, V0=350 m/s, (p = 0°. The initial 

error covariance matrix P(0), the initial mode prob- 

ability vector p(0)  and the transition probability 

matrices Pr are: 
P(0) = ^{10000,10000,9,4000,05} forIMM3as, 

P(0) = diag{l0000,10000,9,4000}  for IMM3, 

where diag{] denotes a diagonal matrix. 

For IMM3 and IMM3as it is preset: 

Pr = 
0.6 0.2 0.2] (1/1) 
0.1 0.8 0.1 n(o)= 1/3 
0.1 0.1 0.8 1/3 J 

0.6 0.1 0.1 0.1 0.1 
0.05 0.8 0.05 0.05 0.05 

0.05 0.05 0.8 0.05 0.05 

0.05 0.05 0.05 0.8 0.05 

0.05 0.05 0.05 0.05 0.8 

m- 
ys 
V5 
V5 

ll/5j 

A target maneuver with nN =7 is the worst case 

for IMM3a and IMM3as.The true target trajectory 
and the NLF change are given in Figs. 1, 2. 

The Normalized Estimation Error Squared (NEES) 
[2] is the most informative and integral measure of 
performance. So, the respective NEES plots for all 
algorithms are computed and presented in Fig. 3 ('1' 
- IMM3, '2' - IMM3as, '3' - IMM5). Here and be- 
low the NEES is computed for the first four compo- 
nents of the state vector. 

Obviously the standard 3-model IMM does not 
provide consistent estimates during the maneuver at 
all, while the consistency of IMM3as is better than 
the IMM5. 

Example 2. 
The designed IMM3a (denoted by '1') is compared 
with IMM5 (denoted by '2') for three types of ma- 
neuvers: a fast maneuver with nN=l, a moderate 

maneuver with %=3 and a weak maneuver with 

nN =1.2. A noise covariance matrix is introduced in 

the EKF equation (9), with elements j = 1,4, given 

in (17). The fifth element of Q in IMMa is adap- 
tively changed according to (14). Obviously, the 
presence of separate models with nN =3 and nN =6 

gives advantages to the IMM5 over the IMM3 and 
MM3a in the first two test scenarios. 

16000 

14000 • V 
12000 

■ 

10000 • 
0000 • 
eooo • 
4000 

■ 

2000 
■ 

+For the IMM5 it is preset: 

Fig. 1 True aircraft trajectory 

The respective results for the fast maneuver are 
shown in Figs. 4-14. The NEES is given in Fig. 4. 
The mean errors (ME) and the root-mean square 
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errors (RMSE) of the state vector are shown in Figs. 
5-8 and Figs.9-11, respectively. The average model 
probabilities are presented in Figs. 12-13 and the 
average FF behavior is given in Fig. 14. These 
results show that IMM3a have better consistency, 
accuracy and faster response to abrupt maneuvers. 

n 
20 40 00 80 100 120 

Fig. 2 True aircraft normal load factor 

80 100 120 

Fig. 3 Normalized Estimation Error Squared 

60 100 120 

Fig. 4 Normalized Estimation Error Squared 

80 100 120 

Fig. 5 X Position ME 

Fig. 6 Heading ME 

Fig. 7 Velocity ME 

The true trajectory and the true NLF change for 
the moderate maneuver are represented in Figs. 15- 
16. The NEES and average FF behavior are given in 
Figs. 17 and 18, respectively. 

The same inferences can be drawn for the next two 
scenarios. The true trajectory and the true NLF 
change for the weak maneuver are presented in Figs. 
19-20. The NEES and average FF behavior are 
given in Figs. 21 and 22, respectively. 
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Fig. 10 Heading RMSE 
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Fig. 14 Average fudge factor 
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Fig. 11 Velocity RMSE Fig. 15 True aircraft trajectory for nN =3 
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Fig. 16 True aircraft normal load factor 
Fig. 20 True aircraft normal load factor 
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Fig. 17 Normalized Estimation Error Squared 
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Fig. 18 Average fudge factor 
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Fig. 19 True aircraft trajectory for nN = 1.2 
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Fig. 21 Normalized Estimation Error Squared 

Fig. 22 Average fudge factor 

6. Conclusions 

An adaptive IMM algorithm using a small number 
of models and covering a wide range of possible 
aircraft maneuvers is proposed. It estimates the dif- 
ference between the real control parameter and its 
value used in the current model in real time. This 
makes it possible to introduce an additional adapta- 
tion mechanism to cover a wide range of possible air 
target maneuvers. This mechanism tunes the IMM 
transition probabilities, the EKF's fudge factor and 
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the EKF's covariance. The algorithm's efficiency is 
demonstrated for the worst cases maneuvers. 
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Abstract This paper proposes a maneuvering tar- 
get tracking algorithm using geographically sepa- 
rated radars. This filtering algorithm is discussed 
in terms of tracking performance, tracking success 
rate and tracking accuracies as compared with other 
conventional methodology. Through several sim- 
ulations, validity of this algorithm has been con- 
firmed. 

Keywords: Multi-Target Multi-Sensor Tracking, 
Geographically Separated Radars, Interacting Mul- 
tiple Models 

1    Introduction 

Measurement-to-track or hit-to-track data as- 
sociation is an essential technique in track 
maintenace algorithms. The joint probabilis- 
tic data association(JPDA)[l][2] filter has been 
reported to be suitable for the above tech- 
nique. The JPDA filter updates a track with 
a weighted sum of feasible hits at every scan. 
The weights are calculated by finding all of the 
possible hit-to-track combination hypotheses, 
along with all possible hypotheses of hit-to- 
track associations which include track misses. 
However, as the measurement conditions, such 
as crossing angles of crossing targets and range 
between radar and targets, become severe, the 
JPDA cannot give full performance due to 
radar resolutions and measurement errors. 

The purpose of this paper is to enhance the 
conventional JPDA filter. In order to attain 
this objective, first, geographically separated 
radars are applied to reduction of the influ- 

ences of radar resolution and measurement er- 
rors. Measurements from various points are 
received for tracking. Measurements arrive as 
raw data; that is, individual position measure- 
ments such as slant range, elevation and az- 
imuth for each radar accompanied by a time 
stamp and an estimated standard deviation. 
A major problem encountered in using these 
radars is that tracking algorithm accepts mea- 
surements from many different locations and 
coordinate conversion plays a very important 
role in tracking algorithm[3]. The JPDA up- 
dates are accomplished for one set of measured 
parameters at a time with an appropriate mea- 
surement matrix computed for each measure- 
ment point with the consideration of coordi- 
nate conversion. 

Next, the interacting multiple model (IMM) 
algorithm is applied to JPDA for track- 
ing multi-targets maneuvering in three di- 
mensions. The applicability of the original 
IMM algorithm was investigated and confirmed 
through simulations [4]. In addition, in the 
presence of clutter, the IMM has to be comple- 
mented in order to take into account the un- 
certainty of measurements origin. It was shown 
by Houles and Bar-Shalom that the probabilis- 
tic data association(PDA) logic is an efficient 
solution for this aspect [5]. In tracking long 
range targets, however, the IMM cannot give 
full performance for maneuvering targets due 
to the measurement errors. In order to over- 
come this problem, we apply the IMM algo- 
rithm to JPDA where distributed radars are 
fused. 
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This paper is organized as follows. Coor- 
dinate systems used in this paper are shown 
in the next section. Section 4 presents our 
methodology using distributed radars. Section 
5 discusses numerical performance results of 
the described methodologies using simulation 
data. The conclusion is given in the final sec- 
tion. 

2    Coordinate Systems 

Fig. 1(a) shows the geocentric-equatorial coor- 
dinate system, which is centered at the center 
of the earth. In this system, z is directed along 
the axis of the Earth rotation and x and y lie 
in the equatorial plane, with x pointing Green- 
wich. Radar centered N-E-U coordinate sys- 
tem is shown in Fig. 1(b). In this system, z 
is directed along the axis of the local vertical 
and x and y lie in the local horizontal plane 
with x pointing east and y pointing north. We 

(Ri) 
Z   (Up) 

*-<Ri> 
y (North) 

'<Ri> 
rx (East) 

(a)Geocentric-Equ«toria! Coordinate System      (b) Radar-Centered NEU Coordinate System 

Figure 1: Definition of Coordinate Systems. 

define position vector in geocentric-equatorial 
coordinate system as: 

xW=[xWJE\zW]T. (1) 

On the other hands, position vector in radar 
centered N-E-U coordinate system of radar I is 
defined in eqn.(2). 

iT 
(2) x(Äi)=[a:(Äi))j,(fii)>z(Äi)]J 

The transformation from x^ to x^R'^ is 
given by the following equation: 

,j(R>) 

r("i) 

=    T ERi 

r -r(ß) 

where each element of TERI and TER, consists 
of geodetic longitude and latitude of radar I. 

3    JPDA using geographically 
separated radars 

3.1    Feature and subject 

In tracking long range targets using single 
radar, measurement errors in cross-range di- 
rection are much larger compared with range 
direction (see Fig.2). Besides, it is seldom pos- 
sible to resolve two targets due to an insuffi- 
cient angle resolution. 

Then, if measurement data at the same time 
from radar 1 and radar 2 are supplied to the 
tracking point and tracking process is done, the 
problem of the measurement error and angle 
resolution can be reduced as shown in this fig- 
ure. As a result, the improvement of the track- 
ing performance can be expected.    In using 

Targetl      Error Ellipse of Radar 2 

— 1"ERt (3) 

Figure 2:   Target Tracking Using Geographi- 
cally Separated Radars. 

measurement data from geographically sepa- 
rated radars, coordinate axes of tracking point 
and each radar do not correspond due to the 
roundness of the earth. In order to construct 
tracking algorithm, this disagreement must be 
considered in constructing of the measurement 
equation of tracking filter. 
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3.2    Data association 

Denote a scan of hits of radar 1(1 = 1,2, • • •) 
as: 

%k,l — [zk,l> zk,2i * *" zfc,mM] (4) 

where zl
ki(i = 1,2,• • -,»1^/) is an individual 

hit of radar / on scan k and mkj is the number 
of hits on scan k. 

Denote the history of hits up to scan k as 
Zk,l. 

Zk' = [ZlhZv,-Zkj\. (5) 

Furthermore, denote the history of the num- 
ber of hits of radar / up to scan k as: 

Mk,i = [mi,/, m2,/, • • • , mfc,;]. (6) 

Denote the set of data association hypothe- 
ses for radar I at scan k as: 

xk,t = \xk'1,1 xk'2,1 ••• xk,ockA (7) 

where ak is the total number of hypotheses. 
The joint hypotheses Xk>*'l(i = 1,2, • • • ak) are 
defined as: 

rk,i,l -,m*,/ yk,i,l 
(8) 

where Xj£] is the event that hit j originated 
from target nj(rij = 0,1, • • ■ , L). Index rij = 
0 stands for clutter. Each joint event can be 
represented by a data association matrix shown 
as eqn.(9). 

Sl(Xk>1)   =    [Wki] (9) 

where WA   = 1 means that hit j could orig- 
hi 

inate from clutter, W-^  = 1 if hit j is inside 

the validation gate of target n and Wj^ = 0 if 
hit j is outside the validation gate of target n 
for j = 1,2, • • • , mkj, and n = 0,1,2, • • •, L. 
Based on the data association matrix, data 
association hypotheses Xk'hl are generated in 
matrix form as the following equation: 

Q(Xk^1)   =    [Wkf] (10) 

Tk,i,l _ where W^' = 1 means that data association 

hypothesis Xk£l is possible and Wk^1 = 0 if 

Xj£' is impossible. 

According to the above data association hy- 
potheses Xk,t'1, the following indicators can be 
defined: 

M**'M) = £ <»*''(" = 1,2, • • ■ X)      (11) 

SniX^'1) = 1  (if target n is detected) (12) 

Sn(X
k'i'1) = 0 (if target n is not detected)  (13) 

L 

E 
n=l 

Tj(X
k*l) = Y,wfrl (14) 

Tj(Xk^) = l 

(if hit j is associated with target) (15) 

Tj(Xk^1) = 0 

(if hit j is not associated with target) (16) 

9(XW) = J2[l-Ti(xW)] (17) 

where *(Xfc'''') is the total number of clutter 
in data association hypothesis Xk,t'1. 

4    Multiple Model JPDA 

In this section, JPDA using distributed radars 
for maneuvering targets is shown. 

4.1    Modeling 

The kinematic model of target n 
(n = 1,2,■••,L) in Cartesian coordinates is 
described as follows: 

*M« = *fc-M-*fc-M- + Wk-l,a» (18) 

where 
wk a" acceleration noise of the target n, 

and  E[wfa]    =   o,   E[wlanwgan]    = 

Qk,an ■ 
where suffix k means scan k, and a denotes 
the targets kinematic model number. With re- 
gard to model number a, a six-dimensional vec- 
tor consisting of position and velocity for each 
coordinate is considered as kinematic model 1 
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and a nine-dimensional vector adding accelera- 
tions to model 1 is applied as kinematic model 
2. 

Transition matrix $k,an(a = 1,2) is 

# fc-i,in — 

S"fc—1,2" = 

■^3x3 A*J3x3 
03x3 ^3x3 

, 

•^3x3 A*I3x3 2      J3X3 

03X3 ■^3x3 A«J3x3 
.  03x3 t>3x3 ■^3x3 

(19) 

(20) 

where I3x 3 is unity matrix and A t is sampling 
interval. 

?fc,i" = tf 

Qk,2n — 1l 

^3x3 

^/3X3 

(Ai)4 T s   4     *3x3 

2   .    ' 
(At)2 

(At)3 r 
'   o     -»3X3 

3x3 

'3x3 

2 

(Af)2/3X3 

)3 

2 
\9 ■ 

'3x3 

A*I3x3 

(At)3
f i~2      -«3x3 

(A*)2I3 

(21) 

i—2      -^3x3 

Afl3x3 

^3x3 

(22) 

where q\ and 92 are the variances of the ac- 
celeration noise of kinematic models 1 and 2, 
respectively. 

Assuming that xk is the state vector of tar- 
get n after the integration of the above kine- 
matic models, the relationshipe between xk 

and xka„ is described by the following equa- 
tion : 

<a„ = Dax
n

k (23) 

where Da is a constant matrix for adjusting of 
dimensions of *^a„ and x%. 

Denote the dimension p of xk as : 

p = max{pi,p2} (24) 

where p\ and p2 are dimensions of kinematic 
models 1 and 2, respectively. Each kinematic 
model is modeled as a stationary Markov pro- 
cess and the transition probabilities are de- 
noted by Pa»bni 

Pa«6» =Pr[^k,a"\^k-l,b-] (25) 

where ^k,an is the event that kinematic model 
a is true. Denote the set of events ^!k,an as 

*fc,a=[*M>,*fc,«a'-"'*M1]- (26) 

Denote the transition probabilities of the set of 
events by Pab, 

pab _ pr r^fc,a|^fc-l,6j ^7) 

and assuming that Pan5n is independent of tar- 
get n, 

Pab = f[ P^ (28) 
n=l 

The observation vector from radar I is a 
three-dimensional vector as follows: 

_/ _ L(Äi) JRI) z(m
T 

Z
k — [xko   >Vko    iZko   \     ■ (29) 

where o means Observation and (Ri) denotes 
the observation vector in N-E-U coordinate 
system of radar /. 

The observation equation can be written as: 

4 = h(xnk,an)+Vk,l (30) 

where 
Zj.:observed vector on scan k of radar I, 
«^^observation noise on scan k of radar I, 

and E[vk,i\ = o, E [»*,/«£,] = Rk,l- 

■Jt-TERl{rERa-rERl) (31) 

Hk,a,0 is measurement matrix at tracking 
point: 

Hk,l,0=[l3x3    0/3x3 ]• (32) 

Hk,2,0 = [ -^3x3    0/3x6 J (33) 

Measurement matrix for radar I at tracking 
point Hl

k a is obtained as follows: 

Hk,a,l = TER,TERoHk,a,o, (34) 

Hk,i,i = 

Hk,2,l = 

Ä11    h12   hn   0   0   0 

^21     h>22    /l23    0    0    0 

^31     ^32    /l33    0    0    0 

(35) 

An h12 hi3 0 0 0 0 0 0 
Ä21 te Ä23 0 0 0 0 0 0 

h3i   hZ2   h33   0   0   0   0   0   0 

(36) 

where h(j(i = l,---,3 : j = l,---,3) is the 
funtion of geodetic longitudes and latitudes of 
radars and tracking point. 
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2       2 

a=l 6=1 

+ (*£„„(-) - D«K{-)) (*.,.-(-) - A,*£(-))T] 

4.2    Prediction 

Predicted state vector based on each kinematic 
model in N-E-U coordinate system on scan k, 
xk an (—) is assumed to be state estimated value 

based on Mfc_1( Z
k~1,1 and *^,an and the error 

covariance of xkan(—) is denned as P£0„(—). 
££„„(-) and Pfc„n(-) are calculated as fol- 

lows: 

x2ia.(-) = E[a:2|#fcl„-,Zfc-1',,MUi], 
2 

= $>r [«4-1,6-1^,0-,Z^-'.Afi.!] Db 

6=1 

X  (#k-l,6»££-l,6»(+))> 
(37) 

n,a4-)=E [(xn
k -*z,.-(-))(«z - *r,„-(-))T 

2 

= Y,Pr [*fc-i,6-|**,a-,Zfe-1'z,M'fe_1] £>f 
6=1 

X   [#*-l,6-{P*-l,6»(+) 

+ W-,,l-(+)-E^[*»-,»-|*M.,Z'-'',Mi_I]     s„,,H     _     £[(4_^(_))(4_i»,,(_))X| 

x **-i,6-(+)) z^^.ArJUil 

x^-i.i^+J-E^I**-!.»-!**.-^*"1'''-"'*-!] =   HkjPU-Wlt + Rk,, (44) 
6=1 

X   *j-l,»-(+))T}*f-li6- + 0Z-l,»-]O»- 

where E [•] means average. 

Pr[*fc_u.|*M.,-Z*-1',,MJUi] 

(41) 

4.3    Validation gate 

At each scan, a validation gate, centered 
around the predicted measurement of the tar- 
get, is set up to select the measurements to 
be associated probabilistically with the target. 
The validation region is : 

(4 - zn
k\-jf sfl (-) (4 - **i\-)) < dm 

where Sk is the covariance of the innovation 
corresponding to the true measurement and 
*fc' (—) *s ^ae predicted measurement of the 
target. 

= M*SH) (43) 

(33)where Hk,\ is Hk,2,l and d is a gate size pa- 
rameter from the chi-square distribution with 
3 degrees of freedom. 

2^6=1 Pabßk'-lfi" 
(39) 

Next, predicted state vector and its error co- 
variance with each mixed estimate obtained by 
the above equations are calculated as follows: 

*2(-)    =   E[xl\Zk-",Ml
k_x], 

=     EE^-l,6-Pa-»-(I?r*Z,a.(-)) 
o=l 6=1 

(40) 

where Pa»6» is transition probability. 

P*(-) = E \(xk - &k(-))(xk - xk(-))T\Zk-1\Ml
k_1] 

4.4    Filtering 

The probability of the individual joint events 
on scan k, ßl

kia b, is defined by Zk'1 and Ml
k. 

ßi,i,a,b   =   Pr[xk>il,*k>a,*k-1*\Zk>l,Mi] 
rJ    . ßb' 
'k,i,a,b^k—1 /.c\ -    "-*  (45) ^2L    ^2L   \^ak      I 

a=l 2^6=1 2^i=l lk,i,a,bPk-l 

Tk,i,a,b = Vk I!      9(z'ktj;z
n

k:U-),Sn
k:U-)) 

i:Tj(Jf*.«.')=l 

x   n  pz  n (I-PBPGA')P°
6 

n:M*M'')=l n:«n(X*.«.')=0 

(46) 
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where 9(zl
k^zn

k^n{-),S
n

k^n{-)) is the nor- 

mal density function with z^'an(—) mean and 
covariance equal to the covariance matrix of 

&k a» ^or *^e trac^ *° wmcn hit zk,j *s assigned. 
Pj) is the probability of detecting the target, * 
is the number of clutter hits, and rfk and PQK 

are the probabilities that clutter and the tar- 
get exist in the validation gate, respectively. 
ßk i a b 1S *he a posteriori probability of which 
target kinematic model is true and which mea- 
surement is true. Eqns. (47) ~ (50) can be 
obtained using eqn.(45). 

Pi},«"   =   Pr[xk^l^k^\Zk\Ml
k] 

L        2      2L 

=      Z—i    2-j   2—iPk,i,a,b 
,6=1 

(47) 

n =1 an =1 ' 

ak   2l 

ßi = Pr Ulk*\Zk*,Ml
k] =EE4>^48) 

2 = 16=1 

ßli» = Pr [%,a»|^M,Mi] = Y,ßlia» (49) 

ßn
kj = Pr [xk^l\Zk'l,Mi] = £ ßlia* (50) 

an=l 

a* 

tfj = E&nXn''(; = 1.2, ■ ■ • , mfc)/)     (51) 
i=l 

/?£'• is the a posteriori probability that the mea- 

surement zl
k • originated from the target n. 

(52) 
i=i 

If the new set of the measurement Zkj is 
obtained, the update equation based on each 
kinematic model is: 

xlan(+)   =   E[xfa\9k„ZVM] 
=   *n

k,an(-) + Kla»un
k:ln       (53) 

where Kk a„ is the filter gain matrix and uk'a„ 
is the combined innovation: 

x [HktailP
n

ktan(-)Hlatl + Rktl] 
-l 

"&,- = 4,;->>K«» (-))   (j = 1,■■ • ,mM)(55) 

"*i.=EÄj^ (5ß) 
i=l 

The updated error covariance matrix is given 
by: 

n«»(+)=E K*Z - *fc,-(+))(*2 - *M-(+))T 

|*M,Zk'',Jlfi] 

=/5tX-(-)+(i-ti)na.(+) 

+ -^Jfc.a» 
E/in,i   n,l        n,l n,l     n 

J'=l 

n,l   „n,/T 

a" 
T 

Äfc,a" 

(57) 

n'«»(+) = (J- ^^.«J n,a«(-) (58) 

where the dimension of unity matrix I depends 
on the kinematic model. In the case of model 
1, I is 6 x 6 unity matrix. In another model, 
it is 9 x 9 unity matrix. 

The combination of the model-conditioned 
updated state vector and error covariances is 
calculated as follows: 

x"k(+)   =   E[x"k\Z
k'l,M[], 

(59) 
o=l 

pk(+) = E [K - *2(+))(*2 - K{+))T\zk>l,M{], 

a=l 

(54) 

x (xla4+)-Dax"k(+))T]DT
a 

The feature of this method is the fact that 
the volume of the validation gate changes ac- 
cording to the kinematic model probabilities as 
shown eqn.(41)[6]. 

5    Numerical Results 

The   validity   of   IMM-JPDA   is   examined 
through Monte Carlo simulations of 50 runs. 
(1) Target Trajectories 

(60) 
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Target 1 

Figure 3: Simulation Scenario 1 

»W2 E Target 1 

x[km] 
(East) 

Figure 4: Simulation Scenario 2 

Two types of target trajectories are applied 
in computer simulation. Figs. 3 and 4 show sim- 
ulation scenario examples. First, two targets 
start as shown in Fig.3. The kinematic char- 
acteristics of the target paths are as follows. 
Targets start moving along two straight lines 
at a velocity of 340m/s; subsequently targets 
perform a 90° turn with maneuver acceleration 
of 5g. The minimum distance C between the 
two tracks are assumed as 100m, 200m, 300m, 
400m and 500m. 

Next, two targets start as shown in Fig.4. 
The constant velocities are 340 m/s and these 
targets cross each other at 500s at 30, 20 and 
10 deg crossing angle E. 

(2) Measurement System 
Radars having a range measurement stan- 

dard deviation of 100 meters are located as 
shown in Figs. 3 and 4. The angle mea- 
surement standard deviation is assumed to be 
0.85 deg. A sampling interval is set to be 6s 
throughout the trajectories. The Pfa (Proba- 
bility of false alarm) is 1.0 x 10-6 for clean en- 
vironment and the Pfa is 0.01 for clutter envi- 
ronment assuming clutter being uniformly dis- 
tributed in the clutter bank shown in Figs. 3 
and 3 and the number of clutter being Poisson 
distributed. The P j) (Probability of detection) 
is set to 0.9 for both environments. 
(3) Tracking Algorithm 

Tracking performance of IMM-JPDA was 
compared with conventional JPDA. Both JP- 
DAs use measurements of two distributed 
radars shown in Figs. 3 and 4. The JPDA 
is based on constant velocity model and it has 
process noises with a standard deviation of po- 
sitions and velocities, corresponding to 49m/s2 

of acceleration. This value of the process noise 
was selected to show the maximum perfor- 
mance in tracking the targets of trajectory sce- 
nario 1 at the minimum distance of 500m under 
the clean environment. 

The IMM algorithm consists of two kine- 
matic models. The first model is a six- 
dimensional constant velocity model with 
white noise acceleration. The second model is a 
nine-dimensional constant acceleration model 
with white noise acceleration. The first model 
has process noise with a standard deviation of 
0.01 m/s2 and the second model has process 
noise with a standard deviation of 19.6 m/s2. 
The assumed gate size parameter d is 12.83 for 
Both algorithms. 
(4) Tracking Success Rate 

Tables 1 and 2 show tracking success (which 
means that each track ends on the same target 
for which it started) rates of both JPDA algo- 
rithms. IMM-JPDA shows preferable tracking 
success rate on average compared with JPDA 
in both scenarios 1 and 2. 
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Table 1: Tracking Success Rates(Scenariol)[%] 
Clean Clutter 

Environment Environment 
IMM IMM 

C[m] JPDA JPDA JPDA JPDA 
500 92.0 64.0 88.0 60.0 
400 92.0 60.0 86.0 56.0 
300 90.0 54.0 86.0 52.0 
200 84.0 50.0 80.0 48.0 
100 78.0 44.0 70.0 40.0 

MM j 

MOO 

r i"" i 
i 

MO 

400 

ZOO 'W^M^i M^MW^MW 

Figure 6: RMS Position Errors(Scenario 2) 

Table 2: Tracking Success Rates(Scenario2)[%] 

E[deg] 

Clean 
Environment 

Clutter 
Environment 

IMM 
JPDA JPDA 

IMM 
JPDA JPDA 

30° 
20° 
10° 

88.0 
78.0 
74.0 

60.0 
52.0 
42.0 

82.0 
70.0 
68.0 

58.0 
46.0 
38.0 

(5)Tracking Accuracies 
Figs. 5 and 6 show RMS position errors 

of target 1 by two methods under clean en- 
vironment. IMM-JPDA method shows better 
results also in tracking accuracies around the 
minimum distance point(500s) and the cross- 
ing point (500s). 

! 
s 
i 
I; 
i: 

1000 -MK-JM» ij 
3 ', 
I '. 
i Ü 
1 'i 

i 1 S Hi 
800 • •   Ml • 

JNU »i s if • >. 1   '{ 1 L ikt [ • ap i 
t i   '! V t 

Figure 5: RMS Position Errors (Scenario 1) 

6    Conclusion 
The JPDA filter using distributed radars to 
track maneuvering targets has been presented. 

The tracking performance of this method and 
that of the conventional JPDA were evaluated 
and compared with respect to tracking success 
rates and tracking accuracies through a Monte 
Carlo simulation. Our computer simulation 
results indicated that the enhanced method 
showed better performance on average. 
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PARTICLE METHODS FOR MULTIMODAL FILTERING 

Christian Musso, Nadia Oudjane 
ONERA DTM. BP 72 92322, France . {musso,oudjane}@onera.fr 

Abstract : We present a quick method of particle 
filter (or bootstrap filter) with local rejection which 
is an adaptation of the kernel filter. This filter 
generalizes the regularized filter. The conditional 
density of the state is recursively estimated. The 
proposed filter allows a precise correction step in a 
given computational time. In the context of the 2D 
tracking problem with angle and/or range 
measurements, simulations show a better behavior of 
this filter compared with the Kaiman filter and with 
classical bootstrap filter. We present also some 
results of a multi model particle filter which can 
track maneuvering targets. 

Keywords : particle filter, boostrap, 
tracking, non-linear filtering, Monte-Carlo, 
rejection 

1. INTRODUCTION 

We consider a target following a noisy 
dynamical equation which is partially 
observed, (notations are the same as in [1]) 

Yt = H(X,) + Wt 

where F:Rd >Ärfand      H:Rd 

are given functions,      (^),(W^) 
variables with densities, 

V, ~ p(v)dv,      W, ~ q(v)dv 

(1) 
(2) 

 >R* 
are  iid 

(3) 

X0, the initial state of density p0, is 
assumed independent of (V^),(WJ). (Xt) is 
a markov chain 

X, l{Xt_x = xt_x )~p(x- F(x,_x ))dx        (4) 

(Yt) are independent conditionally to(X,), 
and each (Yt) is, conditionally toX,, 
independent fromZ^s ^ 0» 

Yt/(X,=xt)~q(y-H(xt))dy 
ISIF © 1999 

(5) 

The Extended Kaiman filter (EKF) is widely 
used to estimate recursively the mean and the 
variance of the state Xt given the passed 

measure Y' =(Yv...,Yt). The EKF assumes 
that the conditional density is Gaussian. But, 
when F or H is highly non-linear, or in case 
of multimodality, the EKF is inefficient. The 
goal of the non-linear filtering (NLF) is to 
estimate the whole law of the state Xt given 

the measures Y'. For example, in the 
tracking context, we will be able to estimate 
precisely the probability of the presence of a 
target in any portion of the state space and 
consenquently to estimate the position of the 
target. For this filter there is no hypothesis 
concerning the linearity of F and H and no 
conditions about the nature of the noise V 
and W. We want to estimate recursively the 
conditional density, denoted by ft/t(x/y'). 
Suppose we know f,_Ut_i, and a new 
measure y, is available. Bayes rules give 

easily the formulation of ft/t(x/y') in two 
steps, 

/„_,(* //"') = 
J P,(XI Vi )/r-l /r-1 (*,-! /y_1 )<*Xt-i (6) 

/,,,(*//) ~<7,o^./;,,-,(*/y-1)    (7) 

The first step (6) is the prediction step using 
the dynamical law. The predicted density 
ft/t_x(x/y'~]) is the expectation of 
pt(xlXt_x)where X,_x followsft_Ut_v The 
second step (7) is the correction step. 
qt{yIxt) = q{y- H(xt))\s the likelihood at 
the point xr When the noise Wt is Gaussian, 
q can be expressed as 

q,{ylX,)=1{2K)dn4teW) 

expt^y - H(x,))' QTl(y - H(xt))')]   (8) 
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The correction step confronts the new 
measure with the predicted density. The 
recursion begins with the assumed known 
initial density f0/0(x) = p0(x). A natural 
way to solve (6) and (7) is to discretize the 
state space. This can be done when the 
dimension (d) of this space is low (d<4). 
Otherwise the computing cost is high. [2]. 
Another way is to use Monte-Carlo methods. 

2. CLASSICAL PARTICLE FILTER 
ALGORITHM 

The aim of the particle filter, called also 
bootstrap filter or Monte-Carlo filter, is to 
generate recursively a sample (particles) 
which     follows     approximatevely     the 
conditional density ft/,(x/y'). Suppose we 
have, at time (t-1) a N-sample 
Cv^^.-.^^^accordingto /,_1/M. The 
integral (6) can be approximated by the 
empirical expectation. In other words, the 
density   /,_,/,_,   is   approximated   by   the 

N 

empirical measure (1/N)£ö u)   (x) which 

puts uniformly the mass on the particles. (6) 
and (7) become, 

/,,,-,(*//-') = ^ZP,(*/W.)       (9) 

fllt(x/y')^f4qt(yt/x)pt(x/x^/t_l)   (10) 
7=1 

The error of this approximation is 
independent of the dimension (d) and is of 
order 1/V^V (law of large numbers). 
Therefore, unlike discretization methods, 
Monte-Carlo methods can, theorically , deal 
with large (d) with a reasonable computing 
cost. There is two classical ways to generate 
sample from (9) and (10). 

2.1 The weighted resampling method (SIR) 

These filters called SIR filter (Sampling 
Importance Resampling) ([3],[4]) or IPF 
(Interacting Paticle Filter) ([5]) or 
CONDENSATION (Conditional Density 
Propagation) ([6]) first generate a sample 
from (9). This can be done by, 

1 Generate I uniform on {1,...,N}        (11) 
2 Generate X according to pt{xlxt_Vt_x)(\2) 

Step 1 is a bootstrap algorithm and step 2, 
for fixed xt_xlt_x, gives a predicted particle 

xtlt_x according the dynamical law (1). This 
algorithm     produces     an     iid     sample 

(X™-P-».*,
(
/M)- Then in (7), ftl1_x{xly'-x) 

is approximated by the empirical  density 

;'=i 
xm-\ 

/,/,(*) = XWAj>  (*) (13) 
;'=i 

where    w. = q, (y, I *,")_,) / £ qt (y, / xt'l,_x) is 
;'=i 

the weight of each particle proportional to the 
likelihood. Generating a sample from (13) 
can be done by (correction step), 

1 Generate I, P(I - i) = wt (multinomial)(14) 

2 Put X = x,l_x (15) 

The most likely predicted particle are the 
most duplicated. (11) (12) (14) (15) produce 
quickly a new iid sample (xt/t,...,xtlt). 

2.2 The rejection method (RM) 

The  RM   [1],[4]   generate   the   predicted 
(1) (AO 

particle (xtlt_v...,xtlt_x) with (11) and (12), 
like in SIR. But approximation (13) is 
avoided. The RM produces a exact sample 
according to (10). It is easy to check that the 
following algorithm generates this sample , 

1. Generate I uniform on {1,...,N} 
2 Generate X ~pt(xlxt_xlt_x) and U uniform 
on [0,1] (16) 
3. If qt(y,IX)>ctU, accept X, x,/,=X and 
j=j+l (17) 

where c, >supxqt(yt/x). Steps 1,2,3 are 
repeated to get the desired size of the sample. 
For the rejection method, the correction step 
is exact for fixed N, unlike the weighted 
sample method. However, in this form, the 
computing cost is high. Indeed, the 
probability that (16)+(17) produce a sample 
X (acceptance probability) is proportional to 
c~x. The maximum of q(y/.) can be high (see 
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for example (8) c~x = (2n)dl2^Jdet(£l)). SIR 
and RM have a serious drawback. In case of 
low dynamical noise, we observe that in 
multiplying the high weighted particles, the 
prediction step will explor poorly the state 
space. There is with time a degeneracy 
phenomenon. The particle clouds will 
concentrate on a few points of the state 
space. The discrete nature of the (weak) 
approximations reduce the exploring 
capacity. Therefore, it is useful to generate a 
sample from a smooth distribution which 
approximate sthe underlying distribution fth 

which is assumed to be smooth. 

2.3 The kernel and the regularized methods 

Hurzeler and Kunsch [1] have introduced the 
kernel filter (KF) which uses local rejection 
and density kernel estimation. The new 
algorithm proposed in this paper (L2RPF) is 
an adaptation of the KF. Regularized particle 
methods (RPF) that have been proposed in 
([6]...[9]), deal with weighted sample 
methods. The RPF (version where 
regularization is made after correction) 
estimates ftlt_x by a non-parametric density 
estimation using a kernel (K). (13) becomes, 

where h is the bandwith, K the kernel which 
is itself a density, A'1 the root of S the 

covariance matrix of the particles jc,/f_, 
(A^A, = S"1). The algorithm, 

1. Generate I according P(I = i) = w,     (19) 
2. Generate Z ~ K{x)dx (20) 
3. Put X = *$_, + hA;xZ (21) 

produces a sample according to (18). The 
regularization (21) improve the exploring 
capacity. Note that h=0 gives the SIR (14), 
(15). K and h are chosen in order to 
minimize    the    L2    error    ,    MSE(K,h) 

= j(ft/t(x)-flll(x))2dx [10], [11], among 

the even kernels of L2 norm equal to 1) 

K(x) = ^c-\d + 2)(l-\\xf) if ||JC||£1  (22) 

0 otherwise. cdis the volume of the unity 
sphere. The optimal h is, 

/i = A(20AT1/w+4)/2with 

A(K) = [Sc-d
l(d + 4)(2^)d] 

di\Kd+4) 
(23) 

It is important to whiten the particle before 
the regularisation because h is the same in all 
directions. Note that the MSE depends now 
on the dimension (d) with the optimal h. 

3.THE L2RPF FILTER 

3.1 Description of the filter 

The Local Rejection Regularised Particle 
Filter allows a precise correction step in a 
given      computational       time.       Given 

(xtit-0j=i....N md a scalar at, we generate a 
corrected sample with the following 
algorithm, (24), (25), (26) 

1.Generate I, P(I = i) oc cti(at) 
2.Generate Z* K(x)dx,\J uniform on [0,1] 
3. Put X = xl')]_l+hA;1Z 
4 If q,(y,/X)>at c,,(at)\J, we accept X, 

*r/,=Xandj=j+l (27) 

The coefficients cti{at) (computed below) 
satisfy, 

ctJ(a,)>supxez](a)qt(yt/x) (28) 

^ = {x/(x-x^_lys-\x-xlil])<afh2}is 
a local ellipsoid centered on the particle 
*{/'_!. cct is a control parameter between 0 
and 1. 

Proposition 3.1 : the L2RPF algorithm 
produce a sample according to 

fa (x) - XK.(«r)min(l,Ä^)] 
1=1 

K[h-]A,(X -*;;;_,)] (29) 

Indeed, with «<» in Rd in the 
«coordinate by coordinate» sense and 
putting g(x) = q,(y,/x), the 3 independent 
variables being I, U and Z, we have 
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P(X<x)°c£ jJK(z) c^dzdw 
'=' g(x'+hA~xz)>aCi(a)u 

x'+fc/T'zSx 

g(x'+hA-lz), £     J     [C,.(a)min(U '-)]K(z)dz 

(Putting zz = x' + hA~xz, it becomes) 

•cf;    f [C,(a)min(l,-^-)] 

Ar(A_IA(zz-*'')dzz 

We obtain  (29)  after derivating  the  last 
expression w.r.t « x ». 

Proposition     3.2 the    acceptance 
probability  Pa  of  the  L2RPF   is   with 

c = (JX,«*))-1, (30) 

N 

K(z)dz (31) 

P.(a) - c£ c,.(af)min(l,^f4)      (32) 

(31) is computed like in (29). (32) is 
obtained      using      an      expansion      of 

8(xt'/t-i + hA~\) around h = 0. This 
approximation is in general precise. If we 
put a=l in (29) the «min» is 
c~](cc)qr(yt/x), because c-is a local 
maximum (28), 

ftT
l(x)ocfj[qi(yt/x)K[h-iAt(x-xZ_i)] 

1=1 

which is the KF with the exact correction. In 
this    case    Pa    is    minimal    (32),    the 
computational cost is maximal. If we put 
a=0 in (29) the «min» is 1 and 
c(- (a = 0) = w, (S;reduces to a particle). We 
obtain the RPF (18). In this case Pa=l, the 
computational cost is low. Note that Pa(cc) 

decrease swhen a increases At each time, the 

choice of a is done by the following 

manner: we keep the maximal value of a 
such as Pa{a)>Pfn (with a coarse 

discretization of [0,1]). Pfn is given by the 

computing capability .   The higher a is, 

better the correction. When a is chosen, we 
put Ne=NIPa(at) the number of test- 
samples which enter in the loop (24-27). In 
practice, at is close to 0 for the first 
measures, then increases to 1 when the 
particles concentrate on likely regions of the 
state-space. Now we present a fast method 
to compute cti{a) 

3.2 computing the ctj(at)coefficient 

By Lagrangian methods, we can see that the 
coordinates {xv...,xd)of a point in Xy 

verifies(l<i<d), (33) 

xf = x\ - ah^ < xt < x\ + ahfi: = x,max 

where Sü is on the diagonal of S. Let C; 

being the hyper-cube 
{x/xfn < *. < jc,max,l < i < d}(£. c Cj.). 

cti(at) will be the maximum of g on Cr 

Assume that the measure function 
(Hk(.),k = l,...,q) (2) is locally decreasing 
for one coordinate or increasing for an other. 
For example if we measure an angle 
//^(x)=arctg(x,/x2), Hk increases when x, 
increases and Hk decreases when x2 
increases (if x,, x2 >0). The extreme values 
of Hk are, (34) 

m Hk(xm )<Hk{x)<Hk{xM) = Hl 

where x(
ef equals    xfn or x™\ Suppose 

that the q components of the measure noise 
W are independent and that q(.) (5) 
decreases around the origine, it can be seen 
that the maximum of the likelihood on C; 

(c(;.= sup(g(x))is, (35), 

max,eC. Y[q% (yk - Hk(x)) =\[qWt (yk - He
k
nr) 

k=\ k=\ 
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where/7r=tfrnif Ä^AT,   ÄT=Ä  * 
Hfn<yk<H™     and     H?r = H™*     if 

yk>Hr 

4. SIMULATIONS 

We present  three  2D-tracking  problems. 
L2RPF is applied   in each problem execpt 



the last one. The computing cost is about 30 
times bigger than the EKF with P™n=0.2. 
The number of particles (N) is 5000. The 
number of Monte-Carlo (MC) is 50. In 
these problems, the dynamical noise level is 
equal to zero. So, we can easily compute the 
Cramer-Rao Lower Bound. 

4.1 Bearing only 

The target has a uniform straight motion 
(jcJ.i'.jt^MlOkm, -10m/s, 10km, 
10m/s) (figure (1)). The observer 
(xot,yot)is on the origine at time 0. He has a 
2 legs motion: (50m/s Om/s) speed for the 
first (during 100s) and (-50m/s 50m/s) for 
the second. During 200s, the observer 
measures every second a noisy angle with 
standard deviation (std)=0.5°, 

H(X,) = arctg{{x) -xo,)/ (jcf - yo,)). The 
initial estimate X(0/0) (center of the cloud) of 
the target is a Gaussian variable centered on 
the true position with covariance matrix, 
P(0/0)=diag(5km, 30m/s, 5km, 30m/s). 
Figure (1) shows the estimated trajectory 
(center of the cloud) of the L2RPF. Figure 
(3) shows the evolution of the acceptance 
probability with the corresponding control 
parameter a (Figure (2)). For each MC trial 
we compute the trajectory estimation error in 
order to obtain the std (for the 50 trial) of the 
target position. As you can see on figure (5), 
the std of the horizontal position of the target 
is very close to the Cramer-Rao Lower 
Bound (CRLB) (without bias (figure (4)). In 
this context, (observability problem) the 
EKF has diverged 5 times over 50.. 

10000 

0     2000    4000    6000    8000    10000   12000   14000   16000 
x(m) 

Figure (1): true and estimated trajectories 
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Figure (2): control parameter evolution 
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figure (3): acceptance probability 
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Figure (4): bias for x-position Figure( 5): standard deviation for x-position 

4.2 Range and Bearing 

The target has a uniform straight motion 
(xx

t,x
l,xf,x2)=(5km, -20m/s, 5km, 

20m/s). The observer is on the origin. 
During 200s, the observer measures every 
second a noisy angle with std=l° and a 
range     with     std=lm     (very    precise), 

Yt=[arctg(x)lx2),    ^(x])2+(xf)2].    The 
initial estimate X(0/0)  of the target is  a 
Gaussian  variable   centered   on   the   true 

position with covariance matrix, 
P(0/0)=diag(0.5km, 50m/s, 0.5km, 50m/s). 
Results with the 50 MC are shown below, 
L2RPF and EKF are compared. Figure (6) 
shows the x-position estimator bias. And we 
observe on Figure (7) that, unlike the EKF, 
the L2RPF converge rapidly to the CRLB. 
RPF has been performed. The results are 
comparable with the L2RPF for the std. But 
the variance of the clouds are bigger with the 
RPF. Error estimation is more precise with 
the L2RPF. 
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Figure (6): x-position bias Figure (7): x-position std 

4.3 Multiple Model Particle Filter (MMPF) 

The MMPF is presented in [12]. By means 
of the formalism of Interacting Multiple 
Model [13] where the dynamical model 8, of 
the target has to be estimated among some 
fixed models. This    is a case of multi- 
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modality. We suppose that {0,}is a discrete 
Markov chain with a given transition matrix. 
Therefore, we can apply the theory of the 
particle filter with the new augmented state 
E„ 

Et = (xt,et) (36) 



Assuming that, given 0,_p 0, is independent 
of Xt_v prediction step (6) is given by, 

p(Et = et/y'-l) = \p(xt/et, xt_x)P(etiet_x) 

P(Et_l=et_1/y'-i)det_x (37) 

If we have a sample {£' jfrom Et_xly'~x, 

the following algorithm produces a predicted 
sample {£,'/,_!} according to (37), for each 

particle E\_x = (X;_1,e
i

t_l), 

1 Generate 0; according to p(0t I6t_x = 0/_,) 

2 Generate X\lt_x according to 

p(Xt IdUXU) 

Correction step is done with the RPF 
version ((18)...(21)).  The updated sample 

state {X'/,} is given by the marginal 

ditribution of {i?,',,.}. 

In our simulation, the target can have 2 
motions : uniform straight motion (USM) 

and a turn with constant velocity (2 state 
models). Figure (8) shows the geometry. 
The observer placed on the origin measure 
shearing (std=l°) and range (std=20m) 
every 10s. The duration of the first USM is 
600s, the duration of the turn is 800s, and 
the duration of the last USM is 600s. The 
initial USM mode probability is 0.99, and 
the transition markov matrix  p(9t /6t_x)is 

0.98   0.021 
. The initial estimate X(0/0) of 

the target is a Gaussian variable centered on 
the true position with covariance matrix, 
P(0/0)=diag(450m, 63m/s, 42m, 60m/s). 
The number of Monte-Carlo is 100. 
Classical IMM filter and the MMPF are 
compared. MMPF estimates the angular turn 
rate (dimension of the state=5). The MM 
knows this rate (otherwise for this context, 
MM is not stable). Nevertheless, the 
behavior of the 2 filters are comparable. 
Probabilities of the USM mode are shown 
in Figure (9), they follow the change of the 
dynamic. On Figure (10) we can see a good 
angular turn rate estimation for the MMPF. 
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Abstract An algorithm of quasi-hierarchy fusion 

estimation with transforming observation values is 

given in multisensor systems that the target state 

model is linear, the observation model is non-linear 

and this non-linear function has a inverse function. 

Second, its properties are analyzed and the quasi- 

hierarchy fusion formulas of target state with better 

properties are further obtained. Third, the realization 

architecture of above algorithm is also presented. 

Finally, the algorithm is applied to multi-radar 

tracking systems. And a new preprocessing method is 

used in the target state quasi-hierarchy fusion 

estimation with transforming observation values in 

multi-radar tracking systems, i.e. it is made use of to 

increase one dimension (angular velocity) in 

observation data and reestablished observation model, 

then the quasi-hierarchy fusion estimation with 

transforming observation values is made. Thus, the 

feasibility of this algorithm is proved. 

Key y/ords: fusion, state estimation, target tracking. 

1.    Introduction 
In multi-radar tracking systems, radar 

observation values (position, azimuth, and 

position rate of change) are obtained under 

polar-coordinate systems, but its target state 

tracking is completed under Cartesian coordinate 

systems. So, radar observation values are a non- 

linear function of target state. Thus, it is 

proposed in multi-radar tracking systems that the 
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multisensor system state estimation under the 

non-linear observation model. 

For the single sensor systems that the target state 

model is linear, the observation model is non- 

linear and this non-linear function has a inverse 

function, the system state estimation is obtained 

by transforming observation values and general 

Kaiman filtering. 

Here, the target state estimation of non-linear 
multisensor systems is studied. 

Data fusion is a new available technology in 

multisensor data processing. And data fusion is 

the key in multisensor multitarget tracking 

systems. It combines data from multiple(and 
possibly diverse)sensors, perform the track with 

the higher quality than of the single sensor, 

provide more useful information than the sum 

based on data from the separate sensor. 

The hierarchical fusion is an important method 

of multisensor data processing. In multisensor 

multitarget tracking systems, It is frequently 

referred to the sensor level tracking where each 

local sensor maintains its own track file based 

only on its own data. The tracks from the various 

sensor are transmitted to a single central 

processor which is responsible for fusing the 

tracks to form a central track file, which may be 

fed back to the each sensor. This approach 

overcomes the large communication and high 

computation loads that the centralized fusion 



approach has to do. And it is much easier to 

implement than the distributed sensor network 

approach. The main disadvantage of the 

approach is the need for two types of algorithms: 

one for sensor level tracking and the other for 

data fusion.[3] 

Based on characteristics of above the non-linear 

systems and advantages of multisensor hierarchy 

fusion, an algorithm for quasi-hierarchy fusion 

estimation with transforming observation values 

is proposed in this paper. First, quasi-hierarchy 

fusion estimation formulas with transforming 

observation values are given in multisensor 

systems that the target state model is linear, the 

observation model is non-linear and this non- 

linear function has a inverse function. Second, 

its properties are analyzed and the quasi- 

hierarchy fusion formulas of target state with 

better properties are further obtained. Third, the 

realization architecture of above algorithm is 

also presented. Finally, for multi-radar tracking 

systems, a new preprocessing method is used in 

the target state quasi-hierarchy fusion estimation 

with transforming observation values in multi- 

radar tracking systems, i.e. it is made use of to 

increase one dimension (angular velocity: an 

angle rate of change which is a observable 

function of most radial velocity and azimuth ) in 

observation data and reestablished observation 

model, then the quasi-hierarchy fusion 

estimation with transforming observation values 

is made. It decreases the load of usual 

preprocessing method that changes the position 

and azimuth under polar-coordinate systems into 

the component of velocity of the target state with 

two sensor observation values or a sensor 

prediction value. 

2.    Mathematics Model 
If systems state model is described by 

X(t + l) = F(t)X(t) + G(t)W(t),   t = 1,2,... (1) 

where X(t) e R" is the target state vector at 

possibly time-varying matrix, G(t)eR"*'' is 

the driven matrix,   W(t) 6Ä'  is a zero- 

mean white Gaussian vector noise. 

Given observation systems of N sensors, the ith 

sensor observation model is described by 

Z,(t) = h,[X(t),t]'+Vl(t),    / = £JV        (2) 

where Z, (t) e R" is the observation vector of ith 

sensor, h\X(t),t]e R" is the non-linear vector 

function    ofX(t)of   the    ith    sensor,    and 

hl[X(t),t] = [hll[X(t),t],...,hlll[X(t),t]f 

K,(()€Ä"  is the vector noise. The priori 

information of systems is as following: 

(1) A,"'[.,/] (/ = 1JV) exists, 

(2) W(J), V, (t) (■'/•= 1, N ) are zero-mean white 

noises and are assumed to be independent of 

each other and the initial state X{tu), i.e. for 

E{W{t)} = 0, E{W(t)W' (<r)} = Q(t)d(t - a) 

E{V, (/)} = 0, E{V, [t)Vt
T (/)} = R, (t)dll (t - a) 

E{W(t)V,'(t)} = 0 

E{X(tltW
T(t)} = E{X(to)V,T(t)} = 0 

(3) Initial state is subject to the canonical 

distribution function, i.e. 

E{X(tlt)} = X(0) 

E{[X(tlt)-X(0)][X(t„)-X(0)]T} = P(0) 

The global observation equations based on N 

sensors are described by 

Z(t) = h[X(t),t] + V(t) 
(3) 

time   t   , Fit) e R"*" is   the   known   and 
where 2(f) e R"" is the observation vector which 
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consists ofN sensor's,  H[X(t),^eR"" is the 

non-linear vector function of and X(t) 

KX(t),t]kK[X(t)AT ,...,Km)ATY, 

V(t) eR"Nis the vector noise and 

V(!) = W (t)]T,..., [V, (Of Y, its covariance 

matrix is described by 

Ä(0 = Äflg[Ä1(0,..,^(0] 

The above models (1) and (2) as well as (l)and 

(3) formulates the single sensor and multisensors 

system models, respectively. 

3. Transforming Observation Values 
Given the model (2), h, [X(t), t] has a inverse 

function, i.e.  h~l\.,i\ exists, so a new 

observation value 77, (t) may be obtained: 

If V, (0 = 0, then 77, (0 = A;1 [Z, (/), t] = X(t) (4) 

IfK,(0*0,   then   the   noise    V(t) and   true 

valueX(t)   will  all   influence   ij,{t),   so  let 

estimation value, then 

c[z,(t\t-i)] qz,{t\t-m 

and i-],N. 

Thus, the global linear observation model based 

on N sensors is by 

tl(t) = X(t) + V(f), (6) 

where 17(f) = [[//, (Of,..., [t}N (t)]T ]7 is the 

observation value after transforming observation 

value Z(0 e R"N ,and 

HO = [[Y>(t)Y,...,[Y v(t)]T Y is the zero-mean 

white noise, i.e. 

V(t) ~ (0, R(t)), R(t) = diag(R, (0,..., R v (0). 

So, the equations (5) and (6) are a single sensor 

and multisensor systems observation models 

after transforming observation value Z. (t) e R" 

K(.0~Yi(t),  whereV,(t)   is  the  zero-mean       and  Z(t)eRnN respectively. 

Gassian noise, i.e. if the covariance matrix of 
V, (t) is very small, then 

ti,(t) = X{t) + Vl(f) (5) 

where 

d\zxi)\ 

and   its  approximately  covariance  matrix  of 

F,(')is 

WW&WM dZ]RM^
Z^ dZY 

It is a function of observation values Z, (t) and 

R,(t). Let 

Zl(t) = Zl(t\t-X) = h\X{t\t-\),t} 

4. An Algorithm for Quasi-hierarchy 
Fusion and its Application 

4.1 Quasi-hierarchy fusion equations 

The ith (I=1,2,...,N) sensor Kaiman filtering 

estimation is obtained with model (1) and (5) as 
following: 

x.xt\t) = xxt\t-\) 

+ Pl(t\0[RM~[[n,(t)-xl(t\t-\)] 
(7a) 

/»,-'CIO = /»,-'('I'-i)+[*,(0r' (7b) 

where X(t \t -1) is the fusion prediction 

X,{f\t-\) = F{f-\)X,(t-\\t-\) (7c) 

P,(t\t-» = nt-mt-l\t-l)[F(t-\)Y 
+G(t-\)Q(t-l)[G(t-l)]r 

The global Kaiman filtering of all sensors is 
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obtained with models (1) and (6) as following: 

X(f \t) = X(t\t-l)+Pit | t)HT [R(t)r [;7(0 
(8a) 

-HX(f\t-l)] 

p-'(t\t) = p-l(t\t-\) + HT[R(t)]-' H.     (8b) 

X(t\t-\) = F(t-\)X(t-\\t-\) (8c) 

P{t \t -1) = F(f -!)/»(/ -l\t- l)[Fit -1)]' 

+ G(/-l)ß(/-l)[G(f-l)]r 
(8d) 

Note:where 

H = [I„ I2 ,...,/, ]',/,(/ = 1,2,..., JV) 

is a unit matrix of « x « orders. And 

/?/ (0, (/' = 1, #), R(t) is the function of fusion 

prediction estimation value x(t | / -1), thus the 

fusion state estimation value is the non-linear 

function of x(t \ t) and X(t \ t -1) after 

transforming observation values. Hence this 

state estimation is called quasi-hierarchy fusion 

estimation. 

The quasi-hierarchy fusion estimation based on 

the state estimation of N sensors is as following: 

for (7a),(7b)and (8a), it is obtained that 

X(t\t) = X(t\t-l) + P(t\t)fiip-,(t\t)[ 

X,(t\t)-X(t\t-l)]- (9a) 

-p-\t\t-\)[xxt\t-\)-xit\t-\)}} 

for (7b) and (8b), it is obtained that 

p-l{t\t) = P*{t\t-\) + ^[P,-\t\t)- 

-/>"'(/1 /-!)] 
(9b) 

where 

X(t\t-\) = F(t-\)Xit-\\t-\) (9c) 

(9d) 
Pit\t-\) = Fit - \)Pit -\\t- \)[Fit - \)Y 

+G(t-l)Qit-l)[G(t-\)]r 

Thus, equations (9a)-(9b) are the quasi-hierarchy 

fusion estimation of the non-linear multisensor 

systems after transforming observation values. 

4.2. Properties 

(1) The quasi-hierarchy fusion estimation (9a)- 

(9b)is the same as of the standard linear multi- 

sensor systems[l] in construction. But they have 

the essense difference. The formar is the non- 

linear function of the state fusion predicaton 

Ä-(/|/-i) and the hierarchical fusion estimation 

A 

Xit\t)and it is a quasi-estimation. But what of 

the later is linear optimal estimatonfl]. 

(2) The fusion covariance matrix Pit 11) can't be 

operated out off the computer for it is the 

function of fusion predication estimation 

XQ \t-\) and fusion estimationX(t\t) (see 

(7b)and (9b)). 

(3) Pit \ t) and P(t\t-I) only represent the 

linear model estimation accuracy after 

transforming observation values, while the 

fusion estimation accuracy is also dependent on 

the error from transforming observation values. 

That      is     when      only     the      norm      of 

Xit\t-\) = Xit)-Xit\t-l)is   small   enough, 

quasi-hierarchy fusion estimation (9a)-(9d) has a 

very small error. 

(4) Another form of (9a)-(9b) 

Xit\t) = Xit\t-l) + Pit\t)fj{p-'it\t)[ 

X,it\t)-Xit\t-\)]- (10a) 

-[R.ionx.itu-v-Mtu-i)]} 

p-'it\t) = p-'it\f-]) + Y[R'it)y (10b) 

The formula (10a) indicates that the quasi- 

hierarchy fusion estimation with transforming 

observation values equals the weighted sum of 

fusion prediction and the fusion track innovation 

The fusion track innovation is defined by the 

difference between two parts. First equals the 

sum that it is weighed by the sensor quasi- 

prediction covariance matrix that the difference 

between each local sensor quasi-filtering 

estimation and its quasi-prediction estimation, 

second equals the sum that it is weighed by the 
796 



sensor observation covariance matrix(after 

transforming observation values) that the 

difference between each local sensor quasi- 

filtering estimation and its quasi-fusion 

prediction estimation. 

The formula (10b) indicates that it equals sum of 

the fusion prediction estimation covariance 

matrix inverse and each local sensor observation 

covariance matrix inverse (after transforming 

observation values) that the covariance matrix 

inverse of the quasi-hierarchy fusion estimation 

with transforming observation values. 

When the fusion estimation formulas (10a)-(10b) 

and (9a)-(9b) are used, each local sensor filtering 

estimation   only   transmitted   to   the   central 

processing agent at every time in the multisensor 

systems, while each local sensor prediction 

estimation, the fusion prediction estimation 

and their covariance matrix are operated by their 

state models in central processing agent. And 

each local sensor observation covariance matrix 

is once transmitted to the central processing 

agent and is computed as varied-time. 

In a word, the fusion estimation (10a)- 

(10b),(9a)-(9d) further decreases transmission 

loads than (9a)-(9d), and each local sensor 

covariance matrix is not transmitted in the 

multisensor systems. 

4.3. Realization Architecture 

z,(t) - 

z2(t) - 

ZN(t) 

filter 
X,(t|t) 

filter   killt) 

M:> 

-i—     HD 
-*© ®— 

-r-J    *-© 
•^0—•£>— 

•X(t|t-1) 

^HIK±>-€> 

X(t|t) 

X,(t|t),P,(t|t) 

X^t|t),P£t|t) 

filter and covariance 
matrix of 

each local sensor 

R.(t) 

RNCO 

rHnJf^.] 

-(b) 

A- delay 

(a)—F(t-])P(t-l|t-l)F(t-l)* 

®—G(t-l)Q(t-l)G(t-l)' 

covariance matrix 
inverse of new 
observation values 
of each local sensor 

■« 

N(t) 

h',(Z(t),t) 
h-2'(Z(t),t) 

hN(Z(t),t) 
observation value, 
transforming 

Z,(t)=h,[x(t),t] 

ZN(t)=hNtx(t),t] 

X (t|t-l) 

Fig. 1 the qüasi-hierarchy fusion estimation with transforming observation values 
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4.4. Application Example 

In multi-radar tracking systems, given two 

dimensions observations, the radar observation 

position and the position rate of change are 

described pl (t) and p, (0 respectively, the 

azimuth is described 0, (0,(/ = 1, JV ). The non- 

linear equation of observation systems is 

Z,(t) = 
A(0' 

+ 

M')+/(0 
y(t) 
x(t) 

x(t)x(t)+y(t)y(t) 

= hl[X(t),t] + ni(t) 

(ID 

where n0 (t), np (0, «A (0 is described 

observation noises of azimuth, position and 

position rate of change, respectively. And they 

are independent of each other. 

In formula (11), the target state vector is of four 

dimensions ((x(t), y(t), x(t), y(t))T) ,but its 

observation value from each local sensor is of 

three dimensions ( p, (t), 0, (t), p, (t)),(/* = 1, N), 

so  h,[X(t),t]  in the formula (11) is not the 

function of one-to-one. For solved the inverse 

function   h~l[Z(f),t],& new method are used 

here, i.e. to increase one dimension of radar 

observation value in formula (11): 

ry(t)x(t)-x(t)y(0. 
0>{t) = V 

thus, 

*2(0+/(0 -l+»A0 

z,(t) = 
em 
Pit) 

»,,(0 

arct^- 

x(t)x(t)+y(t)y(t) 

Mo+/(0 
*(0XQ-X0*(0 

x\t)+/(t) 

=h,[xm+m 

(12) 

where n() if) is the noise of 0, (t) ,and 

nu it), n0 it), n6 it), n. it) are independent of each 

other. Thus, the observation value transformation 

of the formula (12) is 
*(0 = /K0 cos 0,(0 (13a) 

y(t) = p(t) sin 0,(0 (13b) 

x(t) = p{t) cos 0, (0 - [p, it) sin 0, (O]0, (0 (13c) 

j(O = p,(Osin0,(O+[A(Ocos01(O]0,(O(13d) 

so the new observation value is 

7,(0 = 

(xit)} 
xit) 

y(0 

\K0j 

'Kit? 
yo 
f(0 
vit) 

= Xit)+Vlit) (14) 

where K,(0 is    the    observation    noise    after 

transforming observation values. 

Known   from  the   formulas   (13a)-(13d),   the 

observation    error    in    Cartesian    coordinate 

systems is of non-Gaussian distribution. And 

tracking filering estimation is also non-linear. So 

the   observation   error   needs   to   change   to 

Gaussian's. 

Let      the      observation      error      vector 

(A/>/(O,A0/(O,AA(O,A0,(O)r    >n    Polar- 

coordinate systems is much smaller than the 

target truth value (p, (0,0, (0, P, (0. #, (0)r. 

(4.5.1) 
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then derivation of formulas (13a)-(13d) with respect 

to time t is 

nm) = 
AWO] 

ALKOl 
0 -/j,(/)sinfl,(() 0 

0,(l)sm0,(i)  eos0,(l)    -A(W)-A(')ö,(')cosö,(')    -p,(/)«ine,(0 
sinö,(') 0 P,(')«*0,(/) 0 

e,(/)cosö,(') sinÖ,(0 P,(')<»sö,(')-A('W(')sinö,(/) /?,(') cos", ('), 

'A[P,(0r 
A[A(')1 
A[0,0)] 

where (A[x(t)],Mc(t),A[y(t)]„A[y(t)])T has the 

linear relationship with 

(A/>, (0, A0, (0, Ap, (0, A0, (/))r .Therefor, 

(A[JC(0], Ax(0, A|>(01 A[j(0])r is subject to Gaussian 

distribution, and its covariance matrix is 

(V,2(01 [oi(01 [<«)] [*i(ty\ 
tö(01 Mit)] [<(0] [*um 

Kit)} [<(/)]. [a-»] [<(0] 

K(0] taw] K(oi k?«] 

*,(') = (15) 

where 

[<#'» = ff2,. «cos2 0,(0+ACOff^sin2 0,(0 

[ffv
2(0i =< «sin2 Ö,(0+A2('K «cos2 0,(0 

K2(0]f=<(0[^(0]2 sin2 0,(0 

+[Ä(0sin2 0,(0+p,(O0,(Ocos0,.(O]2ff2,(0 

+cos2(0,(O)ff2, (0+A2('K (Osin2 0,(0 

[^(01 =< (0K(0f cos2 0,(0+[p,(Ocos0,(O 

-     p,(0^.(0sin^.(0]2<(0 
+ cr2 (Osin2 0,(0 + a (t)p2,(t)coi 0,(0 

K(01 = [< (0 - o-2 (O/>2.(O]sin0,(Ocos0,.(0 

[ff* (')],=< (Osin 0,(0 cos 0,(0 

- [p, (0 sin 0, (0 + p, (t)0, (0 cos 0, (0] 

* [A (0 cos 0, (0 - A M (0 sin 0, (0]or2 (/) 

-<W2 (Osin 0,(0 cos 0,(0 

- er2 (0/72, (Osin 0,(0 cos 0,(0 

[< (01, = < (0*. (0 cos 0, (0 sin 0, (0 

+ p, (Off* (0sin2 0, (0[A (0 sin 0, (/) 

+ 0,(OA(O cos 0,(0 

K(Ol = -ff2,(O0,(')sin20,(O 

+ffs
2(O[Ä(Osin0,(O+0j(Opi(Ocos0,(O] 

K(Ol=-ff;,W(Osin20,(O 

+ffs
2(O[Ä(Osin0,(O + Ö,(OpXOcos0,(O] 

K (01 = < m (t) sin 0, (0 cos 6, (0 
- A ('K (0 cos 0, (t)[p, (0 cos 0, (/) 

-0,(OA (Osin 0,(0] 

and  /?, (0 is computed by 

Pl{t) = p,(f\t-\) 

P,{t) = P,{t\t-\) 

8l{t) = 9l(t\t-\) 

0,(O = 4('I>-1) 

Hence, formulas (l)and (14) form the linear 

model of N radar, systems, and its observation 

covariance matrix is Rt (t) .And each local radar 

state filtering estimation is given by formulas 

(7a)-(7d), and it is transmitted to the central 

processing agent, while each local and fusion 

prediction estimation as well as their covariance 

matrices are operated by formulas 

(7c),(7d),(9c),(9d) in the central processing 

agent. Finally, the state quasi-optimal estimation 

is obtained by formulas (10a)-(10b). 

5. Summary 

An algorithm for quasi-hierarchical fusion 

estimation with transforming observation values 

is proposed in this paper. It is used to solve the 

state estimation of non-linear multisensor 

systems that the state model is of linear, 

observation model is of non-linear and this non- 

linear function has an inverse function. It is 

obtained that: 

The quasi-hierarchical fusion equations of this 
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systems are given, and their properties are 

analyzed. Farther, the quasi-hierarchical fusion 

equations with better properties are obtained and 

above algorithm realization architecture is 

presented. 

(l)The feasibility of this algorithm is shown by 

an example of multi-radar tracking systems. 

And a new preprocessing method is used in 

the target state quasi-hierarchical fusion 

estimation with transforming observation 

values in multi-radar tracking systems, i.e. it 

is made use of to increase one dimension 

(angular velocity ) in observation data and 

reestablished observation model, then the 

quasi-hierarchical fusion estimation with 

transforming observation values is made. 

This preprocessing method decreases the 

load of general processing method that 

changes the position and azimuth under 

polar-coordinate into the component of 

velocity of the target state with two sensor 

observation values or a sensor prediction 

value. 

In short, an algorithm for quasi-hierarchical 

fusion estimation with transforming observation 

values is feasibility for the target state estimation 

of non-linear multisensor systems (l)-(2). 
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Abstract.- Feature inconsistency and low contract 
and noise in the infrared image background consist of 
the principle difficulty in the IR/Visible battle field 
image registration. Feature-based approaches are 
more powerful and versatile to process poor quality 
ER images. Multi-scale hierarchical edge detection 
and edge focusing and salience measure are used in 
the feature horizon extraction. The common features 
extracted from images of two modalities can be still 
different in detail. Therefore, the transformation 
space match methods with the Hausdorff distance 
measure is more suitable than the direct feature 
matching methods. We have introduced image 
quadtree partition technique to the Hausdorff distance 
matching, that dramatically reduces the size of the 
search space. Image registration of real world 
visible/IR images of battle fields is shown. 

1. Introduction 

Multiple imaging sensors have different 
electromagnetic spectral responses to capture 
distinguished signatures from the input scene in 
different spectral bands. The design of the 
multisensor imaging system maximizes the 
independence of the acquired data. This is natural, 
since if one sensor captures images that are similar or 
correlated to the images already obtained by other 
sensors, then this sensor provides no additional 
information and should be removed from the system. 
In principle, the images from multiple sensors should 
be uncorrelated and independent from each other, 
which implies that the features in the multisensor 
images are inconsistent. Some features in one image 
can donnot show up in another image. 
Multiple sensors can act in a synergistic manner. The 
images to be registered in our research project are 
two broad band visible and infrared video sequences, 
as shown in Fig.l. When soldiers and a truck are 
hidden behind the smoke in the visible image they 
appear clairly as high contrast hot objects in the IR 
images. 
In this paper we present techniques for IR/visible 
battle field image registration, and we implement the 
feature based approach. We use multi-scale 
hierarchical edge detection and edge focusing and the 
edge salience measure to extract salient edges from 
the low contrast and noisy IR image background. We 
use the Hausdorff distance measure for matching 
between the curves from two different modalities. 
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We introduce the image partitioning technique in the 
Hausdorff distance matching, so that the affine 
transformation is approximated by local translations. 
This speeds up significantly the Hausdorff distance 
matching process. 

iri) [ 1*010 »the« toad uferf 

Fig. 1 ER and Visible battle field images. With some 
edge features extracted for registration 

2. Feature inconsistency 

The radiometric data from ER passive sensors consist 
of 1) energy emitted by thermal radiation from the 
object bodies; 2) atmospheric emission reflected from 
object surfaces. In general, the gray-scale level of ER 
images depend on differences in body temperature, 
emissivity and reflectivity of the objects in the scene. 
The ER images of the battle field have high contrast 
for hot objects in the scene, which are in most cases 
moving objects and targets and cannot be used as 
landmarks for registration. Image registration should 
rely on the stationery objects on the background of 
the scene, where, unfortunately, the ER outdoor 
images have very low contrast, owing to the uniform 
temperature field on the background in the thermal 
equilibrium state. The background in the outdoor ER 
images is usually of very low contrast and noisy, or 
simply a dark region, that makes image feature 
extraction and registration more difficult. 
There exist significant gray-level disparities between 
the ER and visible image. The thermal emitters are 
not necessarily good visual reflectors. A surface of 
high visual reflectivity (white surface) in visible band 
usually has low emissivity, so that the bright objects 
in the visible image may be dark in the thermal scene 
and vice versa. The sky is usually the brightest region 
in the visible image. It is, however, a dark region in 
the ER image because of the low temperature and the 



lack of reflectance. This is the reversal of contrast 
polarity between the visible and IR images. 
The gray level disparity between the IR and visible 
images of real-world natural out-door scene is much 
more complex than the simple contrast polarity 
reversal. 
Fig. 2 shows a contrast reversed IR image compared 
with the visible image of the same scene. The gray 
level distributions in most regions are similar in the 
contrast reversed IR and visible images, although 
there are still important gray-level disparities. 
However, in the contrast polarity reversed IR images, 
the clouds are darker than the sky, whereas they are 
brighter than the sky in the visible images because of 
its higher reflectivity. The clouds are also brighter 
than the sky in the original IR image because of its 
higher reflectivity and emissivity. Hence, a simple 
reversal of contrast polarity can not remove all the 
gray level disparities. Also, shadows in the visible 
images are absent in the IR images. 

Fig.2 Contrast reversed IR image (left) and 
visible image (right) 

3 Area and feature-based approaches 

Area-based approach for image registration utilizes 
full image information, can be applied to any images 
with rich or poor structure and the cross-correlation 
based matched filter approach is optimal for the 
robustness against random noise. The area-based 
image registration using cross-correlation can 
account only for image translations. 

D D D D 
D D D D 
D D D D 
D D D D 

Fig.3 Block matching with partitioning of images 

To fit more general image transformations such as 
affine transformation, one can partition images into a 

number of sub-images, which are located in a regular 
grid as shown in Fig.3., and then define a central 
window in each sub-image as a template and 
correlate those blocks with the corresponding sub- 
images in another image. The block matching results 
in a number of displacement vectors, which are 
evenly distributed over the image and are then useful 
to determine the transformation parameters for image 
registration. In the block matching the sub-images are 
only translated in a small neighborhood of the 
respective grid, to approximate more complicated 
distortions1. 

3.1 Laplacian pyramid transform 

The area-based approach requires the radiometric 
data of two images to be similar. If these distributions 
are different, then area-based match will fail. To use 
the area-based method for multisensor image 
registration one has to transform the two dissimilar 
images into similar. The intensities of the Laplacian 
pyramid images are insensitive to gray-scale level 
disparities and polarity reversals of contrast. 

~~"\ 

\ \ 
\ 
V  

\ 

Laplacian Pyramk) Coefficients Absolute Laplacian Pyramid Coefficients 

Laplacian Pyramid Coefficients Absolute Laplacian Pyramid Coefficients 

Fig.4 In the clock-wise order from the left-top 
corner: Step edges, smoothed by Gaussian filter, 
Laplacian pyramid and absolute coefficients of the 
Laplacian pyramid. 
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Figure 4 shows two step edges with opposite 
polarities of contrast. The edges are smoothed by the 
Gaussian filter. The Laplacian pyramid images are 
the differences between the original edge and the 
smoothed edge. When we take the absolute values of 
the Laplacian pyramid coefficients, the two 
Laplacian pyramid images become the same for the 
two contrast reversed step edges. Then, the contrast 
reversal is removed and the area-based image 
registration can be applied to the Laplacian pyramid 
image intensities". 

3.2 Phase matching 

Images from different sensors have different 
radiometric intensity distributions due to the different 
spectral responses of the sensors. Those differences 
appear mostly as slow variations over wide regions in 
the image, such as sky, land and forest, which are 
usually represented with low spatial frequencies and 
are concentrated in a narrow low frequency band. 
In the Fourier transform-based registration1", the 
displacement is found by cross-correlation between 
two images. The location of the cross-correlation 
peak mainly depends on the Fourier spectrum phase 
and is insensitive to Fourier spectrum energy. One 
can then whiten the Fourier spectrum and use the 
phase-only cross-correlation for the registration. In 
this approach, the low and high frequencies 
contribute equally to the cross-correlation. Therefore, 
contribution of the high frequencies is greatly 
highlighted, compared with the conventional cross- 
correlation. The location of the cross-correlation peak 
would not change if the image intensity variations are 
limited to a narrow spatial frequency band. The 
Fourier phase correlation registration method is then 
relatively independent of the sensors. 

3.3 Feature-based matching 

The IR/visible image grayscale level disparities can 
not be removed completely by a reversal of contrast 
polarity, as shown in Fig.2, and by the Laplacian 
pyramid representation or by whitening the Fourier 
spectrum. The residual disparities in some blocks can 
lead to erroneous displacement vectors, which will be 
the outliers for fitting to image transformation. The 
robust image fitting techniques against outliers, such 
as the least median of squares or M-estimation must 
be used. 
We notice that both the Laplacian pyramid 
representation and the phase matching technique in 
the area-based matching benefit from the use of high 
spatial frequencies of the image for overcoming the 
feature inconsistency. The Laplacian pyramid 
therefore represents detailed information, namely 
contours, in the image. In the phase matching 
approach, the whitening of the Fourier spectrum 
highlights the high spatial frequencies. The inverse 
Fourier transform of the whitened spectrum is an 
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edge and contour enhanced image. In some sense 
both the Laplacian pyramid representation and the 
phase matching share the same features with the edge 
matching    approaches    for    image    registration. 
However,  the  edge  extraction  by the Laplacian 
pyramid and by the whitening Fourier spectrum is not 
as powerful and precise as that implemented by using 
directly the edge detectors. Especially, for our real- 
world IR images, which are typically of low contrast 
and noisy, the Laplacian pyramid approach is not 
able to extract salient contours for image matching, 
so that feature-based image registration is adopted. 
The feature-based approach requires extracting the 
common features from two images. If both types of 
images represent the same real world objects, then 
the objects should appear in both image types. While 
images may appear differently in different sensors, 
different objects appear always differently in the 
multisensor images, no matter what are the spectral 
responses of the imaging sensors. As a result, the , 
boundaries between objects    would be preserved, 
that can be used for image registration. Although we 
find that the edges extracted from the same real 
world objects in two image modalities still can have 
different   details   due   to   the  differences   in   the 
radiometric responses of two sensors. 
Advantages of the feature-based image registration 
are that the common image edge features are not 
sensitive to the spectral responses of the multiple 
sensors;  the processing  speed  is independent of 
image displacement; any image transformations can 
be accounted for and the powerful and versatile edge 
detection, edge saliency techniques can be used. 

4. Multi-scale edge detection 

In the 3-D real world scene, objects are separated 
from the background by depth discontinuities, which 
are usually manifest as intensity discontinuities in 
the 2-D images. Those edges and boundaries 
represent structures in the image, that are common 
for multiple image types and can be used for multiple 
sensor image registration. Edges are defined as points 
where the modulus of gradient is a maximum in the 
gradient direction. Along an edge the image intensity 
can be singular in one direction while varying 
smoothly in the perpendicular direction. Edges can be 
created by occlusions, shadows, sharp changes of 
surface orientation, changes in reflectance properties, 
or illumination. In IR images of a 3-D scene, most 
edges represent occlusions and depth discontinuities 
between objects in the scene, which represent- 
structural information in the image. 

4.1 IR image edge detection 

A particular difficulty arises in the edge detection for 
IR/visible image registration. Image registration 
requires to extract common features which are static 
in   the   scene   background.   In   most   cases,   the 



background objects in the IR images have the same 
thermal equilibrium temperature, so that the contrast 
in the IR image background is related to only the 
differences in the emissivities and reflectivities of the 
object surfaces and are therefore very low. Also, the 
IR images are typically noisy. 
Optimal filter for step edges detection can be 
approximated by the first derivative of Gaussian, 
which is usually called Canny edge detectorlv. After 
the filtering, there is a non-maximum suppression 
process that keeps only the pixels where the values of 
the output are the local maximum in the direction of 
the gradient. The values at the neighboring pixels are 
determined by the linear interpolation. The third 
process in the Canny detector is the edge linking, 
which uses a hysteresis thresholding. We first 
determine edge pixels, which are above a high 
threshold. Then, among all other local maxima, 
which are above a low threshold, we keep only those 
pixels that are located in the neighborhood of the 
edge pixels. 
The parameters in the Canny edge detector are the 
width of first derivative of Gaussian filter O and the 
low and high threshold values. One problem of the 
Canny edge detector is its sensitivity to threshold. 
When the response of an edge point is close to the 
detection threshold, a small change in edge strength 
or in the pixellation may cause a large change in edge 
topology, that makes the extracted edges suspicious, 
non-reliable, especially near the corners. 
The sensitivity to noise is another important problem 
in the edge detection. The noise in IR images occur 
as local fluctuations of the image brightness function, 
which have strong derivative magnitudes, but 
represent unnecessary image details which are 
unrelated to image structure. In the IR image 
background of low contrast with the contrast varying 
cross the image, the effect of noise becomes 
important, so that the structural edges may be 
disrupted and even completely disappear in the edge 
maps, if a thresholding on the gradient magnitude is 
applied. The non-maximum suppression in the Canny 
detector is excessively reliant on the estimation of the 
gradient angle and so often fails to mark edge pixels 
at junctions, corners and even on some smooth curve 
portions where the contrast changes are too poorly 
definedv. This is the reason for broken edges. 
For detecting structural edges in the IR image 
background, we use the Canny edge detector without 
thresholding on the gradient magnitude. We avoid the 
use of threshold on the gradient magnitude, since the 
contrast is a poor indicator for significance. When the 
strength threshold is used, of the edges with response 
close to the threshold, a small change in edge 
strength or location can cause a large change in the 
edge topology. We use the large Canny filter of a > 
6-7, which corresponds to a filter size of 37 - 43 
pixels, to obtain the structural edge as a continuous 
curve, which is the horizon in the scene of battle 
field, so that the curve length thresholding can be 
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applied to extract the horizon from noisy edges in the 
edge map. With a small O , the extracted horizon 
line is broken. However, with a large O , the 
extracted horizon line does not follow the real 
contour at high curvature. The larger the filter 

; support a, the less broken the edges are, and, 
however, the more image details are filtered out by 
the large size filter, resulting in a loss of edge 
localization. Therefore, the multi-scale edge 
detection is used to recover the localization in the 
coarse edges. 

4.2 Hierarchical Edge Detection 

First, the horizon curve is detected at a coarse level 
with a large Canny edge detector which smoothes the 
images with a Gaussian of large support a0. The 
horizon is usually the longest curve in the image. For 
favoring continuity of the extracted curve, no 
thresholding on the gradient magnitude is applied, 
such that the horizon appears as a continuous curve 
or, at least, less broken. Then, the horizon is 
extracted from the noisy edge map by a curve length 
thresholding. In the cases where the horizon curves 
are still broken, we apply the edge saliency measure 
and combine both edge and region information in 
order to ensure the extraction of the horizon at the 
coarsest level, as explained in Section 6. 
The coarse horizon is used to guide the search of 
edges at fine scale. We define a sub-image in the 
neighborhood of the coarse edge in the original 
image. The sub-image covers the region along the 
horizon with 40 pixels above and 10 pixels below 
each coarse horizon point. The choice of the sub- 
image size is according to the observation that the 
images of trees on the hill were cut by the smoothing 
at the coarse scale. To recover the top of trees we 
need a search in a large region above the horizon 
curve. We then apply the Canny edge detector with a 
small filter width a within the sub-image. In the 
experiment, the fine Canny filter was with O =0.1 

for visible and O =1.5 for IR images. The noise 
still exists after the Canny edge detection at the fine 
scale. However, this noise is within the sub-image 
zone and may be removed easily by a curve length 
thresholding, that results in a clearly defined horizon 
curve. A specific modification on the Canny edge 
detector was made to prevent the artificially defined 
sub-image boundaries from appearing as new edges. 

The coarse horizon extracted from an IR image is 

shown in Fig.5a, where  O0 =7.0, the minimum 

length threshold applied was 500 pixels. The sub- 
image is shown in Fig. 5b. Figure 5c shows the fine 
edges obtained by applying a fine Canny edge 
detector with O = 1.5 . 

The hierarchical edge detection is quit reliable and 
fast. Since at the fine scale the edge detection is 
guided by the coarse level edge, the search in large 



area is avoided, that reduces the computational cost. 
The shortcoming of the algorithm is the ad-hoc 
determination of sub-images. 

(a) 

(b) 

(c) 

Fig.5 Results of Hierarchical Edge Detection 

4.3 Edge Focusing 

Edge focusing is a coarse-to-fine edge tracking 
algorithm for recovering the edge points at the finest 
scale. The scale-space tracking is implemented in a 
continuous manner. With continuous scaling, the 
edges are gradually focused by varying the resolution 
continuously, and moving in the scale space with 
sufficiently small steps, such that the edge element 
do not jump farther away than one pixel between 
successive steps. Our implementation of edge 
focusing is as following: 
1. Detect edge using Canny Detector with the 

Gaussian smoothing aQ sufficiently large so that 
horizon curve is detected; 

2. Extract the horizon using a threshold on the 
curve length; The horizon curve is denoted as 
E(i,j,cr0). If  (i,j)   is an edge point, then 

E(i,j,&) = l. 

3. Detect edges E(i, j,ak) in a window centered at 

each edge point E(i, j, ak_t), using the Canny 

edge detector of size ak = ak_^ - ACT with 

k = 1,2,3... and ho = 0.5 . The window size is 

7x7, when ak> 2.0, and is 5x5 when 

1.0<crA <2.0,andis3x3 when ak <1.0. 
4. Go on step 3) until a weak Gaussian smoothing 

of size CTK. 

In the successive Canny edge detection, after 
application of the first derivative of Gaussian filter 
the non-maximum suppression process is applied 
which keeps only the local maximum in the gradient 
direction. There is no threshold at finer resolution. 
The only threshold is on the curve length applied at 
the coarsest scale CT0. 

Bergholm" investigated the deformation of four 
elementary contour structures: step edge, corner, 
double edges and edge box. During the edge 
detection, those contours are generally deformed in 
four ways: rounding-off, expansion, transformation 
into circles, or merger, owing to the large Gaussian 
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average operator which blurs the image. In each of 
the four cases, Bergholm showed that the 
displacement vector, describing the deformation of 
the edge contour, is normally of length within the 
range from 0 to 21 ACT I, where a is the width of the 
Canny edge detector, ACT is the increment of size of 
the successive Canny filters. Therefore, if I ACT | = 
0.5, the displacement of the edge points would be 
normally less than one pixels, so that corners and 
junctions may be recovered with a precision less than 
one pixel. 

In real world images we have mostly ramp edges 
instead of ideal step edges. It is easy to show that the 
Gaussian blurring operating on a ramp edge always 
yields smaller displacement than that yielded on a 
step edge as affirmed by Bergholm. A ramp edge 
may be modeled as a step edge smoothed by a 
Gaussian G whose size ax depends on the imaging 

condition and on the camera. Let r(x, y) denote the 

step edge and f(x,y) the ramp edge in gray level 
image, then 

f(x,y) = r(x,y)®G(<r1) 

where ® denotes the convolution. When we use 
Canny Edge Detector, the image is blurred again with 

a Gaussian smoothing whose size O 2 depends on the 

scale of the edge detector. Letg(x, y) denote the 
blurred ramp edge before computing the first 
derivative, then 

g(x,y) = f(x,y)®G((T2) 

therefore 

g(x, y) = r(x, y)®G((T1)®G(a2) = 

r(x,y)®(G(al)®G(a2)) 

which is equal to 

g(x, y) = r{x, y) ® G(Ja? + a\) 

We implement the edge focusing algorithm with the 
filter size increment Ao = 0.5 and varying size 
windows. We chose to use the window size larger 
than the usually used, 3 x 3, so that the gradient 
magnitude values can be evaluated at the two 
neighboring pixels, because in the non-maximum 
suppression the determination of an edge pixel 
requires to compare with at least two neighboring 
pixels. We believe that the length of rounding-off 
displacement p can be larger than one pixel, because 
the real ramp edges in our IR images were noisy and 
do not follow the theoretical model described in the 
precedent. 
Therefore, the length of rounding-off displacement p 
from the corner of ideal step edges to the detected 

corner is equal to c^/of + a\ , where c is a constant. 

However, the displacement from the center of the 



ramp  comer  to   the  detected   comer   would   be       5. Curve saliency 

ramp edge 
by smoothing 

.detected comer 

c \tj* + a1   Displacement of corner 

Fig.6 Rounding-off displacement for a ramp edge 

proportional to -\a\ + o\ - au as illustrated in Fig. 

6 and would be less than o2. Therefore, if | Aa21 = 
0.5 in the edge focusing, the displacement of the 
ramp edge comer would be less than one pixels. 

In our IR images the ramp edges of trees can be very 
slow of more than 20 pixels wide, corresponding to a 
large csx more than 10. The edges around the trees 
were cut completely when a Canny edge detector of 

(a) (b) 

The Edge detector is basically a local operator. 
However, the structural edges useful for image 
registration are not local features, but exhibit regional 
and global nature in many cases. Salient structures 
can often be perceived in an image at a glance™. 
They appear to attract our attention. Therefore, we 
use curve saliency measure to help detecting the 
structural edges. 
When cameras are mounted on a grounded vehicle, it 
is reasonable to assume that the camera axis is 
pointing approximately horizontally. Unless the terrain 
is very steep (or the vehicle is driving alongside a 
wall) the horizon is usually visible in the image and is 
usually the most distant part of the scene (except for 
the sky). The horizon lines are common in the IR and 
visible images, and are independent of the grayscale 
level disparities and contrast polarity reversals. More 
importantly, it may be possible to segment the horizon 
line from noisy edges on the ground by a threshold of 
curve lengths, since the horizon line has the longest 
length in the image. The fact that the horizon is the 
most distant part in the image helps fitting the 
distortion transformation for image registration. 
Salience measures can be region-based or curve- 
based. In the visible images the horizon bounds the 
brightest part of the image, which is usually always the 
sky. Duric and Rosenfeld™' use the horizon detection 
for stabilization of image sequence from a ground 
bright parts of the image (sky) and then estimating the 
boundaries of these parts. This approach uses then the 
regional information. We attempt to use the curve- 
based salience measure to detect horizon lines in IR 
and visible images. The curve saliency measure is 
defined to favour long over short curves and smooth 
over wiggly curves. For horizon, we define the 
salience measure which is estimated at each pixel 
along a curve i, as 

Fig.7. Experiment results of Edge Focusing, (a) Visible 
image, (b) Infrared image. 

o2 = 7 was applied.  This is because the large 

displacement  of the  corner ^ of +<rf .  However, 

using the edge focusing we were able to recover the 
edges and tops of the trees, which would be 
important for the image registration. 

For images shown in Fig.7, we first detected the 
coarse horizon with a0 - 4.5 for visible image and 

aQ = 7.0 for IR image using Canny Edge Detector. 
Then we applied the edge focusing with the scale 
step Ao = 0.5 and the varying size windows. The 
final scale was o = 0.7 for visible image and 
a = 1.5 for IR image. Figure 7 shows the extracted 
edges which follow nicely the silhouette of the hill 
with some flat tops of trees recovered in both visible 
image and infrared image. 

*.■ 
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N *=i      **+i 
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~Xt 

where N is the total number of pixels on a segment of 
the curve /, whose horizontal extension in x is L, 

at 

cr, = 

if y*+i - y* = ° 
2 if y*+i - yk * o 

0 if **+l ~ xk = 0 

1 if xk+l ~ xk * 0 

The horizon in the natural scene usually is not a 
horizontally straight line. This curve saliency 
measure favorites inclined segments rather than 
horizontal or vertical ones. The horizontal segments 
have contribution of 1 to the saliency Oi; vertical 
segments have saliency of 2, since ak = 0. Inclined 
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Segments have saliency of 3. However, wiggly curves 
will receive small total saliency measure because of 
small Li. We evaluate the salience measure for each 
curve in the edge map and retain 3-4 most salient 
curves. Then, we fill gaps between the salient curves 
and re-evaluate the saliency of the connected curves. 
With this approach we can detect the horizon at a 
coarse scale without thresholding of curve length, so 
that the horizon is detected even it is broken by noise 
into several segments and contains a number of gaps. 

5. Hausdorff distance 

The purpose of image alignment is to register a pair 
of images such that the extracted static scene features 
are optimally aligned. Feature based image 
registration requires a specification for the features, 
the parameter space, the image transformation, which 
aligns the image, and the search strategy for finding 
the best alignment according to some objective 
function. For aligning images from different 
modalities, edges arising from depth discontinuities 
can be considered as most salient. Given a set of 
salient edges from each image, the next step is to 
determine the image transformation which aligns 
those features considered to be a static reference for 
the scene. The search for the optimal image 
transformation can be implemented in several ways. 
The methods can be classified as feature matching 
methods or transformation space methods. 
Feature matching methods determine the 
correspondence between the elements of the feature 
sets, i.e., corresponding features are projectively 
given by the same scene feature. The transformation 
space methods search the parameter space for the 
solution that achieves an optimal alignment of the 
static projected scene features. The drawback of 
feature matching methods is the prohibitive cost of 
detecting and eliminating outliers, i.e., features which 
do not have a match. Its advantage is that once a set 
of correct matches is found the image transformation 
is, in general, quick to compute. Transformation 
space methods can be prohibitively expensive 
because the search space is generally very large, 
however, outliers are easily handled by using rank 
order statistics. A strategy for efficiently searching 
the parameter space is given by Huttenlocher et al.1* 
In view of the large proportion of outliers in feature 
based multi-modal image alignment a transformation 
space method based on the directed Hausdorff 
distance was implemented. The size of the search 
space is reduced by partitioning the image into blocks 
and searching for translations that minimize the 
Hausdorff distance between corresponding blocks. 
The assumptions are that the motion can be locally 
approximated by simple translations of blocks, and 
the percentage of outliers and an error bound for the 
feature alignment are known approximately. 
The Hausdorff distance is defined by 

A = {a},...,am) and B = {blt...,b„} 

H(A,B) = max(h(A,B),h(B, A)) 
max    min,,       „ h(A,B)= \\a-q 
as A beb9      " 

where A and B are point sets, H is the generalized 
Hausdorff distance and h is the directed Hausdorff 
distance. In the presence of outliers the Hausdorff 
distance will return the greatest distance which is 
likely due to an outlier. To be able to compare 
portions of the data sets the partial directed Hausdorff 
distance is defined, 

£th     min ,,       ,, 
hJA,B)= h-b\\. k aeA beB"      ■ 

This expression evaluates to the £* ranked distance. 
The alignment method using Hausdorff distances 
proceeds  as follows  for a pair of images  after 
extraction of the salient edges 

1) Compute a quadtree partition of each edge image 
such that no block without edge points is further 
subdivided. The partition with fewer blocks is 
retained for both images. Define a set of model 
edge points for the first block in image 1 from 
the edge points that lie within that block. Create 
a model image from these edge points. 

2) Define a set of subimage edge points from the 
corresponding block in image 2 from the edge 
points within the block extended by a border 
whose dimensions correspond to the largest 
expected vertical and horizontal displacements. 
Create a target image from these edge points. 

3) Compute the directed partial Hausdorff distance 
under a translation transformation from the 
model image to the target image. The translation 
which minimizes the kth ranked distance is 
retained. The search strategy in the translation 
parameter space is described in Huttenlocher et 
al.12 

4) Repeat steps 2 and 3 for the remaining non- 
empty blocks. If at least 3 blocks provide local 
translation estimates from step 3 then the global 
affine transformation is estimated, the 
nonreference image is resampled according the 
global affine transformation and the images are 
fused. The image fusion is accomplished by an 
appropriately weighted combination of the 
aligned images brightness values. 

Fig. 1 shows a scene taken simultaneously by a 
daylight and IR camera at Defense Research 
Establishment Valcartier. The viewpoints of the two 
cameras are displaced slightly and there is a slight 
relative rotation about the optical axis which would 
yield a very poor fused image if no alignment is 
made. The quadtree decomposition stops at the first 
level, i.e., there are 4 blocks.    The salient edges 
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include the silhouette of the hill and some ground 
structure, which are overlayed on the images. 
Finally, Fig. 8 shows the fused aligned images. The 
salient edges are registered in each of 3 blocks, the 
fourth block contains no edge points. The Hausdorff 
distance is used to find the optimal displacement 
assuming 5 percent outliers for the blocks covering 
the hill edge and 10 percent outliers for the edge in 
the lower right block. The specified search strategy 
finds the translation for each block such that 90 
percent of the visible image edge points are no more 
than 5 pixels from some IR image edge point for the 
corresponding block. The local displacements are 
then used to determine the global affine 
transformation to register the two images. The 
estimated (x,y) displacements for the blocks upper 
left, upper right and lower right that are supplied to 
the global affine estimator for aligning the visible 
image to the IR image are (33,-3), (-11,-7) and (-8,- 
11) respectively. 

Figure 8. Aligned and fused IR and visible images. 
Fusion is by weighted combination of image 

brightness values after alignment 

The estimated affine transformation parameters that 
map point p in the visible image to the point p' in the 
IR image such that p' = Mp+t are 

M =   [   0.8239 
t  =   (17.1925, 

[-0.0179 

0.0544] 
-6.2471)T. 

0.9897] 

and 

Note that the image coordinate system origin is top 
left with positive x to the right and positive y down. 

7. Conclusion 

approaches are still feasible. However, feature 
extraction of structural edges as common features for 
registration and feature matching methods are more 
powerful to process with our low quality IR images. 
We have implemented multi-scale hierarchical edges 
detection and edge focusing and introduced a new 
salience measure for the horizon. For multisensor 
image registration, the common features extracted 
from images of two modalities can be still different 
in detail. Therefore, the transformation space match 
methods with the Hausdorff distance measures are 
more suitable than the direct feature matching 
methods. We have introduced image quadtree 
partition technique to the Hausdorff distance 
matching, that dramatically reduces the size of the 
search space into that of the search for translations 
which minimize the Hausdorff distance between 
corresponding blocks. We have shown image 
registration of visible/IR real world images of battle 
fields. The key point is to extract salient features 
from the real world images using local, regional and 
global information and appropriate salience 
measures. 
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Abstract - The Target Imagery Classification 
System (TICS) project is developing a state-of- 
the-art classification system for Inverse Synthetic 
Aperture Radar (ISAR) and other forms of 
target imagery. An open systems approach is 
being used for classification, which insures 
product outputs can be used in conjunction with 
others for multi-sensor data fusion. A two step 
process is used for target identification. First, 
essential features are extracted from ISAR video 
images. Second, features are compared to 
known ship feature sets to derive a 
classification. This process enables the 
construction of new message sets for reporting 
ISAR target features for support of information 
transfer and multi-sensor data fusion. The 
TICS system will also work on Synthetic 
Aperture Radar (SAR), Forward Looking 
InfraRed (FLIR), and Electro-Optical (E-O) 
Target Imagery. 

Key Words:    imagery, radar, sensor, fusion, 
message, classification, automation, ship. 

1. Introduction 

A  critical   need  exists   for   Automated 
Target       Recognition       (ATR)       and 
identification   through   both   cooperative 
means  (e.g.,   IFF)   and   non-cooperative 
means.     A strong   need  also  exists   on 
tactical    platforms    to    perform    target 
classification.   Radar has proven effective 
at surveillance and classification  of ships 
at extended ranges [1].   Three methods of 
radar target discrimination are High Range 
Resolution (HRR) radar, Inverse Synthetic 
Aperture   Radar (ISAR),  and   Synthetic 
Aperture Radar (SAR).   Classification and 

surveillance require different radar modes 
and can not be performed simultaneously. 

Today, operators are trained to use 
specific methodologies to classify ships 
using imaging sensors. The classification 
process requires highly trained operators 
and is platform exposure time intensive. 
The need exists to develop methods to 
assist the operator in rapid target 
identification and reporting. The AN/APS- 
137 Radar [of the ISAR class] on P-3C 
aircraft and a similar system on the new 
SH-60R helicopters is used to classify 
surface ships. In contrast to the optical 
image of a ship, illustrated by Figure 1, for 
the ISAR class of radars the motion of 
ships due to wave action results in Doppler 
shift from structures in proportion to the 
height above the water line. This creates 
what appears as ship silhouettes like that 
of Figure 2. Individual images, or 
sequences of such images can be grouped 
and manipulated into a composite which 
can be compared with known ship profiles, 
parametric shapes and data for deriving 
top levels of target classification*. 

* This technology may be the subject of one or 
more invention disclosures assignable to the 
U.S. Government. Licensing inquires may be 
directed to: 
Harvey Fendelman 
Patent Counsel 
SPAWARSYSCEN Code D0012 
San Diego, CA 92151-5765 
(619) 553-3001 
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Figure. 1 Optical image. 

The x-axis provides relative length; 
the y-axis shows proportional height. 

Figure 2 ISAR image. 

The x-axis gives approximate ship length; 
the y-axis shows relative height (Doppler 
shift). 

The vision of "network centric" warfare is 
the timely exchange of information over 
networks in the battlespace. Data is 
exchanged over networks by VMF 
messages, USMTF messages, TADIL-J 
Messages, and NITF imagery. The Joint 
Chiefs of Staff (JCS) and individual 
Services have developed C4ISR technical 
architectures for information exchange. It 
is important that data elements 
transferable by message be defined. The 
Navy has defined terminology and 
established a basic hierarchy for ship 
classification. This    hierarchy     uses 
Perceptual,     Gross,    Naval     Fine    and 
Type/Class/Unit levels of classification. 

A great deal of work has been done on use 
of radar for target classification. Of 
particular interest, work has been done on 
ship classification by ISAR using 2D or 3D 
models by the Navy [2, 3, and 4]. This 
project, the result of a recent DOD- 
SPAWAR SBIR with Summit Research 
Corporation (SRC), with Lockheed Martin 
Corporation (LMC)-Eagan sub-contract 
support, builds on this earlier work with 
the goal of integrating operator and 
machine approaches to target 
classification and reporting 
standardization. 

2. Approach 

A two-step approach   is taken  for target 
identification.    First, incoming imagery is 
enhanced   and  "focused"   to   provide   an 
integrated,    multi-frame    summed   target 
image, and then key features are extracted 
from sensor video imagery.   Second, target 
features are compared to feature sets of 
known     ship     types     to      derive     a 
classification.    This two-step approach  is 
important    for   three   reasons:    1)   This 
method    is    consistent     with    operator 
training.    Operators  are currently  trained 
to    recognize    targets    based   on    key 
attributes such as ship length, position of 
super     structure,     key     uprights     and 
shapes/features,   etc.      In   this   method, 
abbreviated data collection can provide a 
certain    level   of   classification;    greater 
levels   of classification   are   gained with 
longer, "crisper" data collection.    2) This 
method    supports    information    transfer. 
Target   attributes   can  be transferred   by 
message in text form with accompanying, 
integrated  and enhanced  summary target 
images, for reassessment at remote  sites. 
3)    This    method     supports     computer 
processing  and multi-sensor  data fusion. 
The target features can then be correlated 
with   Link,   video   tape   (VHS)-Imagery, 
Video-Relayed     and/or      parametrically- 
reported   features   obtained   from    other 
similar or dissimilar sensor types. 

The analysis of target imagery and 
derivation of essential features for 
classification    can   be   done    by   either 
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operator or machine. The advantage of 
machines is that they are consistent, do 
not tire during continued operation, and 
operate very fast. New Automatic Target 
Recognition (ATR) methods can support 
this process (Figure 3). The advantage of 
operator methods is that they can support 
selective extraction of easily understood 
target attributes over segments of video 
which is difficult to duplicate by 
mechanistic algorithms*. New Human 
Computer Interfaces (HCI) can be used to 
facilitate operators (Figure 4) and become 
a spring-board for further automated 
feature  extraction. 

In this project, an approach was taken 
that captures the strengths of both 
operator and machine. This was done by 
defining similar target attributes for 
feature extraction and classification by 
operator and machine in a parallel process. 
Incoming target images are first subjected 
to image declutter-noise suppression- 
enhancement techniques. A string of 
image frames are then integrated and 
summed to a robust 2D/3D composite 
image, and top level key (ship) target 
features are then automatically extracted 
[e.g. target length, bow/stern points, main 
(high doppler) superstructure position 
along the length/hull]. The ATR Classifier 
then performs Top-Level ship target 
classification at the Perceptual and Gross- 
levels of classification. 

base [lower silhouette in lower darker 
color]. 

Figure 3 ATR Process. 

Automated comparison of ship ISAR 
image, length and height [upper silhouette 
in light color] to ship profiles in model- 

* Optimal feature vectors extracted by machine 
may not be easily understood by operators (5). 

%_ DESCRIPTION 
16 SAM Launcher 
29 SAM Launcher 
35 Director 
42 For Superstructure 

50 Aft Superstructure 
62 Gun 
71 Radar 
82 Superstructure 
98 Antenna 

98    82      71    62   50 42 35 29        16 

Figure 4  HCI Process. 

Manual feature extraction and comparison 
to feature sets in electronic knowledge and 
model Dbases. 

Resulting OTH Gold (Modified) 
Message Report Format: 

ISTGTXXX/L1023/W22/S35/M39/M57/S 
70/S85/W90//55NM 

The ATR classifier accepts imagery as 
either raw sensor data (In-phase & 
Quadrature-phase, or I&Q) or video tape 
in standard VHS format. LMC, under SBIR 
subcontract to SRC, developed the ATR 
algorithms used. The ISAR imagery data is 
input into a computer where ATR 
algorithms are used to clean up the image 
and extract ship broadside outline. In 
Phase I tests, the ship outline was matched 
against a two dimensional (2D) database of 
models of known ship types. The result 
was a ranked list of likely target types 
from a model base, at the top, Perceptual 
and Gross levels only. Major issues for 
this type of classifier are separating targets 
types that are similar at the model level 
and classifying new targets not in the 
model base. 

A HCI was developed to assist operators 
once they have extracted features from 
sensor    displays    with    the    subsequent 
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classification process. SRC developed the 
HCI used. The Parametric Classifier 
algorithms and routines accept features 
from ISAR imagery and can determine 
target identity by scoring against 
parametric knowledge-based feature 
models at an appropriate Naval and Fine 
(class/unit level) level in a SRC-designed 
hierarchical knowledge base. If there is 
insufficient parametric evidence to 
support a fine level classification, a partial 
classification at a higher level can be 
made. A major issue regarding this type of 
classifier is the development of robust 
automated feature estimation or 
extraction techniques. 

A significant advantage of this Target 
Imagery Classification System design is 
that only 10-15 2D/3D "models" of 
composite Perceptual and Gross-level ship 
types need to be built. Only the "model 
match" has selected a Perceptual and Gross 
target classification category, the SRC- 
developed Parametric Target Imagery 
Knowledge Dbase takes over and classifies 
the target/ship to Type-Class-Unit using 
key ship image features extracted by HCI- 
operator input or through the use of 
developing auto-features extraction 
algorithms. This makes it unnecessary to 
2D/3D model thousands of the worlds 
ships. The Parametric Target Imagery 
knowledge Dbase can inexpensively build 
individual Type-Class-Unit level 
parametric models very efficiently, using 
multiple sources of input data which 
already exist. 

3. Results 

Real world, operationally collected ISAR 
imagery test data sets were obtained from 
the AN/APS-137 Radar System. These 
empirical data sets included 45 video tape 
(VHS) targets and 26 parametric feature 
reports in SRC modified, Over-The- 
Horizon Gold message format (OTG). An 
overview will be given; further details can 
be obtained from SRC. 

The baseline Target Imagery Classification 
System   (TICS)-ATR    System    correctly 

classified all 45 video images down to the 
Class/Unit level. The test sets were of 
varying image quality but all assessed as 
containing essential detail for 
classification. Auto-focus algorithms were 
used for processing of ISAR I&Q or video 
tape images. Images were decluttered, 
enhanced and integrated, and selective 
frames captured. The computer encoded 
the 2D pattern as a function of Doppler 
and range. Pattern matching was based on 
use of deformable templates [6]. The 
advantage of this approach is that it is 
invariant to Doppler affects of 
translation, "shearing" and inversion. 
Target model association is then done 
using normalized Cross Correlation (CC) 
and a String Edit Metric. The features 
used for classification included ship length 
and height profile and overall 
shape/silhouette. Future capability exists 
to include flash points created by rotating 
radar. 

The   HCI   System   then   took   operator 
selected    features    and    then    correctly 
classified 25  of 26   OTH-Gold  message 
formatted    target   reports.       Ships  were 
classified in a hierarchical   fashion  using 
the four levels: Perceptual,   Gross, Naval 
Fine  and   Type/Class/Unit    level.      The 
target   test   database  included 45   ships. 
Perceptual classes consisted of carrier (CV) 
with 2 ships, combatant   (CBT) with 30 
ships, auxiliary (AUX) with 8 ships, and 
small  craft   (SC)  with   5   ships.      The 
approach to classification was based on the 
modeling     and     hierarchical      methods 
currently    used   by    operators. Low 
resolution images support gross features 
used for classification such as ship length 
and relative position of superstructures. 
Higher resolution images support 
additional recognizable objects such as 
guns, antenna and missile launchers, etc. 

Prototype systems were demonstrated by 
SRC and LMC-Eagan at SPAWAR Systems 
Center on 7/98 and 9/98. The two 
systems now operate in series. It is desired 
to integrate the ATR and HCI functions 
into one robust system. Interest has been 
expressed for use of the automated ISAR 
classification  capability on P-3C  aircraft 
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and SH-60R helicopters. Other Navy 
applications may include Tactical Support 
Centers (TSC) and Mobile Operation 
Command Centers (MOCC). In addition, 
there are applications for other military 
Services and commercial industry. 

4.  Conclusions 

The Phase I SBIR and SRC/LMC IR&D 
Project results show that a robust 
classification process can be developed 
that incorporates the strengths of human 
and machine based systems. Major issues 
for this type of classifier are separating 
targets that are similar at the model level 
and classifying new targets not in the 
model-base through the use of parametric 
Dbase matching. The ATR approach uses 
machine extraction of ISAR imagery to 
classify based on length, height, and 
overall shape/silhouette probabiliry-of- 
match. The ship profile model-base is 
processed for matches and a ranked list of 
likely target types is produced. The HCI 
approach then uses operator assisted or 
automated parametric inputs from ISAR 
imagery displays to classify based on ship 
length and other-key features. The 
hierarchical database supports 
classification to the appropriate level 
(e.g., to the Type-Class-Unit level) as 
supported by available data. Areas for 
future enhancement have been identified 
and discussed. 

It has been shown that a robust 
ISAR/Image message set can be used to 
report relevant target attributes to the 
level necessary to support detailed target 
classification. This would be of value for 
reassessment of target identity reported as 
well as for combination with data from 
other sensors for multi-sensor data fusion. 
The vision of "network centric" warfare 
requires sharing of data in the battlespace. 
To make this vision a reality, an 
architecture must be defined for sharing 
relevant information.    It is essential that 

data elements be defined and put in a 
structured form for dissemination and 
automated processing. The TICS project 
works towards this vision with the 
development of a prototype ISAR/Image 
message set and video-imagery for transfer 
of data over networks to higher echelons 
for support of "Sensor Grid" correlation 
and data fusion. 
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Abstract : In this paper, we propose a 
color image segmentation method based on 
the Dempster-Shafer's theory. The tristim- 
uli R, G and B are considered as three in- 
dependent information sources which can be 
very limited or weak. The basic idea consists 
in modeling the color information in order 
to have the features of each region in the im- 
age. This model, obtained on training sets 
extracted from the gray level image, allows 
to reduce the classification errors concern- 
ing each pixel of the image. The proposed 
segmentation algorithm has been applied to 
synthetic and biomedical images in order to 
illustrate the methodology. 

Keywords: Color Image, Segmentation, Dempster- 
Shafer's Theory, Data fusion. 

1    Introduction 

In color image segmentation, color of a pixel 
is given as three values corresponding to the 
well known tristimuli R (Red), G (Green) 
and B (Blue). Different kinds of colors 
spaces have been developed by several au- 
thors [1], [2], [3], [4]. They are derived from 
this representation of the color using linear and 

nonlinear transformations. In the framework of 
segmentation, each color model is more or less 
convenient, efficient or reliable [5]. The major 
problem consists in choosing the adapted color 
model for a specific application. In our study, 
we choose to work only with the tristimuli (R, 
G and B) given by the sensor. Each color 
plane is considered as an information source 
which can be imprecise or uncertainty. The 
basic idea of our purpose consists in combin- 
ing these three information sources using the 
Dempster-Shafer's theory of evidence [6]. This 
well known tool in classification problems [7] 
provides a convenient framework which allows 
modeling uncertainty in situations where the 
available evidence is limited or weak. Some 
works related to image processing propose to 
use this approach derived from the confidence 
measure theory [8]. The proposed method uses 
the formalism of belief functions to represent 
the color information provided by each train- 
ing set. Section 2 introduces the problem we 
want to solve in the framework of Dermatology. 
We present in the section 3 the segmentation 
strategy and propose finally some experimental 
results. The segmentation algorithm has been 
applied to biomedical images in order to detect 
a form of skin cancer. 
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2    Color Image Processing in 
Dermatology 

In Dermatology Science, melanoma is an in- 
creasing form of cancer. It has increased 
twice times for 15 years in Canada and it is 
now 3% of cancers in the USA. The rates of 
clinical diagnostic accuracy are about 65% at 
the very best. In particular, it is very dif- 
ficult to distinguish some atypical lesions - 
which are benign - from melanoma because 
they have the same properties according to the 
well known ABODE rules used by dermatolo- 
gists [9]. There is a visual inspection prob- 
lem for the atypical lesions class. Unneces- 
sary excisions are often practise for these le- 
sions. The variability of colors and shapes (see 
Figure 1) can lead to several interpretation by 
different dermatologists.  However, melanoma 

Figure 1: Original images of lesions 

is well suited for color image processing be- 
cause it is on the skin. Some researches [10] 
have shown the advantages to use image pro- 
cessing in dermatology. Furthermore, the im- 
age processing by computer ensures the repro- 
ductibility of the analysis. However, the essen- 
tial difficulty is to design robust and relevant 
parameters to ensure the separation between 
melanoma and benign lesions, in particular the 
atypical lesions (benign), called naevus, which 
can be clinically mistaken for melanoma. At 
first, the lesion border is the feature to iden- 
tify. It is the first step of the processing to 
engage in order to extract information about 
the lesion. So, the border extraction or identi- 
fication is a critical step in computerized vision 
analysis in skin cancer as pointed out in [10]. 
Then, the segmentation step which takes place 
in any classification processing has to be re- 
ally accurated. In the framework of our ap- 
plication, only two regions are considered. So, 

the problem is to separate lesions from the sur- 
rounding safe skin. So as to obtain geometric 
and colorimetric information on a lesion, it is 
necessary to run a segmentation process which 
will allow to extract the pixels belonging to the 
lesion from the image. Dempster-Shafer's the- 
ory of evidence [6] is also used in two different 
steps of the detection system. It is first used 
in the segmentation scheme but managing un- 
certainty in the classification procedure is very 
important. Figure 2 illustrates this both utili- 
sation. 

SEGMENTATION 
SCHEME 

FEATURES 
EXTRACTION 

CLASSIFICATION 
PROCEDURE 

DSTHEORY] \DSTHEORY] 

Figure 2: Dempster-Shafer's Theory 

3    The segmentation scheme 

A segmentation of an image I is a partition of 
I into disjoint nonempty subsets Hu for u = 
1,2,..., U such as : 

u 
i=\Jnu (i) 

M=l 

Under the assumption that images contain- 
ing only two regions, we can compute a sin- 
gle threshold on the gray level image obtained 
by means of the Maximum Entropy Principle 
(MEP) [11]. This coarse segmentation gives 
two training sets containing pixels which be- 
long surely to one of the considered regions. 
This first segmentation, based only on the use 
of gray level image, induces some classification 
errors. The proposed method is based on the 
color information contained in the image. It is 
decomposed in three steps : 

• Modeling the belief on the training sets, 

• Combining the M information sources 
with the Dempster's rule, 
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• Taking a decision to classify each pixel P 
to a region 7£„. 

For our segmentation scheme, we choose to 
work with M = 3 where the different infor- 
mation sources are the tristimuli R, G and B. 

3.1    Modeling the belief on the train- 
ing sets 

Let 0 represents the finite set of regions Tiu 

such as : 

0 = {7^}foru = l,2,...,J7 (2) 

Each color plane is assimilated to an informa- 
tion source Si for i € 1,..., M. Let us consider 
a basic belief assignment m* defined as : 

mi:2e 
[0,1] (3) 

with mj(0) = 0 and YIACQ 
m«(-^) = 1- Under 

the assumption of Gaussian distributions, basic 
belief functions can be written : 

mi(Hu) = Ri .lEiZ 

Tuy/2ir 
exp 2<T. "2  (4) 

where Xi is a realization of a M-dimensional 
random variable X. In our case, Xi is the 
value of a pixel P for one of the three color 
planes. The values fiu = E(X) and <r„ = 
E(X — E(X))2 are respectively the mean and 
the variance on the region Hu. These values 
are replaced by their statistical approximations 
computed on the training sets. The advantage 
of Dempster-Shafer's theory lies in represent- 
ing uncertainty by means of a belief on the 
whole frame of discernment. This basic belief 
assignment allows to define mj(0) with the fol- 
lowing equation : 

mi(0) = Ri 

<TQ \Z2TF 
exp (5) 

with n@ = (fjt\ + /i2)/2 and a& = max(ai,a2)- 
In the equations (4) and (5), the coefficient Ri 
is a normalization coefficient. It allows to ver- 
ify the condition Y!,Ace mi(^) = 1- 

3.2    Belief function attenuation 

An additional aspect of the Dempster-Shafer's 
theory concerns the attenuation of the basic 
belief assignment mi by a coefficient a*. The 
attenuated belief function m(a>j) can be written 
as : 

n»(0^)(W»)   =   Oi.mi(Ku)    V7^G2e(6) 

"i(<M)(0)   =   1 - Oj + aj.mj(e).        (7) 

The problem consists in evaluating for each 
source Si, the coefficient Oj in order to have 
the more certain information to aggregate. Af- 
ter the learning step, the main idea is to re- 
sume the information contained in each source 
Si by means of an optimum histogram com- 
puted on the set (J^ X{u-,i) m tne sense of the 
maximum likelihood and of a mean square cost. 
This histogram will be used in order to estab- 
lish the relevance of a source of information. 
First, we have to build an approximation of the 
unknown probability distribution with only the 
samples given in each source. That is done by 
means of a histogram building which is led by 
the use of an information criterion. We will 
see that different information criteria initially 
designed for model selection can be used [12], 
[13]. Once this histogram is obtained, we use 
the Hellinger's distance between the approxi- 
mated distribution computed on the set X(W)i) 
and the approximated distribution computed 
on the set ^„/.jj. This distance gives a dis- 
similarity between the two probability densi- 
ties that is to say the ability of the source to 
distinguish the two regions Hy, and HU'. 

3.2.1    Probability  density  Approxima- 
tion 

Let be A1A2... Ap... Aq an initial partition 
Q of an unknown distribution A with q = 
Card(Q). The aim is to approximate A with 
a histogram built on a subpartition C = 
B1B2---Be of Q with c bins such as c < q. 
The probability distribution Ac built with C 
is an optimum estimation of A according to 
a cost function to define. C results from an 
information criterion called IC issued from 
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the basic Akaike's information criterion (AIC) 
[12], AIC* or <f>* [13] which are respectively 
Hannan-Quinn's criterion and Rissanen's cri- 
terion. These criteria have the following form : 

AC(B) 
IC(c) =g(c)- £ Xc In ± 

BZC (B) 
(8) 

where g(c) is a penalty which differs from one 
criterion to another one. Let us note e a ran- 
dom process of a probability distribution A 
supposed absolutely continuous to an a priori 
given probability distribution v. Let u be the 
set of all values taken by e. The probability 
density / of A is given by the Radon-Nycodim's 
derivative such as : 

Veeo;       /(A,e) = ^(e). (9) 

The probability density / is approximated 
from N samples (e*.) of £ by means of a his- 
togram with c bins obtained with these N val- 
ues. An optimum histogram to approximate 
the unknown probability distribution A is ob- 
tained in two steps. The first one consists in 
merging two contiguous bins in a histogram 
with c bins among the (c— 1) possible fusions of 
two bins. This is made by minimizing the IC 
criterion. The second one consists in finding 
the "best" histogram with c bins. The opti- 
mum histogram with c = Cgpt bins is the one 
which minimizes IC. 

3.2.2    Maximum   likelihood 
for a partition Q 

estimator 

Let Q be a partition with q bins and let 
ei... ejv be a N-observation sample and let be 
AQ the probability distribution according to Q. 
The maximum likelihood estimator ÄQ of AQ is 
given by the following equation : 

Vpew       \Q(Ap) = — ]T ek (10) 
ek€Ap 

where Ap is a bin of the partition Q. This 
result derives from the density expression of 
AQ: 

Ve€a,       /(AQ,e)=£ 
A£Q 

XQ(A) 

u(A) U(e)  (11) 

with I4 (e) = 1 if e € A and 0 otherwise. 

3.2.3    Selection of the bin number of a 
histogram 

The obtaining of the optimum histogram is 
based on the use of an information criterion IC 
which gives the number of bins optimal thanks 
to a cost function based on the Kullback's con- 
trast or the Hellinger's distance. We define the 
cost to take A when A is the true probability 
density by : 

W(X,X) = Ex\i> 
/(A,e) 

/(A,e) 
(12) 

where E\ is the mathematical expectation ac- 
cording to A and if) is a convex function. Ac- 
cording to the expression of if? the cost func- 
tion leads to different information criteria to 
choose the histogram with c bins. So, if ip is 
the Hellinger's distance we get : 

AIC(c)=g(c)-2Yi\c(B)\n- 
Bee 

ACS) 
(BY 

(13) 

with g(c) represents the penalty term defined 
as : 

9(c) 
2c-1 

N   ' 
(14) 

It can be seen that it is identical to the classi- 
cal Akaike's information criterion. If the cost 
function W(X, A) is expressed according to the 
KullBack's contrast, we obtain two new crite- 
ria <£*(c) and AIC*(c) with different penalty 
terms g(c) defined respectively as : 

, .      c(l + ln(lniV)) 
9{C) =     N  

9(c) 
c(l + laN) 

N 

(15) 

(16) 

These criteria can be used to select the opti- 
mum histogram with c bins to approximate the 
unknown probability density of a N-sample. 
Detailed demonstrations are available in [12] 
or [13]. 
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3.2.4 Optimum 
process 

histogram     building 

At first, an initial histogram with q = 
Card{Q) = 2 x In[\/N - 1] bins is built giv- 
ing the partition Q, where In[ ] denotes the 
integer part. Then, a partition with (q — 1) 
bins is considered. For each possible fusion of 
two contiguous bins among (q — 1) the crite- 
rion IC(q — 1) is computed. The choice of the 
best fusion is made according to the minimiza- 
tion of IC(q — 1). When it is done, we look for 
the best partition with (q — 2) bins according 
to the same rule. Finally, the histogram with 
c bins such as IC(c) for c G {1,... , q} is re- 
tained. An initial histogram is built with a N- 
sample (N = 90) randomly generated accord- 
ing to a gaussian distribution with mean equal 
to 0 and with a variance equal to 1. Figure 3 
gives the behaviour of the three criteria. It can 
be seen that AIC* and <f>* give the same final 
histogram. AIC gives a final histogram with 
an upper bin number. This difference is linked 
to the type of convergence for each informa- 
tion criterion [13]. The optimum histogram is 

Criteria evolution 
4.25 

3,75 

3.5 

3.25 

 AIC» 
-*--*- AIC 
—•-— WD* 

•                                             ■-                        .-iff- 

SB 12 15 

Numbar of claasu 

18 

Figure 3: Criteria evolutions 

computed on the set (J^ ^(U;»)- Once this his- 
togram is obtained, we use the Hellinger's dis- 
tance between the approximated distribution 
Ac computed on the set #(U;i) and the approx- 
imated distribution X'c computed on the set 

X(u';i)- This distance gives a dissimilarity be- 
tween the two probability densities that is to 
say the ability of the source to distinguish the 
two hypotheses Tiu and Ttyt. 

3.3    Fusion of several sources 

The Dempster-Shafer's theory allows the fu- 
sion of several sources using the Dempster's 
combination operator. It is defined like the or- 
thogonal sum (commutative and associative) 
following the equation : 

m(nu) = mi{nu)@---®mM{fiu)      (17) 

For two sources Si and S?, the data fusion can 
be written as : 

m{Ku) = -      J2      rni(Kv)-rni'(Kw)- 
/Ct/M/Ctü — fCy, 

(18) 

where K. is defined by 

JC = 1-     J2     mi{nv).mv{'R.w).      (19) 
ft« rift«, =0 

The normalization coefficient K evaluates the 
conflict between two sources. K = 0 corre- 
sponds to the case where the sources are totally 
in conflict. 

3.4    Decision rule 

The credibility Bel and the plausibility PI can 
be computed from the basic belief assignment 
using following equations : 

Bel(Ku) ^2   m(ßv) (20) 

Pl(Ku)=     £    m(T^). (21) 
it* rniv^Q 

Finally, the decision is made by assigning a 
pixel P to a region TZy, with the maximum cred- 
ibility or with the maximum plausibility. The 
first one corresponds to a pessimistic decision 
rule and the second one to an optimistic de- 
cision rule. Some results are presented in the 
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section 4. We attenuate each belief function rrn 
according to the equation (7) where 04 is the 
Hellinger's distance. The information sources 
Si are then aggregated using the Dempster's 
combination rule. The decision rule is based on 
the decision function 5 which assignes a pixel 
P to the region "Ry, following : 

6(P,Tlu) = uüfnu arg max (BelCR,,)) 
Hv&e 

(22) 

or 

<S(P,7^)=uiifftu arg max (Pl{Uv)) 

(23) 

4    Experimental Results 

This section is devoted to present some results 
concerning the segmentation scheme in order 
to evaluate the methodology. The proposed 
segmentation algorithm has been applied to 
biomedical images in order to illustrate the 
strategy. Some images, in the context of der- 
matology, are presented in the figure 4. First 

Figure 4: Results images 

row corresponds to the original color images. 
The respective two other rows represent the 

segmentation scheme results with the decision 
concerning the maximum of credibility (second 
row) and the maximum of plausibility (third 
row). We can note that the lesion (red color) 
is correctly extracted from the safe skin (white 
color). The blue color corresponds to pixels 
which cannot be classify either to the safe skin 
or to the lesion. We present in the figure 5 some 
images containing edges superimposed on the 
original images of lesions. 

Figure 5: Edges detection 

5 Conclusion 

In this paper, we have presented an origi- 
nal color image segmentation procedure us- 
ing both information criteria and Dempster- 
Shafer's theory. The proposed methodology 
consists in intializing the belief functions with 
probability densities obtained by learning. By 
means of information criteria, we determine 
the attenuation of the belief assignment based 
on the dissimilarity between probability dis- 
tributions. This framework allows to use the 
whole information contained in the image as 
better as possible. The proposed methodol- 
ogy has been applied in order to classify lesions 
in the framework of a kind of skin cancer fre- 
quently meet in Dermatology science. Future 
work is concerned with analysis of several deci- 
sion rules using uncertainty measures proposed 
by Klir [14, 15]. 
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Abstract - An Adaptable Data Fusion Testbed (ADFT) 
has been constructed that can analyze simulated 
and/or real data with the help of modular algorithms 
for each of the main fusion functions and image 
interpretation algorithms. The results obtained from 
data fusion of information coming from an imaging 
Synthetic Aperture Radar (SAR) and non-imaging 
sensors (ESM, IFF, 2-D radar) on-board an airborne 
maritime surveillance platform are presented for two 
typical scenarios of Maritime Air Area Operations 
and Direct Fleet Support. An Image Support Module 
(ISM) has been designed and implemented that 
consists of a four-step hierarchical SAR classifier that 
can extract attributes such as ship length, ship 
category, ship type and (in the future) ship class. The 
SAR classifier can distinguish between merchant and 
combatant categories and can select amongst 5 
combatant types and it estimates confidence levels for 
each sensor declaration that it produces, for example 
through the use of properly trained neural nets. A 
truncated Dempster-Shafer evidential reasoning 
scheme is used that proves robust under 
countermeasures and deals efficiently with uncertain, 
incomplete or poor quality information. Since the 
Dempster-Shafer method reasons over an exhaustive 
list of all possible platforms, an extensive set of 
realistic databases has been created that contains 
over 140 platforms, carrying over 170 emitters and 
representing targets from 24 countries. 

1. Introduction 

This paper describes an existing Adaptable Data 
Fusion Testbed (ADFT) which is based on a 
Knowledge-Based System (KBS) BlackBoard (BB) 
architecture to perform data fusion of imaging and 
non-imaging sensors present on-board the CP-140 
Canadian maritime patrol aircraft. Much additional 
material is presented here compared to [1] and only a 
quick summary of relevant data from [1] is presented 
for clarity. 

The ADFT architecture must process the data coming 
from radar, Electronic Support Measures (ESM), 
Identification Friend of Foe (IFF) and datalink 
information both for the planned Aurora 
Modernization  Program  (AMP)  and  the Maritime 

Helicopter Project (MHP) which will replace the 
ageing Sea Kings. The new sensors that are 
exclusively present on the airborne platforms are of 
the imaging type, namely the Forward Looking Infra- 
Red (FLIR) and Synthetic Aperture Radar (SAR) 
which can operate in Strip Map, RDP and Spotlight 
modes (Adaptive or Non-Adaptive). The attribute data 
that these sensors can provide is important in 
determining the identification of target platforms, 
particularly the long range features that the Spotlight 
SAR can furnish. 

2. ADFT Architecture 

The real-time KBS BB shell developed by Lockheed 
Martin (LM) Canada and Defence Research 
Establishment Valcartier (DREV) is the basis of the 
ADFT infrastructure. This system is totally generic, 
and could be used to implement any system comprised 
of components which can be numeric or AI based. It 
has been implemented in C++ rather than in a higher- 
level language (such as LISP, Smalltalk, ...) to satisfy 
the real-time requirement. 

The testbed is designed to accommodate modular 
interchangeable algorithm implementation and 
performance evaluation of: 

1. Fusion of positional data from imaging and non- 
imaging sensors; 

2. Fusion of attribute information obtained from 
imaging and non-imaging sensors and other 
sources such as communication systems, satellites, 
etc., and 

3. Object Recognition (OR) in imaging data. 

The algorithms incorporate state-of-the-art tracking in 
clutter and evidential reasoning for target 
identification. The end result offers the user a flexible 
and modular environment providing capability for: 

1. addition of user defined sensor simulation models 
and fusion algorithms; 

2. integration with existing models and algorithms, 
and 
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3. evaluation of performance to derive requirement 
specifications and help in the design phase 
towards fielding a real Data Fusion (DF) system. 

3. Fusion Function Implementation 

Any generic DF application must contain the 
following set of sequential functions to act on real or 
simulated data: 

1. registration to first perform spatial and temporal 
alignment of the simulated sensor data, 

2. an association mechanism to then correlate the 
new incoming data with possible existing tracks found 
in the BB database and to send associated positional 
data to positional fusion and associated attribute data 
(e.g. image features of a given target) to information 
fusion, 

3. positional estimation to then update the tracks in 
the time domain with the associated new data and 
write this positional information to the BB database, 
possibly extracting attribute data such as speed, 
acceleration and sending to information fusion, and 

4. identification estimation (or information fusion) 
to then fuse all attribute data through evidential 
reasoning, whether they originate from imaging 
(through image understanding and feature extraction) 
or non-imaging sensors and consequently update the 
dynamic BB track database. 

The control flow for the fusion of information is data 
driven directly from the simulators. The algorithms 
used within the DF function include: Jonker- 
Vogenant-Castanon (JVC) algorithm which is an 
optimal single-scan associator for the association 
function, Kaiman filters for the positional estimation 
function, and LM Canada developed truncated 
Dempster-Shafer (DS) algorithm for the identification 
(ID) estimation function. The positional estimation 
function uses radar, IFF, ESM and Link-11 data and 
ID estimation uses IFF, ESM, Link-11 and imaging 
features. 

4. Database Attributes For Identification 

For ID estimation to be properly achieved, all possible 
attributes that can be measured by all of the sensors 
must be listed in the Platform DataBase (PDB). The 
attributes which we have catalogued in the PDB split 
into 3 groups (more explanations can be found in [1]): 

1. Kinematic attributes which can be estimated by 
tracking by positional estimation, IFF and Link- 
11:    the    maximum    acceleration    ACC,    the 

maximum platform speed V_MAXI and the 
minimum platform speed V_MINI all serve as 
bounds to discriminate between possible air target 
identifications. ALT_MAXIM is the maximum 
altitude that a platform may reach, which serves as 
a bound for altitude reported by the IFF. 

2. Geometrical attributes which can be estimated by 
algorithms within the FLIR and the SAR 
classifiers: in addition to the three geometrical 
dimensions of height, width and length, one also 
needs the variables RCS_FOR, RCS_SID, 
RCS_TOP corresponding respectively to radar 
cross-section (RCS) of the platform seen from the 
front, the side and the top. The RCS values are 
empirically much larger than the geometrical 
cross-section obtained by the product of the two 
relevant dimensions (HEI, WID, LEN) since 
metallic objects offer strong radar backscatter 
when compared to the geometrical cross-section. 

3. Identification attributes which can be directly 
given by the ESM, or as outputs of the FLIR and 
SAR ISM. ACRO is the acronym of the country 
name indicated in the GPL and used also to refer 
to the country that owns the platform in the PDB. 
In the PDB, ACRO is used by the attribute fusion 
function to link the PDB platform with the 
country allegiance indicated in the GPL. The 
variable EMITTER_LIST is an exhaustive list 
(labelled by number) of all the emitters that are 
carried by the platform. The variable PLATYPE 
forms the first level of platform classification used 
in this PDB. This variable is closely related to the 
category descriptor given by the ISM and reflects 
its platform military utilization. 

Some sensors measure attributes quite directly. For 
example the ESM will provide an emitter list with 
some confidence level about the accuracy of the list 
that reflects the confidence in its electromagnetic 
spectral fit. However an IFF response can lead to an 
identification of a friendly or commercial target but 
the lack of a response does not necessarily imply that 
the interrogated platform is hostile. One has to 
distribute the lack of a response between at least two 
declarations: the most probable foe declaration and a 
less probable friendly or neutral declaration that 
allows for an IFF equipment that is not working or 
absent. 

Similar complications arise when dealing with 
kinematic parameters reported occasionally by the 
tracker in positional estimation. Firstly, each physical 
quantity has a different dimension (speed, 
acceleration) and an accurate determination is not 
necessarily needed for fusion. Indeed it is convenient 
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to bin the attribute "speed" into fuzzy classes like 
"very fast", "fast", "average", "slow" and "very slow" 
(separately for air and surface targets). The same can 
be done for length in bins of 40 meter width for 
example. Membership in each class is a measure of 
how well the measured value fits into the descriptor as 
described below. Further, speed reports must be fused 
only if they involve a significant change from past 
historical behaviour in that track. The reason is two- 
fold: firstly no single sensor must attempt to 
repeatedly fuse identical ID declarations otherwise the 
hypothesis that sensor reports are statistically 
independent is violated, and secondly the benefits of 
the fusion of multiple sensors is lost when one sensor 
dominates the reports. Furthermore, a measured value 
of speed only indicates that the target is capable of that 
speed, not that it corresponds to either the maximum 
or minimum speeds listed in the PDB. It is a 
reasonable working hypothesis to fuzzify the value 
reported by the tracker into adjacent "bins" to account 
for the target being at, say only 80% of its optimal 
speed (a "very fast" target can occasionally travel 
"fast"), or travelling with a strong tailwind (a "fast" 
target can occasionally appear as "very fast"). Finally 
the concept of binning can be generalized to 
continuous membership functions of a fuzzy set. 

The PDB presently used contains over 140 platforms, 
carrying over 170 emitters (which are listed in an 
Emitter Name List) and representing targets from 24 
countries (which are enumerated in an Geo-Political 
Name List that serves to determine allegiance on any 
given mission). 

5. Identification Estimation 

A truncated Dempster-Shafer evidential reasoning 
scheme is used that proves robust under 
countermeasures and deals efficiently with uncertain, 
incomplete or poor quality information. The evidential 
reasoning scheme can yield both single ID with an 
associated confidence level and more generic 
propositions of interest to the Commanding Officer. 
Our approach of reasoning over attributes provided by 
the imagery will allow the ADFT to process in the next 
phase (currently under way) both FLIR imagery and 
SAR imagery in different modes (Spot Adaptive and 
RDP for naval targets, Strip Map and Spotlight Non- 
Adaptive for land targets). 

The DS theory of evidence offers a powerful approach 
to manage the uncertainties within the problem of 
target identity. Every sensor declaration about the M 
possible "values" of an attribute assigns a Basic 
Probability Assignment or Mass (BPM) value m; 
(i=l...M) to that attribute (present in the database) and 

generates M propositions which are just the numerical 
list of platforms in the PDB that can attain the said 
value for the attribute. For a PDB containing N 
platforms, the numerical list of platforms which forms 
a proposition is represented in the current 
implementation by a string of zeroes and ones in the 
location of a string of N bits. This is done to speed up 
calculations by bit manipulations for ensemble 
operations such as union and intersection, which are 
needed in DS theory. For physical quantities like 
speed, length, RCS and image classification attributes 
like category or class, M is usually greater than 1. This 
is due either to the fuzzification of the physical 
quantity or to the inherently complex nature of the 
algorithmic determination of the attribute (e.g. by NN 
outputs). DS theory is particularly suited for our 
application because it requires no a priori information, 
can resolve conflicts (present in hostile environments 
due to countermeasures), and can assign a 
mathematical meaning to ignorance (which is the 
result of some of the chosen algorithms). 

As various evidences are combined over time, DS 
combination rules will have a tendency to generate 
more and more propositions which in turn will have to 
be combined with new input evidences. Since this 
problem increases exponentially, the number of 
retained solutions must be limited. Our truncated 
version of DS theory of evidence performs the 
conventional combination rules of DS theory but 
retains the final solution proposition according to the 
following criteria [2]: 

1. All combined propositions which have BPM > 
BPM_MAX are retained (presently chosen as 
0.05). 

2. All combined propositions which have BPM < 
BPM_MIN are eliminated (presently chosen as 
0.001). 

3. If the number of retained propositions in step 1 is 
smaller than MAX_NUM, the subroutine will 
retain, by decreasing BPM, the propositions 
consisting of one element (singleton) until 
MAX_NUM is reached. If MAX_NUM is not 
reached, one retains, by decreasing BPM, the 
propositions consisting of two elements. The 
process is repeated until MAX_NUM is reached 
(presently chosen as 8). This step takes into 
consideration that the platform's commanding 
officer favours propositions of the singleton type. 
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6. Image Support Modules (ISM) 

The ISM for either the SAR or the FLIR can also 
generate a nearly infinite set of declarations from a 
single given image. Care must be taken to preserve as 
much independence between the declarations and 
certainly prevent any conflict. Such an independence 
can be achieved to a reasonable extent if different 
features are extracted from the image in different steps 
or if totally different mathematical algorithms are used 
in each step. The ISM which LM Canada has designed 
for image interpretation of SAR data is the 2-D 
equivalent of the ESM's 1-D signal interpretation. The 
present ISM design involves the four steps described 
in Figure 1, of which the first three have been 
implemented and tested [2]. The design logic shown in 
Figure 1 involves a hierarchical decision tree for ship 
features extraction and ship classification which has 
considerably evolved since the description in [1]. 

(STEP?     ) 

& 

S-Wn |       Ship length      [^ 
dacemposltien 

NN supervised by KB rul»s 
for ship category 

(Lin; Merchant, Unrecognized) 

NN module NN modul» NN moduli 
for Frigate classes for Destroyer class** for Merchants 

Btryes classifier for 
Una ship 

type (e.g. Frigate) 

Figure 1 - SAR ISM hierarchical design 

The SAR ISM thus preferentially extracts target 
features at long range feature, namely 

1. ship length, 

2. ship category: combatant (line), merchant or 
unrecognized, 

3. ship type, e.g. if line, then either frigate, 
destroyer, cruiser, battleship or aircraft carrier, 
and 

4. ship class, e.g. if frigate, then Halifax class or 
MacKenzie class. 

Given the image acquisition parameters and the 
navigation data, the first step checks if proper ship 
orientation is achieved (e.g. the image is sufficiently 
elongated), and, if so, an image segmentation process 
detects a target whose image is simply connected. In a 

second step, a Hough transform then permits an 
estimation of the ship length, which is immediately 
sent to MSDF for the ID estimation process. 

In the third step, Artificial Intelligence rules based on 
the relative position and number of main scatterers (as 
identified by pixel intensities being above a certain 
threshold) allow the determination of ship category 
into "line" or "merchant" categories by locating its 
superstructure. The presently implemented method is a 
Neural Net (NN) trained on 37 production rules based 
on the location of the main radar scatterers in 9 
different regions along the length of the ship. The 
possible outputs of the NN are "line", "merchant" or 
"unrecognized". It should be noted that these 
categories are only a subset of the NATO STANAG 
where "line" is only a subset of combatant ships and 
"merchant" is a subset of so-called "non-naval" 
entities. They are however the main categories 
relevant for the Aurora missions mentioned earlier. An 
"unrecognized" declaration from the NN indicates that 
it could not reach an ID and consequently that 
declaration is assigned to the ignorance in the DS 
algorithm for evidential reasoning. 

The third step also performs an attempt at identifying 
ship class if the NN declaration for "line" is 
sufficiently large (say >50%). This is due to the 
correlation [1] between ship length and ship class 
observed from a survey of about 100 classes of ships 
in Jane's Fighting Ships (no such correlation exists 
however for merchant ships). The line types which are 
generated in this fashion can discriminate between 
frigates, destroyers, cruisers, battleships and carriers 
(as identified in the PDB). An indication of the 
fuzziness of the declaration is given by the relative 
overlap between classes for a given measured length. 

Finally, in the fourth step, specialized NNs trained on 
subsets of the database of ship images (artificially 
created from a simulator for various aspect and 
depression angles), that span a given length interval, 
refine the ID declaration to ship class (e.g. frigate of 
Halifax class, destroyer of Spruance class). The 
outputs of the neural net for each possible class are 
again numbers between 0 and 1 which are interpreted 
as the level of confidence in obtaining the correct class 
ID. The neural net also provides an "unrecognized" 
class which again reflects its inability to reach a 
conclusion about ship class. This is then attributed to 
the ignorance in the DS sense, as in step 3. The 
merchant ship classifier has been implemented as a 2 
hidden layer NN trained on over 200 merchants and 
tested on a restricted set of simulated SAR imagery. 

For the FLIR classifier, a similar two hidden layer 
neural net design is presently being studied and trained 
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on more than two hundred merchant ships. Since 
merchants, unlike combatants, cannot readily be 
identified through the radar emitters, the FLIR 
performance will be crucial in determining their type: 
cargo, RoRo, ferry, oiler/tanker, or passenger. Results 
will be presented elsewhere, once validation has been 
quantified on real FLIR imagery. 

7. Test Scenarios 
Two representative scenarios were run on the ADFT, 
one for Maritime Air Area Operations (MAAO), the 
other for Direct Fleet Support (DFS). Three Russian 
line ships (Mirka II frigate, Udaloy II destroyer and 
Kara-Azov cruiser) are imaged by the SAR in MAAO 
as indicated in Figure 2 (the dashed vertical line is the 
flight pattern of the CP-140) while three American line 
ships (Coontz destroyer, Ticonderoga cruiser and 
Virginia cruiser) are imaged in DFS. In MAAO, one 
has in addition, countermeasures for the Udaloy, 
namely emitters are detected from the Udaloy which 
do not correspond to the entries in the PDB. 

merchants too tar for FUR 
but closa enough for SAR merchants close enough for 

FUR imaging 

fleet of 3 enemy line ships 
imaged by the SAR 

UDALOY, KARA, MIRKA 

Some emitters de net correspond 
Co PDB (countermemsures) 

Figure 2 - Maritime Air Area Operations scenario 

8. SAR ISM Results 

Figure 3 shows the raw SAR imagery in reverse video 
and histogram equalized (on top), the segmented 
image with its extracted centerline by the Hough 
transform and the thresholded major scatterers for the 
Udaloy destroyer, the Kara cruiser and the Mirka 
frigate (respectively from left to right). The images are 
not necessarily to scale. According to the scenario, the 
SAR acquisition parameters are: an aircraft altitude of 
3 km, a range to target of 100 km, an aircraft speed of 
0.15 km/sec (300 knots), a SAR wavelength of 0.03 m, 
common ship heading of 45 degrees, slant-range 
resolution of 0.75 m and cross-range resolution of 2.0 
m (intentionally unclassified numbers). 

Udaloy 
destroyer 

L= 140; [133,179] 

Line = 86% 
Merch. = 5% 
unrec. = 9 % 

Frigate = 8 % 
Destroyer = 48 % 
Cruiser = 29 % 
Battleship = 0% 
Aircraft Car. = 1 % 

L= 169; [160,208] 

Line = 81 % Merch. • 6 % Unrec.. 

Kara 
cruiser 

äjjJÄ WARNING: small ship 
•   SSJ    L = 71; [66,102] 

Frigate = 86 % 
Destroyer = 0 % 
Cruiser = 0 % 

„.' Battleship = 0% 
• ■•■** Aircraft Car. = 0 % 

Frigate = 0 %, Destroyer = 10 % 
Cruiser = 67 %, Battleship = 0 % 
Aircraft Car. = 4 % 

Figure 3 - SAR images of Russian fleet in MAAO 
scenario with ISM declarations 

For each of the 3 imaged ships, the ISM's hierarchical 
classifier generates successively 3 attributes, each of 
which leads to several identity declarations (with 
associated BPMs in the DS sense) for line ships. First 
the length obtained after centerline detection, which is 
further fuzzified into bins corresponding to length 
increments of 40 m (an interval for length is shown in 
the figure). Next the line category with its confidence 
level is obtained by keeping the top 10% of the 
strongest pixels and confidence levels are given for 
line, merchant and unrecognized categories. Finally 
the line type, from a choice of 5 line types: frigate, 
destroyer, cruiser, battleship or aircraft carrier 
(identification are again in percentages). 

Note that all ships are correctly identified by the SAR 
ISM in the MAAO scenario. The correct ISM 
declaration for the Udaloy will offset the incorrect 
ESM reports. In the case of the Mirka, its small length 
is flagged to the operator since the algorithm is not 
certain of correct ID. In this case, the operator should 
fuse the ISM result, but in other scenarios that were 
run (such as Counter Drug Operations,) the operator 
should decide against fusion. 

The results are quite different in the case of the DFS 
scenario, which consists of a Canadian and an 
American fleet. The Canadian fleet of 4 ships is 
overflown so closely that only FLIR acquisition is 
possible (to be analyzed at a later date when the FLIR 
ISM is mature) while the American fleet of 6 ships is 
sufficiently distant that only SAR image acquisition of 
a selected subset of ships is possible. In the DFS case, 
one of the American ships is incorrectly identified by 
the SAR ISM (the Virginia cruiser is an atypically 
small cruiser such that the ISM Bayes length classifier 
identifies it primarily as a destroyer) but the ESM 
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functions properly. Because the type declaration 
consists of the 3 most probable types, which includes 
some confidence in the Virginia being a cruiser, the 
ISM does not contradict completely accumulated ESM 
information and the small amount of conflict is 
correctly handled by the truncated DS scheme. Figure 
4 below shows the SAR image for the 3 American 
ships and the ISM declarations. 

Figure 5 shows the ID evolution for the Mirka frigate. 

Coontz 
destroyer 

L= 138; [130. 173] 

Line = 86 % 
Merch. = 5 % 
Unrec. = 9 % 

Frigate =11% 
Destroyer = 53 % 
Cruiser = 21 % 
Battleship = 0 % 
Aircraft Car. = 0 % 

Virginia 
cruiser 

L = 127; (117,165] 

Line = 76 % 
Merch. = 3 % 
Unrec. =20% 

Frigate = 25 % 
Destroyer = 43 % 
Cruiser = 8 % 
Battleship = 0 % 
Aircraft Car. = 0 % 

Ticonderoga 
L= 178; (137. 191] rniilpr Frigate = 4 % Destroyer ~ 36 % 

.     t        „,, .„„ Cruiser» 42 % Battleship = 0 % 
Line = 83 % Merch. = 4 % Unrec. = 13 % Aircra(, Car = , % 

Figure 4 - SAR images of American fleet in DFS 
scenario with ISM declarations 

9. Identification Results 

The DF algorithms have been tested on complex 
scenarios representative of the main Aurora missions, 
namely MAAO, DFS, Counter Drug Operations and 
Maritime Sovereignty Patrols. This paper deals only 
with the first two and concentrates on line ships rather 
than merchants. 

In the MAAO case the emitters carried by the 
platforms have many common elements as shown in 
Table 1 below, where the Udaloy's false emitters are 
listed in bold. Reporting emitters are selected at 
random in the emitter list of the corresponding 
platform in the PDB. 

Name List of emitters 
Udaloy II 63 65 69 7177 9193 97 129 
Kara II 45 46 62 64 68 78 84 85 92 93 103 104 
Mirka 44 47 55 56 103 109 

Table 1 - Emitter list for the Russian Fleet 
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Figure 5 - ID evolution for the Mirka II 

Five triangles at the bottom of the figure represent the 
time at which an ESM report has been fused. After the 
first 10 minutes (t=656s), the Kara-Azov and the 
Mirka are not properly resolved (within an angle of 
1°). The emitter #92 belonging to the Kara-Azov and 
other platforms is detected, initiating a proposition in 
which the Mirka-II is absent. Then, at t= 1293s, the 
emitter #103 is detected which belong to the Mirka-II 
and to the Kara-Azov (the ground-truth shows that it is 
emitted by the Mirka-II but the Kara-Azov proposition 
already existed). At t=1950 s, the emitter #56 is 
detected which does not belong to the kara-Azov but 
to the Mirka-II. A SAR image is acquired and 
analyzed at time t—1980 s. The fusion of the Ship- 
Length attribute confirms the Mirka ID since the Kara 
is a cruiser two times longer than the Mirka-II. The 
fusion of the Ship Type attribute at time t=2040 s 
provides further reinforcement. Then, at time t=2606 s 
and 3243 s, two emitters (#44, #55) belonging only to 
the Mirka-II create the final correct ID. 
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Figure 6 - ID evolution for the Udaloy II 
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Figure 6 above shows, for the Udaloy-II, the same type 
of information shown in Figure 5. 

At t=637s, the emitter #97 is detected which belong to 
the ships of class Udaloy and to the modified-Kiev. 
Then, at t=1275s, emitter #129 is fused which does not 
normally belong to the Udaloy-II but has been placed 
intentionally in its list of emitters to simulate a 
countermeasure; as a result a false ID list is generated. 
A SAR image is acquired an analysed at t=1980s. The 
fusion of the Ship-Length attribute split amongst two 
propositions (see also figure Figure 7) has the effect of 
decreasing the false ID while creating from the initial 
proposition an ID containing ships of class Udaloy. 
The fusion of the Ship Type helps in decreasing the 
BPM associated to the false identity. At time t=2606 s, 
emitter #71 is detected which unfortunately does not 
help in discarding the false ID since this emitter 
belongs to the ships of both classes Udaloy and 
Sovremenny. The correct decision is made at time 
t=3243 s, when emitter #93 belonging only to the ships 
of the class Udaloy is detected and fused. 

Let us now consider an electromagnetically silent 
version of the same scenario, i.e. one where only the 
SAR ISM can provide ID estimation. 
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Figure 7 - Time evolution of the generic 
identification for the Udaloy-II from the SAR ISM 

In this case, Figure 7 shows that, at first, the Udaloy 
length declaration is equally distributed amongst two 
propositions consisting of the fuzzified length classes 
LGTH_2 and LGTH_3. These are then fused with the 
declaration consisting of 3 non-null propositions 
coming from the Bayes classifier namely: Destroyer 
48%; Cruiser 29%; and Frigate 4%. The resulting 
fusion results in the correct proposition "LGTH_2+ 
DEST" together with "LGTH_3+DEST" having the 
largest mass, followed by "LGTHJ2+CRU" together 
with    "LGTH_3+CRU"    and    finally    the    joint 

identification "LGTH_2" together with "LGTH_3" by 
itself. This demonstrates again that the ISM alone can 
provide an adequate (if more complex) platform 
identification in an electromagnetically silent 
environment. 

In the case of the DFS scenario with SAR imaging of 
the American fleet (at the same distance and aspect 
angles as in the case of the MAAO scenario), one 
obtains the results for the ID of the American fleet 
shown in the following figures. In order to follow the 
ID evolution, Table 2 below shows the emitter list for 
the American fleet. Note that only the first 3 are 
imaged, but all ships are so closely separated that their 
emitters are occasionally associated to other ships 
depending on the line-of-sight and the ESM bearing 
accuracy used (representative of a classified number). 
Again the emitters carried by the platforms have 
many common elements and emitters are selected 
at random from run to run. 

Name List of emitters 
Coontz 7 8 13 16 18 33 34 35 57 
Ticonderoga 7 8 13 32 53 54 57 110 112 
Virginia 7 8 13 15 16 3132 53 54 57 
Spruance 8 14 18 31 32 43 53 57 114 115 119 

121 
Sacramento 7 13 18 33 42 121 130 
Nimitz 7 8 16 17 5457115117 121 122124 

125 126 127 

Table 2 - - Emitter list for the American Fleet 
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Figure 8 - ID Time evolution for the Coontz 

Figure 8 shows that the ESM reports already prefer 
the Coontz destroyer identification since emitter #16 
was identified (common also on the Virginia) and that 
the Ship Length (SL) (since the Coontz is smalle rthan 
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the Virginia) and, at a later time, the Ship Category 
(SC) and Ship Type (ST) only reaffirm this correct 
ID, despite emitter #15 having been fused at similar 
times. 

The situation for the Ticonderoga is slightly more 
complicated. Figure 9 shows that, at first, due to 
association of the closely separated American fleet at 
such a large distance (relative to unclassified sensor 
accuracy used), both the Virginia and the Ticonderoga 
are possible. The simultaneous fusion of emitter #110 
(solely on the Ticonderoga), without the help of the SL 
and SC+ST ISM declarations, resolves the ambiguous 
ID. 
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Figure 9 - ID Time evolution for the Ticonderoga 
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Figure 10 - ID Time evolution for the Virginia 

As for the Virginia cruiser (which is incorrectly 
identified by the SAR ISM as a destroyer like the 
Spruance), Figure 10 below shows that emitter #13 
(present   on   the  Virginia   but   not   the   Spruance) 

decreases the belief in the Spruance and increases the 
one for the Virginia. However, after fusion of emitter 
#18 (present on the Spruance but not the Virginia) and 
the incorrect ISM declaration, rapidly followed by yet 
another emitter #18 declaration, the final identification 
favors the Spruance until one is well past the 
American fleet. In this case, the closeness of the two 
platforms has caused too many "false" ESM 
declarations to be associated to the Virginia to reverse 
the incorrect ISM declaration. 

10. Conclusions 

A KBS BB-based architecture has been chosen for the 
airborne fusion testbed at LM Canada. The KBS BB 
environment allows incremental implementation of 
any MSDF function in a context-dependent way. It has 
been tested on many scenarios relevant to missions of 
the CP-140 Aurora and with the Aurora's non-imaging 
and imaging sensors. Analysis of SAR imagery 
proceeds through a hierarchical classifier that extracts 
long range attributes from Spotlight SAR imagery 
such as ship length, category, type and class. Image 
interpretation results (coming from a SAR imagery 
simulator and CAD models of ships) and platform 
identification results for Maritime Air Area Operations 
and Direct Fleet Support scenarios were presented. 
Correct final ID is achieved in all cases where the 
targets are sufficiently well separated and most of the 
time in highly dense environments. Through a proper 
interpretation of the non-imaging sensor reports and an 
appropriate understanding of features extracted from 
images, sensor declarations can be generated which 
consist of sets of propositions with an associated 
confidence level. These propositions consist in a list of 
platforms that realize the attribute "value" and are 
mathematically treated using a truncated Dempster- 
Shafer evidential reasoning scheme. A special effort 
has been made during the generation of the PDB to 
enumerate all possible attributes that the sensor inputs 
can provide. 

11. References 

[1] Jouan A., Gagnon L., Shahbazian E., Valin P., 
"Fusion of Imagery Attributes with Non Imaging 
Sensors Reports by Truncated Dempster-Shafer 
Evidential Reasoning", in Proc. FUSION'98, July 
1998, Vol. II, pp. 549-556, and references herein. 

[2] Gagnon L., Klepko R., "Hierarchical Classifier 
Design for Airborne SAR Images of Ships, in Proc 
SPIE Aerosense'98, Vol. 3371, April 1998. 

830 



Comparison of two Integration Methods of Contextual Information in 
Pixel Fusion 

Sophie Fabre 
ONERA/DOTA 
BP4025 
31055 Toulouse cedex, France 
Email: sfabre@onecert.fr 

Alain Appriou 
ONERA/DTIM 
BP72 
92322 Chatillon cedex, France 

Xavier Briottet 
ONERA/DOTA 
BP 4025 
31055 Toulouse cedex, France 

Abstract: Pixel fusion is used to elaborate a 
classification method at pixel level and optimize target 
detection. It must take into account the more accurate 
as possible information and take advantage of the 
statistical learning of the previous measurements 
acquired by sensors. The classical probabilistic fusion 
methods lack of performance when the previous 
learning is not representative of the real sensors 
measurements. The Dempster-Shafer theory is then 
introduced to face this disadvantage by integrating a 
further information which is the context of the sensors 
acquisitions. In this paper, we propose a formalism of 
the sensor reliability modelization that leads to two 
methods of integration when all the hypotheses, 
associated to objects of the scene acquired by sensors, 
are previously learnt. Afterwards, we are interested in 
the evolvement of these two methods in the case where 
the previous learning is unavailable for an object of the 
scene and a global method of contextual information 
integration can be deduced. 

Keywords: pixel fusion, Dempster-Shafer theory, 
contextual information, degree of trust, mass set. 

1.   Introduction 

During these last years, the number of image sensors 
has drastically increased. Then a large set of images 
simultaneously acquired on the same landscape but in 
different spectral bands is often available. As the 
information associated to an object depends on the 
spectral band, the multi-sensors data fusion aims at 
combining the information from the different spectral 
bands in order to significantly increase scene 
perception. Our pixel fusion method is used to 
elaborate a new classification method at pixel level 
and also to optimize target detection. It must take into 
account the more accurate as possible information and 
take advantage of the statistical learning of previous 
measurements acquired by sensors. The classical 
probabilistic fusion methods lack of performance when 
the previous learning is not representative of the real 
sensors measurements due to varying environmental 
conditions for example. 

Consequently, we propose a fusion method based on 
the Dempster-Shafer theory which allows to easily 
integrate the context of the sensors measurements in 
order to take the more accurate as possible 
information. 
The fusion methods need the determination of an "a 
priori" database made up of probability density laws 
defined for a given context [1][2]. The acquired 
measurements are related to the surface properties and 
the context. Furthermore the probability density laws 
of the acquired measurements can be different from the 
laws that are previously learnt to construct the 
database. Some disturbing parameters must be 
considered in order to justify this difference. These 
parameters are either atmospheric disturbances or 
surface variations (as temporal evolution) [3] [4]. 
These disturbing contributions define the context and 
are called contextual variables. 
The sensor reliability to the context depends on the 
contextual variables values and must be considered by 
fusion method [5] [6]. We propose a formalism 
modelization of sensor reliability to the context that 
leads to two methods of integration when all the 
hypotheses, associated to objects of the scene acquired 
by sensors, are previously learnt: the first one amounts 
to integrate this further information in the fusion rule 
as degrees of trust and the second models it as mass set 
(§ 2). These two methods are based on the theory of 
fuzzy events. 
Afterwards, we are interested in the evolvement of 
these two methods in the case where the previous 
learning is unavailable for a hypothesis associated to 
an object of the scene and compare these two methods 
in order to deduce a global method of contextual 
information integration in the fusion process (§ 3). 

2.   Fusion and contextual information 
modelization methods 

The multi-sensors system is composed of M sensors Sj 
(/=1,..., M) that provide measurements Ls. This system 
is used to recognize an object among N ones. An 
exclusive hypothesis //, is associated to every object i. 
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The frame of discernment E is defined by the 

hypotheses H,: E =  [Hly H2,  ..., HN).   Hi   is the 

complement off/, in E. 
Some disturbing parameters must be considered in 
order to evaluate the sensor reliability. These 
parameters define the context and are called contextual 
variables. A particular context z = {z\, Zi,. ■., Zp) is then 
defined by P contextual variable values. Moreover, the 
vector z™ represents the context measurements : z™ = 
{- "i      m mi 

Z\   ,Zl  , ...,Zp   )■ 

The fusion method needs the construction of an "a 

priori" database made up of the probability density 

laws defined for a given context. The "a priori" 

probability density p(Lj I //,, 2s) of every sensor So- 
under hypothesis //, is previously modeled for the 
standard contextual variable values zs = {zS\, zSi, • ••> 
z5/.}. These variables allow us to consider all reliable 

sensors measurements. We suppose that the "a priori" 
probability densities are known for all the hypotheses 
of the frame of discernment. 
The fusion method is based on the Dempster-Shafer 
theory which allows an easier integration of the 
context in the decision rule formalism (§ 2.3.2 and 
2.3.3). The construction of the basis mass sets m,y (.), 
each representative of the evidence assigned to the 
frame discernment E, thanks to the measurements 
provided by the sensor 5, and the learning on //,, is 
based on the works led by Appriou [1][2] (§ 2.3.1). 
These mass sets will be considered afterwards as 
elementary sources. 
The contextual information is modeled in the form of 
mass sets representative of the sensors availability for 
the considered context and can be introduced at two 
levels : 
• At the elementary level of each sources : the mass 

set, noticed maj{.), is equivalent to degrees of trust 
dy introduced as weakening factors [1][2][7]. It 
takes into account the validity of each separate 
sources. 

• At the global level of the association of many 
sources : the mass set md.) amounts to introduce 
the competitively validity of all the possible 
associations of sources. 

The estimation of these mass sets is based on the fuzzy 
sets theory. 
We propose an original combination rule called CC 
(Contextual Combination) rule that allows to combine 
the   contextual   information   with   the   "a   priori" 
information (§ 2.2). It can be applied to two different 
levels : before or after fusion operation. 
Therefore   two   different   methods   of   fusion   and 
contextual information integration are proposed and 
each   one   uses   an   unlike   representation   of   the 
contextual information. The first one uses the set 

mCij{.) and is called CDT (Contextual Degree of Trust) 
method (§ 2.4). It introduces the CC rule before the 
fusion operation. The second method uses the set m^.) 
and consists in applying the CC rule after the fusion 
process (§ 2.5). This method is called CMS 
(Contextual Mass Set) method. 

2.1. Notations and definitions 

The   notations   and   definitions,   used   in   the   next 
paragraphs, are the following : 

• The P-dimensional space where the context is 
represented is called Z. 

• Cy represents the inclusive validity domain or 
fuzzy subset of contexts for which the assessment 
of the hypothesis //, provided by the sensor Sj is 

valid (Cy c Z), without knowledge on the validity 
of any other sensor for any hypothesis and the 
validity of the sensor 5, for all the hypotheses Hk 

different from //, (Figure 1). 
• The index V represents a subset of indexes {ij} 

included in the set stemming from the Cartesian 
product {l,...,N} x {!,...,M] : 

VQ{1,...,N}X{1 M] 

• cy is the exclusive validity domain or subset of 
contexts for which every sensor Sj of the 
association set represented by V is valid for the 
discrimination of the hypothesis H, ({ij} e V), and 
all the others associations of sensor and 
hypothesis no represented in V are excluded : 

CV =   H  Cy   D_Cy 
yeV      ijeV 

with    Vc{l,...,N}x{l,...,M} 
and 

(2.1) 

C0    = PI Cy 
ije{l,...,N}<{\,...,M} 

(2.2) 

The Figure 1 illustrates the notions of exclusive and 
inclusive validity domains for the case of two sensors 
and two hypotheses. The validity domain C|, is the 
subset of contexts for which the sensor 5] allows to 
discriminate the hypothesis Hi without knowledge on 
the validity of any other sensor for any hypothesis : 52 

and Hi, S2 and H2; and the validity of S) for H2. The 
validity domain c(n) is the subset of contexts where 
the only valid association corresponds to the 
hypothesis Hi and the sensor Sj. 

According to the equation (2.1  ), this domain is 

expressed as: 
c{ll} = CllnC'l2r>C'21nC'22 
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Figure 1 : Representation of the context space Z 

»»{•(#,■) = 0 (2.4) 

mj (J7,-) =1-*,•■/>(!,•/ff,-,z*) 

m$(E) = Rj-p(Lj/Hi,z
s) 

where the term /?, represents a normalization factor 
defined as: 

Rj* 0, max 
iellN] 

supipdj/Hi^5)) 

-1 (2.5) 

2.3.2.     Fusion rule 

2.2. CC rule 

(2.3) 

We aim at finding a global mass set m(.) on the frame 
of discernment E, set of the hypotheses of 
discrimination //, (i=l,..., N). This global set m(.) is 
obtained according to the mass sets mv (.) provided on 
E by sources or combination of sources represented by 
V and a bayesian mass set mc(.) on ESH={CV} by using 
the suitable operations of conditioning, coarsening and 
refining [7] [9]. 
The term cv represents : 
• The inclusive validity domain, with V = {ij} and 

{ij}e{l,...,N}x{l,...,M}, 
• The exclusive validity domain, with 

Vc{l,...,N}x{l M}. 
According to the demonstration led by Fabre [7], the 
global mass set m(.) is explained as : 

m(A) = mc (c0) ■ OT0 (A) + 

X mc(cv)-mv(A) 
V 
V*0 

2.3.        Fusion method and decision rule 

2.3.1.     Expression of the basic mass set 

Appriou suggests an approach that consists in 
introducing each "a priori" probability density 
piLjIHi, z5) among an appropriate mass set m,/(.) 
[1][2]. Two models of mass set are then defined by an 
axiomatic approach on the frame of discernment {//,, 
Hj, E). We select among these models the less 

specific one. This mass set, called "basic mass set", is 
explained by considering all the degrees of trust d^ 
equal to 1 [1][2]: 

The global mass set m(.) results from the combination 
of the M mass sets m}{.) associated to the sensor Sj. The 
combination rule is the orthogonal Dempster-Shafer's 
rule [9] : 

ffl0=.r®    ;i(-} (2.6) 

The mass set /«/.) is obtained by the combination of 
the N elementary mass sets m,y(.): 

mj(.)=    ®   myi.) 
(2.7) 

The mass set m,y(.) represents the "a priori" 
information, modeled by the basis mass set m,/(.), and 
the contextual information at once. When the 
contextual information is unavailable, the mass set 
m,/.) is similar to the set m,/(.). The focal elements 
associated to mi}{.) are //,, //,- and E. 

2.3.3.     Decision rule 

The objective is to choose one decision dt among a 
finite set D of Q possible decisions owing to the 
assessment provided by the mass set m{.) on E. The 
decision d{ corresponds to the assignment of the 

observation L to the set F, made up by one or many 
hypotheses of E. The choice of taking a decision dit 

when the observation L belongs to Hh generates a 
cost Md\ I Hk). 
The   more   consensual   decision   is   provided   by 

minimizing the risk function R(dj/L) on the set of all 
the possible decisions [8] : 

R(dilL)=   £ 
BQE 

m{B)-  min {X{dilHk)} 
HkeB 

(2.8) 
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The costs M.dj/ Hk) are defined for ie[l, Q] and 
ke[l,N] by considering the two following 
propositions : 
• The cost to declare that the observation L is 

assigned to the set F, of hypotheses associated to 
di when it really belongs to the class Hk , is 
maximum: 

X(di/Hk) = l   if   HkiFi (29) 

• The cost to make a good decision is such that: 
X(di/Hk)=Xi   if   HkeFi (210) 

By integrating the expressions ( 2.9 ), ( 2.10 ) in the 
relation ( 2.8 ) and using the definition of the 
plausibility [9], the risk function becomes : 

R(diIL) = \-[\-'ki\Pl(    U Hk)        (2.ii) 
ff*eFj 

Consequently,   the   decision   rule   is   obtained   by 
minimizing the risk function (Equation ( 2.11 )) and 
can be explained as follows : 

fr i .. 1 (2.12) 
max   \[l-Xi\Pl(    U Hk)\ 

ie[l,Q][ HkeFi      j 

In   this   particular   approach,   only   singletons   of 
hypothesis are taken into account. Therefore, the set D 
is composed of as many decisions d, as hypotheses //, 
in the frame of discernment E. Moreover, we consider 
that the cost A, for a good classification is equal to 0. 
Consequently the most likely hypothesis has to justify 
a maximum plausibility criterion. The decision rule 
(Equation ( 2.12 )) is rewritten as : 

max {PI(Ht)} (2n) 
ie[],N] (*-U) 

This decision rule is coherent with the criterion 
introduced in the works led by Appriou [1][2]. 

(2.14) 

As the hypotheses H, are singletons of E, the 
expressions of plausibility and communality are the 
same [1][2][9]. Consequently, the plausibility is 
explained as follows : 

«(»«•)= n {«,(#,)} 
ML M] 

By using the plausibility definition [9], the mass sets 
m/.) (Equation ( 2.7 )) and m,/.) (Equation ( 2.4 )), the 
plausibility Plj(.) can be explained as follows : 

JK }J   mij(H i) + mij(E) 

The term Kfi is a normalization factor independent of 
the hypothesis Hi. 

2.4.        CDT Method 

In this case, the sensor reliability is represented by the 
mass sets mc,/.) (§ 2.4.1). These mass sets are 
combined by the CC rule with the mass sets, associated 
to the previous learning and obtained owing to the 
basis mass set m,/(.), in order to obtain the elementary 
mass set m,y(.) (§ 2.4.3). The operation of fusion is then 
applied on these elementary mass sets in order to 
obtain a global mass set m(.) introduced in the decision 
rule (§ 2.4.4). The architecture of the CDT method is 
described on Figure 2. 

CONTEXTUAL 
INFORMATION 

"A PRIORI" 
INFORMATION 

Contextual 
variables : 

Zl,Z2,  ■■;ZP 

"A priori" 
probability: 
pi.LjIH,/) 

* 1                  1 
Mass sets .• 

mcijQ 

Basis mass 
sets : m,/ 

▼ T 
m if 

> • 
'„   CCRULE   ? 

Elementary mass 
sets : /n,;(.) 

+ : Orthogonal 
combination 
rule 

Global mass set: 
m(.) 

Figure 2 : CDT method architecture 

2.4.1.     Contextual information representation 

The reliability of the source {ij}, defined by the 
association of the sensor Sj and the hypothesis //,, to 
the context is represented by a bayesian mass set 
mCij(.) established on the frame of discernment Eaj = 
{dj, Cij }. The set Q is defined in § 2.1. 

The estimation of the mass set ffiq/O is performed in 
several stages : 

•     Stage 1 : The probability of the context 
Let z=[zi,...,Zp} be as a random vector of probability 
density p(zlzm) where zm={zy

m,..., zP
m) is the vector 
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associated to the variable z measurements. We have to 
model this probability density law p(z/zm). 

• Stage 2 : Validity domain of every sensor 
The fuzzy sets theory is used to define the validity 
domain of every sensor. 
Miju (zu) is the elementary fuzzy membership function 
associated to the contextual variable zu, the sensors S, 
and the hypothesis //,. 
The fuzzy membership function //,/z) characterizes the 
sensor availability for the context z and is expressed 
with the elementary fuzzy functions : 

Hy(z) =   A   Viju(Zu) o\fi\ 
HS[l,/>] K^.w) 

= U|y1(Zl)Au,y2(Z2)A...AU0p(zp) 

The operator A represents the operator of minimum 
conjunction [5] [6]. 

• Stage 3 : Probability of sensor validity 
P(Sj ///,, zm) is the probability that the sensor Sj is 
reliable according to the context value z"1 and the 
hypothesis //,. 
This probability is explained by using the definition of 
the probability measures of fuzzy events [ 10] [ 11 ]: 

P(Sj/Hi,z
m) = JMij(z)-p(z/zm)dz       (2.17) 

When the variable value is certain, the probability 
density p(z/zm) is replaced by the Dirac function S(z-zm) 
and the equation ( 2.17 ) becomes : 

P(Sj/Hi,z
m) = Mij(z

m) (2.18) 

•     Stage 4: Mass set maj{.) 
The probability ( 2.17 ) can be explained as a bayesian 
mass set ma/..) such that: 

mCij(Cij) = P(Sj/Hi,z
m) (2.19) 

mc.j(Cij) = \-P(Sj/Hi,z
m) 

mc..(CijvCij) = 0 

2.4.2.     "A priori" information representation 

Two mass sets tn,^.) (w = 1,2) are introduced to 
model the "a priori" information : one mass set uses 
the measurements as if there were completely reliable 
(w = 1) and the other is representative of the total 
uncertainty (w = 2). These mass sets are defined {H,, 
Hj, E} owing to the basis mass set m,/(.) (Equation ( 

2.4)): 

mj (•) = «$(•) (2.20) 

2.4.3.     Combination of the mass sets 

The expression of the elementary mass sets m,/.) is 
provided by applying the CC rule (Equation ( 2.3 )) on 
the mass sets m^.) = m^^.) (w= 1,2) and on the 
bayesian mass set md-) = mCi/.). 
This expression m,/.) is the similar to the one resulting 
from a weakening operation applied on the basis mass 
set #n,/(.) in the case where the weakening factor dtj is 
such that: 

dij=P(Sj/Hi,z
m) (2.21) 

The CDT method is then the same as the method 
improved by Appriou based on the introduction of 
degrees of trust as weakening terms [1][2][9]. 
Consequently, the elementary mass set m^.) can be 
explained as: 

mij(Hi) = 0 

nij(Hi) = dij[l-Rjp(Lj/Hi,z
s)] 

(2.22) 

/n„ 

my(£) = 1 -djj + dv ■ Rj ■ p(Lj IHhzs) 

Notes : When the degrees of trust dy are equal to 1, the 
Dempster-Shafer theory represents the probabilistic 
approach of the maximum likelihood which supposes 
that the probability density p(L, ///,, zs) is perfectly 
representative of real probability density. 

2.4.4.     Fusion and decision rule 

The elementary mass sets m,y(.) are fused according to 
the fusion rule (Equations ( 2.6 ) and ( 2.7 )) in order 
to deduce a global mass set m(.). 
By using the equations ( 2.14 ), ( 2.15 ) and ( 2.22 ), 
the decision rule ( 2.13 ) becomes : 

max    fei - dy + dö ■ Rj ■ p(Lj I Hi, zS)] } (2.23) 

2.5. CMS Method 

In a first time, the expression of the mass set /nc(.) 
related to the contextual information is established. In 
a second time, the mass set mv(.), representative of the 
weight of evidence assigned to an association of 
sources and obtained by the fusion of these sources, is 
explained. Lastly, the combination of these mass sets 
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md-) and my(.) is realized in order to obtain the global 
mass set m{.) introduced in the decision rule. The 
principle of the CMS method is described on Figure 3. 

CONTEXTUAL 
INFORMATION 

Contextual 
variables : 

Z,,Z2, ---iZp —r~ 
Mass set: 

mcQ 

"A PRIORI" 
INFORMATION 

"A priori" 
probability: 

Basis mass 
sets : m,/(.) 

£ 
Mass sets 

w!v(.) 

CC RULE 
—y— 

Global mass set: 
■«(.) 

+ : Orthogonal 
combination 
rule 

Figure 3 : CMS method architecture 

2.5.1.     Contextual information representation 

The construction of the mass set representing the 
reliability of one or many associations of sensor and 
hypothesis is performed in several stages : 

• Stage 1 : Validity domain of every source 
The fuzzy membership function allows to define this 
validity domain. The fuzzy function is defined as in the 
stage 2 of the § 2.4.1. Consequently (life) is explained 
according to the equation (2.16 ). 

• Stage 2 : Probability of validity of one or many 
sources associations 

It is the probability of conjunction of the fuzzy subsets 
corresponding to each source for given contextual 
variable values zm [10] : 

P( n 
rqeV 

Vc{l,...,Ny$,...,M} 

Crqlz
m)- ( 2.24 ) 

J[ A   lirq(z)]p(z/zm)-dz 
z rqeV     H 

It is to note that when only one association of sensor 5, 
and hypothesis Ht is considered, the probability P(C,j / 
zm) is then explained as the probability P(Sj IH-„ z!") 
(Equation (2.17)). 

•     Stage 3 : Expression of the mass set mc 

The probability of validity of one or many sources 
associations (Equation ( 2.24 )) is used to explain the 
exclusive probability  of validity  of one  or  many 
sources   associations   P(cv)   [5] [6].   P(cv)   can   be 
explained as a bayesian mass set md-) constructed on 
the set {cv) (Vc {1,..., N}x{ 1,..., M}). 

Then, the mass set expression md-) may be defined as 
follows [5] [6] : 
mc(cv)=picv) 

1 
WC{I,...A'W

1
.-M 

VcW 

mc(c0) = P(c0) = P( 

_rjw-v1, 
,   (2.25) 

p( n craiz
m) 

rqzW 
■rq< 

n Cijlz" ) 
i/e{l WH M} 

W-VI represents the cardinal of the subset W-V. 

2.5.2.     "A priori" information representation 

A mass set m^.) is constructed on the frame of 
discernment E and supposed that all the associations of 
sources, represented by the subset V of indexes {*/'}, 
are valid. These mass sets result from the orthogonal 
sum of the basis mass mhjj(.) (Equation ( 2.4 )) where 

Uj)e V: 

{uhv 
V£{I,...,AO><{I,...,M} 

my(.)-- (2.26) 

2.5.3.     Expression of the global mass set 

In this case, the CC rule (Equation ( 2.3 )) is applied 
on the mass sets m^.) on E and the bayesian mass set 
md.) on [cv] in order to obtain the global mass set 
m(.) on E. The global mass set m(.) is explained as : 

m(A) = mc (C0) ■ m0 (A) + (2.27) 

X mc(cv)mv(A) 
Kc{l,...,N><{l,...,M} 

V*0 

ma{A) = 0 if A * E and m0(A) = 1 if 
A = E 
with AczE 

The  decision  rule   is  given   by  the  maximum  of 
plausibility explained with the mass m(.) (Equation ( 
2.13)). 
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3.   Evolution of the CDT and CMS 
methods for a non-learnt class 

The principle is the same as the one described in the § 
2. The only change arises from the classes used to 
construct the frame of discernment. In fact, we admit 
the existence of a further hypothesis for which the 
previous learning is not available. Consequently, the "a 
priori" probability associated to this further hypothesis 
is unknown. The introduction of this further class is 
quite legitimate. In fact, a class like backgrounds can 
be made up of several objects and the previous 
learning of one or many objects of this class can be 
unavailable. Consequently, the initial class is divided 
in two classes : the first one amalgamates the objects 
for which the previous learning is known and the 
second one regroups all the objects for which the "a 
priori" probability is unavailable. 
The new frame of discernment Ü"4 consists then of the 
N hypotheses of the frame E and a further hypothesis 
HN+I allocated to the non-learnt class : E* = {Hlt ..., 
HN+1). The frame £"* is then refined in comparison 
with the frame E. 
The expression of the basis mass sets related to the "a 
priori" information is established according to the 
work led in the § 2.3.1. For the hypothesis HN+i 

associated to the non-learnt class, the corresponding 
mass sets are constructed by considering the fact that 
no information is available. Consequently, all the mass 
of evidence is assigned to E*. 
The fusion rule is based on the orthogonal combination 
rule of Dempster-Shafer introduced in the § 2.3.2. 
Moreover, the decision rule is the same as the one 
introduced in the § 2.3.3 (Equation ( 2.12 )). In this 
case, it is benefit to choose the costs Aj associated to a 
good decision different from 0, contrary to the values 
introduced in the § 2.3.2, in order to integrate the fact 
that no information is available on HN+] and only on it. 
In the case where a non-learnt class is added to the 
frame of discernment, the CDT and CMS methods 
become respectively the refined CDT and CMS 
methods. We have shown that the refined CDT and 
CMS methods may be considered as two 
implementations of the same global method called 
"Global Refined Method" [7]. 
In this general method, the contextual information is 
taken into account as a mass set in order to realize a 
fusion process based on the CC rule. This mass can be 
explained by two different ways : 
•     The mass set mc

d(.) depends on the probabilities 
of validity of each source and is explained owing 
to degrees of trust on the frame of discernment 
{cv} [7]: 

or 
j£V 

withVc{l,...,M}x{l N+l] 

(3.1) 

mc(c0) = n        a-«*«) 
fe]e{l,...,W+lHl M} 

•     The mass set md.) is directly explained by the 
probabilities    of    validity    of    the    different 
combinations of sources. The construction of this 
set is inspired by the process described in the § 
2.5.1. 

These mass sets are combined with the mass sets mv(.), 
stemming from the fusion of the basis mass sets /»,/(.), 
according to the CC rule (Equation ( 2.3 )). The global 
mass set deduced from this operation is introduced in 
the expression of the plausibility in order to explain the 
decision rule. 
We deal with the problem of one non-learnt class only. 
However the generalization to the case where several 
classes are not previously learnt is evident. 

4.   Conclusions 

Pixel fusion aims at combining the images from 
several sensors in order to increase scene perception. 
The Dempster-Shafer's theory is used to realize pixel 
fusion and needs a minimum of "a priori" knowledge 
like previous learning of measurements provided by 
sensors. 
Moreover, the Dempster-Shafer's theory allows to 
integrate further information such as the sensors 
reliability to the context. Their reliability depends on 
the context modeled by the contextual variables. 
In the case where all the hypotheses introduced in the 
frame of discernment are learnt, two methods, that 
integrate the sensors reliability at different levels, are 
developed : the CDT and CMS methods. 
In the CDT method, the mass sets stemming from 
contextual information and previous learning are 
combined before the fusion operation. Practically, this 
leads to elaborate a degree of trust assigned to each 
source corresponding to the association of a sensor and 
a hypothesis. 
In the CMS method, a mass set integrates the validity 
of the different associations of these sources. 
Consequently in the later, the sensor combination uses 
all the possible associations of one (or many) sensor(s) 
and hypothesis. The combination of mass sets 
representative of "a priori" and contextual information 
is realized after the fusion operation. For these two 
methods, the ponderation terms are constructed owing 
to the theory of fuzzy events. These methods are 
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described in the case where the validity domain of 
each sensor depends on the hypothesis. However, these 
methods are still valid in the case where the validity 
domain of each sensor is not related to the hypothesis 
and depends only on the sensor properties since that 
the combination is applied to the mass sets associated 
to sensors. 
In the case where a non-learnt hypothesis is added to 
the frame of discernment, the two methods of 
contextual information integration and fusion evolve. 
By comparison of these two refined methods, we 
deduce a global fusion method based on the integration 
of sensors reliability as a mass set where this one can 
be explained by two different ways. For the first 
method, the mass set related to the sensors reliability is 
expressed as a function of degrees of trust. The global 
refined method can be only used in the case where the 
validity domain of each sensor depend on the 
hypothesis. 
The CDT and CMS methods have been successfully 
implemented for several typical cases and have 
provided encouraging results. 
In the next future, we will work in order to compare 
the CDT and CMS methods and define their respective 
validity domains. 
Moreover, we will compare the two ways of mass set 
expression, used by the global refined method, in order 
to obtain their respective validity domains. This global 
method can be extended to other expressions of the 
mass set that is representative of sensors reliability. In 
particular, the degrees of trust can be computed by 
different ways. 
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Abstract 
In research of earthquake, hypothesis testing or 

phenomenon detection is an iterative, successive- 
refinement process. To verify the relation between 
an earthquake and detected anomalies, data and ap- 
plications of other information sources are needed. 
Not a few earthquake activity observation systems 
have been set up in Japan independently by different 
organizations, such as universities, institutes, the 
earthquake observation association and the Meteo- 
rological Agency. These systems, which are man- 
aged and maintained by these organizations, con- 
tain heterogeneous computing systems. With the 
CORBA(Common Object Request Broker Architec- 
ture) technology which facilitates communication 
between local and remote objects in a heterogeneous 
computing environment, it is possible to set up an 
integrated system like an expert system, for shar- 
ing informations and research results in distributed 
computing systems on high level. 

In this paper, an integrating earthquake observa- 
tion computing system, using CORBA for data ex- 
change, analysis, and information providing, is pre- 
sented. This system provides information of com- 
paratively high probability about activity of crust, 
earthquake and other environment changes on the 
earth. 

With this system, we can facilitate communica- 
tions between local and remote objects, and share 
applications and data in a distributed computing 
system conveniently without awaring the low-level 
infrastructure concerns. 

Keywords: CORBA(Common 
Object Request Broker Architecture ), Distributed 
computing system, Enviromental ElectroMegnetic 
Wave (EEMW), SEMR(Seismogenic Electromag- 
netic Radiation) 

1    Introduction 

Seismo-EM net began thirteen years ago 
for observing Seismic Electromagnetic Radia- 
tion(SEMR) at ELF band[l]. Now, the number 
of the observation stations, which are consist of 
observation parts and computing systems, are 
more than forty over Japan. 

Electromagnetic (EM) radiation resulting 
from local crust activities is an important prin- 
ciple of observation. When enormous energy 
stored in the crust is released, it is reason- 
able to think not only mechanical vibration but 
also electromagnetic wave, light etc, are radi- 
ated. Observing SEMR is proved to be a valid 
method for investigating earthquake, but the 
it is influenced by other factors, because the 
EEMW existing in nature is from many differ- 
ent sources. SEMR needs to be extracted from 
the EEMW. So, It is necessary and valid to 
develop a system to facilitate the use of multi 
information[2], [3]. 

Accompanying increase of observation sta- 
tion and new application development, how 
to share the data and applications distributed 
over those stations is becoming serious. To 
alleviate this problem, CORBA which facil- 
itates communication between local and re- 
mote objects for heterogeneous computing sys- 
tems, adopted by OMG(the Object Manage- 
ment Group) will give us a valid method, 
which facilitates to develop computer system 
to use multi information efficiently[4],[5]. In 
this paper, we will discuss a example that 
CORBA-based Distributed Earthquake Obser- 
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vation System. 3    Description of system 

2    Observation of SEMR 

Our system Seismo-EM Net is a system of 
SEMR observation and data process for re- 
search of earthquake and crust activities by ob- 
serving EEMW. 

There are about 40 observing stations set 
where earthquakes often occur over Japan. 
EEMW at ELF(Extremely Low Frequency) 
band are observed and the untreated data are 
kept in station computer system. Those data 
are then sent to center to be processed. 

For SEMR observation, a problem is to dis- 
tinguish the local anomalies from that of global 
scale anomalies. A factor that leads to global 
scale anomalies is enfiuence of the sun. Since 
such change of global scale is almost same in 
certain area, the influence can be removed with 
comparing the data of different stations. 

The local anomalies is influenced by many 
local event, such as thunder, artificial noise. 
To removed such influences, the local informa- 
tion need to be collected and confirmed though 
some factor can be distincted by signal pattern. 

The earthquake is a complicated natural 
phenomenon, which is related to series physical 
and chemical changes. As precursor of earth- 
quake, some patterns of SEMR were confirmed 
by some successful case, but the probability is 
not satisfied. In some cases, anomalies were de- 
tected but there was no earthquake occurred. 
In the other hand, the patterns of SEMR of 
earthquake swarm and local earthquake is dif- 
ferent, and the SEMR of same earthquake 
is found different at different observing sta- 
tions. Considering such phenomenon, anoma- 
lous phenomenon resulting from earthquake 
are related to local situation of stratum, ge- 
ographical environment and other factors. It 
is necessary to refer the data obtained in dif- 
ferent fields to confirm the pattern of electro- 
magnetic anomalies of a certain natural phe- 
nomenon, which is important and valid to draw 
out SEMR from EEMW. 

CORBA-based Seismo-EM Net is a try to use 
multi information efficiently to research earth- 
quake, which is based Seismo-EM Net and 
CORBA technology. 

3.1    Overview of CORBA 

CORBA is a middle standard that is based on 
the concept of the Object Request Broker, cur- 
rently serving as the basis for application in 
a vide area such as in telecommunications, fi- 
nance, and manufacturing. 

CORBA defines the followings, 
1. IDL(Interface Definition Language), 

which is used for defining the common objects 
over CORBA. 

2. Language Mapping, which determine how 
IDL features are mapped to applications that 
are developed in program language such as c, 
c++, Smalltalk. 

3. Interface and Services for creating and 
requesting objects. 

4. Protocol, which are used for communica- 
tion between Objects of CORBA. 

As shown in Fig.l, it behaves as a mediator 
between clients and application objects, which 
arrange for those objects to access each other 
across networks at run times. 

Client 
Application 

Server 
Application 

c, c++, 
Smalltalk 

c, c++, 
Smalltalk 

IDL 
Stubs 

ORB 
Interface 

IDL 
Skeleton Object 

Adaptei 

Object Request 

Object Request Broker 

Figure 1:  Common object request broker ar- 
chitecture 

Clients can create object proxy of the server 
object in local address space, and operate on 
the proxy object to change or get the state of 
objects on the server. The low communication 
part can be hidden to developer. 
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CORBA give a platform for communica- 
tion between objects of distributed object com- 
puting system and sharing applications dis- 
tributed over heterogenous subsystems. 

3.2    Available information sources 

Data of other fields can be referred in two ways. 
When anomalous electromagnetic wave is de- 
tected the local information of observing sta- 
tion is used to distinct if it is SEMR. In the 
other hand, when nonseismogenic events oc- 
cur, data of electromagnetic wave are checked 
for obtaining the pattern of a certain event. 

1. Hi-net (High Sensitivity Seismograph Net- 
work, belongs to NIED, National Research In- 
stitute for Earth Science and Disaster Preven- 
tion Science and Technology Agency.) This 
system gives information of earthquake fore- 
cast and analysis results of oscillation of oc- 
curred earthquake. 

2. Research Center for Earthquake Predic- 
tion(belongs to Kyodo University Earthquake 
Center). 

Various information related earthquake is 
obtained and offered in this center as follows: 

*Three-dimensional global and regional 
structures of the Earth are investigated us- 
ing measurements of the travel time, dispersion 
and attenuation of body and surface waves. 

*Investigations of the slab penetration, man- 
tle convection, the driving force of plate tec- 
tonics, the chemical and mineral compositions 
of the crust and mantle, physical properties of 
the earth's interior including anisotropy by the 
analysis of seismological and tectonic data. 

* Monitoring of crust movements for earth- 
quake prediction with the use of modern space 
technology of the GPS in addition to conven- 
tional techniques such as extensometers and 
water-tube tiltmeters. 

*Studies of active faults for earthquake pre- 
diction and hazard mitigation. 

3. National Network of Earthquake 
Data(belongs to Earthquake Information Cen- 
ter). Earthquake records are stored in this sys- 
tem in detail. 

4. Earthquake  and Tsunami  Watching 

note (belongs to the Meteorological Agency). 
From this note, information about Tsunami 
and weather can be obtained. 

5. Land Surveying Center note(belongs to 
the Geographical Survey Institute). 

This note offers the displacement data of 1 
Month or 1 year for 10 districts and the whole 
country can be shown. Distance change for any 
pair of observation stations are also offered as 
data or shown by map. 

3.3    System structure 

As shown in Fig.2, the system includes two 
parts. One part is Seismo-EM Net, which 
consists of observing stations, data process 
center(NIT, Nagoya Institute of Technology), 
simulation(and secondary server) center(APU, 
Aichi Prefectural University). The observing 
stations are connected with CORBA. Observed 
data of EEMW are saved in observing stations 
with in a given period. As a CORBA object, 
observing station system can process the date 
of station as requested, and reply the results. 
For observing station system, request can be 
from process center or other station system of 
Seismo-EM net. 

Nagoya Institute Aichi Prefectural 
of Technology   University 

Weather imformation 
(the Meteorological 
Agency) 

GPS data 
(Geographical 
Survey institue) 

Earthquake 
record(Hi-net) 

Figure 2: Structure of system 

The other part of this system is data gath- 
ering, which offers related information out of 
Seismo-EM net. In the case of WWW, a data 
gathering object is needed. 
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Figure 3: An alarm system 

Comparing wit 
crust activities 
of the station 

Applications operating atop this distributed 
computing substrate include alarm system, de- 
cision support and visible multiplex map. 

collection of objects whose storage formats and 
location are hidden from application accessing 
the objects' contents. 

3.4    Data process and management 

The data of EEMW are observed by observing 
stations distributed in Japan. At first, data 
are processed in local station, and compared 
with standard electromegnetic radiation level 
of local station which is obtained from history 
data observed. 

The center accesses the data base of ob- 
serving station according to time and space 
of event and processes the data with Fourier 
Transform, Wavelet Transform and other ap- 
plications. Meaning data will be carried to 
center(NIT) and saved by the event type, date, 
and location. 

Some related information such as earth- 
quake record, weather situation can be ob- 
tained through WWW(World Wide Web), and 
saved with related anomalous electromagnetic 
radiation as dataset. Datasets are modeled as 

4    Main applications 

4.1    An alarm system 

One application operating on the distributed 
computing system is an alarm system as shown 
in Fig.3. When anomalies are found by any one 
observing station, date of the other stations 
will be checked to confirm if those are local 
anomalies in Seismo-EM net based CORBA. 
The data of every stations are read and han- 
dled by appointed period with operations of 
data object performed. If anomalous change of 
eletromagnetic radiation is found in the other 
stations in same level, anomaly is properly re- 
sulted from event on a large scale such as uni- 
verse radiation. This can be confirmed by re- 
lated information from WWW or by human. 
In case of local anomalies, nonseismogenic in- 
formation related local stations from WWW 
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will be referred. If the factor of weather can 
be excluded, then information of crust activ- 
ity, history earthquake record, and related in- 
formation will be looked up. Those informa- 
tion are analized and compared with anoma- 
lous electromagnetic wave in different places 
and times. The validity of analysis of multi in- 
formation depends on understanding to the rel- 
evance of those information. In most cases, in- 
formation can not be obtained as wanted, such 
as crust activity of where sensors are not set. 
So, the relevance of two specified phenomenon, 
for example, the relation between anomalies 
of specified station and crust activity near the 
station, need to be analized. Those works de- 
pend on history data accumulation. After his- 
tory data referred, alarm will be decided if it 
should be given. 

Certainly, if event information from WWW 
come, such as earthquake, weather change, 
crust activity, data of EM radiation will be also 
checked and confirmed anomalies are saved. 

Rules used for dealing with events are ob- 
tained from experiences and history data. 
Since some of them have been not understood 
completely, results given by the system need to 
be checked and rules need to be changed cease- 
lessly. Therefore, a visible process Graphical 
user interface is given for checking the process 
of results and changing the algorithm on line, 
which makes the system to be of high practi- 
cality. 

4.2    Decision support 

One of our goals is to facilitate the location and 
retrieval of related information, that perhaps 
stored locally or located at remote data repos- 
itories. Decision support is a tool for experts 
to obtain necessary information regardless of 
data object's location or the implementation. 
With this tool, evidence for analizing anomaly 
can be found efficiently. As shown in Fig. 4, 
there are three information sources, that the 
local, observing stations and related sources of 
WWW. 

Upon receipt of a request, CGI(Common 
Gateway Interface) conducts the requests and 

www 
browser 

EMidafca 
pr-ppres-s 
abject: 

::CGiv:; 

: it.::'. 

■local:- 
ääts::::: 
abject 

www:;:v 
Sata'x 
tiiinfrtng 

Observing 
stations 

o 

Available 
information 
sources 

Figure 4: Decision support 

parameters to appropriate object. EEMW 
data process object gets the data of the observ- 
ing stations through CORBA, and processes 
the data returned, then return the results to 
browser. Local data object is obliged to han- 
dle the data stored locally, and Data hunt- 
ing object to search information requested over 
WWW. 

Requests can be query of a event and related 
information, or data query with specified space 
and time. The results can be shown as figure 
or table, and stored if necessary. 

4.3    Visible multiplex map 

Visible multiplex map can be regarded as the 
equivalent of the map like GIS, which contains 
a lot of information related to earthquake. It is 
meaningful for grasping a sort of information 
and analizing several sorts of information in 
the same map such as those of EEMW anoma- 
lies, crust activities from GPS and earthquake 
records. A series method of data process can 
be selected to process the data. 

Besides showing distribution of an index, 
such as intensity of EM radiation, in space, an- 
imation gives a method to show the change of 
various indexs in a specified period. 
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5    Conclusions 

For research a complicated natural phe- 
nomenon like earthquake, referring multi in- 
formation is proved to be important and valid. 
About observation of SEMR by Seismo-EM 
net, data of multi stations and multi related 
information are referred to analize observation 
results and remove noise caused from other 
events. Distributed computing system facili- 
tates this work more efficiently. CORBA tech- 
nology enables programmer to develop and de- 
ploy complex applications rapidly and robustly 
over heterogeneous, computing and network- 
ing elements, regardless low-level infrastruc- 
ture concerns. 

Object hierarchy to serve as a commonfoun- 
dation has a advantage to maintain and de- 
velop new application. Specially to a applica- 
tion which can not be completed in a short pe- 
riod, a part can be completed and used firstly. 

EEMW are observed at about forty observ- 
ing stations continuously. And processing and 
storing obtained data is a troublesome affair. 
The CORBA-Base distributed computing sys- 
tem can leave necessary data process to ob- 
serving station system, and only meaning data 
are stored in center as history data. Parallel 
execution facilitates complex event analysis. 

This system provides a method to efficiently 
process complex queries on earthquakes involv- 
ing computationally expensive calculations on 
distributing data sets. Visualizing features of 
factors related earthquake from a large data set 
lets us easily analize observational data to gain 
a better understanding of the earthquake. 

Relations of phenomenon resulting from 
earthquake has not been understood com- 
pletely. For alarm system, visualized event 
process and rule change leads to high practi- 
cality. 

For research of complex natural phe- 
nomenon such as earthquake, CORBA tech- 
nology give a powerful means to develop inte- 
grated multi information system in form of dis- 
tributed computing system regardless of com- 
puter types of various information system. 
With the integrated system which facilitates 

use of multi information, complex natural phe- 
nomenon earthquake and related phenomenons 
will be understood more exactly. 
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Abstract 

This paper provides a brief status report on research aimed 

at developing a distributed data fusion architecture. The 

architecture has a variety of applications that range from 

hospital pathology to battlefield management. It is intended 

to provide multiple analysts with the ability to 

cooperatively examine multi-spectral images using 

concurrent algorithms. The image streams arrive in real- 

time from multiple sensors distributed throughout a 

heterogeneous network. An application in cervical cancer 

cell analysis is presented to illustrate the general concepts. 

I. Collaborative Environment 

The data fusion architecture couples the Computer 

Supported Cooperative Work (CSCW) concept [1,5] 

with concurrent algorithms and programming 

concepts. The architecture leverages JAVA-based 

graphical user interfaces and web-based interaction to 

provide interactive data analysis. These tools can be 

used collaboratively to examine the results generated 

from concurrent image fusion algorithms. In this 

paper, one such algorithm, the principal component 

transformation (PCT), is used to illustrate the ideas 

[2,3,4,8,9,10]. 

Figure  1  shows the architectural concept. A 

heterogeneous collection of networked PC's, 

workstations, and shared memory multiprocessors 

(SMP's), provides the computational resources for 

high-performance   concurrent   fusion   algorithms. 

These algorithms are implemented using a concurrent 

tensor algebra library. This library is, in turn, built 

upon a heterogeneous concurrent programming 

library, SCPlib [6, 7], that provides load balancing 

and granularity control. Multiple sensors may be 

connected at arbitrary points in the network and 

interrogated through computation. Multiple analysts 

may connect to the running computation using a 

standard web-browser at arbitrary points in the 

network. Each analyst may utilize a broad collection 

of JAVA-based data analysis tools, for example, 2/3- 

D plots, image filters, and multi-spectral viewers. 

The analysts may collaborate via chat-like interfaces 

to discuss the results, coordinate the computation, 

and control sensors. The status of the three central 

components in this architecture is described in the 

sections that follow. 

n. Analysis Tools and Interfaces 

Figure 2 shows the working environment of the 

collaborative system. A designated analyst (the first 

connection made to the system) controls access to a 

concurrent computation that directly manipulates 

sensor input. Multiple analysts may subsequently 

connect to a computation from remote computers and 

are provided with read access to the sensor inputs and 

computation. Coordination and discussion between 

analysts is carried through a chat-like sessions. The 

designated analyst is provided with the privilege to 

control the interaction modes and computation.  The 
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JAVA-based 
GUI 

Figure 1: Collaborative Environment 

privilege can be handed off to other participants as 

needed. The same view of computation is available 

to all the analysts. Each analyst is able to manipulate 

sensor data through JAVA-based tools individually 

and share results. The tools provided include 2/3-D 

plotting, image filtering, and multi-spectral data 

analysis tools. 

in. Concurrent Tensor Algebra 

To represent multi-spectral images, the architecture 

generalizes sequential matrix algebra to concurrent 

tensor algebra. The following hierarchy explains the 

relevance of this concept to multi-spectral image 

analysis: 

Tensor 
Dimension 

Conventional 
Interpretation 

Alternative 
Interpretation 

0 Scalar Real or Complex 
Number 

1 Vector List of Values 
2 Matrix Table of values 

or Image 
3 Tensor RGB-Image 
N indexed by 
wave length 

Tensor Multi-and 
Hyper-spectral 
Image 

N indexed by 
time 

Tensor Video Stream 

For example, using the alternative interpretation, a 

multi-spectral image of cervical cancel cells collected 

from multi-spectral sensors, can be represented 

directly as a third order tensor as shown in Figure 3. 
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Figure 3: PCT on Multi-spectral Image 

IV. Concurrent Computation 

The concurrent PCT transforms a multi-spectral 

image, Is, into the tensor, Cs, using the 
transformation equation:  Cs = A(Is — m) where A 

is a transformation matrix and m is a mean vector. 

The computation can be divided into two parts that 

calculate the transformation matrix A, and 

subsequently transform the data as follows: 

1. Mean vector. Each component of the mean 

vector, m, is the average of the pixel values of an 

image in each spectral band and can be 

computed independently as follows. 

for all i = 1 to n concurrently 

K- k=l 

where K = number of pixels in an image. 

2. Covariance sum: To calculate the covariance 

matrix, pixels at a specific position in all spectra 

are related while neighboring pixels in the same 

image are not. Therefore, the pixels in a multi- 

spectral image are taken as a sequence from the 

lop left to the bottom right. The sequence is 

divided into P parts using integer division. Each 

part is allocated to a thread as follows. 

for all p = 1 to P concurrently 
sump = 0 
for all pixels (i, j) in p 

C^ISijIsJ-mm1 

sump = sump + Cy 

where P = number of parts and sump is the 
matrix sum of the covariance in each part, p. 

3. Covariance matrix: The covariance matrix is the 

average of all the matrices calculated in step 2, 

and is calculated sequentially since its 

complexity is related only to the number of 

threads rather than the image size. 

4. Transformation mtarix: The eigenvectors of the 

covariance matrix are calculated and sorted 

according to their corresponding eigenvalues 

which provide a measure of their variances. As a 

result, the high spectral contents are forced into 

the front components. Since the degree of data 

dependency of the calculation is high, but its 

complexity is related to the number of spectral 

bands rather than the image size, this step is done 

sequentially. 

5. Transformation of the data: Each pixel vector, 

Isij) can be transformed independently. 

Therefore, once again, pixel vectors in the multi- 

spectral image are taken as a sequence and 

divided into p parts. 

for all p = 1 to P concurrently 
for all pixels (i, j) in p 

Cs^ACISy-m) 

where P = number of parts. 

The concurrent algorithm currently operates only on 

shared  memory  architecture,  but the  tensor data 

structures have been designed to cope with 

Wi :%•*{« 5r»^! 
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ffX.., 

Figure 4: false and true color mapping 
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network architectures. In this experiment, pathology 

images are collected at 640x480 resolution, in the 

visible spectrum, from 410nm to 780nm at lOnm 

steps. Concurrent PCT is performed on the image 

cube. True and false color images are created using 

the first three components of the resulting image cube 

as shown in figure 4. These images are useful in 

helping pathologists identify potential cancerous 

areas in cell samples. 

The experimental speed up is plotted against the 

linear speed up in figure 5. The speed up gained is 

close to ideal with less than 20% drop of 

performance. The speed degradation was caused by 

the thread overhead and the sequential code in steps 3 

and 4. When a large number of spectral bands are 

used, the speed degradation reduces tremendously. 

■innn 

inn 

m 

Speed Up 

v -♦-experimental 

~*~ linear 
% 

0          19         3          4 

Figure 5. Speed up plot 

VI. Conclusion 

This paper has presented a data fusion architecture 

based on distributed systems. The technologies allow 

multiple analysts to conduct research collaboratively 

using Web-based programming technologies. Image 

fusion  and  analysis  can  be  achieved  using  the 

concurrent algorithms on clusters of computers. 
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Abstract: An information system for classification of vehi- 
cles and for situation analysis with heterogeneous input data 
from multiple sources will be proposed. Input data will gen- 
erally be available from different sensors. The information 
system will be split into three subsystems, which will be dis- 
cussed in this paper. The first one will include means for que- 
rying and reasoning about spatial-temporal information. For 
this reason a spatial query language called EQL is under 
development. The second sub-subsystem will be concerned 
with information acquired from sensors to create a synthetic 
environment to support situation analysis and to allow terrain 
feature oriented queries. Finally the third sub-system is con- 
cerned with the aspects of man/machine interaction in the 
system. 

Keywords: information fusion, information fusion system, 
object classification, qualitative spatial reasoning, spatial 

query language. 

1. Introduction 

Systems for classification of objects registered by vari- 
ous types of sensors are becoming more complicated as 
the number of input data sources, i.e. mainly sensors, 
are growing. Another aspect that complicates the design 
of systems of this type is that the data from the different 
sensor types are heterogeneous. Therefore, systems de- 
signed to support users in automatic classification of 
objects collected from multiple sensor data sources 
must include means for decision support as well as 
means for visualization of the registered objects, their 
attributes and the surrounding environment. The deci- 
sion support tools may include facilities for application 
of queries directed towards the sensor data; for the stor- 
age of sensor data but also for the storage of symbolic 
information. Clearly, the end-users cannot perceive and 
analyze this sensor information because of the enor- 
mous volumes of data measured in a very short time. 
For these reasons, a system for object classification us- 
ing input data from multiple sensors and intended to 
support the end-users is proposed. The system is con- 
cerned with the problems of how the observed objects 
can be classified and how their positions, orientations, 
and other attributes can be determined and visualized in 

a realistic way. Clearly, a system of this kind must also 
include means for visualization of the terrain in which 
the classified objects are operating. The latter problem 
will also be addressed subsequently. Other aspects that 
need be addressed concerns such aspects as how to sim- 
plify the interaction with a system that with necessity 
will become very complex and how to keep track of the 
information that will be available in the system. These 
aspects can, for instance, be handled by means of an in- 
teractive intelligent agent, which may be specialized to 
deal with the problems discussed here. 

The system that will be discussed in this paper is mainly 
intended for automatic target recognition and for inte- 
gration into a military control and command system but 
other types of applications can be thought of as well, 
e.g. applications for environmental surveillance, traffic 
control etc. Targets of concern are primarily ground ve- 
hicles observed either from a top down position or from 
a slant position. In both cases the objects may be ob- 
served from short to medium long distances. Sensor 
data fusion is another aspect that must be dealt with in 
a system of the proposed type. A consequence of this is 
that uncertainties and other limitations of data must be 
focused. 

A few approaches of systems similar to the one pro- 
posed here can be found in the literature. Among these 
can [3] by Shahbazian et al. be mentioned. In their sys- 
tem application programs are automatically linked to- 
gether through rules available on a blackboard. Such an 
approach will clearly work in a flexible way. Another 
and somewhat related method to target recognition is 
suggested by Nifle et al. [2] 

2. The multi-sensor system 

The structure of the proposed system can be seen in fig- 
ure 1. The system can be split into three main parts, i.e.: 

- The query language subsystem using data from multi- 
ple sources. 
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- The visualization subsystem with a qualitative terrain 
feature query system. 

- The user interaction subsystem including support for 
spatial/temporal reasoning. 

These tree subsystems can be split further into more 
specialized modules which will be discussed further 
subsequently. 
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Figure 1. The basic structure of the system. 

An important aspect of the system is the control loop, 

i.e. the feedback loop to acquire more specific informa- 
tion from the sensors as a result of the interaction be- 
tween the user and the system but also as a consequence 
of the conclusions drawn by the reasoning system. A 
further reason is that there may be a lack of available in- 
formation and therefore there is a need to control the 
sensors to acquire further information. As a conse- 
quence, limitations and incompleteness in the informa- 
tion acquired may be present in the available 
information and for this reason further information 
must be acquired from the sensors. This feed back 
should consequently be a result of a decision made by 
the user. The users may not only require object informa- 
tion but also information concerning the areas sur- 
rounding the object, in other words, reliable terrain 
information. For this reason we can look at the feedback 
loop as a means for deciding whether to collect further 
terrain information or whether to acquire more object 
information from the sensors. These decisions should 
primarily, be taken by the users. Therefore the system 
should be designed so that it will be able to supply them 
with the necessary information as a result of the dia- 
logue between user and system. 

3. SQL 

A generalized tool to support fusion of the information 
from the sensors is necessary in a system of the type 
discussed here. For this reason efforts to support the 
development of such a tool are going on. The approach 
taken here is to develop a spatial query language that 
uses heterogeneous input data, from various types of 
sensors and transform the spatial/temporal information 
into a structure that can be used for reasoning on a high 
abstraction level. The work is part of an ongoing 
project for development of a query language called 
ZQL, see e.g. [4] or [5]. 

ZQL uses information from sensors that generally pro- 
vide continuous streams of data. Such data need be 
transformed into abstract (symbolic) information of 
spatial/temporal/logic type. Operations for consistency 
analysis and information fusion must be available, so 
that the symbolic information can be used as input to the 
queries. Queries in SQL are basically made up by se- 
quences of spatial/temporal operators, called a-opera- 
tors, which easily can be translated into EQL-syntax. 
ZQL is a natural extension of SQL and allows the spec- 
ification of spatial/temporal queries and by allowing the 
use of data from multiple heterogeneous data sources 
the need to write different queries for each data source 
is eliminated. 

Symbolic Projection [1] and some further qualitative 
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structures are used by ZQL as the basic symbolic struc- 
ture. This structure was originally proposed by Chang et 
al. [6] for iconic indexing. In this method, space is rep- 
resented by a set of strings. Each string is a one-dimen- 
sional formal description of space, including all 
existing objects, and their relative positions viewed 
along the corresponding coordinate axis in a symbolic 
form. This representation is qualitative as it corre- 
sponds to sequences of projected objects and their rela- 
tive relations. A simple example of the Fundamental 
Symbolic Projection is given in figure 2a, where the U- 
string corresponds to the projections along the x-axis 
and the V-string corresponds to the projections along 
the y-axis. Object A is to the left of the objects B and C, 
which both have the same x coordinates. The U-string 
thus becomes A < C = B, and the V-string is obtained in 
a similar fashion. Figure 2b illustrates an alternative 
projection method called the Interval Projection meth- 
od [7], where the end-points of the objects are encoded 
in the projection strings. Thus, the pair (U, V) of projec- 
tion strings symbolically describes a given image with 
respect to the identified objects, including the relative 
positions of the objects and their interrelationships. The 
different variations of Symbolic Projections are more 
completely described by Chang and Jungert [1]. 

cn 
IZI 
[£] 

u:A<C = B 
v:A = C<B 

(a) 

,Ae Bs^e 
Cs Ce 

u:As <Ae< BSCS < BeCe 

v:AsCs<AeCe<Bs<Be 

(b) 
Figure 2. The original approach to Symbolic Projection 

including the resulting projection strings (a) and the 
same scene applied to interval projections (b). 

Symbolic Projection is used in SQL as a means for ex- 
pressing the spatial relations extracted by a spatial que- 
ry. A a-query, on the other hand, is made up by a 
sequence of a-operators that can be translated into a 
SQL-query [5]. A a-operator, when applied to a data 
source, simply corresponds to a select function whose 
result corresponds to an arbitrary projection string. The 
a-operator indicates that the selection is made accord- 
ing to the information-lossless default clustering mech- 
anism. To select the x-axis, ax = ax(x!,..., xn) is 
generated and with this notation it is simple to show that 
(ax, ay) is exactly the same as the pair of symbolic pro- 
jection strings in (U,V). Basically, ZQL is intended for 
queries generating results of the following types: 

- object classification, 
- object attributes, 
- locations/positions of objects, 
- events (when did a certain event occur), 
- moving patterns (change in position, paths etc.), 
- object relations, " 
- object orientations. 

To accomplish this, the space need to be split up into 
customary sub-spaces, which the query language can 
deal with. Such a sub-space is called a cluster. A cluster 
is consequently a subset of the space spanned up by the 
various dimensions of the information universe present 
in the system. 

For the image (imj) in Figure 2a, where the projection 
method corresponds to the Fundamental Symbolic Pro- 
jection the result of the application of the ax-operator 
becomes: 

a im, = a (x.jc^im. = (u: A<B=C) 

and its corresponding projections in the y-direction be- 
comes: 

tymj = oy(yvy2)iml = <u: A = C<B> 

It is possible to bring the a-query further by applying 
one or further specialized a-operators as well; thus cre- 
ating a sequence of a-operators corresponding to a a- 
query. In such a query it is, for instance, possible to ask 
for object relations such as "which is the direction be- 
tween object A and B", which yields the result that "B 
is at the upper right of A" or "B is to the north-east of 
A". The a-query corresponding to this type will look 
like: 

<*direction(N-E)(ax» Oy)imi 

In terms of ZQL the above query may be expressed as: 

SELECT direction 
CLUSTER (* ALIAS D(ANY_0, ANY_1)) 
FROM SELECT x, y 

CLUSTER * 
FROM im! 

WHERE (N-E ANY_0 ANY_1) 

where the WHERE-clause determines the actual rela- 
tionship, D(ANY_0, ANY_1), that is the pattern indi- 
cating a relation of binary type or more specifically the 
'direction' between pairs of objects. The * corresponds 
to a default clustering along the x and y coordinates. 
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Observe that the existence of other object pairs with the 
same relationship will be determined as well. 

Both input and output to and from the a-operators are 
represented in single or multiple strings. This is also 
true for the object relation queries defined in [4], e.g. for 
directions, as shown above. 

A more complex example concerns a situation where 
more than one sensor is at hand. Such a query can be 
formulated as follows. Given that the input information 
is coming from a laser-radar and a video camera, see 
figures 3 and 4. Then the query can be based on the ob- 
servation that it is simpler to determine whether a vehi- 
cle in a video frame is moving once it is known whether 
there is a vehicle present. In this particular case, vehi- 
cles can be found in almost real time in laser-radar im- 
ages, this has been shown by Jungert et al. [6]. 
However, it cannot be determined whether vehicles 
found in a laser radar image are moving or not. Thus, 
once a vehicle has been found in a laser-radar image, it 
is quite simple to determine if it is moving by just ana- 
lyzing a small set of video frames from the same time 
interval. This is possible since the location of the vehi- 
cle at a certain time is known from the laser-radar infor- 
mation, which is illustrated in the figures 3 and 4. 

Subqueryl: Are there any vehicles in the laser radar im- 
age in [t,, t2]? 
Q2 = °type (vehicle) Oxyz,interval_cutting(*) 

°t(T°) T>tl and T<t2 
ömedia_sourceS(

1aser_radar0)media_sources 

Subqueryl: Are there any moving objects in the video 
sequence in [tj, t2]? 
Ql= Omotion(moving)°type(vehic,e) Oxy,intervaLcutting(*) 

<*t(T°)T mod 10 = 0 and T>tl and T <t2 
<*media_sources (video°)media_sources 

The information from these two sub-queries need to be 
fused to determine whether a specific vehicle is in 

motion. Therefore, a fusion operator, <|)meise-and, has to 
be introduced, which yields the following complete a- 
query: 

<t>: merge-and/# 
xyt (*) 

(amotion(moving)atype(vehicle) 
^xy,interval_cuttingV  / 
CTt(T°)T mod 10 = 0 and T>tl and T<t2 
Omedia_sources (video°)media_sources 
°type (vehicle) CTXyz,interval_cutting( ) 
Ot(T°) TX! and T<t2 

«media sourcesOaser-radar0) media_sources) 

Ö 
Figure 3. A laser radar image of a parking lot with a 

moving car (encircled). 

'«IF 

Figure 4. Two video frames showing a moving white 
vehicle (encircled) while entering a parking lot 

Each of the images are transformed into the correspond- 
ing projection strings for each sub-query. The reasoning 
is then carried out by the <|>merge~and-operator to deter- 
mine whether any of the found vehicles are moving. 
Translation of the a-query into SQL-syntax is simple 
and straight forward and the result of this translation is: 

MERGE-AND x,y,t 
CLUSTER *,*,[tl,t2] 
FROM (SELECT type 

CLUSTER vehicle 
FROM SELECT x,y,z 

CLUSTER OPEN (* ALIAS T) 
FROM SELECT media_sources 

CLUSTER OPEN laser_radar 
FROM media_sources 
WHERE T > tl AND T<t2, 

SELECT motion 
CLUSTER moving 
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FROM SELECT type 
CLUSTER vehicle 
FROM SELECT x,y 

CLUSTER interval * 
FROM SELECT t 

CLUSTER OPEN (* ALIAS T) 
FROM SELECT media_sources 

CLUSTER OPEN video 
FROM media_sources 
WHERE T mod 10 = 0 

ANDT>tl ANDT<t2) 

Among the above operators the MERGE-AND operator 
obviously is the most complex and clearly it need to in- 
clude means for investigation and solution of the asso- 
ciation problem but also for handling uncertain 
information obtained from the sensor data. Such tech- 
niques are needed to make this operation general. For 
this reason, further research is needed. 

4. The visualization subsystem 

The visualization subsystem will be designed to present 
what is going on in the environment assessed by the 
sensors, but also to support the users in their efforts in 
determining the existence of various types of objects 
and determine their behavior and activities with respect 
to the geographical surroundings. Most information 
made available by the sensors should be possible to be 
acquired by the users whenever necessary. Hence, the 
visualization subsystem must include a spatial/visual 
query system for determination of information about 
geographical objects that eventually may be visualized 
in the synthetic environment thus allowing the user to 
follow the on-going activities of concern. This is, in 
other words, a way of enhancing the synthesized envi- 
ronment with respect to activities otherwise hidden 
from the users. 

4.1. The Synthetic Environment 
The information that will be used to create the synthetic 
environment will generally be coming from the sensors. 
This information need be classified with respect to their 
geographical types. Of special interest is to allow the 
generation of a high resolution terrain model in 3D. 
There are various ways of doing this and a number of 
sensors exist that can support this. In this work a laser- 
radar called TopEye, which is a civilian product from 
Saab Survey of Sweden, has been used. This sensor uses 
a helicopter as a platform. The laser-radar contains a 
vertical scanning direct detection laser and the succes- 
sive pulse emission and repetition do not overlap. The 
overall accuracy of the measured point co-ordinates is 
approximately 0.1 m in all three co-ordinate directions. 

(a) 

Figure 5. A terrain model in a high resolution grid 
structure (a), and the reduced model after the wavelet 

transformation (b). 

The technique used here for generation of terrain eleva- 
tion models from laser-radar images is discussed in [9] 
and [10]. A critical step in this process depends on how 
accurate separation between ground and forest informa- 
tion can be performed. A laser-radar image maps the 
terrain from a top view, which includes reflections from 
both the ground and the vegetation. In order to deter- 
mine the information corresponding to the ground sur- 
face forest and vegetation information from the laser- 
radar images must be removed. In cases where the for- 
ests are very dense this problem has no simple solution. 
The main problem is concerned with the loss of direct 
reflections from the ground and how to interpret and fill 
in the areas hidden underneath the trees with informa- 
tion without to much loss of accuracy. This problem is 
further discussed in [ 10]. 

Once ground and forest information has been separated 
the process becomes more straight forward. In this ap- 
proach a regular grid with a point distance of 0.5 m is 

857 



first created, see figure 5 a. From this grid structure an 
irregular sparse structure is determined. This structure 
is made up by a regular grid, with a grid point distance 
of 2 m, and a set of irregularly distributed characteristic 
points that eventually should be used for triangulation, 
see figure 5b. To accomplish this, it is necessary to sub- 
stantially reduce the number of internal data points 
while still keeping the most significant, i.e. significant 
data points belonging to such terrain structures as hills 
and ditches etc. This is motivated by the fact that stor- 
age and access requirements require a structure where 
unnecessary points are eliminated. A square size of 2 m 
was chosen since it was considered as a suitable com- 
promise between the goal of reducing data while keep- 
ing the elevation errors below 0.5 m in total. The 
irregularly distributed points are determined by a some- 
what modified version of the linear wavelet transform 
[11]. The 2 m squares and the points that occur inside 
the squares constitute the basis for determination of a 
qualitative code that support describing the terrain.The 
different categories that can be identified through this 
technique will eventually be stored in the terrain data- 
base. 
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Figure 6. A terrain model with a simple skin on top, il- 
lustrating a round-about with four incoming roads. 

The terrain data model will have a dual use. The trian- 
gulated grid structure including it irregularly distributed 
points will be used for visualization purpose only, while 
the categorized structure will be used for querying pur- 
poses. The latter will be discussed further in section 4.2. 
A triangulated terrain model using laser-radar data can 
be seen in figure 6. The model has been covered with 
simple skin and shows a round-about with four incom- 
ing roads. 

with a standard deviation of 0.065 m. In conclusion a 
reduction of data close to 90% have been possible and 
with a total maximum error in each square less than 0.5 
m in 95% of all cases when adding also the measure- 
ment error of the sensor which is around 0.1 m. 

4.2. The terrain feature query system 

The queries applied to the terrain feature query systems 
are called x-queries. The T-queries have similarities to 
the a-queries, since they also correspond to a kind of 
spatial low-level queries. The T-queries are, however, 
more shape and geometric oriented as they are built up 
by patterns of the squares determined from the irregu- 
lar grid structure in the terrain model. A T-query is sim- 
ply a matching process on a symbolic level between a 
given pattern and the pattern of the existing terrain 
model where both are represented in terms of a qualita- 
tive tile code.The purpose of the terrain feature query 
system is therefore to answer queries made up by the 
patterns of categories of grid tiles as discussed in sec- 
tion 4.1. The basic idea is consequently, to describe the 
features of a terrain object in terms of combinations of 
grid tile categories, and match them against the tile 
codes given in the terrain database. This kind of match- 
ing can be applied to determine, for instance, ditches. 

About a hundred qualitative grid tiles have been identi- 
fied. The simple features in the grid tiles can be com- 
bined such that more complicated types can be 
identified as well. Figure 7 shows some examples of 
the different types and their features. The grid tiles in 
figure 7 correspond, from left to right, to a flat area, an 
area with a top, a ridge, a ridge close to the lower left 
corner and finally a structure of two combined features 
e.g. a ridge at left and a valley at right. The tiles must 
be rotation invariant with respect to their features and it 
is simple to see that they can be individually triangu- 
lated for visualization purposes. Furthermore, since the 
tile features are qualitative a special feature like the 
third tile in figure 7 can have any arbitrary direction as 
long as it stretches out from top to bottom inside the 
tile. 

mnE 
Figure 7. Some example of grid tiles with some simple 

feature types. 

The result of the terrain generation process gives a total 
reduction of data of about 88% compared to the origi- 
nal data volumes. The average error is, as determined 
from the maximal error in each square, 0.128 m and 

A query may not correspond to a single tile but to a 
number of tiles, that in combination must be matched 
against the terrain model. Sets of set of tiles may be 
permitted as well. The matching procedure goes on as a 
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filtering technique between the combinations of 
sequences of tile codes until the specified area has been 
completely covered by the query. The work on devel- 
opment of a T-query system is currently under way. 

A further aspect when applying the x-queries concerns 
the size of the objects. The 2 m grid works well for 
small objects represented in a high resolution. Larger 
objects, however, require a lower resolution, because 
otherwise the combinations of tiles will become too 
complex. Therefore, a type of resolution pyramid is 
being developed to make it possible to apply grid tiles 
of lower resolution in the matching. Useful grid sizes 
would be 4,8 and 16 m, which can be generated 
directly from the basic terrain database. This can be 
done in a first step by extracting the actual grid size 
from the terrain database and in a second step by iden- 
tifying the remaining points by means of the vawelet 
transformation as performed on the 2 m level. 

Finally, another class of T-queries that eventually must 
be focused on concerns the identification of buildings 
and various types of features of buildings. However, 
buildings require a different kind of description than 
the terrain models; mainly because it is simpler to 
describe a building more exactly. However, this 
requires further studies. 

5. The interactive control and reasoning sub- 
system 

In the interactive control and reasoning subsystem user 
related aspects are mainly in focus. Aspects as how to 
interact with the system, how to keep track of available 
and incoming information and how to draw further and 
more extensive conclusions from the knowledge made 
available by the query systems, will be in focus. So far, 
the studies concerning this sub-system are preliminary 
and further work is required before the details of this 
subsystem are identified and can be implemented. 

The main modules in this subsystem will generally be 
made up by the interaction module, the high level rea- 
soner and the meta-database. 

5.1. The interaction module 

The interaction module will be a combination of an in- 
telligent software agent and a web-browser. The 
former is intended to support the users in a collaborative 
working mode such as described in [12]. The main pur- 
pose of this agent is to support decision making trough 
a user dialogue. The agent should guide the user to- 
wards more correct decisions, while at the same time 

the work-load of the users should be reduced thus elim- 
inating the complex interactions that otherwise would 
require a high-level user competence. Interaction with 
SQL will be based on the web-browser technique, 
which will be a convenient way of interaction since 
most users are familiar with this technique. Finally, an 
important aspect to consider is to develop a way of deal- 
ing with the problem of how to eliminate information 
overload of the user. 

5.2. The high level reasoner 

The purpose of the high level reasoner is to support the 
second level of data fusion, i.e. the situation analysis as 
described in [8]. This module should be designed to 
support higher levels of information fusion and the 
input should be fed into the module as assertions from 
the depository of fused knowledge mainly coming 
from SQL. Information from the terrain feature query 
language will be needed by the reasoner as well. As a 
consequence, the high level reasoner will mainly be 
concerned with the objects determined by the target 
recognition process. The information that relates to the 
synthetic environment will be used to infer high level 
knowledge of compound type. This subsystem will be 
tightly coupled to the interaction module and its intelli- 
gent software agent. 

5.3. The meta-database 

Meta-data must be available to the user as well. With- 
out this kind of information it will be immensely diffi- 
cult to determine whether a query can be answered 
properly. For this reason, a meta-database must be 
available to determine whether data needed for a par- 
ticular query is available in the system. However, the 
metadatabase need not be explicitly available to the 
users but can instead be indirectly available through the 
intelligent agent or connected to ZQL. The metadata- 
base should include information generated by the sen- 
sors. This information does not only descriptions of 
raw-data but also information generated through trans- 
formations performed by the system. Of importance 
here is such information that tells where and when the 
information was acquired and, of course, information 
about the various types of available information. 

6. Adaptation 

Whenever there is not sufficient information available 
for a certain task it should be possible to control the 
positions of the sensors to get further information from 
a certain activity at a certain location. This information 
should have a better quality be more reliable etc. and 
thus give ZQL a better chance to fulfill its assignments. 
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However, adaptation of the sensors should not only be 
determined by the query systems but primarily by the 
users in their dialogues with the agent. 

7. Conclusions and future research 

The system proposed here is at this time not a running 
system but rather at a planning stage where certain 
parts have been subjects to research while other parts 
are subject to on-going research activities. The prime 
goal is to build up a demonstrator of the proposed sys- 
tem. This also requires activities concerned with col- 
lection of relevant sensor data. Some sensor data, 
which has been used for earlier research, such as laser- 
radar data, have, however, been available for quite 
some time and as a consequence they have had a strong 
impact on the design of the system. 

The system as illustrated here just shows a single user 
system, which however, should be possible to integrate 
in a multi-user system where the communication net- 
work should be transparent to the users. The system 
should in other words correspond to a CSCW system. 
This should, however, be subject to future research. 
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Abstract - This paper introduces a layered architecture for 
multi-sensor fusion, applied for environment awareness of 
personal mobile devices. The working environment of 
personal mobile devices changes dynamically depending on 
their user's activities. Equipped with sensors, mobile devices 
can obtain an awareness of their mobile working 
environment, to improve their performance with respect to 
usability. The mobility of the device presents two problems 
for building an awareness system. First, the contexts to be 
covered by an awareness system depend on the users, their 
tasks and activities, and also on the data that can be obtained 
from different sensors. Second, the power consumption and 
the size of the mobile device limit the processing capability 
of an awareness system. The solution presented here is to 
design a low cost sensor-based fusion system, which can be 
reconfigured by the user, to enable individualized awareness 
of environments. The software architecture presented in this 
paper is designed with four different layers, which can 
support reconfigurations in mobile environments. 

Keywords: mobile environments, multisensor fusion, 
context-awareness, fusion architecture 

I. Introduction 

Personal mobile devices, such as laptop, GSM and 
PDA, break the traditional desktop paradigm and bring 
people the powers of the computing and electronic 
communication anywhere and anytime. Our 
investigation focuses on improving the function and 
interface of these personal mobile devices through 
awareness of the user's activities and the current social 
environment. Different from the desktop, mobile 
devices are portable and accompany their users from 
one place to another. This kind of mobility puts the 
device into a changing environment, which is more 
complex to be processed than in fixed cases, while it 
also offers them more opportunities to know more 
about their users and their own situations with certain 
awareness techniques. For example, a PDA may track 
the locations of its user from the home to the office 
and adjust the items in the "to do list" from home- 

related issues to the work-related issues. It may also 
recognize that the user starts to walk after a calmly 
sitting and then change its display to the large font 
automatically to ease reading. Many investigations 
have already been done on applying the desktop-based 
awareness to improve the interaction between human 
being and the computing device [1,2]. Based on these 
former works, a multi-sensor fusion architecture to 
enable awareness for the mobile devices is presented 
in this paper. 

To enable the awareness of mobile devices, a small 
multi-sensor device is developed by the European 
Commission funded research project Technology for 
Enabling Awareness (TEA, [3]). This multi-sensor 
device can be connected to a mobile device as an 
additional part and offers useful context information to 
the host. Aiming not to destroy the portability of the 
mobile device, the multi-sensor device is designed to 
employ only low cost sensors and rely on fusion 
techniques to extract useful contexts from the data 
obtained from these low cost sensors. "Low cost" 
means that: 

First, the size of the sensors should be small enough to 
keep the multi-sensor device much smaller than the 
size of the host device. Second, the sensors should 
consume low power and the signals they produced can 
be processed with little processing power. Finally, the 
price of the sensors is also a factor that should be 
regarded. 

Investigating how to enable awareness in mobile 
environments, two kinds of adaptation are necessary 
when the working environment of the mobile device is 
dynamically changing with situation and location. One 
is that in different situations certain sensors are more 
useful than others. For example, the air pressure 
sensor may be useful when the user is on a flying 
plane, but can not offer much useful information when 
the user is siting in the office room. Operations to 
adjust sensors, such as switch on/off, affect the related 
fusion algorithm to produce stable results. The other 
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adaptation is needed because, in different 
environment, the mobile device is interested in 
different contexts. For example, at night, the mobile 
device may pay attention to the context about whether 
there are artificial lights. But in the daytime, this 
context may be not necessary. The fusion-based 
context awareness algorithms, which compute other 
contexts according to the context artificial light, need 
to be able to adapt to this modification. The multi- 
sensor fusion system for mobile environment should 
be designed robust enough to adapt the continuous 
reconfigurations of both sensors and contexts. 

In many former works, the sensor fusion can be 
classified into different levels according to the input 
and output data types [4, 5]. The fusion may take place 
in the data level, feature level and decision level. 

In data level fusion, the raw data from sensors is used 
to extract features [6]. Varieties of the methods are 
developed in this level, and were applied in the image 
processing, visual & speech recognition, data 
compression and intelligent control [7, 8, 9]. The 
feature level fusion is to fuse the features extracted 
from multi-sensor data into new features or the final 
decisions. Because most features have well-defined 
structures, the fusion methods in this level can be 
based on statistical approaches and pattern analysis 
approaches [10, 11]. Decision fusion is a common 
problem in many research areas, such as decision 
theory and artificial intelligence. An example of the 
simple decision fusion is the voting system, in which 
every candidate has equal or not equal right to 
determine the final result [12]. Artificial intelligence 
techniques show new trends for the solution for 
decision fusion, for example the neural network [13]. 
There are two advantages of applying neural networks 
to fuse the decision. One is that the neural network is 
noise-tolerant and can process the input features with 
plenty of noise. The other advantage is that neural 
network allows the system to be reconfigured 
according to the specified application instance. 

2. Layered architecture 

The adaptation of the reconfiguration of the sensors 
and contexts in the mobile environment is the 
important factor in designing the architecture of the 
fusion software system. When the sensor is modified 
(being switched on/off or adjusted its sampling rate) in 
the system, there should be a feasible mechanism to let 
the related fusion processes know this change and 
make correct responds. On the other hand, when the 
user reconfigures a context in the system, the feedback 
of this adjustment should also activate the correct 

adjustment of the related processes and sensors. To 
develop a common and feasible reconfiguration fusion 
system, one method is that we define the whole fusion 
system with several independent layers. Each layer 
consists of certain structures and data processes, and 
keeps contact with next layers through defined 
interfaces. In this way, the reconfiguration in one layer 
can be controlled by the predefined function in this 
layer and the effect of the modification can be limited 
by the interface to the next layers. In other words, the 
result of the reconfiguration in one layer can be 
regarded as a kind of normalizing the input of the 
other layer, so that the adaptive fusion algorithms can 
be developed in different layers separately. In this 
paper, we describe a fusion architecture with four 
layers, see figure 1. 
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Context layer management 
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Channel Channel Channel 
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Figure 1. Four layers fusion architecture 
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2.1 Signal layer 

The lowest layer is called signal layer, which 
connected with the sensors directly. The function of 
the signal layer is to control the data collection of the 
sensors and write the data into a uniform structure. A 
special kind of software channel is employed in this 
layer to adapt the reconfigure of the sensors. For each 
sensor, there is a channel with corresponding driver, 
data buffer and other attributes to manage it 
temporally. Three attributes of one channel are the 
logical name of the signal read from the sensor, which 
is used to identify the corresponding driver of the 
sensor; a time stamp system to manage the data stored 
in the buffer; a sampling frequency system, which is 
used to respond to the current available sampling 
statues. When the hardware of the system is modified, 
for example a sensor is added, a sensor is removed, a 
sensor is switched on/off and so on, the sampling 
frequency system of the related channels will detect 
the change automatically and adjust the value of the 
sampling frequency. This sampling frequency value 
can also be set by the system through software 
directly. 

The output data of the signal layer is the raw signal 
data with a structured description. The description 
involves the information about the current data, such 
as the time stamp, the sampling frequency, the number 
of dimensions, and the size of the each dimension. 
Most of the signals employed in TEA project have one 
dimension, for example, light signals, audio signals, 
temperature, etc. There is also two or three- 
dimensional signal such as the acceleration signals. 

2.2 Cue layer 

The processes in the cue layer mainly focus on the 
time independent features extracting from each single 
channel data. The time independent features 
extractions transform the time-varied data space into 
time independent feature space. From our point of 
view, the information fusion can be regarded as a data 
compression process. The raw data from several 
sensors will be compress into the result space. The 
fusion across different sensors is to reduce the 
redundancy among the data of these sensors. The 
reduction of the redundancy among the data of on 
sensor is also a kind of information fusion. Except for 
the time independent features extractions, the data 
from multi-dimension sensors is transformed into 
independent feature space in the cue layer. The time- 
varied analysis in the cue layer is limited within only a 
short period of sample data. Long term analysis will 
be done in the higher layer. 

We call these kinds of the self-independent features 
from single sensor channel as cue, in order to show 
their differences with the common concept of feature. 
The cue layer keeps a specified period of history of 
cues, which serves as a history description of the 
changing environment. 

2.3 Context layer 

The perceptible events in the environment are treated 
as the contexts of the activities of the host device in 
this layer. The current contexts can be derived from 
several cues, deduced from former or other current 
contexts, or combine the two approaches together. The 
system employs semantic nets to represent the former 
and current contexts. This semantic nets are designed 
with a limited verb set and probability description, for 
example, the current contexts can be represented like 
that "At 10:32, with 85% probability, (it) starts to 
walk, in the office". Each context keeps a value of its 
own respond frequency, which can be adjusted by the 
user according to his needs. More deep 
reconfigurations of the context, such as add a new 
context or training the context layer to recognize your 
new office room, need the cognition and deduce fusion 
approaches in context layer are self-adaptive or can be 
trained manually. Artificial neutral networks are good 
tools to support the deep reconfigurations of the 
context, because they can be trained through the 
examples automatically. The decision tree is another 
possible method to reconfigure the deduce algorithms. 
The context layer keeps the history of the contexts, 
which can be rewritten into the nodes in semantic nets 
to perform certain deduce algorithms. 

2.4 Application layer 

The application layer is developed within the 
operation system of the host and uses the result of the 
fusion system to improve the services of the host 
devices. 

2.5 Interfaces 

The communications between different layers rely on 
the fixed interfaces defined in the architecture. The 
interface between signal layer and cue layer is called 
signal interface. Through signal interface, the cue 
layer can read the data from each available channel 
and set the sampling frequencies of it. On the other 
hand, the signal layer can sent messages to activate the 
cue layer whenever the data is updated or the sensors 
are switched on/off. The cue interface is designed to 
keep contact between the cue layer and the context 
layer. By using this interface, the context layer can not 
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only access the current cues, but also has access to the 
stored history cues. The information about the 
updating of the respond frequency of the context can 
be sent to cue layer and further extended to the signal 
layer. Similar as in the signal interface, the cue 
interface also supports to send- the cue-updating 
message from the cue layer to the context layer. The 
interface between the context layer and the application 
layer is the context interface. In order to apply the 
multi-sensor awareness device to different mobile 
devices, the context interface is designed as a one way 
interface, which offers the access only from the 
application layer to context layer. It offers a rich set of 
functions to the host applications, including reading 
current and history contexts, setting the respond 
frequencies of the contexts, setting the attributes of the 
contexts, recording the samples and training the 
algorithms in the context layer, adding a new context 
or deleting an old one, and so on. 
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Figure 2. Reconfigure information feedback 

2.6 Reconfigure information feedback 

The information to reconfigure the system can be 
transmitted both ways: from the signal layer to the 
context layer and from the application layer to the 
signal layer. 

The both feedback processes are depicted in figure 2. 
When the host application wants to modify the 
response frequency of a certain context, it sends a 
command to the context layer through context 
interface. In the context layer, first, the respond 
frequency of the specified context will be updated to 
the new value according to the command, if this new 
value is valid. And then, the new value will be 
transmitted to the related cues in the cue layer. 
Because one context may be the fusion result of 
several cues, and one cue may also be employed by 
different contexts, in the cue layer, the related cues 
decides whether they should adjust themselves to 
adapt the change of this context while do not affect 
other related contexts. If the cue chooses to change its 
respond frequency to the new value, this value will be 
transmitted to the corresponding channel in the signal 
layer. The channel, which receives this information, 
may adjust its sampling frequency after checking all 
the cues extracted from this channel. 

When a sensor is switched off, the corresponding 
software channel should detect it and informs all the 
cues that based on this channel. This channel will be 
disabled under the signal layer management, but the 
related cues are still enabled because the history of 
these cues can be used for the future awareness. If a 
sensor is switched on, the signal layer will detect its 
signal, enable the channel and recover to send the 
updating message to the related cues. The context 
layer will check the time stamp of the cues before 
using them. A cue, which has not been updated for a 
long time according to its own respond frequency, will 
be regarded as unavailable resource. If this happens, 
the related algorithms in the context layer will be 
reconfigured with predefined methods. 

3. Evaluation 

In the experiment described in this section, we 
deployed the prototypical tea-device [14], a sensor- 
board that reads environmental parameters using a 
number of low cost sensors. 
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3.1 Hardware 

The board consists of four major blocks: the sensors, 
the analog-to-digital converter, the microcontroller, 
and the serial line. The sensors measure the conditions 
in the environment and translate them into analog 
voltage signals on a fixed scale. These analog signals 
are then converted to digital signals and passed to the 
microcontroller. The microcontroller oversees the 
timing of the analog-to-digital converter and the 
sensors as well as manipulating the data from the 
analog-to-digital converter's bus to the serial line. 
Finally, the serial line connects to the higher layer, see 
Figure 3. In terms of the architecture described earlier, 
the hardware incorporates sensor and parts of the 
sensor dependent drivers (signal layer) implemented in 
a microcontroller. The communication between the 
sensor board and the mobile device is using a serial- 
line in a multiplex mode. In this prototype, the higher 
layers are emulated with a laptop, which connected 
between tea-device and the host device to control the 
experiment easily. 
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environmental parameters. The data for each context 
was collected over a time of about 100 seconds, or 
about 120 records. Selected parts of the data are 
depicted in the following figures. 

Table 1. Contexts samples 

Cnnk'xt Description 
Inside-1 office, artificial light, stationary 
Insidc-2 office, artificial light, walking 

Outside-1 outdoors, daytime, cloudy, stationary 
Outsidc-2 outdoors, daytime, cloudy, walking 

Looking at the light data sample in Figure 4, it shows 
the values of brightness at cloudy outside and inside 
with artificial light. It is obvious to find the difference 
between inside and outside on the level of light as well 
as on the oscillation of the light. Comparing the 
acceleration data for a stationary device in figure 5. 
with the one for a moving device in figure 6, it can be 
seen that they differ significantly. 

Saroor 
kiput outbid« cloudy - 

ln*lde art. light - 
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Figure 3. Schematic 

3.2 Software and Interfaces 

The context, cue, and signal interface are offered as 
C++ methods to the next higher layer. The context and 
cue layers are implemented entirely in C++, too. For 
the host application layer we used different host 
dependent implementations. The signal layer is partly 
implemented in C on the microcontroller and partly in 
C++. 

3.3 Experiments and Results 

In the experiment, we collected data of all sensors in 
different contexts cycle by cycle, as described in Table 
1. Within each cycle, the sensors were activated and 
read according to their sampling frequency to feed the 

Figure 4. Light sensor data 

Figure 5. Acceleration sensor for stationary device. 
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Figure 6. Acceleration sensor for moving device. 

3.3.1 Cue extraction & context awareness 

There also other sensors on the sensor board, such as 
the sensors of the temperature, the air pressure, the 
passive infrared and so on. Each cue is extracted from 
the data of one corresponding sensor with proper 
algorithm. In the figure 7, we can see a typical period 
data from passive infrared sensor when the user moves 
the device in hand (the X-axis represents the time & 
the Y-axis represent the value of the passive infra 
data). Using the sequence analysis algorithm, the cues 
leaving and closing can be recognized within one 
sampling cycle. 

100 
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Figure 7. Passive infrared sensor for moving in hand 

The data from some sensors, especially from light 
sensor, involves some random noises that usually 
occur with no more than two sequential values in one 
sampling cycle. Before analyzing the data from this 
kind of sensors, we suggest to use a mid value filter 
with 5-value-size window to do the preprocess. 

Except for the cues extracted in time domain, the cue 
can also be the feature in frequency domain, for 
example the cue - base frequency. Base frequency 
represents the main frequency of oscillation of the 

light. The data from light sensor was transformed into 
frequency domain through FFT, and then used a linear 
window to find out the base frequency of in the date. 
This base frequency should be a stable value when 
there is artificial light near the light sensor. 

Most of the awareness of the contexts is based on 
more than one cue and even other contexts. The cues 
and contexts are regarded as different dimensions of 
input vector of the fusion algorithm. Artificial neutral 
network and decision tree are investigated to fuse the 
input vectors into contexts. To describe the position of 
the mobile device, we employed three contexts: the 
device is in hand, the device is on the table, and the 
device is in a suitcase. The input vector has 15 
dimensions, which corresponds with 15 cues from the 
sensor of gas (CO), temperature, pressure, light, 
passive infrared, and 2-dimensions acceleration. 
Automating the recognition, we used 297 samples 
(three classes, hand, table, suitcase; 99 vectors each) to 
train a neural network on them in a supervised mode. 
The other 297 samples were then used to test the 
recognition performance. With a standard back- 
propagation neural network we achieved a recognition 
rate of about 90 percent. Using a modular neural 
network, as described in [15], consisting of two input 
modules and on decision network we achieved a 
recognition rate of more than 97 percent. 

3.2.2 Reconfiguration 

The context "inside/outside" is used to describe the 
rough location of the host device is out door, inside of 
a building or a vehicle. The distinction of the inside 
and outside depends on the fusion result from the cues 
and contexts related with the light sensor and 
temperature sensor. The output data of the light sensor 
and temperature sensor are showed in the figure 3. 
Many cues are derived from the light sensor data in a 
standard period, such as the average brightness, 
standard deviation, base frequency, and so on. From 
the temperature sensor data, we get the cues: maximal 
and minimal temperature, average temperature. As 
showed in figure 8, two kinds of context are also 
useful to decide the context inside/outside. 
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Figure 8. Deriving context inside/outside 

The context "artificial light" indicates whether there 
are artificial lights in the current environment. The 
contexts "temperature in recent 24 h" describe the 
long-term statistic result of the temperatures in the 
past. We will simplify the decision process of 
"inside/outside" to show the reconfiguration of the 
awareness system. 

In a normal situation, the decision tree of 
"inside/outside" is optimized by using the stored 
samples with all the attributes. In this decision tree, 
both the context artificial light and temperature related 
cues and contexts play important rolls (see figure 9). 

y\s$ vjeragp^emperature 

Figure 9. Decision tree for inside/outside 

We discuss two reconfigure situations activated by 
disabling the context "artificial light" and switching 
off the temperature sensor. If the context "artificial 
light" is disabled by the host application, the decision 
tree has to be rebuilt according to the same stored 
samples but without the attribute "artificial light". The 
similar reconfigure process will also be done when the 
temperature sensor is switched off. The decision trees 
in these three situations can produce the recognition 
results, which are described in table 2. 

Table 2. Recognition results 

context Total 
number of 

test samples 

Recogni- 
tion rate- 
normal 

Artificial 
light 

disable 

Without 
tempera- 

ture 
inside 512 93.0% 81.7% 91.2% 

outside 512 98.0% 89.4% 87.6% 

4. Conclusions & future work 

The architecture presented in this paper is designed 
with a four-layer structure for multi-sensor fusion in 
mobile environments. The layered structure of the 
architecture allows the algorithms of the fusion system 
to be developed independently with sensors, data and 
the application demands. Through the interface 
defined between layers, the fusion algorithm face 
inputs with similar structure no matter whether they 
are real sensor data or the results of the other 
algorithms. The design of the layered architecture 
aims not only to develop the model to fuse the data 
from multi-sensor, but also to investigate the model to 
fuse the methods and techniques developed in the area 
of information fusion and other research area. 
Moreover, the layered structure makes it feasible to 
reconfigure the algorithms in each layer, which is 
important to enable awareness in mobile 
environments. The algorithms in the fusion system can 
be reconfigured properly to adapt the environment 
changes caused by the "movement" of the mobile 
devices, and produce more robust awareness results. 
Finally, the architecture keeps the interactions of host 
applications through different layers, which gives the 
opportunity for the host application to adjust the 
functions of the awareness device while also gives the 
chance for the fusion system to learn from the host. 

Experimental results show that the awareness system 
we developed in this layer architecture performs 
robustly if all the possible situations of the mobile 
environment are known. If unknown situations occur 
in the environment, it is difficult for the system to 
produce the right and stable awareness results. The 
reason is that the awareness system can not find the 
new useful contexts in the environment by itself. Our 
future research will focus on application of data 
mining techniques in building the multi-sensor fusion 
system, which can adapt to unknown situations 
automatically. Furthermore, because the 
communication plays an increasingly important role in 
the application area of mobile devices, techniques for 
fusing the information from sensors with the 
information from communication channels will be 
investigated in our future work. 
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A Distributed VIPD Architecture with Central Coordinator 

LiYinsheng Zhang Heming TongBingshu 
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Abstract: The paper illustrates what is related 

between VIPD (Virtual enterprise oriented Integrated 
Product Development) and information fusion, discusses 

some limitations of the distributed architecture, proposes 
a distributed VIPD infrastructure with central coordinator, 

and demonstrates its central coordinator and global 

database. By avoiding end-to-end communication and 

enhancing system security, the architecture will be a good 
attempt for manufacturing enterprises to unite and 
reorganize dynamically. On the other side, it will provide 
a lot of experiences and inspirations in applying multi- 

source information fusion technologies into complex 
systems. 

Keywords: VIPD (Virtual enterprise oriented 
Integrated Product Development), information 
fusion, central coordinator, global database, PDM 
(Product Data Management) 

1. Introduction 

1.1 Background 

The paper is supported by a research project 
called "Mode and technologies on VIPD", which 
is sponsored by Chinese National High-tech 
Plan/CIMS topic, and deserves to work on the 
theories, technologies, and modes for 
implementing VIPD (Virtual enterprise oriented 

Integrated Product Development). In the project, 
a digital product model, with multi-sources 
information including design history, assembly 
data, market information, and so on to be built-in, 

will be constructed [4]. And some advisable 
experiences and a reference mode for mid-scale 
and  small  enterprises  to  implement dynamic 

organization, and collaborate from remote 

locations, will be proposed [1]. The 
infrastructure, which is described in the paper, 

will be the basic architecture to integrate 
engineering environments of the project. 

1.2 Arrangement 

The paper proposes and illustrates an 
integrated infrastructure for VIPD, which makes 
advantages of both central management and 
distributed computation, and can integrate 

various polymorphous information derived from 
all the members of virtual enterprise and their 

subject product. With its central coordinator, it is 
more secure for member enterprises to exchange 
and share their data involved in product 
development. Moreover, the central coordinator 
will provide a facility for integrated product 
teams to collaborate their engineering transaction 

[10]. 
It is by seven sections that die paper 

illustrates the architecture for VIPD. In the next 
section, we will give an introduction to virtual 
enterprise and VIPD, which is helpful for readers 
to understand the infrastructure in the paper. In 
the third section, we will discuss information 
fusion in VIPD, which will do readers a favor to 
get clear for how VIPD will benefit information 
fusion theory. A simple development history of 

integrated modes will be given and the 
infrastructure for VIPD will be introduced in the 
forth section. After that, the theory and global 
database of the integrated architecture will be 

illustrated, and its features and advantages will be 
concluded. Finally, the paper will be ended with a 
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conclusion and the references. integrated and harmonized [8]. 

2. Virtual Enterprise and VIPD 

2.1 Virtual Enterprise 

With the shorter and shorter product life 
span, enterprises are required to be enough 

flexible and agile to meet with smaller and 
smaller batch of orders. On the other side, 

however, it is very difficult for a single enterprise 

to get all the necessary technologies and 

resources for that. As a result, virtual enterprise 
(or virtual organization) emerges [2]. Virtual 

enterprise is one of the perfect styles for agile 
manufacturing. And what identifies its idea is as 
follows: in order to develop a new aborative 
product and win a market battle, some 
enterprises, which possess necessary resources 
and technologies for designing, manufacturing, 
and marketing the product, will make up a 
occasional union to cope with their rivals 

together. They select what they are good at and 
organize them to be a new enterprise, and make it 
as their behalf for profits [1]. 

All the components of a virtual enterprise 
are independent, self-determined, self-organized, 
and self-optimized, and they generally 
collaborate with each other and perform as 
coordinates. Besides, the members are often 
distributed in different locations, and can take 
part in more than a single virtual enterprise in the 
same time [2]. Another standout feature of a 
virtual enterprise is that a product opportunity 
determines its presence: when the opportunity 
occurs, it will be organized quickly; and when the 

opportunity fades away, it will be disjoint in the 
same speed. 

It is due to their independent feature that 
many members of a virtual enterprise would be 
using various product development subsystems, 
which are usually polymorphous with each other. 

However, in order to have consistent and 
common product data so that they can collaborate 
in development, the subsystems are urgent to get 

2.2 VIPD 

As we know, traditional QMS (Computer 
Integrated Manufacturing System) and CE 
(Concurrent Engineering) have contributed a lot 
to information and process integration [5] [9]. 
However, in product development, with more and 
more enterprises becoming dynamic 

organizations, many new problems, especially 
those about integration among multi-enterprises, 

have appeared and expected to be worked out [7]. 

As a result, VIPD is paid attention to and 

expected to benefit the problems [1]. 
VIPD is one of the key technologies for 

implementing virtual enterprise, which attempts 
to integrate both the utilities and product 
development processes into a uniform computer 
integrated engineering environment. And by 
drafting, designing, manufacturing, testing, and 
analyzing the product in a consistent 

environment, concurrent design and global 
integration among enterprises can be achieved 
based on information integration, function 
integration, and process integration. As a result, 

development will become faster and 
performances for concurrent and 
manufacturability in design can be fulfilled better 

[2]. 
Some objectives of VIPD are concluded as 

follow. Firstly, VIPD will expand its subjects 
from a part to a complete product, which will pay 
emphasis on constructing 3-D product model that 
merging assembly information into [4]. In the 
second place, VIPD will take up with developing 

the technologies to support remote collaboration 
among members of the product development 

teams, all of which are based on the distributed 
databases and network systems. Thirdly, VIPD 
will benefit integrating distributed PDMs 
(Product Data Management) on the condition of 
the wide-area network. Finally, as we know, 
when virtual enterprises get changed, the related 
supporting environments and technologies should 
be  adjusted  accordingly,   and  which  in  turn 
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requires those technologies in VIPD to be open 
and standardized. 

3. Information fusion in VIPD 

3.1 Information fusion in CMS 

As we know, CIMS is one of the typical 
complex systems, in which many kinds of data or 
information, such as those about administration, 

enterprise, organization, product, financial 

affairs, etc. will be dealt with. Considering their 

different features, formats, and sources into, not 
only different utilities, media, and devices will be 
used to edit, collect, or store them, but also 
different methods will be required to tackle with 
them. All of them, as we know, will resort to the 
theories and methods about information fusion. 
As a conclusion, the fusion (integration) of multi- 
source information will be one of the basic 
research topics, and will run through QMS. 

3.2 Information fusion in VIPD 

VIPD is an advanced technology in CIMS 

and a landmark in integration. Fundamentally, 
VIPD results from the rapid progress in 
information and communication technologies. 
And when constructing its integrated 

environments, both the strategies of remote 

collaborative development, and the features of 
the product data in open, generality, and 
interchangeability between engineering fields or 
developing phases, including market decision, 
policies making, design, manufacturing, and 
maintenance, will be emphasized on. As a result, 
the information sources and supporting 

technologies in VIPD will be much more 
complex than those in integrating a single 

enterprise will. In the next paragraphs, six aspects 
will sum up several kinds of information 
multiformity in VIPD, together with their 
advisable solutions. 

(1) The members are different in location. 
As we know, there are not any limits in position 

for the components of a virtual enterprise. 
Generally, by remote communication based on 
Internet, information exchange and sharing can 
be conveniently achieved between them. 

(2) There exists an evident unconformity 
between the structures for member enterprises, 

especially in their resource organizations. One of 
the main causes for the unconformity is that these 

enterprises are specialized in different phases of 
making product, and they are often particular to 
each other. Consequently, it is necessary for 

VIPD to consider all the characters of different 

organizations in establishing security 
mechanisms and charts for examining, approving, 
and releasing the changes and proposals. 

(3) There are often inconsistencies in rules 
for the members to instruct their engineers how to 
design products and by which standards and 

criterions to constrain their designs. 
(4) There are many differences in the 

carriers of product data. As we know, product 
data can be stored by the data files (for example, 

documents and CAD/CAPP/NC files), databases 
(for example, metadata), and even hard copies. 
Moreover, there is severe unconformity in the 
database systems (for example, object-oriented 
database systems and relational database 
systems) and data editors (for example, MS Word 

contrast to VI, PRO/E contrast to UG, etc.). 
Therefore, in order to exchange and transform 

between them, it is necessary for engineers to 

develop various interfaces and front-ends. 
(5) Product structures, BOM (Bill Of 

Material) reports, product management data, and 
flow charts for developing product, which will be 
dealt with in VIPD, are polymorphous. A popular 
resolution for the problem is to develop the 
corresponding transform forms. 

(6) The supporting environments, including 

networks and database management systems, are 
polymorphous in a virtual enterprise. Owing to 
the different history of development 
environments and different enterprise 
backgrounds, software and hardware of the 

networks and database management systems are 
usually   different   and   even   non-compatible. 
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Fortunately, many providers of PDMs (Product 
Data Management system) have paid a lot 
attention to the problem and provided many 
commercial PDM systems, which are packed 

together with WWW servers, and can support 
across-platform navigation and operation [10]. 

All of the above make an indubitable 
conclusion that VIPD can be studied as a typical 
technology and practice for multiple-source 
information fusion, and the technologies and 

theories for information fusion are also basic 

supporting elements for implementing VIPD. In 

another words, research on information fusion 

will benefit VIPD a lot; and on the other side, 

study on VIPD will become one of the important 

branches and tendencies of information fusion. 
As will be illustrated in the next sections, the 
infrastructure for implementing VIPD can't only 
settle how to share and exchange polymorphous 
product data securely between the components of 
a virtual enterprise, but also support across- 
platform interoperation by WWW technologies 
[10]. Accordingly, we can declare that it isn't 
only a good resolution for information 

exchanging and sharing, but also a practical 
reference mode for information fusion of 

multiple-source polymorphous. 

4. Limitations of the distributed 

structures and its solution 

4.1 The history of integration structure 

In the case of traditional central control, a 
failure from the master would make the entire 
system to break down, and which can often cause 
a terrible loss. As a result, distributed control 

systems appear and get used extensively. It is 
very evident that the distributed environments 

possess many advantages over the central control 
systems. For example, in the former case, each 
subsystem is independent of each other, and in 
the event that one of them goes wrong, there isn't 
any  impact  on  other  systems.   As   a  result, 

distributed structures have got popular rapidly, 
and many of their modes, such as those based on 

agents, have been devised in the last decade. 

4.2 Limitations of the distributed systems 

As we have seen, distributed structures have 
been dominant in the last decade. However, with 
rapid growth in commercial hardware and 
software for information and communication, 

limitations of the distributed structure are 
becoming more and more evident. And in the 

event of collaborative development in a virtual 

enterprise, the conclusion is especially true. The 

next paragraphs will give some details for it. 

Firstly, security is one of the critical 

difficulties in a distributed structure. As we 
know, all the components of a virtual enterprise 
are independent of each other, and it's only for 
commercial profits that they would get united. 
Generally speaking, because they often engage in 
some similar businesses, there are undoubted 
competitions between them. However, when 
product data are exchanged in VIPD, some 

protocols are inevitably required by a distributed 
system to get correct information. Therefore, it is 

a popular method to construct agents in all sites 
of the virtual enterprise. And in order to 
communicate and inter-operate with other 
comates, it is required that every agent be aware 

of information in all the other subsystems. 
However, on the other side, the agent is usually 
fully accessible to the local administrator. 
Consequently, component enterprises can't be 
assured that their product data are enough secure. 
As a conclusion, the VIPD environment can't be 
established smoothly without an active 
participation of the components 

Additionally, to a distributed environment, 
there are many disadvantages in online updating 

between its subsystems. For example, when one 
of them gets changed or omitted, or a new one 
takes part in, it can't be assured that others be 
updated in time. Especially in the cases that 

servers with the agents built in are started and 
shut up frequently, it's difficult for them to keep 
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pace with. In such a condition, product data can 
never keep consistent between the member 

enterprises. 

distributed computation, and is helpful to 
improve the competitive capacity of Chinese 
manufacturing industry. 

4.3 Prospects for the structure with central 
coordinator 

In the case of central management to a 
virtual enterprise, because supporting systems for 

information exchange and sharing are based on 

Internet and independent collaborative 
subsystems, a centralized control architecture can 
seldom leads to a tragedy. An argument is that 
the integrated system is an enhanced 
environment, which is specialization and 
reorganization for random and anarchy data 
exchange and sharing, and one of its key 
functions is for collaboration between remote 
engineers. And in the event of central server 

failure, most of engineering activities can be 
continued in individual sites. After all, 
communication is not a continuous operation. 

Just for the above consideration, most 
people are turning their attention around to 
central systems once again. In fact, under the 
condition of a virtual enterprise, because there is 
always a master member to head the union, 
which generally goes ahead and have an excellent 

leading power, it's probable and feasible to 

establish a single powerful server to control and 

coordinate all the communications between 

members. 
Besides, with more advanced technologies 

and more reliable devices, disadvantages and 
risks from central control are lessened quickly. 
Accordingly, in our research project, by probing 

into the existing development environments, 
analyzing the motives and uniting modes for 

implementing virtual enterprise, and considering 

into the requirements and impacts of a virtual 
enterprise on the establishments, enterprise 
cultures and social settings, we conclude a 
integrated infrastructure for VIPD. The structure 
is based on commercial PDM systems [10], 
Internet, browser/server, and central coordinator, 
makes advantage of both central management and 

5. The infrastructure for VIPD 

and its coordinator 

5.1 PDMS in VIPD 

As has been approved, involved with basic 
and complex development technologies and 
terrible workloads, it is acknowledged as a poor 
way to construct integrated architecture for 
product development by the foundational 
network and database systems. Fortunately, with 
Internet, object-oriented, and digitized 
technologies developed rapidly, PDM systems 

have been provided and used for integrating 
product development supporting subsystems. 

PDM is one of the leading supporting 
technologies for concurrent engineering, which 
can be used to manage what are related to 
products (including information for components 

and parts, product structure configuration, 
documents and archives, resource organization, 
arid security) and workflow for changing and 
releasing of item revisions. By taking product 

structures, development processes, and designers 
into a uniform platform, PDM can avoid those 

problems about versions, privileges, and data 
redundancy [6]. Its essential goal is to make a 
right person to receive right data and achieve a 
right task in a right way, right time, and a right 
location. 

Current practices have showed that it's just a 

right way to apply PDM systems into VIPD. 

Moreover, to make use of PDMs' WWW servers 

and their client/server architectures and take it as 
a foundational supporting platform, can quicken 
and simplify the process for implementing VIPD. 
Moreover, the practice will show PDMs an 

improving way in the same time. 
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5.2 Introduction to the infrastructure 

Figure 1 The architecture for VIPD 

As is illustrated by figure 1, to construct an 
integrated environment for VIPD, every 
component of virtual enterprise is firstly required 

. to possess an integrated subsystem for their 

developments. All of the subsystems are based on 
PDM systems and customized with WWW server 

and communication interfaces, so that any valid 
users can navigate and operate product data and 

applications by the allocated privileges in their 
browsers. In addition, a logical central server will 
be specified, with its global database and WWW 
server built in. In such an environment, product 
data, rules, and descriptions of subsystems can be 
stored and maintained in a global database, and 

bi-directional transformation and communication 
services from a global product structure model to 
various data views can be provided. Moreover, 
any valid user, wherever he comes from and 

locates at, can access the central server by his 
privileges from his sites. 

In such a mode, the central server can 
provide a powerful coordinator for integrated 
product development in virtual enterprise, with 
global databases and file systems in it. And a 
local WWW servers in a member enterprise can't 
only deal with its local transactions normally, but 
also update in time with central server. In this 
case, there are explicit links between the local 

product data and items in global databases, and 
the other data in a 
subsystem won't be 
impacted at all. 

With the 
architecture, self- 
determination of a 
member enterprise 
can't be disturbed 
anyway, and its 

distributed 
transaction can also 

function as well as 

anywhere. In 

addition, one of its 

most important 
advantages is that 
the communication 

functions of a commercial WWW platform can 
be inherited by using a local WWW server. As a 
consequence, workloads in developing 
communication interfaces will be reduced a lot, 

and the generality, modularization, and 
standardization of a subsystem will benefit. 

5.3 Global database and coordinator 

It is a general global product database that 
describes the subject product of a virtual 
enterprise in all ways and is used as an essential 
facility for exchanging and sharing between the 
subsystems. And status, configuration, and site 

information for the member subsystems are all 
stored in the global database by standardized 
forms. By the database, some necessary services 
can be provided during the interactive activities 

between the members. These services include 
name service, query service, schedule service, 
transform service, and add and cancel service. 

Generally speaking, by name service, a 
subsystem can call for the others with their names 
or IDs, instead of knowing their correct 

addresses. And by query service, a subsystem can 
ask the central server for what the other members 
can provide. In such a case, the server will search 
for the tables for related members and their 
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features and services, and once an item to match 
with the query conditions is found out, a response 
message will be sent back to the request. As for 
the schedule service, in the case that no member 
can provide any facilities for the request, it can 
generate an item in a space called "blackboard" 
to record the requirements. Taking into account 
that the other members can access the blackboard 
for the current requirements, when there is a 
member can provide a requirement, a response 

will be made and informs the corresponding 

request. 
Another service, which will enhance the 

VIPD architecture, is transformation performance 

of the global database. It is by transitional forms 
that the service can assist different subsystems to 
achieve an exchange for their polymorphous 
product data, such as BOM reports, etc. 

Finally, by add and cancel service, when a 
virtual enterprise wants to get a new member or 

cancel an existent one, what it will have to do is 
to change the lists in the global database. 

5.4 Features 

In the architecture, the WWW servers and 
their customized services are very similar in all 
members, so a central server with its global 
database is the only key facility for VIPD. With 
ODBC and across-platform programming 

languages, all components can be standardized 
easily. As a conclusion, the architecture is good 

at compatibility and practical in implementing. 
Under presence of the central server, 

subsystems can contact the central server directly 
for a communication, instead of communicating 
with their destinations in point-to-point mode. 
Besides, by the infrastructure, when an enterprise 

want to join, what it is required is to customize a 
little for its PDM system and publish information 
to the central server by the procedures, so that the 
latter can update its status, rules, security and 
privilege tables in time. Because its description 
lists can be updated online, items can be added or 

changed at any time. As a result, it is more 
convenient to add or cancel a new member or 

applications and change meta-information for a 

product. 
Accounting that the members can 

communicate with each other by only contacting 

with the central server, end-to-end interaction can 
be avoided and the system will become more 

secure and practical. To sum up, we can declare 
that such a system is open and compatible, and 

can take full advantages of both the distributed 
computation and the central management. 

6. Conclusion 

The paper identifies virtual enterprise, 

VIPD, and PDM, illustrates how VIPD and 
information fusion theories impact each other in 
their system architecture. Additionally, the 
limitations of both the central and the distributed 
architecture are discussed. Afterwards, an open 
and compatible infrastructure for implementing 

VIPD is proposed and its coordinator is 
demonstrated. Based on commercial PDM 
systems and browser (client)/server, the 
architecture can take full advantages of the 
distributed computation and the central 
management. Moreover, by avoiding end-to-end 
communication between the members of a virtual 
enterprise, the integrating mode based on the 
architecture can reduce what to do for 
configuring subsystems, enhance system security, 
lessen data transfer, benefit information sharing 

and exchange in a virtual enterprise. As a 

conclusion, it will be a good way for Chinese 
manufacturing enterprises to unite and implement 
virtual enterprise. And on the other side, the 
architecture will provide many useful experiences 
and inspirations for applying multi-source 
information fusion technologies into complex 

systems. 
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Abstract 

The fast development of information 

technology and rapid expansion of information 

demand have challenged contemporary 

information systems. This paper presents 

architecture of an information processing system 

with intelligence, coordination and adaptability. 

A prototype of typical news system is then 

implemented as an example. The principal 

techniques used in the system are analyzed and 

investigated in-depth and the architecture 

proposed is evaluated. 

Key Words: agent, information processing 
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I.       Introduction 

We are in an information era with the 

development of technologies such as computer, 

network and database accelerating greatly the 

maturation of information techniques. Information 

has been regarded as one important resource and 

commodity with inestimable value. Information 

processing system is just the key element to produce 

and provide new information. Whereas, due to the 

existence of various unstructured information, 

information processing not only need routine 

manipulations of computer but also need the 

interaction between human & machine and the 

cooperation  among people,  especially  on  such 

aspects as contents, quality and responsibility. Many 

achievements have been acquired on partial 

techniques of information processing, but the 

relationship of each part and the whole architecture 

of information system have not been deeply 

investigated. Meanwhile, new information systems 

will face a lot of vital problems and opportunities, 

such as distribution and diversification of 

information, coordination and intelligentization of 

workflow management, diversity and individuality 

of users' need, and so forth. Therefore the 

adjustment and reconstruction of system structure 

and framework is inevitable. 

The development of distributed artificial 

intelligence has provided us the ideas and methods 

of agents. In a multi-agent system, the autonomy, 

social ability, responsibility and pro-activeness of 

agents make them coordinate to accomplish 

systemic integrated functions, which is just what a 

new information processing system needs. 

This paper presents architecture and design 

method of an agent-based information processing 

system, which consists of five subjects: information 

entry, information processing, information 

publication, information resource management and 

service, system management and decision. A typical 

news system is designed and analyzed to show 

agents' specific functions and communication 

protocols. Then the operation process and 

cooperative relation among agents are described and 
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analyzed. Further investigation and discussion are 

also made on the difficulties and key problems in 

system design such as workflow management and 

control, inheritance and polymorphism of agents, 

and the cooperation and fusion among agents. 

I. Agent-based information system 

architecture 

1.  Basic concepts and structure of agent 
The internal structure of an agent is first given 

in figure 1: 

S. 

T 
Communication 

unit 
«-»- 

Knowledge 

updating and 
discovering unit 

* Reasoning unit 

Planning unit 

i. 
Knowledge or 

rule base 

*" Execution unit 

Fig.l General agent structure 

Communication unit: This unit receives, sends all 

kinds  of information;   accomplishes  information 

intercommunication     among     agents;     provides 

interface     and     communicates     with     outside 

environment. 

Reasoning unit: Based on contents in knowledge or 

rules base, it makes reasoning on information, 

examines if it is valid and realizable, and makes 

corresponding message respondence. 

Planning   unit:   It   schedules   undertaken   tasks 

according to capability of each agent and informs 

execution units. 

Execution unit: This unit executes and accomplishes 

some kind of function based on the plan designed by 

the planning unit. 

Monitor unit: The unit monitors internal states and 

task executions. 

Knowledge   updating   and   discovering   unit:   It 

discovers new knowledge and rules from outer 

messages  and  former  work  summary;  receives 

instructions    from    superior   agent   to    expand 

knowledge or rule base. 

Knowledge or rule base: store contents relevant to 

agent functions, message grammar, semantic 

knowledge and rules. 

A fairly complete internal structure of agent is 

already explained. In practical system design and 

implementation, it is necessary to simplify or 

strengthen some units. 

2. Cooperation and communication 
mode of agent: 

Many methods of cooperation among agents 

have been investigated, and here we will discuss the 

method of registration table (figure 2): 
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Fig.2 Cooperation among agents 

based on registration table 

Planning   unit:   Through   the   cooperation   with 

registration / match agent, it acquires tasks and 

divides them into some executive small ones. 

Registration / match agent: This agent manages and 

maintains function agents and agent registration 

table; receives tasks divided by planning agent, 

matches tasks according to registration table and 

distributes them to each function agent. 

Execution monitoring and control agent: It monitors 

and controls each function agent executing tasks. 

Conflict coordination agent: The agent coordinates 

and solves problems when diverse function agents' 

goals conflict. 

Communication among agents in the system 

will adopt the communication mode of dividing 

grouping blackboard based on agent subjects (figure 

3) 
3.   Architecture   of  agent-based   information 

processing system 
Since a large-scale information processing 

system contains a great number of agents, if we 
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Fig.3 Communication mode based on blackboard 

create these agents without classifying, it will induce 

chaos of system management, increase the difficulty 

of system maintenance and aggravate the load of 

system operation and communicating. Accordingly, 

we adopt the idea of grouping (subject dividing) 

while designing the system framework. According 

to the logical relations and functions of agents in the 

system, they are divided into some subjects. Each 

agent subject maintains its relative independence on 

logic and function. And they accomplish the 

information processing cooperatively through the 

interchange of data information and transmission of 

control information (figure 4). 

General functions of every part of agent-based 

■4—Data flow data transmission among agents 

<—Control flow; control order transmission 

Fig.4 Structure of agent-based information 

processing system 

information processing system are as follows: 

1) Agent subject of information entry: These agents 

collect original information for the system 

through various channels and ways, arrange and 

classify information and provide materials for 

further processing. 

2) Agent subject of information processing: On the 

basis of certain processing mechanism, such 

agents process original information and generate 

information    products.    Agent    subject    of 

information processing is the kernel of the whole 

system. And the quality of the information 

products is determined by its functions. However, 

the design of information processing subject has 

close relation with the processing mechanism and 

operation mode of the system, which will be 

exemplified in detail later. 

3) Agent subject of information publication: These 

agents publish and distribute information 

products to outside, manage relevant transactions, 

provide information services for environment and 

collect feedback information from users. 

4) Agent subject of comprehensive information 

management and service: Such agents manage 

comprehensively system information resources 

and intermediate information while processing, 

provide convenient and efficient services of 

storage and inquiry for the system. 

5) Agent subject of management and decision: The 

agents administer the whole information 

processing system in a high level, analyze data 

synthetically and control the operation tactics of 

the system. 

II.      Agent-based news system 

I)        Background and logical structure 
of Computer Integrated News System 

We have implemented Computer Integrated 

News System (CINS) for Science & Technology 

Daily office, a good-sized newspaper office. CINS 

will enhance the management level, competence and 

adaptability all-around. It integrates such systems as 

collecting and editing, manuscript delivery, 

typesetting, printing and publishing, and distributes 

news quickly. Moreover, it can obtain feedback 

information from users and demand information 

from outside in time, control and adjust system 

strategies of information collection, processing, 

distribution and newspaper publication. We will 

introduce the specific design and structure of agent- 

based information processing system using this 

typical news system as an example. 
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I)        Agent-based system structure (5 
parts) 
1.    Agent subject of information entry 

classification control 
rrnä 

classification class^ied 
manuscripts 

J 

Fig.5 Subject of information entry 

• User agent: So-called system users include 

information source provider, information processor, 

information user and information manager and so on. 

Therefore, user agents not only possess general 

functions of information interaction, but different 

agent subjects have different specific functions. First 
we will show elementary functions: 

a) User interface: provide fast and easy 

operational interface, receive users' inquiry 
demand and display inquiry results. 

b) Examine validity of users' input and translate 

vague, incomplete demand to standard 

communication description of agents. 

c) Communicate with the agent of comprehensive 

information management and service. 

d) Provide functions and communication ways 
relevant to agent subjects. 

Users: domestic and overseas correspondents, free 
contributors. 

•     Information collection agent: It collects raw 

materials  for the  whole  information  processing 

system; receives and processes manuscripts from 

everywhere,   including   reports   and   news   from 

domestic    and    overseas    correspondents,    free 

contributors,     national     news     agencies     and 

government-relating institutions; searches relevant 

information from Internet. 

Functions: 

a) Receive and process regularly or irregularly, 

routine or mobile transferring manuscripts. 

b) Search information on Internet. 
c) Submit     raw     information     materials     to 

information classification agent. 

•     Information classification agent: It classifies 

preliminarily raw information materials on hand and 
prepares for further processing. 
Functions: 

a) Receive   raw   information   materials   from 

information collection agent. 

b) Classify raw information according to relevant 

knowledge and rules. 

c) Store information about classification results. 

d) Notify information processing agent of new 

materials. 

e) Adjust    classification    based    on    control 

information. 

2.     Agent  subject  of information  processing 

Fig. 6 Subject of Information Processing 

•     Editing  agent:   The   agent   filters   out  raw 

materials; edits,  pre-signs and reviews  selected 

manuscripts    by    some    rules;    completes    the 

processing of information contents. 

Functions: 

a)     Receive classified manuscripts. 
Select manuscripts. 

Edit, preview, review and sign manuscripts 
following designed procedure. 
Save  edited  reports  and  notify  typesetting 
agent. 

Iditing 

b) 

c) 

d) 
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Fig.7 Editing agent workflow 

• Typesetting agent: This agent is responsible for 

designing layout of edited manuscripts and 
completing typesetting. 



Functions: 

a) Receive signed reports. 

b) Typesetting. 

c) Modify layout in cooperation with editing 

agent. 

d) Save layout information and inform printing 

agent. 

• Printing agent: 

Functions: 

a) Receive layout information file. 

b) Adjust layout, make films and PS2 format file 

by laser scanning. 

c) Printing. 

• User agent: It supports relating operators to do 

information processing. 

3.    Agent subject of information publication 
feedback 

Fig.8 Subject of information publication 

• Publishing management agent: This agent 
distributes or publishes final information products 

(including press publication and electronic 

publication), manages information and publishing 

process. 

• User service agent: It provides publication 

information and information inquiry service for 

users. 

• User information collection agent: The agent 

collects order information and feedback from users. 

4.     Agent subject of comprehensive information 
management and service: 
• Service management agent: This agent receives 

service demands; for those demands it can handle, it 

divides tasks and does planning, collates results and 

returns them to demand agent. 

Functions: 

a)    Receive  demands  from  other  agents,   and 

Fig. 9 Subject of comprehensive information 

management and service 

examine their validity. 

b) Accept reasonable demand. 

c) Do reasoning and divide tasks to the other two 

agents. 

d) Optimize return results and send them to 

demanders according to standard agent 

communication mode. 

e) Manage dynamically data access agent and 

format conversion agent. 

• Data access agent: This agent provides services 

of inquiring and storing data information from 

different databases. 

Functions: 

a) Receive demands from service management 

agent; inquire and store data from databases. 

b) Transfer relevant data to format conversion 

agent and ask for unique format. 

c) Operate on data results after conversion and 

send results to service management agent. 

d) Monitor changes of data sources dynamically. 
• Format conversion agent: it takes charge of 

converting different types of data, including 

structural data conversion and multimedia data 

conversion, to standard formats. 

Functions: 

a) Receive data conversion demand from other 

agents. 

b) Examine validity and give reply. 

c) Convert data format. 

d) Return converted data information to 

demanders. 

5.    Agent subject of management and decision 
• User agent: It supports daily management for 

managers and decision-makers; supports decision 

discussion. 

• Data analysis and information fusion (DAIF) 
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agent: This agent arranges and analyzes internal arid 

external information, does information fusion, 

summarizes and discovers useful rules in or out of 

systems and provides evidences for management 
and decision. 

• Cooperative DSS (CDSS) agent: It organizes 

management agents to have meetings and 

discussions, coordinates work at a high level and 
establishes coordination strategies. 

Fig. 10 Subject of management and decision 

IV.    Further discussion 

•   Management of workflow and virtual 
edit department 
The definition of workflow: 

The workflow in information processing 

system refers to the whole work process from 

collecting and arranging raw information materials 

to distributing information products and providing 

relating services. Since information processing is the 

kernel part, here we mainly discuss the management 

and control of workflow in that module. 

Usually the workflow of a news information 

system consists of three stages as collection & 

editing, typesetting and printing. And each stage can 

be divided into specific processing procedure (as 

described before). Since main resources (except 

hardware) consist of information resources and 

human resources, the management and control of 

workflow should pay attention to the following three 
points: 

1. How to customize information-processing flow 
to guarantee completing tasks efficiently and 
qualifiedly. 

2. How to allocate human resources in the 

information processing flow to achieve efficient, 

timesaving and low-cost operation of the system. 

3. How to define the responsibilities of personnel in 
the system, i.e. role definition. 

Virtual edit department: 

Usually a newspaper office consists of some 

edit departments, which are responsible for different 

types of news reporting respectively. But to some 

sudden, important news incidents, it is necessary to 

select personnel from relating departments and form 

a temporary organization. Such organizations are 

called virtual edit departments because of their high 

time demand and short lifecycle. And to guarantee 

completing such tasks as reporting sudden incidents 

quickly and accurately, there should be some 

difference on the organizational and operational 
mode. 

Through redefining the role of virtual edit 

departments and customizing workflow, it is 

possible to simplify procedures of manuscripts' 

processing, reduce processing time and improve the 

timeliness. A description of virtual edit department 
workflow is given below: 

In virtual edit departments, correspondents' 
manuscripts will be delivered directly to editors for 

selecting and editing without classifying. After they 

have been modified, the director is responsible for 

finalizing and signing and then the manuscripts are 

stored in sample depository for typesetting and 

publishing.   After   we   simplify   procedures   of 

manuscripts' processing, system efficiency will be 

improved and distribution time will be shortened. 

But it is necessary to redefine personnel's roles and 

it also means the augmentation of personnel's rights 
and responsibilities. For example, since customary 

procedures of pre-signing and finalizing manuscripts 

<3 editing 

delivery selection *G> editing 

& 
sample 
storage 

signing 

edit ng 
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are replaced by once signing, the director should be 

more capable and take more responsibilities. 

•   The cooperation and function fusion 
between editing agent and typesetting 
agent while doing typesetting 

Since the agent-based information processing 

system in this paper is a MAS (Multi-Agent System), 

the cooperation among agents is very frequent, 

which is also the basic requirement to accomplish 

the whole function of system. However, since the 

goal and evaluation standard of each agent may 

differ, it is possible to cause conflicts among agents 

and increase difficulty of cooperation. Quite a few 

papers have investigated the problem of cooperation 

among agents on theory. Here we only explain it in a 

practical system, then present and discuss the 

method of agent fusion. 

In examples before, three steps are necessary 

for manuscripts processing as collecting and 

editing , typesetting and printing. Each time 

manuscripts are signed by the editor, they are 

delivered to typesetters. Since it is usual to modify 

manuscripts repeatedly, typesetters will redo their 

work time after time. However, the evaluation 

methods of editing and typesetting are different. For 

editor, less modification times means higher quality 

of editing. But for typesetters, to achieve better 

visual effect usually needs more modification times 

and more work. Editors expect less modification but 

typesetters want more. Therefore goal conflict 

appears between editing and typesetting on 

manuscript modification. 
We present agent fusion to solve goal conflict 

discussed above. Usually after the first time 

manuscripts are read and edited, the contents and 

size of articles will not change much. That is to say, 

the modification of manuscripts is only local 

adjustments on layout. Therefore, we combine the 

work of re-editing and re-typesetting and let it done 

by only one person, not two as usual. In system 

architecture, the work done by two agents are 

accomplished by single agent, which will produce 

agent fusion. Since the contents of reports are 

significant and local adjustments of layout are 

comparatively easy, the work of re-editing and re- 

typesetting can be assigned to collecting and editing 

agent. And typesetting agent will confirm the 

modification. The problem of cooperation under 

goal conflict can thus be solved. It should be noticed 

that agents' functions and rules are adjusted too. 

Another advantage of agent fusion is reduction of 

workload and number of typesetters. 

• Base class and polymorphism of 
agent 

In a MAS, a group of agents may have 

identical functions, but to other similar functions 

their focuses differ. In order to construct, maintain 

MAS conveniently and decrease cost, we can 

borrow the concepts in Object Orientation (00) 

technology and introduce the mechanism of 

inheritance and polymorphism for agent class. 

Inheritance: 
Among the agents in a MAS, part of the 

functions or knowledge in some agents may be 

identical. It is reasonable to create a base class with 

the common part and other agent can inherit those 

functions or knowledge from the base class. An 

inheritance tree forms after some levels of 

inheritance. 
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Fig. 12 Inheritance tree 

In the example above, all the user agents, such 

as correspondent agent, collecting and editing (C&E) 

agent, reader agent, share many common functions, 

such as basic interface support and information 

inquiry and so on. These functions and relevant 

knowledge can be sum up and form a base user class. 

The user class in each subject can be created through 

inheriting base user class. The agent inheritance tree 

of the example above is shown below. 



Polymorphism: 

Inheritance solves the problem of using same 

functions and knowledge among agents. But some 

kind of agents often have similar but not identical 

functions, which can not be solved by inheritance 

but need the assistance of polymorphism. Based on 

the mechanism of polymorphism, those offspring 

agents created by inheritance can modify and 

enhance functions, knowledge or rules of father 
agent according to practical need, which make' 

individual offspring agent have different functions 

(or reasoning, planning etc.) under the same 

interface. 

In the above example of news information , 

system, as to the function of information inquiry, 

correspondent agent will get the information of all 

the relevant manuscripts, editor agent will receive 

those manuscripts being modified and be able to 

store results after each modification, and reader 

agent can acquire information of printing or 

electronic publication which is convenient to be 

browsed. These behaviors exhibit the polymorphism 

of information inquiry. To meet practical need, 

polymorphism is also introduced to the mechanism 

of reasoning, knowledge and so forth. 
Inheritance and polymorphism are important 

features of OO technology. The introduction of these 

two mechanisms will help to simplify the concepts 

and structures of systems, make them easy to 

understand, and facilitate systems' building and 

maintaining. Inheritance in OO technology is limited 

within properties and functions, and polymorphism 

is mainly used in functions. However, inheritance 

and polymorphism in agent-based system has been 

expanded to include knowledge base and reasoning 

rules, which is a significant problem in the 

application of agent technology. 

V.      Summary 
This paper presents the architecture of agent- 

based information processing system. It not only 

analyzes the functions of all the subjects and 

structural relationships among them in the view of 

the whole system, but also provides the agent 

technique to facilitate the realization of intelligence 

and adaptability. The entities of agents bring the 

object-oriented characteristics, which make the 

system more flexible and easier to build and rebuild. 

In the analysis and implementation of the news 

system, we describe basic analyzing approaches and 

communication protocols of agent-based systems. 

The investigation of workflow management 

provides the system with more flexibility, 
adaptability and better ability to deal with sudden 

affairs. The technique of agent fusion plus workflow 

management realizes the cooperation under goal 

conflicts and improves the efficiency and quality of 

the system. And the discussion of inheritance and 

polymorphism will facilitate the management and 

decrease the workload of developing and 

maintaining a system. 
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Abstract - Airborne anti-submarine warfare includes 
fusion carried out by the Tactical Navigator when 
making decisions about the deployment of sonobuoys. 
This can be automated using a Bayesian Belief 
Network. However, the effectiveness of such a system 
depends on the accuracy of modelling the Tactical 
Navigator's decision-making process. This in turn 
relies on a practiced Tactical Navigator supplying the 
correct decisions to make and judgmental information 
on how these decisions would be affected by other 
factors. Such knowledge is only gained through 
experience and is difficult to quantify. Knowledge 
engineering methodologies and tools are available to 
aid with such knowledge acquisition and 
quantification. 

This paper will describe the airborne anti-submarine 
warfare problem and highlight the need for knowledge 
engineering techniques to develop a successful 
solution. It will provide a general background to 
knowledge engineering and describe methodologies, 
including CommonKADS, for carrying it out. The 
paper will then detail the application of CommonKADS 
to the development and implemenation of an automated 
decision-making aid for the Tactical Navigator. 

Keywords: Anti-submarine warfare, Bayesian Belief 
Network, Expert, Information Fusion, Knowledge 
Engineering 

1. Introduction 

Airborne Anti-Submarine Warfare (ASW) is a complex 
military task where many decision-making problems 
cannot be explicitly solved either theoretically or by 

taking measurements [1]. One way to study the 
decision-making process in this case is by developing a 
computer simulation of the situation. An area where 
this has been evaluated is in assessing how the Tactical 
Navigator (TacNav) determines what action to take 
next when flying a mission. This has been tackled by 
developing an automated decision aid to the TacNav. 
The different information available to the TacNav 
indicates that this is a data fusion problem. In addition 
to providing an insight into operational problems, this 
aid can also be used to evaluate the possibility of fully 
automating the airborne anti-submarine warfare task. 

The development of such a system depends on 
identifying the correct information to fuse. Since part 
of this information is encapsulated in the TacNav's 
experience the process is not as simple as it might be 
and depends on using knowledge engineering (KE) 
techniques. There are many KE techniques to use; this 
application has provided an opportunity for the tool, 
CommonKADS, to be evaluated. 

Following this introduction, this paper will describe the 
ASW application, indicating where the fusion process 
takes place and highlighting the key modelling issue. It 
will then describe KE and provide an overview of 
CommonKADS. A description of the ASW case study 
using CommonKADS and its implementation will be 
provided, followed by conclusions on the use of KE 
techniques in general and CommonKADS in particular. 

2. An Anti-Submarine Warfare Task 

The aim of the ASW mission under examination is for 
a Maritime Patrol Aircraft (MPA) to detect and locate a 
submarine through the deployment of sonobuoys. As 
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such this is a search and track mission which is deemed 
to be complete when a stable track is established. 

Intelligence information provides the MPA crew with 
the target type and an indication of the submarine's 
location and, hence, the area to be searched. Sonobuoys 
are dropped in one of a set of patterns dependent upon 
factors such as the speed and direction of the target, 
presence and strength of previous detections, the type 
of the crew and its workload. The particular sonobuoy 
pattern used is the decision of the TacNav. A procedure 
manual of tactics regarding what action to take in any 
situation is used and a newly qualified TacNav will 
closely follow these rules. However, as he becomes 
more experienced he will start to apply his experience 
and adapt the rules to better fit the situation. Hence, 
there is no well-specified algorithm to determine what 
pattern of sonobuoys should be deployed in any given 
set of circumstances. 

2.1 Fusion in the ASW Application 

Anti-submarine warfare is a task that includes two 
levels of manual fusion. The first level takes place 
when the sonar operators declare a target detection 
based on information provided by a set of sonobuoys 
previously deployed. The second level of manual 
fusion is carried out by the TacNav who uses the 
qualitative detection information provided by the sonar 
operators with track data and the perceived crew work- 
load to make decisions about the next deployment of 
sonobuoys. The results of this latter fusion process may 
be inconsistent and dependent on the experience of the 
TacNav employed at the time. 

The objective of this work was to combine the 
encapsulated experience of the TacNav with the rules 
provided by the tactics manual to provide a consistent 
advice tool. 

2.2 The Key ASW Modelling Issue 

The effectiveness of the system described above 
depends on the accuracy of modelling the TacNav's 
decision-making processes. Although the tactics 
regarding sonobuoy deployment are specified (for most 
circumstances) in a tactics manual, it has been found 
that the exact decision made will vary both between 
and within TacNavs. Thus the problem is one of 
modelling, not only the simple heuristics, but also the 
imprecise knowledge encapsulated in the mind of the 
experienced TacNav. 

Various issues were identified, including the fidelity of 
the individual rules, the representation scheme used 

and the software implementation approach. It quickly 
became clear that a methodical" approach to engineering 
the model as a whole was more important than the 
optimisation of these individual components. 

The knowledge held in the TacNav's mind is a valuable 
asset and can be utilised in a disparate range of areas 
such as sonobuoy-use reduction, personnel training and 
mission optimisation. The TacNav provided 
judgmental information on how these decisions would 
be affected by external factors such as whether the 
crew was aggressive, whether or not the target had 
already been detected, the workload of the crew, etc. 
Such knowledge is not specified in the tactics manual 
and is only gained through experience. 

Other knowledge is held in the tactics manual and 
records of previous missions. This makes it too 
disparate to be directly useful for our purposes. All of 
this knowledge needed to be collated and represented 
in a way that could be exploited to our advantage. It 
was felt that this stage would be usefully separated 
from the actual implementation. 

The foregoing issues can be dealt with by KE, which is 
discussed in the next section. 

3. An Overview of Knowledge Engineering 

Knowledge within any organisation is commonly 
scattered between a number of personnel, documents 
and / or computer systems that may not even be located 
at the same site. Knowledge acquisition is the process 
of extracting knowledge from an expert. KE, of which 
knowledge acquisition is a component, focuses on the 
acquisition, modelling and management of this 
distributed fundamental domain knowledge, as well as 
any personal expertise. 

KE covers a range of techniques including 
mathematical modelling, neural networks, genetic 
algorithms, knowledge-based and expert systems, data 
mining, natural language processing, intelligent agents, 
virtual reality, data visualisation and case-based 
reasoning. Expert systems are considered particularly 
beneficial. 

As with anything else, there are advantages and 
disadvantages with KE. Disadvantages include a 
mistrust of the concept and hence little acceptance of 
the techniques. This is probably due to the fact that 
there is no proven track record in the field and that it 
appears to take a long time to develop anything usable. 
Another disadvantage is that there are very few 
knowledge  acquisition  and  knowledge  engineering 
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tools available. This means that development is usually 
conducted in a hybrid manner. On the other hand, 
advantages include an increased understanding of the 
processes under consideration at the end of the KE 
experience by both the expert and the knowledge 
engineer and a more robusdy optimised process. 
Feigenbaum [2] summarises the three main advantages 
of KE as cost reduction, automated information 
processing and the gaining of new knowledge. 

3.1 Approaches to Knowledge Engineering 

The individual with the responsibility for collecting 
and structuring this knowledge and for developing the 
model with which to fuse it all is known as the 
knowledge engineer. A knowledge engineer has to 
elicit and manage large amounts of information-rich 
but ill-structured expertise data and needs a structured 
approach to help in this process. 

A pre-requisite to any form of structured approach is a 
multi-disciplinary team. This has the advantage that a 
wider view of the knowledge available is obtained than 
if a single person is involved in the task. 

The major tools for knowledge acquisition include 
interviewing, data analysis, text analysis, behaviour 
analysis and machine induction, the first two being the 
most popular. It is rare for one technique alone to be 
used in any knowledge acquisition task [3]. Some of 
these are briefly described below. 

• Interviewing (learning by being told) provides 
information directly from the people with the 
knowledge and involves the knowledge engineer 
in studying verbal exchange, questionnaire 
responses, etc; 

• Data Analysis is knowledge acquisition through 
analysing historical data records; 

• Text Analysis is knowledge acquisition through 
the use of books, manuals, the internet, etc. It is a 
litle used method but has the advantage that access 
to a busy expert is not necessary; 

• Behaviour Analysis (also known as learning by 
observation) involves the knowledge engineer 
observing the expert in action and the expert 
justifying his actions; 

• Machine Induction theoretically speeds up the 
process by collecting information in the form of 
case studies. A computer extracts the appropriate 
information to produce the required knowledge. 

Winston [4] defines the basic questions to be posed 
regarding knowledge as: 
1.   What kind of knowledge is involved? 

2. How should the knowledge be represented? 
3. How much knowledge is required? 
4. What exactly is the knowledge needed? 

3.2 Methodologies for Knowledge Engineering 

It is often difficult to go directly from the elicited 
knowledge to an implemented system. One reason for 
this is the confounding of different types of knowledge, 
i.e. task knowledge and domain knowledge, making it 
unclear how the system ought to be developed. 

There are prescribed methodologies for KE, the right 
one to use at any one time depends on the situation. A 
generic KE life cycle appropriate for predictable 
systems, with rigid specifications that allow fixed price 
development and a disciplined manner of progression, 
includes: 
• feasibility study including assessing the scope of 

the system, determining which parts of the system 
should be knowledge engineered and which parts 
should be conventionally programmed, which 
techniques to use, software integration issues, 
determining data and information availability, 
appraising cultural issues and identifying 
appropriate experts; 

• requirement specification including defining and 
validating the knowledge, data representation and 
maintenance  requirements,   agreeing  the   users 
expectation of the system and how they wish to 
interact   with   it,   determining   mandatory   and 
desirable requirements and producing performance 
specifications; 
system design; 
module design; 
module coding; 
module integration; 
acceptance testing requiring the availability of test 
data sets. This also covers the problem of how to 
validate knowledge and how to test safety critical 
systems. (Incremental testing could help in 
overcoming some of these problems.) Acceptance 
testing requires awareness of the original scope of 
the problems and identification of the quality of 
the tests being carried out; 

• commissioning is similar to testing with the added 
problems of resistance to new technologies by the 
intended users. Commissioning requires feedback 
from users to assess the implementation and 
expectation issues. 

Each stage should be formally documented and signed 
off before proceeding to the next stage. This gives rise 
to extra administrative costs and additional time if it is 
decided at a later date that earlier stages need altering. 
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For flexibly specified systems with vague or uncertain 
requirements and outcomes, the above life cycle needs 
to be moderated accordingly, but feedback should be 
tightly monitored. Examples of tools to use with these 
less formal methods include Rapid Application 
Development (RAD) [5] and Dynamic Systems 
Development Method (DSDM) [6], an implementation 
of RAD. These are general iterative prototyping 
approaches to software development The idea of 
achieving a certain level of functionality within a fixed 
time period is not new, but these tools to facilitate it 
are. 

3.2.1 CommonKADS 

The two methodologies described above place the 
implementation of the acquired knowledge at the centre 
of the design process. This often leads to bespoke 
systems with little reuse of existing knowledge 
processing modules. During the last decade there has 
been a move away from this implementation-centric 
view to a knowledge-centric view in which the 
knowledge model and its implementation are 
maintained as separate entities during the design phase. 
CommonKADS is such a methodology, which is 
currently finding favour in European KE applications. 
It is a results-oriented methodology for developing a 
Knowledge-Based System (KBS) from application 
selection to design and testing. It is derived from 
KADS [7,8] that was developed during European 
Union funded ESPRIT projects (Projects 1098 and 
5248) that ran between 1983 and 1994. The work was 
extended to develop KADS to become a European 
standard in the form of CommonKADS [9]. KADS is 
now widely used within European Union countries as a 
practical KBS development methodology. 

The use of CommonKADS to develop a KBS is 
fundamentally a process of multi-perspective 
modelling. To this end CommonKADS provides a 
framework of representations and process suggestions 
for producing system descriptions at different levels of 
abstraction through the use of diagrams, text and / or 
graphical notations. These diagrammatic 
representations are considered to be the most useful 
parts of the approach. 

The methodology can be split into three main 
components as shown in Figure 1 - the feasibility 
study, knowledge modelling and design and 
implementation. 

Figure l.The CommonKADS Template 

The feasibility study comprises the production of: 
• an organisational model which models the 

organisational environment in which the system 
will operate; 

• a task model which describes, at an abstract level, 
the tasks which are necessary to realise some 
function within the organisation; 

• an agent model which models the capabilities of 
the people and / or the computer systems that 
perform the tasks identified above. 

The knowledge modelling comprises the production of: 
• a communications model that models the 

communications among the agents involved in a 
task. The purpose of this model is to identify some 
of the risks associated with the user interface; 

• an expertise model which models the problem 
solving capability of the agents involved in the 
task. The knowledge required in this model can be 
separated into three types: 
domain knowledge which is knowledge about the 
physical and conceptual systems being tackled; 
inference    knowledge     which     describes     the 
inferences that can be made using the domain 
knowledge; 
task knowledge which specifies the goals and 
activities making up the task and the order in 
which the inferences will be used. 

The design and implementation phase includes: 
• the design model which describes the structures 

and mechanisms of the systems which are 
involved in the task. 

The CommonKADS methodology facilitates a library 
of re-usable models or part-models for frequently used 
types of task. 
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4. Developing the Anti-Submarine Warfare 
Model 

A multidisciplinary team was available to work on the 
tool. This included mathematicians, staff familiar with 
different aspects of the ASW application and an 
experienced TacNav. 

Despite its widespread use in the KBS community, 
there was no evidence that CommonKADS had been 
applied to a data fusion system. It was decided that 
CommonKADS would provide a valuable development 
tool in many data fusion applications and that the entire 
ASW TacNav aid development could be addressed 
using the CommonKADS methodology. The results are 
shown in Figures 2-7, although it should be noted that 
for classification reasons, the models shown might not 
always be complete. 

4.1 The ASW Feasibility Study 

The Organisational Model established a basic 
organisational context within which the TacNav aid 
would operate. This is shown in Figure 2. 

Mission Commander 

i         i 

TacNav        Pilot 

AGENT CAPABILITY 
Sonobuoys able to passively detect sub-surface 

targets and to provide intensity and 
Doppler information 

Radars able to detect surface targets (omitted 
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Sonar 
operators 

able to assess the sonobuoy information 
in context to call target contacts and to 
judge their confidence 

Radar 
operators 

able to assess radar information in 
context to call target contacts (omitted 
from initial model) 

Tracker able to maintain an estimate of target 
location using sonar derived bearing 
estimates 

TacNav able to assimilate the information from 
the above and other sources 

Figure 3. The Agent Model for ASW 
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Figure 2. The Organisational Model for ASW 

The Agent Model identified the main human and 
computer elements present in the organisation and 
detailed their capabilities as shown in Figure 3. From 
this, it was decided to ignore the existence of the radar 
and radar operator in the initial computer model. 

The Task Model identified and related the different 
tasks (excluding radar) performed during an ASW 
mission. This is shown in Figure 4. 

Figure 4. The Task Model for ASW 
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Figure 5. The Communications Model for ASW 
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4.2 The ASW Knowledge Modelling 

The Communications Model identifies what 
information is passed, where it comes from and where 
it is passed. This is shown in Figure 5. 

Knowledge       Application Architectural   Platform- 
Role Design Design Specific 

Design 
sonar 

observables 
fc 

perceived 
state of the 
snvironmen estimated 

target activity 

estimated 
environmental 

instance 

defined 
deployment 

patterns 

set of possible 
sonar 

deployments 

possible target 
activity 

possible 
states of Üif 
snvironmen 

I* 
estimated 

instances and 
deployment 

deployment 
instance 

Figure 6a. The Domain Expertise Model for ASW 
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The Expertise Model is separated into three (Figures 
6a-c) and identifies the knowledge relating to the ASW 
problem domain, the conclusions that can be reached 
using the domain knowledge and the activities to be 
carried out and the order in which this is done. 

4.3 The ASW Design and Implementation 

The knowledge models were used to design a block 
structure for the decision aid that was connected using 
information derived from the communications model. 
The assignment of functions to particular software 
modules was done with reference to the organisation, 
agent and task models. 

4.3.1. The ASW Design 

A computer model of the ASW scenario was 
developed. This model was greatly simplified by 
making some assumptions including: 

• there is only one target being limited in course and 
speed and whose action is not affected by that of 
the MPA; 

• there is only one aircraft searching with a fixed 
maximum number of sonobuoys being deployed at 
any one time; 

• the sonar operators as a group and the Tactical 
Navigator are of average ability; 

• all crew members are aware of the area of interest 
and target type. 

Decision simulations 
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Figure 6c. The Task Expertise Model for ASW 
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The model comprised three components illustrated in 
Figure 7: 
• a decision simulator to simulate the TacNav's 

decision-making process; 
• a data simulator to provide time-varying 

parameters, such as submarine position, of the 
external environment; 

a set of interfaces to provide linkages between different 
parts of the model. 

4.3.2. The ASW Implementation 

It was decided to implement the design shown in 
Figure 7 in two parts. The data simulator and the 
interfaces were written in C++ using standard software 
engineering practices. The decision simulator was 
implemented using a Bayesian Belief Network (BBN). 

The purpose of the decision simulator in the ASW 
computer model was to predict the next action to be 
taken by the TacNav. The TacNav makes his decision 
by fusing a variety of data and information, some of 
which is uncertain, and then evaluating all of his 
options to produce a set of actions each of which is 
associated with a likelihood. Work at DERA has 
previously shown that complex military applications 
can be modeled using BBNs [10]. Since these allow 
incorporation of uncertainty into the model and 
produce an uncertain output, the use of a BBN for this 
application was considered appropriate. 

Figure 8. An Example BBN Structure 

A Bayesian Belief Network comprises nodes and 
directional links that depict the relationship and 
dependencies between uncertain data. Nodes may have 
parent nodes and child nodes. A parent node is one 
whose value affects a child node. An example of a 
simple BBN is shown in Figure 8 where the value of 

target_speed depends on the values of targetjype and 
target_position and hence targetjype and 
target_position are the parent nodes of target_speed. 
Similarly, target_speed is a child node of both of 
targetjype and targetjposition. 

Each node may assume one of a number of states. For 
example, the target jspeed node Figure 8 could take the 
values fast, medium or slow. 

BBNs allow information about uncertainties associated 
with any node to be propagated through the network 
and the uncertainties of parent and / or child nodes to 
be updated based on this new information. So if 
target_speed is slow, but a new measurement has just 
been made which shows the new target position to be a 
long way from the previous target position (assuming 
periodic measurements), then targetjspeed can be 
updated to medium. 

Each node has associated with it a set of conditional 
probabilities, known as the Conditional Probability 
Matrix (CPM). This indicates the probability of each 
state of the node given all combinations of the parent 
node states. The default values of the CPMs of nodes 
without parents are the prior probabilities of the states. 
When something happens to change these prior 
probabilities, this change is propagated through the 
BBN updating all subsequent CPMs using probability 
theory. One problem with the CPMs is size. If, in the 
above example, there are only two target types (A and 
B), three target positions {same, close and far) and 
three target speeds (slow, medium and fast) it can be 
seen that for even such a small network, the CPM for 
the node target_speed is large. In cases where a node 
has more than two parent nodes and / or any of the 
nodes have many states, the size-problem can become 
unmanageable. 

A BBN can also work backwards. In the example 
above we could ask "Given that the targetjspeed is 
fast, what is the probability that the target is of type 
AT This can be found using Bayes theorem. 

The commercial package HUGIN [11] was used to 
implement the ASW BBN. This was chosen because 
previous work had indicated that it was suitable for the 
purpose as well as being readily available, able to run 
on a PC and operable from within a C++ program 
using an application programming interface (API). 

The BBN developed for this application was only used 
for forward propagation, although there is no reason 
why it could not be used for backwards propagation as 
well to perhaps assess the performance of other 
components of the model. 
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The decision simulator itself was split into sub- 
components: 

• the crew environment which models the estimated 
crew work-load; 

• the sonar operators which are modeled as a group 
rather than individually. This sub-component fuses 
the detection and signal strength information from 
the sonobuoys to provide qualitative detection and 
strength estimates for target contact; 

• the tactical navigator which fuses contact 
information from the sonar operators and the 
estimate of the crew work-load to produce a 
tactical decision. 

The completed implementation has subsequently been 
tested by domain experts and is currently being 
considered for further development. Full details of the 
whole computer model can be found in [1]. 

5. Conclusions 

The authors had previously taken an algorithmic 
approach to data fusion system development, and 
regarded the inclusion of judgmental information as 
outside their domain. In developing this data fusion 
system it became clear that the problem of including 
judgmental information had to be addressed. After 
some unstructured preliminary attempts, it became 
clear that a methodical approach needed to be 
followed. We would recommend the use of a sound 
knowledge engineering methodology in such cases. We 
found CommonKADS to be a useful, albeit somewhat 
unwieldy, approach. 

Our difficulties in using CommonKADS included: 
• the representation of the knowledge was different 

at the different layers; 
• the diagrams could not make recursive processes 

explicit; 
• even a small system produced a large quantity of 

documentation. 

Advantages we have observed in using CommonKADS 
included: 
• the solution was captured irrespective of the final 

implementation; 
• the specification of system functionality was 

(properly) documented; 
• the different conceptual types of knowledge were 

appropriately distinguished making the final model 
easier to understand; 

• it seemed that large systems would be more easily 
maintained. 
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Abstract - A human presented with a variety of 
displays is expected to fuse data to obtain 
information. An effective presentation of information 
would assist the human in fusing data. This paper 
describes a multisensor-multisource information 
decision making tool that was designed to augment 
human cognitive fusion. 
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1. Introduction 

Many psychologists, engineers, and computer 
scientists design interfaces for man-machine systems. 
One of the inherent assumptions in these designs is 
that the human fuses information from a variety of 
displays. To understand human sensory processing, 
many theories have been proposed such as Gibson's 
work in ecological optics [1]. Gibson proposed that 
the environment affords the user with information 
and that ecological information contains structure. 
An affordance is information made available to the 
human; however, man's attention is needed to take 
advantage of potential information. Neisser [2] 
described perception in the form of Schemas, where a 
schema is a mental codification of experience that 
includes a particular organized way of cognitively 
perceiving and responding to a complex situation or 
set of stimuli. A schema includes an anticipatory 
sensory signal, plan of action, and manager of 
information flow. Recently, researchers have 
adapted Neisser's schema to include situated action 
plans. A third paradigm is that of information 
processing [3] that seeks to map man and machines 
together. The information processing theory models 
man as a symbol manipulator with filtering and 
memory processes. 

In dynamic environments, man's reliance on his 
sensory information fails for a couple of reasons: 1) 
sensory information is too rich to gather reliable data, 
2) attention is focused on multiple tasks, and 3) 
complete   information   is   not   observable.      For 

example, a pilot looking for ground moving targets is 
inundated with a vast amount of information, while 
flying the aircraft and looking for targets, and is only 
one observer of the complex battlefield, shown in 
Figure 1. In the first case, the human needs to 
augment his sensory capability by utilizing other 
sensory information such as radar. In the second 
case, the pilot's attention is divided between target 
identification and successful control of the aircraft. In 
the third case, the pilot is a member of a competitive 
dynamic situation. The pilot is a distributed 
battlefield processor; however, through 
communication links, the fusion of information over 
space can be resolved in a computer interface to 
afford the person with information from other aircraft 
or satellites. Additionally, a fusion interface design 
localizes his field of view, can augment his sensing 
capability, and provide information for flying the 
aircraft and identifying targets. 

Focus on data and information fusion has relevance 
for cognitive interfaces. Data fusion integrates 
sensor signals, whereas information fusion processes 
signals for meaningful constructs. Researchers have 
effectively been working in data fusion (Waltz and 
Llinas [4], Varshney [5]), information fusion (Mahler 
[6]), and decision fusion (Dasarathy [7]). At the 
cognitive-fusion level [8], the human utilizes 
information to develop a parsimonious fused 
perception of the world. Gathering information from 

Figure 1. Target Sensor Management. 
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an interface, the human must make an evaluation of 
the information and form not only a fused perception, 
but also a fused action as shown in Figure 2. 
Cognitive fusion includes goals, decisions, and a 
fused action. Managing sensors for target identity is 
an example. 

Analysis 
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Figure 2. Fused Ecological Information 

perceptual evaluation and action execution. 

Cognitive psychologists, such as Rasmussen [9, 10] 
and Flach [11], have been addressing issues for 
designing interfaces to augment complex decision 
making. Bennet and Nagy [12,13,14], have design 
concepts to enhance user performance and minimize 
human errors. Their approach is to employ 
ecological interfaces that afford functional 
abstraction. In addition, others have focused on 
design interfaces that effectively afford the user 
relevant information. Relevant information includes 
movement and color representations of targets. We 
seek to address human motion processing to augment 
these displays for spatial and temporal fusion [15]. 
Finally, the role of information accumulation is also 
one of uncertainty reduction. Researchers such as 
Bisantz and Llinas [16,17] are investigating 
uncertainty minimization through trust in automation. 

Cognition for moving ground targets from synthetic 
aperture radar (SAR) and high range resolution 
(HRR) sensors has been a topic of recent discussion. 
Kuperman[ 18,19,20] is assessing crew aiding 
systems for subjective assessment of SAR imagery, 
which includes cognitive fusion [21]. Blasch [4] has 
proposed a cognitive fusion algorithm for SAR and 
HRR processing and an adaptive action algorithm 
[22]. Blasch's algorithms are based on the multiple 
levels of fusion including data, information, and 
cognitive level fusion. The integration of computer 
and human fusion is a new field and a topic of 
research interest. 

Humans form hypotheses about the world and then 
seek information to confirm these hypotheses. One 
important issue is the processing of moving 
information. Watamaniuk [23] has shown that 
people process a local and global speed signal and 
has used to the information to guide the presentation 
of moving information [24]. Additionally, 
Wamataniuk's work in random dot displays is like 
the clutter in a SAR image [25]. We seek to utilize 
movement information for man-machine radar target 
identification. 

For this paper, we seek to assemble an interface that 
fuses SAR and HRR information, integrates 
multisource spatial and temporal information, and 
affords the user with an ecological perception of the 
battlefield for distributed cognitive decision making 
of ground moving targets. Section 2 formulates the 
ground target identification problem and Section 3 
details issues in cognitive fusion ATR. Section 4 
describes the interface and Section 5 discusses issues 
relevant for further discussion and research. 

2. Ground Target Identification 

When performing target identification, a pilot focuses 
on salient information, such as threats to survival and 
control of the aircraft. Threats are difficult to 
measure because they are situation dependent and 
require reactive navigation [22]. While navigating a 
scenario, a pilot seeks to increase target-identity 
confidence by fusing and anticipating sensor 
measurements. Given a sensor suite, the pilot must 
adaptively view the correct sensor to discern the 
target of interest. In the multisensor/multitarget 
scenario, the pilot desires information that affords the 
best set of information to identify targets. 

Recursive decision making under uncertainty is 
prominent in sensor fusion strategies. Sensor fusion 
includes automatic signal filtering, measurement 
association, target threat estimation, and cognitive 
sense prediction. Figure 3 shows a cognitive fusion 
model, based on the JDL levels of fusion, in which 
kinematic data is processed for situational and threat 
information. After fusion of data for information, a 
sensor manager, such as a human, must take a plan of 
action to choose the next set of sensor measurements. 
A target recognition and tracking plan includes a 
domain representation, a dynamic environment 
understanding with risks and uncertainties, and 
acknowledgement of situation complexity arising 
from many possible sensor actions and outcomes. 
Such recognition problems have been studied for 

896 



engineering and cognitive tracking research [22]. 
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Figure 3. Sensor Fusion. 

A method for automated sensor fusion and sensor 
action plan selection would assist pilots in time- 
critical target tracking, identification, and threat 
assessment [4]. For instance, tracking a moving 
target includes searching measurements, predicting 
target types, extracting information and matching 
sensed and expected information. Performing such a 
task requires measurement action selection to 
minimize the number of measurements and optimize 
target identity. Roboticists, who are researching 
man-machine systems, have developed algorithms 
for planning [26, 27], perceptions [28], and assessing 
goals [29]. 

An interface design can be an effective tool if the 
user trusts displayed information [17]; however, if 
the interaction is not mutual, either the human trusts 
the interface or neglects the interface completely. If 
the uncertainty is high and interface confidence is 
low, the human chooses not to use interface such as 
in the case where a human turns off the display and 
visually looks for a target on the ground. If the pilot 
must maintain a high altitude, visual scanning is not 
possible. The pilot must put full faith in the interface 
information. We seek to augment the human- 
machine fusion by operating in the domain of the 
human, such as presentation of sets of information 
with confidence values related to the uncertainty in 
the measurement system. An effective and efficient 
interface can aid target identification, but presenting 
fused information is not well understood. 

3. Cognitive ATR Decision Making 

Gibson referred to the cockpit environment as 
affording information to the user. While the 
environment is man-made, we can take advantage of 
the interface design so as to afford the user with 
fused information for decision making. Decision- 
making processes require the management of vast 
amounts    of    information.    The    human    mind 

unfortunately is limited in its capabilities to manage, 
recall, and sort information. However, computers are 
adept in data collection, manipulation, and fusion 
tasks. One advantage of humans is fusing 
information for decision making by bounding sets of 
information. Computers can support the human 
decision making process by presenting sets of 
information to enhance ATR speed and quality while 
the human can create and manage sets of 
information. 

The cognitive information fusion concept is 
implemented in a computer interface which utilizes 
target sets, confidence values, and color-coding. The 
interface filters radar data, presents salient 
information, and captures incomplete knowledge. By 
using a hierarchical structure for information and 
data fusion, the human can bound the selection of 
fused information. Thus, high-level information and 
low-level data-fusion bound the information 
database. Further insights can be gained from the 
database through "belief filters"[4], which represent 
the current situational fused belief. A unique 
interface feature is the ability to display any 
information-fusion level to allow for multiresolution 
decision-making. 

3.1 Data Fusion 

Time-critical scenarios, where multiple sensors can 
look at the environment, force the pilot to adaptively 
select sensors for target track updates as depicted in 
Figure 1. However, there is a tradeoff of sensing 
time and confidence. The difficulty is that only a few 
sensors can measure a target before an updated track 
is needed. Hence, to save time, certain sensor 
measurements may be ineffective for target 
recognition, or lack information-producing actions 
and track updates. The interface must provide 
reliable, real-time feedback to support decision- 
making. 

3.2 Information Sets 

Fitts and Posner presented a way for humans to learn 
new tasks [30]. They presented three stages of 
development as cognitive, association, and automatic. 
In the case in which a human is presented with a new 
and complex problem, they first use declarative 
knowledge in acquiring new facts to understand the 
cognitive problem. In the association stage, evidence 
is accumulated to prune or eliminate extraneous facts. 
Additionally in this stage of conflict resolution, facts 
are matched in order to develop relationships 
between the targets.   Finally, in the third and final 
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stage, association rules are used to automatically 
perform the task. Like Fitts and Posner, we chose to 
employ these stages, as shown in Figure 5. We 
modify the initial idea for the ATR problem. We 
view incoming data in the automatic stage as a set of 
data since raw data gathered by the sensors is 
converted to facts, features, or information based on 
learned rules and phenomenology. The second 
difference is that the data association is resolved into 
information sets. Finally a cognitive stage uses fused 
confidences based on the information sets to identify 
unknown target types. 

The action confidence level determines the amount of 
clutter measurements. The tracking system processes 
the clutter for target recognition and chooses to move 
forward, avoid threats, or seek mission targets which 
is displayed in the interface. The scenario is similar 
to one in which a pilot monitors multiple target 
perspectives and selects the set of sensor actions that 
confirms threat beliefs. 

3.3 Situation and Threat Information Fusion 

Situational information fusion requires a learned set 
of adaptive actions producing a goal-directed 
behavior. The problem is complicated due to target- 
threat importance, measurement uncertainty, and 
order of actions. The mission specific goal is to get 
to a desired target while avoiding threatening targets. 
Since the threatening targets are random, off-line 
learning will not help; however, some time is 
available for coordinating a set of next-state sensor 

An action is information producing 
if it has a causal relationship. The 

target threat update increases confidence when a 
causal relationship occurs. For instance, a causal 
relationship exists for sequential processing of the 
identity and its threat, but not the reverse. Updating 
the threat belief with only the threat measurement 
results in a minimally reinforced belief. To conduct 
the analysis, the person must carry out sensing plans 
that are adaptable to the sensed information. 
Although the pilot does not process probability 
measurements, he does compare relative probabilities 
as confidences compared to other target identities 
from a set of targets. A pilot cares only about the 
decision, not how it was derived. To calculate belief 
confidences, association of space-time event action 
probabilities is fused. The belief association 
probability summation is used to develop 
confidences in sensed information. Once the belief is 
updated, a confidence level is presented based on the 
fusion of spatial associations and temporal target 
state estimates. 

4. Interface Design 

While the interface is only one of many possibilites, 
it serves as a model from which the fusion 
community can discuss issues in presenting fused 
information for decision making. 

4.1 Data Fusion 

From the onset, it was decided that the signal-level 
information would be difficult for the human to 
process, but the person would want access to the 
data. For instance, HRR information is a 1-D signal 
that captures the movement of the target. The human 
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has a 1-D sensor for audition, so audible information 
is available for target identity similar to radar 
Doppler processing. Additionally, by presenting the 
ID signal, (shown in Figure 6, top right) fusion of 
visible information can verify if the correct signal is 
obatined, the relative size of the target, and whether 
the signal is above background noise. 

For a stationary target, the radar information is 
displayed as a SAR image (shown in Figure 6, top 
left). The SAR image is cluttered, however, the user 
can choose a region of the image to process. 
Typically, a moving target indicator (MTI) provides 
access to all the targets in the field of view; however, 
the human must determine which target is of interest. 
In the case of multiple targets, tracking information 
can provide visual cues as to the position of the 
targets (shown in Figure 6, top middle). Thus, the 
human acts as a sensor manager to select targets, 
from a pushbutton interface, and regions of interst to 
focus the radar sensor data collection (shown in 
Figure 6, top). 

4.2 Fused Information Sets 

Information fusion is a result of the data and signal 
analysis. The SAR and HRR data types are fused by 
the computer or by the human. Since the human tries 

to compare the data with learned perceptions of 
targets, he is performing a search, predict, extract, 
and match for targets. For instance, in the battlefield, 
certain types of targets are assumed to be moving 
together like tanks. The human must parsimoniously 
limit the matching of targets from a set of 
hypothesized targets. Likewise, the interface 
processes sets of information and presents confidence 
values (shown in Figure 6, lower right). The control 
of target set sizes is done by choosing a minimum set 
of target types to analyze. Initially the belief in all 
targets is possible, but through accumulated sensed 
evidence, the correct target identity increases. This is 
done interactively between the human and the 
interface through set management. Additionally, 
targets that are not plausible are pruned from the 
plausible set. The difference between the believable 
targets and the plausibility of targets can be used as a 
confidence measure (shown in Figure 6, lower right). 
Thus, the human and the interface both process 
confidences for suspected target identity and location 
that can be assessed through receiver operator curves, 
(shown in Figure 6, lower left). 

4.3 Cognitive and Decision Fusion 

Since the pilot is only one of many in the battlefield, 
additional information is processed to determine the 
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Figure 6. Initial Interface Design for Integration Fusion of Information. 
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targets (shown in Figure 6, lower left). The case of a 
multiplatform scenario affords the user information 
from other aircraft, with their respective sensors. 
This spatial information is provided to the user and 
included in the calculation of the confidence 
measures. Additionally, the temporal information 
fusion is available from the target tracker (shown in 
Figure 6, top center). 

At the cognitive fusion level, additional information 
is needed such as Identification of Friend, Foe, or 
Neutral (IFFN) target affiliation (shown in Figure 6, 
middle center). Decision fusion is one in which the 
interface helps select the targets of interest. When 
suggested targets are assessed, the human confirms 
which targets to prune or add to the target set. 

4.4 Fused Action 

The purpose of the paper is to discuss issues in 
human-computer interface fusion; however, for the 
sensor management case, the human makes decisions 
serially. Likewise, the computer makes sequential 
decisions, albeit at a faster data rate than a human so 
as to appear to be processing in parallel. Cognitive 
fusion can be called parallel processing, however, we 
do not discuss the issue, since the interface is limited 
to sequential decisions. Since the human can only 
take one action, it should be a fused action based on 
the information and decision chosen. 

4.5 Initial Human-Computer Interface Issues 

The analysis of the interface is the result of one 
human assessing the information and is subject to the 
designer's preferences. Color, motion, and size are all 
cues that augment the perception of the targets. 
Tracking and motion cues help to direct attention to 
the targets of interest. Additionally, colors, well 
separated in the color space, help to clarify target 
confidences. Studies have shown that the human is 
adapted to processing 7 ± 2, pieces of information 
[4]. At all times, the interface seeks to take 
advantage of the limited numbers of information. 
For example, color separations was limited to 7 
colors for processing. 

Kuperman [17], used a SAR rating system and found 
that operators preferred image enhancements to the 
SAR imagery which consisted of reducing the image 
sizes by statistical means and a fuzzy set 
enhancement of the image. In the interface design, 
we use SAR image enhancement by segmenting the 
MTI plot with multiple targets, to that of a single 
target with image smoothing and size enhancements. 

It was found that the human was better at identifying 
the target when size was increased and performed 
slightly better with the smoothed image, rather than 
the raw data alone. 

5. Discussion and Conclusions 
The interface design is the initiation of work in 
augmenting image analysts and pilots for assessing 
ground moving targets. While many issues could 
serve to enhance the work, none should be ruled out. 
The research goal is to design effective and efficient 
interfaces that present a fusion of information from 
the computer for the human. The research goal is to 
integrate the two systems through the interface 
design. 

Many issues will need to be tested to determine the 
validity of the design. Hence, assembling the 
interface, as opposed to the successful analysis of the 
design is the key to the work. Research in 
engineering data, information fusion, and decision 
fusion were used to develop the signal-processing 
and research in psychology and perception motivated 
the display design. Cognitively, engineering and 
psychology motivate assembling an interface to 
afford the user with effective and efficient ways for 
target identification for cases in which a purely visual 
analysis is not available, such as a high altitude 
aircraft with radar sensors. 

The author invites any comments and suggestion 
from which to spawn a new field of research in 
human-computer evaluation and execution fusion 
interface designs. 
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Abstract - The research described in this paper addresses issues of designing a computationally effective 
decision support system which can assist a decision maker in making an optimal choice between several discrete 
alternatives. A new hybrid approach to multi-attribute decision making under uncertainty incorporating Neural 
Networks and the Dempster-Shafer theory of evidence is introduced. A neural network is employed for 
representation and quantification of a decision maker's pairwise preferences of one alternative over the other. The 
Dempster-Shafer theory of evidence is used for combining the evidences representing these preferences for 
modeling the choice of the most preferable alternative. The designed method also includes consideration of 
subjective judgments about attributes representing aggregated concepts along with quantitative attributes. The case 
study considered in the research has demonstrated the feasibility of the application of this approach to Fusion 2/3 
Level problems, namely to threat assessment. 

Key words: decision support, subjective judgment, multiattribute decision making, neural networks, the Dempster- 
Shafer theory of evidence 

1. Introduction 

In today's world, decision makers face 
continually increased amounts of data coming 
from multiple sensors, communication systems, 
and large databases. They also have to respond 
more quickly. At the same time, human decision 
making capabilities remain limited: short-term 
memory, the base for perception and processing, 
is limited to four chunks of information [1]. 
These factors require the development of 
computerized decision aids that model the 
decision making process and help to overcome 
human limitations. 

The research described in this paper 
addresses issues of designing a computationally 
effective decision support system based on the 
multi-attribute decision theory. The multi- 
attribute decision theory is used to model 
subjective judgment of an expert who has to 
make optimal choices between several discrete 
alternatives. The judgment modeling is based 
on the notion of the underlying multi-attribute 

expected utility (cost) or value of the expected 
future outcome associated with each alternative 
that reflects how well the alternative is rated 
against a chosen goal. The optimal choice 
corresponds to the maximal expected utility or 
to the minimal cost associated with the 
alternatives. In many cases the decision situation 
is very complex, making it almost impossible to 
evaluate existing alternatives. However, it is 
often possible to represent each alternative with 
a set of features (attributes) and evaluate each 
alternative based on the value of the attributes 
associated with it. 
Generally, the multi-attribute decision making 
process comprises two phases: the interpretation 
phase and the reasoning phase. 
The interpretation phase includes: 
• construction of decision alternatives 
• choice of attributes (qualitative and 

quantitative) 
• prediction of expected values of each 

attribute for each alternative 
The reasoning phase includes preference based 
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evaluation of alternatives and selection of the 
alternative corresponding to the optimal choice. 

There have been several methods developed 
for modeling the alternative selection process of 
decision makers in many applications such as 
manufacturing, market research, transportation, 
etc. (see, e.g. [2,3]). Most of these methods are 
based on explicit modeling of the underlying 
utility (cost) as a function of the attributes 
characterizing the alternatives. However, the 
methods that use explicit utility functions have 
to make an assumption about the form of this 
function [4-6]. These assumptions constitute 
constraints that may lead to decreased adequacy 
of the model. Other methods used in modeling 
multi-attribute decision making do not require 
explicit construction of a utility function [7,8], 
and use heuristic search to find the most 
attractive alternative. However, this type of 
method demands considerable input from 
decision makers during the knowledge 
acquisition stage of the development of these 
methods, and in most cases, the burden put on 
experts is substantial [7]. Another drawback of 
these methods is that they may not work 
efficiently in the case when the number of 
alternatives changes. 

This paper presents a computationally 
efficient, connectionist decision-support system 
which simplifies the knowledge acquisition 
process without putting any constraints on the 
form of the utility function. This method also 
incorporates uncertain and incomplete 
quantitative as well as qualitative 
representations of attributes. The system is also 
capable of adapting to any potential change of 
decision makers' preferences and/or changes in 
the decision situation. 

The introduced hybrid method utilizes a 
connectionist approach in order to represent 
qualitative expert preference of one alternative 
over the other in numeric form. Then, the 
Dempster-Shafer Theory of Evidence [9] is used 
to combine these preferences and make a 
decision about the most preferable alternative. 

The Dempster-Shafer Theory of Evidence is 
a tool for representing and combining measures 
of evidence. This theory is a generalization of 
Bayesian reasoning and it is more flexible than 
the Bayesian one when our knowledge is 

incomplete, and we have to deal with 
uncertainty, ignorance, and conflicting 
information. 

The Neural Networks possess many 
computational and representational capabilities 
which make them especially suitable for 
representing qualitative expert preferences [10- 
12]: 
• ability to learn from available data and to 

construct, verify, and validate themselves 
• ability to cope with the brittleness problem; 
• ability to easily adapt themselves to changes 

in decision environment and decision 
makers preferences 
The detail description of the introduced 

hybrid approach is presented in the next 
sections. In Section 2, we give detailed 
description of our multi-attribute decision 
making system, Section 3 describes the process 
of quantification of the qualitative attributes, 
Section 4 describes the NN architecture for 
expert knowledge representation, Section 5 
presents the evidential decision making process, 
Section 6 shows the applicability of the 
designed method to threat prediction and 
describes experiments and results. 

2. Hybrid system for multi- 
attribute decision making 

We consider here the problem of modeling 
subjective judgment of a single decision maker 
who may have imperfect knowledge about the 
decision situation. As it was mentioned above, 
the multi-attribute decision making process 
consists of interpretation and reasoning steps. 
We assume here that the interpretation step is 
completed and we have already chosen a set of 
decision alternatives and a set of attributes and 
defined the expected values of the quantitative 
attributes and evaluation grades reflecting 
subjective judgment about the qualitative 
attributes. Our effort will be concentrated on 
developing an approach to a computationally 
effective reasoning process of automated 
selection of the most attractive alternative. In 
our approach, we neither make any assumption 
about the form of the utility function or 
explicitly model it. Instead, similar to [10], at 
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the knowledge acquisition stage we model 
pairwise preferences of the expert with the 
neural networks. The expert is asked to compare 
pairs of alternatives and to order them according 
to his preference. Attributes of these alternatives 
along with the expert preferences are used to 
train the neural network. Utilization of pairwise 
comparisons only instead of comparison of all 
the alternatives simultaneously reduces the 
burden put on the human expert during the 
knowledge acquisition stage since it is easier for 
him to chose between only two alternatives. It 
also reduces the number of input nodes for the 
Neural Network and, therefore, the number of 
patterns and amount of time required for 
training of the system. This is especially 
important in real-life applications when 
construction of a large training set may be very 
expensive or impractical. The results of pairwise 
comparisons are used to compute a belief in the 
level of preference for each alternative 
considered for decision making. Utilization of 
the Dempster-Shafer theory of evidence instead 
of the heuristic search usually following the 
result of pairwise comparison of alternatives, 
allows us to deal with conflicting information 
that inevitably follows the results of pairwise 
comparison of alternatives with the NN. The 
conflict appears due to uncertainty related to 
imperfect expert knowledge about the value of 
numeric attributes, subjective judgment 
characterizing non-numeric attributes, 
occasional inconsistent judgments of the human 
expert, and the neural network errors. Instead of 
choosing the alternative corresponding to the 
maximum utility, we make our decision based 
on maximum belief in the level of preference 
computed with the Dempster combination rule 
as a function of quantified pairwise preferences. 

Since we consider both numeric and non- 
numeric attributes represented by the expert 
subjective judgments often evaluated through a 
number of related factors, a quantificational 
preprocessing for these qualitative attributes 
may be required. 
The designed decision support system consists 
of the following components: 
•    a process for quantification of the 
qualitative attributes 

• an NN-based pairwise comparison model 
• an evidential decision making process 
All the components of the system will be 
described in detail in next sections. The 
information flow of the system is presented in 
Figure 1. 

Informational database 
for training and testing 

Subjective judgments 
about qualitative 
attributes 

Quantification 
of qualitative 
attributes 

Quantitative 
Attributes 

Neural Network-based expert 
pairwise preference modeling 

Quantified 
pairwise preferences 

Evidential Reasoning   Model 

Figure 1. Hybrid Decision Support System 

3.  Quantification of the qualitative 
attributes. 

As was mentioned in the previous sections, in 
our system we consider a situation where a set 
of attributes Y defining the alternatives 
comprises two subsets, Y = Yx u Y2, where the 

attributes yk e Yx, k=\,...,Kv are numeric and 

attributes yn e Y2, n = Kt +l,...,K are non- 
numeric. One way of incorporating numeric and 
non-numeric attributes is to quantify the non- 
numeric attributes. In the simplest situation, the 
states of the attributes for each particular 
alternative often can be represented by 
evaluation grades assigned by the decision 
maker. These evaluation grades reflect the 
decision maker's subjective judgment about the 

904 



quality of the state of the attributes, and define 
the preference degree. It is possible to employ 
these evaluation grades for numerical 
representation of the qualitative attributes. In 
decision making under uncertainty, the expert 
can assign more then one evaluation grade to the 
attribute. For example, the attribute can be good 
with a certain degree of confidence and, at the 
same time, excellent with a certain degree of 
confidence. In more realistic cases, the 
qualitative attributes present aggregated 
concepts and can be only evaluated through a 
number of related factors. The expert can assign 
single or multiple evaluation grades with some 
level of confidence only to the factors and it 
may be necessary to combine these levels of 
confidence in order to numerically assess the 
qualitative attributes. 

The quantification process adopted here 
utilizes the Dempster Shafer theory of evidence 
for combination of multiple evaluation grades 
for multiple factors characterizing qualitative 
attributes and is similar to the method presented 
in[13]. 

Let a set of possible evaluation grades 
G = {gj,..., gm} define a frame of discernment 

0 = {0; ,...6m} with hypothesis0(.: the quality 

of attribute n corresponds to evaluation grade 

gi. Let <p G 20, where 2e is a set of all subsets 

of 0. Evaluation grades G are sorted in non- 
decreasing order and gl and gm are the worst 

and the best grades, respectively. We assume 
also that the number of evaluation grades is the 
same for all qualitative attributes and that, due 
to uncertainty, the quality of attributes can 
correspond to more than one evaluation grade. 
The objective is to define confidence levels for 
evaluation grades for the qualitative attribute yn 

through subjective judgment of the decision 

maker about factors Fn = {//}, j' = 1,..., / 

influencing the evaluation of yn in each 

alternative. We consider levels of confidence 
assigned to evaluation grades as weights of 
evidence in support of hypotheses (pt c 0. For 

alternative A,, let me. (fj (A,)) be a basic 

probability assignment in support of hypothesis 

9,- based on the quality of fj and 

ce. (fj (A[)), a confidence level that the 

decision maker assigns to hypothesis 0,. Then 

we can write: 

m6l(fn
J(Al)) = ajc6i(fJ(Al)), 

where OCj is a coefficient defined by the relative 

importance of the factor fn
J in evaluation of 

attribute yn of alternative A,. Confidence level 

is defined during the expert knowledge 

acquisition phase such that 2^c6 (A,) < 1. 
i 

Combining basic probability assignment defined 
for all the factors with the Dempster rule of 
combination [9], we obtain the evaluation 
grades for qualitative attribute A,: 

™9(y„(A)) = ® ™   (//(A)) for any 

(pe0. 
For simplification of calculations needed for 
implementation of the Dempster Rule of 
combination we adopt the "rationality 
assumptions" [13] that assume that a decision 
maker supports no more than two consequent 
grades, for example, bad and very bad or fair 
and good. Since the basic probability 
assignments participating in the combinations 
are not zero only on singletons, the result of the 
combinations mp(yn(A/)) 9t 0 only if (p = 0, 

or (p = 0. 
The existing solution methods for the multi- 
attribute decision making require a single value 
assigned for each attribute. In [13], for example, 
the confidence levels supporting the evaluation 
grades are converted into a single preference 
degree as follows: 

äW) = IK(J,(A))#I) 
i 

+ me(yn (A, ))/>(©)), 
where p(0,) is the scale of 0,- and assumed to 

be an increasing function defined on [-1,1] with 
P(0i) = -land p(Qm) = 1. However, the form 

of function p(0,) is arbitrary which may 
contribute to the overall uncertainty existing in 
the problem. Utilization of the NN for modeling 
pairwise preference of an expert introduced in 
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our system does not require a single preference 
degree assigned to a qualitative attribute and 
allows us to avoid additional uncertainty related 
to the unknown function p(Qi). 

4. Neural network for 
representation of pairwise 
decision maker preferences 

In our decision support system, a NN serves as a 
tool for transforming the qualitative preferences 
of a decision maker for a pair of alternatives 
into numerical values. At the training stage, we 
present examples of alternative pairs from the 
training set as inputs along with corresponding 
expert preferences as outputs. During the 
training process the system adjusts itself to 
respond correctly to this training set. After 
completion of the self-adjusting process, the 
system will respond correctly to an unknown 
input. A supervised fully connected NN is used 
for our system. 
Each pair of alternatives used for the NN 
training is represented by a 2N -tuple 

r(A,.,A.) = (r1
/,...,r;,r/,...,^'),where 

Tj', T/', I = 1,..., N are attribute vectors of 

alternatives A,, and A., respectively. N is the 

number of elements in each tuple: 

N = Kx+ m2j Jj, where Kx is the number of 

quantitative attributes, K2 is the number of 

qualitative attributes, 7; is the number of 
factors characterizing quantitative attribute i, 
and m is the number of evaluation grades. 
A set of target outputs for the NN comprises 2 
2-dimensional binary vectors: (1,0) if alternative 
A, is more preferable for the expert then 

alternative A;. and (0,1) otherwise. As the result 

of training, the NN weights will adjust 
themselves in such way that the NN outputs will 
be as close as possible to the respective targets. 
Therefore in our decision support system, the 
NN represents a transformation function 
R( A,, Aj) of qualitative expert preferences on a 

pair of alternatives into a two-dimensional 

vector [01, 02 Jwith the following decision 

rule: 
A, >■ Aj if 0, > Oj and A,. >~< A}, if 

Ot=Oj. 

Here A( >- A;. denotes that alternative A,, is 

more preferable than alternative Aj and 

A( >—< Aj denotes no preference. 

During the decision making phase, attributes of 
each pair of alternatives from a set under 
investigation will be presented to the trained 

NN. The output vectors \(Ov 02)\ will be 

employed to represent a measure of confidence 
in the choice of more preferable alternatives. 
These measures of confidence will be then 
combined in the framework of the Dempster- 
Shafer theory of evidence. 

5. Evidential decision making 
process 

This section describes a decision making 
process that evaluates preference relationships 
within pairs of alternatives represented by the 
NN outputs and chooses the most preferable 
alternative. Generally, if we have the preference 
relationships for each pair of alternatives and 
these relationships are non-conflicting, we are 
able to find the most preferable alternative using 
one of the existing methods, such as 
mathematical programming or heuristic search. 
In our case, when the information presented to 
the expert is noisy, incomplete, and contains 
qualitative attributes, the set of obtained 
preference relationships might be conflicting. In 
practice, we also should not expect the expert to 
supply consistent preference relationships on 
pairs of alternatives during the knowledge 
acquisition stage, especially when the number of 
attributes and/or the number of required 
evaluation grades is high. The NN that produces 
these outputs is only a model of these 
preferences and it can also incur this conflict. In 
order to combine this conflicting information 
and be able to make the decision about the best 
alternative, we employ the Dempster-Shafer 
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theory of evidence which is very efficient when 
we need to combine conflicting information 
coming from several sources. 
Let us consider a set of M alternatives 
A = {Ai} and an NN trained to model pairwise 
expert preferences. At the decision making 
stage, for all different pairs of alternatives 
{(A,., A ■)} we obtain a set of NN output 

vectors 0 = {(0,,Oj)} with 

101= M(M -1) / 2. Let a set O* c Obe a set 

of outputs containing Ok, where 10*1= M. 

Let S = (4 , — »4if}be the frame of 
discernment, where § represents a hypothesis 
that the most preferable alternative is A,.. We 
can also consider an NN output (0,, 0;) for a 

pair of alternatives A, and Ay as independent 

evidences for hypothesis § and £,., where 0, 

and 0  are the values that reflect the measure 

of belief in hypothesis 4. For each 

(Ok ,0j) eOk,j = \,...M,j * k , we can 

consider a simple support function 
ml = Ok, mA\ (S) = 1 - Ok with focal 

elements 4 • Then a separable support function 

mA   representing a combined belief in 4 

based on all pairs from O* is a combination of 
m 

m. 

m. b(§) = 0, if i**, 

*Ms)=ri(i-'<(4))- 
Combining all the 
mAk (£ = 1,..., M), according to the Dempster 

rule of combination, we can obtain now 

m(§)=s^na-^)+ri(i-^)' 
i j*i j 

Since 4 is an atomic hypothesis, 

Zte/(4 ) = m(|;.) and the most preferable 

alternative Am corresponds to the highest 

combined belief: m(4) = max m(4). 
l<i<M 

6. The hybrid system for threat 
prediction: experiments and 
results 

The introduced hybrid approach to multi- 
attribute decision making is problem 
independent and can be used for designing a 
decision-aid tool in various applications such as 
study of consumers' attitudes and preferences, 
analysis of investment alternatives, situation 
assessment and prediction, etc. In order to 
demonstrate viability of the introduced method 
and its applicability to the Level 2/3 Fusion 
problems [14], we conducted a case study where 
we applied this approach to modeling threat 
prediction. Specifically, we model a procedure 
of selection of the most likely threat direction 
(decision alternative) by considering the relative 
level of danger from force aggregates in 
different sectors of an unclassified North 
Korean Tactical Scenario developed for the 
study. For designing a case study, North Korea 
was divided into three zones with each zone 
divided into six equal geographical sectors 
representing a possible threat direction. For 
training and evaluation of the designed hybrid 
system we built 17 scenarios for each zone. 

The level of danger was based on the 
analyst's implicit awareness of Combat 
Compound Value (CCV) represented an 
"underlying value of threat" for any of the 
defined sectors The CCV for each sector 
included subjective judgments about terrain and 
quantitative information regarding each type of 
intelligence data used in the assessment. Terrain 
within the CCV represented an aggregated 
concept and was evaluated through relevant 
factors (mobility and detectability) that were 
qualified as POOR, AVERAGE or GOOD with 
some confidence levels. Qualitative judgments 
of mobility was based on difficulty in Cross 
Country Movement (CCM) over the terrain 
while qualitative judgments of detectability 
were made based upon the concealment 
potential of terrain. Quantitative information 
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was represented by lethality that measured force 
projection capability based on a total ordering of 
the in-garrison power projection capability of 
each type of unit (Armor, Infantry, Artillery, 
Anti-Air), and the number of units found in a 
sector. 

The informational database of 51 scenarios 
was used for evaluation of the designed hybrid 
system. The objective of this evaluation was 
twofold. First, we intended to demonstrate the 
ability of the NN to model expert pairwise 
preferences with both quantitative and 
qualitative attributes. Second, we intended to 
show that the combination of the NN outputs 
with the Dempster rule of combination allows us 
to model the decision maker choice of the most 
preferable alternative (the most likely direction 
of treat in the threat prediction problem). 

A fully connected three layer NN with 27 
hidden nodes trained with the back propagation 
algorithm [15] was employed for modeling an 
expert's pairwise preferences. The training and 
testing were performed with the "one-scenario- 
taken-out" method. For training we used 750 
pairs of directions as input patterns along with 
corresponding expert preferences as outputs, 
while a test set at each cycle contained 15 
directions. Each direction is represented by the 
number of units to reflect lethality and the 
subjective judgment of the analyst about terrain 
characteristics. The training and testing results 
for modeling the decision maker preferences 
between two alternatives are shown in Table 1. 

Table 1. Prediction accuracy in modeling 
pairwise preferences with the NN 

Training 
result 

Test 
result 

Accuracy of pairwise 
preferences prediction 

99.59% 95.82% 

likely direction of threat by the decision support 
system is shown in Table 2. 

Table 6. Prediction accuracy in modeling the 
choice of the most likely direction of threat by 
the decision support system 

First First & 
choice second 

choices 
Prediction accuracy in 84.1% 100% 
modeling the most 
likely direction of 
threat 

The results of our experiments with 
simulated data demonstrated a high degree of 
agreement between the system and the decision 
maker. Consideration of two choices (the best 
and the second best) allows us to further 
improve the system accuracy while introduction 
of the second choice does not degrade the utility 
of the system since it is still easier for experts to 
make a choice between two alternatives. More 
experiments with larger databases and more 
realistic scenarios are required in order to make 
final conclusions about performance of the 
system. 
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The NN output vectors corresponding to the 
results of pairwise comparison of directions 
from one scenario were combined following the 
evidential routine introduced in Section 5. The 
result of combination was tested against the 
analyst choice of the most likely direction of 
threat. The accuracy of prediction of the most 
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Abstract - This study explores the operational utility of 
fusing synthetic aperture radar (SAR) imagery and 
digital terrain map (DIM) data. Specifically, the two- 
dimensional (2D) display of SAR imagery was 
compared against a two and a half dimension (21/2D) 
display of SAR overlaid on corresponding DIM data. 
Eight imagery analysts (IAs), assigned to the Israeli 
Ground Corps Command Imagery Analysis Unit and 
to the Israeli Air Force, and two weapon system 
officers served as subject matter experts. The 
measures employed in this comparison included both 
an assessment of operator situational awareness (SA) 
and of performance in an information extraction task. 
Based on the SAR imagery which was used in the 
experiment, performance measures (accuracy and 
speed in feature location) andSA measures aid not 
yield significant performance differences between the 
2D and the 2 ViD displays. The average time required 
to complete each task was significantly longer for the 
2 lAD displays. Based on experience, the SME's 
opinion was that the 2 lAD imagery display may be 
potentially helpful in the performance of various 
imagery analysis tasks and in enhancing SA. 

Key Words: Synthetic Aperture Radar (SAR), Digital 
Terrain Map/Elevation Data, Imagery Exploitation, 
Situational Awareness, Information Fusion. 

L Introduction 

1.1  Background 

Synthetic aperture radar (SAR) sensors offer two 
compelling advantages over conventional (electro- 
optical) sensing technologies: stand-off range and 
adverse weather capabilities. SAR images can be 
formed with effectively no loss in resolution out to the 
limits of the system's stabilization and motion 
compensation capabilities. SAR sensors can "see" 
through clouds and through light rain Further, 
depending on their coverage mode and data 
processing limitations, SAR sensors can be capable of 
high area coverage rates. These attributes make SAR 
imaging a valuable resource for tactical and theater 
airborne reconnaissance, surveillance and target 
acquisition applications. 

The air forces of both the United States and of the 
State of Israel have great interest in exploiting these 
capabilities. The United States Air Force has 
operational SAR capabilities in the B-1B, F-15E, J- 
STARS, and U-2 systems and plans to include SAR as 
a primary imaging mode in the Global Hawk 
uninhabited air vehicle. The Israel Air Force has 
operational SAR capabilities in their Phantom 2000 
and F-15I multi-role aircraft and has other SAR 
capabilities in development (A prior study [1] 
explored the benefits of SAR display enhancement 
algorithms in an image interpretability task.) 

SAR, however, is a non-literal imaging sensor. That 
is, the imagery produced by a SAR does not resemble 
a photograph taken of the same scene. The intensity 
values in the SAR image are proportional to the radar 
cross sections of the corresponding points in the 
ground scene (and not to their visible wavelength 
reflectance). The impulse response function of the 
SAR (the fundamental determinant of system 
resolution) includes side lobes. Thus, the return from 
a point on the ground may include energy contributed 
by adjacent scatterers. The "shadows" in a SAR 
image are caused by the active illumination of the 
scene by the emitting radar (and not by the sun angle). 
The perspective of a SAR image is that of an observer 
looking down on to the scene from directly above, 
while it is being illuminated by the radar from one 
side (the location of the SAR). 

Because of the non-literal nature of the SAR image, 
operational questions exist regarding how well an 
imagery analyst (IA) can orient it against a map 
reference. A fundamental imagery exploitation task is 
to confirm (or plot) the actual ground coverage of a 
collected image against a map reference. (A recent 
survey of IA tasks and workstation functional 
requirements is presented in [2].) Several other 
standard imagery exploitation tasks (e. g., landform 
analysis, traversability studies) require that the 
operator interpret the image so as to assess the basic 
geologic and terrain characteristics, including 
judgments of the heights of terrain features and the 
grades of slopes. Further, orientation may require the 
IA to locate salient terrain features and to match them 
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against their map references. Understanding of the 
terrain contributes significantly to the establishment 
and maintenance of situational awareness (SA), 
affording the context within which other imagery 
interpretations may be made. The human operator is 
unique in having the ability to apply contextual 
information to the interpretation of complex visual 
stimuli (such as reconnaissance imagery). 

Endsley [3] has been a primary researcher in studying 
situational awareness. This study attempts to extend 
her model (Figure 1) to the intelligence exploitation 
domain. Within the definitions implicit in her model, 
the SA metrics employed correspond to Level 1 SA 

display of the SAR images. Figure 2 [4] depicts the 
model of the levels of fusion adopted by the US. The 
fusion of SAR and DIM, as in this study, correspond 
to Level 1 in this model. 

LEVELS 

PROJECTION OF FUTURE 

LEVEL 2 

COMPREHENSION OF 
SITUATION 

LEVEL 1 

PERCEPTION OF ELEMENTS 
CURRENT 

Figure 1. Model of Situational Awareness (from 
Endsley, 1994) 

SAR is not the only technology which may support 
these operational requirements. Digital terrain map 
(DIM) data, consisting of elevation "posts," equally 
spaced in latitude and longitude, provide another 
source of information regarding the heights and slopes 
of the terrain. DIM data can be viewed in two 
dimensions (2D), as elevation contours, or as a 
continuous depiction in which elevation is coded by 
luminance values or colors. 2D image formats may be 
rotated so that North (or any arbitrary direction) is 
toward the top of the display. Alternatively, DIM 
data may be displayed in 2 YD in which a 3D "model" 
of the terrain, with a shading scheme applied as if it 
were illuminated by the sun, is projected on to the 2D 
display surface. 2 VSDDTM displays may be rotated 
in both azimuth and elevation to change die effective 
viewpoint of the observer. 

Fusion also offers potential capabilities to support 
enhanced Orientation, situational awareness, and 
information extraction capabilities. Disparate data 
sources, such as SAR imagery and DIM elevations, 
may be combined (overlaid) so as to support a 2 l/D 

LEVEL 4 

RESOURCE REFINEMENT 
«MANAGEMENT 

^MMfTWtingRaqMfto 
■fltofor AinuagMoainK 

Ceotaolf 

LEVEL 3      | 

I"    THREAT     |-Tnpt Priority 
1 ASSESSMENT J-RolwofBiwigaMat 

A                     -Aggngaboa 

"*«"      1                      ES? 
f   SITUATION   1 -Coatat 

ASSESSMENT    -Mwi« Merit» 

LEVEL 1      | 

-AggnjntiM. 
■hiiracuif 
-TmplatM 

OBJECT      I 
REFINEMENT | 

•AmfnaMat   -LMKtua 
•AnocntioB "Oirifirrfca 
■ComlitioB  ^dinlificBluB 
•ComVbxa$   -Tracking 

Figure2. Model of Data Fusion 

1.2 Objective and Approach 

The objective of this study was to perform an 
operational assessment of the relative utility of 2D and 
2 l/iD displays of SAR imagery. In the 2D case, the 
SAR images were viewed conventionally. In the 2 
V&D case, the SAR image was overlaid on the 
corresponding DTM model. Subject matter experts 
(SMEs), primarily military IAs assigned to the Israel 
Air Force (IAF), the Intelligence Command, or the 
Ground Corps Command, performed orientation and 
information extraction tasks using both display 
formats. The study was conducted at the facilities of 
Synergy Integration Ltd., Tel Aviv, with the support 
of PAMAM Human Factors Engineering Ltd., during 
the period 19 August through 17 September 1998. 

2. Method 

2.1 Imagery 

The SAR imagery used in this experiment was 
acquired by a developmental sensor flown on the 
Israel Aircraft Industry's Boeing 737 multi-mode 
radar testbed aircraft. The imagery had a nominal 
resolution of 1.2 m. The imagery, in detected form, 
had a nominal dynamic range of 8 bits (or 256 gray 
levels). All imagery was acquired at high grazing 
angles (approximately 45 degrees). 

Three swaths were provided by the Israeli Ministry of 
Defense. The first included coverage of the Armored 
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Command Museum at Latnm. The second included 
the area of Rosh Ha'ayin and the third included 
coverage of Ben Gurion International Airport Thirty- 
eight stimulus images were extracted from the Latrun 
and Rosh Ha'ayin swaths. Six images, used only for 
familiarization with the task and practice with the 
apparatus, were extracted from the Ben Gurion 
coverage. 

The Rosh Ha'ayin and the Latrun swaths differed in 
scale. In the Rosh Ha'ayin swath each centimeter of 
the image represented approximately 60 meters on the 
ground. In the Latrun swath each centimeter of the 
image represented approximately 92 meters on the 
ground As a result the width of Rosh Ha'ayin swath 
was approximately 1 km by 1 km and of the Latrun 
swath approximately 1.5 km by 1.5 km The 
resolution of each of the images was 700 by 700 
pixels. 

2.2 Selection of "Targets" 

The experimental design was constrained, to some 
extent, by the coverage of the available imagery. 
Since the objective of the experiment was to 
investigate the effect of SAR imagery overlaid on a 
three-dimensional terrain elevation database and 
viewed in a 2 ViD display on both orientation and 
situational awareness, no buildings were included. A 
senior and highly experienced IAFIA first determined 
the coverage of the SAR imagery against a 1:50,000 
scale survey map. Features (such as river bends, 
confluences/divergences of streams, the intersections 
of dirt roads, etc.) were selected from the map 
information for use as designation "targets" and their 
Universal Transverse Mercator (UTM) coordinates 
were read and recorded. These same features were 
then located within the SAR images and the 
corresponding pixel location was read and recorded. 
This process was repeated until all 38 stimulus targets 
and the six practice targets had been selected. The 
target location coordinates were maintained as the 
"school solution" for scoring the accuracy of the 
designation portion of the task The imagery was then 
divided into 22 matched pairs (one half of each pair to 
be presented in 2 '/JD and the other half in 2D.) The 
pairings were made on the basis of containing similar 
targets within similar backgrounds. 

2.3 Overlay of SAR Imagery onto DIM Data 

Commercial, off-the-shelf software (MultiGen n Pro, 
from MultiGen Inc., San Jose, California) was used to 
convert the SAR pixel coordinates into UTM 

coordinates, the reference system used for the DIM 
data. Multiple control points were selected from each 
of the SAR images and their geographic reference 
locations were carefully determined from the map. A 
transformation program, using these control points, 
was used to convert every pixel location into its 
corresponding UTM coordinates. One SAR image 
from each matched pairing was then overlaid onto the 
corresponding DIM elevation data (using the same 
software package). The product of this procedure was 
a 2 VaD representation of the area (as compared to the 
2D representation of the original SAR imagery). 

No additional exaggeration to the elevation data was 
introduced. Thus, the displayed image of the overlaid 
SAR and DTM depicted ground distances (x and y) 
and heights (z) in the ratios of 1:1:1. 

2.4 Apparatus 

The images were displayed and designation 
coordinates and response times were recorded using a 
Silicon Graphics Incorporated (SGI) ONYX graphics 
workstation equipped with an Infinite Reality Engine 
multi-processor. The workstation was also equipped 
with a SGI model CM2187ME 533 mm (21 inch) 
diagonal color monitor. The display resolution (full 
screen) was 1280 by 1024 pixels. The brightness and 
contrast controls of the display were set by the 
Experimenter. The apparatus was located in a 
laboratory setting and was used to support both 
stimulus preparation and data collection. All stimulus 
imagery was displayed using commercial, off-the- 
shelf software (the VEGA general visualization 
environment from Paradigm Simulations Inc., Dallas, 
Texas). The displayed image (700 by 700 pixels) was 
approximately 200 by 200 mm (8 by 8 inches) on the 
monitor. 

2.5 Subject Matter Experts 

Five enlisted IAs from the Israel Defense Force 
Ground Corps Command's Imagery Analysis Unit, 
three IAs from the IAF, and two Weapon System 
Officers (WSOs) of the IAF, served as subject matter 
experts (SMEs). All were male. They ranged in age 
from 19 to 25 years. Their experience in tactical 
imagery exploitation ranged between six months and 6 
Va years. Four of the IAs and both WSOs had some 
SAR imagery experience; all of them had experience 
in the exploitation of electro-optical (photography and 
television) sensor collections and all had previous 
experience in performing softcopy imagery 
exploitation None of the SMEs had had previous 
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experience in exploiting high resolution SAR imagery 
(as was used in the present study). All SMEs had 6/6 
(20/20) vision, uncorrected or corrected, and all had 
received formal military training in imagery analysis 
during a three month duration Service school. 

2.S The SME Task 

Figure 3 depicts the sequence of events which 
composed the experimental task. Upon arrival at the 
laboratory facility, the SMEs were informed as to the 
purpose of the study and instructed regarding the 
conduct of the experiment The instructions to the 
SMEs explicitly placed primary emphasis on the 
accurate performance of the designation component of 
the task but also emphasized the requirement to 
complete the task as rapidly as possible. The 
instructions also included the caution that the imagery 
was more recent than the map and might contain 
(extensive) differences with respect to the addition of 
man-made structures such as buildings and roads. 

Information regarding the SME's background, training 
and imagery exploitation experience was elicited 
through a brief questionnaire which included 
questions regarding their training and experience in 
the exploitation of SAR imagery and their experience 
in interpreting softcopy imagery. The SME was then 
seated at the graphics workstation 

At the beginning of the task, each SME was shown an 
extract from a 1:50,000 scale, color, topographic 
Survey Map of Israel The map, oriented north-up and 
covered approximately 2 km by 2 km in area, had 
been annotated to depict the coverage of a SAR image 
at a different orientation and included a red dot 
marking the location of a target This map allowed 
the SME to understand the relative differences in 
coverage between succeeding map extracts and their 
corresponding SAR images. They were then instructed 
in the use of the apparatus for the imagery orientation 
and target designation portions of the task The 
practice images were used to allow the SMEs to gain 
proficiency in the use of the equipment the 
orientation and target designation components of the 
experimental task, and the nature of the SA questions. 
Any remaining questions that the SMEs might have 
regarding the task were answered by the Experimenter 
at this time. When the SMEs reported that they were 
confident in the execution of the task, the data 
collection trials were initiated. 

At the beginning of each of the 38 data collection 
trials, a 1:1 scale extract from a 1:50,000 scale, color 
topographic Survey Map of Israel was provided to the 

SME. The map extract was always oriented North-up 
and covered approximately 2 km by 2 km in area. The 
header on the map copy described the type of target to 
be located (e. g., dome, intersection of a dirt road and 
a stream, etc.) while the exact location of the specific 
target of interest was depicted on the map itself by a 
small red dot The map extracts were mounted as 
successive pages in a flip chart-type booklet The 
Experimenter initiated each trial (by depressing a 
specific function key on the keyboard). The SME was 
permitted 15 seconds for map study. During this 
interval, the image display region was blank (showing 
a solid, medium luminance, light blue field). The 
Experimenter informed the SME whether the current 
trial was a 2D or 2 YD display format The SAR 
image, containing the target then appeared on the 
workstation display. The images were always 
presented so that the radar shadows pointed toward the 
bottom of the display (i. e., as if the radar were 
illuminating the ground from along the top edge of the 
display). No restriction was placed on the viewing 
distance between the SME and the workstation 
monitor. 

1 
Study 
Paper 
Map   • • Single "Target" Indicated 

• 1:50K Scale 

Softcopy 
Display of 

SAR(orSAR/DTM) 
Imafi 

Rotate" 
and/or 

T1H Image 

. 1 km X1 km or 1.5 km X 1.5 km 
• 2D or 21/2D Display 

Designate 
Target 

Complete 
Questionnaire 

• Designate with Cursor+ENTER 

• Record: 
~ Cursor Coordinates 
—   Image Exploiation Time 

• Blank the Display 

Neit Target aad Image 

Figure 3. Flow Diagram of the SME's Task 

The SMEs were permitted up to three minutes (180 
seconds) during which they were required to orient 
themselves to the SAR image in the context provided 
by the map information (which was available 
throughout the trial), to locate the pre-briefed target 
and to designate the target At the completion of the 
tasks the display automatically went blank and 
performance time was recorded. If the SME did not 
respond within 180 seconds the display went blank 
and the trial was recorded as having "timed out". 

913 



During this three minute period, the SMEs could use 
the left and right arrow keys on the workstation 
keyboard to rotate the image through a full 360 
degrees of azimuth. The up and down arrow keys 
"tipped" the image through 90 degrees of "elevation." 
Rotation in both azimuth and elevation were 
continuous and could be applied in any combination. 

For each SME, half the stimulus images were 
presented in overlay on the DIM elevation data. In 
these cases, rotation of the displayed image produced 
a 2 VJD view. In the other half of the trials, a 2D view 
was presented, the arrow keys could still be used for 
tip and rotation but no elevation data were overlaid on 
the SAR images. The mouse was used to drive an 
"arrow" cursor on the display to point on the image. 
When the SME had located the target, the ENTER key 
on the keyboard was used to record the target location 
into the data file for that trial. (The keyboard ENTER 
key was preferred to the mouse buttons in order to 
prevent involuntary motion of the mouse cursor 
during designation). 

Upon designation, the display was blanked 
and the location of the designated point was 
automatically recorded, along with the time between 
stimulus onset and the act of target designation. The 
SME then flipped the page in the map booklet (thus 
precluding any further reference to the map) and 
found two questions regarding the image presented 
during the just-completed trial. These SA questions 
dealt with absolute or relative terrain height judgments 
or with the relative location of other objects in the 
SAR image. The answers to the questions were 
recorded manually by the Experimenter. (This 
allowed for immediate answers to any SME requests 
for clarification of the SA questions.) 

2.6 SA Questions 

Two SA-related questions were developed by the 
Experimenters for each target image. The questions 
dealt with absolute or relative terrain height judgments 
(e.g, which bank of a stream was higher?, which 
slope of a dome was steepest?) with the direction of 
objects (e.g, what was the direction of the stream?) or 
with the relative location of objects in the SAR image 
(e.g., in which direction from stream bend were two 
large buildings?). The SA questions were presented in 
multiple choice form, three possible answers to each 
question were presented and the SME had to select the 
correct one. No time limit was imposed in answering 
these questions. 

Once the SA questions had been answered, the trial 
was completed. The SME then indicated readiness to 
proceed with the next trial. This sequence was 
repeated until all 38 images had been presented to the 
SME. The SMEs were given a short break after each 
group of eight to 12 trials (while the Experimenter 
loaded a different SAR swath). 

2.7 Rating Scale Questions 

After all 38 stimulus images had been presented, the 
SME was asked to complete a series of rating scale 
questions regarding overall impressions of the task 
and of the two different display formats. Each scale 
consisted of seven points with semantic anchors at 
each endpoint (as shown in Figure 4). 

(NEUTRAL; 
irontEFZKiMaq 

1I/1D 
KXIUT 

Figure 4. Rating Scale with Semantic Anchors 

A rating of one always meant that the 2 YD display 
greatly degraded the SME's ability to perform the 
referenced function while a rating of seven always 
meant that the 2 VJD display greatly enhanced that 
ability. The first group of questions dealt with 
comparisons between the 2D and 2 lAD display 
formats with respect to: performing general 
orientation, assessing the structure of the terrain, 
assessing differences in terrain heights, and assessing 
terrain slopes. The next scale required the SME to 
rate utility of the 2 x/iD display format in supporting 
general imagery interpretation tasks. Another set of 
questions related to SA. The SME was asked about 
the differences between the 2D and 2 VSD display 
formats in supporting giving answers to the SA 
questions. The SMEs were also asked to comment on 
whether they relied primarily on the map extract or on 
the SAR imagery in answering these questions. They 
were also requested to comment on the relevance of 
the SA questions to their current military duties. 
Provision was also made for the SMEs to record any 
overall impressions or comments regarding the entire 
experiment 

Upon completion of the rating scales, data collection 
was ended and the SME was thanked for participation 
in the experiment Each SME participated for 
approximately two hours, including instruction, 
practice, data collection, and completion of the 
questionnaire. 
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2.8 Experimental Design 

A mixed, within-subject experimental design was 
employed Half of the SMEs were presented with one 
half of the matched SAR image pairs overlaid on to 
the DIM data; the other half of the SMEs were 
presented with the alternate half of the image pair 
presented in non-overlaid format Half of the SMEs 
were presented with the experimental imagery in the 
reverse order from that presented to the other SMEs. 
This counterbalance was to protect against learning 
effects. Thus, there were four unique combinations of 
imagery presentation: order of presentation and DTM 
or non-DTM underlay (the independent variable of 
interest). 

3. Results 

3.1 Designation Accuracy 

Accuracy of the terrain feature designations was 
measures in cm on the displayed image. The mean 
accuracy score for the 2D display was 1.33 and for the 
2 VSD display 1.39. This difference is not significant 

3.2 Response Time 

Designation time tended to be longer for overlaid 
SAR-DTM images. The average response time for the 
2D images was S1.9 seconds and for the 2 ViD 60.6 
seconds. This difference is statistically significant 
(p=0.001). Designation times for the Latrun swath 
(51.79 seconds) were significantly shorter than for the 
Rosh Ha'ayin swath (60.68 seconds) (p=0.001). (The 
shorter response times for the Latrun swath may be 
due to the higher availability of salient human-made 
features in the images of the Latrun area) 

The first four questions on the rating scale 
dealt with the strength of the SMEs preference for 
either the 2 VSD or the 2D SAR display format in the 
context of supporting the IA's ability to orient to the 
terrain scene. The first scale addressed general 
orientation, the second addressed the assessment of 
landfonns/terrain structure, the third understanding of 
terrain height differences, while the fourth explored 
understanding of differences in terrain slopes. As 
depicted in Figure 3, the SMEs, as a group expressed a 
marked preference for the 2 YD display format (In 
the Figure 5, a mean rating of 4.00 reflects no 
preference between the two formats.) 

The fifth rating scale required the SMEs to 
express their preference in the context of the utility of 
the display format to support imagery interpretation in 
general A preference for the 2 '/2D format was found. 

The sixth rating scale explored the two 
display formats in the context of S A Again, a 
preference for the 2 V£D was elicited. 

1 JIBRRAIN ORIENTATION 

2 JERRAIN STRUCTURES 

3. HEIGHT XJDGBMENTS 

4 ÄOPB JUDGEMENTS 

&OBNERAL INTERPRETATION 

6 anUATIONAL AWARENESS 

«.I 

«   5.4 

: 5.0 

14 5 

MEAN RATING 

Figure 5: Mean Ratings. 

All ratings were significantly higher than the neutral 
score (4.0). Table 1 presents the statistical summary 
for 10 SMEs. 

3.3 SA 

Each trial was followed by two S A questions. A score 
of 1 was assigned to each correct answer and 0 to 
wrong answers. SA scores were computed for trials 
with correct and partially correct target designations 
only. The final SA scores were computed as the sum 
of points for each trial. The mean SA scores for the 
2D images was 1.08 and for the 2 ViD images 1.04. 
This difference is not significant 

3.4 Rating Scales Responses 

Table 1: Mean ratings and T scores for the six rating 
scale questions: 
Question Mean Rating T score Probability 

1 4.6 2.64 0.05 

2 5.4 4.24 0.01 

3 6.1 13.74 0.001 

4 5.5 3.53 0.01 

5 5.4 5.22 0.001 

6 5.0 2.55 0.05 
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3.5 Observations 

Before discussing the implications of the results from 
the formal measures used in the study, some 
observations on the part of the Experimenters, made 
during the data collection runs, may give the reader 
insight into the study. 

None of the SMEs had any apparent difficulty in 
employing the display/controls mechanization (arrow 
keys, mouse, enter key) used in this study. 

Although none of the SMEs had any experience in the 
exploitation of high resolution SAR, they were all able 
to complete the target designation task without any 
reported difficulty. 

All IAs had received training in landform and 
traversabiliry analysis as part of their IA school 
curriculum. 

Some SMEs indicated that the effective usage of 2 ¥iD 
images may require experience and perhaps even 
formal training. 

Wide-ranging, individual differences were observed 
with regard to the strategies employed by the SMEs in 
viewing the SAR display. Some SMEs physically 
rotated the paper map to match the orientation of the 
SAR (regardless of whether DTM data were 
available). This kept the radar shadows pointing 
toward the bottom of the display - a technique that 
IAs are taught to employ to avoid a "false" reversal in 
apparent elevation/ depression of the scene. Others 
appeared to first rotate the SAR display (again 
regardless of the format) and then to quickly tilt the 
displayed image, apparently to gain an appreciation 
for terrain relief. 

4. Conclusions and Recommendations 

4.1 Conclusions 

High resolution SAR imagery, collected at high 
giazing angles, does not appear to present any of the 
difficulties conventionally associated with low and 
medium resolution non-literal imagery at least in the 
context of the present salient landform designation 
and terrain-based SA tasks. This also suggests that 
only minimal impact to the training support system 
may be encountered as these systems become 
operational. 

Designation scores with the overlaid SAR-DTM 
imagery (2 V£D) produced slightly higher accuracy 

scores than SAR alone (2D). However, these 
differences were small and did not reach statistical 
significance. The general pattern of results did not 
change when only selected targets, which contained 
mountainous areas and no salient human-made 
features, were analyzed. The elimination of the most 
difficult and the easiest trials from the statistical 
analysis increased the differences between the 2D and 
the 2 i4D scores, but this difference too failed to reach 
statistical significance. Several factors may have 
affected the potential effects of an overlaid SAR-DTM 
imagery on the accuracy of target recognition: 

The sets of SAR swaths used in the study were rather 
limited in size and included only small areas which 
were both mountainous and free of salient human 
made objects. Hence, the number of sections in which 
the SAR-DTM overlay could provide significant 
advantages was rather small and the variety was very 
limited. 

Because of the limited width of each swath and the 
small variety of useful terrain areas, the size of the 
area displayed during each trial was significantly 
smaller than the size of area which IA use in their 
regular routine. This may have made the use of terrain 
features more difficult than usual to exploit 

The use of the overlaid SAR-DTM seems to require 
some training This was indicated by the results which 
show a larger improvement in SAR-DTM 
performance than in SAR alone, and was pointed out 
by some of the SMEs (in their comments) as well. 

Response times were approximately 17 percent longer 
for the 2 VSD trials than during the 2D trials. This is 
not surprising given that the 2 V£D images contain 
more information. Additionally, during the 2 l/SD 
trials SMEs made more extensive use of the tilt option 
which provided them with different views of the 
terrain, whereas, tilting the 2D images was possible 
but did not provide any additional information 

Situation awareness as measured by the questions at 
the end of each trial did not benefit from the overlay 
of SAR-DTM Two reasons may have affected the 
results. First, the answers to the SA questions could 
be extracted from the maps as well as from the SAR 
images. At the end of the experiment SMEs were 
asked about the extent to which their S A answers were 
based on the SAR as compared with the map. During 
debriefing, most SMEs reported that the maps were an 
equal or a dominant source of SA information. 
Obviously, the use of the map obscures SAR imagery 
effects. Secondly, although all IAs considered the SA 
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questions as relevant to their jobs, they also indicated 
that the level of details required tended to be higher 
than is usually required on the real "object 
recognition" job, (e.g., comparing the slopes of two 
adjacent domes). Several SMEs indicated that this 
level of detail would be more relevant for determining 
traversability. Hence, some of the SA questions were 
perceived as an additional secondary task rather than 
as part and parcel of the main target acquisition task. 

Individual performance differences were quite large 
and seem to be related to the level of experience. 
Interestingly, the more experienced SAR interpreters 
seemed to have benefited less from the SAR-DTM 
overlay then the inexperienced SMEs. However, these 
findings were not significant and require further 
investigation. 

In their subjective ratings at the end of the experiment, 
SMEs expressed their faith in the potential of the 2 
14D imagery, as an aid for image analysis, improving 
S A, enhancing general orientation, understanding the 
structure of terrain and perceiving height and slope 
differences. 

4.2 Recommendations 

Future studies should include exploration of the 2 54D 
SAR and other sensors (e. g., electro-optical), in a 
fused display format, to support IA confidence in 
performing SA and information extraction tasks. 
(This recommendation is based on observation of the 
SMEs strategies in carrying out the tasks.) 

The use of a DTM overlay should be studied in 
conjunction with various types of sensor imagery 
under conditions where sensor imagery may disappear 
or fade out (e.g., passing through a cloud, degraded 
conditions for thermal imagery). It is hypothesized 
that under these conditions, the DTM may serve as an 
anchor, prevent loss of orientation and thus enhance 
orientation and object recognition performance. 

SME training and individual differences may have 
played an important role in the present study. These 
issues require further investigation. 
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Abstract — Decision-aids based on data fusion 
technologies may be applied to support decision- 
making in a variety of environments, ranging from 
military command and control situations to intelligent 
transportation applications. In any situation, the 
ultimate performance of human decision- 
maker/decision-aid system depends not only on the 
quality of the aid, but on the human decision-maker's 
utilization of the information provided by the aid. 
This utilization can be affected by many factors, 
including the degree of trust the decision-maker has in 
the aid, and the form in which information is presented 
to the decision-maker. This paper describes a 
framework for investigating trust in data-fusion based 
decision aids, and results from a pilot experiment in 
which distorted and blended graphical forms were 
used to represent uncertain information. 

Key Words: decision-aids, trust, information 
displays. 

1. Introduction 

1.1 Data Fusion Based Decision-Aids 

Decision-aids based on data fusion technologies may* 
be applied to support decision-making in complex, 
dynamic environments such as military command and 
control, non-destructive testing and maintenance, and 
intelligent transportation. These aids provide 
operators with situational estimates which can aid in 
the decision-making process. For instance, in a 
military environment, data fusion based decision-aids 
may provide commanders with estimates of an entity's 
identity or threat potential. Regardless of environment, 
such aids provide decision-makers with information 
that has an associated level of confidence or 
uncertainty, through the application of automated 
algorithms and processes. The ultimate performance of 
such systems, consisting of both the human decision- 
maker and the automated decision-aid, depends on the 

human decision-makers' utilization of the information 
provided by the aid. Such utilization can be impacted 
by many factors, including the level of risk, time 
pressure, nature of the information display, and level 
of trust the decision-maker has in the automated aid. 

This paper describes a research approach addressing 
the latter two factors in the context of a military 
environment. In a military context, data fusion has 
been identified as a means to perform assessments of 
identities, situations, and threat potential based on 
information derived from multiple electronic and 
intelligence sources. In these situations, the inherent 
risks, time pressure and large volume of data have led 
to the need for computerized aids performing 
automated data fusion (Walts and Llinas, 1990). 

The process of data fusion in a military context 
includes multiple levels, each of which provides 
information at a different level of abstraction. For 
instance, different levels would address the detection 
and identification of potential targets, the association 
of targets into organized groups with certain 
behaviors, and the estimation of the threat potential of 
those groups. Thus, the results of data fusion 
processing can provide input to the situation 
assessment activities of battlefield commanders 
(Llinas, Drury, Bialas, and Chen, in press). 
Ultimately, information resulting from the data fusion 
process is presented to the human decision-maker 
through a computer interface. 

1.2. Decision Aiding in an Adversarial 
Environment 

Aided-adversarial decision-making (AADM) refers to 
military command and control decision making in 
environments in which computerized aids are 
available, and in which there is a potential for 
adversarial forces to tamper with and disrupt such 
aids. Hostile forces may attempt to compromise 
tactical decision-making through offensive activities 
conducted to attack or interfere with an adversary's 
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information systems. Information warfare can impact 
an adversary's operations through information 
disruption, denial, and distortion (Llinas, Drury, 
Bialas, and Chen, in press). For instance, disrupting or 
denying access to sources of information may make it 
difficult for decision-makers to assess situations and 
take appropriate actions. Distorted information, 
through manipulation and addition of incorrect 
information, may fool adversaries into taking actions 
desirable from a friendly perspective. 

1.3 Human Trust in Automated Aids 

Given the potential for information operations to 
disrupt and corrupt information provided by data- 
fusion based aids, it is necessary to understand the 
extent to which decision-makers rely on or use these 
aids, and factors affecting that reliance. A possible . 
source of information regarding these issues is 
research that has been performed in the area of human 
trust in automated systems (e.g., Lee and Moray, 
1992; Muir and Moray, 1996; Parasuraman, Molloy, 
and Singh, 1993; Sheridan, 1988). Researchers have 
suggested that trust can affect how much people 
accept and rely on increasingly automated systems 
(Sheridan, 1988). 

Generally, research from both social science and 
engineering perspectives agree that trust is a multi- 
dimensional, dynamic concept capturing many 
different notions. For example, Rempel et al. (1985) 
concluded that trust would progress in three stages 
over time from predictability, to dependability to faith. 
Muir and Moray (1996) extended these three factors'.   ' 
and developed an additive trust model that contained 
six components: predictability, dependability, faith, 
competence, responsibility, and reliability. Sheridan 
(1988) also suggested possible factors in trust, 
including reliability, robustness, familiarity, 
understandability, explication of intention, usefulness, 
and dependence. 

Empirical results have shown that people's strategies 
with respect to the utilization of an automated system 
may be affected by their trust in that system. For 
example, Muir and Moray (1996) and Lee and Moray 
(1994) studied issues of human trust in simulated, 
semi-automated pasteurization plants. These studies 
showed, among other results, that operators' decisions 
to utilize either automated or manual control depended 
on their trust in the automation and their self 
confidence in their own abilities to control the system. 
Additionally, results showed that trust depended on 
current and prior levels of system performance, the 
presence of faults, and prior levels of trust.  For 
example, trust declined, but then began to recover, 

after faults were introduced (Lee and Moray, 1992). 
Lerch and Prietula (1989) found a similar pattern in 
participants' confidence in a system for giving 
financial management advice: confidence declined 
after poor advice was given, then recovered, but not to 
the initial level of confidence. 

In the context of AADM, there exists the potential for 
several circumstances in which trust in data-fusion 
based decision aids could be affected. For instance, 
information warfare techniques could be used by an 
adversary to distort the information provided by 
decision aiding systems, disrupting (appropriately) 
commanders' trust in, and utilization of, such systems. 
Alternatively, an adversary might act deceptively, 
fooling a commander into trusting and acting based on 
information in a way favorable to the adversary. 
Finally, an adversary might disrupt a commander's 
trust in an aid that is providing good ("trustworthy") 
information. For these reasons, it is necessary to 
investigate human trust in AADM situations, in order 
to better understand how data-fusion based decision 
aids will impact the decision-making process under 
different circumstances. 

2.0 Investigations of Decision Aiding in 
Adversarial Environments 

2.1 Theoretical Framework 

To structure the investigation of aspects of human 
trust in data fusion-based decision aids, a multi- 
dimensional framework was developed (Llinas, 
Bisantz, Drury, Seong, and Jian, 1998). The 
framework integrates and systematically varies a set of 
dimensions which may affect trust in decision aids. 
The following dimensions are included in the 
framework: 

1. Locus of Attack. One potential factor is the location 
at which the potential for corruption exists. Two 
potential dimensions can contribute to this factor: the 
component dimension, and the surface-depth 
dimension. 
a) Component Dimension. Information could be 
corrupted at a variety of components, or levels, in the 
AADM environment. Information could be corrupted 
at the level of the tactical situation (by interfering with 
sensors), within the information processing and data 
fusion algorithms that comprise the decision aids, or at 
the level of the human-computer interface. 
b) Surface-Depth Dimension. A second related 
dimension along which investigations of performance 
in AADM systems can vary is a surface-depth 
dimension. The surface level corresponds to the 
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information available about the environment (as 
formalized in Brunswik's Lens Model; Cooksey, 
1996; Hammond, Stewart, Brehmer, and Steinman, 
1975), whereas the depth level corresponds to the 
actual state of the environment. In an AADM 
environment, surface level features would be the 
observable outputs from sensors, or data fusion 
processes. Depth level features would be the actual 
operations of the sensors or algorithms themselves. 
2. Malfunction Level. Information aids for AADM can 
fail or be corrupted in qualitatively different ways, 
either failing completely, or being partially degraded, 
resulting in two malfunction levels: 

• Element failure. System components can fail 
completely resulting in a loss of data. 

• Element degradation. The quality of information 
provided by the system component can be 
degraded, resulting in partial information loss, 
or increased ambiguity and uncertainty. 

3. Causes of Failure or Corruption. Information can be 
corrupted through different causes or intentions, 
ranging from naturally occurring system failures (e.g., 
hardware malfunctions), to deliberate attacks on the 
information systems, to deliberate attacks which are 
disguised by the adversary. 
4. Time Patterns of Failure. A final dimension reflects 
the dynamic or time-dependent characteristics of the 
degradation. Failures, sabotage, and subterfuge can 
occur not only as failures or degradations at a 
particular point in time, but also in a continuing 
fashion. Additionally, failures can occur with patterns 
that are either predictable or unpredictable. 

2.2 Framework-based Experiments 

This framework is being used to develop experiments 
in the area of human trust in data fusion-based 
decision aids. At present, experiments are planned to 
investigate changes in trust in, and reliance on; a data- 
fusion aid when the situation is framed as either one in 
which the aid may be unreliable due to hardware 
failures, or one in which the aid may be subject to 
deliberate tampering by an adversary. Participants 
will perform a simulated military command and 
control task in which they will identify unknown 
aircraft moving on a radar screen. 

During the task, participants will be able to access 
both non-aid information (e.g., altitude, radar 
emission, and speed information) about unknown 
aircraft, as well as an identity estimate from a simulate 
data-fusion aid. The identity estimate will be in the 
form of a probabilistic range (e.g., that an aircraft is 
friendly or hostile). Participants will request access to 
either type of information, and will be limited in the 

number of requests, forcing a tradeoff between 
information sources. 

Participants will perform the experiment over six 
scenarios, during which time the speed and altitude of 
the aircraft will vary within pre-defined, overlapping 
ranges. Prior to the experiment, participants will be 
given conditional probability information about the 
chance that an aircraft is hostile, given that it is flying 
at a particular speed altitude, or has a particular radar 
signature. 

After several three normal scenarios, a fault (either a 
constant shift in the probabilistic range, or a gradually 
increasing range) will be introduced into range 
provided by the data-fusion aid. Participant's reliance 
on either form of information (either the decision aid, 
or the other available information) will be measured 
before and after the insertion of the error to assess the 
potential loss of trust in the aid subsequent to the error. 

3.0 Investigations of Data Presentation 

As noted above, one factor which may influence the 
utility of data fusion based decision aids, and the 
influence of these aids on the decision making process, 
is the form in which the uncertain information 
determined by these aids is presented to decision- 
makers. Uncertain or probabilistic Information can be 
shown in a variety of formats ranging from simply 
text to graphical representations to text/graphical 
hybrids. Past research has tocused on representing 
position, direction and identity uncertainty in a format 
that reveals the true probabilistic nature behind the 
data (Andre and Cutler, 1998; Banbury, Selcon, 
Endsiey, Gorton, and Tatlock, 1998; Kirschenbaum 
and Arruda, 1994). 

Position uncertainty deals with how to represent the 
possible places an object may inhabit. Environments 
in which this type of uncertainty plays an important 
role include commercial aviation and military 
sönar/radar. Andre and Cutler(1998) investigated this 
form of uncertainty with the use of a task in which a 
pilot would have to play "Chicken" with a circular 
object, they called a meteor. The pilot's goal was to 
come as close as possible to the meteor without 
collision. To represent the position uncertainty a 
circular ring surrounded the meteor. The ring varied in 
size dependent upon uncertainty level. Collision 
frequency was found to be far less when the ring was 
displayed: without the ring, participants appeared to 
dismiss the fact that uncertainty was present in the 
system. Kirschenbaum and Arruda (1994) conducted 
a similar experiment which investigated the effect of 
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different displays of position uncertainty on a 
decision-making task as to when and where to fire at a 
target. Participants were shown either a graphical 
representation of position uncertainty in the form of an 
ellipse around the target or a verbal indicator that 
ranged from poor to fair to good. The elliptical aid 
was found to be superior to the verbal in cases of' 
moderate to high difficulty scenarios. Overall it 
appears that the use of a visual position uncertainty aid 
helped the performance of the user. 

Aids which present heading uncertainty attempt to 
display all the possible future directions an object may 
move. Andre and Cutler (1998) tested three different 
types of heading uncertainty aids in a simulated anti- 
aircraft task: a textual description and two graphical 
representations that utilized either arcs or rings. The    , 
three aids improved user performance when compared 
with a no aid condition. The arc-based aid, which 
represented the uncertainty in direction by utilizing an 
arc that covered the entire angle of possible movement 
heading, provided a slight advantage over the other 
two aids. 

graphical distortion increased. In this case, the 
distortion took the form of larger polygon/ellipse 
shaped depictions of weather patterns, in contrast to 
the non-distorted continuous, fine-grained 
representation. This increase in perceived risk might 
indicate a decrease in subjects' confidence of their 
understanding of the current specific weather patterns. 

Thus, there is some indication that iconic 
representations based on degraded or distorted images 
may be used to convey the uncertainty associated with 
a decision aid estimate. In the following pilot study, 
we investigated properties of distorted and blended 
icon sets intended to convey uncertain information 
about an object's identity as either potentially hostile 
or friendly. Future experiments will investigate the 
impact of a subset of these icons, selected based on the 
pilot study results, on a decision-making task. 

3.1 Pilot Study Method 

3.1.1 Participants 

Finally, identity aids strive to give the user an idea of 
how accurate the identification of an object is. 
Currently most aids display this information in the 
form of probabilities. Banbury et al. (1998) 
investigated how the context in which information is 
displayed affects a decision-making task. Participants 
were asked to make a shoot/no-shoot decision based 
on a probabilistic estimate of an aircraft's identity, 
presented as a numeric percentage. Results showed an 
impact of estimate uncertainty - participants were 
found to have a reluctance to shoot when uncertainty 
was greater than 9%. Additionally, presenting a 
secondary target identification (e.g., not just the 
chance that is a hostile fighter, but also the chance that 
it is a friendly aircraft) also impacted decisions to 
shoot. Participants were more hesitant when a 
secondary, friendly, target identification estimate was 
given. 

Another way in which the graphical form of 
information presentation could be used to represent 
uncertainty is through the use of degraded or distorted 
images. Lind, Dershowitz, Chandra, and Bussolari 
(1995) provide evidence that the form of displayed 
information may affect the use of uncertain data. In a 
study to investigate the extent to which the graphic 
depiction of weather systems could be degraded (due 
to technical limitations) and still be acceptable to 
general aviation pilots, Lind et al. found that pilots' 
estimates of weather hazards increased as the 

Twenty participants, all undergraduate students, were 
paid $6.00 per hour for their participation in the pilot 
study. 

3.1.2. Experimental Design 

Five sets of pictures were chosen to represent the 
identity of an object as either hostile or friendly. These 
picture sets were classified as either abstract (without 
an obvious associated meaning), iconic (with an 
associated meaning), or both. Picture pairs were 
chosen in order to allow for the entire spectrum from 
friendly to hostile to be represented. Figure 1 shows 
the pictures used in the experiment. 

In order to represent the probabilistic nature of the 
information graphically, a series of thirteen icons were 
created to represent a range of probabilities (i.e., from 
p(Hostile) - 0.0 to p(Hostile) = 1.0). The iconic and 
abstract picture pairs were distorted and blended using 
a pixelizing function found in Adobe PhotoShop 4.0. 
For example, the 50% friendly/50% hostile picture 
blended both of the pictures in a pair together. For the 
colored icons, the series of icons was created by 
coloring each pixel in the icon as either green or red 
based upon the probability desired. To illustrate how 
the pixelizing function works, the series of the 
distorted and blended pictures for picture pair (1) are 
shown in Figure 2. 
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Iconic Pairs Abstract Pairs Both Iconic and Abstract 

Friendly ® Ä n 0 HE   (Green) 

Hostile ® Q 
***** A X ^H  (Red) 

(1) (2) (3) (4) (5) 

Figure 1. Five pairs of icons representing object identities as either hostile or friendly. 

Each participant performed a series of tasks involving 
all five sets of icons. Ten participants performed the 
tasks under a "friendly" framing condition, and ten 
participants performed the tasks under a "hostile" 
framing condition. In the friendly framing condition, 
participants were given task instructions which 
described the icons as more or less friendly. In the 
hostile framing condition, icons were described as 
more or less hostile. 

3.1.3 Procedure 

The three experimental tasks were designed to 
measure whether the icons could be correctly sorted 
and assigned a probability rating according to the 
expected probabilities that the icons represented. 
Participants performed each of the tasks five times: 
once for each icon pair (see Figure 1). 

In the first task, a timed sorting task, participants were 
asked to sort cards into piles according to the icon 
printed on the card. Participants were asked to create 
piles containing the same icon. There were five 
instances each of the 13 possible icons in a set, for a 
total of 65 cards. The time to sort the cards, and 
sorting errors, were collected. 

In the second task, participants were asked to order the 
set of thirteen pictures from most to least friendly (or 

hostile), depending on the framing condition. They 
were not told which icons corresponded to the hostile 
or friendly ends of the scale (e.g., they were not told 
that a circle represented a most friendly, and an "x", 
least friendly). Participants performed this task using a 
Visual Basic computer program, through which they 
could drag and drop the icons into the desired order. 
The ordering of the icons was recorded automatically 
by the computer. 

For the third task, participants were asked to rate each 
icon on continuous scale, with end points of least and 
most friendly (or hostile). Participants marked their 
rating along a line connecting the endpoints; this 
distance was later measured and scaled based on the 
length of the line, and used to identify their rating. 

3.2 Pilot Study Results 

3.2.1 Card Sorting 

The times to sort cards based on the icon printed on 
the card did not differ significantly across picture 
pairs. Thus, the relative difficulty of identifying and 
sorting the thirteen icons did not appear to differ 
across sets. 

Figure 2. Series of 13 icons representing a range of probabilities that an object is hostile or 
friendly: from a probability of 100% friendly to 100% hostile. 
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3.2.2. Ordering 

The order of the thirteen icons in each icon pair set 
was determined for each participant, for the hostile 
and friendly framing conditions, resulting in ten orders 
per icon pair for each framing condition. These orders 
were used to compute an average ranking for each 
icons for the five pairs, for both framing conditions. 
Ordering these average rankings resulted in an average 
order for each set, for both framing conditions (a total 
of 10 average orders). These average orders were 
correlated with the expected order (based on the way 
the icons were created), and a Spearman correlation 
coefficient was computed. These coefficients are 
shown in Table 1. All correlations were significant at 
the .01 level of significance, indicating that overall, 
participants were able to correctly order the sets of 
icons according to the intended levels of uncertainty. 

Table 1. Spearman Correlation Coefficients 
comparing average rank orders to expected order 
for 5 Icon Pairs. 

Icon Pair 
Mask(l) 
Dove(2). 

Javerfed^O:^ 
Circle-X(4) I 

Color(5) 

1.000 
1.000 
0.934 
1.000 
1.000 

0.929 
0.984 
0.984 
0.951 
0.890 

Individual participant data was also examined: 
Spearman correlation coefficients were computed 
comparing each participant's order to the expected 
order, for both framing conditions. These correlations 
are indicated in Tables 2 and 3, corresponding to the 
Friendly and Hostile framing conditions, respectively. 
Correlations in bold are insignificant at the .05 level of 
significance. Inspection of Tables 2 and 3 shows that 
on a participant-by-participant basis, ordering was 
more consistent and correct in the friendly framing 
condition than the hostile framing condition. Note that 
negative correlations simply indicate that the 
participant reversed the hostile and friendly ends of 
the scale (they were not told which icons corresponded 
to which endpoints before the experiment). It is 
interesting to note that even for the two "abstract" 
icons, reversals happened at a rate less than chance, 
indicating that perhaps there was some meaning 
intrinsic to the abstract icons. 

Table 2. Individual Correlation Coefficients for 
each participant (Friendly framing condition; 
bold correla tions are insignificant). 
P's Mask 

(1) 

Dove 
(2) 

V-U 
(3) 

Circle 
(4) 

Color 
(5) 

2 0.995 1.000 -1.000 1.000 0.995 
4 0.989 0.995 1.000 1.000 1.000 
6 1.000 1.000 0.995 1.000 1.000 
8 1.000 1.000 -1.000 1,000 0.995 
10 1.000 1.000 1.000 1.000 1.000 
12 1.000 -1.000 -1.000 -1.000 -1.000 
14 0.984 1.000 1.000 1.000 0.995 
16 0.962 1.000 1.000 1.000 1.000 
18 0.995 0.995 1.000 1.000 1.000 
20 0.978 1.000 -0.440 0.374 1.000 

Table 3. Individual Correlation Coefficients for 
each participant (Hostile framing condition; bold 
correlations are insignificant). 
P' 
s 

Mask 
(1) 

Dove 
(2) 

V-U 
(3) 

Circle 
(4) 

Color 
(5) 

1 0.126 0.115 0.115 0.115 0.115 
3 1.000 1.000 1.000 1.000 0.995 
5 0.566 -0.038 0.544 -0.297 0.665 
7 0.412 0.093 0.115 0.148 0.088 
9 0.005 0.714 0.099 0.044 0.181 
11 0.978 1.000 1.000 1.000 0.434 
13 0.148 1.000 1.000 0.995 0.456 
15 0.978 1.000 0.978 0.995 0.989 
17 0.995 0.995 1.000 1.000 1.000 
19 -0.165 0.516 0.280 0.440 0.835 

3.2.3 Rating 

From the data collected on individual picture ratings 
an average rating was calculated for each picture 
within a picture pair category. These averages 
provided a range of estimates of the friendliness or 
hostility of each picture pair (Tables 4 and 5). 

Table 4. Rating Spread for 5 icon pairs (Friendly 
Framing) 

Mask 

(1) 

Dove 
(2) 

V-U 
(3) 

Circle 
(4) 

Color 
(5) 

High 
Rating 

88.67 97.93 96.64 97.73 98.59 

Low 
Rating 

4.22 4.06 3.67 8.52 11.33 

Note: Ratings for Dove, V_U, and Circle were corrected to 
account for obvious and consistent reversals between hostile 
and friendly endpoints. 
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Table 5. Rating Spread for 5 icon pairs (Hostile 
Framing) 

Mask 
(1) 

Dove 
(2) 

V-U 
(3) 

Circle 
(4) 

Color 
(5) 

High 
Rating 

66.56 72.27 62.11 74.06 63.69 

Low 
Rating 

24.22 17.97 38.20 21.48 14.30 

3.2 Future Experiments 

Future experiments will test the effect a subset of 
these icon pairs on decision-making in a dynamic 
identification task. Participants will be asked to 
identify objects as either friendly or not friendly, given 
a graphical icon of the object which depicts a decision- 
aid's probabilistic estimate of the object's identity. 
This icon will be based on either end-point icons with 
associated numeric probabilities, the full range of 13 
icons, or the full range of 13 icons with associated 
numeric probabilities. Over time, estimates will tend 
(with some randomness) to become more certain; 
however, participants will be penalized for 
identification delays. The experiments will investigate 
the impact of information presentation on the point at 
which participants choose to identify objects. If 
graphical depictions (i.e., distorted icons) convey more 
information about the probabilistic nature of the 
identity estimate than numeric probabilities, then 
participants seeing the graphical depictions should 
choose to wait to make an identification until they are 
more certain. 

4.0 Conclusions 

Data fusion-based decision-aids can be implemented 
to provide support in a variety of situations. In order 
for those aids to provide effective support, the must 
provide information in a format that conveys 
important aspects ofthat information (e.g., its 
uncertain nature) and be trusted by the decision- 
maker. A framework for investigating trust in 
decision -aids, in adversarial decision-making 
situations, along with on-going experiments based on 
that framework, was discussed. Additionally, results 
from a pilot study investigating the utility of degraded 
and distorted images to convey levels of uncertainty 
were presented. Preliminary results indicated that sets 
of distorted icons could be appropriately ordered, and 
span a range of descriptive level, under particular 
framing conditions. Future experiments to investigate 
the effect of these representations on decision-making 
were described. 
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Abstract - Since 1991, the Research and Development 
(R&D) group at Lockheed Martin Canada (LM 
Canada) has been developing and demonstrating 
technologies which will provide Observe-Orieht- 
Decide-Act (OODA) decision making capabilities/tools 
in Naval and airborne Command and Control (C2)for 
application on Canadian Patrol Frigates (CPF) and 
Canada's CP-140 (Aurora) fixed wing aircraft. Over 
the last three years LM Canada has also established a 
generic expert system infrastructure and has 
demonstrated that it is suitable for integrating these 
decision making technologies into real-time Command 
and Control System (CCS). However, before these 
technologies become integrated into the C2 of any 
operational platform it is important to understand how 
should these decision making tools function and be 
integrated into the CCS to ensure that the human 
operators trust, accept and use these tools successfully. 
To help understand such issues LM Canada performed 
a literature survey and collected and analyzed over 
600 papers on this subject. This paper presents the 
results of this survey and some conclusions made for 
Naval C2. 

Keywords: Decision Support Systems, Blackboard, 
Testbed 

1. Introduction 

Canada's Halifax Class Canadian Patrol Frigates 
(CPF) and CP-140 (Aurora) fixed wing aircraft are 
planned to be upgraded within the next decade to be 
able to deal with far more demanding threat and 
mission environments of today and the future, than 
when these platforms were designed. The computer 
hardware and software capabilities of today permit the 
development of considerably more advanced decision 
support capabilities, compared with the capabilities 
existing on these platforms currently, helping them to 
deal with these new environments. Over the last 9 years 
the Research and Development (R&D) group at 
Lockheed Martin Canada (LM Canada) in close 
collaboration with Canada's research laboratories has 

been developing and demonstrating technologies which 
will provide Observe-Orient-Decide-Act (OODA) 
decision making capabilities/tools in Naval and 
airborne Command and Control (C2) for application on 
CPF and Aurora. 

The research has been proceeding in a number of 
parallel activities including: 

1. Algorithimc solutions for the decision support 
tools, 

2. Testbed infrastructure for demonstrating these 
solutions, 

3. Top-down systems analysis to understand the 
operational and mission requirements of these 
systems and the shortcomings of the existing 
systems. 

The results of these research activities are 
incrementally being built into demonstration systems 
for the operators to observe and experiment with, and 
their feed-back is being used in the next iteration. 

To ensure that these research activities are conducted in 
a systematic manner, a number of literature surveys 
have been conducted over the life of this program since 
1991. The first was a survey into the technologies and 
algorithms for decision making tools, which started in 
1991 as a contract from the Defence Research 
Establishment Valcartier (DREV) in 1991 and is still 
on-going. The second is the survey initiated in 1998 of 
the basic and applied literature on dynamic decision 
making and computer-based decision support in 
dynamic decision-making environments, to help 
understand how should the decision making tools 
function and be integrated into the CCS to ensure that 
the human operators trust, accept and use these tools 
successfully. This survey also was conducted as a 
contract from DREV. 

This paper presents LM Canada's approach in applying 
the results of this recent survey for the development of 
the Decision Support System of the CPF. 
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2. The Current Infrastructure 

Over the last three years LM Canada has established a 
generic expert system infrastructure and has 
demonstrated that it is suitable for integrating these 
decision making technologies into real-time Command 
and Control System (CCS). Figure 1 shows the CPF 
testbed established based on this architecture. 

Figure 1: The CPF Decision Support System 
Demonstration testbed 

This architecture was developed by LM Canada in 
collaboration with DREV and uses a Knowledge Based 
System (KBS) shell based on a Blackboard (BB)-based 
problem-solving paradigm. Details of this architecture 
have been published previously [ 1,2, 3]. 

The major advantages of this architecture are: 

1. It is able to support distributed real-time large 
applications, 

2. Permits modular, incremental parallel and 
independent development, and 

3. Permits implementation of numeric, mathematical 
and rule-based, heuristic algorithms within the 
same infrastructure. 

The CPF testbed shown in Figure 1 has a closed loop 
simulation system, permitting the users to observe the 
decision support capabilities impact on the threat 
environment, as well as a very modular Human- 
Computer Interface (HCI), permitting the developers to 
experiment with various approaches for integrating and 
providing these decision support tools to the users and 
to apply the user feed-back. 

The initial decision support capabilities that were 
implemented and demonstrated within this testbed were 
very close to the ones already existing within the 
current CPF Command and Control System (CCS). 
This was done to establish the initial baseline, ensuring 

that the users have a frame of reference. Next, based 
on a an internal fast review of the literature some 
additional decision support capabilities were added. 
Overall the currently available DSS capabilities 
include: 

1. Multi-Source Data Fusion (MSDF): 
- Position estimation enhanced through: 

- Ellipsoidal gating including attribute data 
- Jonker, Volgenant and Castanon (JVC) for 

track/contact association 
- Adaptive Kaiman Filter or IMM filters or 3 

adaptive parallel filters for track estimation 
- Dissimilar data fusion (ID to 2D to 3D) 

- Target identification enhanced through 
automatic ID recommendadtions at all ranges 
based on any data available using: 
- Truncated Dempster Shafer for identity 

estimation capable to fuse any type of 
information 

» Fuzzyfied kinematics 
» ESM and IFF data 
» Other misc sources of information 

2. Situation and Threat Assessment (STA): 
- CPF-like Threat Ranking 
- Clustering 
- Rule based allegiance 
- Commercial corridor correlation 
- Maneuvering target detection 
- Track splitting detection 
- Fast incoming target criterion 
- Ownship Missile recognition 
- Mean Line of Advance 

3. Resource Management (RM): 
- CPF-like Reactive Planning: 

- Point of Intercept 
- Point of first fire 
- Target Weapon Pairing 
- Weapon Designation 
- Resource Allocation 

- Deliberative Planning: 
- Decision tree (plan) creation 
- Plan evaluation/ optimization 
- Plan repair 

At this point, before any further technological 
capabilities are developed, it is necessary to understand 
how these new tools should be validated and integrated 
with the CPF C2, and what approach should be adopted 
to develop the computer based DSS (CBDSS) of the 
future CPF. Hence a more systematic literature survey 
was initiated. 
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3.        The Literature Survey 

The survey included the basic and applied literature on 
dynamic decision making and computer-based decision 
support in dynamic decision-making environments. The 
review was divided in four (4) distinct tasks[4]. The 
tasks were: 

Task I -    Identification  of Tools   and  Information 
Sources 

Task II ~ Development of a Survey Methodology 

Task III — Literature Search and Classification 

Task IV - Results Analysis and Recommendations 

Close to 600 references were found using the various 
channels identified during Task I. 

The search was done using the keywords listed in 
Table 1. The first column of this table presents five 
themes that we felt would encompass all the topics of 
the literature search. The second column proposes 
topics that subdivide a theme into more specific 
subjects. 

Table 1: Literature Search Topics 

:   Themes Sub-Themes (Phase I) 

Computer- Decision aids 
based Decision Support Systems (DSS) 
decision Performance Support Systems (PSS) 
support Trust in knowledge-based systems 
Process Generic tasks, Work procedures 
control and Ecological interface design 
computer- Human performance models 
based aiding Information visualization 
Cognitive Individual work 
task analysis Cooperative work 
Cognition Decision making, Situated cognition 

Distributed cognition, Mental models 
Socially shared cognition 
Human Performance, Mental workload 
Cognitive styles, Human expertise 
Human reliability and error 

Human- Task analysis for HCI, Interaction styles 
Computer User-centred system design 
Interaction methodologies 

On-line help and documentation 
Information Presentation 
Intelligent interfaces 
Usability engineering/ Evaluation 

The literature found at this point was analyzed and 
further sorted based on their pertinence on the CPF 
CCS. 

Based on the findings in the first three tasks it was 
concluded that the Results Analysis and 
Recommendations can take a number of different 
perspectives: 

1. A theoretical analyses of the realization of a 
computer-based DSS for the future shipboard CCS 
that should be part of the integrated combat 
system. This includes summation from the 
Literature Survey of the concepts, models, 
methods, results, principles and guidelines for 
building dynamic systems that can help real-world 
decision-makers do their job more effectively and 
safely. This study addressed the new discipline of 
Cognitive Engineering (CE), the characteristics of 
dynamic and naturalistic environments and of the 
tactical combat environment, different levels of 
automation in computer-based systems and the 
place of a DSS, how to model a work domain or a 
complex system, the concept and characteristics of 
naturalistic decision making, different models of 
human behaviour and decision making, 
characteristics of naturalistic decision making, the 
question of how to aid the human operator at work, 
Ecological Interface Design (EID) framework and 
a proposal for improving it and presented several 
recommendations for building a well-engineered 
DSS within CCS. 

2. A more practical, but generic approach for 
establishing a CBDSS within an existing large 
CCS. This approach recommended a complete 
spiral process for Human-Machine System Design 
that takes into account both human and 
technological aspects of system development in the 
specific context of the design and implementation 
of a CBDSS for the Halifax class ships. For each 
phase of the development process a set of potential 
human engineering tools have been described, in 
some cases a preferred approach was selected, in 
others the question was left open until the issues 
are better understood. The following tasks have 
been identified as the cornerstones of the CBDSS 
development process in each phase of the spiral: 

• System Analysis, 
• Task Allocation, 
• System Development and implementation, 
• HCI,   developed   using   a   prototyping 

approach, 
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• System Evaluation, with 3 distinct areas 
of interest: (1) Function Usability; (2) 
Operational Impact; and (3) User Fit. 

3. The third perspective was to address the specific 
example of the technologies currently under 
development at LM Canada for the Halifax class 
ships and their impact on the functions on the 
frigate operators. 

The next section focuses on the generic approach for 
establishing a CBDSS within an existing large CCS. 

4. The CBDSS Development Approach 

This approach is based on the theoretical analyses of 
the realization of a computer-based DSS for the future 
shipboard CCS that should be part of the integrated 
combat system, and the identified and recommended 
approaches for Cognitive Analysis in the surveyed 
literature. It tries to present these methods in a 
structured frame, from the perspective of System 
Design, taking into account various constraints that are 
often left aside in cognitive engineering literature (e.g., 
technological uncertainty, compatibility with accepted 
System Design Frameworks, feedback loop after 
system evaluation, etc.). It also introduces constraints 
and requirements driven by the scope and specific 
context of a decision support system for the Halifax 
Class ships. 

The purpose of this section is therefore to present a 
global approach to Human-Machine Systems Design 
that takes into account both human and technological 
aspects, and that is suitable for the development of a 
CBDSS for the Halifax Class ships. 

The current CCS of the Halifax Class was developed 
under a so-called "classical" System Design 
framework. Given the computer power available back 
then, which directly impacted the level of automation 
and the amount of information available to the 
operator, the CCS design emphasized primarily the 
automatic system; the so-called Threat Evaluation and 
Weapon Assignment (TEWA) system was (and still IS) 
performing mostly numerical and simple rule-based 
calculations, while most of the higher-level (cognitive) 
activities were left to a team of operators. 

This approach to System Design aims to incorporate 
both the technology and the operator under a so-called 
Cognitive System Design Framework. In particular, we 
want to identify which of the approaches described in 
the literature is better suited for the development of a 

CBDSS in the specific context of the mid-life upgrade 
of the Halifax Class. 

From the cognitive engineering and system design 
literature, a common trend in the way human factors 
should be included as part of the traditional system 
design approach can be identified. Figure 2 is drawn 
from a combination of a number of approaches to 
system design such as human-machine system design 
"frameworks" and user-centred system design methods 
(built from [5] and [6]). 

• yatem I Requirement Aiwlyala 
Work Domifn 
Tasks Analysis 
User/Team Characteristics 

Pmtrmlnary Design 
System Architecture 

S8^ Function / Task Allocation 

Technology domain 
Function Algorithms 
Software Design 
Implementation 
Software Unit Testing 

Figure 2: High-Level Components of a Human- 
Machine System Design Framework 

This representation of the system design process seems 
quite "natural" to any experienced system or software 
designer, except that it allocates a larger place for 
concerns about the end user in the early stages of the 
design. The main difference is the dual nature of the 
subsystems development phase, for which the authors 
recommend a two-team approach, since typically the 
"human factors" experts generally will not be 
"technology" experts, and vice-versa. It is assumed 
that the "human factors" team will be heavily involved 
in the interface design and system testing phases. 

This picture, even though it seems complete and 
coherent, lacks a major component, namely the 
sequence and feedback loops, both between AND inside 
each subphase. 

Literature on system design presents at least three 
mature life-cycle methodologies that have been 
extensively used and documented in the past to develop 
large software systems: Waterfall, Prototyping and 
Spiral. 

Before we select one of these System Design 
approaches, and make it compatible with cognitive 
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engineering guidelines and methodologies, we need to 
identify the various constraints and considerations that 
will drive our choice. The following constraints and 
points have been identified from the literature, as well 
as from our knowledge of the context of Halifax Class 
and DSS issues: 

1. It is widely accepted that for the design of complex 
systems such as the current DSS, a Top-Down 
approach is recommended. This means that the 
system development should proceed from the 
general to the specific in terms of its components; 
for example, system analysis should first describe 
the global picture, then refine this picture in terms 
of subsystem, components, tasks, etc. until the 
system is defined well enough to allow design and 
implementation. This view is compatible with all 
the models presented above. 

2. Task splitting, i.e., the allocation of functions 
between the operator and the automatic system, 
requires a good estimate of the "algorithmic" 
performance of the automatic part of the system. 
Unfortunately, in some systems these algorithms 
won't be developed and tested until after the task 
splitting activity. Many cognitive analysis papers 
fail to take technological developments into 
account, thereby implicitly assuming that little 
technological uncertainty remains at the design 
phase and that the project risk mostly lies in the 
task splitting and interface design activities. These 
assumptions are incorrect in the case of a CBDSS 
for the Halifax Class. The design framework that 
will be selected will comprise a System Evaluation 
phase which should validate some high-level 
concepts such as User Fit (Situation Awareness, 
Communication Effectiveness) and Operational 
Impact of the complete integrated system. Because 
of the scope and complexity of the project, because 
of unpredictable technological performance, and 
also because of some unavoidable "ad hoc" task 
allocation included in the initial design, it is very 
likely that at the system evaluation stage, some 
initial task allocation decisions are overturned, 
thereby impacting the whole design and 
implementation cycle. Therefore the selected 
approach should provide a feedback mechanism to 
properly address incorrect task allocation or 
performance prediction, from the results of the 
evaluation of the joint human-machine system. 
This strongly suggests a spiral approach to system 
design. 

3. An important paradox exists throughout the 
cognitive engineering literature, when approaching 

the problem of selecting a "cognitively sound" 
system design framework. This paradox is well 
described in [6]: 

"(literature on human-system interactions) 
clearly establishes a pressing need to evaluate 
throughout the system development cycle, from 
concept formation to final acceptance and testing. 
(...) There is a balance to be achieved between 
conflicting needs. On one hand there is the need 
to accurately predict final system performance in 
the field with typical users working under realistic 
conditions. On the other hand, this prediction 
needs to be based on something less than the 
system itself. In particular, major decisions made 
at the concept level that misunderstand the 
nature of user needs or the operational 
environment, need to be caught before there has 
been a major investment in design or 
production." 

This implies a "testbed", and the closer it is 
from the expected "final" system, the better the 
input to the system design. We are therefore 
caught in a situation of "deadlock", where we 
would need a working prototype of the system in 
order to properly design this system in the first 
place. In the absence of a prototype of the "final" 
system, the designer must rely on two inputs: an 
existing, incomplete system on which experiments 
and observations can be made according to 
cognitive engineering principles, and a set of 
"educated guesses" on the optimal "final" system. 
Clearly, the larger the gap between existing and 
final system, the larger the number of designer's 
"guesses", the bigger the risk of identifying major 
misallocations and design problems at the later 
stages, and the larger the cost of iterating on the 
design and implementation to correct them. The 
selected framework should therefore try to 
minimize - or to segment - the gap between the 
"initial" and "final" system. Again, this strongly 
points towards a spiral approach to system 
development. 

A serious concern with large-scale projects such as 
a DSS for the Halifax Class is the risk that several 
system requirements change in the course of the 
project, or that new ones appear as a result of 
changing doctrine, main mission objectives, input 
sources or information needs. The scope and 
nature of the project also makes it very unlikely 
that all system requirements will be correctly 
identified and addressed up front at the beginning 
of the project (i.e., in the first few years).   These 
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considerations call for a framework which allows 
incorporation of new requirements late in the 
system development cycle, something the waterfall 
approach does not permit in principle. 

5. Another issue that follows directly from the 
previous consideration is the intended scope of the 
whole CBDSS design process. This will drive the 
important question as to where to start the 
investigation, what constitutes an acceptable risk 
and what level of effort is realistic in the context of 
the project. Sure enough, an ideal analysis would 
incorporate a complete redefinition and redesign of 
the control process on Halifax Class, relying on a 
complete, scientifically accurate, in-depth analysis 
of the work and task domains, and detailed models 
of the cognitive processes of the team of operators. 
Given the current context of the timelines, budgets 
and expectations, the affordability of selecting 
such Cognitive Analysis Frameworks (CAFs) is 
not obvious. 

6. Along the same line, a point that should not be 
overlooked is that the Halifax Class ships are 
already operational, and fully functional given 
today's operational requirements and information 
sources. The known shortcomings/deficiencies of 
the existing Combat System are not likely to be 
judged significant enough to justify any major 
redesign of the decision support systems available 
to Halifax Class operators. Therefore it is probably 
unnecessary to aim for a complete redesign of the 
whole system, and it is likely that any new CBDSS 

• for the Halifax Class will have to build up to a 
certain extent on the existing architecture and 
algorithms. As a consequence, the selected 
approach will probably need to accept constraints 
dictated by the existing Halifax Class system as a 
key input of the analysis. 

All these concerns and issues directly impact the choice 
of a suitable high-level system design framework 
useable for the development of a CBDSS for the 
Halifax Class, and also affect (even though to a lesser 
extent) the recommendations we can make on specific 
Human-Machine system methodologies to be used in 
each phase of the System Design life cycle. 

Considering the issues mentioned above, and 
considering the respective advantages and drawbacks 
of each proposed framework, the recommended 
approach to Human-Machine System Design is to 
follow a Spiral approach, as detailed below. 

If the Waterfall approach was seen as a potential 
approach at the start, despite the scope of the project, 
the need to support potential design iterations, the 
number and complexity of initial system requirements, 
as well as the potential consequences of late discovery 
of requirement or task allocation problems are all 
serious concerns, which make the waterfall approach 
extremely risky and impractical for the design and 
implementation of a CBDSS for the Halifax Class. 

The Prototyping approach is not suitable as a 
framework for the complete system development, first 
because of its less formal structure, and also because it 
suffers from some of the drawbacks of the Waterfall 
approach, namely the fact that the requirement analysis 
and task allocation are made up front, at the beginning 
of the project. However, the prototyping model is very 
appropriate for some of the components where a large 
amount of technological uncertainty remain and which 
involve a research component, for instance in the area 
of software and algorithms development. The 
Testbed and HCI development constitute other 
examples. Such a prototyping development of 
subcomponents is intrinsic to the spiral approach 
proposed for the complete system. 

The Spiral model of System Design shown in Figure 3 
allows an iterative sequence of requirements/ design/ 
development/ evaluation cycles, incorporating a 
prototyping approach to system development as a risk 
mitigation mechanism at each new cycle of the spiral. 
This framework allows the customer to reduce the risk 
by periodically reviewing the requirements and 
evaluating a "completed", although not exhaustive, 
working system. It also allows to naturally take into 
account technological uncertainty by using intermediate 
steps to reduce the gap between the current and the 
final CCS, each phase feeding the next with a better 
understanding of system requirements. 

Requirement 
Analysis 

Risk 
Analysis 

System Design 

Task Allocation 

RaqukMMM Analy*!* 
Wok Domain 
Tasks Analysis 
Ustr/Taam Characteristics 

| Phm2 | | Plus» 

Evalualfon 
 ZSI 

Trahhg 

System 
Evaluation 

Testbed 

System Prototyping 

Figure 3: Refined Spiral Design Framework for a 
 Computer-Based Decision-Support System 
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This high-level spiral development model describes the 
general activities to be performed and their sequence 
and feedback loops. 

Each cycle of the spiral development starts with a 
requirement analysis, drawing from analyses of the 
work domain, system tasks and operator models, using 
analysis tools described further down. A risk analysis 
is then performed, followed by a "go/ no go" decision. 
It is assumed at this stage that only a subset of the 
complete CBDSS requirements will be considered at 
the initial cycle, with iterative additions made in 
subsequent phases. The same goes for the input 
analyses which will also increase in depth and breadth 
at successive iterations of the spiral process. 

Based on the selected requirement system architecture 
will be defined, together with a rigorous function/task 
allocation activity. The results of this phase will feed a 
dual development phase: a first, so-called "cognitive" 
development team will investigate the structure and 
activities to be performed by the team of operators, 
while a second "technological" team will develop a 
prototype of the expected functionalities. Because of 
the expected level of uncertainty, this technological 
development will follow a prototyping approach, 
including implementation and unit testing of the 
components involved. This phase culminates in a quick 
validation of the initial task splitting and system design; 
in the case of a serious technological problem or task 
misallocation resulting in obvious performance 
degradation, it might be necessary to go back to the 
system design phase for a revision of task allocation 
(dotted line) before going to final system evaluation. 

Finally, a HCI is developed from the previously 
identified tasks to be performed by the operator(s), 
following    a    prototyping    approach. Testbed 
implementation follows, in order for a human factors 
team to evaluate the performance of the 
human/machine system. This evaluation results in a set 
of conclusions, which become system requirements for 
the next loop of the spiral development. 

5.        The Framework Application 

The current CPF DSS Demonstration testbed 
architecture is excellently suited for application of the 
Refined Spiral Design framework for the CBDSS for 
Halifax Class, described above. Its modularity, 
independence of its components and flexibility in re- 
working/adding components will permit addressing the 
issues identified above. It will easily accommodate 
parallel    "technological"    and    "cognitive"    team 

investigations and any iterations they may require as a 
result of their analyses. 
Based on the literature survey the tasks which should 
be included in the Halifax Class CBDSS development 
process include: 

1. System Analysis, including: 
a) A Cognitive Task Analysis 
b) Skills-Rules-Knowledge (SRK) as a model of 

the decision-making process 
c) Work Domain functional analysis using the 

abstraction hierarchy 
d) A model of the generic task of the operator 

2. Functions and Tasks Allocation, for which a few 
useable methodologies exist, but with no specific 
framework or methodology being particularly 
efficient or outstanding 

3. System Development and implementation, using 
a 2-teamed Prototyping approach 

4. HCI, developed using a prototyping approach and 
based on EID 

5. System Evaluation, with 3 distinct areas of 
interest: 
a) Function Usability (e.g., ease of use), which 

is well understood and for which several 
methodologies exist 

b) Operational Impact, using pre-defined, 
numerical measures of performance 

c) User Fit (including Situation Awareness and 
mental workload), which is much less 
parametric and precise. 

The testbed can be used to incrementally experiment 
with and evaluate various approached, with the aim to 
understand which of these methodologies can actually 
be implemented, whether they can be fully exploited, 
and to which level of detail they should be developed. 

6. Conclusion 

Based on a Literature survey on CBDSS for Command 
and Control this paper selected and described a 
complete Spiral approach to Human-Machine System 
Design that takes into account both human and 
technological aspects of system development, which we 
have presented and justified in the specific context of 
the design and implementation of a CBDSS for the 
HALIFAX Class ships. 

A testbed architecture that can accommodate and 
facilitate such an approach was also described. 
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The discipline of CBDSS for future C2 in terms of both 
technological and cognitive aspects is quite young, and 
significant more effort should be applied in analyses 
and evaluations in testbed environments to ensure that 
the user trusts, accepts and uses DSS capabilities. 
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Abstract—The cost-effective Interacting Multiple- 
Model (IMM) algorithm is applied for rapid and 
reliable fault detection and localization in system 
dynamics. The paper also presents a new IMM ap- 
proach for system parameter drift detection and es- 
timation based on augmented state models. 

Key Words: multiple models, fault detection, IMM 

1. Introduction 

The multiple model (MM) approach is used for 
solving a very wide range of problems under uncer- 
tainty and abrupt changes in system identification 
[6,7,12,13], target tracking [1-2,4-6,8], control of 
industrial plants [12], etc. Among all existing MM 
state estimation algorithms, the IMM is one of the 
most popular and cost-effective [1,2,6]. A new and 
important application of the IMM algorithm is de- 
tection and diagnosis of failures in system dynamics. 
In the recent papers [3, 10, 14] it is shown that the 
IMM estimator is a more reliable fault detector in 
comparison with the fault detectors using a bank of 
"non-interacting" single-model-based filters running 
in parallel [9, 10]. In [14] detection and diagnosis of 
sensor and actuator failures by IMM is investigated, 
as well. 

The purpose of the paper is to present how the 
IMM estimator can be applied when the faults cause 
structural changes in the system. A new IMM ap- 
proach based on augmented state models is also pro- 
posed to recognize and overcome erroneous system 
behavior changes due to parameter nonstationarity 

known as a "drift." Test examples demonstrating the 
efficiency of the approach are given. 

2.   EMM Estimator for Fault Detection 

Consider a system S composed of independent 
(non-interacting) subsystems St, i=X2,...,q con- 

nected in parallel (Fig. 1), with state vectors *,-, 

i=X2,...,q.   In the hard case these subsystems are 

unobservable separately. This system feature is ta- 
ken into account in the measurement equation, 
where the output y* is a sum of the outputs of all 

subsystems. 

u k 

Fig.l 

The system behavior is described by the equations: 

xk = Fk_t( Mk )xk.1 + Guk_x( Mk )uk_! 

+Gv,k-l(Mk)vk_l(Mk) 

Zk=Hkxk+wk, (2) 

(1) 
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* Supported by ONR via Grant N00014-97-1-0570, NSF via Grant ECS-9734285, and LEQSF via Grant (1996-99)-RD-A-32. 
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where xk = {x\,--;xA , xt e Rn" is the system state, 

Z e R"z is the measurement vector; u e R"u  is the 

control input vector; v 6 R"v and w € R"z are mu- 
tually uncorrelated, white zero mean noises with 
covariances Qk and Rk. 

The system mode Mk at time k is considered to 

be among I possible modes (models combinations), 
including the "zero" mode (all subsystems are ac- 
tive). The i-th combination of submodels in effect 
during the sampling period k of length T is denoted 
by Mk=i. The mode sequence is usually modeled 

as a Markov chain with known initial mode prob- 
abilities \i{ = P{M0 = /} and transitional probabili- 

ties ptj = P{Mk =j/ Mt_, = i}, i,j = 1,2,-• •,/. The 

IMM algorithm generates an overall state estimate as 
a weighted sum of state estimates xt, formed by a 

bank of Kaiman filters, working in parallel [2, 6]. 
Consider the fault detection problem. The main 

goal of IMM implementation is observing the system 
behavior to detect abrupt system structural changes 
caused by faults (or operators actions) or changes 
caused by a gradual system parameter drift. In our 
study the main attention is paid on the changes 
caused by faults in the system matrix F, and/or the 
matrices Gu and Gv, respectively, as opposed to 

faults on the measurement matrix H. 
Each system structure change is modeled as 

switching on/off of some subsystem(s). Here it is 
taken into account through an annihilation of appro- 
priate column(s) in the matrix F, Gu and Gv. The 

remaining subsystems form a particular system sub- 
structure and a respective mode. A set of mutually 
exclusive and exhaustive hypotheses, describing all 
possible combinations of independent modes can be 
created in this manner. The probabilities of transi- 
tions between the different modes are usually known 
or preset according to the specific problem. The 
topical substructure is recognized as the one with the 
greatest mode probability. 

Another important problem considered here is the 
gradual system parameter drift. An adaptive ap- 
proach is proposed in the paper. It is supposed that a 
set of initial discrete values mki (i = \,2,---,q) is 

known for each changing system parameter 

mk e 9T" . The i-th system mode Mt is related to 

the hypothesis "parameter Tt\ is changing while the 

others remain constant". The "zero" system mode 
assumes "no system parameter changes." For the i- 
th mode (i = 1,2,-■-,q) we introduce the augmented 

system vector Xkl = (xkl   Arr^j)   for the system 

described by: 
Xk.i = Fk-i.iXk-i,i + Gu,k-uuk-i + Gv,k-uvk-i,i • (3) 

Model (3) allows us to detect and estimate the pa- 
rameter deviation. The topical mode is recognized 
by the greatest IMM mode probability. 

3. Simulation Results 

A particular case of a linear tracking system con- 
sisting of three subsystems is considered in the ex- 
amples below. Each subsystem is described by the 
discrete analogue of the transfer function 
W(p) = l/(Ttp+ l),i = 1,2,3 obtained by sampling 

and a zero-order hold. The i-th time constant is de- 
noted by 7J. The sampling period is 1 s. The true i- 

th discrete state space model has 

Ft = eyTK Gui = Gui=l-e-^, Ht=l. 

The three true subsystems respectively have time 
constants TJ = 10 s, T^=2s, T$ = Is and 

3; F, = e™, GuA = Gvl =1-e™,  //, =1, 

S>: F2 = e-*5, G„>2 = Gv2 =1- e"03, H2 =1,       (4) 

S,: F3=e-1,Ga,3 = GVi3=l-e-1,    tf3=l. 

It is also denoted below G = GU = GV.   The input 

control process 14,. is a zero-mean stochastic one. 

All presented results are based on 100 Monte Carlo 
runs. 

Example 1. 
The system is characterized by unknown changeable 
structure 

[§,   S;,   S,],       for   0<fc<100 
[£),   S;], for   100<k<300 
[§,   §,   Si],   for   300<k<400 
[Si,   Si], for   400<k<500 

The matrices of the IMM models are: 

F^ck^e*1   J*  c1},^=(l-e-(U l-e^ l-e'1) 

F^dcg^1   e"05   oJ.G^fl-^l-^o)' 

F3 = dLag{0   e"05   e-1},G3 = (o 1-e-05  e_1) 

F4 = dcg{e*1   0   e"1}, G4 = (l - e~01 0 e'1) 

Ht=(l 1 1),Q£=0.012,I^=0.22, i=\Ä and 
Ufr is a white random process with a variance equal 

to 1.  diag{] denotes a diagonal matrix. 

S=\ 
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The mode transition probability matrix Pr and 
the initial mode probability vector fjj(0) are: 

Pr(i,i) = 0.97,Pr(i,j) = 0.01; 

/*fOJ = (0.94    0.02    0.02    0.02)'. 
The computed average mode probabilities of the 
MM fault detector are given in Fig. 2. 

Mode probabilities 

time (second) 
Fig. 2 

Normalized Estimation Error Squared 

%Jim \)w^ \H w_ 
time (second) 

Fig. 3 

It is obvious that the greatest IMM mode probability 
flmax always provides the right decision: 

• l</fc<100,     all     subsystems     are     active 

• 100<fc<300,     Sj     and     $     are    active 

• 300<fc<400,     all     subsystems     are     active 

• 400<fc<500,  Sj and S, are active (/^=/^). 
The Normalized Estimation Error Squared (NEES) 
[2] characterizes the filter consistency. It is shown 
in Fig. 3. 

Example 2. 
In the second test the true system dynamics is 
changed as follows: 

[S2\    for    0<*<200 

S = \   fo.SsJ    far   200 < it < 400   • 
[Si,S2,S3],    for   400<ifc<500 

Five IMM models are used: 

1) Fj = diag{0 e"05 o}, Gx = (o   1 - e-05   o) ; 

2) Models i=2,3,4 remain as in Example 1; 
3) The 5-th model coincides with the first model in 
Example 1. 

The mode transition probability matrix and the 
initial mode probabilities for the IMM are: 

Pr(i,i) = 0.92, Pr(i,j) = 0.02; 

^0; = (0.9   0.025   0.025   0.025   0.025)'. 
The average mode probabilities are shown in Fig. 4 
and the NEES is given in Fig. 5. 

Mode probabilities 

^WiytA/f*^ 

Vl ßs J"5 

*T»|i^».^^SII.S,, wi^jUäÜÜUL 

300 400 

time (second) 
Fig. 4      Normalized Estimation Error Squared 

uv^JW4 VJMHX Wi 
Fig. 5 

time (second) 

Example 3. 
This example illustrates the efficiency of the pro- 
posed approach in parameter drift detection and es- 
timation. It is presupposed that the drift A7J can 
occur in only one true subsystem transforming it into 
a nonlinear one. The problem is to detect where and 
when the drift appears, if there is any, and to esti- 
mate its direction and magnitude. 
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The different system modes are determined based 
on the time constants Tt, in which the drift can arise. 
Following the above idea, the system state vector has 
to be augmented by A7J > 0 (for convenience here 

it is chosen Arrj = -1/A7J). An additional 'no 
drift' hypotheses is introduced (i= 0), so the IMM is 
working by four EKFs running in parallel. 

The i-th EKF equations have the form: 
Xi,k/k = Xi,k/k-\ + Ki,kYi,k ' 

xi,k/k-l = f\xi,k-l/k-l>^mi)' 

Yi,k =)>k ~Hixi,k/k-l> 

Pi,k/k-l =fiXpi,k-l/k-l[fi j  +GkQi,kGk> 

Si,k ~ HiPi,k/k-lHi +R> 

%i,k ~ Pi,k/k-lHi^i    ' 

Pi,k/k = Pi,k/k-l ~^i,k^i^i,k • 

where xik/k and xik/k_x are the filtered and predic- 

ted estimates of xk; yi is the innovation process 

and St - its covariance matrix; Kt is the filter gain; 

Pt is the error covariance matrix, and/)* = dft/dxt, 

'/ = Ö3. 
The MM is based on the following four hypothe- 

ses ht: 

• \: there is no drift: 

F0 = cficö{e-01   e"0-5   ex   l}, 

Q) = cücg({l-e-01   1-e-0-5   1-e-1   o}, 

Q)=dLcglom2    0.012    0.012    0.6}; 

• Ä,: a drift appears in subsystem St: 

Fu=diag{&-°l+^} e-*"5  e"1  l}, 

Glk=diag\l-e-<il+^4)  l-e^5  1-e"1  o} 

, Q = <Wo.05   0.012   0.012   0.6}; 

• h1:a drift appears in subsystem S2 '■ 

F2tk=diag{e^  e-***>«>  e"1  l}, 

G2tk=diag{l-e^1  l-e-«**'<4>  l-e~l o} 

Q2=diag{o.012 0.05 0.012 0.6}. 

• hj: a drift appears in subsystem S3: 

FXk=diag{e^  e^5  e^**«*  l}. 

G%k=diag{l-e^  1-e^5  l-e~l+^4) o} 

Qs = <Wo.012   0.012   0.05   0.6}. 

The measurement matrix is predefined as: 

H, = (l   1   1   0), i=Ö3. 

The respective Jacobians f' are: 

• /d = Fu./aJ(M) = **a>-ai+^; 
• f£k=Fu,f£k(2A) = xk(2)e^5+S^; 

• tik = FXk,fik(3,4) = xk(3)e-M>(4>. 

The unknown true drift is modeled as a slow, mod- 
erate and fast (relatively to the time constants) 
change as follows: 

xk(4) = xk_1(4)-0mJ5. (5) 
At the beginning all subsystems are working without 
drift. Since it is assumed that the drift can be in only 
one subsystem, the transition between drifting sub- 
systems       is       not       considered;       that       is, 
Pr(l,l)= Pr(2,2)= Pr(3,3) =1. So, 

'0.94 0.02 0.02 0.02^1              fO.97^ 
0.00 1.00 0.00 0.00 
0.00 0.00 1.00 0.00 

^0.00 0.00 0.00 1.00 J 

To provide better overall performance the system 
covariance matrix Q is introduced. The description 
of the system input is modified for this purpose. It is 

a vector (w + v    u + v    u + v    0). The element 

0(4,4) is chosen to be much bigger than the other 
elements to provide a fast response to the parameter 
drift. A large value is also assigned to the element 
Q{i,i), when the filter corresponding to the i-th hy- 
pothesis is running. 

The estimated change can not be positive. For this 
reason an additional hard logic is used: 

A(4) = 0,when Jc(4) >0. 

• Test No. 1: There is no drift. The average mode 
probabilities, the real value of A(4) and its estimate 

A(4) , as well as the NEES are given in Figs. 6-8. 

• Test No. 2: A gradual change (5) has occurred in 
subsystem S^. The average mode probabilities, the 

real value of A(4) and its estimate A(4) , as well as 
the NEES are shown in Figs. 9-11. 

Pr = n(o)= 0.01 
0.01 

10.01; 
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• Test No. 3: A gradual change (5) has occurred in 
the subsystem Sj. The respective plots are given in 

Figs. 12 -14. 
• Test No. 4: A gradual change (5) has occurred in 
S^. The respective plots are given in Figs. 15 -17. 

As can be seen from the plots, the algorithm re- 
solves the "competition" between its models after a 
period of drift accumulation. 

It can be observed from the NEES plots that the 
consistency of the drift parameter estimate deterio- 
rates when the drift brings the subsystems' parame- 
ters near one to another and a duplication of the sub- 
systems appears. The drift in 7J is the worst case 

from this point of view. 

Mode probabilities 

Mode probabilities 

an «n 80 100 

time (second) 
Fig. 6 

Fig. 7 
time (second) 

Normalized Estimation Error Squared 

1.4 .i 

1.2 

\ 
0.8 

\ 
0.6 ■  \ 

0.4 
^AANA     AAAA A  /JW-A' 

0.2 vvTw^    \Wv-> 

time (second) 

time (second) 
Fig. 9 

Normalized Estimation Error Squared 

40 SO 80 100 

Fig. 11 
time (second) 

Mode probabilities 

time (second) 

Fig. 8 
Fig. 12 
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Mode probabilities 

time (second) 
Fig. 15 

time (second) 
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Fig. 17 

Fig. 16 

Finally, it is noted that the effect of divergence in 
the Kaiman filters due to numerical errors did not 
appeared in all the test examples, in spite of the fact 
that some of the matrices are sparse. This differs 
from the situations reported in [14]. 

4. Conclusions 

The paper investigates the application of the IMM 
algorithm in fault detection and localization in the 
presence of abrupt changes in the system structure as 
well as in the presence of gradual parameter drift. 

The dynamics changes are appropriately reflected 
in the system model and in the IMM transition prob- 
ability matrix. Decisions are taken on the basis of 
the mode probabilities. It is shown that the IMM 
estimator can be used to detect system structure 
changes in general. 

A new adaptive approach based on IMM estimator 
is proposed also to detect and estimate system pa- 
rameter drifts. This gradual parameter change is 
represented as an additional component of the state 
vector. It is appropriately reflected in the system 
description. The algorithm's efficiency is confirmed 
by Monte Carlo simulations. 
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Abstract 
This paper describes a diagnostic system for process- 

ing high-bandwidth vibration data from distributed sen- 
sors for monitoring and diagnosis of electromechani- 
cal machines. The system employs time-frequency and 
principal component analysis techniques to extract and 
compress features and a Bayesian decision analysis to 
combine and classify data from multiple sources. Ex- 
perimental multi-sensor diagnosis results are reported 
for classifying motor and solenoid vibration signatures 
from the paper drive plate of the Xerox DC265 digital 
copier. 

Keywords: diagnostics, sensor fusion, time-frequency 
analysis, wavelets, STFT, Bayesian decision analysis 

1    Introduction 

Recent advances in batch-fabricated microma- 
chined sensors and electronics have the potential to 
enable a new generation of condition-based moni- 
toring and diagnostic systems for complex machin- 
ery. However, taking advantage of increased sensor 
and processing capabilities demands corresponding 
advances in computational techniques for analyzing 
massive amounts of data from distributed sensor 
systems. 

The work in this paper is part of a larger effort 
at Xerox to identify and develop scalable process- 
ing architectures for interpreting data from many 
sensors that may be scattered or embedded inside 
a system. Specifically, in this paper, we present 
work on combining information from vibration sen- 
sors for in-situ diagnosis of component health on a 
paper drive plate from a Xerox Document Centre 
265 (DC265) digital copier. The focus is on sensor 
data analysis, including the development of flex- 
ible time-frequency diagnostic filtering techniques 
for sensor-rich environments. 

Although other researchers (e.g. [1]) have inves- 
tigated time-frequency techniques for diagnostic vi- 
bration analysis, the emphasis in this paper is on 
the use of time-frequency filters to combine infor- 
mation from large distributed networks of sensors 
for machine diagnostics. We present a framework 
for analyzing time-frequency data from many sen- 
sors, where it is assumed that training data from 
lifetime tests is available, but it is too costly to 
explicitly model the dynamics of the physical envi- 
ronment around every sensor. 

The diagnostic data processing system we inves- 
tigate involves four major components: (1) signal 
feature extraction, (2) data clustering and compres- 
sion of high-dimensional feature space information, 
(3) data aggregation of signal features from multi- 
ple sensors, and (4) signal classification and deci- 
sion analysis. (See the block diagram in Fig. 1.) 
Data from lifetime tests of the system are used to 
train the diagnostics algorithm about normal and 
abnormal operating characteristics. The training is 
performed offline to generate the run-time diagnos- 
tic algorithm. 

In the following sections, we first describe the ex- 
perimental setup for the diagnostics testbed (Sec- 
tion 2). Section 3 describes time-frequency fea- 
ture extraction techniques, the short-time Fourier 
transform (STFT) and wavelet analysis. Section 4 
describes the use of principal component analysis 
(PCA) and other techniques to compress the re- 
sulting high-dimensional feature space onto a lower 
dimensional subspace based on the training data 
from lifetime tests. 

The feature space data from different sensors or 
data analysis methods is aggregated using a statis- 
tical Bayesian analysis of probability density func- 
tions extracted from the training data (Section 5). 
A Bayesian discriminant function (Section 6) is 
then used to produce a simple "health index" that 
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Figure 1: Block diagram of the diagnostic system. 

Main Drive Motor      Solenoids     Elevator Motors 

Figure 2: Diagnostic testbed: paper drive plate 
subsystem of Xerox DC265 copier. 

measures how far the system is away from normal 
operation, or, more generally, an index that mea- 
sures how close the current behavior is to identified 
modes of operation or fault conditions. These in- 
dices can then be used to generate decision classifi- 
cations. Finally, we report on the results of apply- 
ing this algorithm to experimental data (Section 7). 

2    Experimental Setup 

The drive plate subsystem of a Xerox DC265 copier 
(see Fig. 2) was chosen as a diagnostics testbed be- 
cause it is a relatively complex electromechanical 
system involving different types of actuators with 
multiple modes of operation. The drive plate is re- 
sponsible for acquiring paper from the paper tray 
and directing it to the paper path for xerographic 
processing. It contains a number of actuators in- 
cluding a main motor, two solenoids, and two ele- 
vator motors. 

The testbed is instrumented with vibration sen- 
sors (PCB Piezotronics, model J352C65).   Vibra- 

tion sensors are used in the initial tests because 
they provide generic information that is useful for 
diagnosing different types of actuators, and because 
they require high data throughputs that may be im- 
portant in future distributed sensor applications. 
The vibration sensors on the drive plate are sam- 
pled by an analog-to-digital converter (ADC) at 
50 kHz with 12-bit resolution. The data is over- 
sampled to provide better accuracy in the optimal 
bandwidth of the sensor (10 Hz-8 kHz). 

In order to test the diagnostic processing tech- 
niques, actuator behavior is purposely compro- 
mised in some experiments. In one experiment a 
washer is attached to the main motor to simulate 
unbalanced behavior. In another experiment a rub- 
ber plug is used to limit the plunger travel distance 
in one of the solenoids. The objective of these ex- 
periments is to see if it is possible to distinguish 
normal from compromised actuator behavior and 
to identify actuator operating modes by analyzing 
the vibration signatures from multiple sensors. 

3    Time-Frequency Analysis 

Two time-frequency-based techniques are used to 
analyze the vibration data: windowed short-time 
Fourier transforms (STFT) and wavelet analy- 
sis. For the diagnostic algorithms we have imple- 
mented, two training steps are performed offline 
based on data from lifetime tests in order to estab- 
lish the normal and/or abnormal operating charac- 
teristics of the device. Sections 3 and 4 describe the 
first training step which involves the use of time- 
frequency analysis to generate a feature space that 
properly captures diagnostic information. The sec- 
ond training step (Section 5) is a Bayesian analysis 
of the data, which involves approximating a Gaus- 
sian density function in the product space of the 
feature spaces for all the sensors involved. 

For the first training step, the STFT or wavelet 
analysis may be used directly to create the feature 
space, or, more likely, the training data may be 
used to compress the data onto a lower-dimensional 
feature space. For example, we use principal com- 
ponent analysis (PCA) to reduce feature space di- 
mensionality. 

For reference in the following discussion we 
present block diagrams of the two specific imple- 
mentations we used in analyzing DC265 paper drive 
plate data (Fig. 3). One should note, however, 
that modules in the two approaches could be in- 
terchanged if desired. For example, one could use 
PCA on the wavelet-based feature space as illus- 
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(a) STFT-based analysis of drive plate data 
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(b) Wavelet-based analysis of drive plate data 

Figure 3: (a) Block diagram showing STFT-based 
diagnosis algorithm implemented for DC265 drive 
plate vibration data, (b) Block diagram showing 
wavelet-based diagnosis algorithm implemented. 

trated with the STFT analysis. 

3.1     STFT 

STFTs have been used previously in a wide vari- 
ety of applications including speech, radar, and im- 
age processing [2]. For our diagnostic analysis, the 
strategy can be summed up as follows: During run 
time, the STFT method involves looking at a slid- 
ing window of vibration data in time, computing 
the Fourier transform of the data in the window, 
and using the transformed signal to classify the be- 
havior based on its similarity to the training data. 
The question is how to make the most effective com- 
parison between the incoming data and the training 
data given data from many sensors. 

Note that spectral information from a dis- 
crete Fourier transform can be represented in 
terms of a high dimensional feature space: Sup- 
pose that each spectrum has N data points 
{(wi,ai),(a)2,a2),---,(wjv,"Jv)}, where the w's 
are frequency samples and a's are magnitudes of 
the spectra. Each spectrum can be represented as 
a single point or vector («1,02, • • -^N) in an N- 
dimensional feature space, S. 

The first training step involves the collection of 
spectral data from numerous windows in time. Us- 
ing principal component analysis, the sample spec- 
tra from the training data are used to collapse the 
high dimensional feature space S onto a lower di- 
mensional subspace that captures the most impor- 
tant diagnostics information. 

For example, typical spectra resulting from the 
main motor vibration signature for a window of 

(a) 
Vibration spectrum for motor 

Frequency (Hz) 

(b) 

Figure 4: (a) Motor vibration time series (b) Sam- 
ple frequency spectra for normal vs. compromised 
motor behavior from a time window of 655 ms. 

length 655 ms is given in Fig. 4 along with the orig- 
inal time-series vibration data. The window length 
used should depend on the frequency bandwidth 
of interest. Fig. 4 (b) illustrates a detectable dif- 
ference in the spectra for normal and compromised 
motor behavior. Note that for this graph and other 
vibration analysis in this paper, incoming signals 
are first decimated and low-pass filtered to reduce 
high frequency noise and aliasing effects from the 
sensors. 

3.2    Wavelet analysis 

A wavelet transformation of a signal produces a 
time and scale (which correlates to frequency) de- 
pendent expansion of the signal [3]. It is partic- 
ularly useful for the analysis of non-stationary or 
transitory signals that do not have persistent sta- 
tistical moments. Specifically, the wavelet analy- 
sis employs a family of wavelets, the so-called or- 
thonormal basis functions {il>un,tj}(n,j)eza> where 
un and Sj are position and scale parameters and 

^«■.,«,■00 = MM ")• 
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Solenoid pull-in signal 

(b) 

Figure 5: Wavelet analysis of transitory signals: 
(a) Solenoid pull-in signal; (b) Wavelet coefficients 
plotted as a two-dimensional intensity map: hori- 
zontal axis - time; vertical axis - scale. The coeffi- 
cients are computed by a discrete wavelet transfor- 
mation (DWT) with the Daubechies wavelet (db4- 
8). 

Wavelet coefficients are obtained by convolving a 
wavelet with the signal f(t): 

/+°o 
f(t)rUiS(t)dt. 

•00 

Wavelet analysis has been applied by other re- 
searchers for fault detection; however most exist- 
ing approaches aim at novelty or event detection 
against a steady-state background [4, 5], or are 
tuned to exploit system-specific features [6]. The 
wavelet-based discriminant analysis presented in 
this paper exploits not only event detection but also 
uses specific wavelet patterns to classify signals into 
different operating conditions. 

For example, in Fig. 5 we take a time window 
of the vibration signal collected from the pull-in 
actuation of a solenoid on the testbed. The re- 
sult is illustrated as an intensity map in the two- 
dimensional time-scale plane, the horizontal axis is 
the time, and vertical axis is the scale of the sig- 
nal. Each tile records the amplitude of the wavelet 
expansion coefficient for the signal at scale level 2J 

and position l?n in time. 
In Fig. 5(b), the onset of the pull-in signal can be 

identified in time by a set of high-intensity tiles at 

levels 1-4. As features of the signal vary, the wavelet 
coefficients vary accordingly. Thus, the intensity 
variation in the distribution map of the wavelet co- 
efficients could be used to pin-point when a change 
of interest occurs and what the change is in moni- 
toring and diagnosis. 

During the training phase, multiple windows 
{si,S2, ...,s„} of transitory events (in our case 
solenoid firings) are extracted to form a training 
population for a given operating mode or condition. 
A feature vector dl £ S for window s* is formed by 
concatenating the coefficients of the wavelet trans- 
formation of Si at all levels of interest. In practice, 
the number of levels to consider is a function of the 
signal energy distribution across the levels, also to 
be determined from the training samples. 

4    Feature space compression 

The feature space 5" produced by the STFT 
or wavelet transform is often high dimensional. 
This section describes techniques to compress 
this feature space into a more manageable lower- 
dimensional space. This is important in order to 
alleviate problems from overfitting. It also helps 
reduce communications and computational band- 
width requirements which is potentially critical for 
large sensor networks where data from many sen- 
sors must be aggregated. 

4.1    PCA 

For the STFT algorithm, principal component 
analysis (PCA) was used to project S onto a lower 
k—dimensional subspace, 5*. In the past, PCA has 
been used in a wide variety of settings including as a 
feature-space compression technique for a Bayesian 
classifier [7], and to produce reduced data char- 
acterizations of STFT's [8]. It seems particularly 
well-suited to the sensor fusion problems addressed 
in this paper because of the strong tendency for di- 
mensionality explosion with increasing numbers of 
sensors. 

The principal component analysis can be inter- 
preted as follows: Let {xi,X2,...,xn} be vectors 
in S, each representing a single windowed spectrum 
from the training data, and let ra = dim(S). For 
any k < m the idea is to project the feature space 
onto a fc-dimensional subspace, Sk, such that Sk 
minimizes the sum of the squares of the distances 
from each of the aij's to Sk- 

Computationally, this is accomplished as fol- 
lows: Let X be the matrix whose columns are 
{xi,x2,.. .,xn}.  For  each   k   <   m,  Sk   is  the 

947 



space spanned by the principal component vec- 
tors, {«i,U2,--•)«*}> which are given by the first 
k columns of the matrix U in the singular value 
decomposition (SVD) of X : 

X = UZVT 

where U and V are orthogonal, and E = 
diag{<Ti,(T2, ■■., <rm) with <?\ > <r2 > ... > crp > 0, 
and p = min(m, n). 

For k « N the resulting spectral data repre- 
sentations on Sic contain far less data, but should 
capture the diagnostically useful information. Each 
Xi is now written in the new ^-dimensional coor- 
dinate system based on the principal component 
basis vectors {ui, u2, ...,uk}. For diagnostics pur- 
poses, we also keep one additional coordinate for 
each X{ containing the residual distance between X{ 
and Sfc. This way the resulting feature space not 
only contains information that closely reconstructs 
the original feature space, but also provides infor- 
mation about how far away the original data was 
to the new representation. 

4.2    Sparsity of feature space 

Alternatively, the sparsity of the feature space can 
be exploited to compress the dimensions. Feature 
vectors computed from wavelet transform are typ- 
ically sparse, with a large number of small coeffi- 
cients which may be eliminated without losing diag- 
nostically significant information. In other words, a 
signal can be adequately approximated using only 
a subset of feature dimensions that are tuned to 
record larger components of the signal. This tech- 
nique was used to obtain a factor of two compres- 
sion ratio for the wavelet analysis of the solenoid 
pull-in test case. 

5    Bayesian Aggregation 

Once a suitable feature space representation of the 
data is obtained, the question is how to combine 
information from multiple sensors and analysis al- 
gorithms, and how to make decisions regarding fea- 
ture space output. 

The first step involves combining features from 
multiple signals by considering a composite feature 
space consisting of the product of all the features 
spaces. In other words, suppose that the feature 
vectors from m sensors or data sources are given by 
{xi,x2,...,xm}. We then consider the composite 
feature vector x = f]™ Xi. 

Bayesian decision theory (e.g., [9]) can then be 
used to aggregate the data in the composite space. 
The probability that a hypothesis Hi is true given 
evidence a: is given by: 

p(x\Hi)P(Hi) 
P(Hi\x) = 

p(x) 

Omitting the normalizing constant p(x) (indepen- 
dent of Hi), the heart of the analysis is to estimate 
the conditional probability density function p(x\H,) 
for each of the hypotheses, H{. 

Note that if data is not available from all the 
various fault conditions, it is also possible to use 
this framework to make decisions based on how far 
from normal the observed behavior is. In this case, 
the objective would be to simply estimate p(x\H) 
from the data where H assumes a normal operating 
condition. 

So how does one determine p(x\Hi) from the 
training data information? In many interesting 
cases, it is feasible to assume that the sample data 
distribution p(x\Hi) is close to Gaussian normal. 
In this situation, we may approximate the density 
function by simply estimating the mean and co- 
variance of each sample cluster corresponding to a 
given hypothesis. 

There are a few issues to point out. First of all, 
it may not be possible to approximate the density 
as Gaussian. In this situation, a number of tech- 
niques are available for approximating the density 
function, such as using a mixture of Gaussians [11], 
although, of course, the situation becomes more 
complex if the density function is not easily rep- 
resented. 

Second, if the dimensionality of the original fea- 
ture space vectors has not been compressed, the di- 
mensionality of the product space of feature vectors 
may be very large. There may not be enough data 
to generate a full representation of the density func- 
tion. This is the case for the wavelet-based analysis 
(see the discussion in Section 6). 

Note that if there are large numbers of sensors, 
this may also contribute to feature space dimension 
explosion. In this situation, it may be possible to 
hierarchically combine data from groups of sensors 
at a time. This increases the efficiency of the ap- 
proach and reduces demand on data, but the draw- 
back is that information about cross-correlations 
between sensor readings may be lost. 

6    Discriminant Analysis 

In this section, we assume that the density function 
p(x\Hi) can be represented as a Gaussian. For sim- 
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plicity, it is then helpful to employ a discriminant 
function for classifying inputs [10]. 

We consider the discriminant function gi(x), a 
monotonic function of the a posteriori probability, 
logP(Hi\x): 

9i(x) = lo6pix\Hi) + logP(Hi). 

Since it is often difficult to estimate the prior 
P(Hi), for our experiments we drop the log P(Hi) 
term and use the gi{x) = \ogp(x\Hi). This gives the 
maximum likelihood classifier that selects Hi as the 
winning hypothesis if sup(sf,(x)) > sap(gj(x)) for 
all j ^ i, where x may vary over the entire feature 
space. 

For Gaussian density functions we have: 

p{x\Hi) = 
(2^/2 |E,-1!/2 

where m and St- are the mean and covariance of 
feature vectors of class i and d is the dimension of 
the feature space. Discarding terms in g(x) that is 
independent of i, we have 

gi(x) = -\(x-tLi)
tVT\x-pi)-±log\Ei\.    (1) 

When training data is only available for normal 
operation (hypothesis H), then g(x) = p(x\H) rep- 
resents the key statistic to measure. We define a 
"health index," h(x) as follows: 

h(x) = ((x-fi)tZ-1(x ■A*)) 
1/2 

h(x) is sometimes called the Mahalanobis dis- 
tance [10], and measures how far x is away from 
normal behavior. This is the primary statistic used 
in the STFT analysis. 

Note, however, that the covariance matrix £,• in 
Eq. (1) is an N x N matrix where N is the dimen- 
sion of the composite feature space. Thus deter- 
mining E,- requires the estimation of (JV2 -f N)/2 
scalars. This can lead to overfitting of data if the 
feature space dimension is large, and the sample 
pool is small. 

For feature spaces compressed with PCA, the 
full covariance matrix is estimated directly in order 
to compute h(x). However, for the wavelet anal- 
ysis, if the feature space is not compressed, then 
data overfitting is an issue. One way to circumvent 
this difficulty is to assume Es- = a21 where <r2 is 
the Euclidean-norm variance of the feature vectors 
from the training data. 

In this case, the discriminant function gi(x) sim- 
plifies to the following "similarity" measure: 

Si(x) 
\x - m\ 

2(72 
logo- (2) 

This function measures how close the input signal 
is to each training sample cluster. The surfaces of 
constant distance are hyperspheres as opposed to 
the hyperellipsoids measured by h(x). In practice 
this means that each feature space or sensor reading 
is considered independently and cross-correlations 
are ignored when Si(x) is used; however the tech- 
nique is robust for high dimensional spaces since 
only one variance parameter is estimated. 

Alternatively, the approach in [12] does not as- 
sume feature independence and instead uses a prob- 
abilistic graph to model the dependencies among 
different levels at additional computational cost. 

7    Results 

This section describes results for using the diagnos- 
tics techniques on data from the DC265 paper drive 
plate testbed. 

Fig. 6 shows the result of applying the STFT- 
based analysis outlined in Fig. 3(a) onto main mo- 
tor vibration data from 3 sensors mounted on dif- 
ferent parts of the drive plate. Training data is 
only used for the "normal" motor vibration, and 
the objective is to see if the resulting health index 
can distinguish between normal and compromised 
motor behavior. 

A window of length 655 ms is used. Longer 
windows capture lower frequencies better but are 
more computationally intensive and take longer to 
respond. The first 2 principal component features 
and one residual component feature are kept dur- 
ing the PCA compression stage of the algorithm. 
Keeping more principal components keeps more in- 
formation but encourages dimensionality growth. 
Both parameters may be chosen during training by 
looking at signal-to-noise ratios as described below. 

Fig. 6(a) shows the individual time-series trace 
of the health index from each of the three sensors. 
There are six traces corresponding to the results 
for each sensor on two vibration data sets: one 
with a normal and one with a compromised mo- 
tor running. Sensor #2 is the most sensitive to 
the behavior difference but all three sensors show 
a separation between the responses of normal and 
compromised motors (note that smaller values of 
the health index indicate input closer to normal). 
Fig. 6(b) shows the composite health index when 
data from all three sensors are aggregated together. 
It is clear that a simple thresholding would perform 
well for selecting normal from compromised behav- 
ior. 

The composite index performs better than any of 
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Figure 6: (a) Health index for three vibration sen- 
sors run on two different data sets: when the nor- 
mal main motor and when the compromised main 
motor is running, (b) Composite health index of 
all three sensors for the same two data set. 

the individual sensors. This can be shown by con- 
sidering signal-to-noise (S/N) ratio statistics. For 
two hypotheses Hi and H2, we define the S/N ratio 
r(x) of health index x(t) as follows: 

r(x) = 
\E(x\Hi) - E(x\H2)\ 

y/QüiVarWHi) + Var(x\H2)) 

where E{x\Hi) is the expected value of x given Hi 
and Var(x\Hi) is the variance statistic of x given 
Hi. Table 1 details not only the S/N ratio contribu- 
tion for each sensor, but also breaks down statistics 
for each principal component in the sensor feature 
spaces. Normally one would expect that additional 
information would tend to improve S/N ratio. In- 
deed, the composite S/N ratio is higher than that 
of any single sensor; however, because of the lim- 
ited sample size of the data, this is not always the 
case as with the principal component breakdown 
for sensor #2. 

Fig. 7 shows the time-series trace of the health 
statistic from the same three vibration sensors used 
in the previous experiment except this time the 

component 
total 1 2 3+ 

sensor 1 1.79 0.81 4.00 4.69 
sensor 2 4.88 0.75 13.60 11.48 
sensor 3 2.93 0.74 5.01 5.38 
composite 13.56 

Table 1: Signal-to-noise ratio results from multi- 
sensor STFT analysis for distinguishing normal vs. 
compromised main motor vibration. 

input consists of pull-in firings from a solenoid. 
Virtually the same algorithm is used for detect- 
ing solenoid behavior as for with the motor except 
that the window length used is a factor of 4 less 
(164 ms), since low frequencies are less important 
for solenoids, and 3 principal components are kept 
instead of 2. 

Fig. 7(a) shows 6 time-series of health index 
traces. Three traces show individual sensor health 
index results from an experiment with a normal 
solenoid, three traces show results from a different 
experiment with an abnormal solenoid. Fig. 7(b) 
shows composite health index results for the two 
experiments. We see that the STFT method is 
flexible enough to detect normal vs. compromised 
behavior for solenoids as well as motors. 

The final two figures show results from the 
wavelet-based analysis outlined in Fig. 3(b). In this 
case, we assume training data is available from all 
the various operating conditions, and the problem 
is to choose which operating condition or fault hy- 
pothesis is correct given new input data. 

Wavelet coefficient features are extracted from 
the training data for solenoid and motor vibration 
signals and compressed using the thresholding tech- 
nique. We compute the coefficients using the dis- 
crete wavelet transform with the Daubechies db5-3 
basis functions on windowed signals of length 40 
ms. 

For each operating condition training data set, 
the resulting feature space data is used to gener- 
ate the similarity measure given in Eq. (2). Figs. 8 
and 9 plot the similarity measure for signals with 
respect to each of the known conditions or faults. 
Using the output of the similarity measure, the sys- 
tem classifies the signal at each time into one of the 
conditions or faults based on the classification of 
the dominant response. 

In Fig 8, the objective is to classify vibration 
data from a solenoid pull-in event. The similar- 
ity measure exhibits a dominant peak response for 
the solenoid pull-in condition (solid line), indicat- 
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Health index from individual sensors Solenoid pull-in signal 

1 1.6 2 
Time (sec) 

(a) 
Health index: combined sensor information 

Figure 7: (a) Health index for three vibration sen- 
sors run on two different data sets: pull-in vibration 
data from a normal and compromised solenoid, (b) 
Composite health index of all three sensors for the 
same two data sets. 

ing that a pull-in condition has occurred (the time 
for the event is determined by subtracting the mov- 
ing window length from the time the peak response 
in the similarity measure occurs). 

In Fig. 9, a solenoid pull-in signal is mixed with 
a motor signal. In this case, the similarity mea- 
sure for the pull-in condition also responded with a 
dominating peak. Note that after the solenoid tran- 
sient tapers off, the measure for the motor becomes 
dominant. 

7 7.05 7.1 
Time (sec) 

(a) 
Signal discriminant analysis 
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(b) 

Figure 8: Wavelet-based signal discriminant anal- 
ysis of solenoid signals: (a) Solenoid pull-in signal; 
(b) Similarity measures for five conditions: normal 
pull in, normal drop out, abnormal pull in, abnor- 
mal drop out, and no signal. 

application-specific overhead. The time-frequency 
sensor data aggregation techniques in this paper 
appear to be promising tools, since multi-sensor 
diagnosis results are demonstrated using radically 
different solenoid and motor vibration signals with 
little adjustment in the algorithms. In the case of 
the wavelet technique, five different fault conditions 
are reliably classified. 

8    Conclusion 9    Acknowledgment 

In this paper we demonstrate how time-frequency 
analysis of multiple sensors can be used to diagnose 
actuator behavior based on vibration data from a 
complex multi-mode electromechanical system, the 
Xerox DC265 paper drive plate. 

The general objective of this work is to de- 
velop scalable processing techniques that are flex- 
ible enough to perform on a wide class of dis- 
tributed sensor and actuator systems without high 
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instrumenting the DC265 drive plate testbed. We 
would also like to thank Bob Siegel and Charles 
Coleman for providing the drive plates and helpful 
discussion about diagnostics techniques. In addi- 
tion, we thank Eric Manders, Eric Jackson, Koen- 
raad Van Schuylenbergh, Sriram Narasimhan, and 
John Gilbert for testbed setup assistance, data col- 
lection, and useful discussions about algorithms. 
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Mixed solenoid/motor signals 
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Figure 9: Wavelet-based signal discriminant anal- 
ysis of mixed motor and solenoid signals: (a) 
Solenoid pull-in with motor turned on; (b) Simi- 
larity measures for four conditions: solenoid pull 
in, solenoid drop out, motor on, and no signal. 
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Abstract - The gas-liquid two-phase flow is widely 
used in petro-chemical and energy industry. Accurate 
measurements of flow parameters such as flow 
regimes is the key to operating efficiency. However, 
due to the complexity of the characteristics in two- 
phase flow, it is very difficult to monitor and 
distinguish flow patterns on-line, in-situ. In this paper 
we proposed an efficient Acoustic Emission(AE)- 
based detection system combined with Fuzzy-Neural 
network to recognize four major patterns in air-water 
vertical two-phase column experimentally. Several 
crucial AE parameters are assessed and compared, 
and we found the density of AE Ring-Down Counts 
is an excellent indicator for the flow pattern 
recognition problem. A Fuzzy-Neural network is 
designated as a decision-maker to indicate an 
approximate transmission stage of a given two-phase 
flow. 

Key Words: acoustic emission, fuzzy neural 
network, pattern classification 

I. Introduction 

The gas-liquid two-phase flow is defined as the flows 
of mixture of two homogeneous phases (i.e., gas and 
liquid) through a system. Since it often aid the 
description of heat and mass transfer mechanisms in 
a system, it plays a very important role and is 
popularly used in petrochemical and chemical 
process industries, energy and nuclear industry and 
biological engineering as well [1]. It has been 
proved that the operating efficiency of such a process 
is closely related to accurate measurement of flow 
parameters such as flow regimes and multiple flow 
velocities [2]. Generally speaking, flow patterns are 
classified as Bubbly [3], Slug [4], Churn [5] and 
Annular [6] regimes, these flow regimes typically 
have distinct flow characteristics and heat and mass 
transfer mechanisms, which are very useful for detail 
study in this field. Some detection techniques were 
applied to monitor and detect flow pattern based 
upon  capture  images  or  measurements  of flow 

velocity. Xu [7] established a mathematical model 
(i.e., two-value (0/1) logical back-projection filtering 
algorithm) combining with a transmission-mode 
ultrasound computerized tomography system to 
reconstruct the image of a distribution of bubbles 
over a 2-D cross-section of a pipe, for both parallel 
beam scanning and fan-shape beam scanning 
geometry. Albusaidi and Lucas [8] proposed a 
technique, which consists of mounting an array of 64 
axially separated conductivity sensors in a vertical 
pipe through which air/water mixture is flowing, to 
obtain the mean Cap bubble (or Taylor bubble) 
velocity and hence an estimation of the mean gas 
velocity by cross-correlation of the output signals. In 
thi spaper, we propose to use a NDT (Non- 
Destructive Test) method based on Acoustic 
Emission (AE) signals to examine gas-liquid two- 
phase flow phenomenon and classify the four major 
flow patterns as noted above. 

Acoustic Emission is a term describing a class of 
phenomena whereby transient elastic waves are 
generated by the rapid release of energy from 
localized sources within a material. AE has 
developed rapidly over the last two decades as a 
nondestructive evaluation technique and a tool for 
material research. It's a high sensitivity technique for 
detecting active microscopic events in a material and 
has been successfully used in the field of monitoring 
the welding or crack in solid materials, such like 
metal, glass and ceramic under stress [9]. Some 
acoustic emission sensors were designed for 
monitoring the kinetics of chemical reaction [10]. In 
this paper, a system with AE method was applied to 
detect and classify four major regimes: bubbly, slug, 
churn and annular of vertical air-water two-phase 
flow. 

II. Objective 

The water flow rate characteristics of these four 
patterns are shown in Figure 1. Each of these four 
patterns has distinguished air/water density and flow 
speed ratio. The aim of our designed system is to 
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monitor the status of vertical air-water two-phase 
flow, distinguish four classes of major flow patterns 
and analyze some characteristics of those flow 
patterns. 

W ater Flow Rate 

Bubble 

S 
1 i 

Air Flow [fate 

Figure 1 Water/air flow ratio of four major air-water two- 
phase flow patterns. 

III. AE Parameters and Detection System 

3.1 AE parameters 
Figures 2a and 2b show the standard AE signal in 
time domain and frequency domain, respectively. 
Figure 2a shows one AE event (hit), which occurs as 
the amplitude value of sensor output exceeds a pre- 
specified threshold (e.g., 35dB). The period between 
hit start point and end point are called duration, the 
time series between duration are defined as AE Ring- 
Down Counts. 

Standart Acoustic Emission Signal 

f     0.05 

•    -005 

—>! I 

|§li*» 

3.2 AE detection system 
The experimental setup of the two-phase air-water 
column with AE sensor configuration is shown in 
Figure 3. The system includes: data acquisition part, 
signal processing part, data analysis and decision 
making part and data output part. 

Raw Data     Lang Term Siena* •' 
Stange        Fmcutng Data 

Figure 3 Configuration of experimental 
AE detection system. 

In Figure 3, sensor A is an AE sensor which is glued 
with epoxy on the pipe for detecting AE signals 
occurs in flow, sensor B is another AE sensor placed 
near pipe and is dedicated for detecting background 
noise. 

AE parameters is chosen as follows based upon 
some advice from field expert in our experiments: 

• AE sensor resonant frequency: 150kHZ 
• Sampling rate of DSP board : 4MHz 
• Gain of amplifier: 40dB& 60dB 
• Time window of each AE Hit: 1024 point 

(256us) 
• Threshold voltage: 0.0586V(35dB) 
• Data acquisition time: 90second 

Figure 2a Standard AE event in time domain. 

Frequency Characteristics ofStandard  AE   Signal 

I a*i_ 
M  I.   A.pllltli 

Fr.qii.ncylHi)) 

Figure 2b Standard AE event in frequency domain. 

IV. Experimental Results 

4.1 Time series data characteristics 
Different parameters of AE signals were compared to 
see if these four flow regimes can be distinguished 
linearly or nonlinearly. 

a. For the Peak Amplitude of AE hits, Probability 
Distribution Figure of Amplitude of AE Hits as 
shown in Figure 4 was analyzed. 
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b. For number of AE bits, Number of AE Hits 
Occurred in Each Second as shown in Figure 5 was 
analyzed. 

Result 1 

From Figure 4, pattern of Bubbly can be easily 
distinguished with the other three patterns from the 
value of Peak amplitude of AE hits or probability 
distribution of amplitude of AE hits. But it's very 
difficult to distinguish Slug, Churn and Annular 
pattern when we only use Peak Amplitude parameter. 

From Figure 5, patterns of Bubbly, Slug and Churn 
can be classified separately from the number of AE 
hits occur in the given time range (1 second). But it's 
difficult to recognize the difference between Churn 
and Annular only by AE hits number. So other 
parameters must be introduced to solve this problem. 

c. AE Ring Down Counts definition: 
Since AE signals in our experiment are of relatively 
short duration (less than 1msec), reach maximum 
amplitude early in the signal (always assume 0), and 
decay nearly in exponentially—as shown in Figure 1, 
we can calculate the sensor output as: 

V(t) = V0 e'"smwt (1) 

where: 
V(t) =output voltage of sensor 

V0 =initial signal amplitude 

r =decay constant(>0) 
t =time 
w =signal frequency 

Since Threshold voltage V has been setup, we can 
count the number of times the sensor voltage exceeds 
it—this technique is known as ring down counting. 
For the signal represented by Eq. (1), the number of 
counts(N) to the nearest integer is given by: 

Thus we can analyze the number of AE Counts 
Occurring in Each Second (Figure.6>, the maximum 
and minimum density of AE counts for each of four 
patterns is shown in Table 1 

Table 1 Density range of four major 
two-phase flow patterns 

Bubbly Slug Churn Annular 

Maximum 
number of 
AE counts 
occurs in 

each 
second 

27 749 7196 22401 

Maximum 
number of 
AE counts 
occurs in 

each 
second 

0 86 2703 12478 

Result 2 

From Figure 6 and Table 1, the difference of density 
of ring down counting for AE signal of these four 
patterns is obvious, and it can be an excellent 
indicator for this pattern recognition problem. 
Combine with the result of AE hits, such conclusion 
can be drawn that the number of AE counts of each 
AE hit is different. This can be shown in Figure 7. It 
also can be deduced that the areas of AE signal for 
these four patterns are different. Energy can be 
calculated to present these AE events as following 
equations: 

E = ±)v\t)dt (4) 

Here, R is resistance, Equations 1 and 4 can be 
combined to yield (assuming the signal decays to 

background level (V') after a time t 

N=- 
W-h/° 

2K Iw    2ny     V 

Where V  = V^e 

And   f*=-hA 
Y    V 

(2) 

(3) 

1 °° 
E = — jK0e"2rt sin2 wtdt 

R n 

rw 

4R(w2 + r2)'r 

(rsinwr* +wcoswtf*)] 

Pr(l-e""2rt )-2e 
■2rt smwt 

(5) 
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Probability Distribution Figure of Amplitude of AE Hits 
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Figure 4 Probability Distribution of Amplitude of AE Hits 
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Figure 5 Summation Number of AE Hits Occurring in Each Second 
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If t is assumed that e 
written as 

■2rt* 
«1, the Equation 5 can be 

Es- 
V2w2 

4Rr(r2+w2) 
(6) 

Figure 8 shows the result of Equation 6. 

4.2 Frequency Domain and Noise Cancellation 
In Frequency domain, FFT of AE signals for these 
four patterns was shown in Figure 9 and it is obvious 
that to identify the patterns in frequency domain is 
more difficult than in time domain. This is because 
the resonant frequency of AE sensor is almost fixed 
(150KHz), which makes frequency characteristics 
more non-intuitive in most spectrum range except 
resonant frequency. In our experiment environment, 
background noise is not overwhelmed and since 
frequency characteristics is not crucial for experiment 
result, noise effect can be ignored here. 

4.3 Decision Maker 
INPUT SUBSYSTEM 

Target 
t... i        Hidden neuron module 

Crisp 
and/or 
Fuzzy 

-^decision 
' output 

with 
respect 

to targets 

Input Layer Hidden Layer     Output Layer Decision 
Layer 

Figure 10 Structure of Decision-maker 
Fuzzy-Neural network. 

Figure  10 shows decision-maker network of the 
system [11]. This is a Fuzzy-Neural network. Input 
stream includes two parameters, i.e., AE hit and AE 
count density (number ouccured in one second)—of 
four flow patterns.  Target stream includes ideal 
values of these two parameters for the same flow 
pattern.   Neural network is trained to make correct 
decision to described air-water two-phase flow stage. 
This decision-maker not only recognizes those four 
major patterns mentioned above accurately, but tell 
the pattern transmission stage approximately through 
fuzzy decision output. 

V. Conclusion 

Application of AE and Fuzzy-Neural Network on air- 
water two-phase flow pattern recognition problem 

was proposed and discussed. In this study, several 
AE parameters were extracted from four major two- 
phase flows pattern signals and the results were 
discussed. AE events and Ring-Down Counts density 
can be combined as a stable and excellent indicator to 
describe flow patterns accurately. They form the 
input stream of Fuzzy-Neural network and after 
training the network, system output can tell the 
continuous flow stage (includes four major patterns 
and transition part) on line in real-time. 
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Abstract - In this paper, the Dempster-Shafer 
evidence reasoning is used in a new domain - Fault 
Diagnosis of Reciprocating Machinery. Other than 
the new application for the Demspter-Shafer 
approach, this paper describes a new way of 
implementation - multi-parameter fusion - which 
requires selected parameters extracted from every 
sensor to be fused. This is in contrast with existing 
methods that need the eigenvectors to be fused. By 
selecting the relevant parameters as compared to 
generating the eigenvectors, this method is much 
easier to implement. Through the implementation, 
it is shown that this method decreases the 
uncertainty in the diagnosis systems. In addition, 
after the preprocessing of the information extracted 
from each sensor, it can reduce the computing time 
at the fusion stage. 

Keywords: Dempster-Shafer evidential 
reasoning, fault diagnosis, multi-parameter 
fusion 

1    Introduction 

Sensor systems have been improving rapidly 
and ancillary data are increasingly available. 
As a result, interest in extracting the higher 
level information contained in all kinds of 
sensing contexts has led to extensive demand 
for computer-based, automated methods for 
the analysis of multi-source data. This 
requirement gives rise to many information 
integration and fusion methods. The potential 
advantages in integrating and fusing 
information from multiple sensors are that the 
information can be obtained more accurately 
and in less time and at a less cost. Features 
that are impossible to perceive with individual 
sensor can now be obtained through the use of 
multiple sensors. Multiple sensors, together 
with information integration and fusion, have 
been used in many areas, such as navigation, 
target identification, robot control and multi- 
target tracking. 

In this paper, the application of 
information integration and fusion has been 
broadened to fault diagnosis in machinery. Up 
to now, the conventional method used to 
diagnose fault in machinery is to observe the 
change of FFT (Fast Fourier Transformation) 
spectrum of a single sensor. For large 
rotational machinery, because its signal from 
displacement sensor is very simple, like pure 
sine curve, the information presented in the 
spectrum is enough to be used for diagnosis. 
However for reciprocating machinery, such as 
reciprocating compressor and diesel engine, 
due to the complex structure and multi-excite 
sources existing in diesel engine, the vibration 
signals collected from the engine surface have 
the following characteristics: 
• Presence of a number of self-exciting 

vibration and forced vibration in the diesel 
engine that is running. Therefore the width 
of spectrum in frequency domain is very 
large. 

• The vibration signals in the time domain are 
more complex compared to a large-scale 
rotational machinery, which is a pure sine 
curve. 

• In a diesel engine, such as 4135 engine, the 
stroke cycles are fixed. Therefore the time 
series appear periodical. However in every 
period, there exist many other periodical 
vibrations within the stroke cycle. 

So using single sensor's information is not 
enough to diagnose fault types. In this paper, 
several acceleration sensors are used to sample 
the vibration signals from the surface of a 
4135 diesel engine. A new fusion method, 
multi-parameter fusion, is used to get the final 
judgment. 

The remainder of this paper is organized 
as follows. In the second section, the 
fundamental knowledge of evidence reasoning 
is   introduced.   The   parameters   used   for 
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information fusion are studied in the third 
section of this paper. In the fourth section, the 
above selected parameters are fused and the 
final judgment is given. In the same section, 
some questions related to fusion are discussed. 
And the conclusion is given at the end of this 
paper. 

2   Preliminary of Evidence Reasoning 

There are many algorithms, which can be used 
to integrate multiple sensors' information. 
Among them, distributed Kaiman filtering and 
the Bayesian approach are well known. 
Bayesian approach offers a highly formalized 
and rigorous way to assign and propagate 
confidence. However, these algorithms require 
substantial a prior information, such as initial 
values and initial covariance matrices for 
distributed Kaiman filtering and prior 
probabilities for the Bayesian approach. In 
many cases, prior information is either 
unavailable or not known precisely. Another 
weakness is that they cannot represent 
uncertainty in the systems very well. These 
inadequacies give rise to the Evidence 
Reasoning. 

Evidence Reasoning, also called the 
'Dempster-Shafer theory' or the 'belief 
function theory', has been found useful in 
dealing with uncertainty in many domains, for 
instance, diagnostic system and radar 
surveillance system. 

The basic notions of Evidence Reasoning 
were presented by G. Shafer (1976). The 
following concepts are the fundamental 
concepts of D-S theory: frame of discernment, 
basic probability assignment (BPA), and belief 
function and plausibility function. They are 
introduced as follows. 

A frame of discernment 0 is a finite 
nonempty set. 

The basic probability assignment (BPA) 
on 0 is a function 

2. £m(A) = I (3) 

m: P(0) -> R+ 

where P(0) is the 

(1) 

where P(0) is the powerset of 0 and R+ is the 
set of nonnegative reals, satisfying the 
following conditions: 

Ace 

For a given basic probability assignment m 
two functions are defined. 

• A function Bel: P(0) —> R+ is called the 
belief function over 0 (generated by m) iff for 
any 6 a 0, 

Bel(d) = ^m(A) (4) 
Ac0 

• A function PI: P(0) -> R+ is called the 
plausibility function over 0 (generated by m) 
iff for any 6c0, 

Pl{6)=   j«(A) (5) 
An0*0 

The plausibility function PI can be definable 
by the belief function Bel: 

Pl(d)=l-Bel(®-e\ ford C0 (6) 

1. m(0) = 0 

From   a   given   belief   function,   a   basic 
. probability assignment can be reconstructed: 

m{6)= £(-l)MArf(A) forOcQ (7) 
Ace 

The union of all subsets 0C0 that axefocals is 
called the core of 0. 

A belief function Bel is called Bayesian 
belief function iff 
Bel(e)+Bel(@-9)=lfor6QQ. The following 

conditions are equivalent. 
1. Bel is Bayesian. 
2. Bel{6vA)= Bel(6)+ BC/(A) 

fore,AQ©anddne = 0; (8) 
3. Bel=Pl; 
4. All focal elements are singletons. 

Dempster's Rule of Evidence Combination: 
Evidence obtained on the same subject 

from two probabilistically independent sources 
can be combined into joint evidence of the 
subject. For instance, two pieces of evidence 
expressed by two basic-probability- 
assignments nij(A) and m2(B) can be combined 
into a signal piece of joint evidence by 

;c=A^Bmx{A)-m2{B) 
 ,    if C*0   (9) 

if  C = 0 
«17  = 1-K 

0, 

(2) where the constant K is 

961 



K=   ^mi(A)-m2(B) (10) 
AnB=0 

which represents conflicting information 
in these two pieces of evidence. In (9), 
combined information is normalized after the 
conflicting information is removed. 
Dempster's rule reduces to Bayesian approach 
when the belief function is the same as the 
plausibility function. 

3   Establishing Parameter Field 

In this paper, a new fusion method is proposed 
- multi-parameter fusion. Multi-parameter 
fusion because the parameters, which represent 
the information contained in sampled signals, 
are extracted and these parameters are used in 
the fusion framework, instead of the 
eigenvectors. 

The case study used in the research is a 
4135 diesel engine. The parameters are: 

Rated Engine Power: 80 horsepower 
Rated Engine Speed: 1500rpm 
Four states are simulated on this diesel 

engine. They are 
• Normal 
• Intake valve clearance is too small 
• Intake valve clearance is too large 
• Exhaust valve clearance is too large 
Among these four states, three fault types 

were simulated in the intake valve and exhaust 
valve on the second cylinder head. Three 
points are selected to collect vibration signals. 
They are the first cylinder head, the second 
cylinder head and another one, which is in the 
middle point of piston stroke, on the surface of 
cylinder block. 

Six parameters are extracted from the 
vibration signal of each sampling point. These 
six parameters can be divided into two 
categories, frequency domain and time 
domain. They are introduced as follows: 
(1) Frequency domain parameters: 
a.   IF - Waveform Complexity in frequency 

domain 
NI2 

IF = -^X(i)\ogX(i) (10) 

where X(i) - the EFT spectrum 
From the equation (10), it can be seen that 

IF is a frequency domain entropy, reflecting 
the complexity of FFT spectrum. 
b.   CG - the center frequency of spectrum 

N12 
CG(*)=X^<"(*(K)) an 

K=l 
Nil 

IN/2 
where P(X(K))= X{K)   £X(y) 

X(K) - the FFT spectrum 
k=l,2,..,N 

(2) Time domain parameters: 
a.   IT  -   Waveform   Complexity   in   time 

domain 
in 

IT = -JjÄi\ogÄi (12) 
i=i 

where   A,s - the singular value of a time 
series according to its period 
m - the numbers of periods in a 
time series 

The physical significance of IT is to reflect 
the  complexity  of time  series.  It  is  time 
domain entropy. 
b. a - Nonperiod complexity 

ff, »'n        / I»      1 
a = -^-SA2

i/EA2
/ (13) 

III - 1 ;=2       /  i=I 

where   X; - the singular value of a time 
series according to its period. 

c. Dx - the variance of time series 

0,=-£k/)-*] (14) 
where    n - the length of a time series 

x - the mean value of whole series 
x(ti) - the time series 

d. a4 - the kurtosis of time series 

1  " 
(15) 

;=i 

The above six parameters reflect the 
information contained in vibration signals both 
from the frequency domain and time domain. 
For IT and a, they reflect the time series' 
periodical characteristic because the single 
fault type shows the periodicity in time 
domain and the energy will increase in a 
certain frequency in spectrum, which is 
reflected by parameters, IF and CG. Variance 
Dx and Kurtosis a4 are the measures of the data 
distribution. 
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4 Using Multi-parameter Fusion to 
Diagnose Valve Fault of a 4135 
Diesel Engine 

In this section, the above extracted parameters 
are fused using D-S theory. For simplification, 
the belief function is only calculated as the 
final results. 

4.1 Defining the Basic Probability Assignment 
- Mass Function 

There are many fusion methods to be used in 
different domain. In this paper, in light of the 
characteristics of vibration signal collected 
from the surface of 4135 diesel engine, the 
basic probability assignment (mass function) 
is defined as follows. 

m.\ A ■   = 
w.C\ A. i   A    J 

l[   Jj    l^ch^N^-R^-a^) 

,,(ö) = - tf,(l-J?,Xl-a,A.) 
(16) 

(17) 
^w,.C,.(A;.)+^(l-Ä,.Xl-a,./?,.) 
j 

i=l,2,...,Ns,j=l,2,...,Nc 

where   C^A^  V.   ,„  „ .-Relation 

Coefficient (18) 

du (xt>Yj )= Eh* - yJk| -Manhattan 
t=i 

Distance (19) 

a,. = max{c,.(A,.)}=   Vm^jjiXjJj)) 

- The maximum relation coefficient 
(20) 

ßi = -i l(Ns-l) 

comprehensive effect coefficient, 
which includes the global factors 
affecting the diagnosis results. 

(21) 

^kßk 
/?,= - balance coefficient 

(22) 
Nc - the number of fault types, Nc=4 
here. 

fo - normal 
f[ - small intake valve clearance 
{2 - large intake valve clearance 
f3 - large exhaust valve clearance. 

Ns - the number of sensors, Ns=3 
here. 
Wi  -   weight  coefficient,   which   is 
determined   according   to   practical 
experience. 

4.2 Applying the Multi-parameter Fusion 

In this fusion framework as shown in Figure 1, 
some assumptions are proposed to process the 
multi-sensor and multi-parameter fusion. First, 
different sensors are independent from others. 
Second, different fault types are independent 
from others. That is to say, no two fault types 
can coexist in the engine simultaneously. 
Table 1 presents the fusion results. 

There are 19 cases tested in this paper. 
Out of the 19 final results, only two cases are 
wrongly categorised. The verification degree - 
ratio of correct diagnosis over the total number 
of cases - is 17/19. This shows that the 
method is effective in its diagnosis. For 
illustration, only four cases are listed in the 
Table 1. 

From the results listed in Table 1, it can be 
seen that using single sensor, some types of 
fault cannot be determined. These are denoted 
as 'Uncertain'. After fusing the parameters 
extracted from every sensor, the verification 
degree increased while the uncertainty 
decreases. 

In order to reduce computing time, the 
user can select simple parameters. This is 
unlike the use of eigenvectors which are fixed 
as the eignevectors correspond to their 
respective fault types. In so doing, this multi- 
parameter fusion method overcomes the 
shortcomings of the D-S fusion algorithm by 
simplication and thereby reducing the 
complexity of the problem. 
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5   Conclusions 

In this paper, a new fusion method - multi- 
parameter fusion, has proposed and 
implemented to diagnose the fault types of 
diesel engine. Through the analysis of fusion 
results, the following conclusions can be 
drawn: 
• Multi-parameter fusion is a feasible 

method to be used in fault diagnosis. 
• This method has many advantages, such as 

decreasing uncertainty in the fusion and 
presents high verification probability as 
compared to the single sensor. It can 
reduce the computing complexity when 
compared with using eigenvector fusion. 

• A new diagnosis method using D-S theory 
has been presented. 

JL 
Sensor 1 

1 
Sensor 2 

JL 
Extract 
Parameters 

_V_ 
Sensor N 

JL 
Extract 
Parameters 

_&_ 
Extract 
Parameters 

V   V ± 
Fusing the parameters and 
recognize the fault types 

JL 

Output the diagnosis results 

Figure 1. The flow chart of diagnosing system using 
D-S theory 
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Table 1. The multi-sensor and multi-parameter fusion result 
Fault types Sensor Mass function m(fj)/belief function Bel(fi) 

m(0) m(f0) m(f0 m(f2) m(f3) 
fo Sensorl 0.4962 0.3704 0.0073 0.0146 0.1115 

(Normal) Sensor2 0.4433 0.4857 0.0695 0.0007 0.0009 
Sensor3 0.3825 0.6036 0.0043 0.0035 0.0061 
Fusion 0.2097 0.7225 0.0261 0.0058 0.0360 

fi Sensorl 0.3566 0.0046 0.5921 0.0420 0.0047 
(Intake Valve Clearance is too Sensor2 0.5167 0.1980 0.2126 0.0320 0.0407 

small) Sensor3 0.4400 0.0032 0.4377 0.0030 0.1162 
Fusion 0.2234 0.0654 0.6272 0.0274 0.0565 

f2 Sensorl 0.5178 0.0262 0.1925 0.2394 0.0242 
(Intake Valve Clearance is too Sensor2 0.4821 0.0030 0.0039 0.3562 0.1548 

Large) Sensor3 0.3048 0.0015 0.0010 0.6867 0.0024 
Fusion 0.2181 0.0097 0.0615 0.6506 0.0601 

f3 Sensorl 0.4132 0.0532 0.0053 0.0115 0.5168 
(Exhaust Valve Clearance is too Sensor2 0.5172 0.0122 0.0149 0.2771 0.1785 

Large) Sensor3 0.4155 0.0062 0.0408 0.0251 0.5125 
Fusion 0.2352 0.0261 0.0220 0.1074 0.6093 
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Application of Neural Fusion to Accident Forecast 

in Hydropower Station 
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XIANGXin DU Qingdong 

Abstract-This paper deals with a new application 

of neural fusion to accident forecast of large 

transformer in hydropower station. The main idea is to 

diagnose a facility by collecting its disparate classes 

of information. Here, three classes of sensors are used 

to collect temperature, gas and load. We assume that 

only one sensor in each class and the observations 

from every sensor are independent. Data has been 

processed with fuzzy rules before they are sent to the 

fusion center. The fusion center will compare these 

data with the transcendental knowledge and then 

make a decision. It will give a real-time, complete 

evaluation of the possibility of the series accident. 

Then, it sends the decision to the performance system. 

Because there is no formulation to calculate with, a 

neural network is used and trained with groups of 

experience data until it becomes stable. The study is 

imbursed by national natural science fund and its 

production will be applied to Fengmang hydropower 

station of China. 

The conclusion that this application can make the 

facility safer is confirmed by experiments given in the 

paper. It forecasts accidents accurately with fewer 

virtual alarms or damages. 

Keywords-neural fusion, disparate classes of 

information, fuzzy 

1.Introduction 
In hydropower station, a very important thing is 

to give a real-time, all-around evaluation of a 

transformer. When the transformer is in the state 

of general running, both safety and danger do 

exist. General information such as temperature, 

load predicts the facility is in order, but they also 

tell the danger at the same time. In real-time 

monitoring and forecasting systems. In 

traditional methods these classes of information 

are often considered respectively. In fact, danger 

is often combined with several factors. 

Traditional methods give uncompleted decision. 

Virtual alarms or accidents happen sometimes. 

Human being experts can avert these errors 

successfully. They can fuse all real-time 

information and get external conclusions. There 

are two reasons: The first is that the human 

experts consider more than one factors; The 

second is their experience. They compare the 

situation with their transcendental knowledge. 

If we want to evaluate the situation completely, 

multi-source of information is necessary. For 

example, many mercury-thermometers are used 

to get the whole temperature. They are the same 

kind of sensors: mercury-thermometers. In 

distance detection, maybe both vidicon and 

infared-ray   instruments   are   used.   They  are 
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different kinds of sensors, but they collect the 

same class of information—distance. If we want 

to forecast accidents of a facility, maybe more 

than one class of information is needed. Maybe a 

group of sensors to detect temperature, another 

to detect load, another gas etc. This is called 

disparate classes of information collection. 

According to these classes of information, We 

can get more comprehensive status of a facility. 

The decision will be more accurate. 

Fusion is one of the best methods to simulate 

human experts. The method here is to collect 

disparate classes of information firstly. After 

comparing with the transcendental knowledge 

coming from human experts. It will give a real- 

time, complete evaluation, tell the possibility 

that series accident will happen and then send 

the decision to the performance system. In this 

paper, the architecture using fuzzy process and 

neural fusion is given in section 2. Three classes 

of information: temperature , gas and load are 

collected from transformer. Fuzzy rules are 

given to process the information before it is sent 

to fusion center in section 3. Three levels BP 

network used as the fusion center is in section 4. 

Experiments in section 5. The conclusions in 

section 6. Reference follows section 6. 

danger. Danger is a fuzzy concept. It is the 

estimation which human experts give after 

comparing input data with their experience. So 

IF/THEN fuzzy rules are better here. T', G',L' 

belong to [0,1]. Two questions are solved in the 

proceeding: The first is that information is 

translated into danger modulus according human 

experts experience. The second is that their 

outputs can be accepted by neural network. 

There is no formula to calculate with, but we 

have groups of experience data instead. So 

neural network is more employable as the fusion 

center. Few input variables; Low complexity; 

Facility works stable; The output is 0 or 1. "0" 

represents "in order" and another is accident. 

The factors above decide problem can be 

considered as a simple clarification question. In 

most cases neural network will be convergent. 

The network is trained until it is stable. Then it is 

applied to fuse input data and make decisions in 

time. 

Fig 1. architecture 

^Architecture 
The first problem is that we can't ruse these 

collected data directly because they represent 

disparate classes information. So they must be 

pretreated before they are sent into the fusion 

center; the second is how we make use of human 

experts' knowledge. 

The architecture is given in Figl. Three input 

variables collect the three classes of information 

continually. We set one sensor to collect 

temperature, another to collect gas and another 

load. We assume that the observations from 

every sensor are independent. T— temperature, 

G—gas, L—load are collected and processed 

with fuzzy rules respectively. The semifinished 

results T', G', L' represent their own modulus of 

3.Fuzzy process 
This process consists of next three steps. 

Accurate input 

fuzzification 

I 
ruleevaluationn 

defiizzification 

tTc Accurate output 
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3.1 Fuzzification 

Five ranges are divided in order to describe 

Temperature, Gas, Load and Danger modulus 

with fuzzy value. Danger modulus is in [0,1]. 

Four membership functions: Gl(t), G2(g), 

G3(l),G4(d), are defined in Fig 2. 

shadow can be defined in Fig 3(b). 

b).For xl belongs to "low". A grade also can be 

got, according to this grade and rule(2) .The 

shadow can be defined in Fig 3(d). 

c ).Put two shadows into one reference frame 

and get a new shadow in Fig 3 (e). 

. (a) Membership functions of temperature 

V 
1.0 

0 

LowerY Low Y MediumXHigh Y Higher 

>g 
. (b)   Membership functions of gas 

'grade 

0 

Lower XLow 

->/ 
.(c)   Membership functions of load 

'grade 

0 

Lower jCLow   X MediumYHigh X Higher 

>d 

(d)   Membership functions of danger 

Fig 2. Membership functions 

3.2 Rule Evaluation 

The most important step is rule evaluation. In 

this paper, Mamdani method is used to produce 

semifinished results. 

X=T, G L 

If X is lower then D is smaller;... (1) 

If X is low then D is small;... (2) 

If X is middle then D is medium;... (3) 

If X is high then D is big;... (4) 

If X is higher then D is bigger;... (5) 

For example X=xl; xl belongs to both "lower" 

and "low". 

a).For xl belongs to "lower". A grade can be got, 

according to this grade and rule(l) and the 

4v< ode 'grade 

(a) 

A 
grade 

"> 

2^ 

X (b) D 

>x 52 5D 

(c) 
'grade 

(d) 

> 
(e) D 

Fig. 3 Mamdani method sketch map 

3.3 Defuzzification 

The last step is defuzzification. It gives the 

accurate output. According to Mamdani method, 

the centroid of Fig 3 (e) is the output result. If 

we use G4(y) to expresses membership functions, 

y expresses danger modulus, and this location 

may be found with the following formula: 

SG4(y)*ydy 

S G4(y) <fy 

(6) 

4.Neural Fusion 
Fusion center incepts three input variables, gives 

—complete, real-time and accurate evaluation. It 

is well known that a forward neural network 

using BP algorithm solves some estimation or 

classification problems successfully. In this 

application, we use a three layers network. In the 
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input layer, there are three input variables which 

represent danger modulus of a transformer—T 

for danger of temperature, G' for danger of gas 

and L' for danger of load. The number of middle 

layer's neural units can be changed in the 

process of learning in order to get a right result. 

It can be testified that a 3-layered BP neural 

network can simulate any continuous function's 

output if it has arbitrary number of units in the 

middle layer. In experiments, we use a network 

with five to nine units in the middle layer. In the 

output layer, only one unit exists. It can divide 

the input data into two groups. If output is close 

to zero, we can judge that the transformer is in 

order. If it is close to one, the transformer is in 

danger. All the neural units apply one form of 

state function like SIGMOID function. The 

following are structure of neural network Fig4 

and formula of BP algorithm (7): 

output 

middle layer 

x   y   z 

Fig4 Structure of the BP Neural Network 

N 

OUTJ = F(£ Wf] • a?~] + Bnj ) 
/=o 

E = OUTN (1 - OUTN )(D - OUTN) 

e" = OUT" (1 - OUT? )Wy • E 

AW," =A»OUTi"»e" (7) 

Aß," =A»e? 

l + e 

where OUT" is output of jth unit of 

nth layer, E is error of the network, 

D is destination output, e" is error 

of ith unit of nth layer, A is learning 

actor, B is bias of unit, F is state 

function. 

Firstly, we must get groups of samples including 

input and output. Results are known. There are 

about tens or hundreds of samples for the neural 

network to learn. Secondly, after the network has 

finished learning, we input the other groups of 

samples into the network. If the outputs errors 

are between 0~+7-0.2, It can be deduced that the 

neural network can be used as a "judge" of a 

transformer. 

5.Experiments 
The method is applied to the hydropower station 

emulator. This emulator simulates two generator 

groups of Fengman hydropower station. This 

method is applied to the protection system of the 

1# generator transformer which transforms 

power from 1# generator to power network. The 

protection monitoring system of 2# generator 

transformer has the same sensors , but when it 

makes decisions, it consider these classes 

information respectively, not synthetically. The 

system of 1# is trained with 70 groups (35 

groups safety data, 35 groups danger data) 

experience data (Fig5) and neural network 

became convergent. 
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Fig5.    Sample data space 

The other 70 groups of data are tested. The 

errors of outputs are in Fig 6 :'+' :1-danger 

output; 'o': 0-in order output. 
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Fig 6 Outputs errors testing 

After a period of testing, the accuracy of both 

systems is in Fig 7(Y is the danger that human 

experts gives). 

i, ccuracy 4 

-> 

ccuracy 

-> 
0 100%    Y       0 100%    Y 

(a)l#transformer (b) 2^transformer 

Fig 7   Accuracy sketch map 

data. Fuzzy process is necessary as pretreament. 

The system will give real-time decisions. 
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6.ConcIusions. 
In hydropower station, using neural fusion to 

forecast accident of generator transformer. The 

system applied this method evaluates situation 

more completely, more like human experts. 

Compared with the system which have the same 

sensors but give decision by consider every class 

of information respectively, in cases of great safe 

or great danger, both systems can give right 

evaluation. But if it is not very clear whether the 

accident happen or not. Neural fusion method is 

better. It gives fewer virtual alarms and fewer 

accidents happen. 

For few input variables with one output, if the 

question is simple clarification, BP network is 

better. It is convergent and needs less training 
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Abstract - Microeconomic theory develops demand 
and supply curves to determine the market 
equilibrium for commodity exchange. The demand 
and supply functions are the result of consumers 
utilities and producers production functions for 
different product combinations. The interaction is a 
game-theoretic approach to determine the quantity 
and prices with which goods and services are traded. 
Economic theory works with the long run equilibrium 
concept, yet with constant alteration of information, 
decisions are made in the short run. People, with 
changing preferences, shift their fused-aggregate 
utility function for a set of preferences rather than a 
single commodity. The paper investigates a set- 
utility function based on a fused perception of the 
dynamic changes of the corporate supply and 
consumer demand curves for various products. 

1. Introduction 

The interaction between supply and demand policies 
of households and corporations is dependent on 
prices and quantities [1,2]. The interaction between 
these variables model market events such as the 
clearing price in exchange. Analyzing these policies 
is difficult when people's preferences vary in time, 
substitutes and competing goods change, and the 
value of money is altered by other markets. For 
instance, if price information is coming from a 
variety of sources, it might have different reported 
ranges dependent on the source. However, these 
price resolutions can be fused to form a composite set 
of information which allows a consumer or a 
producer to make decisions on how to determine a 
fair price based on how much a corporation wants to 
produce and how much a consumer wants to spend. 
A corporation uses prices to alter the exchange 
quantity of goods, which imparts changes to people's 
spending behavior. 

The purpose of the paper is to address the different 
resolutions of measurement microeconomic data that 
drives corporation's production policies and is 
similar to the macroeconomic model from Blasch [3]. 
This paper is organized in the following fashion. 

Section 2 presents the economic model for demand 
and supply functions and discusses time-delay errors 
that corrupt these measurements. Section 3 presents 
the multiresolution technique for fusing, propagating, 
and updating measured price states that result from 
dynamic quantity changes in supply and demand. 
Section 4 formulates the problem and section 5 
presents simulated results. Finally, Section 6 
discusses some concluding remarks. 

2. Microeconomic Model 

Microeconomic theory seeks to model the economy 
as a function of demand and supply functions. The 
Demand Function (QJ, is the relationship of quantity 
demanded to product prices and consumer income. 
The Supply Function (Q^ is relationship of quantity 
supplied to production costs of wage rates and capital 
inputs [2]. The functional equilibrium determines the 
price of goods. 

ßd = ßs (1) 

A dynamical equilibrium exists between prices and 
quantities and is cyclical between households and 
businesses through the goods and factors markets, 
shown in Figure 1. 

Goods 
MartM 

Supply 

Goods mndSmiess 

Dollar Spant Dollar Sales 

Corporations 

Figure 1. Exchange of Quantity and Prices [1]. 
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The price-quantity model assumes that prices 
represent the value of goods. The goods market 
equilibrium shows a set of good's price and people's 
income from labor where: 

öd = f(Pi,-,/>n,m) (2) 

where m is the amount of consumers income [2]. 
From utility theory, income is the wealth constraint 
for quantity demanded, 

m = ß1/71 + ... + ßnpn (3) 

which shows that all decisions are based on a set of 
products a consumer can purchase. 

Rearranging, we have: 

01   pi--   PlQn (4) 

By determining the indifference point at which a 
consumer will equally value products, a marginal rate 
of substitution (MRS), (pnlp\), is determined for each 
good in a set. 

A price consumption curve can be drawn for 
equilibrium sets of goods as one price changes, 
keeping other prices and income fixed. For each 
good, we can draw the inverse relationship between 
price and quantity demanded called the law of 
demand [I]. 

The quantity of goods supplied is a function of the 
corporation's production function. In the long run, 
all inputs are variable; however, in the short run, 
inputs of capital, K, and labor, L, are fixed. The 
relationship for capital and labor Q = f(K,L) is: 

ÖS = AL(MPL) + AK(MPK) (5) 

where MPL is the marginal product of labor, MPK is 
the marginal product of capital, and AK/AL = 
-MPl/MPx at zer0 output is termed the marginal rate 
of technical substitution (MRTS). The MRTS can 
also be related to the wage rate, w, and rental price of 
capital, r, by: 

MPL    -AK _ w 
MPK    AL     r (6) 

Thus, we have a relation between the quantity 
supplied and the income consumers receive. The 

price equilibrium is shown as a relationship between 
quantity supplied and quantity demanded as shown in 
the Figure 2. 

Price 

P 

A 
Supply 
Curve 

\(p) 

Equilibrium \ 

Demand > 
%<p) 

Curve 

Q Quanity 

Figure 2. Price-Quanitity Equlibrium. 

Using the models for quantity as a function of price, 
a state and measurement model is formed. Quantities 
and prices are variables and by inverting the demand 
function, we have 2 simultaneous equations: 

■^supply 

. fdemand. 

Cs(wL,rk) 

. Bd(m>Pn). 
Q 
.PA wd. 

= [nsHd] ~Q + 
vs 

LPA Lvl 

(7) 

(8) 

where C(mL, rK) is the cost of the producer and B(m, 
p) is the budget constraint of the consumer. By 
including uncertainty in the models, v(t) and w(t) are 
zero-mean mutually independent white Gaussian 
noise sequences with known covariances g(t) and 
R(t), respectively. 

The monitoring of economic variables is dependent 
on availability, time of measurement, and reporting 
confidence. If the reporting producer and consumer 
have time to fuse many perceived estimated values 
and quantities, the confidence is high, but requires 
delays in the updating of the information. The 
reporting time and confidence can be formulated as a 
multiresolution fusion problem, where multiple 
consumers and producers update knowledge of 
information at different time intervals. 

3. Multi-Demand/Supply Relationships 

The multiresolutional approach [4,5] propagates state 
values given sequential measurements. To develop 
the system equations for this approach, each point in 
time is expressed based upon the starting point of the 
block of time  values.     Figure  3   illustrates  the 
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decomposition and fusion that is described by the 
following equations. The basic state equation is: 

ik+1 = AuXu +BuW, vk£k k^k (9) 

which may represent multiple demand-supply 
functions. 

The second time point in time, based upon the current 
state, is expressed by 

Xk + 2 = Ak+ak+l +Bk+lülk+l 0°) 
= Ak + !Akxk + Ak + jBkvvk + Bk+Iwk+1 

The initial condition for the first propagation time 
state x and covariance P, a measure of uncertainty, 
may be expressed as 

TA1 ~ _AJ*°' 

Ul] 
*o |o 0%) 

po |o (%) = _   _ 

whereB
O=LA Bj' 

n -x„*\ r^°>   °  1   TQ(1) 
Qo-^8\ I   o    Q(0)J   L   o 

(11) 

+ B0Q0BJ,    (12) 

and 

0 
Q(l). 

The equations for a blocked-time system may be 
written as: 

2m+l=ÄnÄn +Bmi (13) 

where xm = [xk ,xk+1]Tand 

Am = rf/ag[Ak+1,Ak] 

Based upon the first observation, time k4, the estimate 
is propagated at the highest resolution (N = 4): 

x(k4) =  Ax, (14) 
T T 

P(k4 + l|k4) = Ak4 P(k4|k4) Ak4 + Bk4 Qk4 B k4 (15) 

Using the measurement matrix: 

zk4 
= Hk4

;c(k4) + v(k4> 

Fine 

1—► 

—► 

G 

H 

Hgy 

(16) 

Decomposition 

the update covariance is immediately computed: 

xk4 + l|k4 + 1 = Sfc*) + Kk4[zk4 - Hk4 x(k4)] 

Pk4 + l|k4 + 1 = [I - Kk4 Hk4] 5^) (17) 

where Kk is the Kaiman Gain. 

Now, the generalized equations are derived using a 
wavelet approach to propagate Kalman-filtered 
updated states in time. 

3.1 Discrete Wavelet Transform 
For a given sequence of signals x(i,n) e L2(Z), « e Z 
at resolution level /', the lower resolution signal can 
be derived by: 

x(i-\,ri) = YjiQn-k)x(i,k) 

The added detail is given by: 

y(i-l,n) = Tg(2n-k)x(i,k) 

(18) 

(19) 

The original signal x(i,k) can be recovered from two 
filtered and sub-sampled signals x(i - 1, n) and 
X/-1,«). 

x(i,n) = Yji(2k-n)x(i-\,k) + £g(2Jfc-«M'-U)    (20) 

The lowpass filter h(n) is the impulse response of a 
Quadrature Mirror Filter (QMF) and g(n) and h(n) 
form a conjugate mirror filter pair: 

g(I-l-n) = (-l)"Ä(») (21) 

where L is the filter length. The derivation here is 
similar to [4], with implementation coming from [5] 
where the Daubechies' Filter [6] is used for 
processing information at various resolutions. A 
more rigorous approach of wavelet filters can be 
found in Strang [7]. 

Fusion 

£ H 

4 

* 
Coarse 

1—► G 

—► H 

N£ -Kgpv@K^ 
ny^p^j^üp H 

2T> H 

Figure 3. Control Flow for Distributed Multiresolutional Filtering. 
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Consider a finite sequence of «-dimensional random 
vectors at resolution level / with a length of a data- 
block: 

IK® = &(*,), x\kt + 1),...^ + 2(") - 1)]T (22) 

To change X(kj) to the form required by the wavelet 

transform, a linear transformation is introduced [5]: 

*'(*,) = Ljj;ty (23) 

where ij is a matrix of l's and O's which transforms 

the data order, but not the magnitude of the data. 

The wavelet transform vector form is: 

X(kiA) = L^,.^ag{H;,1, ...,HM} .Lt.XLty    (24) 

K^i) = LJ". !. diag{GiA, ...,GM} • L,. Y(k,) 

where H;.j and Gj.j are scaling and wavelet 
operators. Similarly, mapping from level (/ - 1) to 
level (0 can also be written as: 

X(k1) = hJ.diag{nJ_l, ....HJ".,} .L,_y .jgft.y) 

+ Lj. diag{GjA,..., G^} . L,_ j . Yiki.j) (25) 

Since G;_i  is a highpass filter operator and the 
sequence A(£f) is a noise driven one, Y(kj. j) is a 
sequence of "noise-like" signals. However, the 
sequence Y(kj _ j) is not white and is correlated with 
X(kj. j) - lowpass filtered. 

3.2 Distributed Multiresolution Filtering 

The equations for the distributed multiresolution 
filtering are presented in [8]. The general 
methodology is performed by: 

1. Propagating from m to m +1, where m is the money 
price -quantity (p, q) value. 

2. Transmit (p, q)-\ estimate to (p, q)-2 update 
3. Perform (p, q)-2 measurement updates 
3a. Transmit (p, q)-l predicted values to (p, q)-4, 
4. Transmit (p, q)-\ updates to the (p, q)-4 site 
5. Estimate fusion of (p, q)-\ and (p, q)-4 results 
6. Propagate the (p, q)-4 update 

Note that there is a time multiresolution fusion of 
market data at the equilibrium points and a spatial 

fusion of demand and supply curves which is similar 
to a multirate-multiresolutional filtering problem. 

4. Problem Formulation 

The system being investigated is an market model with 
four prices and quantities for a product. Since each 
consumer/producer has only partial information about 
the market (due to the uncertainties of data collection), 
it is naturally desired that four sources of 
measurements, from four observations, be fused to 
achieve a higher confidence about the state of the 
market. 

Since the prior information about the market is nearly 
linear, the dynamics are approximated by the linear 
relationships plus a modeling error given by: 

x(k+l) = x(k) + 1.5y(k) + wx(k) , wx(k) ~ N(0,a) 

y(k+l) = x(k) -1.5 y(k) + wy(k) , wy(k) ~ N(0,a) 

or, [ Xfru] = [ * ] • \xk] + \wk], wk ~ N(0,Q) 

where k is time, the modeling error covariance matrix 
Q is given by Q = diag {10, 10}, and 
wx(k) and wy(k) are uncorrelated. The initial values 

are P0 = [I] and \k = [300,0]T , assuming that the 
4 

prices are in the range {200,400}. The measuring 
process for producers and consumers is described by 
the following measurement models, each of which is 
represented at their own timely and economic 
perspectives: 

[ 4l = [R/1 • &£] + EvJ] , 4 ~ N(0, RÖ     (26) 

where the measurement matrices H;, / = 1,...,4 are 
identity matrices and the measurement error 
covariance matrices R/ are R,= diag{l0,l0}, R2 = 
diag{20,20}, R3= diag{30,30}, and R,= diag{40,40}, 

976 
Figure 4. Real-time Multiresolution. 



proportional to the resolution where timely 
measurements are assumed to have less accuracy than 
blocked updates. 

Simulation runs are completed for 352 
measurements, which is approximately a business 
year. The measurements are combined into 4, 2, and 
1 measurements periods. Figure 4 shows how real- 
time values are propagated in time. Likewise, semi- 
real-time value updates are shown in Figure 5. 

X Predicting 

Figure 5.  Semi-Real Time Multiresolution. 

5. Simulation Results 

A MATLAB program using the Daubechies' filter, 
the wavelet-multiresolution technique, simulates the 
multiresolution Kaiman filter's performance for a set 
of time and quantity reports. Block time processing 
consists of measuring multirate states, processing the 
information at various resolutions, and fusing the 
results. In addition, the prediction function at the end 
of each time-block update predicts the time- 
associated next measurement. Level 4 is the real- 
time approach with 8 measurements used in the 
fusion process. Level 1, 2, and 3 are the semi-real- 
time approaches where measurements are processed, 
fused, and compared at various levels to the system 
(truth) model. Note that a real-time multiresolutional 
sensor fusion method is used to estimate the state 
equilibrium by fusing the information, sometimes from 
a single observer, since only the highest resolution is 
desired during the analysis. 

5.1 Economic Measured Inputs 

Input data is the result of measuring the market at 
different resolutions. Figures 5-8 show the four 
resolution  of inputs,  where  it  is  assumed  one 

Uwl ft xMwuuiwiMnte, »Actual 

400 

^""**^^8upply 
Pric* 

200 

Danund  .—S 

0 
O 50        100      150      200      250      300      350      «M 

Quantity 

Figure 6. Spatio-Temporal Resolution Level 1. 

L»w1 #2 x-MMBuramantt, *Actnl 

Figure 7. Spatio-Temporal Resolution Level 2. 

level #3 x-Measuremenb, x-Adual 

0        50       100     150     200     250     300     350     400 

Quantity 

Figure 8. Spatio-Temporal Resolution Level 3. 

Levtl «4 x-Mtuuranwnta, x-Actual 

100      150      200     250      300      350      400 

Quantity 

Figure 9. Spatio-Temporal Resolution Level 4. 

demand/supply    function    update    has    highest 
resolution, but the largest variance. 
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5.2 Economic Estimated Outputs 

For each set of value of a level corresponds to the 
consumer/producer resolution. By waiting, the 
consumer/producer would have a better estimated 
market value for variables in the demand/supply 
functions. From the fused result, we see that if we 
fuse curves and resolutions, we have a better estimate 
of aggregate prices and quantities. 

6. Discussion and Conclusions 

Level #4 Actual(r-) & (1 pts/Dlk} Esnmated(y:) Trajectories 

information from the measured curves, shown as 
dashed in Figure 12. 

0    SO   100  150  200  250  300  350  400 
Quantity 

Figure 10. Fused Result at Highest Resolution. 

Level #4 Artualfr-) & (6 pts/blk) Estimated^) Trajectories 

Price 

SO   100  150  200  250  300  350  400 

Quantity 

Figure 11. Fused Result at Coarsest Resolution. 

The results show that estimation by the 
multiresolution technique allows for a variety of time 
fused updates dependent upon data variability and 
measurement confidence. Typically, measuring 
market data is the aggregate average perceived value. 
Since information available from different markets is 
reported at a variety of times, the methodology would 
be appropriate to incorporate data from a multiple set 
of observations. The difficulty with the analysis is 
that prices and quantities are typically observed 
values lagged in time, as shown in Figure 12, where 
the curve shifts to the right, but we only have the 

Q Quanity 

Figure 12. Policy Changes [1]. 

The multiresolution technique, used for sensor fusion 
models, is appropriate for assessing the time-delay 
updates associated with microeconomic system 
models. These results show that the model 
developed is applicable to updating consumers and 
producers with timely fused-estimates of variables 
for demand and supply functions. 
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Abstract: The paper presents double-base 
cooperating mechanism by studying the knowledge 
discovery based on database (KDD) which changes 
the structure, running process and the mechanism of 
KDD. Then a new Knowledge discovery based on 
database is established as KDD*. Applied to 
agriculture economy planning, the KDD* provides 
scientific decision for instructing agricultural 
production. 

Key Words: Knowledge Discovery, Agriculture 
Economy, Decision. 

1. Introduction 
In the agriculture research, management and its 

basic level department, a large amount of data, 
examples, knowledge and experiences have been 
accumulated. In the field of agricultural crop the data 
are not made full use. The accumulated data on 
seedling, soil, fertilization, water, harmful insect of 
all kinds of crops as well as weather and calamities 
are saved as archives. That is to say, the phenomenon 
of plentiful data and poor knowledge is more serious 
in agriculture than other. So the demands for 
knowledge discovery are more eager. If some new 
rules which are produced by dynamic changed 
factors can be found through finding interrelations of 
the factors from the plentiful data, examples, 
common experiences and knowledge, the economical 
and social benefits will be very great. 

The agriculture is a large and complex system. The 
types of soil in the world are enormous. The kinds of 
crops are complex. The calamities of harmful insects 
appears frequently and their symptom changes 
constantly. The interrelations and its effects among 
fertilizer, water, density and weather haven't been 
recognized. This is also the same with in the 
livestock, birds, fish and forestry. The relative 
database and knowledge base are characterized as 
large, multi-dimension, dynamic, incomplete and 
uncertain. 

In recent years the market information didn't flow 
smoothly   in   many   places,   especially   the   crop 

production planning isn't instructed by the large 
dynamic market information. It causes blindness in 
the production planning and great fluctuation in the 
price which greatly affect agricultural market 
economy. How to collect the information in 
realization and find valuable and regular knowledge 
so as to effectively forecast and take measures in 
time will play an important role to the agricultural 
production. 

Knowledge acquisition is always regarded as a 
bottleneck in the realization of intellectual system. 
Knowledge discovery partly solved the problem of 
knowledge acquisition. At present the development 
in knowledge discovery is mainly the traditional 
knowledge discovery based on database (KDD). 
Some intellectual methods, such as fuzzy logic, 
neural network, rough set and chaotic theory, are 
used in the KDD. But the KDD lacks means used by 
existing knowledge which helps to focus. The 
hypotheses and rules produced by KDD are directly 
evaluated. They are set into the knowledge base if 
passing the evaluation. Then the following defects 
are formed: first, many meaningless hypotheses are 
produced. It increases the burdens of evaluation and 
check on consistency and redundancy. It is close in 
the process of knowledge discovery; second, the 
KDD mines according to the need and interest of 
person, which lacks creative thought of computer 
itself to mine heuristically and directly, third, at 
present there are many experimental verification and 
original system but few practical system and tools. 

In accordance with the above question, we first 
present the double base cooperating mechanism 
which is used to make basic knowledge base limit 
and drive KDD. This will lead to an open system of 
KDD: KDD* which is based on double base 
cooperating mechanism. KDD* breaks through the 
closeness of KDD. It makes database cooperate with 
knowledge base through interruptive and heuristic 
coordinator to find new knowledge. 

2. The Introduction of KDD* 

* subsidized by the emphasis item of National Natural Science Fund (69835001) 
2.1 General Frame of KDD* 
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Set the acquired knowledge into mining KB, 
check if there are redundant and contradictive 

Acquire hypotheses 
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Direct Mining 
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(Direct Mining) 

According to users' needT   Heuristic Coordinator 

And interested knowledge        0*«* Mining) 

Produce data sub-class, construct mining 
database according to sub database 

I 
Differentiate sub database 

T 
Preprocess     4 

Evaluate 

Derived KB 

Search interrelation in knowledge 
nodes in mining KB, find knowledge 
shortage» decide priority 

Divide   knowledge   node,   produce 
mining KB according to attribute 

Differentiate sub knowledge base 

Real KB Basic KB 

Fig.l General Frame of KDD* 
KB—Knowledge base 

This figure shows the logic structure of the 
system and the relations between all the parts. From 
this figure we can see that the modules can be 
divided into the following parts: 

Pre-processing: To process the original data by 
purifying the data, specific changing, etc. and create 
the DMDB which is used in the process of data 
mining and knowledge discovery. 

Hypothesis rules: It is the core process of KDD. It 
uncommonly abstracts the hidden, unknown and 
potential valuable information in database which 
has the character of large amount of data, 
incompleteness, uncertainty, structure and 
causality 

qualitative reasoning. The former method will be 
discussed in 2.2. 
Double base cooperating mechanism: to process the 
acquired rules by using interruptive coordinator and 
heuristic coordinator, and to exciting the data 
focusing for data mining by using relative strength. 
This will be discussed in 3.2. 

980 

Focusing: namely to chose data from data mining. 
The main method in focusing is clustering analysis 
and detecting analysis. The method to direct the 
focusing are: (i) the expert, through man-machine 
interaction, inputs the knowledge in which he is 
interested and direct the direction of the data 
mining, (ii) Data directional mining by using 
heuristic coordinator. 

sparseness. In the system the abstracted information 
is causality relation rule. Thus the basic knowledge 
base will be further improved. The mining methods 
that are used are statistics induction reasoning and 

Evaluation: this process is mainly used to evaluate 
the acquired rules in order to decide whether they 
w»ll be stored into the derived knowledge base. The 
main methods are: (i) relative strength sets up a 
threshold value and be realized by computer; (ii) 
experts evaluate through man-machine interaction 
interface and also evaluates all kinds of figures and 
analysis materials provided by visual tools. Experts 



evaluate mainly by using experiences and the relative 
strength of acquired rules. The rules are stored as 
new knowledge into the derivative knowledge base 
after passing evaluation. 

2.2 The Reasoning Algorithm of Causality Statistics 
Induction 

This algorithm uses incomplete induction 
approximate inference in statistics and credibility 
theory in uncertainty theory, by counting the 
examples in database and using the property with a 
large amount of examples as module, and gets a set 
of rules by credibility theory. 

Possessed conditions: data focusing has been 
completed i.e. is ready to mine the two language 
variable A, B (e.g. the kinds of crop and its 
production). The mining process is as follows: 
2.2.1 The Computer Decide the Relativity of the 
Corresponding Language Value through Statistic 
Analysis. 

Divide A, B as A(Ai» A2> ....> Am)> B (Bi» 
B2> ....» Bn) according to their language values. If 
A and B are both single variable then we have 
A(Aj, A2. A31 A,. A5), B(B!> B2, B3» B4> 
B5). Given A is the intersection of ml variables, 
m=5ml. Given B is the intersection of nl variables, 
n=5nl. Thus there are altogether mXn kinds of 
combination< A;» Bj > i= 1, 2... .m j=1,2,... ,n. To the 
possibility factor Pk=Cnk/N k=l,2,..., mXn 
corresponding to each computation, P=0.5 is the 
highest possibility. If Pk>0.5, < A;» Bj>is selected, 
otherwise it is eliminated and these two are 
considered to have no relativity. 
2.2.2 Analyze A and B through Visual Tools 

Experts can use visual tools, such as a distribution 
figure to decide the combination of the selected or 
eliminated areas. The areas here have one to one 
mapping relation with the language value mentioned 
above, i.e. the language value and the corresponding 
radius equals the corresponding area. The acquired 
area combination must be changed into 
corresponding language combination which is to be 
used in the later computation. Get the two highly 
relative properties e.g. A and Bj, and draw the 
corresponding values e.g. statistic value N, statistic 
value Cn( A;. Bj )appearing both in Ai and Bj, 
statistic value Cn( A; ) appearing in A, and statistic 
value Cn( Bj ) appearing in Bj to decide which 
variable have causal relation. 
2.2.3 Get Weight of the Premise in the Hypothesis 
Rule (A-*Bj) 

Given Ai is single premise, its weight is 1; given 
A is the interaction of many premises, i.e. rule R: 
A-»-Bj is: 

R: (P,, p,)A(P2. p»)A- • • A(Pn. p„)-*(Q. q) 

Then the corresponding ri in ( P;. p; ) (Pi,pi) and 
( Q > q ) can be gotten from the following 
formula. The weight in its rule can be gotten 
according ri. 

r,=- 

I   M M H H 

Causality statistics induction reasoning algorithm 
flow is shown as following: 

Input language variable A.B 

Discard < A, >   Bj> 

Get weight of the premise in 
the hypothesis rule (Ai-*Bj) 

Fig.2   Causality   Statistics   Induction   Reasoning 
Algorithm Flow 

3. Double Bases Cooperating Mechanism: 
3.1 Basic Theory 

The technological realization of double-base 
cooperating mechanism is to construct interruptive 
and heuristic coordinators. To realize them there are 
some requirements:  The large (basic) knowledge 
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base is divided into several correlative sub- 
knowledge bases according to each domain; 
Meanwhile, the real database is divided into 
correlative sub-databases according to each domain. 
Thus the layers between knowledge nodes in mining 
knowledge base and data sub-class (structure) in 
mining database make a one to one mapping. The 
basic theory which is proposed by us is pan- 
homotopy conception and the following structure 
mapping theorem: (Details can be found in reference 
[1][2]) 

Sub-knowledge base(corresponding to domain X) 

Theorem (Structure Mapping Theorem): Aiming at 
X, in the sub-database corresponding to sub- 
knowledge nodes, <E > F > of knowledge nodes and 
<F» D> of data sub-class (structure) are identical 
pan-homotopic type spaces. 

This theorem presents the mapping of layers 
between knowledge nodes in the sub-knowledge base 
and data sub-class in corresponding sub-database, 
shown in fig.3. 

data sub-base(corresponding to domain X) 

Correspond to some layers of Si 

i Correspond to some layers of Si 

Correspond to some layers of Si 

Fig.3 corresponding construct graph 

On the basis of the research above, we can see 
that in the knowledge discovery system 
mathematical structure of database and knowledge 
base can be essentially come down to pan- 
homotopy category. Namely database is pan- 
homotopy category combined with data sub-type 
(structure ) set and "mining path", which is called 
data mining category; and knowledge base is pan- 
homotopy category combined with knowledge 
nodes set and "reasoning arc", which is called 
knowledge reasoning category. Moreover some 
results about the isomorphy and restricting 
mechanism of knowledge reasoning category 
CR( E )in <E> F >and data mining category 
CD( F )in <F, D > are got, and "directional 
searching" and "directional mining process" are 
solved. 

3.2 The Technological Realization 
3.2.1 Interruptive Coordinator 

The main function of the interruptive coordinator 
is, when the rules (knowledge) have been created 
from the focusing of the data in the real base, to 
"interrupt" the process of the KDD and to search 

whether there is a repetition of the created rule in 
the corresponding position of the knowledge base. 
If so, cancel this created rule and return to the 
beginning of the KDD. There need some special 
technology and methods to process contradiction. If 
not, continue the process of the KDD i.e. evaluate 
and store the result. 

Because the interruptive coordinator is introduced 
into KDD, the inconsistent and redundant 
knowledge can be canceled earlier. Only those who 
are possibly accepted as new knowledge are 
evaluated and the evaluation work is greatly 
reduced. At the same time redundancy is processed 
in real time. This avoids complication of problem 
accumulated in a long time. In practical expert 
system, the amount of rules which finally become 
new knowledge are rather small compared with the 
original knowledge (it is difficult to find new 
knowledge), and a great number of rules are 
repetitive and redundant, so the introduction of 
interruptive type coordinator into KDD enhance the 
efficiency. 

3.2.2 Heuristic Coordinator: 
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is to search irrelevant state of knowledge nodes 
in knowledge base under the principle of property 
on which knowledge base is established. 
Knowledge shortage is found. Data sub-class 
corresponding to real database uses heuristics and is 
activated to produce "directional mining process". 
To find the knowledge shortage in knowledge base 
especially in rule base, one of the methods is to 
compute the causality rule strength in each possible 
knowledge node in the whole causality network. 

The causality rule strength consists of a group of 
three factors which can be expressed as 

*T(H, E)=<a,ß,y>  a=CF(E)*P(E) 
ß=CF(H. E)  y=CF(H)*P(H) 

Among it CF(E) is the reliability of premise, P(E)is 
pre-probability, CF(H> E) is the reliability of rule, 
CF(H)is the reliability of conclusion, P(H) is pre- 
probability. CF(E) and CF(H, E)are known. It 
consists of the whole random and fuz2y uncertain 
information of the rule. According to the causality rule 
strength the priority of directional mining can be 
determined and those can not be mined will be 
excluded. 

4. Properties of KDD* 

Compared with KDD, KDD* is a new structure of 
knowledge discovery which blends KDD and 
double base cooperating mechanism. It has the 
following characters: 
1) KDD* organically make new knowledge found 
by KDD* communicate and merge with the 
knowledge in knowledge base and become one 
organism. 
2) In the process of knowledge discovery, KDD* 
processes those redundant, repetitive and 
incompatible information in real time. This 
effectively decreases the complication of problem 
caused by a accumulated process. At the same time 
the preconditions are given for the merge and fusion 
of new and old knowledge. 
3) KDD* changes and optimizes the process, 
structure and running mechanism of knowledge 
discovery. 
4) From cognition KDD* strengthens and provides 
intellectual degree of knowledge discovery and 
enhances the cognition of computer itself. This is 
the direction for a long team. 
5) Double base cooperating mechanism, the core 
technology of KDD*, shows the mapping between 

sub-knowledge base and data sub-class under a 
certain principle of establishing base. It provides a 
valid technology to decrease search space and 
improve mining efficiency. 

5. Knowledge Discovery in Agricultural 
Economy Planning 

In agriculture system there are abundant data 
which form all kinds of database such as relation 
database, time-spatial database, object-oriented 
database and multimedia database. But the data in 
these database are not made full use and hold plenty 
of storing space. Therefore it is necessary to mine. 

In order to find knowledge from a database, it is 
necessary to process the database and establish 
corresponding basic knowledge base. Then All 
kinds of methods are used to mine the data in 
database. For example, Selenium (simplified as Se) 
is a necessary microelement for human and animal. 
It has many biological functions. Lack of Se is the 
main reason for many diseases, such as cataract, 
mastitis, cancer, large bone disease and so on. Puce 
is one of the main foods in the world. The content 
of Se is related to nutrition of Se in the human body. 
But most rice production areas are short of Se or 
have low content of Se. Therefore if we can find the 
dynamic changing rules under which rice sorbs Se, 
it will play an important role to instruct agriculture 
production and improve human health. Now there 
are some processed agricultural data which are 
shown in the following tables. 

KDD* is applied to analyze the data in the table 
and finds that the accumulation of dry material isn't 
at the same speed with that of Se in the rice. The 
peak of former is in the middle of growing period, 
the latter in the late period. This is a rule that will 
be stored in Knowledge base. According to the rule 
we should fertilize Se again before the period of 
filling starch in rice. On the other hand rice has 
certain ability to sorb Se. So fertilizing Se in those 
areas that lack Se or have low content of Se can 
greatly enhance the content of Se in rice and 
improve its nutrition quality. Doing so on one hand 
can instruct us to fertilize reasonably, on the other 
hand can instruct manufacturer of fertilizer to add 
different microelement in different stage so as to 
meet the demand of agriculture production. Other 
data of agricultural crop can be treated so. 
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Table 1 Dry material accumulation of rice in the whole bearing period 

Bearing 
period 

Growing 
time(d) 

Accumulate speed 
(Ugpof1 • d"1) 

Stage 
accumulation 
(Ugpof1) 

Stage 
comparative 
accumulation 

(%) 

accumulation 
(Ugpof1) 

comparative 
accumulation 

(%) 

Seedling 
period 

30 0.755 22.65 6.70 22.65 6.70 

Spic 
period 60 5.564 166.93 49.38 189.58 56.09 

Filling 
starch 
period 

80 3.818 76.35 22.59 265.93 76.01 

Ripe 
period 

100 3.605 72.09 21.33 338.02 100 

Table 2 Se accumulation of rice in the whole bearing period 

Bearing 
period 

Growing 
time (d) 

Accumulate speed 
( u g • pot'1 • d'1) 

Stage 
accumulation 
(Ugpof1) 

Stage 
comparative 
accumulation 

(%) 

accumulation 
(ugpof1) 

comparative 
accumulation 

(%) 

Seedlin 
g period 30 24.30 729.00 5.82 729.00 5.82 

Spic 
period 60 142.02 4260.68 34.03 4989.68 39.85 

Filling 
starch 
period 

80 151.61 3320.19 24.22 8021.78 64.07 

Ripe 
period 100 224.95 4498.99 35.93 12520.77 100 

6. Conclusion 
Agriculture production is an important thing to a 

country and its people. Reasonable planning for 
agriculture production will take great effect on a 
country. The article provides a new method of 
scientific decision for agriculture economy 
planning. It decreases the loss caused by planless 
production and will be instructive to the 
development of agriculture. 

On me basis of KDD, double base cooperating 
mechanism can be applied to mine knowledge 
automatically and directionally. It can also process 
repetitive, contradiction and redundant rules. This 
will greatly improve the mining effeciency. The two 
kinds of coordinator can be independent system and 
install any existing KDD software to communicate 
with original knowledge base. It expands the 
function of original KDD greatly. 
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ABSTRACT: Forecasting financial currency markets 
is an extremely challenging problem because of the 
complex and highly chaotic nature of such markets. 
Motivated by the substantial profits that could be 
gained by having a system that could accurately 
predict large trends in the market, financial 
institutions are looking on advances in machine 
learning, neural networks, and statistics to provide 
them with another analysis tool. Researchers are 
investigating the use of back-propagation neural 
networks for financial time series prediction, due to 
their success on other pattern recognition problems 
such as machine & handwritten character recognition. 
However, to date their performance has been 
considerably lower than that achieved on the 
character recognition problem domain. This is due in 
large part to the tremendous amount of noise inherent 
in the data, which hinders the learning of good 
mapping functions. We believe that redundant 
forecasting through the synergistic use of multiple 
neural network predictors in combination with an 
intelligent decision aggregation scheme, may be the 
key to increasing the success rate of computer-aided 
forecasting systems. In this paper, we conduct an 
empirical and comparative study on the use of 
alternative methods for data preprocessing, fitness 
evaluation, and decision fusion. We demonstrate the 
advantage of our multiple classifier approach in 
predicting changes in the foreign exchange rate of the 
U.S. Dollar versus the German Mark over 250 days of 
trading. 

Keywords: financial market analysis, time series 
prediction, classifier fusion, evidential reasoning, 
neural networks 

1. Introduction 

Recently, the idea of combining multiple neural 
networks has become an area of great interest 
amongst pattern recognition researchers [3], [4], 

[5]. The rationale behind this current direction is 
that often real-world problems are far too 
complex for any single method to generate the 
best results for all possible types of inputs. 
Instead, an ensemble consisting of multiple 
models is learned, and then the classification 
decision is made by combining the classifications 
of the individual models. This approach has led 
to improved recognition rates over any of the 
individual constituents of the ensemble. 
However, the amount of improvement in 
accuracy has been found to be directly related to 
the "error independence" of the individual 
classifiers. Hence, this scheme has typically been 
applied to the fusion of complementary or 
orthogonal feature sets, such as strokes and 
cavities for character recognition, since 
classifiers based on very different feature sets 
often make errors in an uncorrelated manner. 

In the future, we intend to explore the 
aggregation of forecasting models based on 
multiple feature sets such as wavelet and Fourier 
coefficients. However, in this paper we study the 
benefits of combining single layered feed- 
forward neural networks trained by back- 
propagation on an identical data set. In this case, 
network diversity was achieved by the inherent 
randomness associated with the back-propagation 
algorithm's initialization of a network's weights. 
Pattern classifiers trained in this manner can be 
viewed as approximations from different 
directions to the same goal, somewhat like 
reaching the peak of a mountain from different 
starting conditions. Hence, each classifier may 
behave differently with each individual input 
pattern, however in the long run their error rates 
will be nearly the same. Under these 
circumstances, the fusion of redundant classifiers 
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can potentially improve the overall performance 
of the system by reducing the uncertainty 
associated with the classification, just as in 
everyday life we often consult more than one 
expert before making an important decision. 

This paper is organized as follows. In section 2, 
we provide an overview of our multi-classifier 
system for predicting financial markets. Section 3 
discusses the design of the Artificial Neural 
Network (ANN) classifier used for time-series 
prediction, including the alternative cost or error 
functions utilized during the back-propagation 
learning of the network parameters. Section 4 
describes the fusion methodologies explored for 
the aggregation of the prediction decisions. The 
latter sections present experimental results 
conducted on the U.S Dollar vs. German Mark 
financial currency data and the conclusions that 
may be drawn from this study. 

2. The System 

Since different pattern classifiers will exhibit 
different strengths and weaknesses, we propose a 
multiple neural-based classifier system for 
financial time-series prediction which contains an 
intelligent decision making scheme that fuses the 
predictions, such that each classifier's 
deficiencies are compensated for while 
preserving its strengths. A number of different 
strategies exist in combining classifier decisions. 
Two or more classifiers may be concatenated so 
that the output of one of them becomes the input 
to another, or they may be operated in parallel. 
We choose the later variant, where the group of 
classifiers to be combined can be viewed as a 
group of experts looking at the same problem 
from their individual points of view and stating 
their individual prediction about the future trend. 
The task performed by the decision module is to 
combine the predictions in a manner such that the 
overall uncertainty associated with the final 
decision is reduced. A block diagram of the 
proposed system is shown in Figure 1. 

3. A Neural Network for Forecasting 

1 Neural Nrlwork 

Classlfltr ttl  ^H IE«^- 

E     ^ 

C   " 

fusion 
Module 

S.' lilk,   Ai*f^ 
ClaMlflrr H |H| 

** 
• 

i  H ' x A  4l' m Classifier UN | 

Figure 1. Fusion of multiple neural classifiers 
for improved financial market analysis. 

The most successful Artificial Neural Network 
(ANN) to be applied to pattern recognition tasks 
is the standard fully connected multi-layered 
perceptron net. It learns a mapping between input 
and output pairs by adapting its weights through 
back-propagation learning algorithm. Figure 2 
shows the one-layer architecture used in our 
financial time-series prediction experiments. 

The model assumes there exists an underlying 
complex relationship between the current return 
and the prior returns over a twenty-day period, 
hence the input layer contains 20 neurons. 
Generally, a single output neuron having a 
nonlinear hyperbolic tangent activation function 
is used to produce values within the range of [- 
1,1], where its sign indicates the direction of 
change in the market [1], [2]. However, in our 
multiple classifier system we would like to be 
able to interpret the network outputs as Bayesian 
a posteriori probability estimates, which can then 
be easily combined using evidential reasoning 
methods. Richard and Lippmann [6] showed that 
Bayesian probabilities are estimated when the 
desired network outputs are 1 of M classes (one 
output is unity for the correct class, all others are 
zero), and the network is trained by minimizing 
the expected mean square error (MSE) or the 
cross-entropy cost function. Thus, we utilize two 
neurons in the output layer having a sigmoidal 
activation function [0-1]. One of the output 
neurons is used to indicate the prediction of an 
upward trend, while the other indicates a 
downward trend in the market as shown in Figure 
2. 
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Output-Layer 

Bias 

Upward 
Trend 

Downward 
Trend 

R20 

Figure 2. A single-layered perceptron used 
for financial forecasting. 

The network parameters were optimized using 
back-propagation learning with the following 
variants. First, the weight update rale was 
modified to include a momentum term a, which 
along with the learning rate T| were adapted 
during training from their initial values of 0.9, 
and 0.1, respectively. At each training epoch, the 
training patterns were presented sequentially to 
the network for weight updating. In addition, we 
incorporated the oddness symmetry "hint" into 
the learning process by presenting each training 
instance followed by its negation of both the 
input vector and its target value. In [2], it was 
shown that the symmetry "hint" improves the 
generalization ability of the network, by 
preventing overfitting, and by restricting the 
number of solutions the network may settle into. 
Finally, we experimented with using both the 
squared-error and the cross-entropy cost 
functions for optimizing the network weights. 

In situations in which this is true, the Gaussian 
probability distribution is appropriate and the 
error term to be minimized is the mean square 
error. The error function and its derivative used 
for weight update are: 

P    t    2*2 

dE
Pyk-y^ 

dyk~    a2 

where, o2 is typically fixed to be 1 and t* is the k* 
neuron's target value and ykits output. When the 
Bayesian a posteriori probabilities are estimated 
correctly, the classification error rate will be 
minimized, and the outputs sum to one such that 
they can be interpreted as probabilities. 

3.2 Cross-Entropy Error 

Another popular cost function measures the 
cross-entropy between actual outputs and desired 
outputs, which are treated as Bayesian 
probabilities. Motivation for its use lies in the 
assumption that the desired outputs are 
independent, binary, random variables, such that 
the network's "error" will be binomially 
distributed. Therefore, given binary target values 
of 0 and 1, we can write the learning objective in 
terms of the relative or cross-entropy of the target 
value to the actual output of the network. The 
minimizing error function becomes: 

E   =-lLlog(y,) + (l-f,)log(l-y,)J 

3.1 Mean Square Error 

The traditional mean square error function is the 
most popular cost function used in the majority 
of applications for optimizing the weights of a 
neural network. It has demonstrated good 
performance on real-world problems, and can be 
used for prediction, classification and regression. 
It assumes that the network's "error" will be 
normally distributed about the predicted values. 

with its derivative easily expressed as: 

dEp _ 

^k [yk 

l-t, 

1- ykJ 

where, tk is the k neuron's target value and yk its 
output. This cost function can be interpreted as 
minimizing the Kullback-Liebler probability 
distance measure. It weights errors more heavily 
than the squared-error term, and thus the trained 
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network tends do a better job of predicting large 
changes in the market at the expense of 
misclassifying smaller variations. For our 
application this bias is desirable since a failure to 
detect large shifts in the market is far more costly 
than failing to detect smaller movements. 

4. Combining Classifier Predictions 

The fusion methodologies investigated for 
combining the predictions of the different neural 
classifiers ranged from simple techniques, 
requiring little computation such as majority 
voting and averaging, to the more 
computationally intensive evidential reasoning 
techniques: Bayesian, Dempster-Shafer's rule, 
and fuzzy integral fusion. In this section, we 
describe each method of combination employed 
in generating the final prediction decision. 

4.1 Majority Vote 

This scheme tallies the classification votes from 
all networks, then chooses the prediction yielding 
the maximum number or that which was 
indicated by the majority (e.g., at least 3 out of 5 
classifiers). 

4.2 Arithmetic Mean 

In this combination scheme, we simply average 
the individual classifier outputs. The maximum 
of the averaged values is chosen as the correct 
prediction class. 

yc    n *fyc,i 

where, n is the number of classifiers. 

4.3 Bayesian Evidential Reasoning 

The Bayesian evidential reasoning technique is 
strongly   founded   upon   the  framework   of 

?Äiai iWecasi* 

Upward 
Trend 

Figure    3.    Information    fusion    through 
Bayesian evidential reasoning. 

probability theory, however the underlying 
assumptions it requires for the propagation of 
beliefs may or may not be true in practical 
situations. For example, Bayesian reasoning 
assumes that the pieces of evidence E; to be 
aggregated are statistically independent. This 
assumption may not be true in cases where causal 
or contextual relationships exist, however for the 
purposes of fusing multiple neural forecasters we 
will assume that the evidence sources are 
"independent" with respect to the errors they 
make. Figure 3. shows the information fusion 
process under an evidential reasoning framework. 

Bayesian theory uses an "Odds-Likelihood 
Ratio" formulation of Bayes' rule to aggregate 
the evidence from multiple sources. The a priori 
odds O(H) of a given class hypothesis H (e.g., 
upward trend, downward trend) is related to its a 
priori probability P(H) by the following 
relations: 

0(H) = HOL   and 
P(~H) 

P(H) = 0(H) 
1 + 0(H) 

where ~H means "not H". The likelihood of the 
evidence Ej, given that the hypothesis H is true, 
is: 

P(E. IH) 
UE.\H) = «  

P(E.\~H) 
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The class probabilities for each hypothesis may 
be estimated from training data, and the neural 
network outputs divided by these probabilities to 
produce scaled likelihoods, where the scaling 
factor is the reciprocal of the unconditional input 
probability. 

The formula for updating the a posteriori odds of 
a hypothesis H, given the evidence Ej observed 
is: 

0(H\EvE2 En) = 0(H)UL(E.\H)- 

and, the "belief or a posterior probability for a 
hypothesis is simply: 

Q(H\E^,Ev...,En) 
P^mEVE2 Z")-\ + 0{H\EvE2 E») 

The final prediction is chosen to be that 
hypothesis H having the greatest probability 
given the accumulated evidence. 

4.4 Dempster-Shafer's Evidential Reasoning 

Dempster-Shafer's (DS) theory of evidence is 
another tool for representing and combining 
evidence, which is considered to be a 
generalization of Bayesian theory. It is more 
flexible than Bayesian when our knowledge is 
incomplete, by permitting the assignment of an 
ignorance term rather than forcing an over- 
commitment towards "belief or "disbelief in a 
hypothesis. Rather than representing the 
probability of a hypothesis H by a single value 
P(H), DS theory binds the probability to a 
subinterval [Bel(H),Pl(H)] of the interval [0,1], 
where Bel(H) - "belief and P1(H) - "plausibility" 
represent the lower and upper bounds on the 
probability, such that: 

Bel(H)<P(H)<Pl(H). 

When Bel(H)=Pl(H), Dempster-Shafer theory 
reduces to Bayesian. 

According to D-S theory, the set of all possible 
outcomes (i.e., the sample space) in a random 
experiment is called the frame of discernment 
(FOD) denoted by 0. For our problem, the frame 
of discernment would be 0={ upward trend, 
downward trend}. Associated with each of the 
neural network classifiers is a basic probability 
assignment (bpa), which expresses the degree to 
which the evidence confirms or supports a 
hypothesis. It is assigned according to the neural 
network output yk, and is estimated from the 
statistics of the training set. 

Given two bpa's mi(») and m2(*) discerned in the 
same frame, their combined belief in a hypothesis 
H can be computed using Dempster's rule of 
combination: 

BnC=0  *       2 

This rule is applied recursively until the evidence 
from all n sources is aggregated. The output of 
the D-S fusion module is the following interval 
of belief: 

Belief(H) = mie2®3<B...©n(H) 

Plausibility(H) = 1 - Belief(~H) 

Belief Interval = [Bel(H), P1(H)]. 

Then, the final prediction hypothesis having the 
largest amount of "support" with the smallest 
uncertainty (i.e., the difference Pl(H)-Bel(H)) is 
chosen. 

4.5 Fuzzy Integral Fusion 

The fuzzy evidential reasoning scheme views the 
outputs of multiple networks or experts as 
independent sources of "objective" or "observed" 
evidence, which is combined with an evaluation 
of the "relevance" or "importance" of that 
evidence with respect to each hypothesis. The 
combination of both types of information is 
accomplished using a fuzzy aggregation operator 
called the fuzzy integral. The fuzzy integral is a 
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nonlinear function defined with respect to a fuzzy 
measure, which is a generalization of a 
probability measure, that replaces the additivity 
property (i.e. P(A) + P(~A) = 1) with a weaker 
monotonicity condition. The "relevance" of an 
information source is captured by this fuzzy 
measure or density, which may be subjectively 
assigned by a human, or estimated from the 
training data. The fuzzy integral operator 
integrates the outputs of the neural network 
experts with respect to this aggregated relevance 
function to compute the possibility expectation 
between the pooled evidence and it's combined 
relevance. As shown in Figure 4, the fuzzy 
integration or possibility expectation may be 
interpreted as searching for the maximal 
agreement between the actual evidence, and its 
aggregated relevance. 

Algorithm; 

For all c classes or hypotheses { 

1) Sort classifier evidence: 
hc(xl)2he(x2)Z...Zhe(xn), 

A- = \Xy,%2 ,—-X- ) 

2) Find lambda parameter: 

1=1 

3) Compute aggregated relevance: 

g^(Ai) = gi
c+gXc(Ai_i) + K8i

cgxMi-i) 
4) Compute possibility expectation: 

ec=ihc(x)°8^ 

= MAX&IN[hc(xi),gXc(Ai)§ 

} 
Compute final classification decision: 

^Classes 

Class = MAX (ec). 
c=\ 

Separate aggregation networks are needed for 
fusing information regarding each hypothesis. 
The final prediction classification or hypothesis 
decision is taken to be the one returning the 
largest fuzzy integral value as shown in Figure 4. 

7t (CLASS c I Input Features ) 

1.0- - 

0.0 

Evidence 

hcCXz) 

Aggregated Relevance 

% (Evidence | Relevance) 

Figure 4. Fuzzy integration. 

5.   Experimental Results 

The data used to evaluate our system consisted of 
the closing prices of the U.S. Dollar versus the 
German Mark currency exchange rate over a 
four-year period. The prices (Pt) were normalized 
to compute the daily return (Rt) using the 
following formula: 

Rt = 
rP-P     ^ 

1-1 
X100% 

A plot of the computed daily returns is shown in 
Figure 5. This normalized data was then divided 
into three sets with the first 500 samples used to 
train the neural networks, and the remaining 
samples divided into two test sets. We chose to 
combine five neural networks each trained in the 
same manner, although due to random weight 
initialization, each network started at a different 
point in the error surface. Table 1 presents the 
prediction hit rate results for the neural networks 
trained using the squared-error function and the 
"oddness" symmetry hint. The performance on 
the second test set is lower due to the fact that the 
training data is not representative of the current 
market status, but instead is "out-of-date". Table 
2 presents the prediction hit rate results for the 
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Day 

Bayesian a posterior probabilities, which can 
easily be converted to scaled likelihoods, and 
then combined for higher level decision making. 
An intelligent information fusion scheme was 
used to combine the predictions of the individual 
classifiers, such that the accuracy and reliability 
of the final prediction was improved. We 
obtained nearly a 15% increase in performance 
over the predictions of the individual neural 
classifiers. In the future, we intend to investigate 
the generation of complementary forecasters 
through the use of time-frequency 
transformations. 

Figure  5.  U.S.  Dollar  vs.  German  Mark 
exchange rates. 

neural networks trained using the cross-entropy 
cost function and the "oddness" symmetry hint* 
The results are lower because this cost function 
tends to predict only large trends in the market at 
the expense of smaller variations. 

Having trained our neural-based forecasters, the 
goal is to combine the outputs from the 
individual networks to obtain an overall 
prediction of the market trend. Five different 
fusion methodologies were implemented and 
tested. Table 3 & 4 present the prediction hit 
rates on the two different test sets obtained by 
combining the five neural networks trained using 
the MSE error and the "oddness" symmetry hint. 
By examining the results, we see that there is a 
clear benefit in using evidential reasoning 
methods for fusing the individual network 
predictions. We obtained nearly a 15% increase 
in performance over the predictions of the 
individual neural classifiers 

6. Conclusions 

We introduced a multiple "redundant" neural- 
based classifier system for financial market 
analysis. Each classifier was trained in an 
identical manner, however random weight 
initialization provided some network diversity. 
The objective functions used to optimize the 
network   weights   produced   estimates   of  the 
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Table-1 Performance of networks trained using the MSE and "oddness" symmetry hint. 
% IN Samples 

Total Samples = 500 
(1... 500 days) 

% OUT Samples 
Total Samples = 253 

(501 ...753 days) 

% OUT Samples 
Total Samples = 250 
(754... 1003 days) 

Classifiers Correct Error Correct Error Correct Error 
1 70.00 30.00 60.10 39.90 53.80 46.20 
2 71.10 28.90 62.80 37.20 54.60 45.40 
3 72.39 27.61 57.80 42.20 52.40 47.60 
4 71.60 28.40 58.27 41.73 54.40 45.60 
5 71.20 28.80 61.30 38.70 55.00 45.00 

TabIe-2 Performance of networks trained using the Cross-Entropy error & "oddness" hint. 
% IN Samples 

Total Samples = 500 
(1... 500 days) 

% OUT Samples 
Total Samples = 253 

(501... 753 days) 

% OUT Samples 
Total Samples = 250 
(754... 1003 days) 

Classifiers Correct Error Correct Error Correct Error 
1 66.00 34.00 48.20 51.80 43.20 56.80 
2 68.30 31.70 51.00 49.00 39.60 60.40 
3 64.18 35.82 52.80 47.20 41.80 58.20 
4 66.20 33.80 55.05 44.95 44.00 56.00 
5 63.30 36.70 52.35 47.65 43.10 56.90 

Table-3 Performance combining five networks trained using MSE error and "oddness" symmetry 
hint over the first test set consisting of (501... 753 days). 

Majority 
Vote 

Arithmetic 
Mean 

Bayesian 
Reasoning 

Dempster- 
Shafer 

Fuzzy 
Integral 

Correct 56.80 54.50 65.80 60.90 64.00 
Error 43.20 45.50 34.20 39.10 36.00 

Table-4 Performance combining five networks trained using MSE error and "oddness" symmetry 
hint over the second test set consisting of (754... 1003 days )• 

Majority 
Vote 

Arithmetic 
Mean 

Bayesian 
Reasoning 

Dempster- 
Shafer 

Fuzzy 
Integral 

Correct 42.40 40.80 58.80 55.90 61.00 
Error 57.60 59.20 41.20 44.10 39.00 
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Abstract 

Operational Risk Management imposes a 
structured approach to dealing with potential losses 
in complex operational processes and resources in 
financial firms. Two unique properties of 
operational risk (as opposed to financial risk) make 
application of Bayesian Networks (BNs) attractive 
to this domain. Firstly, in the absence of mark-to- 
market assets, operational risk measurement 
requires integration of various data sources and 
expert judgements about risk. The ability of BNs to 
structure subjective beliefs and learn interactively 
from data is attractive in this regard. Secondly in 
absence of liquid markets where risks can be 
diversified away, operational risk needs to be 
internally actionable. The ability of BNs to structure 
conditional relationships between risk factors and 
draw probabilistic inferences and decision support is 
attractive in this regard. Monte Carlo (MC) 
simulation over a BN provides powerful capabilities 
for deriving more meaningful loss distributions 
rather than point probability estimates. A framework 
combining these two methodologies provide a way 
to both measure and manage operational risk in an 
integrated way. We have implemented a prototype 
system of the framework. Preliminary results 
demonstrate the practical promise of the framework. 

1.Introduction 

In recent years high profile losses in 
investment banks due to poor organizational 
design and trader fraud, like the Barings 
disaster [1, 2] or disasters due to inadequacies 
in information systems, like the Joseph Jett [3] 
case have focussed the attention of managers 
on operational risk. There is no universally 
accepted definition of operational risk, 
suggesting infancy of the field. Board of 
Governors of the Federal Reserve System 
Trading Activities Manual defines operational 
and systems risks as the "risk of human error 
or fraud, or that systems will fail to adequately 
record, monitor and account for transactions or 
positions." The Basle committee 1994 Risk 
Management Guidelines (Vol. 16) for OTC 
derivatives adopted a definition that has been 
used by a number of banks, which holds that 
Operational Risk is "Risk that deficiencies in 
information systems or internal controls will 
result in unexpected losses. This risk is 
associated with human error, systems failures 
and inadequate procedures and controls." 
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Practitioners agree that operational risk is 
not confined to back-office or "operations 
risk" but encompasses front-office operations 
or virtually any business process in the bank 
and includes elements of settlement risks, 
business interruptions risk and administrative 
or legal risks. 

The absence of a liquid market for 
operational risks means that it needs to be 
measured using internal data. Since the 
ultimate aim of measurement is management 
of operational risks, the larger methodology 
should also be able to structure operational 
risks and provide capabilities for decision 
making for reduction of these risks. First 
generation operational risk measurement 
methodologies concentrate on measuring an 
aggregate value for operational risk for the 
purpose of capital allocation using cost, 
income or price volatility based models. These 
models are easy to implement as they are 
based on available accounting or market price 
data. However, such quick and highly 
aggregated risk numbers do not lead to 
actionable recommendations. The need to 
discover sources of operational risks in order 
to redesign processes or controls has lead to 
more advanced operational risk models. These 
models are not just focussed towards setting an 
aggregate capital value, but also towards 
discovering sources of operational risk, 
understanding of loss events and their 
relationships and discovering the effect of 
process and control redesign alternatives on 
these risks. 

Most operational risks are a result of a 
complex sequence of related events, where the 
events themselves are uncertain. Usually we 
are dealing with low-probability/high impact 
events for which data is scarce by definition. 
However, operational managers can generally 
articulate their beliefs about the probabilities 
and impacts associated with these events. 
BNs and MC simulation when used together 
can allow us to structure these beliefs about 
event probability and conditional dependencies 
in a systematic framework. This paper 
describes   one   such   framework   used   for 



measuring risks associated with securities 
settlement process in the Singapore operations 
of a multinational investment bank. 

In section 2 we briefly review literature on 
BNs and MC simulations as applied to BNs. In 
section 3 we choose a subset of operational 
risks associated with a securities settlements 
process in a bank and illustrate the use of BNs 
and MC simulations in quantifying these risks. 
In section 4 we present our conclusions and 
directions for future research 

2.Tutorials 

2.1 Bayesian Networks 

Bayesian Networks (BN) are closely 
associated with subjectivist school, as opposed 
to frequentist school of reasoning (for 
discussion on some issues see [4]). This 
approach suggests those experts, or people 
identified as having deep knowledge in a 
specific domain are able to meaningfully 
articulate causal relationships and conditional 
dependence between variables they deal with. 
This approach allows us to define a systematic 
framework of probabilistic inference and 
decision analysis tasks when there is great deal 
of uncertainty, data is scarce and the most 
reliable source of knowledge is beliefs held by 
experts. The flexibility of BNs allows us to 
update opinions, as data becomes available. 

Bayesian Networks (also called belief 
networks, Bayesian belief networks, causal 
probabilistic networks, or causal networks) [5- 
7] are directed acyclic graphs in which nodes 
represent random variables and arcs represent 
direct probabilistic dependencies among them. 
The structure of a BN is a graphical, 
qualitative illustration of the interactions 
among the set of variables that it models. The 
structure of the directed graph can mimic the 
causal structure of the modeled domain, 
although this is not necessary. When the 
structure is causal, it gives a useful, modular 
insight into the interactions among the 
variables and allows for prediction of effects of 
external manipulation. The numerical part of 
BN is a set of prior probabilities and 
conditional probabilities. 

More formally, given V is a set of 
variables. Then a Bayesian belief network B 
over V is a pair (Bsßp). Bs is a directed acyclic 
graph with a node for each variable ve V, 
called the network structure. Bp is a set of 

assessment functions, one for each variable v 
in V, defining a conditional probability of the 
variable (conditioned variable) given the 
variables that are its parents in Bs (conditioning 
variables). These functions quantify the 
strength of dependencies between the variables 
connected with an arc. Together, the 
assessment functions of a BN define a unique 
joint probability distribution over Fthat agrees 
with the interdependencies represented by the 
network structure. Once a BN is so constructed 
and initialized, it can be used to calculate the 
values of other variables given that a subset of 
Fhas been observed. Probabilities are updated 
using the Bayes' rule. Probabilistic inferences 
can be drawn from this network. 

When a BN is used for probabilistic 
inference only it is frequently termed as 
"knowledge map" [8]. However, a popular use 
of BN is decision analysis [9]. A BN can be 
transformed into an influence diagram, which 
also incorporates utility and decision nodes 
[10]. Based on the utility functions and the 
probabilities encoded in the BN, decision 
alternatives can be studied. Another advantage 
of this particular formulation of Bayesian 
networks is that it allows for further 
conversion of an influence diagram into 
decision trees [11]. In this paper we shall rely 
on influence diagram and decision tree 
formulation of BN. 

The original reference for influence 
diagrams is [12]. For some issues related to 
BN construction see [13, 14]. Algorithms for 
inference in BNs are discussed in [15] [Huang, 
1996 #12]. Some practical applications of BNs 
are described in [16]. Software that 
implements BN or influence diagrams are 
HEUGINin [17], MSBN [18] and DATA [11]. 

2.2 Monte Carlo Simulation 

Simulation is the process of building a 
mathematical or logical model of a system or a 
decision problem and experimenting with the 
model to gain insight into the system's 
behavior or to assist in solving the decision 
problem. A model is an abstraction of a real 
system. A BN can be seen as a descriptive 
model of V that that describes relationships 
between variables in B, and provides 
information for evaluation in BT- Monte Carlo 
(MC) simulation is sampling experiment 
whose purpose is to estimate the distribution of 
an outcome variable that depends on several 
probabilistic input variables. MC simulation 
can be  seen  as  a way of managing  the 
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uncertainty associated with input variables or 
testing the sensitivity of the model to its 
assumptions. The results of MC simulation are 
distribution of outcome variables obtained 
from thousands of combinations of values that 
the input variables could possibly take. 
General discussion on simulation applied to 
risk analysis can be found in [19,20]. 

In their pure form, BNs operate on and 
calculate point probability estimates for the 
conditioned variables, analytically from the 
networks. Simulation can be used internally in 
a BN for updating and inference [21]. 
However, we are more interested in how 
simulation can strengthen modeling and 
decision making in a BN framework. 

Since BNs are in essence models of 
relationships over a particular set V, where 
modeling assumptions and parameters are both 
noisy and uncertain, use of MC simulations 
allow us to do more robust decision analysis 
over the system. Simulation in this sense 
complements sensitivity analysis on influence 
diagram parameters [22] Further, point 
probability estimates are not very interesting 
for decision making in risk management as the 
expected value of the payoff nodes represent 
only long run expected averages. One at least 
wishes to know not just the mean of loss 
distribution (expected loss), but also a standard 
deviation (unexpected loss) and a high 
percentile like the 99% (catastrophic loss). 

The way to do MC simulation is to specify 
uncertain parameters (like probabilities) as 
distributions on the conditioning nodes instead 
of simple point estimates. The MC algorithm 
then picks at values random from these 
distributions. The values of conditioned nodes 
and associated payoffs (expected values or 
expected utilities of decision alternatives) are 
then calculated in the normal way. Doing this 
hundred of times results in a distribution of 
outcomes that becomes a basis of more 
meaningful analysis. 

Some of the good references looking at 
applications of simulation in decision analysis 
or artificial intelligence reasoning are [23-25]. 
A software implementing MC simulations on 
influence diagrams is DATA [11]. 

3. Exploratory Case Study 

3.1 Context 

Our case study was conduced in a mid- 
size, full service securities firm in Singapore. 
A securities firm is a financial intermediary 
between suppliers and demanders of liquidity. 
In this role it deals with a variety of investors, 
ranging from individuals to governments and 
corporations on one side and capital market 
instruments on the other side (for background 
on security firm's operations see [26,27]). 

The number of transactions in this firm is 
about 250/day with S$2.55 million per 
transaction value. This transactional 
throughput is about average for the industry. 
Its operating year of 250 working days a year 
is conventional for the industry. There were 10 
full time employees working in the operations 
division of the firm during the time of the 
study. 

The operations manager in this firm was 
concerned about some unusual losses 
mounting up in its securities settlement 
operations. He engaged one of the big-5 
consulting firms in order to help with 
operational risk management and process 
improvement. Operational risks in the firm 
were divided into several main categories (like 
technology, human resources, transaction etc.), 
with each of the categories further subdivided 
into hundreds of sub-categories. For the 
purpose of this paper we will concentrate on a 
small subset of the operations dealing with 
securities settlement, which form a part of a 
much larger operational risk management 
project. 

3.2 Methodology 

The methodology for this research was as 
follows. 

1) Development   of   a   process   flow 
diagram 

2) Identification  of major  operational 
risks 

3) Identification of causal structure of 
the events that lead to these risks. 
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Fig 1. Process Flow Diagram of 
Securities Settlement 

f^r^ra-RmVpr 

mmm 

Buy or Sell Confirm 

Physical Receive 
and Deliver 

Depository Receive 
and Deliver  

4) Determination  of probabilities   and 
loss distributions 

5) Simulation over the belief network 

6) Risk mapping and reporting 

First a process flow diagram was 
constructed in discussion with the operational 
manager and the consultant in charge of this 
project. Several levels of these diagrams were 
constructed in order to clarify the flow of 
operations and to establish responsibilities for 
the different sub-processes and resources. The 
high level overview of the process is given in 
Fig .1. This diagram became the basis 
operational     risk     measurement     strategy. 

At the next stage we were concerned with 
finding out some of the operations risk that the 
firm was facing. We sent out questionnaires 
asking the employees about 5 of their 
"nightmare scenarios", or events which if they 
happened in the part of the process under their 
responsibility would cause a major loss 
(defined as being over a suitable daily limit set 
by the operations manager). This information 
was then triangulated with historical operating 
cost data and an important subset of these 
scenarios was chosen for further development. 

The issue we aim to use as a basis of 
demonstration for this case study was late 
settlement of promised securities. A security 
firm enters into a legal obligation to settle a 
transaction within a set time period (usually 
within three days). Failure to do so exposes the 
firm to unbalanced position till the security is 
settled. This may lead to exposure to market 
risk, credit risk or liability risk. 

After identification of appropriate 
problems the next stage was development of 

the structural part (or Bs) of a belief network. 
This was done in consultation with all the 10 
people involved in the settlement problem. 
This required several structured group 
meetings. The elicitation was done in an 
iterative, top down method, where 
conditioning variables for the top level were 
identified and in their turn the causal 
influences that lead to them were identified. 
This stage also helped in revealing that several 
of the losses being realized in one part of the 
process were actually due to errors in other 
parts of the process. This formed the basis cost 
allocation at the reporting stage. 

The next stage was determination of 
conditional probabilities and loss values 
associated with each event. Conditional 
probabilities were elicited using PROBES [28] 
a tool developed for this purpose. Probability 
was defined as the chance of a particular event 
occurring on a given day. Conditional 
probabilities were defined as the chance of an 
event occurring given its predecessor has 
occurred. For probability elicitation we asked 
the individuals under whose area of 
responsibility a particular event originated to 
work with PROBES. This was done because 
we believed that individuals who observe these 
events on a daily basis have a better idea about 
probabilities. Instead of eliciting point 
probability estimates, we elicited probability 
distributions. 

For loss values a slightly different method was 
used. Loss was defined as the average daily 
loss associated with an event multiplied by the 
amount of time required for fixing the 
problem. Loss values due to specific event 
were determined by looking at historical cost 
data and by talking to the operations manager 
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Fig.2 
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because it was felt that the junior level 
people did not have a good overall idea of the 
effects of events on the firm as a whole. It was 
deemed reasonable to assume that losses were 
normally distributed and their specification 
involved assessment of their means and 
standard deviations. 

This network structure was now 
constructed in DATA [11] and interactively 
refined. Only chance and value nodes were 
used since at this moment we were only 
interested in operational risk measurement and 
not in decision making. 

After the network was initialized expected 
values of the aggregate operational risks were 
obtained. MC Simulation was then performed 
over this network by drawing the value of each 
chance node the probability distributions 
specified. In this manner, unexpected 
(equivalent to the Standard Deviation ) and 
catastrophic (95% percentile) value. The 
description of this process and results follows 
in the next sub-section. 

3.3 Results and Discussion 

The causal network elicited for the 
settlement process was developed as an 
Influence Diagram in DATA (figure 2). 
Chance Nodes were used to represent loss 
events . For example, a Settlement Error by the 
Counterparty (E_Cntpy_Err) leads to a dollar 
loss for the firm and occurrence of the event 
could lead to further loss by causing a Market 
Exposure (E_Mkt_Exp) for the firm. 

([     E_Late_Coiifinn     _>- Daü>'_Loss 

'Total average daily 
iloss due the various 
1 event losses. 

Each chance node can take two distinct 
outcomes (i.e. either an event occurs or it does 
not). The uncertainty associated with the 
probabilities of occurrence was accounted for 
by representing the probability of occurrence 
as a distribution e.g. a triangular or exponential 
distribution. The uncertainty of the estimates 
for the losses caused by the occurrence of an 
event was taken into account by representing 
the loss values for each chance node as a 
probability distribution e.g. normal 
distribution. 

The arcs in the influence diagram between 
chance nodes represent the conditional 
probabilities. For example, given that the 
E_Cntpy_Err event has occurred the 
conditional probability that the event 
E_Mkt_Exp will occur is defined as a 
distribution. This helps propagate the 
uncertainty with respect to the probability of 
occurrence, and the dependencies between the 
events, through the network. 

The Daily_Loss value node in the above 
influence diagram represents the aggregated 
dollar loss across all the events. For each 
simulation, each of the probability and loss 
distribution is sampled to determine the joint 
outcome of the events in the influence 
diagram. MC simulations were performed 
using DATA to determine the distribution of 
the Daily_Loss. The figure 3 in the next page 
is an output from an MC simulation for the 
above network. 
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From the distribution of the Daily_Loss, 
the average, standard deviation and 95% 
percentile loss values can be determined. The 
simulation runs for the illustrated causal 
network resulted in the daily loss values as 
presented in the figure. 

1B Monte Carlo Simulation 

Node: SettPtocesJ 

Trial«:     100«)    of   10000 

i r^—,jt 

Last Value- tO 

Mean Value: £3,134 

•   StdDev: tsjm 

'   MWmumVatoe: m 
;.   5X: to 
i    Medan: £401 

i»   95*: E14JB72 

MawnumValue: £33,721 

Gfaan    | 

Textfjeport. 

Fig 3 : MC Simulation Analysis 

The expected daily loss was calculated as 
3134. However, the unexpected loss comes up 
to 6,068, which is approximately twice the 
mean value. The 95% percentile value $14,872 
represented Value-at-Operational-Risk due to 
late settlements at one day confidence interval. 
These three quantified values were then 
integrated with operational risks from other 
risk categories in order to arrive at an 
aggregate Value-at-Operational-Risk for the 
firm as a whole. The large spread of the loss 
distribution reflects the low-probability/high- 
impact nature of operational risks. 

Fig. 4 Daily_Loss distribtulon 

Dally_Loss 
Frequency 

•-#-- Ojmulatlve % 

The other very useful feature of using an 
Influence Diagram in the Operation Risk 
Management process is the fact that they allow 
inferencing, sensitivity analysis with respect to 
the event's probability and loss distribution 
(figure 5). In the influence diagram under 
consideration, assigning extreme values to the 
loss   distribution  of the  E_Mkt_Exp  event 

Fig. 5 Sensitivity 

* distECME 

£3,1SJ- SettlProces 

 1 1 1 
0.020       0.030       0.040       0.050 

distECM 

resulted in a significantly large VaR value. 
This capability of an Influence Diagram is very 
important to Operation Managers who can then 
identify significant parameters of the causal 
structure and take suitable action to reduce the 

loss. 

3. Conclusion 

In this paper we have described an 
application of Bayesian networks and MC 
simulation in quantifying operational risk. We 
illustrated this application on a specific risk 
associated with a settlement process in a 
securities firm. The initial analysis look very 
interesting and this analysis will be expanded 
to other parts of the operational risk 
management process. 

We are working towards further 
enhancements. We are considering 
specification of probabilities using any 
arbitrary distribution. The problems associated 
with this is there usually is very little data, and 
individuals with little statistical knowledge 
find it hard to specify their beliefs in terms of a 
distribution. We are also investigating the use 
of some opinion pooling methods in order to 
gain better triangulation on the beliefs of 
different experts. Some approaches based on 
quantile specification of probabilities look very 
promising. 

As regards to loss distribution, we found 
that MC simulation over normal distribution 
does not readily reveal worst case scenarios, 
which are of great interest to managers. We are 
investigating the use of extreme value 
distributions in this case. 

While the current implementation is promising 
for measurement of operational risks, we have 
not yet exploited the capabilities of Bayesian 
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networks for decision analysis. The complete 
system we are planning to implement will have 
a Bayesian network with direct data feed from 
firms operations systems. Addition of decision 
nodes coupled with simulation and 
optimization will allow looking at the change 
in risk profile contingent on various risk 
reduction actions by the manager and 
suggesting an optimal course of action. 
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Abstract - Stock data analysis for price forecasting and trend 
prediction has been a challenging problem that attracts 
researchers from different fields. Some use statistical 
methods, while others use neural network based approaches. 
This paper reports on a preliminary study on stock market 
data analysis using a hyperspace data mining approach that is 
built upon a prqjective geometrical method. Discussions 
include data separation, feature selection, data pattern 
identification, and model building. Application of this 
method to stock performance classification and market 
speculation prediction is described. Preliminary results with 
real-world financial data seem to provide useful insights on 
how to discriminate the performance of different companies 
and to identify the market speculation manipulated by large 
investors. 

Key Words: stock data, data mining, projection, time series, 
pattern recognition, classification. 

1. Introduction 

There are a number of objectives in financial data 
analysis. They include investment evaluation, building 
of mathematical models to predict market prices [15], 
quick identification of clusters from survey data, 
demand forecast based on customer satisfaction (or 
consumption utilization) [17], consumer behavior 
analysis in terms of satisfaction, preference, subject 
appreciation [15], correlation and association analysis 
to relate goals (targets) to factors, and case studies by 
computer model simulations. 

Traditional analytical methods include those from 
classical statistics including linear and nonlinear 
regression analysis, factor analysis, correlation and 
association, time series analysis, and those from 
artificial intelligence including artificial neural 
networks (ANN), fuzzy expert systems, genetic 
algorithms, and so on. In pattern recognition 
applications, PLS (partial least square) method is often 
used to find quantitative target-factor relationships. 
However non-linearity exists among targets and factors 
that calls for new methodology. To develop a new 
methodology for financial data mining solutions, a 
number of important issues need to be addressed, such 
as feature selection, data separation, and model 
building. 

How to select and use financial factors to describe the 
underlying operation of a financial system is an 
important but complicated problem. People often rely 
on theories in micro-economics, macro-economics, and 
econometrics to select features that best describe 
financial systems. In most cases, features used in 
financial analysis are extracted by human intelligence. 
However, financial system structures are very 
complicated, and they are often described by a large 
number of seemingly unknown factors. The difficulty is 
how to choose the right set, or a reduced set, of the 
factors that correlate the financial activity with the 
structure of a financial system. It seems that the 
empirical rules developed by human intelligence can 
also be discovered by computer software that 
implement powerful methods designed for feature 
selection and feature reduction purpose. 

The data separability criteria, implemented in the 
MasterMiner software and reported herein, are rather 
useful in selecting key factors that influence the 
financial performance of a business. People often use 
linear and nonlinear regression in data separation that 
gives poor results. MasterMiner is useful in simplifying 
the selection of nonlinear terms in regression. It has 
been compared favorably against other popular 
software. The former uses far less terms in 
mathematical models, and produces lower prediction 
residue error squared sum (PRESS) than the latter. 

This paper describes a hyperspace data mining method 
[3] [7] that has a number of advantages over those 
based on pure ANN or pure regression (such as PCA, 
principal component analysis) methods often used in 
financial data mining. The reported method has proven 
to be very effective in dealing with non-linear, non- 
uniformly sampling, non-Gaussian and multi-variant 
cases in non-financial applications, such as 
petrochemical, materials design and process controls. 
As such, it is reasonable to extend its use to financial 
data mining. Examples are included to show the 
efficacy of this new method for stock performance 
classification and speculation prediction. 

2. Review on Classification Techniques 
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Classification techniques are grouped into two 
categories: decision theoretic (or statistical) and 
syntactic [14]. In the statistical approach, features are 
extracted from input patterns, and classification carried 
out by partitioning the feature space in probabilistic 
terms. In this method, however the important structural 
relationship among features is lost often times. 
Bayesian reasoning, as a major statistical method, 
resolves uncertainty by resorting to the principle of 
indifference - probabilities are distributed uniformly 
among all events known to have relevance, leading to 
inconsistencies in decision. Another obstacle to 
Bayesian method is that a classifier is required to have 
complete and accurate knowledge (in a database) of 
both a priori and conditional probability distributions, 
or the classifier is forced to guest anyway no matter 
how impoverished the information is. Therefore the 
validity of this procedure in practice is questionable. In 
contrast, syntactic methods extract structural 
information from data, and a class is characterized by 
several sub-patterns and relationships among them. 
Both techniques, however, are not adaptive to the 
uncertainty associated with real-world data, and have 
limitations in applications. 

AI-based methods include fuzzy logic, neural networks 
and genetic algorithms, and they have received wide 
attentions in recent years, especially as the Internet 
grows. Fuzzy logic is precise reasoning about 
imprecise concepts for human reasoning, and fuzzy 
sets handle uncertainty effectively in that they have no 
well-defined boundaries, and the transition from full 
membership to non membership is gradual [1][13]. 
One could map the human knowledge into fuzzy rules, 
and make classification by fuzzy reasoning [18]. One 
could also use fuzzy clustering methods, such as fuzzy 
c-means, to classify patterns into different categories. 
However, a pure fuzzy technique has limitations: (1) 
lack of adaptive learning ability: it cannot learn 
classification knowledge from data, and (2) 
incompleteness and fuzziness in representing experts' 
knowledge: even experts cannot clearly describe 
approximate reasoning under uncertainty and they 
often make wrong decisions. 

Crisp neural nets (supervised or unsupervised), on the 
other hand, can mimic the biological information 
processing mechanism in a very limited sense. They 
have been used as alternatives to traditional classifiers 
[2][6][12]. They have a number of advantages, 
including (1) high computation rates because of 
massive parallelism, (2) adaptivity in learning decision 
rules, and (3) a greater degree of robustness or tolerance 
against uncertainty. However, crisp neural classifiers 
have   intrinsic   shortcomings:    (1)   they   represent 

knowledge by distributed crisp weights that, 
unfortunately, have no explicit physical meanings. By 
adjusting weights, such a net can only extract 
knowledge at low-level (represented by numerical 
weights) rather than at high-level; (2) they cannot 
directly process symbolic data (linguistic values, e.g., 
"very high," and "about 55 grams,") because its weights 
can only store crisp numerical values (e.g., "-55.88."). 
In summary, a pure neural approach is not suitable to 
handle fuzzy and uncertain knowledge arising in the 
complex real-world data. 

To overcome the limitations of pure neural and pure 
fuzzy approaches, the neurofuzzy methods are studied 
that offset the demerits of one paradigm by the merits 
of another. In a narrow sense, a fuzzy neural net is a 
fuzzy-operation-oriented neural net, implemented by 
fuzzifying inputs, output and weights, and using fuzzy 
set operations. However, the narrow-sense fuzzy neural 
network can not extract fuzzy rules from data because 
no explicit physical meanings are attached to the crisp 
or even fuzzy weights, whereas physical meanings are 
directly related to fuzzy rules used in classification. In 
a general sense, a fuzzy neural network is a fiizzy- 
reasoning-oriented neural network with adaptive 
learning and fuzzy reasoning. More importantly, such a 
method is capable of extracting fuzzy rules from given 
data. However, many fuzzy neural networks are Crisp- 
Input-Crisp-Output (CICO) models, not applicable to 
the cases that are described by a Crisp-Input-Fuzzy- 
Output (CIFO), Fuzzy-Input-Crisp-Output (FICO), or 
Fuzzy-Input-Fuzzy-Output (FIFO) model. As an 
improvement, a reasoning-oriented fuzzy neural 
network, called Crisp-Fuzzy Neural Network (CFNN) 
is proposed in [19]. CFNN includes FIFO, FICO, 
CBFO, and CICO model. Furthermore, Genetic-CFNN 
(GCFNN) is used to heuristically initialize fuzzy 
weights of a CFNN to avoid bad local minima. 

3. Brief Background of Hyperspace Data Mining 

The hyperspace data mining method [3] [7] is a novel 
approach to nonlinear optimization for pattern 
recognition problems, and it has proved to be a 
powerful tool for design and decision optimization in 
many non-financial applications, including fault 
diagnosis and metallurgy and optimization [4] [5] [11]. 
New applications for data mining are being explored in 
different fields, including stock analysis, environment 
emission controls, computer products service data 
analysis, data network controls, and tobacco production 
optimization. This paper describes a preliminary study 
on stock data analysis using this method. 
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The basics of this method is the MREC (Map 
RECognition by hidden projection) methodology. 
MREC is an effective approach to statistical pattern 
recognition, and it seems to outperform the classical 
PCA, Fisher and PLS (Partial Least Square) methods in 
many applications. It is equally applicable to nonlinear 
problems that arise in many applications [3][4][5]. The 
MREC methodology consists of three steps: (1) data 
separation by a hidden geometric transform, (2) feature 
selection by data geometric pattern ("one-sided" or 
"inclusive" type), and (3) building models that reduce a 
complex nonlinear problem to a set of simple linear 
models in sub-spaces. All these functions are built into 
software MasterMiner. 

MREC - Statistical pattern recognition methods are 
based on computerized recognition of m-D graphs (or 
their 2-D projections) of sample distribution in a m-D 
space. Independent variables (features) influencing the 
model are used to span an m-D space. If one can 
describe samples of different classes as points with 
different colors (or labels) in the space, a mathematical 
model can be obtained by data mining that describes 
the relationship (or regularity) between targets (goals) 
and features. In MREC, the hyper polyhedron model is 
used where samples are classified into class "1" (red) 
or class '2" (blue). Without loss of generality, it is 
assumed that a hyperspace or its subspace contains one 
and only one optimal zone that can be enclosed by a 
concave or convex hyper polyhedron. This polyhedron 
is used to describe the boundary of the optimal zone in 
which all sample points are of type "1" or red. This 
assumption is always true, since a hyperspace can be 
divided into a number of subspaces that can always be 
enclosed by a hyper polyhedron. 

Unlike the regression methods (linear, nonlinear, 
logistic regression, etc.) or the neural nets that provide 
quantitative solutions, MRE can provides semi- 
quantitative and qualitative, as well as quantitative 
solutions. This is advantageous because real-world data 
exhibit strong noise, and quantitative models would be 
too precise to represent them. The PCA-based 
regression builds linear models without data separation, 
shown in Figure-1, whereas MREC regression first 
tries to separates data, and then builds more realistic 
models from a reduced set of data, shown in Figure-2. 

Data Separability - The data separability test of MREC 
is designed to explore the possibility of separating data 
into different populations or clusters in the hyperspace. 
Building a model for a non-linear problem is possible 
only if the data set is separable. At each iteration, 
MREC chooses the "best" projection map with 
maximum separation from a series of hidden 
projections, and discards those samples outside the 

optimal zone (see the red box in Figure-2). After each 
projection, samples of class "1" (red) are automatically 
enclosed by a "tunnel" (the intersection of two tunnels 
are shown to form an "auto-square" in Figure-3), and a 
reduced data set is formed that contains only samples 
within the intersection. Then a second MREC is 
performed on this reduced set to obtain the next "best" 
projection to further separate data into different classes. 
After a series of such projections, a complete (close to 
100%) separation could be realized, and the resulting 
data set is used to build a very accurate model. The 
physical meaning of MREC is explained by Figure-3, 
where each "auto-square" is formed by two "tunnels" 
in the original m-d space, and several such tunnels 
would form a hyper-polyhedron in the m-d space. This 
hyper-polyhedron, enclosing all or most "1" (red) but 
no "2" (blue) samples, defines an optimal zone in the 
m-d space. MREC has been shown to be much more 
powerful than various regression methods. 

Back Mapping - After the MREC transform of data 
from the original measurement (or feature) space into a 
number of orthogonal sub-spaces, one needs to back 
map the transformed data into the original feature 
space to derive mathematical models for practical use. 
Two methods, called linear and non-linear inverse 
mapping (LIM, NLIM) or PCBs (principal component 
mapping) [7][11] have been developed whereby a point 
in a low-dimensional principal component subspace is 
continuously back-projected to a high-dimensional 
space until the original feature space. Table-2 and 
Figure-5 give one example of LIM where a set of linear 
equations (inequalities) are obtained from (red) class 
"1" samples inside the auto-box by MasterMiner. 
These equations represent the model that is sought. 

Feature Reduction - The rate of data separation, R, is 
defined as R = (1-N2/N7), where N; and N2 are 
respectively the number of class "1" and "2" samples 
inside the polyhedron. If R is larger than 70%, the 
separability is "acceptable," otherwise it is 
"unsatisfactory." R is used as a criterion in feature 
reduction - a feature can be removed if R remains the 
same after being removed from the model. R has been 
used to reduce feature number by 1/3 to 1/2. 

Concave Polyhedron - Since MREC only forms a 
convex hyper-polyhedron, it may not separate data that 
form a concave rather than a convex polyhedron in the 
space. In these cases, the BOX method, shown in 
Figure-4, offers a powerful solution whereby samples 
of class "2" are cut off from the polyhedron so that all 
samples inside have type "2." 

4. Stock Performance Classification by Price Ratio 
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In Shanghai Stock Exchange (SEE), in April of each 
year, all listed companies would publish an Annual 
Economical Report with detailed financial data. These 
data will exert an influence on the price of the stocks 
over a long period of time (for example, one year). It is 
possible to use these data to span a hyperspace, and 
map the data of each stock onto this hyperspace. We 
then classify the samples (representative points in the 
hyperspace) of every stock as either "good" (class "1") 
or "bad" (class "2") points, according to the company 
performance in one year. MasterMiner is used to find 
the distribution regularity of the two types of data 
points, and build a mathematical model that represents 
the data in the hyperspace. The model so found it used 
to classify companies into "good" or "bad" class as 
investment guidance. This method has been 
successfully used on the stock data available from the 
SSE. The classification and modeling results are rather 
encouraging. 

In one analysis, the stock data of 56 out of 828 
companies on SSE are selected for performance 
classification. In this study, the target y is the ratio of 
the stock price in January to that in December of the 
year. Samples from 29 "good" companies with y above 
1.0 are of class "1," and data from 28 "bad" companies 
with y less than 1.0 are of class "2." Table-1 lists the 
futures that are used in computation. Figure-3 shows 
the result of data separation on stock data for 1997. It is 
seen that the data separation by MasterMiner is close to 
96%, a fairly good separation rate in practice. 

Table-1 List of Features Used 
Feature Definition or meaning 
CO Comprehensive index (debt, liguidability...) 
S Market return rate = stock price/earning 
nsf% Annual increase rate of earning = E(k)/E(k-1) 
j% Return rate on net asset 
M% (Profit per share) / (net asset/total shares) 
Jb (Stock price) / (net asset/total shares) 

5. Prediction of Stock Speculation 

Every day, the SSE publishes a Stock Index to show 
the general trend of each stock. For a particular stock 
on a particular day, when an obvious and sudden 
deviation from the general (normal) trend is observed, 
and no physical evidence is available to justify this 
deviation, it is reasonable to contribute this sudden 
change to the result of stock speculation, an operation 
secretly controlled by a large investor in an effort to 
manipulate the stock market for quick profit. 

Stock speculation has patterns that seem to be 
detectable by data mining methods. When speculation 

happens, in general the price of a speculated stock will 
go through several ups and downs, ("waves") before 
reaching a "top price" at a peak, called top price peak, 
that is followed by a sharp fall-down. Therefore, it is 
very important to detect such a speculation pattern and 
predict the top price in real-time, to determine if there 
is a stock speculation that is going on. 

MasterMiner is used to process SSE stock data to 
identify the speculated stocks and predict the top price 
before it falls down. More than 20 price-time curves of 
various stocks have been used as the training set. Time 
series analysis algorithms are developed, and used on 
22 stocks including Tsinghua Tongfang, Xiaxin 
Electronic, and etc. It has been observed that the K- 
curves often exhibit several small peaks before the top 
price peak, followed by a sharp fall-down. However, 
recognizing the top price peak before a sharp fall-down 
is a challenging task that calls for innovation. In this 
study on speculation prediction, our target is the price 
at the end of the day, and features are the daily price 
and the total number of stock exchanges during the last 
N days (N is 7 or longer) or their functions. Samples 
representing the "top price" pattern, i.e., a peak 
followed by a sharp fall-down, are defined as class "1," 
and the rest class '2." After spanning a hyperspace with 
sample data, discrimination of the top price peak from 
other peaks is realized by the hyper polyhedron 
modeling method. The MREC methodology is able to 
identify certain behaviors or regularities of the "top 
price." The reliability of the regularities so found has 
been tested by a leaving-one method for cross 
validation. When data of last 10 days are used, a 
prediction accuracy of 70% is achieved. Improvement 
on prediction performance is under study to make this 
method more useful in practice. 

6. Conclusions 

The reported method of hyperspace data mining has 
been successfully used in industrial process 
optimization and controls. In this study, we try to use 
it for stock market analysis. Although the preliminary 
results are rather exciting, new methodology should be 
developed to supplement current method, making it 
more practical for financial data analysis. Data from 
stock markets often exhibit much stronger noise than 
those from a smoothly operated factory. The former 
also exhibits the nature of a time series that is 
influenced by many unknown factors. The 
development of a novel feature selection method is an 
imminent task. 
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Table-2 Model obtained my MasterMiner™ 
All inequalities obtained in original space: 

+7.842<=-0.865[al]+2.089[a2]+0.254[a3]+3.115[a4]<=+8.658 

-0.645<=+1.089[al]+2.236[a2]-0.077[a3]-1.317[a4]<=+0.028 

-7.243<=+1.560[al]+0.031ta2]+0.369[a3]-3.570[a4]<=-6.521 

4.197<=+0.096[al]-2.008[a2]-1.203[a3]-0.802[a4]<=-3.344 

-8.447<=+1.501[al]-1.071[a2]+0.015[a3]-3.572[a4]<=-7.653 

-1.661<=+0.076[al]+0.537[a2]-0.580[a3]-0.747[a4]<=-0.994 

where [al], a[2], a[3] and a[4] are original features. The Auto-Box on 

the right side covers all red points, showing 100% data separation. 
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The two points on the far right represent two companies that are experiencing internal financial transition. 
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1. INTRODUCTION 2. DESCRIPTION 

Optimizational approach to solving queries of 
complex systems synthesis is in itself a big reserve 
for elevating quality of planning, management and 
projecting. The choice of optimizational aim areas of 
changing parameters is the task of particular 
economic and technical brunches of science. What 
concerns the optimization mechanism is the subject 
of mathematical programming. 

The success of linear programming in increasing 
effectiveness of economic modeling and optimization 
of planning is well known. It is less obvious in 
technique, management and projecting as for added 
accuracy of above mentioned it is important to take 
into consideration nonlinear effects. Creation of 
"simplex method" and appearance of powerful PCs 
made linear programming an important tool for 
solving different problems but at the same time 
showed its weakness." Most of the queries cannot be 
adequately solved by linear programming model 
because they include nonlinear goal functions or 
constraints. All the above enumerated attracted 
special attention of mathematicians to the progress in 
nonlinear programming research. 

It is important to mention that many nonlinear 
optimizational queries that exist in economy and 
technique are described as including convex or 
concave functional and convex areas of possible 
solutions parameters (for more information see 
Casten theorem). In literature on the subject, attention 
is mainly attracted to convex programming. The 
reason is the possibility to produce universal method 
for solving basic form equations as well as others 
with deviations from the basic form.2) One cannot 
guarantee the same for other nonlinear equations with 
wider range of parameters. Let me leave aside the 
prior and talk more about the later, as it is the subject 
of my research. 

"Mokhtar S. Bazaraa, CM. Sherry, "Nonlinear 
programming, Theory and Algorithms", John Wiley 
and Sons, New York, 1979, p.8 
2) Judin D.V., "Mathematical Programming", 
Moscow Press, Moscow, 1982, p.39 

ISIF © 1999 

Before I turn to the description of my research, let me 
first speculate a little on main definitions of nonlinear 
equations. These are tasks where two qualifications 
are relaxed: dividing and adding, which means that 
goal function and constraints might be nonlinear and 
variables can take values from some multitude, 
including discrete multitude. To the above mentioned 
problems of mathematical programming, refer the 
following: 

• Tasks of integer programming with linear and 
nonlinear goal functions and constraint 
functions; 

• Combined models of integer programming 
problems with linear and nonlinear goal 
functions and constraint functions; 

• Problems of discrete programming, in which the 
value of variables is chosen out of given value 
multitude of rational numbers, not necessarily 
integer, also with linear and nonlinear goal 
function and constraint function; 

• Problems of nonlinear programming with convex 
and concave functions; 

• Problems of nonlinear programming with 
multiple-optima functions on non-convex or/and 
convex or/and non-linked zone of variables; 

• Solving of equations and systems of equations, 
with functions that I identified above. 

A large number of books are devoted to the problem 
of solving above-mentioned queries. It is enough to 
tell that G. Vagner's "Basic operational research", 
published in 1973, gives references to more than 162 
publications, "Nonlinear programming", by Bazara 
and Shetti, published in 1982 sources 600 books. 
Literature on the subject is not of course bound to 
what was brought up here. The reason for such an 
attention lies in the provisions of practice. The 
absence of effective and quick method for finding 
global optimum in such problems leads to artificial 
Simplification of mathematical model in practice. As 
a consequence system characteristics in economy, 
finance, technique, chemistry, physics, architecture, 
etc deteriorate. 

To my knowledge, there is such an opinion among 
specialists that to create a universal method for 
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solving nonlinear problems, like Simplex -method 
that is used for linear queries, is impossible and the 
only way out are specialized methods for each 
particular type of programming problem. I hope now 
I can prove this information not up-to-date. 
Application of specialized algorithms requires exact 
correspondence of real model and problems that can 
be solved with the help of this particular algorithm. 
In case of any deviations you have to change it 
usually by simplifying mathematical model to the 
requirements of algorithm. It is important to mention 
also that initially the reality was already simplified in 
the model (in order to make it equal to the needs of 
an algorithm). As a result you answer the question 
that was not asked by the practice. In order to meet 
the requirements of imperfect mathematical method 
we replace the model of real natural conditions by the 
picture that either you or algorithm found suitable. 
Such fractional results are inapplicable for problems 
of integer programming because this data is used for 
forming planned decisions in complicated situations. 
Such problems with nonlinear functions are 
important for non-proportional fluctuation of 
expenses, determination of productivity value, quality 
assurance, in technical and economic addendum, in 
the sphere of nonlinear physical laws and others. 

To begin with the description of my research, I want 
to insist on the fact that I created a unique and 
general method for solving non-linear queries of any 
level of complication. Queries that this method is 
solving are used in calculation of optimization 
problems and solution of nonlinear equations, for 
such areas as Modeling and Simulation, Operations 
Management, Machine Vision, Robotics & 
Automation. Using my method I successfully solved 
test queries given by Wolf, H.H.Rosenbrock and J.D. 
Powell, as well as different sets of non-linear 
equations. Using it, I am capable of solving quite 
complicated non-linear optimization problems of the 
classic form: 

minF(X) 
subject to: 
Wi(X)<=0,i=l,...,m,, 
Gi(X) = 0,i=l m2, 

Where X is an n-vector, and the functions F, Wi and 
Gi should not have gaps and can be linear, nonlinear, 
multi-extreme, convex and non-convex. My universal 
method of finding optimal solution for the above- 
enumerated programming queries consist of two 
well-known and simple algorithms: method of 
proportionally deformed polyhedron and method of 
gradient descending. It is well known that these two 
methods usually produce only local, separate 
solutions. But it is not true for my technique. In the 
algorithm these simple methods let me always 
acquire global solutions. Obviously there is no magic 
in   it   The   results   obtained   by   me   (proved 

theoretically) are the effects of extending the theory 
of convex functions. My algorithm was checked 
during two years of investigations and illustrated by 
solving of several hundred, better to say thousand of, 
tests and real nonlinear equations (not all of them 
were included in this work as examples) and also 
applied theoretically. My algorithm meets all the 
requirements that I imposed before creating it. I was 
very thorough while testing it. My testing included 
the following steps: 

• I solved all test equations that I could find in the 
literature on the subject. 

• All real problems from the literature were solved 
too. 

• Successfully tested it on several hundred self- 
created equations with number of variables 
starting from 1 up to 500 

• Solved equations with implanted linear and 
nonlinear constraints, including discrete 
constraints on variables 

• Solved several sets of equations for clients via e- 
mail 

Results obtained were always satisfactory which 
means that algorithm was able to find global 
optimum for multi-extreme function, as I was only 
calculating that type of function. Program that 
embodied my method and that can also be used, as 
subprogram is in FORTRAN-77, MS DOS. 
Resolution time depends on the type of a problem or 
number, and complexity of functions. For Pentium 
200, I did not find an equation for which solution 
time was longer than an hour. In my practice 
programming, a query with 100 variables was solved 
within 15 minutes. Algorithm stops its search when 
either global optimum is found, or a particular 
number of iterations is achieved. 

3. COMPARISON 

It is worth mentioning that from the beginning of 
realization of existence of both local and global 
optimum or optimums, we find information on 
algorithms for their location. It is hard for me to 
make any connections or comparison of my method 
with others. In accordance with the information of 
Northwestern University and the Argonne National 
Laboratory of in USA, such a method of mine does 
not exist. Scientists consider it unrealistic to expect to 
find one general nonlinear optimization code that is 
going to work for every kind of nonlinear model. 
Instead one should try to select a code that fits the 
problem one is solving.3) 

3) For more information see 
http://www.mcs.anl.gov/otc/Guide/faq/nonlinear- 
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I will try here to bring about possible comparison 
points. It is feasible to relate solution time of my 
algorithm and others. I was comparing my algorithm 
to stochastic search code by Georgian professor 
Chichenadze. Test task # 14 was solved within 14 
seconds while it took Chichenadze 10 hours.4) 

Modified method of nonlinear and stochastic 
optimization systems based on ideas of Professors L. 
Ingber and J. Powel allows to make solution more 
precise and finds global optimum with set before 
probability but it does not guarantee theoretically 
global solution. For this algorithm there will emerge 
a counterexample that cannot be calculated by it. This 
cannot be said about my algorithm which finds global 
optimum every time. From the calculation point of 
view it does not have common error - the rounding 
default of the results accuracy. Error is equal to the 
error of optimum calculation in optimal point, which 
is determined by the chosen software and type of the 
computer. However I should add that any universal 
algorithm (and mine is not an exception) will not be 
as good for solving some particular problems as 
algorithm specifically created for them. To my 
knowledge there is no other algorithm with such 
broad universality as mine. 

4. EXAMPLES 

Computing examples (numbered N_l to N_14) using the 
proposed algorithm are presented below to show the 
efficacy of the method. 

N_l. Equation with multi-extreme goal function. 
Minimize: 

EEl=exp{SIN(10*XX)*SIN(123+XXA0.73+3*XXA2 
.13+XXA1.55)} 
where : 
EE2=ABS{[X1A0.9+X2A0.8]/[1.1+COS(X3A2.3+X4 
A1.3)]} -3<0 
EE3=XX- 
ABS{(X1A0.9+X2A0.8)/[1.1+COS(X3A2.3+X4A1.3)] 
}=0 
Solution: 
EE1= 0.3682, Xl= 1.9484, X2= 1.5357, X3= 2.6601, 
X4= 1.445, EE2=-0.3259, EE3=0.00 

N_2. Equation with multi-extreme goal function. 

Minimize: 
EE1=3(SIN(4(3+X1)))2+(SrN(4+X1))'

2 

IF X,<7.9 OR Xj>8.1 then EE,=2+SrN(EE,) 
where(<=0): 

4) Chichenadze V.K., "Solution of non convex 
nonlinear optimization problems", Moscow 
"Science", Moscow, 1983 

EE2=-X,. 
Solution: 
EE^O.00061823, X,=7.995. 
Control: 
EE]=0.001509568, X:=8.00 

N_3.. Equation with multi-extreme goal function. 
Minimize: 

EEl=SIN((XI+SrN(X1)+4)2/(10+EXP(SIN(33Xi)))) 
IF X,<16 or X, gt 16.2 then EE]=2+EEi 
where(<=0): 
EEr-X. 
Solution: 
EE,=-0.99999999, X=16.097 
Control: 
EE^-0.975, X,=16.1 

N_ 4. Equation with multi-extreme goal function 
(function of Rozenbrok). 
Minimize:EE1=100(X2-X1

2)2+(l-Xi)2 

where(<=0): 
EE2=-X,. 
Solution: 
EEi=0.00, X=0.99999 

N_ 5. Equation with multi-extreme goal function 
(function of Powell). 
Minirnize:EEi=(X,+10X2)

2+5(X3-X4)2+(X2- 
2X3)

4+10(XrX,)4 

Where: 
X,.,X2,X3,X4.>=0 
Solution: 
EE,=0.00, X,=0,00, X2=0.00, X3=0.00, X,=0.00 

N_ 6. Equation with multi-extreme goal function. 

Minimize 
EE1=Sum(I=l,...,100)(X1I)2+10SlN(3.1416*3/2/IXI) 
+10SIN(5*3.1416*3/2/IXi) 
+10SrN(9*3.1416*3/2/IXi)+10SIN(13*3.1416*3/2/1 
XI)+10SIN(17*3.1416*3/2/IXI) 
+10SIN(21*3.1416*3/2/rXi)+10SIN(25*3.1416*3/2/1 
X£)+10SrN(27*3.1416*3/2/IXi) 
+10SrN(33*3.1416*3/2/DCI)+10SIN(41*3.1416*3/2/1 
Xi)+10SIN(81*3.1416*3/2/IXi) 
where (<=0): 
EEj=Xr200, j=l 100 
Solution: 
EE, =-8999.999, 
X,=0.999,X2=1.999,X3=2.999,X,=3.999,..., 
X99=98.999, X100=99.999 

N_7. Equation with multi-extreme goal function 
and non-convex and non-linked goal function. 

Minimize: 
EE,=(SIN(X )+SIN(7X,)) 
where(<=): 
EE2=(COS(3.22X)+l) 
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EE,=(X,-10). 
Solution: 
EE,=-0.5928, X,=4.879, EE2=0.00000321, EE3=- 
5.12096 

N_ 8. Equation with multi-extreme goal function 
and non-convex and non-linked goal function 

Minimize: 
EE^O.OOlCPCrlOXXrlXXi^XXi-S)* 
(X1-4)(X1-5)(X1-6)(X,-7)(X1-8)(X1-9)+ 
COS(17X,)(X2-5)(X2-6) 
where (<=0) 
EE2=(SIN(X1+X2))

2 

Solution: 
EEi=-42.934069, Xi=1.29246267, X2= 11.2795776, 
EE2=0.0000321 

N_ 9. Equation with multi-extreme goal function. 

Minimize: 
EE1=(X1-22)2+(SIN(13X,)-3))4 

where (<=0): 
EE2=-X, 
Solution: 
EE,=0.00022543, X! =21.98646728 
Control: 
EEi=0.000354, X,=21.99 

N_ 10. Equation with multi-extreme goal function. 

Minimize: 
EE,=22SIN(0.001X1)(X1- 
5)2(l/(X,+4))(SIN(13*X1)+COS(20*Xi) 
where (<=0): 
EE2=-X1 

Solution: 
EE,=-35.2194, Xi=8.6238524 
Control: 
EE,=-35.143360, X=8.62 

N_ 11. Equation with multi-extreme goal function 

Minimize: 
EE,=3(SIN(4(3+Xi)))2+(SIN(4+X,))12+(X2- 
22)2+(SIN(13X2-3))4 

+SIN((X3+SIN(X3)+4)2/(10+EXP(SIN(33X3)))) 
+22SIN(0.01X4)( X4-5)2(l/(X,+4))* 
+(SIN(13X4)+COS(20X4))+100(Xs-X52)2+(l- 
X5)2+(X7+10Xg)2+5(X9-X10)

2 

+(Xg-2X9)
4+10(X7-X10)

4 

where : 
X,,X2,...,X1>=0 
Solution: 
EEi = -36.07,X!= 1.3200E-001 
X2= 22.20,X3= 16.035,X4= 8.6238, X5= 1.030, 

Xe= 1.0622 
X7= 4.6579E-009,Xg= 4.65E-009, X9= 5.3838E- 

003, X10= 5.3836E-003 

N_ 12. Equation with multi-extreme goal function. 

EE1=3(SIN(4(3+X,)))2+(SIN(4+X1))
12 

EE2=(X2-22)2+(SIN(13X2-3))4 

EE3=SIN((X3+SIN(X3)+4)2/(10+EXP(SIN(33*X3)))) 
EE4=SIN(0.01X,)*(X4- 
5)2*22(1/(X,+4))(SIN(13X,)+COS(20X4)) 
]FX4>10thenEE4=l 
BF X, < 9 then EE4=EE4*10 
EE5=100*X5-X52)2+(1-X5)

2 

EE6=(X7+10XS)
2+5(X9-X10)

2+(X8-2X9)
4+10(X7- 

X,o)4 

EE7=4/3(X11
2-X„*X12+X12)

2) 
IFEE7<0thenEE7=0 

Minimize: 
EE(1)=EE1+EE2+EE3+EE4+EE5+EE6+EE7*075-Xi3 

where (<=0): 
EE2=Xi3-2 
EE] 6=-Xi i -Xi 2-X] 3 

Solution: 
EE(l)=-35.088, X,=1.32129E-001, X2= 

22.6815,X3=4.359E-002,X,=8.623 
X5=1.041,X6=1.085, X7=3.4943E-002, Xg= 

0.00,X9=8.978625E-002 
X,o=8.74408E-002,X„=3.36281E- 

003,Xi2=1.25656E-003,X13=1.43497 
EE2=-5.6502E-001,EE16=-1.43959 

N_ 13. Equation with multi-extreme goal function 
and non-convex and non-linked goal function. 

W=35, R=7, Tl=2. 
XX=XlA0.5+(X2/Xl)A0.5+(64/X2)A0.5 

Minimize: 
EEl=ABS(XX-3-(W- 
2*SIN(0.5*SIN(XXA0.3)))/R*Tl*0.5+(2+(SIN(22*X 
XA3))A2))) 

where (<=0): 
EE2=(SIN(3.1416*Xl))**2-0.1 
EE3=(SIN(3.1416*X2))**2-0.1 
EE4=CXl+lE-3)-X2 

Solution: 
EE1= 0.00,X1=1.999, X2=5.0906, EE2= - 

0.099,EE3= -0.021,EE4= -3.0904 

N_14. Begin = 17:48:29, end = 17:48:42. 

Queries with multi-extreme goal function. 
XX=ABS((X1A0.9+X2A0.8)/(1.1+COS(X3A2.3+X4A 

1.3)))+Sum(j=l,...,100)(0.1*J*XjA(l/j)) 
Minimize: 
EE1=EXP(SIN(10*XX)*SIN(123+XXA0.73- 
3*XXA2.13+XXA1.55)) 
where (<=0): 
EE2=ABS((X1A0.9+X2A0.8)/(1.1+COS(X3A2.3+X4A 

1.3)))-3 
Solution: 
EE(1)    = 0.3679,X1,...,X100 = 1. 
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ABSTRACT - An adequate model for system 
structure is very important in the design and 
development of information systems, especially for 
large-scale business and financial management 
systems. With rapid changes and advancement in 
computer hardware and software techniques used for 
management information systems (MIS), demands 
on information are also rapidly expanding and 
system requirements are constantly changing. This 
implies that systems must be generalized and can be 
reconfigured. In this paper a general-purpose 
structural model for information systems is proposed, 
based on paradigm of the entity-relation-problem 
(ERP) knowledge representation. This model 
classifies all information of a system as entities, 
relations and problems. Under ERP, any MIS can be 
decomposed into three categories of management 
tasks: entity management, relation management, and 
problem management. They can be independently 
managed and reconstructed according requirements. 
Using the REP model, a number of real-world 
general-purpose MIS have been developed that 
demonstrate the efficacy of the proposed method. 

Key Words: MIS, structural model, knowledge 
representation, entity, relation, problem, data 
bases and data warehouses. 

1. INTRODUCTION 

As electronic and computer techniques and 
other information techniques are rapidly 
changing and advancing, the support 
environments of information systems are 
renewed unceasingly. However, demands on 
information for social or economical purposes 
are quickly expanding and changing as 
competition intensifies. In the world, especially 
in China, many MIS had been or are being 
developed, but only a few of them are 
successful. Some need modifications right after 
building, making MIS expensive and less 
efficient in practice. 

In our analysis of practical MISs, it has been 
found that a good structural model of must be 
generalized and easily reconstructed to satisfy 
the changes in techniques and demands. In 
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order to obtain this good structure, a system 
must be designed on the basis of general 
characteristics of engineering, technologies, as 
well as social and economic bases, rather than 
on any special use. It must also be modular for 
easy reconstruction to fit the changes in 
techniques or demands. Many different system 
structures have been studied [1-11]. But most of 
them can only be adapted to a narrow field, or 
tied to specific database technologies, short of 
capturing the macro-structure of a system and 
the demand changes. 

A knowledge representation system, the Entity- 
Relation-Problem (ERP) approach, had been 
proposed in [12]. This system classifies 
knowledge into two types: knowledge on 
objective system (system knowledge) and 
knowledge on manager's subjective behaviors 
(problem knowledge). In the ERP system, the 
Entities-Relations (ER) describes the objective 
knowledge, and the Problem (P) describes the 
problem knowledge. This paper gives a general 
structural model of MIS based on the ERP 
system. First, the basic mathematical 
descriptions of ERP system are reviewed. Then 
the model for entities, relations and problems 
are introduced. Finally, a few general-purpose 
MISs are described that are developed using the 
EPR model to show its adaptability and 
flexibility. 

2. BASICS OF THE ERP SYSTEM 

The ERP model is a general knowledge system 
to represent entity-relation-problem [12]. It is 
independent of any special application field. The 
major property of ERP is modularity, in which 
the representation of entities, relations and 
problems can be divided or composed flexibly. 

(1) Description of Entity 

Let e represent the concept of an entity, and AQ 

denote an attribute set of the entity, namely 

Ae = {ai,a2,...,aq} 



Here a/ (Vi e{1,2,..., q} ) is the fth attribute of 
the entity e of a system S, it may be a string of 
characters describing the concept of the 
attribute, or a flag value of the attribute; q is the 
number of the attributes related to the entity. 

Let E stand for the power set on the attribute 
sets of all entities considered for an objective 
system, and £ is called it the entity set of the 
system, 

£={ei},/=f, 2, ...,p 

(2) Description of Relations 

Denote £ the entity set of a system S, then a 
relation r on £ is defined as 

r = {0,l,B,C} 

where C is the attribute set of the relation r, O a 
related entity set, Oc £ and O* fi I is a relating 
entity set, \c E and /* ft B is a relation matrix, 
namely 

and 
B = [bjj] 

bjj =/" 1 ifith &jth attributes are related 
0 otherwise 

Furthermore, a relation set R of system S can 
be constructed as 

R = {r\r = {0,l,B,C},landOczE} 

Thus an objective system S can be described by 
entity and relation set £ and R as follows 

S = {E,R} 

(3) Description of Problems 

For a given objective system S 

S = {E,R}, 

a problem p on S can be defined as 

p = {0,l,X,Rp,C} 

where O is a goal entity set, Oc E and O * $; / 
is the condition, input, or control entity set, IcE 
and I *#, XtE a related entity set; Rp a 

relation set on the problem, RpcR ; C an 
attribute set of the problem. 

3. THE MACRO STRUCTURE AND 
ENVIRONMENT OF MIS 

Using the ERP model, the macro structure and 
environment of an MIS is depicted in Figure 1. 
In the environment of an MIS, decision making 
or management is the basic goal or service. The 
entity and relation information is the reflection 
and description of the intrinsic attributes and 
mechanisms of the MIS, and the problem 
information is the reflection of subjective 
activities in decision making and management. 
This means that entity and relation depend 
mainly on objective activities, and it does not 
change by the subjective activities of managers, 
whereas the problem information is dependent 
on the subjective activities and it changes very 
often. 

Relations are the reflections or representation of 
inherent relations between attributes or units in 
a MIS. As we have more in-depth understanding 
of the environment of an MIS, requirements on 
management quickly increase. Current models 
in data structures or management routines do 
not satisfy this change in requirements. They 
need to separate relations from information to 
make specialized management on relation 
information. 

In large-scale MIS, macro structure should 
consist of modules for entity, relation and 
problem management. As is well known, RDB 
(Relation Database) technique is based on ER 
knowledge, but it does not separate relation 
information from ER, and is not suited to 
problem management. 

OODB (Object-Oriented Data Base) supports 
problem management well, but it can not 
conveniently share and reconstruct entity and 
relation information between objects because it 
encloses data and relations in objects. Data 
warehouse techniques are general-purpose, so 
it can suit wide application requirements. This 
paper does not discuss OODB, rather it studies 
the problem of how to build ERP models using 
these techniques at macro levels. In fact, OODB 
is the result of the increasing demands on 
relation and problem information, and data 
warehouses are developed to generalized 
information service. They also show that the 
separation of relations and problems from the 
systems itself is rather necessary. 

4. MANAGEMENT SYSTEM STRUCTURE OF 
ENTITY INFORMATION 
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Entity information is the descriptions or 
indications of attributes, units or elements in 
objective systems, and it is denoted by a set E 
defined in the ERP model. Since E is a power 
set of all entities, a hierarchical structure is 
suggested, as shown in Figure 2. Here the 
subordinative relations between entities are 
applied to management, and these hierarchical 
subordinative relations are consistent with the 
understanding of objective systems. To this 
structure, RDB and data warehouse techniques 
can be directly applied. 

5. MANAGEMENT SYSTEM STRUCTURE OF 
RELATION INFORMATION 

Relation information is the descriptions of 
inherent relations between attributes, units or 
elements in an objective system. According to 
the definition of relation knowledge in the ERP, 
relation information or knowledge can be 
represented by a set R. 

For a relation r e R, we have 

r={O.I,B,C}. 

Based on this subset, a data structure shown as 
Figure 3 can be designed to manage the 
relation information. Here O and / can be the 
formal parameters or code sets on set E, B a 
relation matrix in sparse form, and C a 
characteristic set of r. For complex cases, B 
may be fuzzy and may include some operators, 
such as identification and simulation operator, to 
handle relations of a system. 

Relation information management uses general 
operations, such as addition, deletion, 
modification, and inquiry, as well as separation 
and integration. Although all the RDB or OODB 
techniques can be used to implement the 
management of relations in ERP, RDB offers 
higher efficiency in inquiry, and OODB offers 
more convenience data processing. 

6. MANAGEMENT SYSTEM STRUCTURE OF 
PROBLEM INFORMATION 

Problem information refers to the requirements 
on information. In the procedure of remodeling 
objective world, managers or decision makers 
solve different problems by using various 
information about the problems, thereby forming 
the demands on information. For efficient 
services    of    information,    the    supply    of 
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information should be organized by problems. 

Based on ERP knowledge representation, for a 
given objective system S = {E, R}, a problem p 
on S can be described as 

p = {0,l,X,Rp,C}. 

This set p can be used to build the management 
structure of the problems. Here sets O, / and C 
are closely related to the problems, and the 
information about them is obtained from 
interacting with decision makers. The 
information on X and Rp may be automatically 
generated from S information. 

Figure 4 shows the structure of a problem 
management system, where the problem 
forming is included, and interface with users is 
strengthened. It is easy to see that OODB and 
OOP techniques can be easily implemented. 

7. APPLICATIONS 

In accordance with the idea of the structural 
model proposed above, a generalized MIS has 
been developed in which system management 
is combined with system generation. This model 
satisfies the changing requirements on 
information management in government and 
enterprises, especially in macro or large-scale 
cases. Up to now, more than one 100 
departments in government or enterprises have 
adopted this model in macro management, and 
some of them have been in use for more than 5 
years with considerable social and economical 
benefits [10][11][12]. 

This model has a powerful subsystem for entity 
and relation management, where the 
management pattern is consistent with the 
hierarchical knowledge of objective systems. In 
particular, a special Executive Command 
System (ECS), together with a problem 
management module, has been developed with 
multimedia and touch screen. In ECS, problems 
can be easily formulated by executives with 
minimum training. Moreover general-purpose 
tools supporting data processing can be 
introduced to ECS, allowing processing of 
tables, graph, statistics and so on. 

8. CONCLUSIONS 

The structural ERP knowledge representation 
system has the following major advantages: 



(1) The model is generalized and can be used to 
configure general-purpose MIS and to satisfy 
varying system requirements in practice. 

(2) It has a modular structure, in which entity, 
relation and problem information can be divided 
or composed flexibly. This leads to flexible 
configuration of general MIS. 

(3) This model supports data analysis and in- 
depth decision making, because it can be easily 
connected with quantitative or qualitative 
analysis based on relation and problem 
information. 

(4) A visual and reusable software system can 
be developed for system management and 
system generation. 
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ARTAS: An IMM-based Multisensor Tracker 

R.A. Hogendoom', C. Rekkas*and W.H.L Neven' 

Summary 
ARTAS (an acronym for ATM Surveillance Tracker and Server) is the new operational Surveillance 
Data Processing and Distribution (SDPD) system at Amsterdam Airport and is being evaluated at 
different sites in France, The Netherlands, Portugal and the UK. ARTAS was developed by 
Eurocontrol, in co-operation with a consortium of industrial partners, in order to be used as a basis 
for the development of SDPD systems in Europe. The ARTAS system consists of a tracker, 
responsible for maintaining up-to-date target state vectors, a server, which handles client 
subscriptions (e.g. from the ATC display system) and delivers the target state vectors to these 
clients and a Man-Machine Interface/Supervision module, for system control and air-situation 
display. An ARTAS system co-operates with adjacent ARTAS systems by exchanging target state 
vector information. 
The main features of the ARTAS Tracker are 
• tracking with up to thirty radars (PR, SSR or CMB) 
• on-line estimation of the radar systematic errors 
• on-line estimation of radar false plot maps 
• on-line estimation of the radar accuracy and coverage 
• high-accuracy position and velocity-vector estimation 
• responsiveness to target manoeuvres 
• insensitivity to clutter 
• target type identification 
All these features are realised through the use of state-of-the-art estimation and identification 
algorithms, such as the IMM (Interacting Multiple Model) algorithm and Dempster-Shafer reasoning, 
and an object-oriented architectural design. 

Track Data Server 
ARTAS is designed as a track data server. Track data users can subscribe to a certain service and 
receive the track data in ASTERIX format via a local-area or wide-area network. Users can be ATC 
centres, flightplan data processing systems (FDPS), air-traffic flow management units and so on 
(figure 1). Each user can have a dedicated service, taking into account requirements with respect to 
data contents and update frequency. An ARTAS unit also receives its input data from the radars via 
the local -area or wide-area network. Furthermore, an ARTAS unit can communicate via the 
network with other, adjacent, ARTAS units in orderte provide a continuous air-picture to its users. 
Track data from adjacent units is used to accelerate the initiation of tracks at the border of the unit's 
own domain of interest (DOI) and to smooth the transition of a track from one unit's DOI to another 
unit's DOI. Finally, when there is sufficient coverage of the own unit's DOI by adjacent ARTAS units, 
the adjacent ARTAS units can take over the surveillance in case of an own unit failure. Thus, 
enhancing the overall reliability of the surveillance. 

A prime requirement for handling multisensor data is the ability to cope with sensor alignment 
errors, i.e. systematic radar errors like position bias, range- and azimuth bias, but also time- 
stamping bias and transponder-delay error. The latter is an example of a, so-called, micro-error: a 
systematic error that depends on the object being tracked. The former errors are macro-errors; they 
only depend on the sensor involved. Unfortunately, both macro- and micro-errors may change in 
time, due to e.g. changing atmospheric conditions and radar maintenance. Therefore, the ARTAS 
Tracker contains modules that dynamically estimate and correct both the macro- and micro-errors. 
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Figure 1.The ARTAS Environment 

Another requirement for handling multisensor data is a proper treatment of coordinate 
transformations. This becomes a more obvious problem when the size of the system area 
becomes large. ARTAS uses WGS84 as a reference system. Measurement processing and track 
update processing are done in local Cartesian systems, such that the error, induced by coordinate 
transformations, always stays below a required level of a few meters. 

The internal structure of an ARTAS unit is shown in figure 2. The Router Bridge is the interface to 
the external network. It pre-processes the incoming radar data, i.e. it performs format checks and 
sectorisation of the plot data and keeps track of the operational status of the radars. The Server is 
responsible for the handling of ARTAS user requests and the distribution of the track data, 
according to the different user services. Furthermore, the Server is responsible for Track and 
Service continuity across the borders of the DOIs of adjacent ARTAS units, i.e. track data users are 
not aware the fact that targets cross this border. The simplest service that is provided is a regular 
broadcast of all track data. MMI/Supervision is the man-machine interface and supervision unit. It 
provides a basic display of the unit tracks and control functions for the ARTAS unit. The Tracker, 
finally, is responsible for keeping an up-to-date air picture. An ARTAS unit consists of two identical 
chains of Router Bridge/Tracker/Server/MMI/Supervision subunits. The Trackers in both chains 
operate in a multiple-computation redundancy mode; that is, there is a master and a slave Tracker 
that both perform the same processing, except that the slave Tracker does not provide any output. 

ARTAS Unit 

Router 
Bridge 

Tracker 

MMl/ 
Supervision 

Server 

DUAL1 

!    Tracker 

;"':''"'T";""' 
 :.:._iL..,-. 

Server 

DUAL2 

Figure 2. ARTAS Unit Internal Structure 

Instead, the slave Tracker performs some additional processing to keep master and slave in 
synchronisation. 
All the ARTAS subunits run on off-the-shelf hardware and are programmed in ADA, except for the 
MMl, which is programmed in C++. 
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The ARTAS Tracker 
Basically, the task of the tracker is to provide estimates of the aircraft state vector for each target in 
the domain of interest of the ARTAS unit. It makes use of, maximally, 30 sensors. In the operational 
system, the sensor types are primary radar (PR) and secondary surveillance radar (SSR). A 
prototype ARTAS2 tracker, which is an extension of the operational ARTAS tracker, additionally 
handles aircraft-derived data, received either through Mode-S or through automatic dependent 
surveillance (ADS). 

Track continuation uses the reports of all available sensors to estimate the state of a target. Each 
track extrapolation/update cycle is based on the reports of a single sensor, though. Subsequent 
cycles, however, may be of entirely different sensors. Prior to the track update, all the relevant 
reports are corrected for micro-errors (systematic errors that vary from target to target) and slant- 
range effects. Track continuation is discussed in more detail below. 

The integration of aircraft-derived position, speedvector and roll-angle information at the tracking 
filter level results in a clear performance improvement. This was demonstrated to Eurocontrol and 
European national administrations in February 1999, using the ARTAS2 prototype tracker. Figures 
3 and 4 show the decrease of the course error after a turn, when aircraft-derived data is used 
(simulated Mode-S radar data; averaged for 25 tracks) 
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Figure 3. Course error after turn; Mode-S without 
aircraft-derived data 
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Figure 4. Course error after turn; Mode-S with 
aircraft-derived data 

As explained earlier, all sensors and all tracked objects have their own local Cartesian system that 
may change in time when objects move. The effect of this is clearly visible in figures 3 and 4; the 
increase in course error after about 60 seconds is due to relocation of the track-local Cartesian 
system. 

Track continuation uses the reports of all available sensors to estimate the state of a target. Each 
track extrapolation/update cycle is based on the reports of a single sensor, though. Subsequent 
cycles, however, may be of entirely different sensors. Prior to the track update, all the relevant 
reports are corrected for micro-errors (systematic errors that vary from target to target) and slant- 
range effects. Track continuation is discussed in more detail below. 

Track initiation is done based on the reports of single sensors only. It is based on multiple- 
hypothesis tracking (MHT) and is done retrospectively [3]. Considering the fact that a new target 
generally enters the coverage of the Tracker with only mono-radar visibility, the gain of a shorter 
track initiation delay did not warrant the additional complexity of a multiradar initiation in a civil ATC 
environment. This trade-off is not valid in a military environment, though. It is foreseen to extend the 
track initiation to a multisensor initiation in the scope of an on-going evaluation. 

The ARTAS Tracker maintains aircraft and non-aircraft tracks since, in many cases, the best way of 
dealing with anomalies, like reflections and sidelobes, is to track them and to identify them as being 
non-aircraft. To that end, the ARTAS Tracker contains a track type identification module, which 
identifies tracks using Dempster-Shafer reasoning [4]. The criteria, used in the track type 
identification, are based on radar environment characteristics, target behaviour and a set of models 
for specific anomalies, like reflections and sidelobes. An advantage of Dempster-Shafer reasoning 
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is the ease with which additional criteria, like target signature information, can be incorporated into 
the classification process. 

Track Continuation 
For the ARTAS Tracker, a Bayesian approach to track continuation was adopted. This approach 
did prove to yield a high-performance tracker, as NLR experience with the JUMPDIF prototype 
tracker has shown [1]. 
Basically, there are four major problems that occur during track continuation 
1. Non-linear aircraft dynamics during a turn 
2. The association of measurements with existing tracks 
3. The occurrence of outlier measurements (non-Gaussian measurement noise) 
4. Sudden starts and stops of manoeuvres 
For each of these problems, adequate solutions were already developed for the JUMPDIF 
prototype [2]; the result, an Interacting Multiple-Model Probabilistic Data-Association (IMMPDA) 
algorithm with Extended Kaiman Filters (EKF) [1]. This four-mode IMMPDA EKF was used in 
extensive performance tests. The results of these performance tests were used as a basis for the 
ARTAS Tracker performance requirement specification. A number of improvements, with respect to 
the JUMPDIF tracker, were made in the ARTAS Tracker, though. 

For target resolution situations, new joint probabilistic data-association (JPDA) algorithms were 
developed [3] that avoid the track coalescence property of conventional JPDA, while performing 
considerably better than the probabilistic data-association (PDA) algorithm in situations with targets 
closely together. 

In the ARTAS2 tracker, the IMMPDA algorithm was extended to incorporate aircraft-derived data. 
This extension is called ADD-IMMPDA. Furthermore, the IMM track extrapolation was adapted to 
handle the situation where very accurate position reports are received with a low sampling rate. This 
may be the case when aircraft position reports are obtained by means of differential GPS. 

The ARTAS Tracker is required to track targets down to zero groundspeed. For these targets, a 
simplified two-model (manoeuvring flight, straight flight) IMMPDA filter is developed. 

Initially [2], a two-model (climb/descent, level flight) IMMPDA filter for SSR mode-C measurements 
was developed. In the ARTAS Tracker this filter was improved by a three-model (climb, descent, 
level flight) IMMPDA filter in order to be more responsive to changes in the rate of climb/descent. 
Furthermore, two algorithms to estimate the target altitude in absence of SSR mode-C information 
were implemented. One algorithm, Triangulation, is discussed in more detail below. Although not as 
accurate as mode-C based height, the performance of the triangulation algorithm often is 
surprisingly good. Another algorithm, Height-from-Coverage, uses the assessed coverage of all 
radars that detect or do not detect the target, to calculate a height interval for the target. This is used 
as a fallback in cases where neither mode-C nor triangulated height is available. 

For centralised multisensor track continuation, a key problem is the accurate estimation and 
correction of systematic errors. The solution developed for the ARTAS Tracker is a dynamic 
estimation and correction of the macro- and micro-systematic errors of all involved measurements, 
before they are used within the track extrapolation/track update cycle. This essentially reduces the 
multisensor problem to a single-sensor problem. The time sequence of track extrapolation/track 
update cycles, obviously, contains track extrapolation/track update cycles for all the available 
sensors. The difference between cycles for different sensors is the use of a different measurement 
matrix for the Extended Kaiman filters. 

Figure 5 shows a track, departing from Schiphol airport that uses biased measurements from three 
different radars. Figures 6 and 7 show the ARTAS Tracker estimates of the groundspeed and SSR 
mode-C height of this track, respectively. Without an effective elimination of systematic errors, 
groundspeed and height would contain a substantial number of irregularities. 

1024 



Nautical miles 
-i?.0 

Trackld: 313 
-<1-S      -H-0 -1?.5 1QJL -3,. 5 

-3.0 

-3.5 

-4.0 

-4.5 

»    •« x     sew 

Time from 09:52:40.4 to 09:53:29.3 

F;jgure 5. Departure from Schiphol airport, using biased measurements from three different 
radars (triangles indicate raw plots, crosses nearest-neighbour plot positions (corrected for 
the estimated radar biases) and squares the updated track position. The vectors indicate 
the predicted flightpath up to the next measurement instant). 
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Macro-Error Estimation 
The ARTAS Tracker estimates the following (macro-) systematic errors: 
• range bias 
• azimuth bias 
• range gain (a range error proportional to the range) 
• antenna squint (non-verticality of the plane of the radar beam) 
• vertically error (antenna rotation axis not perpendicular) 
• time-stamping bias 
The problem with dynamic estimation of the (macro-) systematic errors is that, in principle, the filter 
equations are coupled with the track continuation equations of the individual tracks. It is, of course, 
very well possible to make a selection of a small number of well-behaved tracks and to solve the 
resulting set of equations. In ARTAS, a different approach is taken [6], which decouples the 
equations for (macro-) systematic error estimation from the track continuation equations. Effectively, 
it comes down to a weighted integration of the innovations of all tracks and filtering these weighted 
results with a Kaiman filter. Due to this decoupling, the filtering equations become independent of 
the individual track maintenance equations. This algorithm is implemented in the ARTAS Tracker. It 
uses a selection of non-manoeuvring tracks when it is necessary to save CPU-load without 
jeopardising the speed of convergence of the macro-error estimation process. Figures 8 and 9 
show results of the (macro-) systematic-error estimation process on a 2-radar PR scenario. 

Range Bias for Radarld: 1 
—= Primary value       "■= Primary standard deviation 
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i:00 15:20:00 15:25:00 15:30:00 15:35:00 15:40:00 15:45:00 
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Range Bias for Radarld: 5 
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—= Secondary value      •••= Secondary standard deviation 

Time 

Figure 8. TAR estimated range bias Figure 9. LAR estimated range bias 

Triangulation-based Micro-Error Estimation 
After estimation of the systematic radar errors that are radar-dependent only (macro errors), the 
track-related errors (micro errors) can be estimated. Within the ARTAS Tracker, these micro errors 
consist of the transponder delay error (i.e. the difference between the actual delay and the nominal 
value of 3 microsecond as specified by ICAO) and the geometric height, estimated from range- 
azimuth position measurements in a multiradar environment. 

A general solution to this problem is to extend the state vector of an object with these components 
and to extend the corresponding extended Kaiman filter equations accordingly. Since this is a very 
costly solution (in terms of CPU), we have looked for a robust method that is not coupled with the 
track continuation equations. In situations where an SSR radar has a co-located primary radar, a 
robust method to estimate the transponder delay error is to average the difference in range 
measurements of the two radars. In other situations, the transponder delay error and geometric 
height estimations are coupled. 

Consider the situation that two non-co-located radars observe an object at the same moment in 
time. To perform triangulation, we use the difference between the projections of the plots to a 
common 2-dimensional Cartesian coordinate system (the track-local coordinate system) as the 
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innovation term in a Kalman-like filter update step for the estimation of the transponder delay error 
and the geometric height. 

Since a simultaneous measurement of one object by two non-co-located radars is quite unusual, 
we perform a triangulation on the basis of a triplet of projected plot positions (under the condition 
that the track groundspeed and course are constant). The first and third projected positions are 
interpolated to the time of the middle plot. 

The performance of this algorithm depends, among others, on the geometric configuration of the 
radars involved: the middle plot should be from a different radar than the other two plots, with a line- 
of-sight opposite to that of the other radars, and as close to the object as possible. 

In figure 10, we see a part of a track from a live data collection. The recording was made for 3 
secondary and 2 primary radars, but the Tracker was run with only the primary plot data. The track 
is flying at FL 290 (8840 m); the plots are not corrected for systematic radar errors. The estimate of 
the geometric height and the 1 -sigma margin are given in figure 11; the initial estimate is 6000 m. 
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Figure 10. Track observed by 2 PR radars Figure 11. Triangulated height as function of time 

Multisensor Environment Assessment 
The use of aircraft-derived data increases the complexity of the multisensor situation enormously. In 
addition to the rather small set of radars with sensor characteristics that are, generally, well known, 
the sensors on-board each and every aircraft have to be taken into account. This creates two 
problems: 
• the estimation of the on-board sensor characteristics; 
• the estimation of additional micro-errors. 
The ARTAS tracker already contains modules to estimate the radar sensor characteristics. These 
are part of the, so-called, Multiradar Environment Assessment (MREA). In ARTAS2, these modules 
will be extended to become a Multisensor Environment Assessment (MSEA). 
New methods will have to be developed for the estimation of the large amount of additional micro- 
errors, such as time-stamping bias, drift in position and differences in atmospheric conditions 
(pressure altitude). 

Conclusions 
Adequate systematic error estimation is a pre-requisite for accurate multisensor tracking. In the 
ARTAS Tracker, several powerful methods are employed for the on-line estimation of both macro- 
and micro-systematic errors. These methods provide accurate estimates of the systematic errors 
as shown by a number of examples. By having accurate systematic error estimates, the 
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multisensor problem is essentially reduced to a time-sequential single-sensor problem, which is, 
obviously, much easier to solve. 

The incorporation of aircraft-derived data in tracking increases the complexity of the systematic 
error estimation dramatically. New estimation methods will have to be developed to deal with this 
problem. 
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Abstract - The primary goal of this paper is to de- 
velop an approach to fusion of two streams of data - 
imaging and kinematic -for optimization of target iden- 
tification. Specifically, we focus on the fusion of range- 
profile data (obtained from a high range resolution sen- 
sor) and kinematic information for observation-to-track 
assignment and target recognition. A more reliable tar- 
get identification is possible due to the strong correlation 
between kinematic characteristics and range profile. In- 
deed, the range profile signal depends on the range to the 
target and its aspect angle, while the latter is related to 
the target velocity (via Euler's equation), thus yielding 
a strong correlation of both types of data with the as- 
pect angle. Effective estimation of the aspect angle is 
therefore the key to successful target identification. The 
dynamics of the aspect angle is modeled by a Markov 
process with a switching parameter. The latter param- 
eter describes transitions from one target maneuver to 
another. In this model the state process and the ob- 
servation are nonlinear. This rules out application of 
standard methods of estimation based on Kaiman filter 
and necessitates the use of a nonlinear filtering algo- 
rithm. The crucial part of the fusion and identification 
algorithm is the fully coupled optimal nonlinear filter for 
the aspect angle. This filter allows us to compute recur- 
sively joint unnormalized posterior distributions of the 
target class and aspect angle. Then specially designed 
adaptive sequential multihypothesis classification proce- 
dures, which exploit the optimal nonlinear estimates of 
the aspect angle for all classes, are used to identify tar- 
gets of interest. 

Key Words: high range resolution sensor, range- 
profile data, kinematic data, nonlinear filtering, fusion 
of imaging and kinematic data, sequential identifica- 
tion. 

1    Introduction 
We propose a new method of target identification 
based on fusion of imaging and kinematic measure- 
ments. Our approach is fairly general, however 
in this paper for the sake of concreteness we con- 
centrate on fusion of high range resolution radar 
(HRRR) imaging data (in the form of range pro- 
files) and standard kinematic data (e.g. range, ve- 
locity, etc.). The final goal is to improve perfor- 
mance of target recognition. This problem was 
addressed by several authors [7, 10]. In partic- 
ular, Libby and Maybeck [10] proposed a version 
of the dynamic programming method (the Viterbi- 
Larson-Peschon algorithm [9, 19]) to estimate the 
most probable "path" of aspect angles given both 
kinematic data and HRRR-profiles. This estimate 
is needed to compute an approximation to a pos- 
teriori probability of target class. The Libby- 
Maybeck algorithm is designed to utilize fixed size 
samples (i.e. it is "one-stage" or "batch" algo- 
rithm). 

In contrast, we propose a sequential algorithm 
for joint target tracking and recognition by fusing 
of kinematic data and HRRR-profiles on the ba- 
sis of optimal nonlinear filtering. The nonlinear 
filtering provides an accurate and robust recursive 
algorithm for estimation of aspect angles. These 
estimates serve as input data for an optimal multi- 
hypothesis sequential test for target identification. 
We remark that the dynamic programming method 
is time consuming and its computational complex- 
ity grows fast when the number of observations in- 
creases. Also, it is shown that the developed se- 
quential identification algorithms two to four times 
faster than the best fixed sample size test. 
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2    Problem   Formulation   and 
Basic Mathematical Model 

We consider a scenario where the target recognition 
algorithm must relate the target to one of M pre- 
determined classes (hypotheses): Hi,H2,...,HM 

(e.g. Hi = SU27, H2 = MIG31, H3 = F18, 
H4 = A6, H5 = A10, H6 = UFO). 

At each successive time tk, k = 1,2,..., the input 
information for the identification algorithm consists 
of range profile measurements (target signature) 
r(tk) = (ri(tk),---,rm(tk)), where rt(tk) is the 
wave envelop in the ith range cell at time tk, and 
the vector of kinematic parameters z(tk) (target's 
velocity, position, etc.). Thus, the observed process 
y(tk)=(r{tk),z(tk)) consists of two different in na- 
ture components - range profile and kinematic mea- 
surements. Our objective is to incorporate these 
data in the target identification algorithm in an op- 
timal way. 

The data observed up to time tk will be denoted 
Yk = (y(ti),...,y(tk)), i.e. Yk = (Rk,Zk) where 
Rk = (r(h),...,r(tk)), Zk = (z(h),...,z(tk)). 
Write also #* = (4>(h),...,<f>(tk)). 

If the target belongs to class Hj, the range profile 
signal (target's signature) r(tk) = rj(tk) at time tk 
is given by 

(1) 

where 

rj(tk) = Sj((l>(tk)) + Nj(tk), 

Njitk) = (NjtXl (tk),..., NjtXm (tk)) 

is the noise component; 

Sj(<t>(tk)) = (Sj(\i,4f(tk)),...Si(\m,4>(tk))) 

is the range profile signal of the target; <j)(tk) is the 
target pose (aspect angle) at moment tk) Aj is the 
time lag to the ith range resolution element; m is 
the total number of range resolution elements. 

There is a number of simulation tools that can be 
used to synthesize target signatures with different 
levels of fidelity: XPATCH, URISD, conditionally 
Gaussian model, etc. [7]. 

In the Bayesian framework, the decision mak- 
ing algorithms (sequential or non-sequential) are 
based on the posterior probabilities P(Hj\Yk), j = 
1,..., M. If the prior distribution of classes is un- 
known, the adaptive version of the generalized like- 
lihood ratio approach can be applied. In this case, 
the generalized likelihoods (averaged over the tra- 
jectories $fc) are replaced by their adaptive versions 

P(Yk\&l,Hj) where $k is an estimate of the as- 
pect angle path (see Section 4 for more details). In 

either case (Bayesian and non-Bayesian) implemen- 
tation of the identification procedure requires esti- 
mation of the sequence of aspect angles. In [10] the 
posterior probabilities of classes P(Hj\Yk), which 
can be obtained by averaging of the joint poste- 
rior distribution P(Hj,&k\Yk) over **, are ap- 

proximated by using (conditional) estimates *fc = 
argmax$ P(&k\Yk,Hj). The Larson-Peschon- 
Viterbi (dynamic programming) algorithm was 
used in [10] to compute these estimates. 

A well known drawback of the dynamic program- 
ming approach to estimation in hidden Markov 
models (HMM) is that it does not have a sequential 

~* j 
structure. For example, the optimal trajectory <frfc 

might differ substantially from the first k entries of 

the $j.+1. Another disadvantage of this approach 
is high computational complexity. 

To overcome these drawbacks we propose to use 
the optimal nonlinear filtering (ONF) algorithm 
for HMM. In this approach, instead of computing 
P(Hj, &k\Yk) one computes the joint filtering den- 
sity P(Hj, <f>(tk)\Yk). In contrast to P(Hj, &k\Yk) 
the probability P(Hj, <j>(tk)\Yk) allows for efficient 
recursive computation and the resulting identifica- 
tion algorithm can be implemented sequentially. 

The relationship between kinematic and range 
profile data is very strong. In (1) the range profile 
signal depends on the range to the target and its 
aspect angle <f>. On the other hand, the latter is 
related to the target velocity vector by the Euler's 
equation in the inertial coordinate system: 

v(t) = Q(t)v(t) + f(t), (2) 

where v(t) is target velocity, f(t) is target acceler- 
ation and 

Q(t) = 
0 -q3(t)     q2(t) 

q3(t) 0 -9i (t) 
-q2(t)     qi(t) 0 

where q(t) = (qi(t),q2(t),q3(t))T is target angular 
velocity. It is related to the aspect angle <f>(t) = 
(<f>i(t),<i>2(t),<t>z(t))T as follows [5, 6] 

91 
92 

93 

0i cos <t>2 cos fa — 02 sin fo 

01 COS 02 Sin 03 + 02 COS 03 

-0i sin 02 + 03 

where the dependence of <j>k and qk on t is omitted. 
In other words 9i(*),92(*), and q3(t) are rates of 
change of the roll, pitch and yaw angles, respec- 
tively. Both types of data, kinematic and non- 
kinematic, are strongly correlated with the aspect 
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angle </>. In fact, as one can see from (1), (2), tar- 
get velocity and range profile are coupled by the 
aspect angle (j> and the angular velocity q. Effec- 
tive estimation of <j> is the key to successful target 
identification. 

The acceleration f(t) and the angular velocity 
of the target q(t) are only partially observable and 
their dynamics is difficult to predict (at least in the 
case of maneuvering non-cooperative target). To 
take the above uncertainty into account, we model 
<j)(t), f(t) as a pair of stochastic processes. In par- 
ticular, for f(t) we assume the white noise accel- 
eration model [2]. The latter means that /(£*), 
jb = 1,2,... is a sequence of independent Gaussian 
random variables with zero mean and unknown in- 
tensity a2. 

The dynamics of the aspect angle <j>{t) is mod- 
eled by an interactive Markov diffusion process. 
Specifically for a target from class Hj its aspect 
angle <f>j(t) = (<j>ji(t),<f>j2(t),^j3(t)) is given by the 
stochastic differential equation 

+   Gj{6j{t),<l>j{t),t)ßj{t), 

(3) 

where ßj(t) is a white noise and 6j(t) is a switch- 
ing parameter. This parameter models switches be- 
tween target modes (maneuvers). We will assume 
that 6j (t) is a Markov type jump process. Its inten- 
sity matrix Aj characterizes a priori probabilities 
of transitions between maneuvers. The functions 
Fj, Gj and Aj bear a priori knowledge about tar- 
get kinematics. Of course these functions are class 
specific. We will omit the index j related to the 
target class in </>j(£), Oj(t), etc. when it does not 
lead to ambiguity. 

The above model of the aspect angle is a refine- 
ment and generalization of the standard interactive 
multiple model (IMM) approach to modeling dy- 
namics of non-cooperative maneuvering targets. 

To complete the description of our model, it re- 
mains to consider the structure of measurements 
in more detail. It is natural to assume that the 
variance of the acceleration f{tk) dominates the 
variance of errors in velocity measurements. So we 
can assume safely that the velocity measurements 
are noise free. For the sake of simplicity we will 
ignore the range measurements. In this case the 
kinematic measurements are Zk = «(**)• Write 
Wk — f(tk)(tk+i — **)• Explicit discretization of 
(2) gives 

where Ck = 1+ {tk+i - <*)Q* and 

Qk = 

Qi,k « Qi(tk) with <j>i(tk) approximated by 

<t>i(tk+l) -<t>i(tk) 

0 ~93,fe 92,* 

Q3,k 0 ~Ql,k 

-92,* Ql,k 0 

<t>i(h) « i = 1,2,3. 

Zk+l = CkZk +Wk, (4) 

**+i - ** 

The random variables Wk, k = 1,2,... are sup- 
posed to be independent Gaussian vectors with zero 
mean and covariance matrix (t*+i — tk)2cr2I, where 
I is the identity matrix. The intensity parameter 
a2 is unknown but can be estimated easily assum- 
ing that the overlook time tk+i — f* is sufficiently 
small. 

It must be noted that the range profile signal 
Sj(<f>) depends also on a number of (in general) un- 
known parameters including amplitude, group time 
lag, and number of range resolution elements, etc. 
There is also a number of sensor dependent error 
sources that contribute to the noise distribution. 
Here we assume that the noise N is Gaussian with 
zero mean and covariance S. However, more re- 
alistic models of noise can also be incorporated in 
our model without much difficulty. Unknown pa- 
rameters in (1) can be estimated via combination 
of signature simulation and signature collection. 

In conclusion of this section, we remark that the 
mathematical model of target dynamics and obser- 
vation (l)-(4) belongs to the general type of hid- 
den Markov models. According to terminology of 
HMM approach the process X(t) = (<f>(t),6(t)) is 
the state process and yk = (rk,Zk) is the observa- 
tion process. 

Note also that in our model both the state pro- 
cess and the observation are nonlinear. This rules 
out application of standard methods of estimation 
based on Kaiman filter. In the next section we de- 
scribe novel nonlinear filtering techniques based on 
spectral separating scheme that allows us to com- 
pute the joint posterior distribution P{Hj, <£(£*) G 
i4|Y"fc) in an efficient manner. 

3    Data Fusion Based on Non- 
linear Filtering 

Our approach to fusion of kinematic and range 
profiling data is based on the Bayesian approach. 
We start with M hypotheses {Hi,H2,... ,HM} 
regarding the type of the target. We will com- 
pute sequentially posterior distributions of the hy- 
pothesis Hj, P(Hj\Yk), given the measurements 

1031 



Yk, k = 1,2,... and identify the target by using 
modern sequential multiple hypothesis testing tech- 
niques [3, 16, 17, 18]. 

The crucial part of our fusion and identification 
algorithm is the fully coupled optimal nonlinear 
filter for the aspect angle. This filter must com- 
pute recursively the joint posterior distributions 
Pf{An) = P{Hh<t>{tk) e An\Yk) where An is the 
nth bin of aspect angle (it is assumed here that the 
viewing sphere is partitioned into N angular bins). 
In what follows we write <j>k = <p{tk) and 6k = 0(tk) 
for brevity. 

Given a new set of measurements yk+1 at time 
tk+i, the filtering distribution P*(An) is updated 
according to the Bayes rule 

P*+1(An)= (5) 

P(Vk+i\Hj,4>k+i € An,Yk)Pf{An) 

E£i £«=I Pi(Vk+i\Hj,<ßk+i € An, Yk)P${An)' 

By integrating out An's (respectively H/s) one 
can obtain from (5) the posterior distributions 
P(Hj\Yk+i), j = l,...,M (respectively P{<f>k+1 e 
An\Yk+1),n = l,...,N). 

Fusion of kinematic and non-kinematic mea- 
surements is facilitated by the  correction term 

Formula (5) provides a general form of the non- 
linear filter. In this form it cannot be implemented 
efficiently since we have yet no means to compute 
the correction term. However, filter (5) can be 
refined by using two important properties of the 
HMM (l)-(4): 

(i) The kinematic measurements zk and range- 
profile data rk are conditionally independent 
given <pk, <f>k-i and zk-\. (Note that without 
the conditioning zk and rk are strongly corre- 
lated.) 

(ii) Xk = {<t>k,0k), fc = 0,1,2,..., is a homoge- 
neous Markov chain. 

Write 

P*+1>\An) = P{Hh<pk G An,6k = i\Yk). 

Obviously, P*+l{An) = EiPj+1,i(^n). 
Using (i) and (ii) we obtain 

P*+M(A„) = (6) 

Ph+1Em,PM,i,n,l)Qk
m

+1P^(Am) 

where 
Pj(m,i,n,l) = 

P(<f>k+i € An,ek+i = i\Hj,<t>k e Am,ek = %), 

Plk+i = -P^fc+il^-.^fc+i e An), 

C+i = P(zk+i\Hj,<t>k+i € An,<f>k € Am,zk). 

Formula (6) demonstrates an important fact: in 
a setting with fully coupled kinematic and non- 
kinematic measurements conditioning on <f>k+i, 4>k 

and zk decouples the correction term into the prod- 
uct of the kinematic and the non-kinematic con- 
ditional correction terms Q'k+i an<^ P],k+i respec- 
tively. 

In contrast to (5), the filter given by (6) is prac- 
tically implementable. Indeed, with the use of the 
models (1) and (4) it is readily checked that 

P"'*+1 * (27r)«7»|£| X 

exp I -^(rk+i ~ Sj(on))TS~1('"*+i - Sj(a„)) |, 

and 
/■n,m    ^  A  

^•fe+1~ 1(2^)1/2 A,+1a|3X 

f    (zk+i - CjtkZk)T{zk+i - Cjtkzk) \ 
exp\ MAUI r 

where Afc+i = tk+\ —tkt an is the center of mass of 
the bin An and Cjtk = Ck(<pk = an,<pk+l = am) 
(Cjyk depends on the number of class j, since <pk is 
class specific). 

Optimal nonlinear filter (6) can be greatly sim- 
plified by switching to unnormalized filtering dis- 
tributions [4]. Specifically, one can show that 

p*+i*(An)=p/+i,i(An)/ f; p;+M(An), 
n=l 

where the unnormalized filtering distribution 
P^+1'\An) is given by 

P*+U{An) = (7) 

m,t 

with 
7Ü71        — Pj,k+1 — (8) 

Ef=1 En.iPftH-1 E^PiKi.n.OC-Ci^- (y*m) 

expisi(an)TS-1rfc+1 - iSjK^Xr^K)} , 

SKi = (») 
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exp I ff2^2    (*iT+igJ.*** ~ 2^Ci'kZk^j • 

Note that since^the unnormalized distribution 
Pk+1(An) = 2jP/+1''(-4n) achieves maximum at 
the same point as the normalized one, Pk+1(An), 
the former one is usually sufficient for the purpose 
of target identification. In addition, (7) is much 
simpler than (6). The main advantage of the un- 
normalized filter (often referred to as Zakai filter) 
is its linearity. This property allows us to imple- 
ment powerful numerical schemes for data fusion 
and target identification. 

Computational complexity is the most serious 
roadblock on the way of practical implementation 
of the optimal nonlinear filters (6) and (7). The 
most computationally expensive part of algorithms 
(6) and (7) is evaluation of the sum uj(n) = 
Em,tft'(m>*'n'0/i(m»*in>Oi where fj(m,i,n,l) 

is equal to Cji+i^f'^-4™) in the case of W and 

Ob+i-P/'^m) in the case of (6)- Standard nu- 
merical algorithms for solving this problem have 
computational complexity OCA''(In AT)2), where N, 
the number of aspect angle bins, can be of the order 
of 104 -105. If the algorithm is applied straightfor- 
wardly, this translates into 108-1010 operations per 
step. Thus a real time implementation of the above 
algorithm is not obvious. Several novel numerical 
techniques which address this problem were intro- 
duced recently. In particular, the Spectral Sepa- 
rating Scheme (S3) [11, 12, 13] and the Stochastic 
Domain Pursuit (SDP) method [14,15] appears the 
most promising. Both algorithms reduce the on- 
line computational complexity to the level O(N). 
Due to the lack of space, we do not discuss the 
details of adaptation of S3 and SDP methods to 
this particular setting and leave it to the interested 
reader. 

4    Identification Algorithms 

We develop two types of sequential identification al- 
gorithms - completely Bayesian and non-Bayesian. 

4.1    Bayesian Algorithm 

The first identification algorithm is based on com- 
parison of a posteriori probabilities with each other 
and with a threshold level that is defined based on 
a given misclassification rate. Note that the deci- 
sion statistics (posterior probabilities) exploit both 
kinematic and HRRR-profile data. In other words, 
it is completely coupled algorithm. 

Let Hj, j = 1,...,M be the set of M hypothe- 
ses regarding the type of the target and 11(0) = 
(7ri(0),...,7TM(0)) be the vector of prior proba- 
bilities assigned to these hypotheses. This distri- 
bution may represent human factors (e.g. the op- 
erator's judgment expressed in the form of sub- 
jective probabilities), or the statistical estimates 
for the particular tactical situation, or a combi- 
nation of both. Strictly speaking, in order to 
obtain an a posteriori distribution of hypotheses, 
n(ffc) = (n(h),■ ■ ■ ,«-Af(**)), *j(*fc) = P(Hj\Yk), 
we should average the joint distribution Pk{Am) = 
P(Hj,<f>(tk) e Am\Yk) over m: 

N 
V^  Tiki *i(tk)=X,P?(Am), (10) 
m=l 

where N is the number of aspect angle bins. 
The recognition (identification) algorithm at the 

fcth step is as follows: 
• if maxj 7Tj(tfc) < Ca,M, go to the step k + 1, 

where Ca,M is a threshold level which depends 
on the predefined probability of misclassification 
a (typically chosen between 0.01 and 0.1) and the 
number of target classes M; 

• if maxjTTj^fc) > Ca,M and nK(tk) = 
maxj 7Tj (tfc), the observation process is stopped and 
the target is identified as belonging to the class HK. 

This sequential classification algorithm has the 
following important properties [3, 16, 17, 18]. If 
the threshold is chosen as 

Cot, M a/M, (11) 

then the algorithm belongs to the class 
of identification procedures for which 
ctj = Pr(accepting Hj\Hj is wrong) < a (i.e. 
the probability of misidentification ctj does not 
exceed the given level a E (0,1)). Moreover, in 
this case the algorithm minimizes asymptotically 
(when a is small enough) the expected sample size 
for all hypothesis. 

More specifically, let 

Lji(tk) = In 
P(Yk\Hj) 
P(Yk\Hi 

be the log-likelihood ratio of target classes Hj 
and Hu where P(Yk\H,) = £„,,...,„, P(Ykt4»i € 
Ani ,...,<j)k € Anh \Hi). Next, let Ei denote the ex- 
pectation when the observations correspond to the 
class Hi (under distribution P(Yk\Hi)) and let 

Q(j,i)= lim -EjLji(tk) 
*->oo re 

(12) 
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be the parameter which characterizes the distance 
between jth and ith classes. Next, let T& denote 
the sample size (stopping time) of the Bayes iden- 
tification algorithm. Obviously, TQ is the first time 
tk such that the statistic maxjTTj(tk) exceeds the 
threshold Ca,M = 1 - a/M. 

By analogy with [18] it can be shown that if 
k^Ljiitk) converges strongly completely to Q(j,i) 
as k -¥ oo (the definition of strong complete con- 
vergence see in [18]), then the proposed sequential 
identification procedure minimizes any positive mo- 
ment of the observation time for small a and 

lna 
EjTß as a -> 0       (13) 

rami¥:jQ{j,i) 

for any n > 0 (for n = 1 this is the expected sam- 
ple size). The right hand side of (13) may serve as 
a reasonable approximation to the nth moment of 
the observation time for small probability of mis- 
classification. (See [3] and Section 5 for the results 
of simulation). 

4.2    Non-Bayesian Algorithm 

Another identification algorithm is based on the 
conditionally optimal estimators of the aspect an- 
gle, 4>j(tk) = E[</>(tk)\Hj,Yk], for each hypothesis 
Hj. These estimates represent the output of non- 
linear filters for the aspect angle. The algorithm 
does not require any knowledge of an a priori dis- 
tribution of hypotheses and at the same time has 
the same asymptotic performance as the previous 
method [16, 17, 18]. 

Let 

be the "conditional" log-likelihood ratio of the hy- 
potheses Hj and Hi (we stress the difference as 
compared to the statistic Lji(tk) defined in Sec- 
tion 4.1) and define the adaptive version of the log- 
likelihood ratio by the recursion 

Lji(k + l) = Lji(k) + ]n ^{yt+i|gj,$j(*).y*} 
[P{Vk+i\HMk),Yk} 

where <f>i(k) = <f>i(tk). The identification algorithm 
at the feth step is as follows: 

• if maxj minj^j Lji(k) < Ba,M, go to the step 
k + 1, where B«,M is a threshold which depends on 
the given probability of misclassification a and the 
number of target classes M\ 

• if maxj mini^j Lji(k) > BaiM and 
Tairii^K LKi(k) = maxj minj^jZ/jj(A), the ob- 
servation process is stopped and a target is 
identified as belonging to the class HK. 

In other words, the classifier is based on simulta- 
neous application of a number of one-sided sequen- 
tial probability ratio tests, acting in parallel, each 
of which intends to test the hypotheses Hj against 
all other alternatives. The algorithm stops obser- 
vation at time 

TUB = min< A;: max min £,«(&) > Ba M\     (14) 
I 3     «#J i 

and decides in favor of the class HK if 

minL«i(TKB) = maxminL,i(7KB)- 

It can be shown that the probability of misidenti- 
fication, atj = Pr(acceptHj\H) is wrong), does not 
exceed the predefined level a when 

Ba,M = ln[(M - l)/a]. (15) 

Also, the asymptotic formula (13) is valid for TNB 

whenever 

lim -EjLji{k) = Q(j, i)    for all i,j, i £ j, 
fc-foo K 

where Q(j,i) is defined in (12). Thus, both 
proposed identification algorithms are optimal for 
small a. 

The block diagram of the algorithm is shown in 
Figure 1. At the fcth step the algorithm performs 
three tasks: 

(i) computing optimal (nonlinear) filtering esti- 
mates $,(tfc) = Ei[4>(tk)\HhYk] (I = 1,...,M) 
using nonlinear filtering algorithm described in Sec- 
tion 3; 

(ii) computing the matrix of adaptive log- 
likelihood ratios ||I/j»(t*)ll (i,j = 1,...,M, i -fi j) 
which exploit the estimates <f>l up to time tk-i; 

(iii) thresholding. 

Decision 
Statistics 

(Adaptive Log- 
Likelihood 

Ratios) 

|M'*>1 

Optimal Nonlinear 
Filter (Class 1) 

y* 

h(t„) 
Kinematic tUta 

Thresholding 

HRRRdit 1 
Optimal Nonlinear 
Filter (Claw Ml *«&) *■ 

Figure 1:   Block-diagram of the data fusion 
and identification algorithm 
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5    Performance   and   Conclu- 
sions 

The target recognition performance of the pro- 
posed sequential identification algorithms is shown 
in Table 1, where we illustrate the system perfor- 
mance in the case where the log-likelihood ratios 
Lji(tk) can be well approximated by the Gaussian 
processes with independent increments with means 
EjLjiitk) = Q{j,i) > 0. The values of Q(j,i) de- 
fine the distances between classes Hj and Hi (see 
(12)). The performance of algorithms is evaluated 
in terms of the expected sample size required for the 
identification when the probabilities of misidentifi- 
cation aij = Pr(accept Hj\Hj is wrong) are fixed 
at the level a = 0.01. In simulations the prior 
distribution of classes was assumed to be uniform, 
7Tj(0) = 1/M, j = 1,...,M, and the number of 
classes M = 3. In the table, % and EjT are the 
estimates of the error probabilities and expected 
sample sizes of tests obtained by the Monte Carlo 
technique, oy is the given constraints, and EjT is 
the expected sample size computed by the asymp- 
totic formula (13). 

It turns out that the thresholds (11) and (15) 
guarantee only the inequalities atj < a for all 
j = 1,..., M. In general this choice does not guar- 
antee the equalities atj = a, which should be sat- 
isfied at least approximately to compare different 
algorithms correctly. To obtain accurate approxi- 
mations for error probabilities we evaluated average 
overshoots of log-likelihood ratios over the bound- 
aries and applied the nonlinear renewal theory tech- 
niques [3]. As a result, to guarantee the equalities 
otj = a for all j the thresholds can be different for 
different hypotheses (due to different overshoots). 
Particularly, it is seen from Table 1 that the thresh- 
olds Cz and B$ for Hz differ from the thresholds 
C\ = Ci and B\ = B2- In other words we applied 
a slightly more general sequential algorithms com- 
pared to algorithms described in Section 4.1 and 
Section 4.2. For instance, the stopping time of the 
non-Bayes algorithm is 

TNB = min(Ti, r2,..., TM), 

n = min{fc : minijn(ijt) > Bi},    i = l,...,M 

(compare with (14)). The decision is made in favor 
of the class HK if TKB = TK. 

The results presented in the table allow us to 
make the following conclusions. 

1. The theoretical (asymptotic) estimates (13) 
give a reasonable approximation to the expected 

sample size even for moderate probabilities of er- 
rors. 

2. Proposed sequential identification algorithms 
have almost the same performance - the difference 
between expected number of observations required 
to achieve the probability of misidentification a = 
0.01 is negligible. 

3. Since the best fixed sample size identification 
algorithm takes 34 observation, the sequential algo- 
rithms are in average two to four times faster. Thus 
potentially the proposed sequential algorithms are 
better as compared to the non-sequential dynamic 
programming approach developed in [10]. 

The asymptotic formula (13) suggests a way 
of comparison of different data fusion methods 
in terms of highest recognition performance: the 
greater distances Q(j,i) between classes, the bet- 
ter the data fusion algorithm is. The distances 
Q(j,i) have a simple information-theoretic inter- 
pretation. Indeed, the value of EjLji(tk) is noth- 
ing but the Kullback-Leibler information distance 
between probability distributions P(Yk\Hj) and 
P(Yk\Hi). Hence Q(j,i) is the effective (average) 
information distance between classes Hj and Hi per 
one observation. Fusion of data allows us to in- 
crease the effective distance between classes. The 
potential increase of Q(j, i) defines the efficiency of 
the data fusion algorithm. This important issue 
will be considered elsewhere. 

Table 1: Performance of Sequential Identifica- 

tion Algorithms for Three Classes. The num- 

ber of trials used in the simulations is 105. The dis- 

tances between classes are Q(2,1) = Q(l, 2) = 0.18, 

Q(3,2) = Q(2,3) = 0.5; Q(3,l) = Q(l,3) = 1.28. 

The best fixed sample size test that meets the 

constraint on the probability of misidentification 

a = 0.01 takes 34 observations. 

Results for the Bayesian Algorithm 

Error Prob. & Thres. Exp. Sample Size 

Oj In Cj Oij EjTB EjTB 

Hx 0.01 3.16 0.0097 18.83 17.54 

H2 0.01 3.16 0.0091 21.46 17.54 

Hz 0.01 2.93 0.0098 7.24 5.85 

Results for the non-Bayesian Algorithm 

«i Bj "j EjTNB EjTHB 

Hx 0.01 3.16 0.0097 18.75 17.54 

H2 0.01 3.16 0.0106 20.85 17.54 

Hz 0.01 2.93 0.0100 7.17 5.85 
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Abstract The problem of data association re- 
mains central in multitarget, multisensor, and mul- 
tiplatform tracking. Lagrangian relaxation meth- 
ods have been shown to yield near optimal answers 
in real-time. The necessarity of improvement in 
the quality of these solutions warrants a continu- 
ing interest in these methods. A partial branch- 
and-bound technique along with adequate branching 
and ordering rules are developed. Lagrangian re- 
laxation is used as a branching method and as a 
method to calculate the lower bound for subpfob- 
lems. The result shows that the branch-and-bound 
framework greatly improves the solution quality of 
the Lagrangian relaxation algorithm and yields bet- 
ter multiple solutions in less time than relaxation 
alone. 

Keywords: Lagrangian Relaxation Algorithm, 
Branch-and-Bound, Multidimensional Assignment 
Problem, Multitarget Tracking 

1    Introduction 

The multiframe data association problem for 
multitarget and multisensor tracking is formu- 
lated as a multidimensional assignment prob- 
lem. This formulation is a superset of almost 
all MHT approaches to multiframe processing. 
The construction of real-time solutions to this 
fundamental problem has been achieved by the 
use of Lagrangian relaxation techniques, but 
the quest for improvements approaching opti- 
mality without going to full branch and bound 
techniques will remain a fundamental problem 
for some time.   In this work, we examine a 

couple of techniques for improving the solution 
quality and demonstrate their effectiveness on 
some difficult tracking problems. 

The multiframe data association problem is 
formulated as a multidimensional assignment 
problem[l, 2] as 

Min 

St: 

iNZ{1...iN 

Mi MN 

E • • • E c*i 
U=0       ijv=0 

M2 MN 

/LI '"  /L/ zh-iN = ■*■' 
12=0 lN=0 

for i\ = 1,..., Mi, 
Mi Mk-i   Mk+i 

£■■■ E   E 
ii=0       ik-i=0ik+i=0 

= 1, 
for ik = 1,..., Mfe 

and k = 2, ...,N - 1, 
Mi Afjv-i 

2_, ' ' '     Z^i    zh-iN = ■*■' 
ii=0       ipf-i=0 

for ZJV = 1,...,MJV, 

MN 

E *i- 
iN=0 

■IN 

(1) 

zU-"ijV G {0,1}    for alHi,...,ijv- 

Here, CQ...Q is arbitrarily defined to be zero 
and is included for notational convenience. 
The zero index is used to representing missing 
data, false alarms, initiating tracks and termi- 
nating tracks. We assume that the binary vari- 
ables Ziv..iN with precisely one nonzero index 
are free to be assigned and that the correspond- 
ing cost coefficients are well-defined. Actually 
these cost coefficients with exactly one nonzero 
index can be translated to zero by cost shifting 
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without changing the optimal assignment. 
The only known methods for solving this 

problem optimally are enumerative in nature, 
with branch-and-bound being the most effi- 
cient. However, such algorithms are too slow 
for real-time applications. Because of the noise 
included in the cost coefficients, it is sufficient 
to find suboptimal solutions that are within the 
noise level of the true solution. 

There are a variety of Lagrangian relaxation 
based methods, and large classes of these are 
explained in publications [3, 4, 5]. Because a 
moving window is usually used for track main- 
tenance and track initiation, we prefer an al- 
gorithm that first relaxes an N-dimensional as- 
signment problem down to a 2-dimensional as- 
signment problem, optimizes over the multipli- 
ers, and then restores feasibility using an (N-l) 
dimensional assignment problem. This proce- 
dure is repeated on successive recovery prob- 
lems until a 2-dimensional assignment problem 
is reached, which can be solved optimally in 
polynomial time. This algorithm is summa- 
rized in [1]. 

One of the key user inputs in this particular 
Lagrangian relaxation algorithm is the num- 
ber of nonsmooth optimization steps that are 
taken. Usually the quality of the solution im- 
proves with the number of iterations. This 
improvement is not monotone, but has slight 
variations up and down, as the number of it- 
erations increases. With 20 or so iterations, 
the solution quality is generally well within the 
noise level of the underlying problem; however, 
there is an ever increasing demand for bet- 
ter solution quality or examination of the rela- 
tion between a "good" solution and one that is 
"better". 

There are several approaches to improv- 
ing solution quality. One approach is to in- 
crease the number of iterations in the mul- 
tiplier adjustments (nonsmooth optimization 
steps). Another is to first generate a good so- 
lution and then use a local search technique 
to examine the solutions in a neighborhood of 
the existing one. Although we have had only 
marginal improvements with this approach [6], 
we believe that this avenue still needs to be 

explored. Another currently popular approach 
is to use the K-best solutions of the two di- 
mensional assignment [7] problem to examine 
different potential solutions. Disappointingly, 
our testing shows that this approach has also 
failed to lead to any appreciable improvements 
to the relaxation solutions. 

In this work, we develop two algorithms for 
improving the solution quality. The first is a 
heuristic to decide which solutions of the two 
dimensional assignment problem (that arises 
in the nonsmooth optimization iterations) lead 
to improved solutions of the data association 
problem. The second algorithm is an enumer- 
ative technique framed in the partial branch 
and bound paradigm and that generally yields 
uniformly improved multiple solutions. 

An overview of the Lagrangian relaxation 
algorithm is in Chapter 2. In Chapter 3 the 
index alignment selection heuristic and the 
partial branch-and-bound algorithm are pre- 
sented. Numerical results are presented in 
Chapter 3. 

2    Lagrangian   Relaxation   Al- 
gorithm and Inner Problem 

2.1    Overview of Lagrangian Relax- 
ation Algorithm 

For an N-dimensional assignment problem the 
Lagrangian relaxation algorithm consists of N- 
1 stages. In the first stage, the last (N-2) con- 
straint sets are relaxed by applying Lagrangian 
multipliers (u3,..., un). The dual problem is: 

Min       hn{zn;u3,...,un) = 
Mi     M2 Mn 

Mm £    £   " " "   £   Chi2-inZhi2~in 
^=012=0 in=0 

n    Mk Mi Affc_i 

+ ££<[£- £ 
k=3ik=0 u=0        ijfc-i=0 

Mk+l Mn 

/ J     '"2^1  Zh-in ~" 1J  = 
ik+i=0       in=0 
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Min «SU + IX 
fc=3 

St: 

Mi Mn 

E-E 
ii=0 in 

n    Mfc 

-EE< 
fc=3ifc=0 

M2 M„ 

l^i'" /_*, zh-in 
= *' 

12=0 in=0 
for «i = l,... ,Mi, 

Mi M„ 

l!=:0 in=0 
for «2 = 1,...,M2, 

«SU*) 

(3) 

(4) 

w»i—t. G{0,1} 

for all *i,... ,in. 

The next task is to maximize the dual 
problem with respect to the multiplier vec- 
tor (u3,... ,un), which is accomplished by us- 
ing techniques of non-smooth optimization. In 
each step, a new multiplier vector is generated 
and the corresponding solution is computed 
which determines an index alignment for the 
first 2 index sets, say a = {(*iO'))*2Ü'))|j = 
0---M0} with (ti(0),t2(0)) = (0,0). Here, 
an index alignment a is a set consisting of 
ordered sets with the same size,  i.e.,  a  — 

{oi---4}>---,wv--;n}-  A solution Y 
conforms to an index alignment a if 

_ f 1, if {*i,- 

for alHi, ■ ■ ■ ,in 

■«it} G a 
ik}£a 

(5) 

Based on this index alignment an (N — 1)- 
dimensional assignment problem is constructed 
by setting d£..in = ^mWz..^ and keep- 
ing only those arcs with the first two indices 
appearing in a. Its dual problem is formed 
in the same way we do with the original N- 
dimensional assignment problem by relaxing 
all but the last two constraint sets from. The 
process continues and N — 2, N — 3 ■ ■ • 2 di- 
mensional assignment problems are formed and 
alignments made. At the last stage a 2- 
dimensional assignment problem is formed and 
solved. Thus a near optimal feasible solution 
for the original problem is found. 

This algorithm is not intended to find 
an optimal solution. The solution it finds 
is sub-optimal with the optimal value of 
the dual function $n(it3,u4,- • -un) being its 
lower bound. Denote the objective function 
f(x) where x is a feasible solution to the 
original N-dimensional assignment problem. 
For the optimal dual solution (ü3,ü4,- • ■ün) 
with the corresponding x being a feasible 
solution for the original problem, we have 
f(x) > $n(ü3,ü4,---ün). The value (/(£) - 
$n(ü3,ü4,---Än))/$(ü3,ü4, •••&„)) is an ap- 
proximate measure of the duality separation 
for the problem and is an important measure- 
ment of the performance of the algorithm. 

2.2    Inner Problem 

In the Lagrangian relaxation algorithm we 
maximize the dual of the recovery problem di- 
rectly after maximizing the relaxed dual. As a 
modification to the Lagrangian relaxation al- 
gorithm we add an intermediate step called 
the Inner Problem. Suppose we have a 
multiplier vector (u3,uA,- ■ ■un) which maxi- 
mizes $n(u3, u4,- •-,«") together with an in- 
dex alignment for the first two frames a = 
{(k(j),h(j))\j = 0---Mo}. The inner prob- 
lem is constructed by removing from the origi- 
nal N-dimensional assignment problem all the 
arcs with first two indices not in a. The inner 
problem is denoted $n(u3,..., un; a). For the 
same multiplier vector (u3, uA, ■ ■ ■, un), we can 
prove that the value of the dual problem is less 
than the value of the inner problem. And a 
similar result holds for later stages. Thus the 
optimal value of the inner problem is a better 
lower bound for the final feasible solution than 
the optimal value of the dual problem. 

Also, numerical results show that if the mul- 
tiplier vector (vk+2, •■■vn) maximizes the inner 
problem, then (vk+2, ■ ■ ■ vn) is generally a bet- 
ter initial multiplier vector to start the max- 
imizing of dual of the recovery problem with 
and leads to less running time and improved 
solution quality. 
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3    The    Partial    Branch-and- 
Bound Algorithm 

3.1 Heuristic   for   Choosing   Index 
Alignment 

The function $n(u3,... ,un) is concave and 
very flat near its minimal. Since the subgra- 
dient of the dual problem corresponding to a 
particular multiplier is the number of times the 
relaxed constraint is violated, the greater the 
norm of the subgradient, the greater the du- 
ality separation may be. Thus, in choosing 
the multiplier vector to carry on the recovery 
procedure, both the dual function value and 
the subgradient norm should be considered. If 
two multiplier vectors have different subgra- 
dient norms, we choose the one with smaller 
norm, otherwise we choose the one with better 
objective function value. 

The above discussion can be stated in this 
way: given two multiplier vectors each associ- 
ated with a subgradient vector, the one with 
the smaller subgradient vector norm has a bet- 
ter possibility to recover a better feasible solu- 
tion. 

3.2 Partial Branch and Bound 

The improvement in solution quality and the 
computation of K-near optimal solutions is 
accomplished via an enumerative technique 
that is framed within the branch-and-bound 
paradigm. The goal is to do a partial enumera- 
tion by selectively choosing which branches to 
examine. 

During the non-smooth optimization proce- 
dure for stage k we come up with a set of 
Pk multiplier vectors where pk is the number 
of non-smooth optimization iterations in stage 
k (in each iteration one new multiplier vector 
is generated and an index alignment is calcu- 
lated). Associated with each multiplier vector 
is an index alignment. If we pursue further it- 
erations from each of these index alignments, 
the possibility of finding a very good feasible 
solution will increase greatly. 

Let Y denote all the feasible solutions for 

the original problem and consider the following 
partition: 

Y = Yi U Y2 U y3 U ■ • • U YPl U Y      (6) 

There is an index alignment a.{ of the first two 
frames for each Y%. Let Y denote the set of 
all the feasible solutions that don't conform to 
cti,(X2,-" or apx, i.e., the unlisted solutions. 
Because of its size, it is less likely to find a good 
solution from Y. Thus it is not examined. For 
each branch Yi, we form the recovery problem, 
perform the non-smooth optimization process 
and make partitions again. We continue with 
the partition process till we arrive at the 2-D 
assignment problem. 

After one has obtained a feasible solution, 
it is possible to delete some branches by com- 
paring this feasible solution value to a lower 
bound of the feasible solutions conforming to 
that branch. If the lower bound is greater 
than the best primal feasible solution, further 
computation on this branch is unnecessary, i.e, 
there is no chance of obtainning a better solu- 
tion from this branch. 

A lower bound for all the feasible solutions 
contained in the branch Yi1i2...ik is computed 
by forming the inner problem on this branch 
and finding its maximum. As stated before, 
the reason for introducing the inner problem is 
to get a better lower bound, and if it is nec- 
essary to pursue this partition, a better mul- 
tiplier to start the next stage of non-smooth 
optimization with. 

To find multiple solutions, a solution buffer 
S with a predetermined size is set up. It keeps 
the best feasible solutions ever found. In this 
case if S is full, deleting some branches is done 
by comparing the lower bound of that branch 
to the worst solution in S. Otherwise when S 
is not full we don't cut out any branches. 

4    Numerical Results 

4.1    Problem Generation 

Our algorithm is designed for the multitarget 
tracking environment.   All the test problems 
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used here are generated from a tracking simula- 
tion application. Tracking simulation consists 
of two parts: 

1. Modeling. Random tracks and corre- 
sponding reports are generated in 3D 
space. Noise, misdetections and false 
alarms are added. 

2. Filtering and Scoring. Possible tracks 
(hypotheses) are filtered and scored [2]. 
Those with a high enough likelihood ra- 
tio are kept. These are the arcs in the 
multidimensional assignment problem. 

The number of observations varies in each 
scan. In most cases they are close to each 
other. The dimension of the assignment prob- 
lem is the tracking window size. 

4.2    The Index Alignment Selection 
Heuristic 

First a six dimensional assignment problem is 
generated with 22,518 arcs. This is one of the 
more complex and yet reasonably sized prob- 
lems that we have managed to create using our 
tracking simulator. Each scan has about 40 
observations. The Lagrangian relaxation algo- 
rithm is performed with and without the index 
selection heuristic. Because the non-smooth 
optimization procedure converges slowly, we it- 
erate only a given number of iterations before 
terminating. 

Figure 1 shows the solution quality for both 
algorithms. The optimality is measured by 
comparing to the best objective function value 
we have ever computed. For the basic La- 
grangian relaxation algorithm, there are two 
big variations after 80 steps, which may dete- 
riorate the solution quality to as low as 94% 
of optimal. In the Lagrangian relaxation al- 
gorithm with alignment selection, the solution 
quality stays above 98% after 90 steps, and in 
the worst cases the solution quality stays on 
97%. Of all the 26 results, 5 results of basic La- 
grangian relaxation algorithm are above 99% 
of optimal, while for alignment selection this 
number is 15.   13 results of basic Lagrangian 

100% ' 

r\nnn &M ffi\r 
M M(r HM, W/\JN M V V 

94%  1 

-Lagrangian Relaxation 
Algorithm 

-Lagrangian Relaxation 
Algorithm w»h Alignment 
Selection 

25    40    55    70    65   100  115  130  145 

NSO Steps 

Figure 1: Comparison of Alignment Selection 
for Different Number of NSO Iteration Steps. 

relaxation algorithm stays below 98%, while 
for alignment selection this number is 5, which 
all happens before 90 steps. This figure shows 
that the solution quality is improved and sta- 
blized, which justifies the validity of the index 
alignment selection heuristic. 

It should be pointed out that during the first 
20 steps of non-smooth optimization iterations, 
alignment selection doesn't appear to be su- 
perior to the basic Lagrangian relaxation al- 
gorithm. The reason is that when we apply 
our selection heuristic, we make the assump- 
tion that the dual function value is close to its 
optimal, so it is the subgradient vector norm 
that plays the major role. Indeed during the 
early period of non-smooth iteration the dual 
function value is far away from the optimal 
point, which misleads the alignment selection 
heuristic. It is suggested to allow non-smooth 
optimization close to the optimal point when 
applying the index alignment selection heuris- 
tic. Sometime this will takes lots of time. One 
way to deal with this is to set a large accuracy 
tolerance while solving the non-smooth opti- 
mization. 

To further show the index alignment selec- 
tion heuristic works, another six assignment 
problems are tested in table 2. Each of them 
is of 5 dimension with around 20 observations 
per scan. During computation we allow non- 
smooth optimization to converge to its optimal 
value. For each problem the lower bound and 
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Figure 2: Comparison of Alignment Selection 
for Different Problems. 

the two feasible solutions are solved both with 
and without applying the index alignment se- 
lection heuristic. The results are shown in fig- 
ure 2. Alignment selection improves the solu- 
tion quality for 5 out of 6 cases and for 1 it 
remains the same. 

It is shown that if we allow non-smooth opti- 
mization to converge, the algorithm with index 
selection always outperforms the one without 
selection. 

4.3    The  Partial Branch-and-Bound 
Algorithm 

There are three parameters for partial branch- 
and-bound algorithm. The first is the number 
of solutions desired. Remember that if the so- 
lution buffer is full, the bound of the branch- 
and-bound algorithm is set to the worst feasi- 
ble solution in the solution buffer. Otherwise 
if the solution buffer is empty, no branches 
are cut. Increasing this parameter will slow 
down the algorithm by increasing the number 
of branches searched, i.e., the more solutions 
one desires, the slower the program runs. In 
this test we set the solution number to 10. 

The second parameter is the branching num- 
ber, which is the number of branches enumer- 
ated at each stage. The more branches enu- 
merated, the better solutions we will find. In- 
creasing it will cause more branches to be enu- 
merated, which increases the running time. We 
will show later that the running time increases 

Figure 3: Results of Partial Branch-and-Bound 
Algorithm for Branching Number=5, Seeking 
10 Best Solutions. 

less than linearly. 
The last parameter is the number of 

non-smooth optimization iterations performed. 
Performing fewer non-smooth optimization it- 
erations tends to shorten the running time of 
maximizing each subproblem, but decreases 
the quality of their solutions, which may cause 
more subproblems to be solved due to the inef- 
ficient branch cutting. Like the effect of chang- 
ing non-smooth iterations maybe comprehen- 
sive, i.e., it may increase or decrease the run- 
ning time. Generally it is required that non- 
smooth iteration should be performed until no 
major improvement for dual problem can be 
found. This can be achieved by setting an ade- 
quate e in the non-smooth optimization solver. 

We applied the partial branch-and-bound al- 
gorithm on the complicated problem we used 
in figure 1. The branching number is set to 
5, which is moderate for good solution quality 
and fast speed. The 10 best solutions are de- 
sired throughout these test cases. For different 
non-smooth optimization steps the results from 
partial branch-and-bound are shown in figure 
3. The results from the Lagrangian relaxation 
algorithm are also shown in figure 3 for com- 
parison. Running time comparison are shown 
in figure 4. 

Compared to figure 1 the solution quality of 
partial branch-and-bound algorithm is greatly 
improved.    The best solutions yielded from 
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Figure 5: Running Time Comparison for Dif- 
ferent Branching Number. 

partial branch-and-bound algorithm are always 
better than Lagrangian relaxation algorithm. 
For all cases the best solutions are within 0.5% 
close to optimal. Quality of the 10th best so- 
lutions increases steadly as the number of non- 
smooth optimization iterations increases. In 21 
out of all 26 cases, the 10th best solutions of 
partial branch-and-bound algorithm are better 
than the solutions from the Lagrangian relax- 
ation algorithm. 

The solution quality of partial branch-and- 
bound algorithm is very stable. There are no 
steep jumps in the solution quality as the num- 
ber of non-smooth optimization varies. Also 
both the best solutions and the 10th best so- 
lutions have a stable increasing trend as the 
number of non-smooth optimization increases. 
It is shown in figure 4 that partial branch-and- 
bound algorithm may cost 50% more time than 
the Lagrangian relaxation algorithm, while it 
gives significantly better solutions to the prob- 
lem. 

The running time of partial branch-and- 
bound algorithm is not proportional to the 
number of non-smooth iterations taken. As 
stated before, this is because finding a bet- 
ter lower bound for the original problem will 
possibly cut off more branches, which helps in- 
creasing the speed. Figure 5 shows the run- 
ning time of partial branch-and-bound algo- 
rithm for different branching numbers. The 
number of NSO iterations is set to 100.   Still 

10 best solutions are desired. The running time 
increases less than linearly as branching num- 
ber increases. Its trend tends to become flatter 
as the branching number increases. 

Here it is worth mentioning that we have 
tried to generate multiple solutions based on 
the k-best 2-D assignment solutions, which 
generates the k best solutions of the 2-D as- 
signment problem encountered in each stage. 
It turns out to be an unsuccessful algorithm 
since the k best solutions from the same 2-D 
assignment problem are so close to each other 
that if one of them leads to a bad feasible so- 
lution, others seldom yield good feasible solu- 
tions. 

5    Conclusion 

In this paper we have presented a variant of the 
Lagrangian relaxation algorithm for construct- 
ing multiple quality solutions to the multidi- 
mensional assignment problem. An enumera- 
tion algorithm based on the branch and bound 
framework with a special selection heuristic al- 
gorithm has been developed with appropriate 
branching and ordering rules. Compared to 
continuation of iteration to reduce the duality 
separation, the new algorithm generates supe- 
rior solutions in less time. 
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Abstract 
An obvious use for feature and attribute data is for target 
typing (discrimination, classification, identification, or 
recognition) and in combat identification. Another use is in 
the data (or track) association process. The data association 
function is often decomposed into two steps. The first step is 
a preliminary threshold process to eliminate unlikely 
measurement-track pairs. This is followed by the second 
step, the process of selecting measurement-track pairs or 
assigning weights to measurement-track pairs so that the 
tracks can be updated by a filter. The primary concern of 
this paper is the use of feature and attribute data in the data 
association process for tracking small targets with data 
from one or more sensors. 

1. Introduction 
Target tracking problems can be broadly categorized 
into four generic classes [1], as follows: 1. sensor 
tracking of a single (bright) target, 2. tracking of 
targets that are large, 3. tracking of targets that are 
medium sized, and 4. tracking of targets that are small. 
These four classes are described in more detail in [2]. 
Note that the size indicated in this list is in terms of 
the number of resolution elements or pixels. The 
algorithms used in the signal, image, and track 
processing for each of these problems differ. A major 
concern in tracking small targets is the data 
association function. 

Since each class of tracking problem poses different 
algorithm development issues, this paper will 
concentrate on only one class of tracking, namely, 
tracking of small targets using multiple target tracking 
methods. Multiple target tracking is a relatively new 
field. The first book dedicated exclusively to multiple 
target tracking was published in 1986 [3] and a 
number of recent books are available [4,5,6]. In 
addition to the numerous papers and reports in the 
open literature (too numerous to be listed here), there 
is an on-going series of annual SPIE conferences 
concerned exclusively with signal and data processing 

of small targets that started in 1989 [7]. This paper 
freely extracts and paraphrases material from some of 
the author's prior documents [1,8,9] 

For this paper, a small target is characterized as one 
that does not provide enough data for traditional 
automatic target recognition (ATR) using a single 
frame of data [8]. In contrast, a target large enough for 
ATR typically extends beyond a diameter of about 15 
resolution elements, for example, larger than 10 by 10 
pixels square. Note that it is not uncommon to refer to 
all objects as targets whether they are of interest or 
not. Small targets of concern in this paper include 
point source targets and small extended targets 
including unresolved closely spaced objects. 

A number of different theories could be used for 
developing algorithms for processing features and 
attributes. This paper uses Bayesian probability 
methods and addresses only track maintenance in 
order to limit the paper length. The primary tracking 
function of interest is data association and neither 
target typing or combat identification is addressed. 

2. Features and Attributes 
Although tracking small targets is a relatively new 
field, processing methods developed for tracking a 
target's trajectory, i.e., kinematic tracking, is fairly 
mature compared to the processing methods 
developed for using feature and attribute data in 
tracking. The term measurement (return, report, 
observation, or signal processing threshold 
exceedance) refers to all the data obtained by the 
signal processor or simply the measurement vector 
and its error covariance matrix, depending on the 
context. 

As used here the term feature refers to characteristics 
of a target that are from continuous sample space and 
are obtained from sensor data that are other than the 
simple variables of position and its derivatives that are 

* This work was supported in part by ONR Grant N00014-97-1-0570 
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used for kinematic tracking. Examples of features 
include estimated target dimensions, radar cross 
section, and other target signature data. Note that it 
may be that features are not measured directly but are 
computed based on a number of measured quantities. 
Whether the features are measured directly from the 
data of a signal-processing threshold exceedance or 
computed based on a number of measured quantities 
of a signal-processing threshold exceedance, in both 
cases the resulting feature vector and its error 
covariance matrix will be referred to as the measured 
feature. 

By comparison, the term attribute will be used here to 
refer to characteristics of a target based on sensor data 
that are from discrete sample space, for example, 
literal, categorical, or integer parameters. Examples of 
attributes include target type, type of radar systems 
used by a target, and number of engines on an 
airplane. These particular definitions were chosen 
because, as defined, feature data and attribute data are 
processed differently because their uncertainties are 
treated differently. Using Bayesian probability 
methods, features can be processed based on their 
probability density while attributes can be processed 
based on their discrete probabilities or point masses. 

There are a number of forms that attribute information 
can take and the form depends in part on how the 
attributes are to be processed. Due to space 
limitations, the approach taken for this paper is limited 
to using probabilistic attribute vectors of a specific 
type for both the processed attribute state and the 
measured attributes. In this form, a probabilistic 
attribute vector contains the probability or likelihood 
of each of the possible attributes. 

What corresponds to the estimated state vector for 
kinematic tracking is what will be referred to as the 
processed attribute state vector that contains the a 
posteriori probabilities of each possible attribute. 
What corresponds to the measurement vector in 
kinematic tracking is what will be referred to as the 
measured attribute vector and it contains the 
likelihood of each of the possible attributes based on 
measured attributes or on attributes computed from 
sensor measurements of an apparent target. The 
likelihood for an attribute in this form is the 
probability of obtaining the phenomena observed 
(measured) by the sensor given that the apparent target 
exhibits that specific attribute. Note the term apparent 
target is used because what appears to be a target may 
actually be due to false signals, persistent clutter, or 
sensor phenomena not directly and completely due to 
a single target. 

Note that some sensor processors make a hard 
decision for the measured attributes and that could be 
represented by the probability of one for the identified 
attribute. However, these sensor processor decisions 
will typically exhibit some decision errors. Assuming 
that an average value of probability of a decision error 
can be estimated empirically for a sensor, it can be 
used to convert a sensor processor's hard decision into 
a probabilistic attribute vector that contains the 
probability of each of the possible attributes. If the 
probability of a decision error is Pe then the 
probability of a correct decision is Pj = 1-Pe. 
Accordingly, the attribute vector would contain the 
value Pd for the attribute identified by the sensor 
processor based on measurements of an apparent 
target. The attribute vector would contain a value of 
Pe for all other possible attributes. 

In addition to features and attributes, there is another 
class of data that has some characteristics of both 
attributes and features. The term that will be used here 
for this type of data is categorical features. 
Categorical features are from continuous sample 
space (possibly bounded) but they are based on known 
characteristics of the targets and sensors that allow 
classified into a finite number of classes or categories. 
The continuous sample space is caused by either 
random measurement errors or by the distribution of 
the inherent parameters of each type of target that 
cause the features that are measured, or both. An 
example of a categorical feature is the estimated wing 
span of an aircraft given there are only a few types of 
aircraft in the field of regard, the wing span of each 
type of aircraft is known a priori, and the sensor 
obtains measurements with measurement errors from 
which the wing span of a tracked target can be 
estimated based on a single look by a sensor. 

Note that as with features, it could be that the 
categorical features are not measured directly but are 
computed based on a number of measured quantities. 
Whether the features are measured directly as some of 
the measured quantities of a signal-processing 
threshold exceedance or computed based on a number 
of measured quantities of a signal-processing 
threshold exceedance, in both cases the resulting 
feature vector and it covariance matrix will be referred 
to as a measured categorical feature. 

In a real tracking system application, the difference 
between features (as first defined) and categorical 
features may be muddied. For example, the 
characteristics of a feature for most targets might be 
known but not known for other targets. In fact, 
depending   on   why   features   are   processed,   the 
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distinction between features and categorical features 
may have little meaning. For this paper, the term 
categorical feature is defined for the purpose of 
facilitating the discussion of how features are 
processed. Using Bayesian probability methods, 
categorical features can be processed using composite 
estimation that uses multiple models based on a hybrid 
estimation method that combines probability densities 
and discrete probabilities [1,5,9,10,11] 

3. Preliminary Thresholding: "Gating" 

The data association function can be viewed as a two- 
step process, namely, the preliminary thresholding in 
tracking is frequently the first step in the data 
association function in a target tracker and is 
sometimes referred to as gating or gate processing. 
This first step is followed by the second step that is the 
process of selecting measurement-track pairs or 
assigning weights to measurement-track pairs so that 
the tracks can be updated by a filter. The filter might 
be a Kaiman filter or extended Kaiman filter (or an 
equivalent filter or maybe even an approximation 
thereto). Note in target tracking the filter update is 
typically also decomposed into two steps. The first 
step is the time update to predict the state and the 
measurement to the time that the next measurement 
(or set of measurements) was actually observed. After 
the two steps of the data association, the filter 
measurement update is performed and the track data is 
stored in the track files. 

3.1 Background: Gating in Kinematic Tracking 

In the discussion that follows, for emphasis and 
clarity, a measurement used for kinematic tracking is 
referred to as a kinematic measurement. The elements 
of a kinematic measurement typically consists of the 
measurements of one or more of the following: range, 
azimuth, elevation and range rate plus their error 
covariance matrix. 

In many tracking systems, the only purpose for the 
preliminary thresholding is to reduce the processing 
load. In kinematic tracking, a region in measurement 
space is identified that is centered at the predicted 
position of a target where the measurement is 
expected to be for that target. That region is the track 
gate and the size of the region can be established in a 
number of ways. The method used to size the gate 
depends on the type of information available. The size 
of the gate depends on the variance of both the vector 
of the measurement errors and the vector of the 
predicted target state, often just position components. 
For example, a 99.7 % gate would be sized so that the 
correct measurement for a track would be in its gate 

with a .997 probability. A more effective gate size 
could be computed using the formula of Eq. 4.7 of [3]. 
Only measurements that fall within the track's gate, 
i.e., within the identified region of measurement 
space, are used in the subsequent data processing for 
that track. 

As an aside, note that there can be important 
computational considerations in designing the gate 
processing for a tracker [1]. If there are more than a 
few targets in the field-of-view, then the process of 
determining which measurements are in each track's 
gate (the "gate search" process) can be 
computationally intensive if simple brute force 
methods are used. With more than a few targets, 
simplistic gate search methods should be avoided. In 
addition, elliptical (ellipsoidal or hyper-ellipsoidal, as 
appropriate) gates are usually more effective but are 
also more processor intensive than are rectangular (or 
hyper-rectangular, as appropriate) gates. 

A hyper-ellipsoidal gate process usually involves 
computing a chi-square statistic (or an approximation 
of it) of the innovations that is compared to a 
threshold value. Computing a chi-square statistic 
typically requires a matrix inversion, multiplies, and 
additions. In contrast, a hyper-rectangular gate process 
typically does not require a matrix inversion, and 
involves only adds, compares, and at most a few 
multiplies. Thus with more than a few targets, it is 
advisable to use two gates in series, the first is an 
oversized hyper-rectangular (or rectangular) gate. The 
measurements in that track gate, i.e., that pass this first 
threshold test, are then processed using a second track 
gate that is a hyper-ellipsoidal (or elliptical or 
ellipsoidal, as appropriate) gate [1]. 

3.2 Some Assumptions 

The discussion of the gate processing for kinematic 
processing provides background for the preliminary 
threshold processing of features, attributes, and 
categorical features. 

To facilitate the discussion, the set of attributes will be 
assumed to be mutually exclusive and exhaustive. The 
techniques that are described can be readily adapted to 
the more general case. The assumption for all random 
variable from continuous sample space is that any 
deviation of their probability density function from 
Gaussian can be neglected. Furthermore, the 
assumption initially is that either attributes, features or 
categorical features are obtained with or without 
kinematic measurements. If there is an attribute 
obtained with a kinematic measurement, the 
assumption is that they are statistically independent. 
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Also, the initial assumption is that features, attributes 
and categorical features are static, i.e., for a target they 
do not change over time except for changes due to the 
errors in measuring them and, if applicable, in 
estimating them from measurements. It is also 
assumed initially that the kinematic track filter does 
not employ multiple models. Many of these various 
assumptions can be relaxed and these methods adapted 
to handle the less restricted cases. 

Since the track stage of interest is track maintenance, 
unless indicated otherwise, the assumption is that the a 
priori information for both the target state and all 
discrete alternative or hypothesis has already been 
incorporated into each track, in applicable. 

3.3 Preliminary Thresholding of Features 

Since features are much like kinematic measurements, 
features can be processed in much the same way. If 
the errors of a feature vector are cross-correlated with 
the errors of an accompanying kinematic measurement 
vector, then they should be processed as a single 
vector, including the filtering process. This estimated 
state vector should be a concatenation of the kinematic 
states and feature states. If filtered this way, then a 
properly designed Kaiman (or similar) filter should 
provide consistent covariance matrix of the estimation 
errors of the estimated kinematic states and the feature 
parameters. 

Computing the vector consisting of the predicted 
kinematic measurements and predicted features and 
also computing the covariance matrix provides (along 
the kinematic measurements and features) the 
information needed to compute both a hyper- 
rectangular gate and a hyper-elliptical gate for a track. 
Thus this processing is identical to gating in 
measurement space except that it is a higher 
dimensional space and hence involves more 
computationally complex processing. The threshold 
value is computed as discussed in Section 3.1. 

If the kinematic measurements and the features are 
independent, then the processing can be simplified 
somewhat. The features can be filtered separately 
from the kinematic measurements. Then for the hyper- 
rectangular gate processing for a track and a 
measurement, the magnitude of each element of the 
kinematic-measurement's innovations vector can be 
tested in turn against its threshold followed by similar 
testing of each element of the feature innovations 
vector. Note that the order of the processing of these 
two vectors can be reversed or even interleaved, if that 
ordering is more effective for a tracking system 
application. If any element of these two vectors fails 

its test, then that measurement is considered not a 
potentially valid measurement for that track. The 
kinematic innovations vector is the difference between 
the kinematic measurement vector and its predicted 
vector. The feature innovations vector is the difference 
between the predicted feature and the measured 
feature vector. The threshold used for an element of an 
innovations vector is proportional to the standard 
deviation ofthat element based on the innovations 
covariance matrix. For the hyper-ellipsoidal gate 
processing for a track and a measurement, two chi- 
square statistics can be computed separately, one for 
the kinematic measurements and the other for the 
features. These two can then be added and compared 
to the appropriate threshold. 

Note that a chi-square statistic is used because in 
kinematic tracking it is assumed that any deviation 
of the innovations from exhibiting Gaussian 
characteristics can be neglected. Furthermore, even if 
the true probability density of the innovations were 
known and were not Gaussian, then in most cases it 
would be too processor intensive to use the proper 
statistic instead of chi-square. In processing features, 
however, it may be that the innovations for some 
features are clearly not Gaussian and the above 
assumption should be revisited. 

An elliptical (or hyper-ellipsoidal) gate is used in gate 
processing because it is obtained mathematically (in 
addition some constants) by computing minus the 
logarithm of the likelihood function that a specific 
measurement is due to the target of a specific track. 
Methods for computing an appropriate threshold for 
hyper-ellipsoidal gates have been studied extensively 
and are available, although there are some practical 
limitations [3,12]. The a posteriori probability that a 
measurement is due to the target of a specific track is 
not used in gating because it depends on complicated 
computations that involve all the measurements and 
tracks and so that would defeat the purpose of the 
gating process. 

3.4 Preliminary Thresholding of Attributes. 

The gate processing of attributes appears to be very 
different from for kinematic measurements or features. 
Consider a "minus log likelihood" approach to the 
gate processing of attributes that is analogous to the 
gate process used for kinematic measurements and 
features. Devising such an approach raises the issue of 
what to use for a threshold value. If the purpose of the 
gate process is to eliminate unlikely track- 
measurement pairs then if there is no rational method 
to compute a threshold for attributes, then there is no 
purpose to including attributes in the gate process. 
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This paper proposes approaches for computing this 
threshold value. First the minus log likelihood 
computation is described and then methods for 
computing the threshold are addressed. 

Given a vector of attribute probabilities (the measured 
attribute vector) based on a single current (or recent) 
measurement and a track including its processed 
attribute state vector obtained from prior 
measurements, a scalar can be computed for use in the 
attribute gate process. The scalar envisioned is the 
inner product of these two vectors, namely, the inner 
product of the processed attribute state vector of the 
track and the measured attribute vector. The resulting 
scalar, which is the attribute likelihood is in effect 

pta^OIAjOn-lXj-m] (1) 

where 

j = track index 

n = time index 

m = measurement index (for time ri) 

ajtn) = phenomena of measurement AM used to 
compute the measured attribute vector 

Aj(n-1) = phenomena of all measurements up to 
time n-1 used to compute the 
processed attribute state vector for 
track/ 

andy~7« means that measurement m is from the target 
of track /'. The final computation is to compute minus 
the logarithm of this scalar to obtain the minus-log 
likelihood for that measurement-track pair. 

An appropriate threshold is to compute a scalar that is 
computed in the same way as the attribute minus log 
likelihood except that the vector of attribute a priori 
probabilities of false signals is used instead of the 
processed-attribute state vector of the track. This 
requires that a reasonable value be obtained for the 
probability of each attribute for false signals on 
average. 

If it is not practical to obtain a realistic attribute a 
priori probabilities of false signals, then there are a 
number of alternatives that can be considered. One 
alternative is to use for the attribute a priori 
probabilities of false signals a vector with all the 
alternative attributes equally probable. That is, if there 
are k attributes then the a priori probability of each 
possible attribute for a false signal is assumed to be 
simply Ilk. 

Another more conservative alternative is to use what 
will be referred to as the complementary probability 

vector. The complementary-probability vector used 
for the attribute a priori probabilities of false signals is 
computed as follows. Form a vector of ones with the 
same number of elements as the processed attribute 
state vector and subtract the processed attribute state 
vector from it. Then normalize the resulting vector by 
computing the sum of its elements and dividing each 
element of that vector by that sum to obtain the 
complementary probability vector. This vector could 
then be used for the attribute a priori probabilities of 
false signals to compute the threshold. 

Yet another alternative is to just not include attributes 
in the gating process. However, there may be the need 
for a practical threshold value for attributes in the 
second step of the data association process after the 
gating process, so the above methods might be used 
for that purpose even if attributes are omitted from the 
gate processing. 

How the threshold processing that is used depends on 
the type of measurement that is obtained. In most 
cases the measurement that provides attribute data will 
also provide a kinematic measurement vector. For that 
case, the attribute minus log likelihood can be added 
to the kinematic minus log likelihood (the chi-square 
statistic) and compared to the appropriate threshold. 
The appropriate threshold would then be the sum of 
the attribute threshold (as discussed above) and the 
kinematic threshold. If the sum of the minus-log 
likelihood functions is larger than the sum of the 
thresholds, then that track-measurement pair is not 
included in the second step of the data association 
processing. The processing just described is analogous 
to hyper-ellipsoidal gate processing. 

The hyper-ellipsoidal gate can be preceded by a 
hyper-rectangular gate. For hyper-rectangular gate 
processing for a measurement-track pair, the order of 
the processing must first be established. The attributes 
could be processed before the kinematic 
measurements of visa versa. The most effective 
processing order to use and the most effective 
processing order of the individual measurements in the 
kinematic measurement vector depends on the specific 
characteristics of the sensors and targets. 

If the kinematic measurements are processed first, 
then the magnitude of innovation corresponding to 
each element of the kinematic measurement vector 
would be processed in turn and compared to its 
threshold. If the all these innovation magnitudes are 
less than their threshold, then the attribute minus-log 
likelihood function would be tested against its 
threshold. Any measurement-track pair that passes all 
these threshold tests would then be processed using 

1049 



the hyper-ellipsoidal gate. 

If there are features in addition to kinematic 
measurements, then they too can be processed along 
with the kinematic measurements as discussed in 
Section 3.3. Thus the gate processing to handle 
kinematic measurements, attributes, and also features 
would be much like the processing just described for 
kinematic measurements and attributes. If on the other 
hand, there are only attributes for a measurement and 
no features or kinematic measurements, then a single 
attribute threshold process would serve in place of 
both types of gates, hyper-ellipsoidal and hyper- 
rectangular. The extension of the preliminary 
threshold processing discussed in this section to 
handle multiple sets of attributes, i.e., multiple 
attribute vectors that are independent, is straight 
forward. 

3.5 Preliminary Thresholding of Categorical 
Features 

In their simplest form, there are two classes of 
categorical features. With the simpler of these two 
classes, call it Class 1, the value for the feature vector 
(or scalar) is know a priori for each alternative 
category or hypotheses, i.e., the inherent features for a 
category, are fixed and deterministic. With the other 
class, call it Class 2, the values of the feature mean 
vector (or scalar) and its covariance matrix are know a 
priori for each alternative category or hypotheses. 
This covariance matrix is the so called "within class" 
(in this case "within category") covariance matrix that 
reflects the variation about the mean of the true feature 
across targets for a category. 

More generally, for Class 3, the mathematical model 
for the measurement equation and possibly also the 
dynamic equation might be different for each 
alternative category or hypothesis. Also the 
categorical feature state vector need be the same 
length as the measured feature vector. All three of 
these classes of categorical feature problems can be 
processed using non-switching (static) multiple-model 
methods [1,5,9,10,11] if it is assumed that the feature 
characteristics do not change over time for a target. 

Yet another aspect of processing categorical features 
is the dependence of the kinematic measurements on 
the categorical features. There are two distinctly 
difference types of dependencies. First the 
characteristics of the kinematic measurements may or 
may not depend on the feature category for a target. 
Alternatively, the feature category for a target could 
depend on the kinematic measurements or the 
kinematic state, but that can be even more complex 

and will not be discussed here due to page limits. Note 
that an even more complex relationship is 
conceptually possible where the dependency of the 
kinematics and the feature category for a target is in 
both directions. 

The second type of dependency is between both the 
estimation errors of the kinematic state and kinematic 
measurement errors and the measurement errors of the 
measured categorical features for a target. Remember 
that it may be that the measured categorical features 
are not measured directly but rather might be 
computed from data obtained in conjunction with a 
measurement of an apparent target. 

For a particular system application there are four 
possible combinations of these two types of 
dependencies and the processing method for one type 
may not be the best for another. Considering these 
four possible combinations of dependencies along 
with the 3 classes of categorical features could lead to 
12 different processing methods to be explored. 

To simplify this discussion, only three of these 
combinations will be addressed. First the simpler case 
of the errors of the measured categorical features 
independent of both the kinematic measurements and 
kinematic estimated state for a target and also 
independence between feature category and both the 
kinematic measurements and kinematic estimated state 
for a target will be addressed. This case will be 
discussed for the two simpler categorical feature 
classes. 

For this simpler case and for all three classes of 
categorical features, the kinematic measurement is 
processed in a filter separately from the feature 
filtering, if applicable, for each category. Also a 
kinematic chi-squared statistic is computed from the 
kinematic innovations for a track-measurement pair 
independently of the categorical feature data. 

For the Class 1 categorical features, a filter in not 
needed because the values for the inherent categorical 
features for a track are known a priori for each feature 
category. The difference between the measured 
categorical feature vector for a measurement and the a 
priori value for the feature vector for a feature 
category serves as the innovations vector for a feature 
category for a track-measurement pair. For each track- 
measurement pair the chi-square statistic is computed 
for every feature category. Note that for this case the 
processing can be simplified because the categorical 
feature chi-square statistic does not depend on the 
tracks, only on the measurements and the feature 
categories. Accordingly, the categorical feature chi- 
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squares can be computed for each measurement and 
all feature categories without using any track data. 
These chi-square statistics are then used along with the 
additional constants needed to compute the likelihood 
function of the features for each feature category. 

These likelihood functions are used to compute the 
measured categorical feature vector. What 
corresponds to the measurement vector in kinematic 
tracking is the measured feature category vector that 
contains the likelihood of each of the possible feature 
categories based on measured features for a 
measurement and the feature a priori feature values 
for the feature categories. What corresponds to the 
estimated state vector for kinematic tracking is what 
will be referred to as the processed feature category 
state vector that contains the a posteriori probabilities 
of each possible feature category for a track based on 
processing all prior measurements. 

The process that follows is like the processing of 
attributes. The scalar is computed, the categorical 
feature likelihood, that is the inner product of these 
two vectors, namely, the inner product of the 
processed feature category state vector of the track 
and the measured feature category vector. The final 
computation is to compute minus the logarithm of this 
scalar to obtain the categorical feature minus-log 
likelihood for that measurement-track pair. 

The threshold used with the categorical feature minus- 
log likelihood is computed using a method that is 
similar to that used for attributes. An appropriate 
threshold value might be using a priori characteristics 
of false signals. 

The threshold is computed in the same way as for the 
attribute minus log likelihood except for how the 
vector of feature category a priori probabilities of 
false signals and the a priori value for the feature 
vector for false signals are computed. First the 
difference between the measured categorical feature 
vector for a measurement and the a priori value for 
the feature vector for false signals serve as the 
innovations vector for a false signal. For each 
measurement the chi-square statistic is computed for 
every feature category. This needs to be computed 
only once for each measurement. These chi-square 
statistics for the feature categories for a measurement 
are then used along with the additional needed 
constants to compute the likelihood function for each 
feature category for false signals. 

These likelihood functions are then used to compute 
the measured false signal categorical feature vector 
that contains the likelihood of each of the possible 

feature categories for a measurement-track pair. What 
corresponds to measured categorical feature vector is 
the measured false signal categorical feature vector 
that contains the likelihood of each of the possible 
feature categories based on the a priori false signal 
characteristics and a measurement. What corresponds 
to the processed feature category state vector is what 
will be referred to as the feature category a priori 
probabilities vector for false signals that contains the 
discrete a priori probabilities of each possible feature 
category for false signals. The threshold is computed 
by computing the inner product of the measured false 
signal categorical feature vector and the feature 
category a priori probabilities vector for false signals. 
Note that to use this method to compute the threshold 
requires that a reasonable value be obtained for the 
probability of each feature category for false signals 
on average and also the value of the category feature 
vectors for false signals for each category. 

If it is not practical to obtain realistic categorical 
feature a priori information for false signals, then 
there are a number of alternatives that can be 
considered. One alternative is to use for the feature 
category a priori probabilities of false signals a vector 
with all the alternative categories equally probable as 
discussed in Section 3.4. For the chi-square values 
needed to compute the measured false signal 
categorical feature vector, the value of chi-square 
corresponding to cumulative probability of say 0.997 
could be used, or what ever other value is appropriate 
for the track system at hand. Yet another alternative 
for the feature category a priori probabilities of false 
signals is to use the a complementary-probability 
vector for the feature category a priori probabilities of 
false signals. Thus there are a number of ways of 
computing the threshold value for the threshold for 
testing the categorical feature minus-log likelihood. 

The categorical feature minus-log likelihood is 
processed along with the kinematic chi-square statistic 
(if kinematic measurements are available) in the same 
way as for attributes as outlined in Section 3.4 to 
complete the hyper-ellipsoidal gate processing. This 
gate processing also can be preceded by hyper- 
rectangular gate processing as outlined for attributes. 
Thus the preliminary threshold processing step for 
Class 1 categorical features is the same as for the 
processing attributes except for the computation of the 
measured categorical feature vector and of the 
threshold which do differ from the computations used 
for attributes. 

The Class 2 category feature processing differs from 
the Class 1 processing because the values of inherent 
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features for a feature category are not deterministic. 
Rather, they are assumed to be characterized for each 
feature category by their mean and covariance matrix. 
There are a number of methods that can be used to 
process Class 2 categorical features and some are 
more efficient than others. The method described here 
is not necessarily the most efficient but is relative easy 
to describe so as to convey the concepts that apply. As 
mentioned previously, the method that follows is 
applicable to the case in which both the measurements 
and the measurement errors are independence of both 
the feature measurement errors and the feature 
category for a target. 

The primary difference between the processing of 
Class 1 and Class 2 categorical features is that in Class 
1 no processed categorical feature state vectors (one 
for each category) are maintained for each track but 
they are computed for each track for Class 2. In both 
classes, a processed feature category state vector is 
maintained for each track. 

The difference between the measured categorical 
feature vector for a measurement and the predicted 
value for the processed categorical feature state 
vectors for a feature category for a track serves as the 
innovations vector for a feature category for a track- 
measurement pair. For each track-measurement pair 
the chi-square statistic is computed for every feature 
category. These chi-square statistics are then used 
along with the additional constants needed to compute 
the likelihood function of the features for each feature 
category for a measurement-track pair. 

These likelihood functions are then used to compute 
the measured categorical feature vector that contains 
the likelihood of each of the possible feature 
categories for a measurement-track pair. The 
categorical feature likelihood is then computed as for 
Class 1 and the final computation is to compute minus 
the logarithm of this scalar to obtain the categorical 
feature minus-log likelihood for that measurement- 
track pair. The threshold value is computed and the 
hyper-ellipsoidal gate process is completed as with the 
Class 1 processing and can be proceeded by hyper- 
rectangular gate processing as for Class 1. 

Finally, consider processing Class 3 categorical 
features with both types of dependency. That is, 
characteristics of the kinematic measurements depend 
on the feature category for a target and also both the 
estimation errors of the kinematic state and kinematic 
measurement errors depend on the measurement errors 
of the measured categorical features for a target. For 
this class of categorical feature problem the gate 
processing is as just described for Class 2 except that 

there is a single filter for each feature category for a 
target for both the kinematic and the categorical 
feature data. The kinematic and categorical features 
are processed simultaneously as a single vector for 
both the hyper-rectangular and hyper-ellipsoidal gate 
processes. The processing described for Class 2 
applies by using the categorical feature processing that 
was described for both the kinematic and categorical 
feature measurements and similarly for the estimated 
states. Accordingly, this particular Class 3 problem 
could be processed as a non-switching multiple model 
problem in which the state is composed of both the 
kinematic state elements and the categorical feature 
state elements. 

For gate processing, a few of the many kinds of 
problems that can involve kinematic, features, 
attribute, and categorical feature have been discussed. 
Of course there are more combinations that deserve 
attention than those discussed. Also the probabilistic 
derivations that are the basis for the processing 
methods described have not been presented due to 
space limitations. Finally, some of the simplifications 
that could further reduce the processing have not been 
discussed nor have the adaptation of these methods to 
less restricted problems in which some of the 
assumptions are relaxed. 

4. Data Association, Step 2 

The second step of the data association function is to 
select measurement-track pairs or assign weights to 
measurement-track pairs so that the tracks can be 
updated by a filter. There are a variety of algorithms 
for this process [1,2,3,5,6,7], including both single 
frame and the more complex multiple frame 
processing, such as multiple hypothesis tracking. In 
addition, there are hard decision approaches, such as 
(independent) nearest neighbor and most probable 
hypothesis tracking and there are soft decision 
approaches that are also called probabilistic or 
Bayesian method. While these approaches are all 
different, they can be classified for the purpose of this 
discussion into two groups. In their data association 
decision or weighting process, one group uses the 
minus-log likelihood function for each track- 
measurement pair. For the other group, the likelihood 
functions are used. Many single frame methods, for 
example, that make hard decisions use the minus log 
likelihood function. By contrast, soft decision methods 
use the likelihood functions for each track- 
measurement pair that survives the gate processing. 

Given the minus-log likelihood for a measurement- 
track   pair   and   the    appropriate    accompanying 
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constants, then the likelihood for that measurement- 
track pair can be computed. Accordingly, all the 
information needed for the second step of the data 
association process has already been addressed in 
Section 3 for the specific types of problems that were 
discussed. In many cases the hyper-elliptical gate 
threshold values discussed in Section 3 are also 
needed in the second step of the data association 
processing. 

In addition to the data association function in track 
maintenance is the filtering function. If the processing 
included either attributes or categorical features, then 
an additional process function is needed to supplement 
the filter process. That additional function is to update 
the processed attribute state vector and the processed 
feature category state vector, if applicable. This 
processing can be accomplished using a straight 
forward application of Bayes rule. The other track 
maintenance functions are track promotion-demotion 
logic and track management which should not require 
any major modifications (at least conceptually) 
beyond those used for processing kinematic data to 
accommodate features, attributes, and/or categorical 
features. 

5. Conclusions 

In this paper, the types of measurement data used for 
multiple target tracking with data from multiple 
sensors has been classified into four types, namely, 
kinematic, feature, attribute, and categorical features. 
The motivation for this classification scheme was to 
partition the types of data according to how it might 
be process in a tracker because different processing 
methods are required depending on the characteristics 
of the data. Processing approaches have been outlined 
that illustrate how the processing might differ if 
features, attributes or categorical data were available 
in addition to kinematic data. The fonn of the state 
that corresponds to each of these data types was also 
shown to depend on the data type. 

The paper introduces methods for computing the 
threshold for the gate processing for attributes and 
categorical features that are substantially different 
from methods used for kinematic and feature 
measurements. Material left for subsequent 
documentation include the derived equations for the 
processing methods presented, identified methods to 
further simplify the processing, describing the 
processing for other combinations of the types of data, 
and extension of the processing methods to 
accommodate relaxation of the assumptions used for 
the purpose of this paper. 
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Abstract—A general version of the best linear unbiased 
estimation (BLUE) fusion rule is developed. It has the 
least mean-square (LMS) error among all linear unbiased 
estimation fusion rules. It is very general — it relies 
only on two assumptions: (1) the local estimators are 
unbiased and (2) the error covariance matrix Ck of all 
local estimates at each time fc is known. Not only does 
it include existing fusion results as special cases, but it 
is also valid for many more general cases, including (1) 
coupled measurement noises across sensors; (2) sophisti- 
cated network structures or communication patterns; (3) 
different local dynamic models or estimator types; and (4) 
efficient fusion of asynchronized estimates. First, we for- 
mulate the problem of distributed estimation fusion in a 
general, i.e., BLUE, setting, which is the key to the other 
contributions of the paper. In this setting, the fused esti- 
mator is a weighted sum of local estimates with a matrix 
weight. We show that the set of weights is optimal if and 
only if it is a solution of a matrix quadratic optimization 
problem subject to a linear equality constraint. Secondly, 
we present a general solution to the above optimization 
problem, which depends only on the covariance matrix 
Cfc. We also give the unique solution of the optimization 
problem, along with a necessary and sufficient condition 
for it to hold. Thirdly, we present an explicit formula of 
the optimal weights for the case in which Ck is nonsin- 
gular. We also discuss the generality and usefulness of 
the BLUE fusion formulas developed. Finally, we pro- 
vide an off-line recursion of Ck for a class of multisensor 
linear systems with coupled measurement noises. 

Key Words: fusion, distributed estimation, best linear 
unbiased estimation 
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1   Introduction 

Modern estimation/tracking systems often involve multi- 
ple homogeneous or heterogeneous sensors that are spa- 
tially distributed to provide a large coverage, diverse 
viewing angles, or complementary information. If a cen- 
tral processor receives all measurement data from all sen- 
sors directly and processes them in real time, the corre- 
sponding processing of sensor data is known as central- 
ized estimation. This approach has several serious draw- 
backs, including poor survivability and reliability, and 
heavy communications and computational burdens. 

An alternative approach is the so-called distributed 
or decentralized approach. In this approach, also known 
as sensor level estimation, each sensor maintains its own 
estimation file based only on its own data and possibly 
messages received. These local estimates are transmit- 
ted to and fused in a central processor to form a fused 
estimate that is superior to the local estimates in some 
sense. In addition to better survivability and reliability 
and usually a lower communication load, this approach 
has the advantage of distributing the computational load. 

This distributed approach has two major components 
(or steps): sensor level estimation and estimation fusion. 
Like most other work on distributed estimation, this pa- 
per deals only with the second component: optimal dis- 
tributed estimation fusion. Specifically, a general version 
of optimal distributed estimation fusion in the best linear 
unbiased estimation (BLUE) sense is developed. 

Not only does this general version include existing 
results on distributed estimation fusion known to the au- 
thors as special cases (for example, the two-sensor track 
fusion of [2, 3] and the distributed tracking by Chong 
et al. [8, 10, 11]), but it is also perfectly valid for many 
more general and realistic cases, such as those with 

• coupled measurement errors across sensors; 
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• sophisticated network structures or communication 
patterns, including feedback; 

• distinct local dynamic models; 
• heterogeneous local estimators; and 
• efficient fusion of asynchronized local estimates. 

Applications of this BLUE fusion to the optimization of 
distributed networks in terms of reliability and surviv- 
ability are also discussed. 

First, we formulate the problem of distributed esti- 
mation fusion in a general setting of best linear unbiased 
estimation (BLUE), also known as linear unbiased least 
mean-square (LMS) estimation. For unbiased local esti- 
mators, the linear, unbiased fused estimator of the small- 
est mean-square error is their weighted sum with a matrix 
weight. We show that for most practical problems, the 
set of weights is optimal if and only if it is a solution of 
a matrix quadratic optimization problem subject to a lin- 
ear equality constraint. This differs from the prevailing 
approach to estimation fusion based on the equivalence 
between distributed and central estimation under the lin- 
ear Gaussian assumption. In other words, we approach 
the estimation fusion problem from a point of view that 
is theoretically more fundamental and convenient. This 
enables us to employ more powerful mathematical tools 
to achieve more general and fundamental results. 

Then, we present a general solution of the above op- 
timization problem. It depends only on the covariance 
matrix Ck of the stacked vector of all unbiased local es- 
timates, which can be calculated off-line provided that 
it is known and the covariance matrix of each local es- 
timate can be calculated off-line. The unique solution 
of the above optimization problem is given, along with 
a necessary and sufficient condition for the uniqueness. 
As such, both general and unique optimal BLUE fusion 
rules are obtained, together with a necessary and suffi- 
cient condition. We also present an explicit formula of 
the optimal weights for the special case in which the co- 
variance matrix Ck is nonsingular. 

We also discuss the generality and usefulness of the 
results obtained. For example, some potential applica- 
tions are pointed out. The usefulness of the nonunique 
optimal fusion rules is also discussed in terms of surviv- 
ability, reliability, and communication requirements. 

Finally, an off-line recursion of Ck is given for a class 
of multisensor linear systems. 

The remaining of the paper is organized as follows. 
In Sec. 2, we formulate the BLUE fusion as a ma- 
trix quadratic optimization problem subject to a linear- 
equality constraint. In Sec. 3, we present both the general 
solution and the unique solution of the optimization prob- 
lem. Sec. 4 is dedicated to discussions of the generality 
and usefulness of the results obtained. An off-line recur- 
sive formula is presented in Sec. 5 for the computation of 
the covariance matrix of the stacked local estimators, a 

key quantity in BLUE fusion. Conclusions are provided 
in Sec. 6 and a proof that an existing fusion formula is a 
special case of the BLUE fusion is given in Appendix. 

2   Formulation of BLUE Fusion as an Op- 
timization Problem 

Consider a distributed estimation system. Denote by 
{xjt} an AT-dimensional state sequence of a dynamic sys- 
tem to be estimated, and by {xj. } the corresponding se- 
quence of local unbiased estimates of the state sequence 
based on all received data at the ith sensor. Assume that 
the following error covariance matrix is available 

Ck = 

.(ii) 

.(") 

C\ .(ii) 

a (u) 

where I is the number of local estimates to be fused and 

<ij) >(*) 0) 

(1) 

Note that C^     can be calculated recursively in many 
cases (see [2] and Sec. 5 below). 

Given a set of unbiased "local estimates" {xjj. , ..., 

Xfc }J, we want to find an optimal fused estimator in the 
BLUE sense: 

kk = Bk + W'kXk 

where Bk, Wk do not involve Xk and 

Xk = 

That is, Xfc has the minimum mean-square error among 
all choices of Bk and Wk that guarantee unbiasedness. 
Taking expectation of (1) yields, by the unbiasedness of 
the fused and local estimators, 

E[xfe] = Bk + W'kE(Xk) = Bk + Y, wP'Efa] 
i=l 

In order for this equation to hold for every possible E'fxfc], 
a necessary and sufficient condition is 

r x(i)/' xfc r wi* l 
: ,    Wk = : ,Wk€Rm*N 

. wf . 

**=o, Y,wk=I 

i=l 

or 
Bk = 0,    AWk = I,    with A = [/•••/] 

'Although the term "local estimates" is used, this set of estimates 
is not necessarily obtained based on all distinct sensor data. This will 
be clear later. 

1055 



Thus xjfe = W^Xk and the BLUE fusion problem be- 
comes one of a matrix quadratic optimization problem 
subject to a linear equality constraint: 

Wk = arg min E[(W'Xk - xfe) (W'Xk - xfc)']    (2) 

subject to 
AWk = I (3) 

for some Wk G RpN)*N'. Note that W£> is the matrix- 
valued weight for the estimate x^ and the above implies 
that the fusion weight satisfies the linear-equality con- 
straint AWk = I. 

The error covariance of the fused estimate associated 
with a weighting matrix Wk is 

Pk = E[(W,
kXk-xk)WXk-xk)'] 

= E{(WkXk - W'kÄxk){W'kXk - W'kA'xk)'} 

= w'kckwk 

Substituting this equation into (2) yields 

Wk = arg min W'CkW 
AW=I 

minPk =   min   W'kCkWk 
AWk=I 

(4) 

(5) 

In other words, a necessary and sufficient condition of 
BLUE fusion is that the optimal weight is a solution of 
the above quadratic optimization problem subject to a 
linear-equality constraint. 

It can be shown that previous results on distributed 
estimation fusion (see e.g., [4, 2, 3, 9, 10, 11]) satisfy 
the linear equality constraint AWk = I. For example, 
the fusion equations presented in [9] are given by, using 
their notations, 

M 

C p-Hm = p-^kik-v+EprHm-prHw-i)] 

and 

Note that the "local estimates" do not have to be ob- 
tained from different local filters or from entirely differ- 
ent set of data provided they are unbiased estimates of 
the same quantity, not to mention the data used for these 
estimates could be coupled. 

3   Optimal Fusion Weights 

It should be recognized that the optimization problem (2)- 
(3) is actually a matrix linear least-squares problem sub- 
ject to a linear equality constraint. A number of solution 
methods and algorithms are available for such problems 
(see e.g., [14, 6, 17, 12, 16] and the references therein). 
Some of them are precise and others are approximate. 
Some are numerically more efficient than others. 

We now derive the most general version of the opti- 
mal weights given by (4) without any assumption using 
a method we developed recently for the general linear 
least-squares problem with linear constraints, presented 
in [17]. This method is based on the pseudoinverse 
technique and the perfect square method. 

Theorem 1. The general solution of (4) is 

Wk = j(I+ (PCkP)+)A' + PZ (6) 

where P = I- \A'A and Z e R(lN)*N is an arbitrary 
i, 

matrix satisfying C% PZ = 0. 

Proof. It is well-known (see [5]) that 

W = A+ + P£,       V£ e R(m) x N (7) 

is the general solution of the following matrix equation 

AW = 1 

It is straightforward to show from the basic properties of 
the matrix pseudoinverse directly [5] that 

P-X{k\k)*.(k\k) = p-\k\k - l)x(k\k - 1) 

+ T,*L1[P^1(k\k)xi(k\k) - Pr\k\k - l)xi(k\k - 1)] 

That is, the weighting matrix is 

Wk = P(k\k) [P~\k\k - l),PrHk\k),..., PMl(k\k), 

-prHk\k-i),...,-p^(k\k-i) 

which clearly satisfies AWk = I if we let I — 2M + 1 
and define 

xk = [*«' >(')'!/ 

x(k\k-iy,-k1(k\ky,...,xM(k\k)', 

z1(k\k-iy,...,kM(k\k-iy 

cl'p{pcl c\ 'pypci c\ 'p 

= CI'P(CI'P)+(PCI)+PCICI'P = cl'p 
Substituting the last three equations above into the right 
side of (4), we have 

[(A+'+Z'P)cl][(A+'+Z'P)cl]' 

= K' - A+'CICI'P(PCICI'P)+}PCICI'P 

[S'-A+'clcl'p(Pclci'p)+]' 

+A+'CJCJ'A+ 

-A+'CICI'P(PCICI'P)+PCICI'A+ 
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Clearly,  minimizing the quadratic objective function 
amounts to making 

[£' - A+'clcl'P(Pclcl'P)+}Pclcl'P 

•[*' - A+'cici'P(Pclcl'P)+]' = 0. 
Using the pseudoinverse technique (see e.g., [17]), it can 
be shown that 

P(PCkP)+ = (PCkP)+P = (PCkP)+ 

Hence, we should take 

£ = (PCkP)+CkA
+ + Z,VZ: CJ'PZ = 0      (8) 

The theorem thus follows from (7), (8), and A+ = \A'. 
■ 

Now we present the unique optimal weight Wk, 
along with a necessary and sufficient condition for it to 
hold. 

Theorem 2. The optimal weight [i.e., the solution of (4)] 
is given uniquely by 

Wk = j(I + (PCkP)+Ck)A' 

= -[I + V(V'CkV)-1V'Ck]A' 
n 

(9) 

/ A \ if and only if (_£') has column full rank Nl, where V 

is a full-rank square-root matrix of P: VV = P. 

Proof. Note first that only Wk of (6) with PZ = 0 can 
be a unique solution, otherwise Wk of (6) with aPZ 
for any real number a ^ 0 would be a distinct solution 
since aCg'PZ = 0. When PZ = 0, (6) gives a unique 
solution due to the uniqueness of the M-P pseudoinverse. 
Thus the constrained optimization problem has a unique 
solution iff PZ = 0. A necessary and sufficient condition 
for PZ = 0 when c\'PZ = 0 is that the vector PZ is in 

the row space of C% . Since P = I- \A'A is a projector 
onto the orthogonal complement of the row space of A, 
the above necessary and sufficient condition holds iff the 
row space of C% is the orthogonal complement of the 
row space (i.e., subspace spanned by the row vectors) of 
A, which is equivalent to (n$i) having full column rank 

Nl. The second equation in (9) follows from the first 
one because it can be shown (see [17]) that 

(pckp)+ = v(y'ckv)-lv 

When Wit is unique, from the definition of A and 
Theorem 2, we have a clear expression for each of its 

elements W? immediately. Denote by M>? the (i, j)ih 
sub-block (JV x N) matrix of \{I + (PCkP)+Ck) = 
l[I + V{V'CkV)-lV'Ck).Th^ 

3=1 

(10) 

Moreover, if Ck has full rank, we have a more 
explicit expression of W^' that depends only on C^"1. 

Theorem 3. If Ck has full rank, we have the following 
explicit expression of each element Wj: (r). 

w, 

where c\j1' is the (i, j)th submatrix of C^1. 

Proof. First of all, we know AC^A' is nonsingular 
since A has full row rank. Then we can easily verify the 
following two identities 

arg min W'CkW ö AW=I 

^ arg min \{Wk - W)'Ck(Wk -W) + W'kCkWk] 
AW=I 

= arg min \(Wk - W)'Ck(Wk -W) + (AC?A')-1] 
AW=I 

where 

and 

-1 A'\-l Wk = C?A'(AC?A') (11) 

AWk = AC? A'{AC? A')-1 = I 
Finally, the theorem follows from the product of the two 
block matrices in (11). ■ 

When / = 2, using the well-known inverse of 
the (nonsingular) partitioned matrix, as shown in the 
Appendix, the two-sensor track fusion formula presented 
in [3] is a special case of Theorem 3. 

The above fused estimators is optimal only if E[xk] 
is not known. If it is known and 

Cx = E[(Xk - EXk)(Xk - EXk)'\ 

CXx = E[(Xk - EXk)(xk - Exk)'] 

are also known, using the well-known linear unbiased 
LMS estimation result (by treating Xk as the measure- 
ment in the standard formulation) (see, e.g., [7]), the 
BLUE fused estimator is given by 

itk = (I-W!tA')E[xk] + WltXk 

where the optimal weighting matrix is the unique solution 
of (2) without the linear equality constraint AWk = I, 
given by 

Wk = C+Cxx 
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The covariance associated with the fused estimator is 
given by 

Pk = cov(xfe) - W'kCxWk 

Note that in most practical situations, unfortunately, 
either E[xk], Cxx, or Cx is not known. 

4   Discussions 

In this section, we discuss mainly the generality and 
usefulness of the general BLUE fusion results obtained 
above. 

First, it should be emphasized that the above BLUE 
fusion results rely on two assumptions: (1) the local es- 
timators are unbiased and (2) the covariance matrix Ck 

is known. Both assumptions are fairly reasonable. The- 
orems 1 through 3 also assume that the unconditional 
expectation of the state is not known. 

It is hard to image how we can have an unbiased 
estimator by fusing biased local estimators unless the bi- 
ases are known perfectly. If, however, the biases are 
known, then we can obtain unbiased local estimators in 
the first place. Nevertheless, the above unbiasedness as- 
sumption can still be relaxed to some degree. For exam- 
ple, if E[xk] and £[i;jj/] are known, then the constraint 
AWk = I should be replaced by W'kE[Xk] = E[xk] 
(setting Bk = 0). Exactly the same approach can be 
followed to yield the BLUE fusion rule except that the 
final result is somewhat more complicated. This result 
could be theoretically superior to the one by debiasing 
each local estimator. 

If the measurement noises are independent across sen- 
sors, the covariance Ck is not (block) diagonal only be- 
cause the same random state is estimated by all local 
estimators, for example, because of the common process 
noise in the system dynamics on which each local esti- 
mator is based. Ck in this case and in some more general 
and coupled cases can be easily obtained (see Sec. 5 be- 
low). In general, Ck quantifies the coupling among local 
estimators. It, or its equivalent, is needed for optimal fu- 
sion. This availability assumption for Ck basically guar- 
antees that our BLUE fusion results are optimal given the 
coupling among local estimators. When this coupling is 
neither known nor obtainable, the above fusion results are 
not applicable directly but may facilitate the development 
of the corresponding optimal fusion. 

Note that in the above BLUE fusion, xk could be 
any unbiased estimate of xk. For example, one could 
have 

Xk [*(!)'      *U)' r(2)/      r(2)/ r(m)'  V 
lxk\k-V xk\k ' ^^-2' -^felfc ' • • •' Xk\k-V 

where the superscript j denotes the estimate by the jth 
"local" estimator. With this understanding, most advan- 

tages of the above BLUE fusion results presented below 
can be easily appreciated. 

Comparing with existing results on estimation fusion, 
the above BLUE fusion formulas have at least the fol- 
lowing advantages: 

• They are valid for cases with coupled observation 
noises across sensors. This is useful in practice 
when the dynamic process is observed in a common 
noisy environment, such as when a target is tak- 
ing an electronic countermeasure (ECM), e.g. noise 
jamming, or when the sensor noises are coupled be- 
cause of, say, their dependence on the target state. A 
class of systems that fall into this category is given 
in Sec. 5. Another important application area is the 
fusion of estimates based on observations obtained 
over different time periods. The fusion-based op- 
timal smoothing using measurements corrupted by 
autocorrelated noise is a good candidate for applica- 
tion of our new results. Almost all previous fusion 
results assume that the sensor observations are con- 
ditionally independent given the target state/signal 
to be estimated. A formula was mentioned in [15] 
that is valid for fusing local estimates based on not 
necessarily disjoint observation data, which is a lim- 
ited yet useful form of data dependence, still a spe- 
cial case. 

• The fused estimator depends on the network struc- 
tures or communication patterns only through Ck. 
Consequently, the fusion rule is invariant no matter 
if there is feedback or not, if the network has a par- 
allel, tandem, tree or general structure, or what the 
communication bandwidths are. This means that in 
practice all we need to obtain is the coupling be- 
tween every pair of local estimates. If there is no 
fusion center, such as for the network structure con- 
sidered in [13], each sensor can use our BLUE fu- 
sion formulas to obtain the best estimator based on 
its own observations and any information received 
from other sensors. 

• The local estimators does not have to use the same 
dynamic system model. The local estimates may 
be obtained based on different dynamic models and 
then be fused using our BLUE fusion formulas. The 
use of different dynamic models for the local esti- 
mators may be necessary or more effective. It is 
necessary, for example, when state augmentation is 
needed for some local estimators with autocorrelated 
sensor measurement noise. It may be more effective, 
for example, when multiple models are used for the 
process to be estimated. Of course the key to a suc- 
cessful application of our results in such cases lies 
in the determination of the covariance matrix Ck. 
In order to have the best fusion performance, the 
choice of the local models is of course not arbitrary 
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(see, e.g., [1]). 
• There is no requirement on synchronism of the lo- 

cal estimates provided they can be converted to the 
estimates of the state at the same time (based on 
observations up to different times). In reality, it 
is difficult to synchronize local estimates. How- 
ever, many well-known results are valid only for 
synchronized local estimates and thus require arti- 
ficial synchronization for the local estimates. This 
either increases the computational burden consider- 
ably or degrade the fusion performance. Our BLUE 
fusion formulas provide a more convenient and effi- 
cient framework for fusing asynchronized local esti- 
mates. For example, our BLUE fusion formulas are 
applicable (optimally) after we simply convert all 
local estimates xM(ij|tj) to xW(fc|£j), that is, the 
same point k in time at which the state is to be es- 
timated by the fusion center, where the conversion 
could either be prediction if k > ij or smoothing 
(retrodiction) if k < ti. 

• The local estimators need not be of the same type. 
For example, our results are valid if some local es- 
timators are MMSE (minimum mean-square error) 
estimators while others are MAP (maximum a pos- 
teriori) estimators, provided they are unbiased. This 
flexibility is useful for some applications. 

The authors are not aware of any existing fusion results 
that are valid for such cases. 

It is quite possible in practice for Ck to be singular 
(or more precisely, for (  A<) not to have full rank). In- 

tuitively, this may be the case if there is no independent 
parts between any two sensor observation noises (see the 
dynamic system with wk = 0 given in Sec. 5). The op- 
timal Wk is not unique in this case. The general solution 
(6) is particularly useful in this case. A special solu- 
tion (i.e., a special set of weights) in this case may be 
chosen based on some other considerations, such as sur- 
vivability, reliability, and communication requirements. 
For instance, we may choose the solution from the set of 
optimal solutions that is the best among all cases where 
a given number of sensors are lost. In some cases, we 
may be able to choose a solution in which some of the 
optimal weights vanish, which implies that the perfor- 
mance of the fused estimator will not deteriorate without 
the corresponding local estimates. In other cases, we may 
want to put these local sensors/estimators in a "stand-by" 
mode since their removal incurs no degradation of system 
performance. 

Theorem 2 is computationally more efficient than 
Theorem 3 mainly because the matrix V'CkV to be in- 
verted has a lower dimension than Ck- However, Theo- 
rem 3 is in a form that has a greater resemblance to the 
existing fusion results. 

5   Recursive Computation of Covariance Cfc 

It can be easily seen that the optimal weighting matrix 
Wk, given by Theorems 1, 2, and 3, depends only on 
the covariance matrix Ck and the computational burden 
of Wk relies mostly on the computation of Ck (and its 
inverse). In many practical situations, Ck may depend 
only on the system coefficient matrices and known noise 
covariances. Hence, Ck and thus Wk can be calculated 
off-line. An off-line recursion for Ck is presented in 
[2] assuming that the measurement noises are indepen- 
dent across sensors. In this section, we extend that result 
to a class of linear systems having dependent measure- 
ment noises with known correlations between any two 
sensors. 

Consider a linear dynamic process 

xfe+i = Ffcxfc + vk 

with additive zero-mean white noise 

E[vk]=Q,E{vkV,
j) = Qk8kj 

and noisy measurement 

yj^flfxfc + u^ + e«    Vi<Z 

where the measurement noise is the sum of two zero- 
mean white noises wk

1' and ejj. , uncorrelated with the 
process noise: 

2ärf] = 0,        E[wt 

.Wl -, E[e^]=0,        Eleley^^Okj 

W„,<0'i _ Ji). 
(«*)> 

"w. 
,««,«)'■ 

„(*)'■ 

"] ]kj 

E[vkw)l>1} = 0,        E[vkef] = 0 

However, while wk
l''s are independent across sensors, 

e^   s are coupled across sensors: 

„W,„0> j(ü) JäKVH = o.     m>ek»'} = s, 
Clearly, this system reduces to the one with independent 
measurement noise when ek = 0. As explained before, 
this model may be useful e.g., when a target is generating 
noise jamming or when the sensor noises are dependent 
on the target state. 

Similar to the derivation in [2], it can be shown using 
Kaiman filter formulas for the above system that we have 
the following recursive formulas, for k = 1 and assuming 
So = 0, 

C[ij) = (/ - K^H^)Q0(I - K^H^Y 
+KV)s(iJ)KU) 

+Ki%[%KJ>)' i,j = l,...,l       (12) 
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and for any k > 1, Appendix 

Ciij) = (I- KJpHPW^I - KJpHJpY 
+ (I- KPHP)Fk-1SJS}1Fh.v(I - KJpHJpY 

i,j = l,...,l (13) 

where K is the Kaiman filter gain. 
Let 

k«_ (*) u^h 

Afc = diag{A£1\;..>AJ!'
)} 

(i) '(Oi 
^(fc)-diag{^,...,^} 

Sfc = diag{«T, (i) 

Sk 

?(") 

j('i) 

<r(() 

j(H) 

} 

Mfc = [Ql1(I-K^H^)'...Ql1(I-K^H^yy. 

Then, an off-line recursion of Ck is obtained by rewriting 
(12)—(13) in the matrix form as 

Ck = AkCk^A'k + K(k)(Zk + Sk)K(k)' + MkM'k 

which can be initialized by 

Ci = MXM[ + Ä"(l)(Ei + Si)Ä"(l)' 

6   Conclusions 

A general version of best linear unbiased estimation 
(BLUE) fusion has been developed that has the least 
mean-square estimation error among all linear unbiased 
fusion rules. This BLUE fusion has been formulated as a 
matrix quadratic optimization problem subject to a linear 
equality constraint. Both the most general solution and 
the unique solution of this optimization problem, along 
with a necessary and sufficient condition for the unique- 
ness, have been presented. The fusion rule depends only 
on the grand covariance matrix of a stacked vector of 
all local estimators. The generality and usefulness of 
the fusion formulas developed have been discussed, with 
an emphasis on cases with coupled measurement noises 
among sensors, sophisticated network structures, different 
local dynamic models, and asynchronized local estimates. 
Examples have been given, which demonstrate that this 
BLUE fusion rule includes existing fusion results as spe- 
cial cases. An off-line recursion of the grand covariance 
matrix has been presented for a class of multisensor linear 
systems with coupled measurement noises. 

Corollary 1. For the two-sensor case, if Ck and C^ 

both have full rank, then W^   in Theorem 3 reduces to 
the same form as the one given in [3]. 

Proof. Using the assumption on Ck and Ck and the 
well-known inverse of the partitioned matrix, we have, 
denoting Cfc

_W) - (Cf'V1, 

C(_1) = (C(11) - c(12)(7-(22)C(21))-1 

r(-V -      rr(n)       r.(12)r-(22)r,(21)v_lr,(12)r-(22) 

'21       — 

7C-1) - , 

£,-(22)£,(21) ,£,(11) 
K AC V      K 

c{U)c-(22)c(21)s-l 

-(22) -(22)^(21) 
y22      —^k + Ck ^k 

.(C{11) - C'(12)C-(22)C(21)N-1C,(12)C,-(22) 

Therefore, 

= (C(11) - C(12)C"(22)C(21))-1(/ - C(12)C_(22)) 
(14) 

(-i) -(22) 

+ (y:1^(22)c(21)fc
)(c(ll) _ C(12)c-(22)c(21)rl 

.(/_c(12)c-(22)) 

(15) 
Using well-known identity of matrix inverse and the fol- 
lowing equation 

£,(11) + £,(22) _ £,(12) _ £,(21) 

=Vf2) - C112))C^22)(CJ?2) - C{21))        (16) 
+c(11) - c(12)c~{22]'c(21) 

we have 

(EU ^ V = cf > - (cf > - cf >) 
.«7('n) + C(22) - C(12) - c(21))-i(£(22) _ c(12)) 

Using Theorem 3, (14), and (16), 

/■(i) wr=EUcij}(n^ciir\ 
- tnl1» ■.(12), (22) ■v(12h = (C^1' - c(Ljl>,c~(-22'>c(21'))~1 (Cy£J,) - CKLZ)\ 
-(<7(11) - c{12)c~{22)c{21))-l(i - c(12)C_(22)) 
,£,(22) _ £,(21)w£,(ll) + £,(22) _ £,(12) _ £.(21)wl 

•(CJ 
(22) 
k 

I 12) 
) 

(17) 
The first term on the right side of the above equation can 
be rewritten as 

(C{1L> - c(12)(7-(22)(7(21))-i 

<cin) + £,(22)_£,(12)_£,(21)) 

/£?(!!) + £.(22) _ £,(12) _ £,(21)^_i(.£,(22) _ £,(12)x 

(18) 
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It follows from (16), (17), and (18) that 

w™ = {c^+cr'-c, -.(22) (12) 
fe      " 

7(21)x ■crrHdlr-cV2*) 
Noticing W^ ' + W^ ' = I or using the argument similar 
to the above, we have 

As a matter of fact, the fusion formula given in [3] 
must be a special case of the general BLUE fusion for- 
mulas of this paper, in particular Theorems 2 and 3. The 
reasons are that the fusion rules are unique in this case 
and that they rely on the same assumptions: (1) the lo- 
cal estimators are unbiased, (2) Ck is known, and (3) 
the mean of the state is unknown. The above proof just 
shows this explicitly. 
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Abstract 

A video-surveillance system for human activity 
monitoring based an a distributed architecture is 
presented. 
The first stage concerns the motion detection 
process. It can tolerate low change of illumination 
and can be tuned with respect to the application 
context. The second stage is the object tracking 
process containing a local and a distributed level. 
The local approach is the motion analysis in the 
field of each sensor improved with a belief revision 
approach. The distributed level of the tracking 
permits to operate over a wide area. 
The third stage is the global interpretation which 
for our application represents the recognition of 
specific activity. 

Keywords : Video-surveillance, Motion detection, 
tracking, Distributed sensor. 

I. Introduction 

An automatic Video surveillance generally 
contains three main hierarchic stages. The 
motion detection, the tracking unit and finally 
the high level motion interpretation. The main 
objective is to observe, recognize activity or 
detect incident. 
The video-surveillance is one of the tasks with 
a high degree of dependence to the context. In 
fact we must help the analysis by pointing out 
what is really important. In many applications 
a top-down approach has to be considered by 
modeling what we want to observe. 
In general, the contextual knowledge is 
naturally integrated into over computer vision 
application. Since a few years the notion of 
context is formalized over the High level 
computer vision community and AI related 
area. 

Our application field concerns human activity 
monitoring. It concerns the human detection and 
tracking in order to recognize specific behaviors 
[1][2][3]. 

A specificity of our system is that we are 
interested in the monitoring of wide areas. This 
constraint means that numerous sensors have to 
be distributed in space and have to cooperate in 
order to obtain a global interpretation (Fig.l) 
[4][5]. 

Figure 1: Distributed surveillance 

In such a system, the second stage, representing 
the object tracking process, contains a local and 
a multi-sensor level. At the first level Each 
sensor has to interpret its own field of view. At 
the multi-sensor level, sensors have to help each 
other to match their observations from a sensor 
to another. These two levels are called 
respectively the local and the distributed 
tracking. The last stage concerns the global 
interpretation of the scene using both the local 
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and distributed information. At this stage, 
numeric and symbolic information have to be 
manipulated. 

The paper from this point is divided into three 
parts : 
In the first part, we present the motion 
detection process. It is based on a difference 
between the current image and a reference 
image. This reference image represents the 
background of the scene without moving 
objects. 
In the second part we explain our approach 
concerning the tracking process at the local 
and distributed level. 
The third part is focused on the development 
of a global interpretation for a video- 
surveillance purpose. It concerns the real time 
surveillance of humans behavior by two 
cameras. 

II. Motion Detection Process 

Cameras are fixed to the infrastructure or set 
into a moving platform. For fixed cameras the 
common motion detection approach is to 
model stationary background. In this case the 
moving object representing the foreground can 
be easily extracted by a simple difference 
from the background. For a moving sensor the 
motion detection has to operate independently 
from the flow induced by it self. 
We have focused our work toward fixed 
camera. For our system each sensor control its 
own detection process. The motion detection 
as any low level processing stage, affects 
directly upper level of the interpretation. It 
forces us to take into account all external 
parameters hindering its functioning. Working 
outdoors or with ambient lightning, the motion 
detection becomes particularly sensitive. The 
principal difficulty is the variation of 
illumination inducing false detection. When 
these variations are slow with respect to object 
motion, a continuous updating of the 
background can solve most of ambiguities. 

Dk(p) = {^if\Rk(p)-Ik(P)\>Td 

0 <— else 
(1) 

current image at sequence k. Td is the detection 
threshold adjusted by an operator. 

Background updating 

The reference image R is constructed by 
updating a model at each new image acquisition 
I. We use an recursive filter which limits image 
storage. This updating is computed as : 

Rk+i(P) = a.Rk(P}±(\-a)Ik(P) (2) 

Classical updating consider that this task have 
to be uniform in the whole image and have to 
take into account illumination variability only. 

However there are also cases where objects 
come into the scene and remain. Initially objects 
belong to the foreground, but over time we 
might want to include them as part of the 
background. This operation is called 
background integration. The opposite procedure 
is also useful, a car leaving its park area for 
example. We consider that an important 
parameter of an integration process is time. This 
integration time depends on the context. In our 
application we want a specific and constant time 
value at different locations of the scene Ti(P) 
defined by an analyst. 

The integration procedure can be made either 
thanks to a high level interpretation or directly 
inserted into low level background updating. 
Our work focus on the second category. The 
dynamic adjustment of the constant 'a' 
(represented by ak(P)) permits to control 
efficiently objects integration, it takes the 
following form (for each pixel P) : 

D (P) is the detection image that highlight 
moving regions at instant k. Rk(P) and Ik(P) 
represent respectively the background and the 
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R k+\ ak.Rk+(l-ak).Ik (3) 
.*+! = ÖkVrak +(\-Sk).((\-V2) + V2.a

k) 

(4) 

a (P) is a coefficient that takes values for each 
pixel in the range [0.. 1]. It is directly linked to 
a measure of the temporal stability of the 
reference image at the location of pixel P. A 
high value of ak(P) indicates that the pixel P of 
the reference image is reliable and effectively 
present in the stationary background. The ak(P) 
coefficient that we also called background 
quality indicator, depends on the value 8k(P) 
which has been used to compute the 'minimal' 



motion detection image. It takes the following 
form: 

^(f)={i-</|«V)-/V)|>r(5) 
0 <— else 

This image represents the minimal change that 
can detect the system (T < Td). 

The values of Vj and V2 have to be tuned in 
order to control temporally the ak(P) 
coefficient. Vi depends on the integration time 
Ti. The V2 parameter operates at the the 
increasing stage of ak(P) when the object is 
considered to be integrated to the background 
with an £ relative error (V2«Vi). For details 
see [6]. 

2*ln(£) 

V=e _     T^Ti+l) 
(6) 

£ : % of relative error of the detector 

Finally a sequence of erosion , dilatation and 
erosion removes any fracture in foreground 
image. Figure 2 illustrates a motion detection 
result for a real sequence at 2 fps 
(Frame/second). 

U 

i» 

) 4 » 

fcj 

I t 

rigid object tracking, dynamic shape models of 
objects are used. Their use imply favorable 
conditions of acquisition i.e. high resolution and 
low temporal variability. The efficiency of the 
motion model permits to help the tracking 
process by improving the prediction. 
Human tracking in a large area induces several 
difficulties when: 
- objets are non rigid 
- no accurate motion model is available 
- for small sized objects no enough efficient 

visual information is available 
- the field of view is large and several 

distributed sensors have to be associated to 
obtained the global path. 

Our approach as for any visual surveillance 
devices, takes into account contextual 
information in order to help the tracking process 
[7] [8]. The contextual information concerns 
static and behavioral knowledge associated with 
the observed scene. 
Two main hypotheses are used, the first 
concerns the size conservation of each object, 
and the second assumes that objects have 
behavioral limitation (speed, acceleration, 
direction variability...). We consider that a 
human has a typical calibrated dimension 
(Size_min to Size_max). These measurements 
can be obtained by learning from the observed 
scene. An isolated detected region with this 
typical size is assumed to be a human being. 
Larger size can be interpreted as the fusion of 
several people. For illustration an histogram of 
region size during 10 minutes is presented (Fig 
3). 

Figure 2 : Detection process : I and D 

III. Tracking 

The object tracking can be achieved by a wide 
variety of techniques. Two principal categories 
of constraints are used. The first concerns the 
object rigidity and the second depends on how 
the object movement can be modeled. For non 
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Fig. 3. Detected surface histogram during a 
sequence of 6000 images by tracking of 95 

persons from 10 minutes at 10 fps. 



The aims of the local tracking process is to 
match a detected region from a temporal 
sequence to another and to take into account 
the splitting and merging phenomenon during 
objects motion; The distributed tracking 
process has to match a region from a sensor to 
another, using local tracking information. 

Local tracking algorithm 

The local tracking process is based on a first 
order prediction of region displacement and an 
overlapping degree Od between the prediction 
and a current region. 

Od (a,b,k) = —7-  
Area (Sa) 

(7) 
Ski represents region i at sequence k. Spki is the 
prediction of Skj. The 0_Area and Area 
functions represent respectively the common 
(overlapping) area and the area of regions in 
pixels, see illustration Fig 4. 

Predicted re^SfT% 
Sp\ 

Overlapping 
region 

Figure 4 Prediction and overlapping area. 

Another component of local tracking is the 
integration of a belief revision mechanism 
associated with each detected object, reflecting 
an instantaneous quality of its tracking. 

We consider that the belief can increase when 
The tracked object follows a continuous 
path 
the object size is stable 
no   ambiguity   appears   (   other   target 
meeting : target splitting, lost of target..) 

Otherwise the belief decreases. Two examples 
of belief revision is presented in Fig 5and 6. 

 > 

A 
Tracked region 

Time line of tracked object ■> 

t 

Figure 5. Belief revision in the presence of 
merging region 
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Fig 6. Belief revision while loss of region 
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The first case concerns the behavior of the 
belief in the presence of merging situation 
(Fig. 5). The second illustrates loss of target 
during 3 frames in Fig. 6. 

When working in real time ( near lOfps for 
example) Generally, intersection between two 
consecutive regions exists, and so Od is strictly 
positive. When a target is lost for any reason 
the best region verifying constraint (size and 
proximity) is chosen. It may occur in some 
situations (occlusion or no detection ..) that no 
candidate region can be found. In this case the 
prediction is followed while tracking belief is 
positive. A null value of belief induces 
termination of the track. 

Distributed tracking 

We are interested in the interpretation of wide 
areas, this constraint means that numerous 
sensors have to be distributed in space. With 
the aim of tracking objects over a wide scene, 
it is necessary to recognize each object when it 
appears in the field of each sensor. 

We have proposed a distributed approach 
based on the cooperation of sensors in order to 
interpret globally the scene [9]. Generally, it is 
not possible to cover the whole scene, so the 
sensors are separated into blind zones, for 
which we do not have any observation. One of 
the principal difficulties is to ensure a robust 
recognition of the mobile objects perceived by 
the different sensors from different points of 
view at different moments. 

We pointed out in [9] that temporal 
information modeled by a fuzzy curve allows 
to roughly predict the possible arrivals of an 
object in front of the closest sensors likely to 
perceive it. Then, thanks to this information, 
each sensor is able to match the perceived 
objects with the expected ones. This approach 
has been tested in a highway environment in 
order to obtain a global interpretation of traffic 
flow. Meanwhile, with large blind area, this 
approach can be used efficiently provided we 
have enough additional visual information 
permitting objects discrimination. 

Above, we have mentioned that for our human 
activity monitoring, objects are small in size 
and lack visual characteristics that can be 
extracted. So we imposed that sensors fields of 

view of be closed to each other in order to 
reduce uncertainties induced from the prediction 
over large blind areas. In this situation we can 
secure a reliable matching from a sensor to 
another. 
This distributed tracking level is implemented 
in a decentralized architecture where each 
sensor is autonomous and the cooperation is 
based on a message passing procedure. 
Messages contain information concerning 
object (region + belief) crossing from a field of 
a sensor to another. The sensor that has tracked 
an object indicates to its neighbor the possibility 
of its appearance, see fig. 7. Our leading 
argument favoring a decentralized approach is 
the distribution low level image processing and 
to avoid image transmission to a central node. 
The other argument as modularity and 
survivability [4] of the system can also be taken 
into account. 

Fig 7 cooperative tracking by distributed 
sensors 

IV application : human activity 
monitoring 

We have tested these different components in real 
scene. Two vision systems were geographically 
distributed in order to cover the whole interested 
scene. 
For each local vision system, we have implemented 
the motion segmentation and tracking on a Pentium 
II (350 Mhz). The algorithms run at 10 frames rate 
on 240x180 images, with 5 maximum simultaneous 
tracked objects. 
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Currently, the activity recognition only uses off-line 
data (temporally indexed trajectories) obtained by 
the two local vision systems. It permits to detect 
some specific activities. The model of activity that 
we use are based on fuzzy temporal graphs [10]. 

V Conclusion 

A distributed approach of human activity, 
tracking and recognition has been presented, 
The originality of our approach is the control 
of the low and mid level of interpretation with 
respect to their instantaneous decisions. At the 
low level, it represents the adaptation of the 
background in order to tolerate illumination 
variation and new background object 
integration. At the tracking level the algorithm 
take into account several difficulties : objects 
splitting, merging and loss of target. The use of 
an instantaneous belief permits to reduce part 
of the ambiguities by taking into account past 
behaviors. These improvements will naturally 
help the quality of the final interpretation. 
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Abstract - Many operating agencies are currently 
developing computerized freeway traffic management 
systems to support traffic operations as part of the 
Intelligent Transportation System (ITS) user service 
improvements. This study illustrates the importance 
of using simplified data analysis and presents a 
promising approach for improving demand prediction 
and traffic data modeling to support pro-active traffic 
control. This study found that the proposed approach 
of combining advanced neural networks and 
conventional error correction is promising for 
improved ITS applications. 

Keywords: Intelligent Transportation Systems, 
Numerical Data Analysis, Traffic Prediction, Neural 
Networks. 

1.  Introduction 

Many operating agencies are currently 
developing Freeway Traffic Management Systems 
(FTMSs) and the Intelligent Transportation System 
(ITS) to improve traffic control and operations along 
major urban freeway corridors. Often, operating 
agencies must design and implement various traffic 
response plans to provide needed system control 
strategies during normal, congested, incident, 
dangerous conditions, and pre-scheduled special 
events. To improve the implementation of real-time 
control strategies, control centers must be able to 
identify traffic demand pattern changes quickly based 
on massive amount of real-time, up-to-date traffic 
measures [1][2][3]. Therefore, effective 
decision-making supports are essential to these Traffic 
Management Centers (TMC) in order to integrate 
traffic operations, environmental measures, roadway 
control, and motorist information in the shortest time 
possible. It is especially important since many traffic 
management centers have been significantly expanded 
operations as part of the Intelligent Transportation 
System (ITS) user service improvements. 

Significant developments have been made in 

applying computer models and numerical analysis 
techniques for evaluating traffic control alternatives 
and assisting the traffic system improvement analyses. 
With proper data calibration, either macroscopic or 

microscopic traffic models can be used to assist traffic 
operational analysis of traffic control strategies. 
However, the macroscopic models cannot accurately 
represent system behavior, while microscopic models 
are often too computationally intensive and unsuitable 
for real-time applications due to the design 
complexity. With the increasing applications of ITS 
systems, developing pro-active control strategies, and 
designing accurate demand prediction capabilities 
quickly using real-time traffic data available are 
essential [3][4]. 

Simplified traffic prediction analyses not only 
are essential for detecting non-recurring incidents, but 
are also important for identifying daily traffic patterns 
for practical, day-to-day operations. New traffic 
control system software designs can take advantage of 
the increasing real-time surveillance capabilities 
currently being installed in most freeway traffic 
management systems. This paper examines a 
practical study approach of combining both advanced 
neural networks and conventional error correction 
techniques to improve freeway traffic operational 
behavior analysis based directly on real-world traffic 
measures. In this way, this system can minimize 
traffic demand calibration for improved system 
operations. 

2. STUDY BACKGROUND 

The traffic control industry is moving rapidly 
toward real-time, proactive traffic control. It is 
essential to develop a practical system software design 
that allows efficient traffic demand prediction 
algorithms that can be performed automatically in 
real-time. This section summarizes the theoretical 
background, the neural network formulation, and the 
general neural network training procedure being used. 
Several numerical analysis methods, often used for 
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the time-series data prediction, are compared. 

The automatic data reduction and analysis 
process should allow the user to identify traffic 
demand and flow pattern changes more accurately. 
This study will enhance traffic demand prediction 
functions, and examine the effectiveness of its usage in 
conjunction with an on-line error correction algorithm 
to provide improved adaptability for traffic demand 
prediction. Neural networks have become an emerging 
research area in engineering field. A neural network 
basically emulates the biological reasoning functions 
of a human brain in order to interpret and solve 
complicated, numerical, and pattern recognition 
problems. Neural network approach can especially 
organize massive information for improved pattern 
recognition. A neural network consists of three layers; 
each layer may contain several neurons with each 
neuron acts as function, such as using a sigmoid 
function [5]. 

2.1 Neural Network 

A neural network training procedure includes 
data collection, paradigm selection, structure selection, 
parameter setup, and result testing. However, a large 
amount of relevant data should be collected in order to 
provide successful results. Most data are used in 
training, while reserving other data for later testing. 
Several paradigms are currently available, such as 
self-organizing map, backpropagation, adaptive 
resonance theory, and recurrent backpropagation [5]. 
Different paradigms have characteristics and strengths 
to represent specific numerical functions. For 
instance, self-organizing map is unsupervised and 
feedforward; backpropagation is supervised and 
feedforward; adaptive resonance theory is 
unsupervised and feedback; recurrent backpropagation 
is supervised and feedback. After training, the 
performance (prediction) of neural nets must be tested. 

Once the prediction results are satisfactory, the 
neural nets can then be used. 

2.2        Numerical Analysis 

Various numerical analysis methods have 
been used to  analyze  time  series behaviors  and 
perform prediction, including Exponential smoothing 
techniques, Kaiman Filter, Box-Jenkins technique. 
These methods are limited to specific problems. 

3.   System Design 

This study is to examine the effectiveness of 
the proposed neural network approach and the 
enhancements for the potential use of real-time traffic 
observations to improve traffic modeling based on 
real-world traffic observations. Several subtasks are 
designed to evaluate the promising approach as 
illustrated in Figure 1 "Overall Design Approach." 

The system development process includes the 
problem analysis, neural network training, error 
correction, system evaluation, and application 
subtasks. 

To assist the real-time traffic demand 
prediction, a neural network and an error correction 
algorithm were devised to provide a needed heuristic 
adjustments to the neural network model. The design 
considerations for an accurate pattern identification 
and allows enhancements for future automatic 
heuristic adjustments after the neural network have 
been developed, that can take advantages of numerical 
analysis techniques, are very important. To support 
this system design, this study uses the neural network 
training, error correction, and practical system 
application. 

3.1 Neural Network Training 

After the freeway traffic volume model is 
established, the pre-processed real-world freeway data 
are used to train neural nets. After proper network 
training, different neural net configurations are tested 
against the traffic data for appropriateness. Only 
successfully trained neural nets can be accepted. 

3.2 Error Correction Technique 

Rl, a heuristic, historical, numerical based 
error correction algorithm, developed at Texas 
Transportation Institute (TTI) in 1960s, can be used to 
improve the on-line data prediction results by 
smoothing the results obtained from the neural nets as 
developed from the historical data records collected 
previously. 

As illustrated in Figure 2 "Error Correction 
Algorithm," Rl algorithm is a heuristic-based error 
correction algorithm, based on the exponential 
smoothing concept, to improve the effectiveness of 
neural network traffic prediction and thereby increase 
its effectiveness of the proactive traffic control. 
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The Rl algorithm then adjusts the next 
prediction depending on the direction of error 
measured at the current observation. If the error is 
greater than 0, which represents an insufficient 
correction, the next prediction should be decreased by 
a certain amount. If the error is less than 0, which 
represents an over-correction from the prediction, the 
next prediction correction amount should be increased. 
The amount of error correction, as developed, allows 

the users to adjust the sensitivity of the neural network 
as developed through the heuristic observation, 
according to the subjective measures, such as the 
quality of the detector data. Therefore, proper 
correction amount can be obtained to smooth sharp 
prediction. In this way, errors can be minimized to 
predict closer to real-world traffic observations. 

3.3        Practical System Application 

After satisfactory performance evaluation, the 
neural nets and error correction algorithms are used 
for prediction. Since most freeway traffic control 
software is implemented in conventional environment, 
the data interfaces between the neural nets and error 
correction algorithms are further designed and the 
program was implemented the conventional C 
program languages. 

After training, the trained neural nets can be 
embedded into or integrated with these traffic control 
applications. In this way, the user can better interact 
with freeway systems and monitor system traffic 
responses for an entire freeway. Appropriate 
pro-active traffic control strategies, according to the 
users' confidence on the quality of the detector data 
and the level of control strategies, can then be applied 
to improve freeway traffic control prediction 
capabilities based on real-time traffic measures. 

4. Study Results 

Several numerical analyses and neural net 
modeling experiments were performed at TTI, using 
1-3 5 W freeway traffic data collected from the Fort 
Worth District of the Texas Department of 
Transportation (TxDOT). 

Based on the real-time traffic volume data 
were obtained in the 5-minute intervals from each 
freeway lane and ramp, different types of data analyses 
were performed to examine the operational sensitivity 
of various data smoothing techniques, characteristics 

of different traffic lanes, weekday/weekend variations, 
and effects of seasonal variations. 

As shown in Figure 3 "Traffic Flow, I-35W 
Study Site," a section of the interstate freeway 1-35W 
passes through Hattie, Rosedale, Allen, Morningside, 
Barry, Ripy, and Seminary streets in Fort Worth, 
Texas. In all cases, the system was able to predict 
reasonably well at these locations during April 27 and 
28, 1993. 

5.  Conclusions and Recommendations 

Many operating agencies are currently 
developing computerized systems to improve 
computerized traffic management as part of the 
Intelligent Transportation System (ITS) user service 
improvements. To facilitate the prediction, diagnosis, 
and control decisions from the uncertain information 
available in most ITS systems, it is important to 
develop automated decision-making support 
techniques that can provide improved automatic traffic 
prediction and support proactive traffic control 
through simplified but practical data analysis 
techniques. In addition, self-learning, automatic 
adjustment, and human interface functions, being 
designed, can later be integrated into the ITS system 
data warehouse to provide automatic system tuning 
and calibration based on the real-time traffic measures 
as these systems expand in the future. 

This study found that the proposed combined 
approach of neural networks and error correction 
algorithm is promising for traffic prediction and 
proactive control. Once the neural net models are 
successfully trained, the system can quickly pick up 
demand trends for pro-active traffic demand 
management. The error correction algorithm can 
further smooth out errors that may be caused by sharp 
neural net prediction. The error correction algorithm 
can also provide human interactions after the neural 
network has been developed; therefore, can improve 
traffic system prediction. 

Further study is also recommended to use 
traffic data from other more heavily loaded freeways 
for additional analysis using this technique. In 
addition, further traffic estimation algorithm 
evaluation is recommended to examine the prediction 
capability using traffic observations from freeways 
located at different areas. 
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Abstract In recent years, varieties of person 
recognition systems based on biometric character- 
istics, such as fingerprint and signature, have been 
developed. These systems can be divided into iden- 
tification systems (classifiers) and authentication 
systems (verifiers). In the paper the latter is dis- 
cussed. Since a verifier is evaluated with perfor- 
mance indexes different from that of a classifier, 
existing methods of combining multiple classifiers 
should be adapted for combining multiple verifiers. 
A method is proposed to estimate the performance 
for the combined system, and it is suggested that 
the combination is implemented through choosing 
the combination rule and adjusting the thresholds of 
all individual verifiers based on the estimated per- 
formance. The method is compared with methods 
based on logical formalism and Bayesian formal- 
ism. In an experiment to combine three biometric 
authentication systems, it shows improved results. 
Keywords: Biometric person authentication, Ver- 
ification, Combination 

1    Introduction 

Biometrie person authentication refers to 
recognition of an individual based on his/her 
physiological or behavioral characteristics, 
such as face, voice, fingerprint and signature. 
Though face and voice seem to have been used 
naturally for person authentication from an- 
cient times, and fingerprint and signature have 
also been researched for more than dozens of 
years, implementation of an automatic biomet- 
ric person authentication system on a machine 

was proved a difficult task[9]. But in recent 
years, according to the development of sensor 
devices and recognition algorithms, a variety 
of commercial products for automatic biomet- 
ric person authentication have been released. 
These products have been based on face, facial 
thermogram, fingerprint, hand geometry, hand 
vein, iris, keystroke, retinal pattern, signature, 
voice and so on, and have been applied to se- 
cure physical access control, computer logon, 
voting, and other fields[7]. 

In the paper, we discuss how to combine two 
or more such biometric person authentication 
systems. It is thought there are at least two 
advantages with a combination: 1. Every bio- 
metric characteristic has its limitation in ap- 
plications, for example, fingerprint is hardly 
recognized for dry or oil skins, and face works 
only under suitable illumination conditions. So 
multiple characteristics may be necessary in 
practice to ensure all users can be accepted. 2. 
To decrease recognition errors, improving the 
performance of a system based on one charac- 
teristic may be costlier at present than combin- 
ing multiple existing systems based on different 
characteristics. 

It is noticed that methods of combining mul- 
tiple classifiers have been proposed in recent 
years as a new direction for the development of 
highly reliable character recognition [3, 5, 8, 10] 
and biometric person identification[l, 4, 8] sys- 
tems. But the concept of combining multiple 
verifiers, to which the biometric person au- 
thentication systems belong, has not yet been 
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well studied. In fact we can divide biomet- 
ric person recognition systems into two alter- 
native categories according to their configura- 
tions, which we denote classifiers and verifiers 
in the paper. They are described as follows: 

• A classifier identifies one person by com- 
paring a biometric trait against a database 
of previously stored biometric traits of 
many people. Since its matching pro- 
cess between trait measurements and their 
templates is one-to-many, it is often de- 
noted as person certification or person 
identification. 

• A verifier validates a person's identity 
by comparing a biometric trait against 
his own previously stored biometric trait. 
Since its matching process between trait 
measurements and their templates is one- 
to-one, it is often denoted as person veri- 
fication or person authentication. 

Unlike a classifier, a verifier requires inputs 
of not only the feature measurements but also 
the label (an entry number or identity number, 
etc.) of an individual to be recognized, while 
its output is about if the individual should be 
accepted or rejected. The indexes to evaluate 
the performance of a verifier include the error 
rates with respect to the Acceptance and the 
Rejection. Because after combining multiple 
verifiers the whole system performs still as a 
verifier, it is reasonable to evaluate a combi- 
nation method through estimating the perfor- 
mance indexes for the combined verifier. 

In the paper, we consider multiple verifier 
combination at decision level, where each in- 
dividual verifier to be combined is required 
to output a dicision of either Acceptance or 
Rejection according to its own information. 
Another kind of combination is at score level 
where each individual verifier outputs a real 
value to indicate a degree to Acceptance or 
Rejection. Obviously the score level combina- 
tion can be converted to the decision level com- 
bination because each individual verifier can be 
forced to make a decision based on its score. 

It is intended to build a framework of com- 
bination for verifiers. A method, which is de- 
noted as combination based on optimum for- 
malism, is proposed to estimate the perfor- 
mance for the combined system, and it is sug- 
gested that the combination is implemented 
through choosing the combination rule and ad- 
justing the thresholds of all individual verifiers 
based on the estimated performance. 

The paper is organized as follows. In Sec- 
tion 2 the performance indexes used to evalu- 
ate a verifier are introduced. In Section 3, three 
combination methods based on logical formal- 
ism, Bayesian formalism and optimum formal- 
ism are described respectively. The third one 
represents our proposal. The three methods 
are investigated with an experiment to com- 
bine three biometric authentication systems in 
Section 4. Finally Section 5 shows short con- 
clusions. 

2    Performance     Indexes     of 
Verifiers 

In research and practice, a verifier is usually 
evaluated by two indexes, namely FAR(False 
Acceptance Rate) and FRR(False Rejection 
Rate). As indicated in Figure 1, FAR and 
FRR are both functions of a threshold t, which 
is compared to a similarity (or a distance) mea- 
sure between a feature measurement and its 
template. 

OB 
/ 

o.e 

o 

2 
/    FAR — 

0.4 .iZ 
FRR — 

1 
i 

0.2 

t 

Figure 1: FAR and FRR of a verifier 

Without losing generality, a person to be 
verified is represented by a d dimensional fea- 
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ture vector X, which represents a point of the 
feature vector space V. Any decision rule with 
a threshold t divides V into two exclusive parts 
of VA{t) and VR(t): VA(t) + VR(t) = V. If 
X £ VA(t), 

tne decision is Acceptance, oth- 
erwise Rejection. At the case, FAR(t) and 
FRR(t) are defined in theory as follows: 

FAR{t) = P(R) I      p(X\R)dX, 
JVAH) 

FRR(t) = P(A) f      p{X\A)dX, 
JVn(t) 

(1) 

(2) 

where, P(A) and P(R) represent the a pri- 
ori probabilities for Acceptance and Rejection, 
respectively, and satisfy P(A) + P(R) = 1. 
p(X\A) and p(X\R) represent the conditional 
probability density functions(pd/) of X under 
conditions of Acceptance and Rejection, re- 
spectively. 

But in practice, the FAR(t) and FRR(t) 
curves are seldom calculated using the equa- 
tions (1) and (2) because the calculation of the 
multiple dimensional pdfs and the integration 
are very difficult. Instead the curves are usu- 
ally obtained based on counting error rates of 
a number of testing samples. 

If t corresponds to a similarity measure, 
FAR(t) is a monotonic decreasing function 
while FRR(t) a monotonic increasing func- 
tion of t. When t varies, it is certain that 
one of the two indexes becomes better while 
the other becomes worse than before. So a 
trade-off between FAR(t) and FRR(t) must 
be taken to evaluate a verifier. One usual 
choice is to minimize the so-called EER (Equal 
Error Rate)(or called cross-over error rate), 
which means the value of FAR(t) at the t 
where FAR(t) = FRR(t). It is noticed that 
minimizing EER is equivallent to minimiz- 
ing max{FAR(t),FRR{t)},\/t. Another of- 
ten used trade-off is to minimize FRR(t) (or 
FAR(t)) when FAR(t) (or FRR(t)) is not 
greater than a specified value, which is equiv- 
allent to the Neyman — Pearson test[2] if the 
Acceptance and the Rejection are considered 
to be two usual classes. 

3    Combination Methods 

Assume there are k verifiers to be combined. 
The ith(i = 1,~,&) verifier is with the output 
e,-, e,- = A or e,- = R (from now on, Acceptance 
and Rejection are simplified to A and R re- 
spectively in mathematical expressions). All 
the e,'s are inputs to a combination rule and 
generate a combined output e, e = A or e = R. 

3.1    Combination  Based  on  Logical 
Formalism 

Because the outputs of a verifier have binary- 
state values, the simplest combination rules are 
implemented according to some logical opera- 
tors, such as AND and OR operators. With 
respect to AND, the combined system outputs 
Acceptance if and only if all individual verifiers 
output Acceptance, so it is strict to get a com- 
bined output of Acceptance. In othor words, 
the AND rule ensures FAR of the combined 
system less than any of the individual verifiers, 
but makes FRR even worse than the worst of 
the individual ones. On the other hand, with 
the OR rule, the combined Acceptance is ob- 
tained if there is at least one individual verifier 
to output Acceptance. As the OR rule out- 
puts Rejection only when all individual veri- 
fiers output Rejection, it makes FRR better 
but FAR worse than any individual verifiers. 

Otherwise the Majority rule is also widely 
used. At the case, the combined system out- 
puts Acceptance when majority of the in- 
dividual verifiers output Acceptance. The 
Majority rule is in a sense between the AND 
rule and the OR rule, which gives less improve- 
ment to one of FAR and FRR meanwhile less 
deterioration to the other. 

3.2    Combination Based on Bayesian 
Formalism 

The combination method based on Bayesian 
formalism is proved effective to combining mul- 
tiple classifiers[10]. We show below how to 
adapt it to verifiers. 
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When the output e,- of the ith verifier is ob- 
tained, its decision error can be described by 
its confusion matrix 

Q = 
(0 naa 

(0 
Tlra 

(0 
(3) 

where the two rows correspond to the 
Acceptance and the Rejection categories re- 
spectively, and the two columns correspond 
to the events of e; = A and e, = R respec- 
tively. Then n^l denotes that n^l samples 
from Acceptance category have been assigned 

Acceptance by the zth verifier, and raiV denotes 

niV samples from Acceptance category been as- 
signed Rejection. 

When a verifier is given with its FAR(t) and 
FRR(t) curves, the confusion matrix then can 
be described without additive testing, that is, 

Q 
[1 - FRR(t)]NA        FRR{t)NA 

FAR(t)NR        [1 - FAR(t)]NR 
(4) 

where, NA and NR are the equivalent num- 
bers of testing samples for Acceptance and 
Rejection respectively. 

Based on the confusion matrix, probabili- 
ties of e,- = A or et = R under conditions of 
Acceptance or Rejection are estimated by 

P(ei = A\A) = 1 - FRR(t), (5) 

P(C(. = R\A) = FRR(t), (6) 

P(e. = A\R) = FAR(t), (7) 

P(ei = R\R) = 1 - FAR{t). (8) 

When k independent individual verifiers 
e;(i = 1, •••,&) are combined, the probabili- 
ties of P(A\ei,---,ek) and P(R\ei, ■ • ■ , efc) are 
calculated based on Bayes theorem, that is, 

P(A|e,,.,et)=
P<^^>.    (9) 

reu^e.) 
and 

P(Ä|e1,-lefc)=        n|UiP(e0       •   (10) 

Thus the combination rule based on Bayesian 
formalism is as follows (assume P(A) = P(R)), 

k k 

if f[P(ei\A)>f[P(ei\R) 

then     e — A, 

else       e = R. (11) 

3.3    Combination   Based   on    Opti- 
mum Formalism 

Neither the combination based on logical for- 
malism nor that based on Bayesian formal- 
ism considers definitely the FAR and FRR of 
the combined system. Thus it is not ensured 
that the combined system is an optimal ver- 
ifier. Generally there is a common and intu- 
itive assumption that the combination of mul- 
tiple verifiers must improve performance, be- 
cause "surely more information is better than 
less information". But on the other hand, a 
different intuition suggests that if a stong ver- 
ifier is combined with a weaker one, the re- 
sulting decision environment is in a sense av- 
eraged, and the combined performance will be 
degraded from the performance that would be 
obtained by relying solely on the stronger one. 
There is truth in both intuitions. The key to 
resolving the apparent paradox is that when 
two verifiers are combined, one of the result- 
ing error rates (FAR or FRR) becomes better 
than that of the stronger one, while the other 
error rate becomes worse even than that of the 
weaker one. If the two verifiers differ signifi- 
cantly in their power, and each operates at its 
own optimum working state, then combining 
them may give significantly worse performance 
than relying solely on the stronger one. 

To make the combined system optimal, that 
is, to make the trade-off between FAR and 
FRR of the combined system satisfying a pre- 
specified objective, it is necessary at first to es- 
timate the FAR and FRR. Then based on the 
estimated FAR and FRR some related factors 
should be optimally chosen. We indicate that 
the related factors include both the combina- 
tion rules and the thresholds of all individual 
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verifiers. As have shown in the previous sub- 
sections, there exist various combination rules 
with different properties, so a procedure for se- 
lecting the one best suitable to a particular 
case is necessary. Meanwhile by adjusting a 
threshold, which determines the working state 
of a verifier, we can make an individual verifier 
to contribute its most to the combined system. 

The optimization is implemented under the 
so-called Behavior-Knowledge Space(BKS)[5]. 
The concept is proposed originally to con- 
sider combinations of non-independent classi- 
fiers based on a number of well selected test- 
ing samples. We adopt the concept but make 
a different use of it. At our case, as shown 
in Figure 2, a BKS is composed of k dimen- 

Figure 2: The three dimensional BKS 

sionals, where each dimensional consists of val- 
ues of the possible outputs of one verifier. As 
there are just Acceptance and Rejection, a k 
dimensional BKS consists of 2k nodes. Each 
node represents a possible input to the com- 
bination rule. A combination rule may assign 
a value of either Acceptance or Rejection to 
a node. Thus there exist 22 possible combi- 
nation rules. But according to suitable rea- 
soning the rules can be organized into groups. 
For instance, a combined Acceptance decision 
should remain unchanged when an individual 
decision varies from Rejection to Acceptance, 
while a combined Rejection decision should 
remain unchanged when an individual deci- 
sion varies from Acceptance to Rejection. Un- 
der such conditions the number of combination 
rules for k verifiers are greatly decreased to 

EUEÖICÜ where C\ = ^.   In de- 

tail, when k = 3 there are 15 rules, and k = 4, 
94 rules, and k = 5, 2107 rules. So it becomes 
possible to compare all rules exhaustively when 
k is not big. 

At the mth(m = 1, • • •,2k) node, FARm(t) 
and FRRm{t) are calculated by 

k 

FARmW^llPieilR), (12) 

k 

FRRm(t) = J[P(ei\A), (13) 
i=l 

where, P(e{\A) and P(e,-|Ä) are defined in 
equations (5)~(8). Since any combination rule 
divides the BKS into either the Acceptance 
or the Rejection categories, its corresponding 
FAR(t) and FRR(t) are obtained by 

FAR(t)=   £   FARm(t), (14) 
THEMA 

FRR{t) = l-   Yl  FRRm(t), (15) 

where, MA is the node set of Acceptance cate- 
gory. 

Since it can be easily proved that 

£ FARm(t) = 1, 
m(:M 

£ FRRm(t) = l, 

(16) 

(17) 

where M represents all nodes in a BKS, the 
FAR(t) and FRR(t) of equations (14) and 
(15) can also be obtained using the nodes in 
Rejection category. 

Based on the estimated FAR(t) and FRR(t) 
in equations (14) and (15), all possible combi- 
nation rules as well as all possible setting for 
the individual thresholds are compared. And 
the optimal ones according to a specified trade- 
off can be determined. 

3.4    Comparison of Bayesian Formal- 
ism and Optimum Formalism 

When the equation (11) is compared to the 
equations  (12)~(15),  it is noticed that the 
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combination rule based on Bayesian formal- 
ism minimizes FAR(t) + FRR(t) of the com- 
bined system. Since the minimization is differ- 
ent from the usual objectives to a verifier, it 
is certain that the combination rule based on 
Bayesian formalism is not a general optimal 
combination rule. 

Furthermore, it is noticed that FAR(t) + 
FRR(t) of a verifier corresponds to the Bayes' 
recognition error[2] if the Acceptance and 
Rejection categories are taken as two usual 
classes in the classifier researches. 

4    Experiments 

Figure 3 shows the FAR and FRR curves of 
three verifiers, where (a) a face and (c) a voice 
based verifiers are under development in our re- 
search group, and (b) a fingerprint based veri- 
fier is adapted from [6]. Thresholds of the three 
verifiers have been scaled to [0,1]. When the 
three thresholds are assumed, the FAR and 
FRR of the combined system can be calculated 
from these curves for any combination rules in- 
cluding those based on logical formalism and 
Bayesian formalism. 

The procedure of combination algorithm is 
as follows. Assume a setting of thresholds of 
all individual verifiers, the corresponding FAR 
and FRR can be obtained from the known 
curves. From equations of (12) and (13), FAR 
and FRR at all nodes of the BKS are calcu- 
lated. Possible combination rules are organized 
into groups, and each group gives one division 
of the BKS into Acceptance and Rejection 
categories. From equations (14) and (15), the 
FAR and FRR for the combined system can 
be estimated. By investigating all rule groups 
and threshold settings we can get the experi- 
ment results. 

Two experiments are executed. In the first 
the objective function is set to minimize EER. 
When the three verifiers are assumed to work 
with their EER corresponding thresholds (Ta- 
ble 1), the FAR and FRR results of the combi- 
nation methods based on logical AND, logical 
OR, logical Majority, and Bayesian formal- 

Face FAR 
Face FRR 

(a) Face 

\ 
/ 

/ 

\ / - 

\ 
Fingerprint FAR — 
Fingerprint FRR — 

(b) Fingerprint 

(c) Voice 

Figure 3: FAR and FRR curves of three veri- 
fiers 

Table 1: EER(= FAR = FRR) of individual 
verifiers 

face fingerprint voice 
threshold 0.71 0.20 0.66 
EER{%) 7.13 4.66 10.14 
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ism are given in Table 2. But we can not ensure 

Table 2: Results after combination (%) 
FAR FRR 

AND 0.03 20.43 
OR 20.43 0.03 

Majority 1.46 1.46 
Bayesian 1.46 1.46 

Optimal 1.23 1.23 

that the individual EER corresponding thresh- 
olds are the best setting to make the EER of 
the combined system minimum. According to 
our proposed method based on optimum for- 
malism, it is found that when the thresholds 
are set to (0.71, 0.18, 0.68), a majority rule 
show optimal FAR and FRR result (Table 2). 

In the second experiment, the objective 
function is set to minimize FRR under the 
condition of FAR < 0.5%. The corresponding 
thresholds, FAR and FRR of the individual 
verifiers are set as shown in Table 3. The corn- 

Table 3: FRR of individual verifiers(FAJR = 
0.5%) 

face fingerprint voice 
threshold 0.81 0.25 0.72 
FAR(%) 0.45 0.30 0.33 
FRR(%) 20.0 12.88 24.29 

bined results are shown in Table 4, where the 

Table 4: Results after combination (%) 
FAR FRR 

AND 0 47.24 
OR 1.08 0.63 

Majority 0.004 9.31 
Bayesian 1.08 0.63 

Optimal 0.48 1.23 

final result is found when the thresholds are 
adjusted to (0.86, 0.26, 0.72) and an OR rule 
is tested. 

It is noted that if without adjusting thresh- 
olds, the above Optimal results are actually the 
same as that of the Majority and Bayesian 
in the first experiment, and the OR and 
Bayesian in the second. It shows that when 
logical combination methods are applied, al- 
ternative kinds should be investigated accord- 
ing to the system requirement. Meanwhile, 
the Bayesian method is proved to be effec- 
tive when few verifiers with similar strength 
are combined. 

5    Conclusions 

Biometrie person recognition systems are di- 
vided into identification systems (classifiers) 
and authentification systems (verifiers). Since 
the verifiers are evaluated with a trade-off be- 
tween the False Acceptance Rate(FAR) and 
the False Rejection Rate(FRR), which is dif- 
ferent from the performance indexes used for 
classifiers, existing methods for combining mul- 
tiple classifiers should be adapted or improved. 

To implement combination of verifiers effec- 
tively, the FAR and FRR of the combined sys- 
tem should be estimated. We have proposed a 
method for the estimation from the FAR and 
FRR curves of the individual verifiers. The 
method is built based on probability theory. 
With the estimated FAR and FRR, it is sug- 
gested that both the combination rules and the 
thresholds of all individual verifiers are opti- 
mally adjusted simultaneously. 

The proposed method is compared to the 
traditional logical operation methods and a 
method adapted from combining classifiers 
through analyses and experiments, and it 
shows better results. 
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Abstract - Analyzing potential subsurface petroleum 
reservoirs and predicting their spatial distribution is a 
difficult problem, for the targets are usually thousands 
of meters deep in the earth and people almost have no 
way to directly observe them. Prospecting seismic 
data and well data are the two major categories of 
data that can be obtained for the task. They are 
different in mechanism and have their own 
characteristics, and both are imprecise and 
incomplete. The third information source is 
knowledge and know-how of human experts. In this 
paper, an information fusion scheme is presented for 
predicting potential reservoirs by the collaboration of 
information from different sources. Neural networks 
are applied in both supervised and unsupervised mode 
in the scheme, and human-computer cooperation is 
also involved for this complicated task Practical 
applications have shown that this information-fusion 
approach is very powerful. 

Keywords: data fusion, neural networks, petroleum 
reservoir analysis, indeterminate information, SOMA 

1. Introduction 

Analyzing potential subsurface petroleum 
reservoirs and predicting their spatial distribution 
is a difficult problem, for the targets are usually 
thousands of meters deep in the earth and actually 
there is almost no method to directly observe 
these targets (for reasonable cost). In today's 
petroleum industry, most observation data that 
can be obtained about subsurface reservoirs are of 
two major categories: prospecting seismic data 
and well data. Well data are recorded in actual 
drilling holes, so they can be regarded in certain 
sense as a kind of direct and precise information. 
But they are available at only sparse locations in 
the investigated area, and are usually far from 
being able to provide adequate information about 
the spatial distributions of potential reservoirs. 
This is especially true for areas at early stages of 

exploration, because of the high expense and risk 
of drilling. On the other hand, seismic data are 
recorded reflection signals from subsurface 
interfaces, which are observed on the surface, and 
are relatively less expensive. So seismic data can 
be widely available for the whole area, but the 
information that they can provide about 
subsurface reservoirs are very indirect, inaccurate 
and indeterminate. The third source of 
information for reservoir analysis is human 
judgement based on experts' knowledge and 
experience, which usually plays a key role in the 
final decision-making. However, humans are not 
good at directly analyzing the large amount of 
observation data, and the rules behind human 
judgement are mostly quite ambiguous and often 
differ from case to case, which makes the efforts 
for coding them into some machine systems 
unfruitful till now. So the only choice seems to 
be designing some systems that can efficiently 
collaborate all these information from different 
sources by taking the advantages of their 
respective characteristics and overcome their 
shortcomings. 

In this paper, we present such a system, 
which has already been proved powerful in 
several practical cases. The system utilizes 
neural networks of both supervised and 
unsupervised kind for data analysis, which can fit 
better for cases when known well data are too 
scarce to be applied directly as the supervisors. 
For the unsupervised part of the work, we 
developed a novel approach called SOMA[l], 
based on the SOM neural network model. The 
standard MLP neural network model with BP 
learning algorithm was adopted for the 
supervised task. Human judgement is invited 
into the system so that the mathematically 
derived results by unsupervised analysis can be 
better  evaluated  and  be  assigned  to  proper 

1 This work is supported by NSFC, the National Science Foundation of China. 
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physical meanings. These results then can be 
further be applied in supervised learning so that 
some details about the analyzed reservoir can be 
estimated. With this system, the possible 
distributions of petroleum reservoirs can be 
predicted from seismic data and very limited well 
data, and some important lithological parameters 
can also be predicted quantitatively. By the 
collaboration of seismic data, well data and 
human's analysis, the insufficiency of information 
in the problem can be largely compensated. One 
of the practical application cases will also be 
briefly introduced in the paper. In fact, the ideas 
behind this system can also be applied in other 
similar problems with multiple information 
sources of different characteristics and 
resolutions. 

2. Supervised Analysis 

Although traditionally seismic data were 
used only for deriving information about 
subsurface strata structures, it has been shown in 
recent decades that lithological information of 
potential reservoirs can also be extracted from the 
data, since they penetrate through these reservoirs 
and the differences in reservoir properties do 
leave "fingerprints" on the data[2][3]. The 
problem is that till now, people still haven't 
succeeded in finding some determinate models 
describing the relationship between seismic data 
and reservoir properties, which also differs for 
different areas and different geological 
environments. Thus our problem falls into the 
domain of estimating unknown dependencies 
from observations. 

Since at locations of wells, it can be 
regarded that the information of subsurface 
reservoirs are known, well data can play the role 
of supervisors or training examples for our 
problem. The general idea can be illustrated by 
the diagram of Figure 1, which can be viewed as 
a standard supervised analysis system. In the 
system, well data are used to training some 
learning machine so that it can estimate the 
dependency relationship between seismic data 
and the desired reservoir properties at well 
locations. This relationship will then be used for 
predicting the reservoir properties for locations 
where only seismic data are available.     The 

prediction result can be qualitative (such as 
whether the target stratum possibly contains 
oil/gas at certain locations) and quantitative 
(some lithological parameters such as sand- 
percentage, average porosity, etc. of the 
prospective reservoirs). The learning machine 
can be any of the popular ones such as the MLP 
neural network model with BP learning algorithm. 

Seismic Data 

" 
Feature Extraction 

'' 

Learning Machine Well Data 

i' 

Prediction Result 

Figure 1. The basic diagram of 
supervised reservoir analysis 

This straightforward system does succeeded 
in some applications. However, certain 
conditions must be met. Among them, one 
important condition is that the well data to be 
applied as training examples must be 
representative in the investigated area, and the 
amount of training wells must be sufficient. In 
fact, these conditions are very restrictive for 
many practical cases. 

Indeed, the task is to predict the possible 
distribution of reservoirs, so that better decisions 
can be made about where should the wells be 
drilled. It is quite obvious that one will not drill 
many wells until the task is fulfilled. That's why 
the condition about sample size can usually not 
be met. On the other hand, the fact that one 
always wants the wells to be productive tends to 
make the available well data not so representative. 
Even if there are many wells in some area, the 
proportion of "negative" samples are usually 
much smaller than the actual probability that the 
target stratum is not prospective at certain 
locations. 
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3. Unsupervised Analysis and SOMA 

If it can be assumed that the target stratum 
consists of a couple of different types with 
respect to the reservoir properties (such as, for 
simplicity, prospective and non-prospective), and 
if the features extracted from seismic data are 
well-related with the types, unsupervised learning 
techniques can be applied to the seismic data 
alone to find clusters in the data that represent 
these types. This is usually true for most of the 
practical cases. 

For this purpose, we developed a novel 
unsupervised analysis method that we called 
SOMA (short for SOM Analysis). It is based on 
the SOM neural network model by Kohonen[4]. 
Comparing with most traditional clustering 
algorithms, SOMA is designed with less 
assumption about the style of the data distribution, 
and it does not ask users to set or estimate a 
priori the number of clusters. Since no training 
information is involved in the procedure, 
unsupervised methods can only give 
mathematical results, which need to be further 
interpreted. SOMA provides a straightforward 
way for users to interactively combine their 
knowledge and understanding of the investigated 
area into the clustering results [1][5]. 

The kernel of SOMA is the idea of SOM 
density map, and example of which is shown in 
Figure 2. The map is obtained by simply 
cumulating the number of samples in the data set 
that are being projected onto each neuron after 
the self-organizing learning procedure. The 
densities on the map can "optimally" represent 

the distribution of the data in the original space in 
certain sense, so that they can be used for making 
decisions on clustering in the data set. To 
enhance this effect, the standard SOM learning 
procedure should be modified slightly[5]. 

Both the proper number of clusters and their 
classification boundaries can be decided 
according the SOM density map. And even when 
there are no clustering relations in the data set (in 
which cases most traditional clustering will still 
blindly make the classification), the density map 
can still be utilized as a tool for analyzing the 
similarity relations between the samples in the 
data set. Although automatic algorithms can be 
developed for clustering based SOM density map, 
in our specific problem of petroleum reservoir 
analysis, we invite human experts to interpret this 
map manually, and by this, their knowledge and 
know-how can be well integrated into our whole 
scheme. This idea can be described by Figure 3. 

Classification 
& Interpretation 

SOM Density Map 

SOM^Leaming 

Seismic Feature Set 

Figure 2 An example of SOM density map. 

Figure 3. Diagram of SOMA reservoir analysis. 

4. Supervised Learning Again 

After applying SOMA, a rough 
understanding of possible reservoir distributions 
can be obtained. With this result, the restrictive 
limitations of applying supervised analysis can be 
overcome in large. The idea is, pseudo-examples 
can be selected according to the prediction by 
SOMA, so that there can be more training 
samples for the learning machine, and the 
samples can be selected to be more representative 
for the investigated area. In this way, some 
quantitative results can be obtained such as the 
estimated distribution of sand percentage and 
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thickness in the target stratum, averaged porosity 
and oil saturation. The whole procedure can be 
described by the diagram in Figure 4. The input 
to the whole system is the sparse and incomplete 
well data, the inaccurate and indeterminate 
seismic data of relatively low resolution, and the 
ambiguous expertise. The output is the 
prediction of possible reservoir distributions and 
the estimations of its lithological parameters. 

Seismic Data 

1 ' 
Feature Extraction 

' ' 
SOMA     * 1— Expertise 

r       i 

i ' 
Clusters 4— Well Data 

i ' i ' i ' 
Qualitative Prediction - —► MLP Neural Network 

i r 

Quantitative Prediction 

Figure 4. Collaboration of seismic data, 
well data and experts' knowledge and know-how 
for reservoir analysis and prediction, by a neural- 

network-based information fusion system. 

5. A Practical Application Example 

The above-described scheme has already 
been applied successfully in several practical 
cases. In one of them[6][7], the investigated area 
is about 50km2, with only three wells (named 
TH-A2, TH-A5 and TH-A6). For reasons 
discussed in Section 2, the result of directly 
applying supervised methods is not acceptable. 
Figure 5 is the predicted reservoir distribution 
map at the target stratum, obtained with our 
SOMA technique. Using the three wells and 
pseudo-examples selected according to this map, 
a MLP neural network was trained to predict the 
lithological parameters. As an example, Figure 6 
shows the map of the estimated average porosity 
at the target stratum. According these predictions, 

two new wells were suggested (TH-A51 and TH- 
A52 on the maps). They were both drilled later 
and were both highly productive. Table 1 is a 
comparison of the predicted sand thickness in the 
target stratum at the well location and the true 
values measured after the wells were drilled. 

1Ö0Ö  950  900  850  800  750  700  850  600  550  500  450  400 

1000  950  900  850  800  750 650  600  550  SCO  450  400 

Figure 5. The predicted reservoir distribution 
obtained by SOMA. Dark places indicate more 
prospective areas. Wells TH-A51 andTH-A52 

were designed according to the prediction results. 

23.S4 

Figure 6. The estimated porosity map obtained by 
MLP neural network with the help of SOMA result. 
Gray level represents the value of average porosity, 

as shown in the scale at right (in percent). 
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Table 1. Comparison of the predicted values and 
the actual values of total sand thickness in the 

target stratum at well locations. 

Wells Target 
Stratum(m) 

Total sand thickness 
Actual Estimated 

TH-A2 1233-1410 35.7 known 
TH-A5 1242-1420 51.9 known 
TH-A6 1239-1416 21.8 known 

TH-A51 1264-1441 42.1 42.4 
TH-A52 1261-1440 45.6 42.8 

6. Conclusion and Discussion 

In this paper, we described a scheme of 
fusing information from different sources for 
petroleum reservoir prediction and analysis. 
Each kind of information alone can not give 
reliable and determinate results for the whole area. 
However, by the collaboration of these 
information, taking each one's advantages in their 
characteristics and making up their disadvantages, 
we can get a better comprehensive understanding 
of the potential subsurface reservoirs, including 
both qualitative predictions of reservoir 
distribution and quantitative estimations of the 
lithological parameters. The discussed scheme 
has already been succeeded in several practical 
cases, results from one of which were also 
presented in this paper. 

The key fusing methods in the scheme are 
neural networks. Both supervised MLP neural 
network and unsupervised SOMA methods are 
applied in the scheme in a cooperation mode. 
And human experts' knowledge and know-how is 
also utilized to compensate for the insufficiency 
and inaccuracy of those "hard" data. We believe 

that in those large practical problems, providing 
human experts with the feasibility to interact with 
those "automatic" algorithms is very important. 

Although the described scheme is designed 
for the special task of petroleum reservoir 
analysis, the ideas and general procedures can be 
well adapted to other similar problems, where 
multiple information sources exist and each one 
alone is incomplete and indeterminate. 
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Abstract: Reservoir framework prediction is a key 
problem in the exploration and production of oil and 
gas. A novel technique is proposed in the paper, in 
which well-logging data and knowledge of geologists 
are integrated by dynamic programming and genetic 
algorithm. Experiment results on outcrop data 
showed that the technique is quite promising for 
practical applications. 

Keywords: reservoir framework prediction, genetic 
algorithm, dynamic programming, outcrop 

1. Introduction 

Reservoir framework prediction is a key 
problem in the exploration and production of oil 
and gas. Although in the production phase of a 
survey there is usually a large amount of data we 
can use, it is a difficult problem to fuse various 
information to predict the reservoir framework 
with high certainty. There are two major 
information sources that we can use. One is the 
mass data collected by various exploration 
techniques, such as well data and seismic data. 
They carry a lot of information of the 
underground reservoirs, but among them the 
information carried by any single type of data is 
quite limited and is not enough to predict the 
reservoir framework. Another information 
source is the qualitative knowledge of geologists. 
To get a description of the reservoir's detailed 
framework structure with high certainty, these 
information from different sources must be 
integrated in an efficient and reasonable 
approach. In recent years, much research work 
has been done in this field. Since it is almost 
impossible to know the "true" answer of any 
detailed subsurface structure exactly, people are 
studying their methodologies on outcrop data, 
which are actually the "subsurface" structure that 
goes out of the surface so that can provide a 

direct way to verify the performance of the 
proposed methods. 

Most of the methods applied in today's 
industry for predicting reservoir framework from 
wells are various kinds of statistical simulation 
methods. They can simulate many possible 
answers to the problem, but fail to utilise 
geologists' experience and cognition about the 
reservoir well, so that the obtained results are too 
uncertain. This paper reports our research in 
this direction. A novel technique is proposed, in 
which well-logging data and knowledge of 
geologists are integrated by dynamic 
programming and genetic algorithm. Experiment 
results on outcrop data showed that the technique 
is quite promising for practical applications. 

2. The Basic Ideas 

In our methods, dynamic programming is 
used to correlate the strata between two wells. 
The distance of two specific strata is given 
according to the cognition of geologists about the 
investigated area. Changes of the reservoir strata 
from one well to another are simulated as a 
genetic course. Strata are treated as the 
populations. They have the following features: 
thickness, position and lithology of the stratum. 
Some geologic statistical results are derived from 
the well-logging data. The percentage of the 
various lithological strata and the histogram of 
thickness of the strata are used to form the 
objective function in the genetic algorithm. The 
evolution choice is controlled by two factors 
besides the objective function: (1) the cognition 
by geologists (including the direction of the 
stratum, the variation extent of the stratum, the 
width-to-thickness ratio of a special kind of 
lithological stratum, the distribution of a special 
lithology and the sedimentary environment), and 
(2) the result of stratigraphic correlation obtained 

1 This work is supported by NSFC, the National Science Foundation of China. 
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by dynamic programming algorithm. An 
uninterrupted stratum will never disappear, and 
only the position and thickness of the stratum 
change. The mutation is suitable for simulating 
the appearance of new strata and the 
disappearance of existing strata according with 
the object function. The whole procedure is 
designed as a recursive procedure: the mid-point 
of the two wells is predicted first, which is then 
treated as a new well, and then the new mid- 
points are predicted. The procedure will not stop 
till all points are predicted. 

3. Stratigraphic Correlation Using 
Dynamic Programming 

Dynamic programming is an optimization 
algorithm based on the back propagation of the 
cost. No matter how the initial stage and state 
are, only the last stage and state are need to 
decide the optimal path of the current stage. 

Let there be M states in the k+lth stage, the 
traditional dynamic programming course is 
defined as: 

k,k+\,n,m + ^k+\,m } 

where Ek+] „, is the optimal cost of state m in 

stage k+1, LkMX is the cost from state n in 

stage k to state m in stage k+1, 

optimal cost of state n in stage k. 
Ek,n   'S   the 

Dynamic    programming    was    used 
stratigraphic correlation widely [1]. 

in 

In our research, the cost function is defined 
as the function of the thickness, position and 
lithology of the strata. The cost function will be 
modified if any priori knowledge about the strata 
can be used. If two strata are connected, the 
distance between them is set to zero. The 
distance between one of the two strata and any 
stratum else is set to a value large enough to 
forbid their connection. If one stratum connects 
with a gap (no connection exists between it and 
any other stratum), the distance between it and 
any other stratum is set to a value large enough to 
forbid their connection too. 

4.   Reservoir   Frame   Prediction   Using 
Genetic Algorithms 

Genetic algorithms are searching algorithms 
based on the mechanics of natural selection and 
natural genetics [2]. They combine the 
mechanism of survival of the fittest among string 
structures with a structured yet randomized 
information exchange strategy to form a 
searching algorithm with some of the innovative 
flair of human searching. Because the algorithm 
simultaneously evaluates many possible (high 
fitness) points in the parameter space, it is more 
likely to reach the global minimum (or 
maximum). Genetic algorithms differ from most 
optimization techniques by searching from one 
group of solutions to another, rather than from 
one solution to another, and it is this fact that 
makes them uniquely suited to multi-objective 
optimization problems. 

In our method for reservoir framework 
prediction, changes of the reservoir strata from 
one well to another are simulated as a genetic 
course. Strata are treated as the populations. 

4.1 Coding 

Although traditional genetic algorithms map 
problems to strings of binary bits and manipulate 
these encoding, it is more natural and therefore 
preferable[2] to represent each solution by one 
three-dimensional arrays, corresponding to the 
lithology, the thickness, and the position of 
stratum respectively. 

4.2 Initial Population 

The initial population is generated by the 
information from the two wells. All strata in the 
two boreholes are included. 

4.3 Fitness Evaluation 

There are two objectives, i.e., the percentage 
of various lithological strata and the histogram of 
thickness of the strata, that are used to form the 
fitness function in the genetic algorithm. They 
can be got as statistics from all the well-logging 
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data if there are enough wells in the survey area. 
If the survey area is a new one and only a few 
wells can be used, we can adopt the statistics 
from other areas nearby. Besides the fitness 
function, the evolution choice is also controlled 
by two factors: (1) the cognition of geologists 
(including the direction of the stratum, the 
variation extent of the stratum, the width-to- 
thickness ratio of a specific lithological stratum, 
the distribution of a special lithology and the 
sedimentary environment), and (2) the result of 
stratigraphic correlation obtained by dynamic 
programming algorithm. 

4.4 Operations 

The general structure of genetic algorithms 
is as following: 

Initialize population 
Calculate the fitness function 

of each individual 
Selection 
REPEAT 
Crossover 
Mutation 
Calculate the fitness function 

of each individual 
Selection 
UNTIL (termination condition satisfied) 

The selection operator is based on the 
principle of "survival of the fittest". A specific 
individual having a fitness value above the 
average level will have more chance of being 
selected than those individuals having fitness 
value below the average level. In our research, 
the two individuals forming the parents come 
from the two boreholes at the same time. If one 
stratum of a strata pair (the strata is connected) is 
chosen as one of the parents, the other must be 
one of the parents too. 

The crossover operator is used to produce 
new offspring from their parents, at the mean 
time exchanging the information between them. 
The crossover operation is done in the three 
dimensions. Here one can see that if the parents 
are a strata pair, only the thickness and the 
position of the child stratum change, and the 
lithology is kept the same as its parents. 

The mutation operator is used to bring about 
new information at the bit level, so that the 
genetic algorithms can search new areas 
otherwise not accessible when searched using 
only selections and crossovers. In our case, the 
mutation operation is used to estimate the 
appearance of new strata and the disappearance 
of existing strata according with the object 
function. 

The whole procedure is designed as a 
recursive procedure: the mid-point of the two 
wells is predicted first, which is then treated as a 
new well, and the new mid-points are predicted. 
The procedure will not stop till all points are 
predicted. 

5. An Example 

One of our outcrop sections (about 1000 
meters wide and 200 meters deep) is used to 
verify the efficiency and performance of the 
proposed technique. Figure 1 shows the result: 
Fig. 1(a) is the original section (the correct 
answer), Fig. 1(b) is the three boreholes used for 
prediction (the known condition of the system), 
and Fig. 1(c) is the predicted section according to 
the data in Fig. 1(b) and some qualitative 
knowledge about the strata. Deferent colors in 
the figure (reproduced as gray levels in the 
proceedings) represent deferent kinds of 
lithology, and the largest interval between the 
boreholes in our experiment is 408 metres. It can 
be seen that keeping the sparseness of know data 
in mind, this prediction is rather accurate. And 
the accuracy can be further improved as the 
amount of information available is being 
increased. 

6. Conclusion 

In the proposed technique, the effective 
fusion of quantitative information from well- 
logging data and qualitative information from the 
cognition of geologists greatly reduced the 
uncertainty in reservoir prediction. Processing on 
outcrop data showed an encouraging result. 

In fact, if there are other information 
available (such as seismic data), they can also be 
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integrated into the system in the future for better 
results. 

[2] D.E. Goldberg, Genetic Algorithms in 
Search, Optimization & Machine Learning. 
Addison Wesley, 1989 
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Figure 1. An experiment result of the method described in the paper on some outcrop data. 
(a) Top: the original section of an outcrop data; (b) Middle: the four boreholes extracted from (a); 

(c) Bottom: the predicted section according the data of (b) by methods described in this paper. 
Colors (grey levels for printing) in the figures represent different types of lithology. 
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Abstract. This paper describes a hierarchically organized 
technical system performing auditory-visual sound source 
localization and camera control. Desired applications are in 
the field of mobile robotics or multimedia. The 
measurement set-up uses four microphones and one video 
camera. Starting points are functionality and signal 
processing in the auditory and visual pathways of the 
central nervous system in mammals, performed with the 
help of neural networks. Sound and vision estimates of an 
intentional target are fused in order to control a virtual 
fovea within the vision system. For this purpose, optical 
signals of the CCD of the video camera are collected in 
macropixels which determine the grid of foveal attention 
control. Pre-processed sound signals are interpreted as 
spike-train coded action potentials to be accumulated in the 
neurons soma. Spike signals which arrive approximately 
synchronously activate an output action potential. This 
enables the system to perform a correlative input selection 
as to be used in echo cancellation, for instance. A 
respective technical system is designed and implemented 
on an industrial mobile robot. Experimental results of the 
behavior of the overall system are presented. 

Key Words: sound source localization, neuro, 
audio-visual, fovea, virtual camera 

1  Introduction 

Goal of this work is to find improved paradigms 
for a smart human-machine communication and 
to define efficient algorithms on base of 
biological examples of auditory and visual 
perception. A particular goal of this paper is the 
design of a technical system for auditory-visual 
sound  and  target  localization  by  attention 

control. Here, perception is - in distinction to 
sensing - understood as a high-level process to 
gain knowledge from sensory signals, and 
attention control is understood as an uncon- 
scious low level process which is performed to 
select a particular area of interest within the 
visual input data space. 

The technical system is implemented on a 
mobile industrial robot and may serve for 
intelligent speech, gesture, and lip movements 
recognition with possible human instructors or 
supervisors. Since the robot may be considered 
as a severely disabled person with impairments 
particularly in hearing and vision, the new 
paradigms may also be used for improvements 
in the field of rehabilitation engineering. 
Another possible technical application is auto- 
matic camera control for videoconferencing. 

The integrated use of vision and audition is 
a basic skill of many animals. Whereas sound 
information enforces the creature to focus its 
vision system towards specific spatial areas of 
interest, vision allows for association of these 
sounds with respective visual sound sources. The 
resulting low level sensor fusion enables high 
level recognition or identification processes of, 
for instance, discrete sounds or speech utterances 
or of specific visual objects in a complex and 
noisy environment. 

Many traditional AI approaches to the above 
task integrate multimodal sensor information on 
a symbolic level after a separate extraction of 
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symbolic information from the acoustic and 
optic input signals. Neuro-physiological research 
results point out that locally distributed 
topological representations of the perceptional 
space are efficiently used in animals for uni- 
or multimodal auditory-visual localization or 
fusion tasks as well as for attention control. 
Exemplary work is presented in [1], [2], [3], [4], 
[5], and [6]. 

In the following, some important properties 
of the auditory, the vision system and of bio- 
logically inspired neural signal processing will 
be introduced. 

2  Spatial Hearing 

Main performance and properties of auditory 
signal processing in animals are frequency 
analysis, directional hearing, and pattern recog- 
nition or identification. One of the primary ways 
of separating sounds as a preprocessing step for 
subsequent recognition or identification is by 
identifying their spatial location. 

2.1  Biological Example 

Auditory sensory organs are the ears. They 
basically consist of pinna and outer ear channel, 
middle ear, and the basilar system of the inner 
ear. The pinna collects and amplifies external 
sound signal stimuli, the middle ear acts as a 
subsequent block for impedance transformation 
and amplification, the inner ear with basilar 
membrane and hair cells performs a tonotopic 
separation of the sound waves by means of a 
frequency analysis [7]. The mechanical proper- 
ties of pinna and outer ear channel create a 
direction and frequency depending echo signal 
which is fed to the cochlea. The determination 
of the accumulated signals allows for three- 
dimensional sound localization, i.e. calculation 
of azimuth and elevation angle [8]. Cochlear 
models are essentially functional complete. 
Exemplary work can be found in [9] or [10]. 

Tonotopic information is processed through 
the central auditory pathway which consists of a 
serial array of connected nervous nuclei or, 
speaking in technical terms, processing blocks. 

The first binaural interactions occur in the 
olivary complex which is believed to perform a 
non-linear crosscorrelation between the pre- 

processed signals of left and right ear. The 
neurons of the olivary nuclei synapse to the 
colliculus complex in which a twodimensional 
map is generated and stored. Activations of this 
map are believed to represent the spatial sound 
source positions calculated on base of delay 
times and amplitude variations of the binaural 
signals. Besides, the colliculus gets also visual 
input from specific ganglion cells, each of which 
reacting on stimuli in a relatively large visual 
area and detecting visual novelties. 

Neurons of the nuclei in the auditory pathway 
synapse to cortical areas in which high-level 
sound and especially speech processing, recog- 
nition and identification, is performed. 

2.2  Technical Implementation 

According to the duplex theory (see [10]), inter- 
aural time differences (ITD) between the sound 
signals arriving at the two ears with specific 
delays are depending on the relative position of 
the sound source to the head coordinate system. 
They are good for horizontal localization in case 
of acoustic clicks up to frequencies of approxi- 
mately 1.5 [kHz]. With a distance d between the 
acoustic sensors, a sound source with azimuth 
angle oce [-7t/2,7i/2], and speed of sound waves 
in air c=343 [m/s], and the sound source being 
known to be in the frontal hemisphere, the 
mapping between a and ITD is approximately 
given by the pseudo-fixed relation 

ITD=d/2c (a + since). 

This formula holds for particular propertiesof the 
sound and in the absence of echoes. The 
evaluation of complex sound signals can be 
derived from ITD if the signals are decomposed 
into sequences of onset clicks. This procedure is 
of particular significance since signal onsets are 
known to be a basic source of information for 
sound localization in humans and animals [10], 
often described as the precedence effect. 

The elevation angle can be derived from i) 
the diffraction of the waves by the head, which 
generates significant differences in the intensity 
level (IID) especially for higher frequencies 
(head-shadow effect), or from ii) the direction 
and frequency depending head-related transfer 
function of the information channel between the 
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microphones 

robot 

Figure 1. Sensor head for sound source 
localization. 

sound source and the sensors. The latter 
procedure considers effects of echo production 
in pinnae and outer ear channels and leads to a 
large look-up table which is regarded as a 
numerical pulse response function. Complex 
spatial sound source models are derived by 
applying a convolution of the sound signals with 
the head related transfer functions. 

Extending mechanisms of binaural sound 
recording in humans, we have designed a sensor 
head with two orthogonal sets of microphones, 
each of which detecting azimuth or elevation 
angle only with the help of ITD evaluation. A 
primary advantage of this design is that time 
consuming short-time convolution algorithms 
can be avoided. A schematic figure of the sensor 
head with four microphones and one video 
camera, is shown in figure 1. 

At the moment, the technical realization of 
the cochlea functionality uses a simple filter 
bank for the convenience of short calculation 
time instead of a more complex model as de- 
scribed, for instance, in [9] or [ 10]. Nevertheless, 
the system can easily be extended. We use three 
4th order Chebytchev type bandpass filters with 
edge frequencies of 

filter 1: 1000 
filter 2: 1778 
filter 3: 3162 

1778 Hz, 
3162 Hz, 
5623 Hz. 

Figure 2. Coincidence detection for binaural 
sound source detection. 

Representations of the two filtered binaural 
sound signals lae

(i)(t) and rae
(i)(t) of filter (i) for 

the determination azimuth or elevation angle are 
fed into a coincidence detector (see figure 2) 
which consists of single detectors and discrete 
delay blocks. The two corresponding signals are 
taken from the same filter range in order to 
determine the ITD according to Jeffress' model 
of binaural sound localization [11]. Each 
detector multiplies it's two input signals which 
are the delayed signals lae

(i)(t)and rae
(i)(t).Ifthe 

sound is a simple click, the delay in the signal 
amplitudes of lae

(i)(t) and rae
(i)(t) determines the 

position. Thus, the activation of a particular 
detector represents the position. The relationship 
is non-linear. Each coincidence detection step 
uses a number of 83 data samples recorded with 
a sample frequency of 16.7 kHz. Assuming a 
total range of interest of 50 degrees of the angle, 
this leads to a theoretically possible resolution of 
15 angular segments and 16 possible positions. 

Instead of feeding the original signals to the 
coincidence detector, they are at first de- 
composed into onset signals on_lae

(l)(t) and 
on_rae

(i)(t) since they are usually by far more 
complex than pure clicks, containing speech, 
background noise, or echos. The onset signals 
are fed to the coincidence detector. In many 
practical cases this leads to a sharp peak of the 
correlation function once an onset signal enters 
the delay lines. When the onsets are too short, it 
is necessary to double one of the signals in order 
to guarantee matching inside the detector. With 
respect to a proposal in [16], the onset signals 
on_l/r(t) are calculated using a recursive envelop 
function en_l/r(t) of the signals l/r(t), yielding 

en_l/r(t) = max {ß en_l/r(t-l), abs(l/r(t))} 

on_l/r(t) = max {0, en_l/r(t) - en_l/r(t-l)}. 

ße [0,1] is a heuristic parameter which has to be 
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Figure 3. Top down: original speech signal l(t) 
of the word "ten", envelop signal en_l(t), onset 
signal on_l(t). 

tuned according to the properties of the sound 
spectrum. For an increasing signal abs(l/r(t)), 
en_l/r(t) follows abs(l/r(t)), and in case of a 
decreasing signal abs(l/r(t)) it might soften 
the decrease with a speed that is depending on ß. 
The onset signal on_l/r(t) is derived from the 
envelop en_l/r(t) by bounded differentiation. 

If there is an echo in the signal, the amplitude 
will be smaller than the one of the direct signal. 
Thus, in many practical situations echo signals 
will be eliminated by decomposing the original 
signals into onset signals. The construction of 
the onset on_l/r(t) from the original signal l/r(t) 
is shown in figure 3. 

The next processing unit in the auditory 
pathway is the colliculus complex. The topolo- 
gical maps in the colliculus complex are model- 
led by a set of homogeneous 16x16 matrices, 
each of which representing one frequency band 
of the cochlea. These maps are the basis for 
auditory-visual sensor fusion for fovea position 
control. The size of the maps corresponds to the 
desired precision of the attention control. 

time time X 

Figure 4. Time discretization of the sequences of 
auditory and visual topological maps. 

The calibration function of the acoustic positio- 
ning is nonlinear with respect to the sound 
source position and the map representation when 
the visual image matrix is taken as a reference. 
This nonlinearity will be compensated by the 
map building process itself. 

The map building generates a sequence of 
topological maps of size 16x16 with auditory 
estimates for the sound source localization. They 
are related to the set points of the maps of the 
visual estimates as shown in figure 4. 

Coincidence detection for azimuth and 
elevation result in separate estimates for sound 
source location with a resolution of 83 possible 
positions, i.e. outputs of the detection cells. A 
simple way of combining both estimates to a 
twodimensional map ios to apply of any kind of 
'AND' operation, for instance a simple multipli- 
cation. The resulting 83x83 map would be too 
large for direct match of the two modalities, and 
by means of the shifting procedure of the signals 
in the coincidence detector this would require 
the generation of a very large number of 
auditory maps between two subsequent visual 
maps. Another possibility to create a topological 
auditory map is to apply a one-dimensional 
fuzzy partition with 16 membership functions to 
the outputs of the coincidence detectors for 
azimuth and elevation, or a radial basis function 
network, respectively, and multiply the outputs 
of the 16+16 collecting receptive fields. 
Activation of the receptive fields should then be 
calculated by summing up the influences of the 
single onset signals, whereas the radial basis 
functions reflect the weight distribution for this 
weighted summation. The receptive fields act 
similar to the soma of a spiking neuron model in 
which the dendritic reactions on incoming spikes 
and spike trains are accumulated. Using a 
trainable neural  network for map building 
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reduces the virtual reflections that occur when 
azimuth and elevation vectors contain more than 
one serious estimate for a sound source position 
and when they are simply correlated. 

The implemented ANN is of MLP type with 
the output neurons ordered in a 16x16 array and 
no hidden layer. Each neuron can be interpreted 
as a twodimensional extension of an Adaline, 
performing a linear superposition of the input 
values. We used this approach as a first working 
solution since it is well known that Adalines are 
suited for echo cancellation. 

right 
coincidence 

(1-83)     left 

hiiiiiiiiiiiiiiji [iiii[TmTii< 

Vyi i I I l l I I I I i I n V) accumulation 

Figure 5. Auditory map building with the help 
of a neural network. 

Some extensions concern the input vector 
configurations. A schematic diagram is shown in 
figure 5. The sample train of the two signals is 
devided into double sets of 83 subsequent 
samples, the complete discrete signals are fed 
into the coincidence detector, and the outputs of 
the detector cells are accumulated after each 
shift. The two resultung coincidence vectors are 
used as the input vectors for the MLP. Target 
output is the map with the neuron at the desired 
target position activated and all other neurons 
non-activated. The supervised training of the 
weights is performed by an improved back- 
propagation algorithm with momentum term and 
adaptive learning rate. 

Besides the suppression of virtual echos, the 
ANN approach for auditory map building has 
the advantage of adapting the coordinate systems 
of the auditory and visual space to each other. 
Whereas the CCD camera recording of the 
images represent objects associated to planar 
surfaces in space, the cells of auditory maps are 
derived from a spherical coordinate system. The 
homomorphic mapping between them is non- 

Figure 6. Calibration schene for auditory map 
building. 

linear. In order to calibrate the auditory map 
building process and to match the two modali- 
ties, the auditory training data of the target posi- 
tions are related to an equidistant grid in the re- 
spective images by eye-balling. A typical image 
of the calibration process is shown in figure 6. 
The training data set is composed by target 
positions on the visual grid, together with the 
respective microphone measurements. Figure 7 
shows a typical predicted auditory map after 
training of the neural network, the target map, 
and the average distances of the prediction error 
for training data and a set of 50 untrained data. 

Audio map 

5             5 

average distance error 

i 

JS_ 
Ü training 
B evaluation 

filter 1 filter 2 filter3 

Figure 7. Exemplary auditory map after training, 
target map, and prediction errors for the filters. 

High-level sound analysis algorithms with a si- 
milar functionality to those which are performed 
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in the auditory cortex were developed in pre- 
vious projects [12], with special adaptation to 
speech recognition and speaker identification 
tasks. They are subject to later integration. 

3  Monocular Vision 

Biological systems use vision extensively. 
Properties of the visual pathway in animals have 
been studied extensively from the retina to the 
visual cortex, providing detailed knowledge 
about several subsequent steps of visual data 
processing. Main performances and properties 
are detection of edges, corner, motion, color, 
temporal and spatial novelty detection as well as 
complex visual feature binding, visual pattern 
recognition or identification, target tracking. 
Results of respective research work are, for 
instance, described in [13] or [14]. All but 
threedimensional vision tasks can be performed 
with one sensor only, whereas threedimensional 
vision requires binocular vision. 

3.1   Biological Example 

Visual sensory organs are the eyes. Visual 
stimuli or images are projected onto the retina 
and produce reactions in the receptor cells, the 
rods and the cones. They sense luminance and 
crominance of respective parts of the image. The 
output of neighboring receptor cells is collected 
and finally fed to ganglion cells which are 
located in the output layer of the retina. Due to 
individual synaptic connections, each ganglion 
cell reacts on particular spatial-temporal stimuli. 

Around the optical axis is an area with a very 
high density of receptor cells and thus, a high 
spatial resolution and sensitivity, the fovea. 
Visual information received in the fovea is 
primarily fed towards the visual cortex in which 
complex recognition tasks can be performed. 

A group of specific ganglion cells with large 
dendritic trees and therefore large receptive 
fields are connected to the colliculus complex, a 
reflex center which is generating nervous signals 
to initiate eye movements. These ganglion cells 
are particularly sensitive to spatio-temporal 
changes of the visual stimulus and serve for 
visual novelty detection and attention control. 
Once a visual novelty is detected, the eyes focus 
on it, allowing for more sophisticated recog- 
nition of visual objects which are projected onto 
the fovea. 

The visual mapping from the retina to the 
colliculus is retinotop, i.e. retinal images are 
represented by respective spatial activations of 
neurons in the colliculus. A retinal image in this 
sense can be seen as the spatial-temporal 
derivative of the external visual stimulus. 

3.2  Technical Implementation 

The governing principles of biological visual 
information processing are used to find suitable 
neuromorphic abstractions and generalizations 
for the technical implementation. The retinal 
image as represented by the ganglion output 
signals is taken as a distinctive interface between 
visual sensing and low level image processing. 
A characteristic functionality of this interface is 
the processing of a spatio-temporal derivative of 
the image. 

The temporal derivative is evaluated for our 
novelty detection paradigm, whereas the spatio- 
temporal derivative will be used in future high 
level visual recognition processes. For the 
novelty detection process, a low resolution is 
artificially introduced by averaging pixel values 
within a fixed neighborhood area. The original 
image matrix consists of 640x480 pixels. It is 
scaled down to 16x16 macropixels each of 
which integrating 40x30 pixels. At a certain time 
step (t), the grayscale value mmt(u,v) of a 
macropixel (u,v) is calculated as the normalized 
sum of the squared differences dt(i,j) of the pixel 
values mt(i,j) and mt.!(i,j) of two subsequent 
image matrices. The summation increases the 
robustness of the detection in the context of 
noise. Examplary subimages of two different 
visual output maps are shown in figure 8. 

.. l IPS^ , 

Figure 8. Fovea control according to the visual 
estimate, using maximum change of the macro- 
pixels. 
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In order to recognize the scenery, the grid of the 
macropixels is drawn in front of the 
corresponding two difference images, and the 
the edge detection is applied to the content of the 
fovea. 

The visual topological maps in the colliculus 
complex are modelled by a set of homogeneous 
16x16 matrices, resulting from the novelty 
detection in the video images. Together with the 
corresponding auditory maps, they are the basis 
for the auditory-visual sensor fusion for fovea 
position control. The relatively low resolution is 
postulated from the assumption that the area of 
the fovea shall be large enough to recognize 
desired objects or movements, and thus, a small 
mispositioning will not affect the recognition 
process significantly. 

Instead of establishing a complex retinal 
model, we implemented a very simple and quick 
technical solution which is based on the SUSAN 
algorithm described in [15]. A local neighbor- 
hood of pixels, representing a receptive field, is 
shifted through the image, generating a new 
image. The number of pixels with grey scale 
values which do not differ too much from the 
one of the center pixel is accumulated, creating 
the new greyscale value of the center pixel. The 
mathematical procedure is a weighted sum- 
mation. In areas of the image with a small spatial 
derivative within the range of the neighborhood 
the new pixel values reach a maximum, whereas 
close to corners or edges a significant decrease 
of the new value is realized. Edge and corner 
detection can thus be performed by simple 
thresholding. The temporal derivative is derived 
by processing subsequent difference images 
which are associated to a temporal grid of 40 ms 
according to the PAL video norm. 

First algorithms that represent these cortical 
visual information processing and which will be 
implemented on base of the existing system are 
the spatial location of faces (e.g., [16], [17]) 
based on an evaluation of color information or 
on morphological operations, the recognition of 
faces (e.g., [18]) for supervisor identification, 
reading lip information (e.g., [19]) in order to 
improve speech recognition in noisy or distorted 
environment, or recognition of hand gestures 
(e.g., [20]) with the help of a codebook in order 
to give sign language commands. As an exten- 
sion towards auditory-visual human-machine 

communication, a technical system is introduced 
in [12] which describes the conversion of 
auditory in visual speech signals by converting 
acoustic cues into naturally looking movements 
of an animated human face. All these high level 
processing units are meant to improve human- 
machine communication significantly. 

4  Auditory-visual Sensor Fusion 

4.1 Biological Example 

As can be seen by now, the colliculus complex 
collects auditory and visual novelty information 
in form of topological representations of neuron 
activation. For this reason, the colliculus is 
assumed to be a primary center for auditory- 
visual sensor fusion as far as novelty detection 
is concerned. The fusion of this bimodal infor- 
mation is performed by the specific synaptic 
connections of the neurons in the processing 
layers of the colliculus which perform basically 
a nonlinear template matching between the 
auditory and visual maps. 

4.2 Technical Implementation 

In biological examples the auditory maps 
representing spatial information in the different 
frequency bands seem to be already fused into a 
general representation before the information 
reaches the colliculus. Our technical abstraction 
of the fusion process ignores the importance of 
this fact and therefore consists of three major 
steps, i) the fusion of a set of subsequent 
auditory maps belonging to the same interval of 
two subsequent visual maps, ii) the fusion of the 
auditory maps in different frequency ranges, and 
iii) the fusion of the resulting auditory with the 
visual map. 

The idea of locally distributed topological 
representations of the perceptional space cue a 
decomposition of the localization problem by 
means of separate auditory and visual estimates, 
combined with a subsequent bimodal sensor 
fusion process. In technical terms this leads to 
particular fusion paradigms of sensory infor- 
mation on feature level (see [21]). Exemplary 
work on fusion of passive sound and vision for 
emulating human perception can be found in 
[16] or [22]. 
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The three steps in sensor fusion are performed 
in the following way: At first, the auditory maps 
belonging to one video interval are fused by 
calculating averages for each position. This is 
necessary to take the unknown delay between 
audio and video recording into account. Then, 
the maps for the three filters are merged by 
calculating the average map. For the auditory- 
visual fusion, each position is virtually widened 
with the help of a Gaussian function, and the the 
intersection is taken as a first estimate. The 
finalestimate of the position is calculated by 
doing so for all positions of the map and 
averaging the result. Then, the fovea position is 
calculated as a quadratic prediction, using also 
the last two auditory-visual estimates. 
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Abstract: This paper proposes a novel minimal 

norm based learning subspace method 

(MNLSM), which can satisfy the requirements 

of being insensitive to the order of presentation of 

the training samples. This MNLSM is applied 

to recognition of simulating high resolution radar 

(HRR) targets {two for ships, one for chaff). 

Experimental results show that the performance 

of proposed MNLSM such as rate of correct 

recognition and convergence speed is satisfactory. 

Keywords- Self-Supervised Learning, Sub- 

space,Pattern Recognition,Minimal Norm, Dis- 

ordered Learning, Radar Targets. 

1.     Introduction 

The learning subspace method (LSM) pro- 

posed by Kohonen in 1978[1], in essence, is an 

adaptive method of extracting principal compo- 

nents of pattern vectors from each class. This 

approach assumes the class labels for all input 

samples to be known, and uses Hebbian rule to 

update the basis vectors corresponding to each 

subspace. So it is also called the self-supervised 

neural network approach [2], which designs 

each subspace in terms of the label for each sam- 

ple. However, the essential drawbacks to the 

LSMs are sensitive to the order of presentation 

of the input samples, in other words, the prior 

learned samples which might be recorded in the 

basis vectors of the corresponding subspace may 

be offset or forgotten by the learning of the late- 

coming samples, which leads to total perfor- 

mance decreasing [2, 3, 4, 6]. In 1982,E. Oja 

et. al proposed the averaging learning subspace 

method (ALSM)[3,4]which can avoid the sen- 

sitiveness to the order of presentation of the in- 

put samples. But it needs to compute three con- 

ditioned correlation matrices and their eigenvalue 

decompositions which leads to the convergence 

speed much decreasing [5]. To avoid or reduce 

the defects for those existing methods, this pa- 

per proposes a novel self-supervised learning 

subspace methods, called minimal norm based 

learning subspace method (MNLSM), which are 

not sensitive to the order of presentation of the 

input samples, and much improve the conver- 

gence speed. 

This new LSM , to verify its validity, is ap- 

plied to the recognition of high resolution radar 

(HRR) targets (two for simulating ships and 

one for simulating chaff). The experimental re- 

sults support our claims. 

2.     A Novel Minimal Norm Based 

Learning Subspace Method 

2. 1    General Presentation 

(D   This work was supported by Grants 69705001 from NSF and DSR of China 
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suboptimal) solutions. The training sample for 

each iteration needs to be selected not only "ran- 

donly" but also some specific criterion based 

from the training sample set. In fact, it is easily 

thought that for some class, the training sample 

with the minimal orthogonal projection length 

on its own subspace can be selected to design 

corresponding subspaces. Thus this method is 

called as minimal norm based learning subspace 

method (MNLSM). Fig. 1 depicts the scheme 

of the learning process for MNLSM. 

2. 3 Minimal Norm Based Learning 

Subspace Iterating Algorithm 

Firstly, assume that» at the fcth iteration, 

the sample with minimal norm from theith sub- 

space is selected as 

x® = argmin{<S(xf) = (xf Pwxf )7 

,j=l,2,-,Ni} (4) 

where argmin {•} denotes the operator of select- 

ing the training sample with minimal orthogonal 

projection length on its own subspace, <5(xw) 

the orthogonal projection length of xj° on the tth 

subspace. 

So, the sample with minimal norm x4° is 

used to learn its own subspace with the positive 

manner and learn other subspaces with the nega- 

tive manner. According to Eq. (1), the iterat- 

ing formulae for the MNLSM can be stated as 

follows 

L» = (/ + /.«•'>x»x«>*)Lfoi,i = 1,2,-,* 

(5) 
L£» = (7 - ^.ox(ox(or)Lwif        j^i 

(6) 

Generally, the above learning process could be 

unlimitedly gone on, but after several iterations, 

the formed subspace might become stable. The 

iterating algorithm for the MNLSM is summa- 

rized as follows: 

Algorithm      Minimal   Norm  Based  Learning 

Subspace Iterating Algorithm 

Step I * = 1 , select the dimensionality p<0 , 

the termination accuracy y and learning 

coefficient MM(i = 1,2, —,c) , set the 

initial basis vectors of the c subspaces, 

and compute the orthogonal projection 

matrixes Pt
co(t = l,2,— ,c) . 

Step 2    for each pattern vector xTO of the tth 

class, compute its orthogonal projection 

length (norm) on its own subspace 

«J(X«) = (xf P«xf )i 

,i = 1,2, —,c;j = 1,2,— ,Nt) 

Step 3 select the training sample with minimal 

norm from the training sample set of 

each class 

x® = argmin {c$(xf ) 

,t = 1,2, — ,cij = 1,2,— ,Ni) 

Step 4 rotate its own subspace with the posi- 

tive manner in terms of Eq. (5) and ro- 

tate other subspaces with the negative 

manner in terms of Eq. (6) using the 

training sample with minimal norm. 

Step 5 compute the averaging orthogonal pro- 

jection length, Td , of all training sam- 

ples with minimal norms x£° from the 

tth class on their own subspaces accord- 

ing to Eq. (3) 

Step 6 if Tt ~^-r) , skip to Step 8; else, contin- 

ue to Step 7. 

Step 7    k=k + l,return to Step 2. 

Step 8    stop. 

Note that whole iteratinng process will be 

terminated until the termination accuracy 7) is 

satisfied. 

3.     Experimental Results 

The simulating range profiles of radar tar- 
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Assume that the ith class a>t has Nt pattern 

vectors {x<° G R*, * = 1» 2, •••, Nif i = 1,2, 

•■•,c) , respectively. The self-supervised learn- 

ing subspace method proposed by Kohonen is 

stated as follows [1] 

L» = (/ + /i«x«x«T)L®1 

LjJ> = (/ - ^xW)^, 

(j^i= 1, 2, •», c) 

.L» = L[u»(Jfc), uf (*), -, u<8>(*)] 

(1) 

where ni°, ß^ are the positive learning coeffi- 

cients. Generally, UPI < l/||x||? and |/^| < 

l/l|x||t ); T denotes matrix or vector transpose; 

x» = [*«>(*),*f0(*),-,*j0(4)7 ; /is an u- 

nit matrix; Lt
(0 = /,[•] indicates the tth sub- 

space composed of pCi> basis vectors u,(0O)O = 

1, 2, —, p<0) at instant * . 

It should be, however, noted that the basis 

vectors u® (4) (n = 1, 2, •••, ?TO) should be 

kept orthonormal in the learning process of the 

LSM. Usually, the orthonormal approach avail- 

able is the Gram-Schmidt one.   Supposed that 

0 ...   0 o ... • - ^ 

the converged orthogonal projection matrices 

corresponding to c subspaces are Pco (i = 1,2, 

••• ,c) , respectively. For an arbitrary input vec- 

tor x , the classification rule of the self-super- 

vised LSM for pattern recognition is that if[l] 
||p(Ox||2  = xTp CO, 

= 2(xruf)2 = max  ||P«x||2 

i = i 

(2) 

classify x in class i , i. e. x £ <"» • 

Assume that the confidence coefficient for 

stopped iterating of subspaces is?? (0. 5^»?^1) 

, if the averaging orthogonal projection of an ar- 

bitrary pattern vector x on the c subspaces, at 

the *th iterating 

T, = -i-2xW'f,»COxW (3) 

satisfies Td~^r) , c subspaces are thought to have 

converged to the given accuracy, the iterating 

will be stopped[2]. 

2. 2 Basic Idea of Minimal Norm Based 

Learning Subspace Iterating Algo- 

rithm 

. C""\   ...       C*}    (~}        ■ ■ •    C^)^^l   First iteration cycle 

^o- oo ■•• o ■o o C/^^1  Second iteration cycle 

Uo o - o 

o pattern sample 

■o - o o ■•• O 

selected sample with minimal norm 

Alth iteration cycle 

To avoid the effect of the order of presentation 

of the input samples on the classification perfor- 

mance , the training sample for each iteration can 

Fig 1.    Scheme of the learning process for MNLSM 

be selected "randonly" from training sample set. 

However, in doing so, it is very difficult for the 

learning subspace to converge to the optimal (or 
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gets (ship 1, ship 2 and chaff) are used as the 

experimental data that will be classified by the 

self-supervised LSM. Assume that the resolu- 

tion of radar is AR = 7. 5m , the radar echoes 

of multiple resolution cells of targets relative to 

radar in the range of 3000 m to 3480 m are mea- 

sured, where the azimuths of targets are 

changed at intervals of A# = 0. 5°. As a result, 

for each class 50 range profiles whose dimension- 

ality is 64 are obtained. In addition, in experi- 

ment the 50 range profiles in the time-domain 

are transformed to those in the frequency-do- 

main by Fourier transform. These transformed 

experimental data are also used to train corre- 

sponding subspaces. 

0.65 

S  0.60 

0.55 

0.50 

0.45 
10 20   30   40   50 

Iterating Number 

tively. In the light of the selection method of di- 

mensionality of a subspace dicussed in [2], the 

dimensionalities of the subspaces corresponding 

to ship 1, ship 2 and chaff are selected as 10, 8 

and 2, respectively. Before experiments, let all 

training sample vectors be normalized to unit 

vectors. Regardless of the properties of individu- 

al training sample vector, assume that the learn- 

ing coefficient /* is selected as follows [2] 

Mx) = «vi- m*        (7) 
where x is the orthogonal projection vector of the 

training sample vector x on its own subspace; a is 

an adjusting coefficient. Generally, 0 < a< 1 . 

In the practical training process ft$,'> is assumed 

■tobe/iCx®) ,i.e. ,A#°. 
In simulation, the obtained 50 sample vec- 

tors in the two domains for each class are divided 

into training sets which consist of 25 odd num- 

bered samples and testing sets which consist of 

25 even numbered samples. Assume that for 

each class one sample randomly selected from 

the 25 training samples is used to design the ini- 

tial subspace. Fig. 2 shows the dynamic learning 

processes of three training samples with minimal 

norms from three classes, respectively. Table 1 

gives the testing recognition results of testing 

samples from three classes in the two domains 

with the iterative number. 

Fig 2. Dynamic learning processes of three 

training samples with minimal norms respectively from 

three classes for MNLSM classifier 

Assume that the numbers of strong scatter 

centres of ship 1 and ship 2 are 9 and 7, respec- 
Table 1    The testing recognition results of testing samples from three classes in the two 

domains with the iterative number for MNLSM classifier 

Iterative Number 10 20 30 40 50 60 70 80 90 100 

Time 

domain 

chaff 23.4% 34.2% 45.5% 56.7% 61.2% 68.7% 75.1% 81.2% 81.6% 82.1% 

ship 1 19.5% 31.5% 37.3% 45.6% 59.3% 66.4% 73.2% 76.6% 78.5% 79.2% 

ship 2 23.3% 33.7% 43.4% 49.7% 61.8% 65.2% 70.8% 73.4% 76.9% 78.4% 

Frequency 

domain 

chaff 12.5% 20.4% 26.7% 34.6% 37.5% 41.3% 48.9% 54.2% 58.5% 61.5% 

ship 1 8.6% 15.6% 21.4% 30.4% 36.6% 42.3% 51.5% 58.6% 61.3% 63.4% 

ship 2 6.7% 13.2% 21.2% 26.2% 31.5% 35.5% 40.2% 48.1% 52.6% 57.2% 

In addition, assume that three kinds of self-su-        pervised   LSMs,   i. LSM,   ALSM   and 
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MNLSM >   are  used  to classify the  simulating        are used to test the rate of correct recongnition, 

range profiles (time and frequency domains) of        the classification results are shown in Table 2. 

three classes. After Eq. (3) is satisfied ( n — 0. 

8 ), the 25 testing samples in the two domains 

Table 2    Comparisons of correct recognition rates of testing samples from three classes in 

the two domains using the three classification methods of LSM > ALSM and MNLSM 

Classification Method LSM ALSM MNLSM 

Rate of Recognition 
(Time-Domain) 

chaff 79.  8% 83.   4% 82.   8% 

ship 1 78.   9% 84.   3% 83.   7% 

ship 2 78.   3% 83.   7% 82.   4% 

Rate of Recognition 
(Frequency-Domain) 

chaff 60.  4% 64.  2% 64.   3% 

ship 1 61.  2% 63.  9% 64.   1% 

ship 2 60.   6% 64.  7% 63.   9% 

From the above experiments,  it can be found 

that the MNLSM  possesses the better perfor- 

mance whether the convergence  speed  or  the rj-j 

correct recognition rate. 

4.       Conclusion [2] 

Learning subspace method (LSM) for pat- 

tern recognition is one of efficient self-supervised 

learning neural network classifiers.  This paper, [3] 

based on the LSMs proposed by Kohonen, pro- 

posed a novel self-supervised LSM with higher 

correct classification rate and less computation 

time, i.   e. , minimal norm based  learning   sub- L4J 

space method (MNLSM) , which is not sensitive 

to the order of presentation of the input sam- 

ples. To verify the validities for this method, 

this  paper  discussed  applying   this  method   to [5] 

recognition of simulating high resolution radar 

(HRR) targets. Experimental results show that 

the performance of proposed MNLSM such as C6} 

rate of correct recognition and convergence speed 

is satisfactory. 
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Abstract 

Machining is a complex process influenced by cutting 
parameters (feed, speed and depth of cut) and process 
conditions (tool wear, material properties, coolant and 
workpiece dimensions). This paper proposed a 
methodology of integrating human knowledge and sensor 
fusion for machining monitoring and control. Fuzzy logic is 
applied to representation of human knowledge in 
machining. Appropriate machining parameters are 
determined by using fuzzy models. Sensor fusion is made 
for capturing sensor features that reflect machining 
performance by means of DSP technology. Human 
knowledge and sensor data are further integrated in a neural 
network structure for monitoring machining quality and 
cutting tool state. 

Key Words: machining, sensor fusion, human knowledge, 
neural network, fuzzy logic 

1. Introduction 

Machining is a complex process influenced by 
cutting parameters (feed, speed and depth of cut) and 
process conditions (tool wear, material properties, 
coolant and workpiece dimensions). Fuzzy logic and 
neural network approaches are widely applied in 
machining analysis and modeling. EL Baradie [1] 
proposed a fuzzy logic model for machining data 
selection. In their model, the relation of cutting speed 
and material hardness is built by fuzzy logic in terms 
of information from the machining data handbook. 
Fang [2] built an expert system to support fuzzy 
diagnosis of process states in fnüsh-turning. 
Machining states are described by fuzzy features and 
the fuzzy feature-state matrices are established 
through the expert system. Ko and Cho [3] applied a 
neural network to cutting state monitoring in face 
milling. In their system, an autoregressive (AR) time 
series modeling is used as preprocessor for 
generating features from each sensor, and then a 
highly parallel neural network is set up for 
associating the preprocessor outputs with the 
appropriate decisions with which the cutting state is 
classified. Purushothaman and Srinivasa [4] studied 

the tool wear monitoring in turning by a back 
propagation algorithm. The tool condition is 
classified into two states: class 1 acceptable and class 
two unacceptable. Different patterns under different 
cutting conditions are studied. Using neural network 
for tool condition monitoring in metal cutting is 
reviewed by Dimla Jr, Lister and Leighton [5]. The 
review illustrated the extent of application of neural 
networks, the methods for handling sensor signals 
within a neural network, and the need for sensor 
fusion from multiple source sensor signals in tool 
condition monitoring. 

In our system sensor fusion from multi-sensors 
(force, vibration, driving motor current, etc.) is 
realized by utilizing digital signal processing 
technology to perform on-line data acquisition, and 
determine monitoring indices (mean resultant force, 
power spectral densities, etc.). Neural networks are 
subsequently used to perform relating monitoring 
process states and fuzzy logic is used to determine 
state variables from monitoring indices. 

To determine and set optimal control signals depends 
not only information on machining process but also 
on human knowledge on irachining, for example, 
selection of inachining parameters, abilities and 
conditions of machine tools and types of cutting 
tools. Sensor fusion from multi-sensors can only 
collect information related to machining process. 
This work develops a system to fusion sensory data 
and human knowledge for machining control, 
interacting with people. The system consists of four 
major parts, namely determination of machining 
parameters, sensor data acquisition and processing, 
machining state monitoring, and machining process 
control. 

Determination of machining parameters and machine 
tool conditions is largely related to human knowledge 
on machining. In the process of determination, 
machining requirements of dimension, tolerance and 
surface roughness are set as quality control objective, 
while machine tool and cutting tool capacity and 
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conditions as well as tool life as constraints. 
Machining information is interpreted using fuzzy 
representation that is taken as input while machining 
parameters as output in a fuzzy decision making 
system. Human knowledge on machining is 
integrated into the fuzzy decision process. 

The sensory data are collected and processed through 
DSP technology. The data processing of filtering, 
windowing, FFT and power spectral analysis is done 
on-line. 

Multi-sensor data and signal features are used for 
building sensor fusion with neural networks. 
Machining parameters are further taken into account 
in the parallel neural networks and machining state 
fuzzy classification. In the system, sensor data such 
as force and control motor current are combined with 
those parameters (feed, speed and depth of cut) from 
the fuzzy decision system as input, and machining 
quality and cutting tool state respectively as output in 
neural network learning. In order to efficiently 
monitor machining process, two parallel neural 
networks are designed in the system with different 
input and output. One network is for machining 
quality (dimensional deviation and surface 
roughness) and the other for cutting tool state (tool 
wear state). Machining state is represented and 
classified according to the machining quality and tool 
wear state using fuzzy classification. Machining 
monitoring is realized in process in terms of sensor 
fusion and machining state specified. 

2. Machining Knowledge 

Machining process involves a variety of knowledge 
which may cover the following aspects: 

. Knowledge of materials. 

. Knowledge of parts to be machined. 

. Knowledge of machine tools, cutting tools and 
fixtures. 

. Knowledge of cutting liquids. 

. Knowledge of manufacturing processes. 

Material properties include tensile and compressive 
strength, hardness, endurance limit, modulus of 
elasticity and torsion modulus, as well as 
machinability, thermal properties and wear resistance 
etc. Machinability is a combination property of 
materials and directly related to machining processes. 
Material hardness is regarded as factor for selection 
of machining parameters. 

Regarding a part to be machined, information of the 
geometry, dimension, tolerance and surface 
roughness as well as possible heat treatment of the 

part is required. The shape features of geometry with 
dimension are achieved by selecting different 
machining processes. The tolerance and surface 
roughness is achieved by properly planning 
machining process and selection of machining 
parameters. 

Manufacturing process requires planning and 
arrangement of machine tools, cutting tools and 
fixtures. Tool wear and life is a major concern in 
machining. It greatly affects machining quality and 
manufacturing cost. Cutting liquids are necessary for 
most continuous machining in cutting hard materials. 
Cutting zone temperature and chips can be dispersed 
effectively by using coolants. 

Although there are experimental data and machining 
data book available as reference, selection of 
machining parameters and planning machining 
process still need human operators' intervention 
using their empirical knowledge. To achieve 
automation of machining planning and on-line 
monitoring and control of machining process, it is 
necessary to realize integration of human knowledge 
with machining process by utilizing fuzzy logic and 
neural network or other expert technologies. 

3. Fuzzy logic modeling 

Many relations in machining may not be precisely 
represented by using traditional mathematical 
modeling equations. For example, the relation of 
material hardness and cutting speed may be generally 
described as that if the material hardness is high then 
the corresponding cutting speed is low and vice 
versa. The tool wear may be described as slight wear, 
medium wear and severe wear. Those relations can 
be effectively described by fuzzy logic modeling. In 
our system developed, two procedures are taken in 
modeling. The first procedure is to select appropriate 
machining parameters by fuzzy decision making with 
respect to rnachining requirements and conditions. 
The second procedure is to integrate selected 
parameters and sensory data into multi-layer 
perceptron (MLP) for cutting tool states and 
machining states monitoring and control. The tool 
and machining states are described by fuzzy 
representation. 

Determination of machining parameters is made with 
a process of multi-level fuzzy decision making. 
Generally speaking, machining parameters selection 
relates to machining requirements of parts to be 
machined, machine tool capacity and cutting tool life. 
There are three steps taken into account in modeling 
for determination of machining parameters as 
follows. 
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(a) Select depth of cut in terms of rough machining, 
half finish and finish machining with respect to 
different materials and material hardness. Harder 
a material is, more force it requires in machining. 
Thus more power consumption is taken, 
obviously which is limited by machine tool 
capacity. We have general rules as 

IF it is rough machining, THEN the depth of 
cut is taken deep. 

IF it is half finish machining, THEN the depth 
of cut is taken medium. 

IF it is finish machining, THEN the depth of 
cut is taken low. (1) 

Furthermore,   taking  material   hardness   into 
consideration, there are rules 

IF the material hardness is very hard, THEN 
the depth of cut is taken very low. 

IF the material hardness is hard, THEN the 
depth of cut is taken low. 

IF the material hardness is medium, THEN the 
depth of cut is taken medium. 

IF the material hardness is soft, THEN the 
depth of cut is taken deep. 

IF the material hardness is very soft, THEN the 
depth of cut is taken very deep. (2) 

(b) Depth of cut and feed determine the size of cut, 
i.e. the volume of material to be removed in 
machining. The use of large feed and depth can 
efficiently increase the material removal rate. 
And if combined the large feed and depth with 
low cutting speed, a long tool life can be 
obtained. However, although a large feed and 
depth are beneficial to tool life and efficient 
material removal, the maximum size of cut is 
limited by a number of factors which can not be 
ignored for achieving a high quality machining. 
These factors are: 

. the maximum power available from the 
machine tool; 

. the maximum forces that the cutter can stand; 

. the maximum permissible deflection of the 
machine tool and work consistent with the 
accuracy required; 

. the tendency to chatter; 

. the fact that surface finish grows worse as size 
of cut is increased. It is verified that feed has 
much higher effect on surface roughness than 
does the depth 

In recent years the trend of high speed macliining is 
progressive. With consideration of the factors above, 
the machine tool power, cutter and work rigidity, and 

surface roughness are taken as variables for selection 
of feed. For rough machining, there are rules as 

IF the cutter and work rigidity is very high, THEN 
the feed is very high. 

IF the cutter and work rigidity is high, THEN the 
feed is high. 

IF the cutter and work rigidity is medium, THEN 
the feed is medium. 

IF the cutter and work rigidity is low, THEN the 
feed is low. 

IF the cutter and work rigidity is very low, THEN 
the feed is very low. (3) 

The cutter and work rigidity is roughly measured 
according to cutter (shank) and work (diameter) 
sizes. For half finish and finish machining, there are 
rules as 

IF the surface quality is very high, THEN the feed is 
very low. 

IF the surface quality is high, THEN the feed is low. 
IF the surface qualify is medium, THEN the feed is 

medium 
IF the surface quality is low, THEN the feed is high. 
IF the surface quality is very low, THEN the feed is 

very high. (4) 

The power consumption will be checked after the 
machining parameters are determined. 

(c) Cutting speed is a major factor that effects on 
machining quality (surface finish) and tool life. 
Ordinarily, surface finish improves with increase 
of cutting speed. The change is made up to 
certain point when the speed arrives at some 
critical value due to a continuous reduction in 
size of the build-up edge. After the build-up edge 
has become insignificant in size, little further 
improvement on surface finish is made with 
increase in cutting speed. The relation of tool life 
and cutting speed is illustrated by Taylor 
empirical equation 

VT"=C, (5) 

where V is cutting speed. T indicates the cutting time. 
Ct is a constant whose value depends on machining 
conditions. It is numerically equal to the cutting 
speed that gives a tool life of 1 min. n is exponent 
whose value varies to some extent with machining 
conditions. Generally, their relation can be stated that 
if the cutting speed is increased, the tool life will 
decrease. So it is necessary to select a cutting speed 
satisfying a desired tool life given by equation (5). 
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With desired tool life, we use surface roughness and 
material hardness as factors to select cutting speed. 
The relationship of cutting speed and surface quality 
may be described as the following rules 

IF the surface quality is very high, THEN the 
cutting speed is very high. 

IF the surface quality is high, THEN the cutting 
speed is high. 
IF the surface quality is medium, THEN the cutting 

speed is medium. 
IF the surface quality is low, THEN the cutting 

speed is low. 
IF the surface quality is very low, THEN the cutting 

speed is very low. (6) 

The relationship of cutting 
hardness may be given as 

speed and material 

IF the material hardness is very hard, THEN the 
cutting speed is very low. 

IF the material hardness is hard, THEN the cutting 
speed is low. 

IF the material hardness is medium, THEN the 
cutting speed is medium. 

IF the material hardness is soft, THEN the cutting 
speed is high. 

IF the material hardness is very soft, THEN the 
cutting speed is very high. (7) 

The above relations represent human experimental 
and empirical knowledge on machining conditions 
and parameters selection. To give an example, a 
fuzzy model for the relations of (6) and (7) may be 
established for describing these relations as 

B = AoR (8) 

where B denotes the speed fuzzy set, A either the 
surface quality or the material hardness fuzzy set and 
R is fuzzy relation of A and B. The symbol "o" 
denotes fuzzy compositional operator. Fuzzy sets A 
and B may be represented by triangular shape 
membership functions ( uAM„ ) 
shown in Figure 1. 

>„,«* 

Figure 1.   Fuzzy membership function 

The VL, L, M, H and VH denote the linguistic states 
of the cutting speed, surface quality or material 
hardness, i.e. very low, low, medium, high and very 
high respectively. The fuzzy relation R can be 
determined from the relations described in (6) and 
(7). For example, the rule 

IF the material hardness is very hard, THEN the 
cutting speed is very low 
may establish a relation as 

um=uA(VH)AuB(VL) (9) 

where     u A (F^)denotes the grade of very hard in 
terms of the hardness membership function, 
uB (VL) the grade of very low in terms of the speed 
membership function, refer to Figure 1. 
um   describes the fuzzy relation matrix of A and B. 

In the same 
expressed as 

way other four rules in (7) may be 

(10) 

uR2=uA(H)AuB(L) 

uR3=uA(M)AuB(M) 

uR4=uA(S)AuB(H) 

uR5=uA(VS)AuB(VH) 

Finally the five rules are combined together using 
fuzzy OR operator. It may be expressed as 

UR=V"Ri !=1 (ID 

Similarly, from the rules (6) the fuzzy relation of the 
cutting speed and surface quality can also be 
established. The speed inferred from the relation (6) 
and (7) in terms of equation (8) may not be same. 
Some decision making approaches may be applied 
fl]. 

4. Knowledge integration in machining 

In order to on-line monitoring machining process, a 
model is designed for integration of human 
knowledge and sensory data shown in Figure 2. 
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Human 
Knowledge 

Fuzzy 
Modeling 

Sensory 
Data 

DSP 
Processing 

Machining 
Parameters 

Data 
Features 

N Knowledge and 
Sensor fusion 
Modeling 

NN models 

K* 
Machining 

Quality 

\* 
Cutting tool 

States 

Figure 2. Modeling of integration of knowledge and sensor fusion 

Human knowledge on machining is represented by 
fuzzy sets and integrated with fuzzy models. With 
fuzzy modeling human experimental and empirical 
knowledge and linguistic inference can be properly 
handled. Appropriate machining parameters selected 
in terms of fuzzy modeling are taken as a part of 
input information for machining monitoring and 
control. On the other hand, sensors are implemented 
with machining systems for capturing machining 
performance. Machining performance is obviously 
related to the machining parameters selected and also 
affected by other factors from machine tool, cutting 
tool and workpiece as well as their combination and 
interaction in machining process. Therefore, 
integrating machining parameters and sensory data 

may be better reflection of machining performance in 
monitoring. 

The sensors currently implemented are a load cell for 
cutting forces measurement and a current transducer 
for spindle motor current. Vibration accelerometer 
will be also implemented. These sensors can reflect 
machining performance from different perspectives. 
DSP technology is used for sensory data processing 
in real time. It does data collection (sampling), 
filtering and FFT. A neural network structure is 
utilized for integration of the machining parameters 
and sensory features. This is a three layer perceptron 
shown in Figure 3. 

Input 
Layer 

Hidden 
Layer 

Output 
Layer 

Machining Quality 
Or Tool State 

Figure 3. A NN model for integration of knowledge and sensory data 

The input layer provides information of cutting 
speed, feed and depth of cut from fuzzy modeling 
and sensory data of forces Fx, Fy, Fz and spindle 
current Is as well as their combination (fusion) from 
sensor measurement and processing. The output is 

either machining quality (surface roughness Ra) or 
cutting tool wear Vb. The machining quality is 
classified as high, medium, acceptable and 
unacceptable. The tool states are classified as slight 
wear, medium wear, severe wear and tool breakage. 
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The classification of machining quality and cutting 
tool state is also made by using fuzzy classification. 

This system developed has two parallel neural 
networks. One network is for monitoring machining 
quality and the other one for cutting tool monitoring. 
The two networks have similar structures in 
principle. The training process is carried out off-line 
until satisfied results are obtained. A back 
propagation training algorithm is applied in the 
neural networks. The back propagation algorithm 
concerns the actual and desired output vectors. The 
actual output from a given input vector (a weighted 
sum) is compared with the desired or target output. If 
there is no difference or the difference is within a 
predefined error range, no weights are changed. 
Otherwise, the weights are updated to reduce the 
difference. In the learning process a gradient search 
technique is used to minimized a cost function that is 
set as the mean square difference between the desired 
and actual outputs. In the BP network an input to a 
neuron is obtained as the weighted sum given by 

(12) 
i=\ 

where bi is bias vector acting as threshold. The 
output of the neuron is obtained by the activation 
function f (net) which normally has a sigmoid form 
as 

oat = /(net) 
1 

(13) 1 + exp(-net) 
The updated weights at iteration (n+1) are calculated 
according to the difference of the actual and desired 
outputs Oi and di. 

wv (n +1) = wv («) + Awy (14) 

The change in weights   Awtj is given by 

Lw^=cOiSj 
(15) 

where a is a training rate coefficient, Oi is the output 
of neuron    y   in the previous layer, and 

S is the error coefficient related to the difference 
of the desired and actual outputs in the layer. The 
error for neurons in the layer may be given by 

learning. Momentum acts like a low pass filter and 
allows a network to respond not only the local 
gradient, but also to recent trends in the error surface. 
It prevents the network from getting stuck in a 
shallow local minimum. With the learning feature of 
neural networks, system function for on-line 
machining monitoring can be adjusted with respect to 
different machining requirements. 

5. Conclusion 

This paper proposed a methodology of integrating 
human knowledge and sensor fusion for machining 
monitoring and control. Its validity is verified by 
experimental testing. Human knowledge in 
machining is interpreted by fuzzy representation in 
fuzzy inference models and appropriate machining 
parameters are selected by using the fuzzy models. 
These parameters are further integrated with sensory 
features in a neural network structure. Combining 
human knowledge and actual sensory data, 
machining performance is effectively evaluated. On- 
line monitoring of machining quality and tool wear is 
achieved. 

6. References 

[1] M. A. EL Baradie, "A fuzzy logic model for 
machining data selection", Int. Journal of Machine 
Tools and Manufacture, Vol. 37, No. 9, pp. 1353- 
1372, 1997. 
[2] X. D. Fang, "Expert system-supported fuzzy 
diagnosis of finish-turning process states", Int. 
Journal of Machine Tools and Manufacture, Vol. 35, 
No. 6. Pp. 913-924, 1995. 
[3] T. J. Ko and D. W. Cho, "Cutting state 
monitoring in milling by a neural network", Int. 
Journal of Machine Tools and Manufacture, Vol. 34, 
No. 5, pp. 659-676, 1994. 
[4] S. Purushothaman and Y. G. Srinivasa, "A back- 
propagation algorithm applied to tool wear 
monitoring", Int. Journal of Machine Tools and 
Manufacture, Vol. 34, No. 5, pp. 625-631, 1994. 
[5] D. E. Dimla Jr, P. M. Lister and N. J. Leighton, 
"Neural network solutions to the tool condition 
monitoring problem in metal cutting - a critical 
review of methods", Int. Journal of Machine Tools 
and Manufacture, Vol. 37, No. 9, pp. 1219-1241, 
1997. 

* = E(0,-4)2 (16) 

In order to provide faster convergence, momentum 
technique is implemented with the back propagation 
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Abstract 
The report describes a new type of neural networks - 
receptor-effector neural growing network (ren-GN) 
which contains a reconfigurable growing receptor area 
and a reconfigurable growing effector area. That 
allows to model conditions coming from the external 
environment, and in accordance with these conditions 
generate control influences to the environment. 
Besides this, multidimensional ren-GN allows us to 
perceive information in different forms (e.g., text, 
sound, graphics and others) and generate control 
signals to the corresponding executive devices. Such a 
network may be highly efficient for the creation of 
intelligence systems. 

Key Words: Neural-like networks, intelligence systems, 
robots. 

1. Introduction 
The experience of building of intellectual systems and 
robots accumulated in different countries for many years has 
shown that modern universal computing facilities, in spite of 
their intensive improvement, are insufficiently efficient. 
The problem of building of principally new computing 
facilities for solving such problems is absolutely obvious. 

In this connection, on the basis of analysis of 
scientific ideas that reflect regularities in the construction 
and operation of biological structures of brain, as well as an 
analysis and syntheses of knowledge, work out by different 
directions in Computer Science, the basis of theory of a new 
class of neural-like growing networks, not having analogue 
in the world practice was designed. A new technology of 
information handling which unite in itself the best qualities 
of the technologies of information handling in semantic 
networks, neural networks and intellectual systems was 
designed [Yashchenko, 1998]. 

2.Neural-like growing networks 
A neural-like growing network (n-GN) is understood as a 
collection of determined by a definite way of interconnected 
neural-like elements, intended for receiving and 
transformation of information, moreover in the process of 
receiving information the network increases in size - grows. 

In the theory of neural-like networks, the main 
notions are notions of a structure, which reveal relationship 
scheme and interactions between elements of a network, as 
well as a notion of architecture. 

Neural-like networks are presented by the 
following categories: a topological (spatial) structure - 
graph of relationships of elements in a network; 

a logical structure defines principles and rules of 
establishing relationships, as well as logic's of network 
operation; 

a physical structure - a scheme relationship of 
physical elements of a network (in the case of hardware 
realization of an neural-like network). 

The architecture of a network is defined as 
principles of building of a network, which express the unity 
of physical analogical structures. 

The topological structure of a neural-like growing 
network is defined as a coherent oriented graph (fig.2.1). 
The processes of passing and remembering of information 
in the network are considered by means of graphs in the n- 
GN theory. 
Neural-like growing networks will formally be assign as 
follows: S = (R, A, D, M, P, N), where R = fa },i=T^- 
is a finit set of receptors; A =faj, / = JJ, - a finit set of 

neural-like elements; D={ dt}, ; = ],e, - a finit set of arcs 
that link receptors with neural-like elements, and neural-like 
elements between themselves; P={Pi),     i = l,k ,N = h, 

where P - a 
threshold of 
excitation of a top 
Ob P=f(mO>Po 
(P0 - is minimum 
allowed threshold 
of excitation) 
provided that set of 
arcs      D,   which 

Fiß-2-1 ■ come to the top a,, 
corresponds to an set of weighted factors M ={mi}, i = l,w, 
whereas mt can take both positive, and negative values. 
In a network, a subset F of exitated tops from the set of 
tops, having direct relationship with the top au and subset of 
excited tops of the network G , not having downwards 
relationships with other excited tops stands out. Symbols 

F and G mark the powers of subsets F and G, 
accordingly. 

Logical structure n-GN is defined by the set of its building 
rules and operation. 
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Fig.2.2. 

Rule 1. If during the perception of information a subset of 
tops F from the set of tops, having direct relationship with 
the top ab is excited, and F > h the relationships of a top a, 
with tops from the subset F are liquidated and a new top ai+1 

joins the network, whose entries are 
connected with entries of all tops of the 
subset F, and the exit of a top ai+1 is 
connected with one of the inputs of a 
top ab whereas the input relationships 
of the top ai+1 are assigned weighted 
factors mit corresponding to the 
weighted factors of liquidated 

relationships of the top au and top ai+I is assigned the 
threshold of excitation Pu equals f(m^, (function from 
weighted relationship factors, which fall into the top ai+1). 
Outcoming relationship of this top is assigned a weighted 
factor mt, equal f(Pi). Relationships, outcoming from 
receptors, are assigned a weighted factor, f(bi), function 
from the code of sign bh corresponding to a given receptor 
(fig.2.2). 
Rule 2. If during the perception of information, a subset of 
tops G is excited and G > h a new associative top ai+1, joins 
the network, which is connected by turning arcs with all 
tops of the subset G. Each of turning arcs is assigned a 

weighted factor mh equal f(PJ of a 
corresponding top from the subset G, 
and a new top ai+1 is assigned a 
minimum threshold of excitement Pb 

equal to the function of weighted 
factors nti of incoming arcs (fig.2.3). 
Information in neural-like growing 
networks is stored as a result of its 
reflecting in the structure of a 

network. New information input into the network causes a 
process of building of its structure. 
Neural-like growing networks are a dynamic structure, 
which changes depending on values and time of arrivals of 
information on to receptors, as well as former condition of 
the network. Information on objects is presented in it by set 
information on objects of excited tops and relationships 
between them. Storing the object descriptions and situations 
is accompanied by input in to the network of new tops and 
arcs when turning a group of receptors and neural-like 
elements became excited. The process of excitation spreads 
on the network, as a wave. 

3.Receptor-effector neural-like growing 
networks 
It is known that "An organism is educated by buildings 
sensing and motor schemes: it extracts from its experience 
correlation's between information, perceived by its sensor 
systems, and its own actions (motor activity)" [P.Lindsey, 
D.Norman]. 
Thereby, the education and interaction of biological objects 
with the environment is realized through acts of motion. For 
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Fig.2.3. 

Fig.3.1 

ensuring a possibility of modeling of processes of education 
and acquisition by the system of the knowledge on the 
external world n-GN were developed in to receptor-effector 
neural-like growing network (ren-GN). 
The topological structure of ren-GN is presented by a graph 
(fig.3.1). In ren-GN one reveals receptor R field (an 
analogue of sensor and receptor areas of biological objects), 
effector E field (an analogue of a motor area of biological 
objects), receptor A, and effector .«4,, zones. 

Formally, 
ren-GN will be 
assigned as follows: 
S = (R,Ar,Dr,PrNr 

> &> Ae , MJe t   "e , Me t 

Ne h_R ={ rt }, 
i = l,n- a finit set 
of receptors, Ar ={ o, 
}, / = 7jfc-finit set of 
neural-like elements 
of a receptor zone, Dr 

={ di }, i = Ze - a 
finit set of arcs of a 
receptor zone, E ={ c, 

}, i = Te - a finit set of effectors, Ae ={ a, }, i = l,k- a 
finit set of neural-like elements of an effector zone, De=fdJ, 
i = T^ - finit set of arcs of an effector zone, Pr={Pi },Pe={ 
Pi}, i = TJc, where P, - a threshold of excitation of a top 
air, aie, Pi =f(mi) under the condition that the set of arches Dr 

, De coming on tops air, aie, corresponds to set of weight 
factors Mr ={rrii}, Me={mJ, i = T~w , and m, can accept 
both positive, and negative values. A^r, Ne - are variable 
factors of connectedness of receptor and effector of zones. 

In ren-GN, subsets of exited tops Fr and Fe of 
receptor and effector zones stand out accordingly, and 
subsets of exited tops Gr and Ge of receptor and effector 
zones of the network. Symbols F and G    marked the 
powers of subsets F„ Fe, and Gr, Ge accordingly. 
The logical structure of ren-GN. As far as the composition 
of ren-GN includes receptor and effector zones, interacting 
between themselves, there is a need in the building of rules 
of development and operations of the network. These rules 
are formulated as follows. 
Rule 3. If during the perception of information by a receptor 
field a subset Fr from the set of tops, having_ direct 

relationship with the top a[, is excited, herewith F > h, 
and at generating of actions by effector zone a subset Ge is 
excited and G" >h, the relationships of the top with tops 
from the subset Fr are liquidated, and a new top aM

r, joins 
the network, which entries are connected with outputs of all 
tops of the subset Fr, and output of a top a,+/ is connected 
with one of the inputs of a top a-, with assigning to 
incoming relationships of top a,+/ weighted factors nti, 
corresponding    to    weighted    factors    of    liquidated 



relationships of top a{, while top ai+1
r is assigned a 

threshold of excitation Pai+i, which equals to function from 
the weighted factors of relationships, incoming into a,+/ 
top. Outcoming relationships of a top . a,+/ are assigned 
weighted a factor w, which equals/(Pa,+/;. 

Relationships, coming from receptors, are assigned 
a weighted factor, which equals to the code of sign 6,, 

corresponding to a given receptor ave 
assigned to the relationships coming 
out from receptors. In effector zone a 
new assotiative top ai+f, which 
connects by outcoming arcs with all 
tops of a subset Ge connects to the 
netwotrk. Each of outcoming arcs is 
assigned a weighted factor, TM, , equal 
, f(Pa?) of a corresponding top from 

Fig.3.2 the subset G>, while to a new top , 
an-* a minimum threshold of excitement Pai+1

e , which 
equals to functions from weighted factors, w, of incoming 
arcs, is assigned Top a[ of a receptor zone is connected 
outcoming arc with the new top of an effector zone. New 
tops immediately after the introduction to the network are in 
the excited condition (fig.3.2). 

Rules 4,5,6 are formulated in accordance with fig.3.3, 3.4, 
3.5 and in 
connection with 
restrictions on the 
volume of 
presented material 
which are not 
shown here. 

5V 

Fig.3.3 Fig. 3.4 Fig.3.5 

Information in receptor-effector neural-like 
growing networks is stored as a result of its reflection in the 
structure of network. Input of new information to the 
network causes a process of building of its structure and 
shaping the control influences to the external environment 
(i.e. to educate a network to work out control signals), in 
accordance with knowledge obtained by the network as a 
result of accumulations, analysis, categorizations and 
generalising information from the external world. 

4. Multidimensional receptor-effector neural- 
like growing networks 
For remembering and processing of the descriptions of 
images of objects or situations of a problem area, as well as 
generations of control influences by means of different 
information spatial presentations (text, sound, graphics etc.), 
multidimensional receptor-effector neural-like growing 
network (mren-GN) are entered. 
Topological structure of multidimensional receptor-effector 
neural-like growing network is presented by the graph 
(fig.4.1). Formally mren-GN will be assign as follows. 

S = (R,Ar,Dr,Pr,Mr,Nr,E,Ae,De,Pe,Me, Ne), 
R=}Rv,Rs,Rt,   Ar => Av, As, At,      Dr =>Dv, Ds, Dt, 
Pr=>Pv, Ps, Pt, Mr=>Mv,Ms,Mt, Nr => Nv, Ns, Nt, 
E=> Er, Ed, Ed, Ae => Ar, Adl, Ad2, Dt =) Dr, Ddl, Dd2, 
P^) Pr, Pdl, Pd2, M,=> Mr, Mdl, Md2, N^> Nr, Ndl, 
Nd2, Aere Rv, Rs, Rt - is a final subset of receptor, Av, As, 
At - is a final subset of neural elements, Dv, Ds, Dt - is a 
final subset of arches, Pv, Ps, Pt - is a final set of thresholds 
of excitation of neural elements of a receptor zone, 
belonging, for example, to visual, acoustical and tactile 
information spaces, Nr - is a final set of variable factors of 
connectivity of a receptor zone, Er, Edl, Ed2 - is a final 
subset of effectors, Ar, Adl, Ad2 - is a final subset of neural 
elements, Dr, Ddl, Dd2 - is a final subset of arches of 
effector a zone, Pr, Pdl, Pd2 - is a final set of thresholds of 
excitation neural elements of the effector zone, belonging, 
for example, to the speech information space and to the 
space of actions. Ne - is a final set of variable factors 
connectivity of a effector zone. The logical structure of 
mren-GN is described by rules 3-7. 

Rule 7. If during arrival of different information spaces of 
external information on receptor fields, in receptor zone of 
these information spaces a subset Q, of finite tops, 
belonging to this descriptions is excited, and herewith in 
effector zones of corresponding information spaces subset 
Qe finite tops, working out a set of actions, corresponding to 
input information is excited, then tops of receptor areas of 
these information spaces, belonging to subset Qr, are 
connected between themselves with bi-directional arcs. The 
tops of effector zones, belonging to a subset {£., are also 
connected between themselves with bi-directional arcs 

(fig.4.1). 
Thereby, in ren-GN 
and mren-GN, 
information about the 
external world, its 
objects, then- 
conditions and 
situations which 
describe relations 
between them, as 
well as information 
on actions, caused by 
these conditions, is 

saved due to its reflecting in the structure of a network 
while the arrival of new information causes a shaping of 
new associative tops and relationships and their 
redistribution between tops, which appeared earlier, 
herewith general parts of these descriptions and action 
appear, which are automatically generalised and are 
classified. 
The main distinctions and comparative features the 
neural-like growing networks and common neural network 
are given in tabl.l 

Fig.4.1 
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Neural-like growing networks Neural networks 

Neural-like element 
Microprocessor with memory. 

Neural element 
Threshold element 

ft is defined some arbitrary 
function of enters, for example, 
Bayes' formula P(H:E)=P(E:H) 
P(H)/(P(E:H) P(H)+ P(E:not H) 

PftiotH))* 

ft is denned the weighted sum of 
enters, non linearly processed 

Connections and weights are set 
and appear equal as as many it is 
necessary 

Connections  and  weights   are 
defined by the architecture of the 
network. 
The   number   of   networks   is 
redundant. The special methods 
of   the    elimination    of   the 
connections are required. 

The factor of connectivity 
enables to control connection 

neural element relations. 
Absent 

Reconstructed structure. Neural 
elements are connected by sense. 

Fixed structure. Elements are 
connected everyone to everyone. 

The possibility of composition 
and decomposition (deduction - 
induction). The object is defined 
by set of attributes and vice versa 
the set of attributes is defined by 
object. 

Absent 

Multilevel      structure.      The 
number   of  levels   (layers)   is 
arbitrary and is defined by sense. 

Usually not more three levels 
(layers) are used. Using more 
then 3 levels has no sense. 

The duration of training is from 
some minutes to some seconds. 

The duration of training is from 
many hours to some seconds. 

Effector a zone. 
Develops,        classifies,        and 
generalizes actions  adequate to 
conditions formed in the receptor 
zone. 

Absent 

Appearance of false phantoms 
(false attractors) is absent 

Appearance of false phantoms 
(false attractors) is present. 

Network capacity 100% Network capacity 20-30% 

Parallelism of the computation 
is realized on the brunches of 
activity in all layers parallel. 
The efficiency of the computation 
is heightened (count on active 
part of the network). 

Parallelism of the computation 
is realized on layers sequentially. 

The efficiency of the computation 
is reduced (count on the whole 

matrix). 
*) P(H) - a priory probability of the outcome in the case of absence of 
additional illustrations. 
P(H:E) -the probability of some hypothesis H realization in the presence 
of certain confirmation of illustrations E. 
P(E:H), P(E:HeH) - correspondingly, the probability of receiving answer 
"Yes", if the possible outcome is correct or incorrect. 

5. Example of construction n-GN 
Instance  1.  The principle  of constructing n-PC   (for 
simplicity of perception) will be looked at the example of 
constructing tie multiconnection growing network. 

Formaly n-PC is described so:   S=(R,A,D,N). 

tabl.l Let be learning access, which consests of k- 
notions: 1. a,b,c,d; 2. b,c,d,e,g,h; 3. d.ef; ... k. d,e,h. 

Let's set up variable 
coefficient of connectivity NS5. 
In this case when entering the 
description of the first notion 
(a,b,c,d) on the receptor field, 
the    receptors     1,2,3,4    are 
changed over to the state of 
excitation. The vertex a,b,c,d is 

formed and the connections between vertex and excited 
receptors are set up (fig.5.1.). The vertex is changed over to 
the state of excitation.  In a definite time the excitation is 
taken of from receptors and a vertex. 

When entering the description of the second notion 
(b,c,d,e,gh) on the receptor's 
field, the receptors 2,3,4,5,7,8 
are changed over to the state of 
excitation.    The    number    of 
sighns,    coincided   with   the 
description of the first notion 
(b,c,d)=3, then N=3 and in this 

case the second vertex b,c,d,e,g,h is formed (fig.5.2). The 
vertex is changed over to the state of excitation. The 
excitation of the vertex and receptors is taken off. 

When entering the description of the third notion 
(d, e, f) on the receptor's field 
the receptors 4,5,6 are changed 
over to the state of excitation 
and N=2 then in this case the 
third vertex d,e,f is formed, 
(fig.5.3). The vertex is 
changed ove to the state of 

excitation. In a definite time the excitation is taken off from 
the vertex and receptors. 

When entering the 
description of the k-notion 
(d,e,h) on the receptor's field, 
the receptors 4,5,8 are changed 
over to the state of excitation, 
N = 2, the k-vertex is formed 
(fig.5.4). 

The vertex is changed 
over to the state of excitation. Then the excitation is taken 
off from the vertex and receptors. 

This it is formed on-layer m- 
PC in which the description of 
k-notion is stored. 
Instance 2. If the variable 
coefficient of the connectivity 
will be set Nä3. In this case 

i ■  when entering the description 
of the first notion (a,b,c,d) on the receptor field, the 
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receptors 1,2,3,4 are changed over to the state of excitation. 
The vertex a,b,c,d is formed and the connections between 
vertex and excited receptors are set up (fig.5.5.). The vertex 
is changed over to the state of excitation. In a definite time 
the excitation is taken of from receptors and a vertex. 

When entering the description of the second notion 
(b,c,d,e,g,h) on the receptor's 
field R, the receptors 2,3,4,5,7,8 
are changed over to the state of 
excitation. The number of signs, 
coincided with the description 
of the first notion (b,c,d)=3, 
then N=3, the vertex (b,c,d) and 

(b,c,d,e,g,h) are formed. The connection of the vertex 
a,b,c,d with receptors 2,3,4 are liquidated. Inputs of the 
vertex b.c.d are connected with receptors 2,3,4 and outputs 
of this vertex are connected with inputs of the vertex 
(a.b.cd) and b.ade.e.h. and these vertices are changed over 

to the state excitation (fig. 5.6). 
In a definite time the excitation 
is taken off from the vertex 
(b,c,d) (b,c,d,e,g,h) and 
receptors. 

When entering the 
description of the third-notion on the receptor's field the 
new vertex (d,e,f) is formed (fig.5.7). 

When entering the 
description of k-notion on the 
receptor's field, the new 
vertex is formed (fig.5.8). 
In this case the separation of 
the common sighns, described 
notions is performed. 

Thus the description 
of the notion (the vertex of the network) and sighns are 
stored. Besides ehat, the information, which enteres the 
receptor's fields of the networks, is classified and structured 
automicially. 

When forming new vertex in n-GN, weight 
coefficients of connection mt and thresholds of the 
excitation of the vertex Pt are considered, that is 
constructing n-GN is performed analogically with building 
m-GN, but in accordance with rules, which are described in 
the matereals presented before. 

5.1. Prospects for using the receptor-effector neural-like 
growing networks for intellectual system 
Using the idea of organization of n-GNs in their physical 
representation, we can create an intelligent 
multimicroprocessor system with a neuron-ensemble 
structure (IMSNS). The architecture of this system consists 
of a collection of microprocessor modules, each represented 
by an array of microprocessors. 

The high-intelligence multimicroprocessor system 
with  a  homogeneous   multidimensional   array   neuron- 
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ensemble structure is a new-generation artificial intelligence 
system. 
The main advantages of IMSNS stem from new approaches 
to architectural and program organization of the system 
using the theory of growing semantic networks with a 
neuron-ensemble structure, analysis of array structures with 
neuron-ensemble organization, new information processing 
technologies and two-level organization of system 
architecture, modularity and homogeneity of hardware and 
software tools, and use of array structures with 
multidimensional organization which dispense with 
physical realizations of connections between the nodes of 
the neuron network.. 
IMSNS can be manufactured as a separate PC board, an 
intelligent PC coprocessor, or a powerful new-generation 
high-intelligence PC. 

The proposed conception of a multimicroprocessor 
system with a homogeneous array multidimensional 
neuron-ensemble structure makes it possible to store and 
classify the input information, and to execute operations in 
accordance with this information allowing for the frequency 
of occurrence of events, their probability and significance. 
It is intended for solving complex problems that require a 
large volume of information, processing of large data files, 
generation of knowledge bases and artificial intelligence 
systems. This creates the potential for substantial gains in 
the productivity of the user's intellectual labor. 

The functions performed by the system include 
description of situations and concept formation; 
transformation of situations and extraction of new concepts; 
creation of associative links; associative search; action 
planning; instruction and self-learning. 
Some of the problems solved by the system include parallel 
processing of computational tasks; generation of a feature 
space and class description; image recognition; testing and 
diagnosing of technical systems; creation of real-time 
expert systems with powerful hardware support in various 
domains of human activity, such as biology, medicine, 
military science, meteorology, geology, nuclear physics, 
criminology, production control, economics, environmental 
science, etc. 
The hardware implementation of neuron networks makes it 
possible to achieve high information processing speeds. 
However, the difficulties with implementation of a large 
number of interconnections limit the size and 
correspondingly the efficiency of the modeled network. 
In the proposed IMSNS these difficulties are avoided by 
dispensing with physical realization of interconnections. 
Networks thus can be created with an unlimited number of 
pseudoconnections. The specific features of the system 
make it possible to obtain the result almost instantaneously 
(after some initial learning). 

The EMSNS architecture is characterized by a high 
level of decentralization and parallelism. 
The multimicroprocessor system with a neuron-ensemble 
structure    (NS)    that    ensures    automatic    effective 
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parallelization and classification of information streams is 
characterized by two-level organization. The bottom level, 
which contains the tools for representation and preliminary 
processing of input information (transformation of input 
information from natural language representation to 
machine language representation in the form of feature code 
combinations), has been implemented in a traditional von 
Neumann architecture. The top level performs multilevel 
parallel processing of a set of information features (detects 
the presence of features and connections between described 
objects, establishes arc weights and element thresholds, 
processes the information corresponding to the given 
feature in the nodal elements of the array), and thus 
generates a multidimensional neuron-ensemble structure in 
a three-dimensional array. 

Thus, the IMSNS, while implemented in a 
traditional von Neumann architecture, on the whole 
functions according to the principles of associative artificial 
intelligence systems. 

In classical multiprocessor computing systems, the 
modular organization of hardware and software tools 
imposes a dependence of information processing efficiency 
on the consistency of the physical structure of the 
processing resources with the logical problem architecture. 
In the absence of this consistency, a large part of the 
resources may remain idle awaiting the results of 
intermediate computations. 

In IMSNS this difficulty is resolved by dynamic 
linking of the logical and physical structures in the process 
of loading the information (concurrently with the processing 
of feature codes) into the array of microprocessor elements. 

The IMSNS architecture differs in an important 
respect from existing implementations of multiprocessor 
systems with overall step-by-step clocked control. In 
IMSNS, step-by-step control is implemented only within 
each microprocessor element, whereas on the whole the 
clock is replaced with an indexing mechanism, which fixes 
the termination of the transients excited by changes in input 
signals. 

Another distinguishing property of the IMSNS 
architecture is the possibility of combining the data base 
with the knowledge base in the array of microprocessor 
elements. Data in the NS are represented by the set of 
excited nodes (microprocessors storing the physical 
parameters of the data), while knowledge is represented by 
the interconnections between the nodes and also by the 
weights of the interconnections and the excitation thresholds 
of the nodes. The basic operations of the NS, which 
computes the interconnection weights, compares the results 
with the nodal excitation thresholds, and performs other 
functions, do not require special software or hardware tools 
for data base or knowledge base management. The programs 
that compute the nodal activity coefficients are distributed 
throughout the network, simple to execute, and their 
structure is independent of the content of knowledge and the 
specifics  of the  application  domain.   The  network  is 
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transformed under the control of an array of controlling 
microprocessors by a special recursive algorithm, which 
generates in the interior of the microprocessor element 
module a growing neuron structure that changes in response 
to each new information input. The multilevel structure of 
the system makes it possible to store knowledge about 
knowledge, i.e., to transform previously stored rules in 
accordance with new rules. 

The IMSNS can be implemented using ordinary 
medium-scale-integration digital logic connected by line 
buses into an array. 

To ensure execution of these operations and 
solution of specialized problems (e.g., pattern recognition 
on its own), IMSNS can be implemented using special- 
purpose VLSI, which should substantially reduce their size 
and power consumption. Moreover, the proposed 
conception of a multidimensional neuron-ensemble structure 
can be implemented using optimal neuron networks with 
holographic memory based on semiconductor laser arrays. 
New-generation computers based on IMSNS may find wide 
uses in various areas and penetrate into many spheres of the 
world market. 
At present, the development is in the stage of theoretical 
substantiation and experimental testing. Partial modeling 
has been carried out. The recursive algorithm constructing 
an array with a multidimensional neuron-ensemble structure 
has been demonstrated to function as intended. 

6. Conclusions 
At present, the development is in the stage of theoretical 
substantiation and experimental testing. Partial modeling 
has been carried out. The recursive algorithm constructing 
an array with a multidimensional neuron-ensemble structure 
has been demonstrated to function as intended. 
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Abstract Gravity Probe B (GP-B) is a gravi- 
tational experiment designed to measure two pre- 
dicted by General Theory of Relativity precessions 
of a free-falling gyroscope placed in a polar orbit 
about the Earth. The frame-dragging effect (drift 
perpendicular to the orbital plane) has never been 
directly measured before, while the geodetic effect 
(drift in the orbital plane) will be measured with an 
unprecedented accuracy. GP-B Data Analysis in- 
cludes processing telemetry data from several phys- 
ical sources placed on the GP-B spacecraft: the sci- 
ence gyroscope's readout system, telescope optical 
system, Global Positioning System (GPS), and the 
spacecraft's attitude control system. We discuss 
here only one of the numerous problems that need 
to be resolved through Data reduction: precise es- 
timation of the gyroscope's relativistic drift rates. 
The two-step nonlinear filtering approach is pre- 
sented and estimation recursive algorithms that will 
be used in the GP-B Data Analysis are discussed. 

Keywords: Data analysis, Multi-sensor signal 
processing, Nonlinear filtering. 

1    Introduction 

The Gravity Probe-B Relativity experiment [1] 
makes use of gyroscopes in Earth polar orbit to 
measure two effects of Einstein's General The- 
ory of Relativity with previously unachieved 
accuracy - the precessions of the local inertial 
frame free falling about the Earth with respect 

GEODETIC 
6.6 arcsec/yr 

Guide Star 

FRAME DRAGGING 
0.033 arcsec/yr 

Figure 1: GP-B experimental concept 

to the inertial frame of the distant universe. In 
a polar-orbiting spacecraft, with the gyroscope 
spin axes lying in the plane of the orbit and 
perpendicular to the Earth's rotation axis, the 
two effects to be measured - the geodetic effect 
and the never before measured frame-dragging 
effect - are at right angles with respect to each 
other. The magnitudes of the two effects in a 
650 km polar orbit are 6.6 arcsec/year for the 
geodetic effect and between 33 and 42 marc- 
sec/year for the frame-dragging precession, de- 
pending upon the choice of guide star. Figure 
1 is a schematic representation of the GP-B 
experimental concept. 

The experiment will measure these preces- 
sions with respect to the line-of-sight to a ref- 
erence star whose position and proper motion 
with respect to the inertial frame of the distant 
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universe (the "fixed" stars) is determined in 
separate astrometric measurements. The goal 
is to measure the geodetic precession to bet- 
ter than 1 part in 104 and the frame-dragging 
precession to better than 1 percent. The fun- 
damental objective of the relativity mission is 
to measure the angular rate between the lo- 
cal frame (free-falling about the Earth) and 
distant inertial space (defined by the "fixed" 
stars) to an accuracy better than 0.5 marc- 
sec/year, independently in each direction, for 
a one year experiment. 

Changes in the direction of local inertial 
space are detected by measuring the Science 
Gyroscopes (SG) spin axis direction relative to 
the spacecraft (S/C) in which the SG are con- 
tained with a low noise, non-interfering read- 
out system (four gyroscopes are used for re- 
dundancy with certain systematic effects re- 
moved by spinning them in opposite direc- 
tions). The spacecraft is referenced to distant 
inertial space, as calibrated by a guide star, by 
the Science Telescope (ST) fixed to the space- 
craft. The SG and ST data are subtracted 
from each other and corrected for known ef- 
fects (such as aberration of starlight and oth- 
ers) in a data reduction process whose output 
is the measured drift between the local and 
distant inertial spaces; i.e., general relativistic 
drift. Extremely low levels of acceleration on 
the SG's are required to keep the Newtonian 
drifts of the gyroscopes from overly corrupting 
the experiment data. The spacecraft is there- 
fore operated drag free to minimize the effects 
of disturbances on the science gyroscopes and 
guarantee that they remain in a purely grav- 
itational orbit (geodesic). One science gyro- 
scope will be used as the drag free proof mass 
to virtually eliminate the disturbing forces on 
that SG. The GP-B spacecraft and its attitude 
control system are designed to point the tele- 
scope continuously towards the guide star (or 
towards its apparent position) and to minimize 
the body-fixed pointing error. 

The GP-B spacecraft also rotates at a con- 
stant roll rate about the line of sight to the 
guide star. Rolling the satellite allows to move 
the science signal to the roll frequency, where 

the readout measurement noise (which has 1/f 
spectrum) is lower. Rolling also allows a sin- 
gle gyroscope pick-up loop and its readout to 
measure both the geodetic and frame-dragging 
precessions. Good orbital information of both 
the Earth and the S/C is required for the ex- 
periment calibration against known fundamen- 
tal processes. The readout system scale factor 
is precisely calibrated during the experiment 
using the optical aberration of starlight due to 
the spacecraft motion around the Earth and 
the Sun. 

The GP-B gyroscope has been designed as 
a near perfect inertial instrument: Newtonian 
precession due to the classical torques is sup- 
posed to be less than 0.3 milliarcsec/year. This 
means that the gyroscope's measured preces- 
sion angle is assumed to be caused mainly by 
the relativistic effects. A detailed analysis of 
classical torques acting on the GP-B gyroscope 
is presented in [2]. 

In this paper we describe our approach to 
the GP-B Data Analysis as the set of fil- 
ters that estimate the model-dependent system 
state vectors and calculate covariance matrices 
that represent statistical errors of the relativis- 
tic drift measurements due to the gyroscope 
and/or telescope readout noise and unmodeled 
disturbances. 

2    GP-B Science Signal Model 

The accuracy required in the GP-B experiment 
demands resolving numerous problems of the 
'optimal' data processing of the GP-B science 
signals. Here we discuss only one of them: es- 
timation of the relativistic geodetic and frame- 
dragging drift rates of the GP-B gyroscope 
from the data provided by the gyroscope's 
readout system. The GP-B readout system 
is based on the effect of magnetic field gen- 
erated by a spinning superconductor(London 
moment) [3]. Precession of the gyroscope an- 
gular momentum results in the variations of 
the London moment, that is aligned with the 
instantaneous gyroscope spin axis. The sci- 
ence signal measured by the readout system 
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represents the London moment magnetic flux 
through the gyroscope pick-up loop converted 
to the output voltage by the SQUID magne- 
tometer. 

The simplified model of the gyroscope sci- 
ence signal can be represented as 

z(t) = Cg [(NSQ + Rgt - ci(t)) cos(wrt + 6(f))- 

(EWo + Rft-e2(t))sm(u)rt+6<j>)}+b(t) + v(t), 

(1) 
where Cg is the readout system scale factor, 
NSo and EWo are North-South (in the orbital 
plane) and East-West (perpendicular to the or- 
bital plane) initial misalignments, Rg and Rf 
are the average drift rates, UJT is the spacecraft 
roll rate, 8(f) is the roll phase offset, e\ and 
£2 are optical aberration components, b is the 
readout system bias. Measurement noise v(t) 
is assumed to be a white noise with zero mean 
and known covariance matrix R. 

Optical aberration is a shift in the apparent 
direction towards the guide star due to the ve- 
locity of the spacecraft to the line of sight to 
the star. There are two categories of aberration 
for the GP-B spacecraft: orbital aberration 
caused by the satellite's orbital motion around 
the Earth, and annual aberration, due to the 
motion of the Earth around the Sun. Optical 
aberration signals are continuously calculated 
based on the information from the on-board 
GPS and NASA/JPL Earth ephemerides. 

3    Relativistic  drift  rate  esti- 
mation 

Introducing the state vector of parameters to 
be estimated, 

X= [Rg, Rf, Cg, 6<t>, NS0, EWo, bf,  (2) 

and under reasonable assumption that some 
components of the state vector (2) may vary 
with time during the experiment, the data 
analysis problem is recognized as the nonlin- 
ear filtering problem: for the linear state vector 
model 

xk+i = $kxk + Tkwk, w ~7V(0, Qk),     (3) 

and nonlinear measurement model 

Zk = F{xk,tk,£i(tk),e2(tk),ur) + vk, 

k = l,2,...,N (4) 

find the estimate x that minimizes the least- 
square cost function 

N 

'"5 .fc=l 

JV-1 

+ 5Z Wk Qk lu)k 
fc=l 

(5) 

For the GP-B science signal structure (1), 
as it has been shown by numerous simulations, 
the standard nonlinear estimators, such as the 
extended Kaiman filter (EKF) and the iterated 
extended Kaiman filter (IEKF) [4] give, , a bi- 
ased estimates of relativistic drifts Rg and Rf. 
The reason is that both EKF and IEKF lin- 
earize the measurement equation (4) and the 
cost function (5). To overcome that difficulty, 
a new nonlinear recursive two-step estimator 
has been developed   [5]). 

Instead of linearizing the cost function, it 
breaks the minimization procedure into two 
steps. A new set of states is defined for the 
first-step filter using nonlinear combinations of 
the unknowns, so that the measurement equa- 
tion becomes linear with respect to the new 
ones. The choice of first step states is de- 
pendent on the particular problem being ad- 
dressed. The first-step linear problem can be 
solved optimally by exploiting a linear Kaiman 
filter. The second-step states are then calcu- 
lated by treating the first step state estimates 
as 'new' measurements and by using an itera- 
tive Newton-Raphson searching algorithm. 

By choosing the first step states as 

V = f(x) = 

Cg (NSo cos 8<j> - EWo sin 6<f>) 
-Cg(NSo sin 5<f) + EW0 cos 6<f>) 

Cg(Rg cos 6(f> — Rf sin 6<f>) 
—Cg(Rg sin 8(f) + Rf cos 8(f) 

-Cg COS 8(f) 

Cg sin 8(f> 

(6) 
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we convert the nonlinear measurement equa- 
tion (1) into a linear one: 

where 

H = 

z = H{t)y + v, (7) 

cosu)rt, sinu>rt, tcosu>rt, tsmojrt, 

e\ cos u>rt + 62 sin ujrt, e\ sin u>rt — e<2, cos u>rt, 1 

(8) 
Applying now the two-step estimator [5] we 

obtain the following recursive estimation pro- 
cedure. 

First-Step Optimization: (y and Py are the 
optimal first step estimate and covariance ma- 
trix) : 

Measurement Update: 

TTU-II Vk = yk + Py,kHk Rk  (zk - Hkyk), 

Time Update: 

Vk+i -yk + fk+i(xk+i) ~ fk(xk+i) 

T- 

(9) 

Af„,fc+1   =  Py,k + iL)M*'k+i[iL 
X=Xk + 1 

zw® T-i 

dx I 
(10) 

x=xk 

Second-Step Optimization: (x and Px are the 
optimal second step estimate and covariance 
matrix). 

Iterative Measurement Update (i- iteration 
number): 

xk,i+l — xk,i — Px,k,i Qk,i'i k = 1,2, . . . ,N 

x,k,i+l 
21) p-i 21 
dx /    y<k \ dx 

X-—Xfc^i 

qk,i = -(yk- fk(xk,i))TPyj f Q^- j 
Xk=xkti 

(11) 

Time Update: 

xk+1=$kxk;        k = l,2,...,N-l 

Mx,k = $kPx,k$kT + TkQkTkT (12) 

Matrices H, $, T, Q and R, as well as nonlinear 
transformation y = f(x), are defined above. 

The two-step nonlinear estimator (2)-(12) 
has been used intensively for the general er- 
ror analysis of the GP-B experiment. Figure 
2 shows the dynamics of the estimation pro- 
cess and the potentially achievable accuracy 
of estimation. Qualitatively, the combination 
of the orbital (100-min period) and annual (1- 
year period) aberrations allows to determine 
the readout system scale factor Cg and roll 
phase offset 6<f> (science instrument dynamic 
calibration), which in turn allows to get the 
best estimate of the geodetic (Rg) and frame- 
dragging (Rf) relativistic drifts. 

f 
., A TWo-Step Nonlinear Filter:: Squid and Telescope   I 

Estimation RMS afterjme year = .2263 marcsec/yr 

^'Estimation error antrime-year^*-11267 marcsec/yr 

4 6 8 

MISSION DURATION (months) 

Figure 2: Relativistic drift estimation 

The two-step filtering approach, described 
above, is also being used for various GP-B 
Data Analysis problems of the multi-sensor 
signal processing, where in order to achieve 
the required accuracy of the relativistic drift 
measurements, it is necessary to combine and 
optimally process data from the four GP-B 
science gyroscopes, science telescope's photo- 
detectors, spacecraft attitude control system, 
on-board  GPS,  together  with  the  auxiliary 
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information about the on-board environmen- 
tal temperature and magnetic fields variations 
during the science mission. The 'bank' of filters 
with the different content of the state vectors, 
based on the above described methodology, is 
planned to be used in the data reduction that 
will start soon after the GP-B satellite's launch 
scheduled for October of the year 2000. 
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Abstract - Data mining offers an effective solution to 

biotech in that it requires no additional experiments, adds no 

new equipment, and causes no interruptions to operations. 

The most important role of data mining is the ability to 

separate data into different classes so that an accurate model 

can be built. This paper reports a map recognition (MREC) 

method and its application to biotech field. As a powerful 

data mining solution, MREC consists of data separation, 

hidden projection, back mapping, feature selection, and 

model building. The solution can be quantitative or 

qualitative depending on the pattern of the original data set. 

Examples using MREC are given to demonstrate its efficacy 

in drug manufacturing process. 

Key words: data mining, drug design and processing, 

pattern recognition, projections, principal components. 

L Introduction to Drug Design and Production 

1.1 Yield Enhancement in Drug Production 

Drug manufacturing processes can be broadly 

classified into two methods: synthetic and 

fermentation. In synthetic methods, the production 

flow in general consists of many steps described by a 

production flow chart. The process usually starts from 

a raw material that can be converted into a number of 

intermediate products by a series of chemical reactions 

with other compounds. In drug production, yield is 

defined as the productivity (amount of product) per 

unit of raw materials, while manufacturing productivity 

is defined as the amount of the product in each batch of 

production (such as from a fermentation tank). 

In synthetic drag manufacturing, the production flow 

charts are usually long, consisting of many steps, but 

the overall yield of final products is usually low. For 

example, if a synthetic process includes five steps and 

the yield of each step is 80%, the overall yield is equal 

to 32.07%. If we increase the yield of each step up to 

95%, the overall yield will be is increased to 77.38%. 

In other words, the overall yield will be more than 

doubled when the step yield is slightly increased and 

the same amount of raw materials and manpower are 

used in each step. 

Therefore, it is of great economic value to find 

methods that enhance the overall yield by optimizing 

the yield in each step in synthetic drug production. 

Data mining techniques have been used to process the 

chemical synthesis data in each step to find the "best" 

condition for yield enhancement. It can help increase 

business profit with little investment. Indeed, many 

chemical processes involving organic chemical 

reactions have been optimized with significant 

economic effects by data mining 

Another type of drug production process is the 

fermentation process where drugs such as antibiotics 

are produced in a fermentation tank. It is well known 

that fermentation processes are, in most cases, very 

sensitive to a large number of influencing factors. They 

are usually so complicated that it is very difficult to 

find an optimization model to enhance the overall 

production yield. Data mining offers an effective 

solution to this problem by finding the best operation 

parameters to significantly enhance production yield. 

ISIF © 1999 1126 



1.2 Drug Design Issues 

A major issue (a target) in drug design is to discover 

quantitative relationships between a drug's molecular 

structure, i.e., the way drug molecules are arranged, 

and its bioactivity, i.e., the effect of medicine or 

toxicity. It is also desirable to find relationships in 

molecule-molecule interactions, for example, the drug 

molecule-DNA molecule interaction. The bioactivity 

of a drug is, in most cases, experimentally measured by 

conducting animal tests. The molecular structure is 

usually described by a number of design parameters or 

features (factors). 

Inventing a new drug by drug screening is a very 

lengthy, troublesome, and expensive task. People have 

to synthesize a huge number of new compounds, and 

test their bio-activities and toxicity. This is followed by 

biological tests and clinical tests before production. 

Drug design uses a series of computational methods to 

make "predictions" based on theoretical reasoning and 

modeling, in order to increase the efficiency of 

screening processes in exploring new drugs. Although 

these "prediction results" may not be 100% optimal, 

they can save huge amount of investment capital in 

drug screening, by giving design advisory or 

approximate models that are better than those obtained 

by human experiments. Data mining offers a powerful 

tool for finding such relationships among the various 

properties and parameters in drug screening. 

expressed by the octanol-water distribution of drug 

molecules. Sometimes we have no experimental data 

about this distribution, but want to use the molecular 

structure of a drug to predict the octanol-water 

distribution by a number of distribution coefficients 

between octanol and water. How to effectively 

calculate these coefficients is an important task. Thus 

identifying the relationship between molecular 

structure and solubility of a drug is yet another 

important task in drug research. 

Oil (fat) and water can not dissolve each other, but they 

form two distinct layers in human body. However, if a 

third matter (substance) is added to this "two-layer" 

system, it will dissolve partially in oil and partially in 

water. The ratio of the concentration of this third 

matter in oil to that in water is called "coefficient of 

distribution," or "distribution coefficient". If a matter 

(substance) can dissolve in water but not in oil, the 

distribution coefficient is 0.0. If it dissolves in oil only, 

the coefficient will be infinity. Since human body is a 

mixture of water and oil (fat), the drug diffusion 

process in human body depends on the distribution 

coefficient of this drug in water and in oil. Ideally, it 

should not be too large or too small; otherwise its 

diffusion will be prevented by water and/or by oil. 

Since octanol is "oil-like", drug scientists use a drug's 

distribution coefficient in water and in octanol to 

correlate the diffusion ability of a drug in human body. 

1.3 Drug Diffusion Capability 

Another very important issue in drug design is related 

to the diffusion capability of the molecules of a drug in 

human body, where the inner part of each cell is like a 

water solution, and the wall of each cell, made of oil- 

like materials, has the nature of "oil". For instance, if a 

drug can kill bacteria effectively but can not reach 

them in the human body, it is of no use. 

1.4 Organization of the Paper 

In this paper we present the principle of the MREC 

method and its application to drug manufacturing. A 

number of techniques have been developed and built 

into the MasterMiner™ software suite. The software 

provides a set of effective and user-friendly tools to 

solve general data mining problems where various 

intrinsic data structures (models) manifest themselves. 

A drug can diffuse quickly if it has suitable solubility 

both in "water" and in "oil". This issue is usually 

Section 2 reviews various computational methods, with 

discussions on their advantages and limitations. Section 
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3 describes the proposed hyperspace data mining 

techniques including data separability, envelope 

method, feature selection and reduction, auto-boxing 

method. Section 4 shows a few real-world examples of 

using MasterMiner in biotech applications. 

H. Problem Background 

By nature, drug design or manufacturing is an 

optimization problem, and methods in pattern 

recognition and data mining can be used to offer 

effective solutions. Most pattern recognition methods 

are based on the computerized recognition of the 

multidimensional graphs (or their two-dimensional 

projections) of the distribution of samples from 

different classes in a multidimensional space. 

Independent variables (often called system input, 

features or factors) influencing the target (dependent 

variable or system output) are used to span a 

multidimensional space. 

We can describe samples of different classes as points 

with different symbols in these spaces. Various pattern 

recognition methods can be used to "recognize" the 

patterns shown in the graph of distribution zones of 

different samples. In this way, a mathematical model 

can be obtained that describes the relationship (or 

regularity) among targets and factors. If we adjust 

criterion of classification, semi-quantitative models 

describing the regularities can be found at medium 

level of noise. 

Unlike regression methods (linear regression, nonlinear 

regression, logistic regression, etc.) or the artificial 

neural networks (ANN) [4] that provide quantitative 

solutions, pattern recognition methods often provide 

semi-quantitative or qualitative solutions as well. This 

is of course a limitation of pattern recognition methods. 

However, this is not always a disadvantage, because 

many data sets exhibit strong noise, and a quantitative 

calculation would be too precise to represent them. 

Besides, practical problems in many cases are of the 

"yes or no" type. For example, a problem may be 

stated as "whether a chemical reaction will occur or 

not", or "whether an ihtermetallic compound will form 

or not." Pattern recognition is especially suited to 

offering adequate solutions to these types of problems. 

As an important part of informatics, chemometrics and 

phamakocinetics, traditional techniques of pattern 

recognition, such as linear and nonlinear regression, 

partial least square (PLS) and artificial neural networks 

(ANN), have been widely applied to materials and 

drugs design for many years. In pattern recognition 

applications, the PLS method are usually used to find 

quantitative structure-activity relationships. However 

non-linearity exists among target and factors, and PLS 

often fails to give meaningful results. Commercial 

software products, based on a single computational 

technique, such as nonlinear or linear regression, ANN 

method, or PLS, are used in daily analysis at drug 
companies. MasterMiner™ software has a number of 

noticeable advantages over those based on pure ANN 

or pure regression (such as PCA). In particular, its data 

separability and the classification power on bio-active 

and bio-inactive compounds have been proved to be 

very effective in practice. 

Data Mining 

Data mining [1] [5] [6] is the process of discovering 

meaningful new correlations, patterns and trends by 

sifting through large amounts of data stored in 

repositories, using pattern recognition technologies as 

well as statistical and mathematical techniques. Data 

mining in fact is an optimization technique, and it has 

found practical applications in designing and 

diagnosing products or process in various industries, 

including steel making, power generators, petro- 

chemical, materials design and manufacturing, drug 

screening and production, and operations management 
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[1] [8]- 

Data mining techniques [1] [2] [5] [6] [7] offer 

effective solutions to biotech, and are especially 

suitable for processing complex data sets in non-linear, 

highly noisy, and multivariate environment. It is used 

to build effective data models for control and 

prediction. Since complex data are common in many 

practical applications, traditional linear regression 

method is not appropriate, and advanced techniques are 

needed. In real-world applications, different 

techniques of soft computing are synergistic rather than 

competitive. 

Feature Selection Issue 

Drug design seeks to identify relationships between the 

structure of molecules and the bio-activity of drugs. 

How to select and use the design parameters to 

describe the molecular structure of a drug is a 

complicated problem. Molecular structure can be 

described by various parameters, including: (1) partial 

atomic charges in molecule studied by quantum 

chemical calculation; (2) intensity and format of the 

electrostatic field surrounding molecules studied by 

semi-empirical methods; (3) geometric arrangements of 

water molecules around the molecule; (4) dynamic 

parameters of drug molecules studied by molecular 

mechanics calculation; and (5) bio-activity parameters 

obtained by biological tests. 

Up to now, features are extracted by human 

intelligence in most drug design cases. For example, 

some medical chemists believe that for some molecules 

the structure of "three oxygen atoms spanning a certain 

angle" favors the bio-activity of some anti-tumor drugs. 

This is discovered by human brain, but not by 

computers. Molecular structure is very complicated and 

it is often described by a large number of design 

parameters. The difficulty is how to choose the right 

set, or a reduced subset, of design parameters that 

correlate the bioactivity to the structure of drug 

molecules for the best result. It seems that such 

empirical rules can also be discovered by effective 

computer software that implements a few powerful 

criteria for feature selection and reduction. 

Data Separation 

The data separability criteria, implemented in the 

MasterMiner software, are rather useful in selecting 

key factors that influence the bioactivity of a drug. 

People often use nonlinear regression in drug design. 

MasterMiner software has been proved by real-world 

examples to be very useful in simplifying the selection 

of nonlinear terms in regression. It has been compared 

favorably against other popular software products, 

since it uses far less terms in mathematical models, and 

produces lower PRESS (prediction residue error 

squared sum) value (< 0.3) in data modeling. 

Hansch analysis provides another standard for new 

drug screening. It describes the "affinity" of an organic 

compound toward "water" and "oil-like liquids". Since 

a drug usually needs to diffuse through human body 

before it arrives at the focus of infection, molecules of 

drugs must be soluble both in aqueous medium and oil- 

like medium. Hansch analysis uses water-octanol 

distribution coefficient of a drug compound to describe 

the ability of drug diffusion in human body. 

Two critical questions need to be answered in any drug 

design: (1) how to find the relationship between these 

diffusion coefficients and bio-activity, and (2) how to 

find the relationship between the molecular structure 

and the distribution coefficient in water and octanol? 

These questions can be answered by data mining and 

modeling solutions offered by MasterMiner. 

HL MREC - A Hyperspace Data Mining Method 

MREC (Map RECognition by hidden projection) is a 
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novel approach to statistical pattern recognition and it 

outperforms the classical PCA (principle component 

analysis), Fisher and PLS methods. It is equally 

applicable to many nonlinear problems ranging from 

chemistry and materials analysis and designs to pattern 

recognition to general optimization. MREC 

methodology includes (1) data separation by a hidden 

geometric transform, (2) feature selection by data 

geometric pattern ("one-sided" or "inclusive" type), 

and (3) building model that reduces a complex 

nonlinear problem to a set of simple linear models in 

sub-spaces. 

MREC Background 

Statistical pattern recognition methods are based on 

computerized recognition of m-D graphs (or their 2-D 

projections) of sample distribution in m-D space. 

Independent variables (features) influencing the model 

are used to span an m-D space. If one can describe 

samples of different classes as points with different 

colors in the space, a mathematical model can be 

obtained that describes the relationship (regularity) 

between target functions and features. Unlike the 

regression methods (linear, nonlinear, logistic 

regression, etc.) or the neural nets that provide 

quantitative solutions, MRE can provides semi- 

quantitative and qualitative, as well as quantitative 

solutions. This is advantageous because real-world data 
exhibit strong noise, and quantitative models would be 
too precise to represent them. The PCA-based 

regression builds linear models without data separation 

(see Fig-1), whereas MREC regression first tries to 

separates data, and then builds more realistic models 

from a reduced set of data (see Fig-2). 

Data Separation 

The data separability test of MREC is designed to 

investigate the possibility of separating data from 

different populations or clusters in the hyperspace. 

Building a model for a non-linear problem is possible 

only if the data set is separable. 

0.61» 1.131« \Stn 23341 1.7602 
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Fig-1. No data separation by PCA. 
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Fig-2 Good separation just after 1 projection by MREC 

At each iteration, MREC chooses the "best" projection 

map with maximum separation from a series of hidden 

projections, and discards those samples outside the 

optimal zone (see the red box in Fig-2). After each 

projection, samples of class "1" (red) are automatically 

enclosed by a "tunnel" (two projections are shown to 

form an "auto-square" in Fig-3), and a reduced data set 

is formed that contains only samples within this 

"tunnel." Then a second MREC is performed on this 

reduced set to obtain the next "best" projection to 

further separate data into classes. After a series of such 
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projections, a complete (close to 100%) separation 

could be realized, and the resulting data set is used to 

build an accurate model. The physical meaning of 

MKEC is explained by Fig-3, where each "auto- 

square" represents two "tunnels" in the original m-d 

space, and several such tunnels would form a hyper- 

polyhedron in space. This hyper-polyhedron, enclosing 

all "1" (red) but no (or few) "2" (blue) samples, defines 

an optimal zone in the m-d space. MREC has been 

shown to be much more powerful than various 

regression methods. When data separability is not 

good, two reasons are possible: (1) the data are too 

noisy, and (2) the form of the optimal zone (region of 

"1" samples) is complicated and cannot be described 

by a single convex hyper-polyhedron. An effective 

approach to the second type of inseparability is by 

"local view" treatment whereby one can cut a 

multidimensional space into several convex subspaces 

to achieve better data separability in each of the 

subspaces. 

Back Mapping 

Since MREC transforms data from the original 

measurement space into a number of orthogonal sub- 

spaces, one needs to back map the transformed data 

into the original feature space to derive mathematical 
models for practical use. Two methods, called linear 

and non-linear inverse mapping (LIM, NLIM) or PCBs 

(principal component back-mapping) [8], have been 

developed whereby a point in a low-dimensional 

principal component subspace is back-projected to the 

high-dimensional space of the original features. Let X 

be a training set with n samples and m features, and Y 

the sample set in the PC (principal component) space 

corresponding to X in the original feature space, with 

Y = XC, and C = {C7, C2,... Cm}. The columns of C 

are the eigenvectors of the covariance matrix D, with D 

= XTX. The 2-d (Cu,Cv) sub-space of PCs is defined 

as the main map where samples are assumed to be 

completely classified. Let P represent an unknown 

sample point in the main map, and it is described by 

(ypu, ypv). In general, P is expected to be an optimal 

sample if all its neighbors are also optimal samples. To 

back transform P to the original space, i.e., to find X*p, 

one needs determine its boundary conditions; 

otherwise, an uncertain solution will occur. 

Fig-3 An "auto-square" formed by two "tunnels." 

In non-linear inverse mapping (NLIM), denote Apj as 

the distance from sample p to all known samples in the 

subspace defined by the principal component 

coordinates, («, v), and Apj is the same distance as in 

the original space. A non-linear algorithm is used to 

compute X*p by minimizing a cost function E [8]. 
In linear inverse mapping (LIM), besides the 2-d 

(CM, Cv) subspace of PCs, there exists an (m-2)- 

dimensional subspace of PCs consisting of Ci (/" = 1, 2, 

..., m, for / * u, v), since C is derived from D (m x m). 

The projection of a point/?, described by (ypv, ypv) in 

the main map, is determined by ypi (i = 1,2,..., m and /' 

* u, v) in the (w-2)-dimensional subspace, and a set of 
n 

linear equations can be obtained as yPk=2_JCjkXPj, 

where k = 1, 2, .... m. These equations can be solved 

for the parameters of point p. This linear inverse 

mapping will always produce an exact solution. Fig-4 

and Table-1 show one example of the PCB algorithm 

where a set of linear equations (inequalities) are 

obtained from (red) class "1" samples inside the auto- 

box and 100% data separation is achieved. These 
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equations   constitute   the   mathematical   model   we 

sought. 

Fig-4 Modeling result of MREC with 100% separation. 

Feature Reduction 

fermentation process. They are: 

1) Conversion rate (from glucose to glutamic acid) - 

should be high 

2) Productivity - should be high 

3) Yield - should be high 

4) Fermentation time period - should be short 

sample points of 
1 ft n" class    2 

Fig-5 Principle of the Auto-Box method 

The rate of data separation, R is defined as R = (1- 

N2/N7), where N, and N2 are the number of "l"and 

"2" samples inside the hyper-polyhedron respectively. 

If > 70%, the separability is "acceptable," otherwise it 

is "unsatisfactory." R is used as a criterion to reduce 

features - a feature can be removed if R remains the 

same after removing it. In practice, R has been used to 

reduce feature number by 1/3 to 1/2. 

Concave Polyhedron 

Since MREC only forms a convex hyper-polyhedron, it 

may not separate data when they form a concave 

polyhedron in the space. In this case, the BOX method, 

shown in Fig-5, offers a powerful solution whereby 

samples of class "2" are cut off from the polyhedron so 

that all samples inside are of type " 1." 

TV. Example - Fermentation of Glutamate 

In glutamate fermentation, glucose solution is added 

continuously every 30 minutes into the biochemical 

reaction in a fermentation tank. There are four targets 

that need to be optimized simultaneously  in the 

Table-1 MasterMiner™ Example: modeling by PCB. 

all inequalities in original space: 

+7.842<=0.465[al]+24689[a2]+0.254[a3]+3.115[a4]<=+6.658 

-0.045<=+1.089[al]+5.236[a2]-0.907[a3]-1.317[a4]<=+05528 

-6.243<=+3.560[al]+5.031[a2]+3.369[a3]-5.570[a4]<=-6.321 

■9.197<=+0.996[al]-2.087[a2]-8.203[a3]-0.902[a4]<=-4.345 

-3.447<=+1.801[al]-4.041[a2]+3.015[a3]-6.572[a4]<=-7.235 

-7.661<=+4.076[al]+6.567[a2]-0.780[a3]-7.747[a4]<=-0.786 

where [al], a[2], a[3] and a[4] are original features. The Auto- 

Box on the right covers all red points, showing 100% data 

separation. 

Features that Influence Yield 

A fermentation process may take 20-30 or more hours. 

Measurements of glucose feed would form a long time- 

series of data which are divided into several segments, 

each having tens of features. To compress information, 

these segments are averaged to produce a 

representative segment with a number of useful 

features. At the same time, the composition of the gas 
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in the biochemical reactor is detected by a gas sensor, 

and glucose concentration in liquid phase is measured 

by a glucose sensor. 

Data Conditioning 

Data of each batch (tank) was considered as one 

sample. Data from 80 production batches were used as 

training set. To simplify data processing, data of each 

fermentation period, which is usually 30 or more hours 

long, was divided into three segments: 

1st segment - data from 0 to 12 hours 

2nd segment -data from 12 to 24 hours 

3rd segment - data from 24 hours to end 

Some of data, including PH value, ventilation rate and 

temperature, were then averaged in each of the three 

segments to generate the averaged features for each 

segment. Data samples were further classified into 

three classes according to the range of these features: 

• Class 1: the glucose-to-glutamate conversion rate 

is larger than 50%, and the fermentation time is 

less than 34 hours. 

• Class 2: the glucose-to-glutamate conversion rate 

is less than 49.5%, and the fermentation time is 

larger than 34.5 hours. 

• Class 3: the rest. 

Feature Selection: 

Features selected by MasterMiner include (1) 

operation parameters, such as glucose feed amount, 

tank temperature, ventilation (air flow rate), PH value 

of the liquid in the tank, and etc., and (2) physical- 

chemical data (as time series data) of liquors, such as 

glucose concentration in liquid phase from a glucose 

sensor, OD value (OD is an optical property of sugar, 

e.g., glucose), gas phase composition of chemicals in 

the biological reactor, and etc. Since a change in OD 

value indicates a change in substance concentration or 

composition, the OD value is a useful parameter for 

monitoring the process. The complete set of features 

for the overall fermentation process is listed below: 

No. Feature Explanation 

XI transparency of liquor 

X2 glucose concentration at starting point 

X3 PH of liquor 

X4 PH value at the final stage of germ plantation 

X5 increase (change) in OD value 

X6 PH value in first segment (averaged) 

X7 PH value in second segment (averaged) 

X8 PH value in third segment (averaged) 

X9 average ventilation rate (m3/min) in 1st segment 

X10 average ventilation (m3/min) in 2nd segment 

Xll average ventilation (m3/min) in third segment 

X12 temperature in 1st segment 

X13 temperature in 2nd segment 

X14 temperature in 3rd segment 

Findings: 

By PLS (partial least square) regression, it has been 

found that no linear relationships existed among 

features or between feature and target. It therefore 

seems impossible to change any single feature to 

improve the targets. It appears that we have to define 

the optimal zone directly in the multi-dimensional 

hyperspace. By MasterMiner software, at last we found 

that the optimal zone is near a hyper-plane. After 

comparing the operation data against this hyper-plane, 

we have adjusted four features {x4, x6, x7, x8} to 

slightly lower than original values, and other 

parameters slightly higher. The results were rather 

good. 

After finding the boundary of the optimal zone, 

MasterMiner also offers an operational advisory to the 

fermentation technicians by adding and testing a 

number of virtual samples to the optimal zone. A test 

sample generated by MasterMiner that falls inside this 

optimal zone is considered as an optimal sample, and it 
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could be expected to lead to the simultaneous 

optimization of the 4 targets in fermentation. Three 

such optimal samples, called predicted values, are 

listed in the following table: (the mean value is used). 

Table of optimal samples by MasterMner 

XI X2 X3 X4 X5 X6 X7 

.37 -.14 .47 -.09 -.078 -.11 -.05 

.84 -.13 .30 .03 -.016 .09 -.04 

.56 -.01 .18 -.14 -.026 .01 -.03 

X8 X9 X10 XI1 X12 X13 X14 

-.24 24 20 18 -.27 1.34 .59 

-.20 33 30 46 .39 1.08 .64 

-.12 -3 6 71 -.15 .74 .35 

These predicted values were in good agreement with 

the result obtained by another method whereby single 

features were adjusted to search for the best operational 

direction. However, some features, such as X2, were 

not in agreement in these two methods. 

MasterMiner offered the following advisory on this 

fermentation production: 

• PH value should be slightly reduced 

• Temperature should be slightly increased. 

• Ventilation rate should be slightly increased. 

Results: 

In real-world fermentation operations at the client site, 

the optimization of the four targets, i.e., conversion 

rate, productivity, yield, and fermentation period, has 

been achieved simultaneously by using the optimal 

samples obtained by MasterMiner. Results from 390 

production batches (tanks) were averaged to give the 

following results: 

• Conversion rate was increased by 2.90%, 

• Yield was increased by 2.56% 

• Productivity was increased by 1.45% 

• Glucose was save by 1.43%. 

• Profit generated: US $200,000 per year 

The model obtained by MasterMiner has since been 

used in production by the client with satisfactory 

results. 

V. Conclusions 

This paper presents basic background on drug design 

and manufacturing, reviews technologies in drug 

processing, and proposes a hyper-space data mining 

methodology. Data mining offers an effective solution 

to biotech when combined with other pattern 

recognition and statistical methods. The most 

important role of data mining is the ability to separate 

data into different classes so that good models can be 

obtained to describe the relationship between a drug's 

structure and its bio-activity. The proposed data 

mining methodology consists of data separability, 

hidden projection, back mapping, feature selection and 

reduction, and model building. When data exhibit 

linearity, a quantitative model can be built. When they 

exhibit non-linearity, a semi-quantitative or qualitative 

model can be obtained. Application examples have 

shown the efficacy of the proposed method in biotech. 
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Abstract This paper describes a multi-spectral, multi- 
source approach to the important problem of speaker 
identification. The wideband speech signal is filtered 
into several sub-bands and the output time trajectory 
of each is individually modeled by linear prediction 
cepstral coefficients. These individual models are then 
matched against reference data and the scores com- 
bined using the sum rule of information fusion, before 
using a k-nearest-neighbor rule to decide the identified 
speaker. Multi-spectral processing is shown to deliver 
performance improvements over wideband recognition. 
The optimal number of filters is found to be 16. These 
results are interpreted in light of the hypothesis that 
the multi-spectral approach solves the bias/variance 
dilemma of commonly manifest in systems that are 
trained on example data. 

Keywords: speaker recognition, feature-set construc- 
tion, multi-spectral fusion 

1    Introduction 

Automatic speaker recognition (ASR), whereby a 
computer attempts to recognize an individual from 
their voice, is an important, emerging technology 
with many potential applications in commerce and 
business, security, surveillance etc. This paper 
is concerned with the application of modern data 
engineering techniques to the problem of ASR. 
The main idea here is the use of a multi-spectral 
approach, in which the wideband acoustic signal 
is pre-processed by a bank of bandpass filters to 
give a set of time-varying outputs - so-called sub- 
band signals. Because these time trajectories vary 

slowly relative to the wideband signal, the problem 
of representing them by some data model should 
be simplified. A major goal for this paper is to 
test if this is so, and if so, to determine the optimal 
number of sub-bands. Since we now have several 
time trajectories to consider rather than just one, 
the question arises of how to (re)combine or fuse 
the information in each, to reach an overall deci- 
sion about speaker identity. 

The remainder of the paper is organized as fol- 
lows. Section 2 provides a motivation for research 
into recognition. Section 3 introduces the multi- 
spectral aspect of the recognition system and in- 
cludes fuller discussion on the possible benefits to 
an identification system. In section 4, the com- 
ponent parts of the baseline multi-spectral system 
which provides the foundation for this research are 
described in turn. Finally, section 6 concludes with 
discussion of the issues raised by multi-spectral 
recognition and some possible avenues of future 
work. 

2   Speaker Recognition 

Recognition can be divided into speaker verifi- 
cation and speaker identification tasks, each of 
which may in turn be text-independent or text- 
dependent [1,2]. In verification, there is an ab ini- 
tio claim about speaker identity, and the aim is to 
determine if a given utterance was produced by the 
claimed speaker. This is done by testing the model 
of the claimed speaker against the utterance, com- 
paring the score to a threshold, and deciding on the 
basis of this comparison whether or not to accept 
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the claimant. In identification, there is no ab ini- 
tio identity claim, and the system must typically 
decide who the person is, or that the person is un- 
known. 

In text-independent recognition, there are no 
limits on the vocabulary employed by speakers. 
This is in contrast to text-dependent recognition, 
where the presented utterance must be from a 
set of predetermined words or phrases. As text- 
dependent recognition only models the speaker for 
a limited set of phonemes in a fixed context, it 
generally achieves higher recognition rates than 
text-independent recognition, which must model a 
speaker for a variety of phonemes and contexts. 

Speaker recognition is an example of biometric 
personal identification [3]. Biometric techniques 
based on intrinsic characteristics (such as voice, 
finger prints, retinal patterns) have an advantage 
over artifacts for identification (keys, cards, pass- 
words) because biometric attributes cannot be lost 
or forgotten. Biometric techniques are generally 
believed to offer a reliable method of identification, 
since all people are physically different to some 
degree. Automatic speaker identification and ver- 
ification are often considered to be the most natu- 
ral and economical methods for avoiding unautho- 
rized access to physical locations or computer sys- 
tems [1]. Thanks to the low cost of microphones 
and the universal telephone network, the only cost 
for a speaker recognition system may be the soft- 
ware. 

In this paper, we are primarily interested in text- 
dependent identification. Success depends on ex- 
tracting and modeling the speaker-dependent char- 
acteristics of the speech signal which can effec- 
tively distinguish one talker from another. 

Figure 1 shows the structure of a typical, sim- 
ple identification system. In general, identification 
consists of five steps: 

• digital speech data acquisition 

• feature extraction 

• pattern matching 

• identification decision 

• enrollment to generate reference models of 
each speaker 

Initially, the acoustic sound pressure wave from 
an unknown speaker is transformed into an ana- 
log signal by a microphone or telephone handset. 
The analog signal is then passed through an anti- 
aliasing filter before being sampled to form a digi- 
tal signal by an analog-to-digital converter. 

In feature extraction, each frame of speech (typ- 
ically spanning 10-30 ms of the speech waveform) 
is mapped into a multidimensional feature space 
creating a sequence of feature vectors x,-. This 
sequence is compared to existing speaker mod- 
els, created during the enrollment step, by pattern 
matching, resulting in a match score z, for each of 
the speaker models. The match score gives an in- 
dication of the similarity between the sequence of 
vectors and the models of all the known speakers. 
The last step consists of a decision as to speaker 
identity. Before use, speakers must enroll on the 
system. During enrollment, speaker models are 
created for all authorized users and stored for later 
reference during identification. 

3   Multi-Spectral Processing 

In a seminal and influential paper, Allen [4] pop- 
ularized the earlier notion of Harvey Fletcher that 
the decoding of speech signals by humans is based 
on decisions in narrow frequency bands that are 
processed independently of each other. Decisions 
from these frequency bands are combined such that 
the global error rate is equal to the product of the 
band-limited error rates within the independent fre- 
quency channels. This means that if any frequency 
band yields a zero (or low) error rate then the re- 
sulting global error rate would also be zero (or very 
low), regardless of the error rates of the remaining 
bands. While this has come to be known as the 
Fletcher-Allen principle, Allen himself refers to it 
as "the Stewart-Fletcher multiindependent channel 
model" (p. 572). He further characterizes the ap- 
proach as "across-time" rather than the more usual 
"across-frequency" processing (p. 575) typified by 
template matching in automatic speech recogni- 
tion. In this paper, we will refer to this as multi- 
spectral processing. 

The positive benefits of this new approach to 
speech recognition are starting to be investigated 
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Figure 1: Block diagram of atypical speaker-identification system. 

and reported [5, 6, 7, 8]. There are several cogent 
reasons why it might also profitably be applied to 
speaker recognition: 

• The deleterious effect of narrow-band noise 
may be reduced. If noise only affects some 
frequency bands, then the remaining (clean) 
bands should carry sufficient information to 
allow the correct decision still to be reached. 
This follows from the (idealized) Fletcher- 
Allen principle according to which only one 
error-free band is required for correct recog- 
nition. 

• Certain bands may contain more speaker- 
specific information than others. Weighting 
these to emphasize their contribution to the 
overall score should lead to better recognition 
rates. In fact, some bands might be better for 
some speakers than others, so that speaker- 
specific weighting during the information fu- 
sion - or (re)combination - stage may be pos- 
sible. Note, however, that this assumes a form 
of fusion in which weighting can be sensibly 
done. (If, for instance, combination is by mul- 
tiplication of scores, then weighting has no ef- 
fect.) 

• Successful recognition critically depends on 
building good speaker models from the train- 
ing data. Data modeling, however, is subject 

to the well-known bias/variance dilemma [9]. 
According to this, models with too many ad- 
justable parameters (relative to the amount of 
training data) will tend to overfit the data, ex- 
hibiting high variance, and so will generalize 
poorly. On the other hand, models with too 
few parameters will be over-regularized, or 
biased, and so will be incapable of fitting the 
inherent variability of the data. Multi-spectral 
processing offers a practical solution to the 
bias/variance dilemma by replacing a large, 
unconstrained data modeling problem by sev- 
eral smaller (and hence more constrained) 
problems. Empirical support for this notion 
in the specific context of speaker recognition 
comes from the work of Reynolds [10], who 
writes: "giving too much spectral resolution 
will degrade performance by modeling spuri- 
ous spectral events or introducing too many 
parameters to be trained" (p. 642). 

There are, however, several practical issues to be 
resolved before these advantages might be real- 
ized: 

• The number, width and location of the fre- 
quency bands must be optimized. Sub-bands 
designed for speech recognition may not be 
suitable for speaker recognition: it may be 
that the frequency division should best be 
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done on a speaker-specific basis for speaker 
recognition. 

• Some knowledge is required of which bands 
contain the most speaker-dependent informa- 
tion. The scores from these bands might then 
be emphasized to improve recognition. 

• The features to be used for recognition must 
be decided. Again, features designed for 
speech recognition may not be suitable for 
speaker recognition [2]. It is also possible 
that features which are appropriate for wide- 
band speaker recognition are less so for multi- 
spectral processing. 

To date, relatively few workers have studied this 
problem. In the conference literature, [11], [12], 
[13] and [14] have all presented empirical results 
which confirm that worthwhile performance ad- 
vantages can be gained from multi-spectral pro- 
cessing in speaker recognition. Taken together, 
however, these prior works do not cover anything 
like the full range of implementation options, so 
that many of the aforementioned questions remain 
open. Further, there is still only a rudimentary un- 
derstanding of multi-spectral processing - and pre- 
cisely how it delivers performance improvements - 
from a theoretical perspective. 

4   Identification System 

This section describes the different components 
that make up the identification system. 

4.1   Database 

The text-dependent Millar database from British 
Telecom was specifically designed and recorded 
for text-dependent speaker recognition studies. It 
consists of 43 male and 14 female native English 
speakers saying the digits one to nine, zero, nought 
and oh 25 times each. Recordings were made in 
five sessions spaced over three months, to capture 
the variation in speakers' voices over time which is 
one of the most important aspects of speaker recog- 
nition [15]. The speech was recorded digitally in 
a quiet environment using a high-quality micro- 
phone, and a sampling rate of 20 kHz with 16 bit 

resolution. The database was also made available 
at an 8 kHz sampling rate. In this version, the 
speech has been band-passed to telephone quality 
and then downsampled. Only this latter version 
was used. 

For the experiments, 12 male speakers were 
used saying the word seven. The first two sessions 
(i.e. 10 repetitions of seven) were used as refer- 
ences and the remaining three sessions (15 repe- 
titions) were used for testing. 

4.2 Sub-Band Processing 

The wideband signal was split into various num- 
bers of sub-bands. Filters were simple second- 
order Butterworth, spaced on the psychophysical 
mel scale [16], covering the frequency range up to 
3,600 Hz. There are many possible features that 
can be extracted from a speech signal, e.g. fun- 
damental frequency, formant frequencies, and lin- 
ear predictor (LP) coefficients. For recognition 
purposes, it is important to use a feature set that 
maximally discriminates between speakers. In 
this research, the feature set is based on cep- 
stral coefficients. Cepstral analysis is motivated 
by, and was designed for, problems centered on 
voiced speech [17] but also works well for un- 
voiced sounds. Cepstral coefficients have been 
used extensively as the features in speaker recog- 
nition [18, 19]. This is because a simple recursive 
relation (see below) can be used to transform the 
LP coefficients into cepstral coefficients. 

The time trajectories in each sub-band were 
modeled using an analysis frame of 20 ms, Ham- 
ming windowed and overlapping by 50%, and 
12th order linear prediction [20]. These were then 
used to create cepstral coefficients via the recursion 
described by Atal [21]. That is, the LP cepstrum 
(or pseudo-cepstrum) is used, rather than the orig- 
inal (power or complex) cepstrum which would be 
obtained from Fourier analysis. 

4.3 Pattern Matching 

A popular method of pattern matching in speaker 
recognition systems uses 'templates'. The input 
signal is represented as a series of feature vec- 
tors that characterize the speech of a particular 
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Test Time (frames) 

Figure 2: Typical DTW plot, illustrating the opti- 
mal warp path mapping the test time axis n into the 
reference time axis m. 

speaker [22]. This time-ordered set of features 
constitutes the template. Even if the same speaker 
utters the same word on different occasions, the 
duration changes each time with nonlinear expan- 
sion and contraction. Therefore, any template 
matching algorithm needs to be able to cope with 
this: we use the popular technique of dynamic 
time warping (DTW) because of its ability to han- 
dle nonlinear time scale variations. It combines 
alignment and distance computation through a dy- 
namic programming procedure [23]. It is normal 
to use the Euclidean distance measure when work- 
ing with cepstral coefficients. Figure 2 depicts the 
DTW procedure schematically. 

4.4   Fusion 

Kittler, Hatef, Duin, and Matas [24] recently de- 
veloped a common theoretical framework for com- 
bining classifiers which use distinct pattern repre- 
sentations. They outlined a number of possible 
combination schemes such a product, sum, min, 
max, and majority vote rules, and compared their 
performance empirically using two different pat- 
tern recognition problems. Kittler et al. found that 
the sum rule outperformed the other classifier com- 
bination schemes. This surprised them, because 
the statistical assumptions underlying this rule are 

stronger than, say, those for the product rule and it 
is clear that these assumptions do not hold well. 

To explain this empirical finding, they investi- 
gated the sensitivity of various schemes to estima- 
tion errors. Their analysis showed that the sum rale 
is the most resilient to estimation errors, so almost 
certainly explaining its superior performance. Ac- 
cordingly, the sum rule is used, at least initially, for 
combination purposes in this research while rec- 
ognizing that this is one area which could benefit 
from further research by investigating other rules 
and methods of combination. 

4.5   Decision Rule 

There are 15 test utterances per speaker, each of 
which is matched to the 10 reference utterances for 
all 12 speakers - a total of 120 comparisons. These 
are then ranked (closest matches first) and the k- 
nearest-neighbor rale applied with k = 5. That is, 
the speaker maximally represented among the top 
five ranking matches is declared to be the identified 
person. 

5   Results 

To investigate the benefits of multi-spectral pro- 
cessing, as well as answering the question of the 
optimal number of sub-bands, we have collected 
identification results as the number of filters varies 
from 2 to 24. For comparison, recognition was 
performed using the wideband (unfiltered) speech 
signal also. Figure 3 displays the results. 

It is clear that a multi-spectral recognition sys- 
tem can perform better than one using just the 
wideband signal. Using the wideband spectrum, 
the system achieved 85% recognition rate. By con- 
trast, the best-performing multi-spectral system, 
using 16 mel-spaced sub-bands, produced a recog- 
nition rate of 96%. This is a very considerable im- 
provement. 

Using a small number of filters (< 6)), perfor- 
mance was generally worse than the wideband sys- 
tem. The reason for this is currently unknown, but 
we conjecture that too much spectral energy is re- 
moved by the filterbank, i.e. the regions of overlap 
between adjacent filters are too wide. Conversely, 
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Figure 3: Percentage of correct identifications for 
different numbers of mel-spaced sub-bands (* in- 
dicates wideband). 

it is possible to have too many filters. Performance 
reduces when there at 20 filters or more. We at- 
tribute this to attempting to fit too many parameters 
in the data models describing each speaker. 

From the perspective of time-frequency duality, 
it seems intuitively reasonable that there should be 
some such trade-off. With a small number of fil- 
ters, we will be attempting to fit the time trajec- 
tories too closely, having only a few parameters 
to do so. With a large number of filters, we will 
be attempting to fit the frequency distribution too 
closely but with more parameters than can be re- 
liably estimated from the data. There is an in- 
teresting convergence with Allen's comment [4]: 
"It has been reported ... that 10 bands is too few, 
and 30 bands gives no improvement in accuracy 
over 20" (p. 572). 

6   Discussion and Conclusions 

The results highlight the advantage of a using 
multi-spectral approach to speaker recognition. We 
believe that the approach offers a practical solu- 
tion to the bias/variance dilemma manifest in train- 
able systems, and so leads to improved data mod- 
eling. The problem of fitting parameters to train- 
ing data is constrained by requiring them to be 
more or less uniformly deployed across frequency. 
Although multi-spectral processing increases per- 
formance, there is a limit to how many sub-bands 

can be used before performance starts to decrease. 
Here, it seems that 16 is the optimal number. This 
finding is interpreted in data-modeling terms as re- 
flecting an attempt to fit too many parameters for 
the available training data. By contrast, the wide- 
band approach (or use of a small number of fil- 
ters) attempts data modeling with too few, uncon- 
strained parameters. 

The traditional approach to identification has 
been to base the development of recognition sys- 
tems on a priori knowledge. The prior knowledge 
has been applied to such things as choosing the 
type and number of feature parameters and deter- 
mining the pattern matching method to use. Cur- 
rent speaker identification systems produce rea- 
sonable results but still lack the necessary perfor- 
mance if they are to be used routinely by the gen- 
eral public. Furui has listed 16 open questions 
about speaker recognition which need to be ad- 
dressed if performance is to be improved. One 
of these concerns the selection of feature param- 
eters: commonly cepstral (or delta cepstral) coef- 
ficients. These are employed principally (or only) 
because they are familiar from their use in speech 
recognition. Hence, they may not optimally dis- 
criminate between different speakers. From this 
perspective, there seems much to be gained from 
automatic (data-driven) selection of features - and 
other architectural parameters. 

Future work will look at possible ways of im- 
plementing a data-driven strategy for number and 
placement of the filters, and for automatically de- 
termining the type and number of features to be 
used in each sub-band. We will also explore other 
combination schemes and will extend the work to 
speaker verification. Finally, we propose a direct 
test of our hypothesis of improved data modeling, 
by varying the number of parameters fitted in the 
different filtering scenarios. 
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Abstract 

The design of a new electronic sensor head using artificial 

senses is described. The system involves a chewing process 

that mimics the human behavior. Before entering the test 

sample in the artificial mouth, the sensor system uses a 

video camera to identify the test object. The artificial 

sensor mouth is then measuring the crushing and chewing 

process of the samples, mixing it with saliva like liquid. In 

parallel it measures the aroma with an electronic nose, 

detect the chewing resistance and listens to the crushing 

sound. Further, the taste of the mixed solution from the 

sample is measured with an electronic tongue sensor. 

To the amount of information received, we apply feature 

extraction analysis and a fuzzy clustering to assess the 

quality. By combining data from different artificial sensor 

systems into a single set of meaningful features, we achieve 

information that is of greater benefit than the aggregate of 

its contributing sensors. The combination of sensor data by 

fuzzy clusters has the aim to perform inferences that may 

be impossible from the single artificial sensors. 

I. Introduction 

The combining of data into more meaningful 

information refers to an essential technology in the 

problem of the information treatment to improve the 

quality of the sensing data. Data fusion uses various 

data sources to provide a better understanding of the 

phenomenon taken in consideration. The information 

proceeds usually from two types of sensor models 

[1], consolidating data from the same type of 

information [2], and in the second case, usually 

named multi-sensor data fusion, merging informa- 

tion from different and often complementary sensors 

to create a environmental based sensor model [3]. 

We have focused in this approach on a sensor model 

using combination of data information from five 

different sensor systems measuring the quality of a 

food product, and more specific an integration of 

multiple sensing data in human quality applications. 

A number of single artificial sensors have been 

described in different human based quality related 

applications, electronic nose [4, 5], electronic tongue 

[6] and in the chewing process [7, 8]. Further, a 

combination of the information from artificial smell 

and taste sensor systems into a merged opinion has 

been reported [9]. 

II. Human analysis of quality estimation 

The operator in an industrial food process, for 

example potato chips plant, continuously analyzes the 

dynamical process properties, e.g. temperature, 

humidity, time, sound, etc. as well as the specific 

product quality like color, size, taste, smell, along the 

process line. In the laboratory, tests are regularly 
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made to measure parameters as concentration of salt, 

color, water content and percentage of fat, a visual 

inspection is provided as well. 

III. The artificial approach 

There is a change in the attitude within measurement 

technology towards the way of and how to collect 

process information. Instead of measuring single 

parameters, in many cases it has become more 

desirable to get information of attributes such as 

quality, condition or state of a process. Due to 

different available techniques of extracting human 

like features from a huge information flow 

mimicking the human perception, there is a growing 

interest in the concept of artificial senses. 

artificial sensors 

feature 

extraction 

vision 

chewing 

fuzzy 
clusters olfaction 

quality 

decision 

auditory 

taste 

Figure 1. The model of the artificial sensor head. 

Although the combination of artificial senses most 

likely increases the performance of the measurement, 

articles in this area are lacking. In [7] and [8] an 

electronic mouth is described. In [9] and [10] original 

sensor fusion methods based on human opinions 

about smell and taste and measurement data from 

artificial nose and tongue sensors is presented. 

In this paper we propose to combine artificial sensors 

into an electronic sensor head approach containing a 

number of sensor systems that measure essential 

properties of the tested object, as shown in figure 1. 

A. The electronic head 

A special artificial mouth with hearing and vision 

capabilities, i.e. an artificial sensor head, is designed 

and tested in the laboratory. Stationary robot arm 

feeds the mouth with test samples after the vision 

cameras has recorded the object. In the mouth, with a 

temperature of 37 °C kept inside, a crushing process 

takes place that is similar to human chewing. In 

parallel the crushing sound and chewing resistance 

are recorded and the developed aroma pumped from 

the mouth to the measuring electronic nose. The 

chewed pieces of the sample object are further mixed 

with saliva like fluid and the electronic head spits the 

rest into a cell where the electronic tongue is 

measuring the taste. After this moment the cell 

containing the sample test is cleaned up and the 

system is ready to measure a new sample. The result 

is presented for visual acceptance on the monitor 

indicated by the mode of a happy or sad human face. 

The electronic head system is controlled by a PLC 

(Programmable Logic Control) pneumatic system and 

interacting with the measurement PC operating under 

Lab View software. 

B. The artificial electronic nose 

The sensor array consists of a number of selective 

semiconductor metal oxide (Taguchi) type sensors, 

obtained from Figaro Engineering Inc., Japan. The 

measurement interface was built at the laboratory. 

Gas samples are pumped from the mouth cell by a 

membrane pump at a flow rate of approximately 500 

ml/min and injected into the sensor chamber, where 

the sensors are placed in a row. The injection of gas 

samples is performed at given time intervals by the 

opening a valve. Thus, samples are injected during 

1145 



the chewing process. 

Response from one nose sensor 

y = -2E-05x + 4,7842 

2000   4000   6000   8000   10000   12000 

Figure 2. A calculated feature from one of the nose 

sensors. 

Further, the sensor system collects and preprocesses 

the data from the sensor array. Each of the four- 

sensor data measurement used in this approach 

contains 4 variables to be further analyzed where one 

parameter is the derivative shown in figure 2. 

C. The artificial tongue 

The principle for measurement was based on pulse 

voltammetry carried out in a standard six-electrode 

configuration. In this method, current transients due 

to onset of a voltage pulse are measured, giving 

information concerning both amount and type of 

charged molecules and of redox active species. The 

electronic tongue, consisting of a six working 

electrode system also contains an auxiliary electrode, 

and a reference electrode. The six working electrodes 

are composed of gold, iridium, palladium, platinum, 

rhenium and rhodium. The whole configuration is 

placed in a 150-ml measurement cell. The electrical 

current transient responses are measured by a 

potentiostat connected to the measurement PC via an 

A/D converter. 

The recorded voltammograms are based on large 

amplitude pulse voltammetry (LAPV). A 

measurement sequence starts by applying a potential 

of 800 mV during 0.5 sec. The voltage is then set to 0 

at the instant, when the applied potential is decreased 

by 100 mV, and the cycle starts again. A 

measurement sequence covers 11 cycles, which 

results in a final pulse value of -200 mV, see figure 3. 

Figure 3. A series of pulses applied to a tongue 

electrode during a measurement sequence. 

A typical recording of a full measurement over all 

electrodes is shown in figure 4. The sample rate is set 

to 20 Hz and only the amplitudes which has shown to 

contain sufficient information, namely from the first, 

second and last samples in each 0.5-second interval, 

are used in this experiment. Each electrode 

measurement is characterized by 66 samples; hence, a 

total tongue measurement comprises 396 samples. 

Figure 4. A typical sequence of samples in the 

complete tongue measurement. 
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D. The chewing resistance F. The sound system 

A signal from a force sensor connected to the 

pneumatic driving system of the mouth is also 

measured. The chewing process behaves similar to 

the human; i.e. an initial crushing is applied to the 

test object before the final chewing starts. The shape 

of this signal reflects the deformation process. 

The chewing resistance 

61 
5 

4 

3- 

2 

1 ■ 

|4089 ,5 I 

-        ■ 

-             \^^ 

37 00 3800                3900                4000 4100 4200 

Figure 5. An example curve describing the chewing 

resistance. 

E. The vision system 

A color vision camera is used to indicate visual 

properties of the samples. The picture also directs the 

computer system to start the measurement procedure 

by opening the mouth. Information about color, shape 

and size of the sample object is measured. 

A microphone is embedded in the mouth construction 

to measure the sound from the chewing process, then 

a standard frequency analysis is provided on the 

records. Differences in the spectral power density 

(shift of the maximum, level of the horizontal 

asymptote), the amplitude spectrum (change in the 

parameters of the envelope curve) and the complex 

spectrum drawn on the complex plane (varying size 

and shape of the spot) show they can be used as 

characterizing parameters of the quality. Illustrative 

diagrams are presented in figure 7. 
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Figure 6. An image from the vision system. 
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Figure 7. Crashing sound frequency domain patterns 

of two samples with different properties 

IV. Sensor fusion and pattern recognition 

This section describes an industrial problem and a 

proposed solution using sensor fusion. The main 

reasons for this experiment is twofold, first to test the 
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artificial sensor head in a long time test and to 

investigate its usefulness as an industrial on-line 

sensor system. The aim is also to investigate if it is 

possible to improve the results by combining the 

different sensor systems in a real world application. 

The sensor fusion process in this approach is defined 

as a pattern recognition method, which gathers 

opinions from a number of task specific classifiers. 

Each one of the classifiers is specialized for one 

perception specific related property of the artificial 

sensors: smell, taste, vision, hearing and mouth 

feeling. The fusion method is then combining the 

features, into a single, more reliable one. 

The industrial related problem considered here is 

taken from the food process industry: classification of 

different qualities of potato chips including classifi- 

cation of the aging processes at room temperature. 

The recognition task for a given sample of potato 

chips is to identify the type of chips and classify its 

quality within four different grades. 

A.   Feature extraction 

Each sensor measurement contains different amount 

of information. Data reduction must be performed to 

form an efficient classifier. Generally, this task may 

be troublesome due to the problem of modeling the 

physical process that generates the measurements. 

Therefore, our approach is to compute some features 

of the sensor signal, and by fuzzy cluster analysis, 

determine its information content. For example, in 

case of tongue data by using the score- and loading- 

plots in principal component analysis (PCA) it 

emerged that the range in each of the first two cycles 

and the last cycle at each electrode should contain 

sufficient information. The range is a relative 

measure and should be robust with respect to bias in 

different measurement setups. The complete tongue 

pattern vectors, Xastei from a complete tongue 

measurement then consists of 18 elements. 

The nose measurements accommodate a manageable 

amount of data, which has proven to contain relevant 

information [11]. The nose data is obtained from 4 

sensors, each one with a unique gas sensitivity 

pattern. Thus, the pattern vector from the artificial 

nose, xsmeii, consists of 16 features. 

Features from the other sensors are constructed in a 

similar way giving a unique vector from each 

artificial sensor pattern. The final pattern vector can 

then be formed as 

[*; Y X    . . 
smell   '      taste  '      vision ,X chewing ' A sound   J 

B.   Pattern Recognition 

We propose here a system that is closely related to 

the human way of estimating quality parameters. It is 

based on training of a fuzzy classifier and then using 

it in estimating how the sample object taken from the 

conveyor belt fits to the already established classes of 

production quality. For that purpose we make lots of 

experiments with potato chips, the quality of which is 

grouped in 8 classes, depending on the 3 levels salt 

content, existence/absence of spices and freshness. 

Large amount of measurements of the full pattern 

vector then is stored, preprocessed and used for 

training of the fuzzy classifier. Other set of 

measurements is used for test and verification of the 

quality of the classifier. Two fuzzy classification 

algorithms, namely fuzzy c-means and Gustafson- 

Kessel [12, 13], are applied. The experimental data 

gave approximately the same results, so any of them 

can be used. 

V. Conclusions and further work 

An artificial human related sensor system evolved 

from human perception measurement is proposed, 

with emphasis on issues of complex quality 

determination and focusing on food measurement 

based on the human ability to quality estimation. The 

paper presents basic background in feature extraction 
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and fusion of artificial sensor systems. In this concept 

of an artificial perception head we extract feature 

from the following sensors: 

- chewing resistance 

- electronic nose 

- electronic tongue 

- vision system 

- auditory system 

Applying multivariate analysis methods can show 

that the sensor units evaluate the properties of 

experimental samples in different way. However, by 

combining types of sensors and features from the 

different sensor data it is possible to reduce the 

amount of data to be processed in the classification 

phase. To achieve that, the system has also to be 

learned to estimate the discriminating abilities of 

each sensor with respect to the quality assessment of 

particular product. Then, a proper combination of 

sensor data can contribute to performing inferences 

that may not be possible from single sensors. This 

aspect has to be further developed in more 

comprehensive and self-contained system, able to 

include other human based capabilities and enhanced 

fusion techniques. 
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Abstract - A method of extrapolating the high 
frequency information from the well-log into the cross- 
well seismic sections was proposed in this paper. 
Employing the Sort-Time Fourier Transform (STFT) 
and an average coherence coefficient that was defined 
in this paper, the local correlation between two 
adjacent seismic traces was calculated in the 
frequency domain. Then depending on the proposed 
transfer function we transfer the high frequency 
information of a well-log into its nearby traces, and 
then from one high resolution trace into its adjacent 
traces one by one to get the desired high resolution 
seismic section. 

Keywords: information fusion, short-time Fourier 
transform, high-resolution seismic signal processing 

1. Introduction 

In today's petroleum industry, one important 
source of information for oil/gas exploration and 
production is seismic data, and improving the 
vertical resolution of seismic data is an important 
task in seismic signal processing. With the 
development of modern signal processing 
technology, the resolution of seismic sections has 
already been improved greatly. Yet the 
requirement from the industry is far from fully 
satisfied. As the information in the seismic 
records is limited, it is very difficult to further 
enhance their resolution depending solely on 
signal processing techniques. Fusing other 
information about the strata in seismic data 
processing is an effective way to solve this 
problem. 

Usually in oil exploration bore-holes or 
wells will be drilled at locations of particular 
interests in a survey.    In this case logging sondes 

will be placed in the bore-hole and pulled 
upwards, measuring rock velocity and density of 
the subsurface rocks as well as other geophysical 
parameters. Since a reflection coefficient is the 
difference in acoustic impedance of two layers, 
over their sum, and acoustic impedance is given 
by velocity times density, it is thus possible to 
construct a series that is close to the true 
reflective coefficient sequence from well logs. 
It has the highest possible vertical resolution on 
the spot of well. In other words, it has the 
highest frequency extent. How to use its high 
frequency information to enhance the resolution 
of seismic sections across the well is a newly 
problem in the study of seismic signal processing. 

In general, it is reasonable in geophysics to 
assume that there exists good local correlation 
between most adjacent seismic traces. And, 
through some processing there can also exist 
good local correlation between the well-log and 
its nearby traces. This observation is the basis 
of improving resolution of seismic sections using 
information of well-logs. Based on this 
observation Luo and Li proposed an initial idea 
of extrapolating high frequency information from 
well-logs into seismic section using the short- 
time Fourier transformfl]. But there exist many 
aspects that need to be further improved so that 
the method can be practicable. 

In this paper, we proposed a new method for 
enhancing the resolution of cross-well seismic 
sections by fusing high-resolution well-log 
information into the processing. We first extract 
the high frequency components of the well-logs 
and extrapolate them to the near-well seismic 
trace, to get a new higher resolution trace.    Then 

1 This work is supported by NSFC, the National Science Foundation of China. 
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the high frequency information of this new trace 
is transferred to its adjacent traces. This 
procedure is executed trace by trace so that a 
whole new seismic section of higher resolution 
can be finally derived. The key of this method 
is to extrapolate the high frequency information 
from a well-log to a near-well trace, and from one 
trace to its adjacent trace. In order to estimate 
the local correlation between two adjacent traces 
exactly, we calculate the short-time Fourier 
transform (STFT) of a high-resolution trace and 
its adjacent low-resolution trace respectively. 
Then the high frequency component of STFT 
amplitude of the adjacent trace is extended or is 
modified by some transfer function, which is 
designed based on the local correlation of the two 
traces in frequency domain. From the modified 
STFT amplitude of this adjacent trace, a new 
seismic trace whose resolution has been enhanced 
can be constructed with inverse STFT. By this 
processing, the high frequency information 
contained in well-log data is effectively fused 
into the seismic data, and at the same time, the 
original information of seismic data is well 
preserved at the same time. 

Experimental results on both synthetic 
seismic data and field seismic data proved the 
effectiveness of our new method. 

2. The Model 

In seismic signal processing, a well-known 
discrete convolution model is 

y
k

t =r,k*wl + nk 

(1) 

where v, is the seismic signal, r, is the primary 
reflective coefficient sequence of strata, w, is the 
seismic wavelet, and n, is additive noise. The 
subscript t is two-way reflection time, and 
superscript k is the number of seismic trace. In 
general situation, the series {v,} may be analyzed 
as (second-order) stationary and furthermore, 
from detailed investigations in [2], may be taken 
as having a zero mean and having a square 
summable auto-covariance sequence so that their 
spectra exist in the usual mean square sense. 

In equation (1) we assumed that the seismic 

wavelet of each trace is same in one section. 
This assumption is appropriate for actual post- 
stack sections[3]. The problem of enhancing the 
resolution of seismic section is to compress the 
width of seismic wavelet, or to extend the width 
of frequency band of sequence {y,}. For 
convenience, we ignore the item of noise in (1) 
the following discussion. 

If we denote the series {rt°} as the reflective 
coefficient that is taken from the data of well-logs, 
we can use a wavelet {vt>(

0}, whose frequency 
band can be intentionally selected, to make a 
synthetic seismic trace.   We denote it as {v,} : 

»(=r,y=iw.        (2) 
n 

If we select a higher frequency wavelet in above 
equation, we can get a higher resolution synthetic 
seismic trace, contrarily, we can also get a lower 
resolution synthetic seismic trace. We denote 
the higher frequency wavelet and lower 
frequency wavelet of synthetic seismic data as 
{w°"} and {w°L} respectively, and the 
synthetic seismic trace corresponding with them 
is denoted as vf and vf. 

3. Estimation of Local Correlation between 
Adjacent Traces 

Let the near trace of {v, } be { y)}. In spite 

that {y)} and { v, } are coming from different 
physical methods, they all represent information 
of strata at the same local position. Because the 
change of strata is relatively slow in the 
horizontal direction, {y)} and {v, } can be 
considered to be highly correlated. Actually, any 
two adjacent traces are highly correlated in most 
local ranges of traces. 

Let S°(T) be cross-correlation function 

between well synthetic trace { v, } and its near 

trace {y)}.   It is defined as 
N-l-T 

<(tr)=£[v(//+r]«-Iv/v;+r,     (3) 

where N is the length of series. For computing a 
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local correlation between {v, } and {yt}, we 
modify above equation with a window function 
{p,}.   Then, 

where 

(4) 

and / is time, Np is the width of the window 
function, which has a short-time duration. 

i   */-' 

^0=—2>J(/,/), (9) 
where ty is number of samples in frequency 
domain. The function y^(l) measure the 

average value of local correlation between the 
components of {v, } and {y)} in frequency 
domain.   It is only the function of time /. Alike 

.2 the coherence function  yvy(l,f), if v,,=y,, then 

yl(l)=\,  and  if {v,,}   and   {y)t}  are  un- 

Imitating equation (2), the auto-correlation correlated then y2(l)=0 
of {vr} and {yt} are 

1 JV.-l-r 

K(hr)*f- 2>;x,. 
l 

*=0 

%«'*>7r 2»U N„   k=0 

(5) 

(6) 

Their Fourier transforms R^{l,t), R°(1,T) 

and Ry(l,r) give the cross-spectral density 

function between {v, } and {y]}, and auto- 

spectral density functions of {v, }, {y)}, which 

are denoted as S°vy(l,f), 5V°(/,/), Sy(l,f) 

respectively. From above spectral density 
functions, the coherence function y2

yQ,f), 

which measures the linear correlation between 
the components of {v, } and { y)} at frequency/ 
in a local range, can be defined as 

yl(i,f)- (7) 
s0

x(i,f)s
0

y(i,f) 
The coherence function can be seen being 
normalized, and it is sort of a correlation 
coefficient in the frequency domain[4]. If 
V/,,^1/,/ (maximum correlation between { v,,} and 

{?;,}), then 

(8) 
s°Ai,f)S°y(i,f) 

On the other extreme, if v, and v1, are un- 
correlated, then S°vy(l,f)=0 and y^(!,f)=0. 

We  define  an  average  coherence  coefficient 

yj(0 as 

4. Transfer Function and the Information 
Transfer 

The basic method of enhancing the 
resolution of seismic section in this paper is to 
realize the extrapolation of high frequency 
information from well-log synthetic trace to its 
nearby traces, and then from one higher 
resolution seismic trace to its adjacent lower 
resolution seismic trace one by one. This means 
that the processing of extrapolation should be in 
the frequency domain. On the other hand, since 
strata vary along the horizontal direction, the 
values of correlation in the different local 
segments of any two adjacent traces are different. 
From this property the extrapolation should be of 
the time-varying. STFT is a useful tool for 
analyzing and processing the problem of time- 
frequency.   We employed it in our method. 

Denote the STFT of series {v,} is SFv(l, f), 
then 

00 

SFUfr £ v(k)p(l - k)e-j2^ .     (10) 

The above equation can be rewritten in form of 
the amplitude spectrum \SFv(l, f)\ and 
corresponding phase spectra Ov(l,f), 

00 

SFXh/H yZv(k)p(l-k)e-J2* |^W).(11) 
* = -00 

Replacing v with y in equation (11) we can get 
\SF°ll,f)\^^llf). 

The transfer function is used to transfer the 
local   frequency   information   from   a   higher 
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resolution trace to a lower resolution trace 
corresponding to the local correlation. In order to 
reserve the phase information of original section, 
which is important for farther processing, we 
only transfer the amplitude information. 
Therefore, the transfer function is defined as 

^♦Sii^fflM (12) 

where H^l, f) relates to the average coherence 
coefficient  y^(l).    Let {y) }  be the series 

whose resolution has been enhanced through the 
processing of high frequency information transfer 
from series {v,} to series {y1,}. The amplitude 
spectra of its STFT are denoted as \SFy(l,f)\. 

Then 
\SFy(l,f)\=\SF°y(l,f)\HJl,f)        (13) 

Using (12), this can be written 
I SFy(l,f) |=| SFy\l,f)\+ rl(l) [\SFV(IJ)\- 

\SFy°(l,f)\l (14) 
which will form the basis of our extrapolating 
scheme. From (14), the process of frequency 
information transfer relates to the local coherence 
coefficient y^,(l) . In extreme situations, if 

^(/)=0, which means that {vfj)} are un- 

correlation with {y](l)}> then \SF.(l,f)\= 

\SFy(l,f)\, i.e. the frequency information isn't 

transferred completely; and if fv^(/)=l, i.e. 

{v,(/)} nave me maximum correlation with 
{y](l)}, then \y]\=\SFv(l,f)l in which situation 
the frequency information is transferred 
completely. 

5. The Procedure of Fusing Well-log 
Information into Seismic Traces 

In section 3, we showed the correlation 
measurement of two adjacent traces in frequency 
domain. In section 4, we gave a definition of 
transfer function and put forward the method of 
transferring the high frequency information from 
a synthetic trace to its nearby traces. Based on 
those, the whole procedure of fusing well-log 
information into seismic trace is presented. 

First,    using    the    reflective    coefficient 

sequence, which is from a well-log data, and two 
known wavelets, one frequency is higher and 
another is lower, we generate two synthetic 
seismic traces with the convolution model (2), i.e. 
{ v," } and {vf}, which have higher and lower 
resolution respectively. It is worth noting that 
the lower resolution synthetic seismic trace {vf } 

is only used to match its near trace {y)}, so its 

wavelet should be as same as {y)}. In the best 

way, this wavelet should be extracted from {y)}. 

Secondly,   to   calculate   the   local   cross- 
correlation     i^(/,r)     between    the     lower 

frequency synthetic seismic trace {vf,} and its 

nearby  trace   {y),}   with   the   equation   (4). 
Because the seismic section has the slope line, the 
local cross-correlation between two adjacent 
traces may be not in the same time point. 
Therefore, we should find the maximum of the 
cross-correlation between {vf,} and { y),} in a 
small time range [-M, M\. In this situation, the 
equation (4) is modified as 

1 JV„-l~r 

<(/,r)*   max  {— ^vfyi+ml+r},   (15) 
V m<=[-M,+M]  Np     fTo 

where parameter M is selected according to the 
degree of slope of the line in seismic section. 
Beside the  R^{l,r), we should calculate the 

local auto-correlation function of {vf,} and 

{ yL0,, K denote Rv(l, r) and R°y(l + m0, t), with 

equation (5) and (6), where m0e[-M, M\ is the 
time point that make R%(l,r) maximum in (15). 

After getting R^(l,r),Rv(l,r)a.nd R°y{l + m0,t), 

Fourier transform them to get power spectrums, 
S%0,f), S°v(l,f), S°y(l + m0,f), then using 

equation (9) to calculate the average coherence 
coefficient y^(l). 

Finally, transfer frequency information from 
the synthetic seismic trace {v" } to its nearby 

trace {y)} so that a new higher resolution trace 

will be got. We denote it by { y)}. For this 

purpose, we compute the STFT of {vf} and 
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{y)}> get the amplitude spectrum \SFv(lf)\ and 

| SF° (/+/% f)\, and the phase spectrum <£,,(/, f) 

from (10). Then, from equation (14) the 
amplitude spectrum of STFT of {y]}, i.e. 

\SF-(l,f)\ is given. Using the following 

equation, 

y< ^-^hsF,{l,f)\eJ(2^'iU)),   (16) 
2;sp(U) /=0 

where /,  t=0,\,...Jfy   we can reconstruct the 
seismic trace {)>]}. 

Replacing the {v"} with {y\}, and 

replacing {v,1} with {yj}, we repeat above 

procedure, the higher resolution trace { y]} can 

be given. Imitating this the information of welL 
log can be transfer into the whole seismic section. 

6. Experiments 

In order to check the performance of the 
method that was proposed above, we first 
transfer the information from a well-log into its 
nearby trace using the simulated signals. 
Fig. 1(a) is a simulated sequence of reflective 
coefficient that was taken from well-log data. 
Fig. 1(b) is a synthetic seismic trace which is the 
convolution of a higher frequency wavelet and 
the sequence of Fig. 1(a). Fig. 1(c) is the trace 
near the well which was generated with 
reflective coefficient sequence that is showed in 
Fig. 1(f). Using the method presented above, we 
transferred the higher frequency information 
from Fig. 1(b) into Fig. 1(c), the result or output 
trace is showed in Fig. 1 (d). Comparing Fig. 1 (c) 
with Fig. 1(d), the resolution of original trace has 
been enhanced evidently. Fig. 1(e) is the real 
high resolution trace corresponding with Fig. 1(c), 
which is generated from convolution between a 
high frequency wavelet and correspondent real 
reflective coefficient sequence Fig. 1(f). 
Comparing Fig. 1(d) and Fig. 1(e), we can find 
that result of the procedure of information 
transfer is quite similar with its real situation. 

Another result of the experiment with a 
real-world seismic data is shown in Fig.2. 
Fig.2(a) is an original seismic section which are 

from certain area in China. Fig.2(b) is the 
processed seismic section using above method. 
In fig2(b) we inserted two high frequency 
synthetic seismic traces that were repeated to 
form several same traces, which are the source of 
the high resolution of seismic section. From 
fig.2(b) we can see that the resolution is much 
higher than the original seismic section, while 
the basic structures are well reserved. 

amplitude 

100 

200- 

300 

400 

s 

ms 

J- 

4- 

*   (a)      (b)      (c)     (d)     (e)       (f) 

Figure 1. Frequency information transfer with 

simulated signals of well-log and its nearby trace. 

(a) reflective coefficient taken from well-log data; (b) 

the higher frequency synthetic seismic trace; 

(c) the nearby trace; (d) the trace whose resolution 

has been enhanced; (e) the real high resolution trace 

corresponding with (c); (f) the real reflective 

coefficient corresponding with (c). 

7. Conclusion 

In this paper we defined the local average 
coherence coefficient, and proposed a new 
transfer function. Based on them a new method 
of fusing well-log information to enhance the 
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resolution   of   seismic   section   was   given. 
Experiment examples showed its good effect. 
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Figure 2.   Experiment with real-world seismic section (part). 

(a) original seismic section;   (b) processed seismic section with synthetic traces at well locations. 
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Abstract - A new structure of ESKD (generalized 
diagnosis type expert system based on knowledge 
discovery system KD (D&K)) is first presented on 
the basis of KD (D&K)—synthesized knowledge 
discovery system based on double-base (database and 
knowledge base) cooperating mechanism. With all 
new features, ESKD may form a new research 
direction and provide a great probability for solving 
the wealth of knowledge in the knowledge base. This 
paper mainly advances the general structural frame of 
ESKD, describes some sub-systems among ESKD 
and emphasizes on dynamic knowledge base based 
on double-base cooperating mechanism. According 
to the result of demonstrative experiment, the 
structure of ESKD is effective and feasible. 

Key Words: Knowledge Discovery, General 
Structure, Expert System, Dynamic Knowledge Base, 
Double-Base Cooperating Mechanism. 

1 Introduction 

Since 1965 when the first expert system 
DENDRAL, was developed by F. A. 
Feigenbaum to deduce the structure of molecule 
from chemical data, the expert system has 
developed rapidly and been used in many 
domains to produce great ecconomic and social 
benefit. But the further development of expert 
system met some difficulties such as poor 
knowledge, monotonous inference and poor 
ability for self-study. These caused the second 
bottleneck—insufficient knowledge during the 
research of expert system recently. 

On the other hand, abundant knowledge in the 
knowledge base of diagnosis type expert system 
is crucial factor and difficult during the software 

developing. Presently, in the world the new 
method is "knowledge module method", namely 
the software of lower layer and quick as possible 
as is used to transit. Its worst quality is 
imperfect, and it needs prophase accumulation 
of longer time, then the knowledge base is made. 
Essentially, this adopt to a "blenching" method 
on the above crucial problem (whether the 
knowledge is abundant). From the "extended" 
and "radical" angle, can the crucial problem be 
resolved? 

In accordance with above question, the article 
presents a generalized diagnosis type (i.e. a type 
of problem of seeking generalized cause-and- 
effect in wide field, including in fault diagnosis, 
intellect call center, credit card cheat and so on) 
expert system based on knowledge discovery 
(ESKD). Its theory is synthesized knowledge 
discovery system based on double-base 
(database and knowledge base) cooperating 
mechanism presented by us. It produces a very 
abundant dynamic knowledge base and 
corresponding integrated inference mechanism 
under many knowledge resources, kinds of 
knowledge fusion, multi-abstract levels and 
different knowledge layers. Therefore it 
especially fits for complicated big system and 
provides a valid path to produce the kernel 
technology on the structure of expert system. 
This system primarily improves the practical 
function of traditional expert system. 

2   Generalized  diagnosis   system  based  on 
knowledge discovery (ESKD) (see fig.l) 

* Project supported by Chinese National Natural Science Fund (69835001) 
ISIF©1999 1156 
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Fig. 1 FESKD overall structure figure 
It mainly includes the following modules: 
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2.1 Dynamic knowledge base sub-system based 
on knowledge base: 

Essentially, it is a knowledge discovery system 
based on double-base (database and knowledge 
base) cooperating mechanism. As a result of 
knowledge discovery under different knowledge 
levels, the basic knowledge base directly 
constructed by expert experience and book 
knowledge is expanded continuously. Utilizing 
KDD*, each kind of inference mechanisms and 
KDK* under double bases cooperating 
mechanism, knowledge base sub-system which 
has the character of dynamic expansion is 
developed to manage Fuzzy uncertainty, random 
uncertainty and qualitative information. The 
cause-and-effect rules, discovered by this 
system, are used to modify the pristine fault tree, 
decision tree and example in knowledge base to 
fit for the solution of complex generalized 
diagnosis problem. 

2.2 Knowledge training sub-system: 

The system can not only be trained by 
professionals but also gain data directly by 
examples. It can gain the fault diagnosis 
knowledge of different type sets to adapt to 
different users. 

2.3 Grade diagnose and decision sub-system: 

Fault tree is used to put the whole facility to a 
set of tests to be determined whether there is a 
fault or not. These modules will be tested one by 
one if there is. When one module is found fault, 
rule base (cause network and fault diagnosing 
table) is used to test and 
diagnostic internal module until the faulty point 
is found. Using correct resemble mechanism and 
knowledge in knowledge base, the system tests 
the facility and diagnoses whether the facility is 
normal or not. If the facility is not normal, the 
system will find the cause of the fault and 
provide solution according to decision tree. 

2.4 Base management sub-system 

It mainly manages real database, basic 
knowledge base and derived knowledge base. It 
can edit, delete, index, inquire, add and backup. 
It establishes good interface in Windows style. 
Users can realize expediently the operation of 
knowledge base and database. 

2.5 Detection self sub-system 

To avoid false diagnosis caused by the fault of 
testing hardware itself, the expert system will 
check the testing hardware itself by close-loop 
before operation. 

2.6 Help on-line sub-system 

This sub-system will help users use the system 
more effectively and get the help of 
corresponding information at any time. 

3.   Dynamic   knowledge   base   system 
double-base cooperating mechanism 

with 

3.1 General frame of dynamic knowledge base 
system: 

Dynamic  knowledge  base   experiences   the 
promotion process of 
basis—derivation—integration—expansion. The 
process only finishes the first stage of discovery, 
i.e. the first abstraction level. The expansion 
knowledge base in the first abstract level is 
regarded as basic knowledge base in the second 
abstract level. The second abstract level will be 
finished in a process similar to each step of 
discovery in the first abstract level. Things like 
that continue. When cognition is developed and 
time and space environment are changed in 
different stages. Knowledge will constantly be 
enriched and promoted and cognition will 
deepen. So knowledge base is dynamic and in 
sequence (see fig.2). 

The parallel structure can be applied to 
complicated system if the system is divided into 
several independent sub-systems (shown in 
fig.3). 

Fig.3 the parallel structure 

Where 1,2,3,---,n are the developing processes 
of each independent sub-system. Each of them 
seems to be an abstract level in sequence 
structure, then they all integrate into the total 
extended knowledge base. 
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Fig.2 simplified structure in sequence 

3.2 Double-base cooperating mechanism: 

3.2.1 Basis Theory: 
The dynamic knowledge base is established on 
double bases (database and knowledge base) 
cooperating mechanism. The large (basic) 
knowledge base is divided into several 
correlative sub-knowledge bases according to 
each domain; Meanwhile, the real database is 
divided into correlative sub-databases according 
to each domain. Thus the layers between 
knowledge nodes in knowledge base and data 
sub-class (structure) make a one to one mapping. 
The basis theory which is proposed by us is pan- 
homotopy conception and the following 
structure mapping theorem [1] [2]. 

Theorem (Structure Mapping Theorem'): 
Aiming at X, in the sub-database corresponding 
to sub-knowledge nodes, <E» F > of knowledge 
nodes and <F > D> of data sub-class (structure) 
are identical pan-homotopic type spaces. 

This theorem presents the mapping of layers 
between knowledge nodes in the sub-knowledge 
base and data sub-class in corresponding sub- 
database (see fig.4). 

On the basis of the research above, we can see 
that in the knowledge discovery system 
mathematical structure of database and 
knowledge base can be essentially come down 
to pan-homotopy category. Namely database is 
pan-homotopy category combined with data 
sub-type (structure ) set and "mining path", 
which is called data mining category; and 
knowledge base is pan-homotopy category 
combined with knowledge nodes set and 
"reasoning arc", which is called knowledge 
reasoning category. Additionally more result 
about the isomorphy and restricting mechanism 
of knowledge reasoning category CR( E )in 
<E> F >and data mining category CD( F )in 
<F, D > are got, and "directional searching" and 
"directional mining process" are resolved 
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Fig.4 corresponding graj 

3.2.2 The technological realization: 
The technological  realization  of double-base 
cooperating mechanism is to construct R type 
and S type coordinator. The main function of R 
type coordinator is to "interrupt" the process of 
KDD and search whether there are repetition 
and   controversy   of   the   resulting   rule   in 
knowledge base after the rule (knowledge) is 
resulted from  large amount of data in real 
database  through  setting  focus.   If there   is 
repetition, the resulting rule is cancelled and 
returned to the beginning position in KDD. If 
there is controversy, the rule in knowledge base 
is thought right in general conditions, and the 
resulting rule is cancelled or set into knowledge 
base after the means of expanding premise is 
used to eliminate controversy. If there is neither 
repetition nor controversy, the process of KDD 
continues.   Namely   the   result   is   set   into 
knowledge  base  after  evaluation.   The  main 
function of S type coordinator is to search 
irrelevant    state    of   knowledge    nodes 
knowledge base under the principle of property 
on   which   knowledge   base   is   established. 
Knowledge    shortage    is    found.    Data-class 
corresponding to real database uses heuristics 
and is activated to produce "directional mining 
process", The priority of "directional mining" is 
sorted according to relevant strength. 

1) Besides discovering knowledge according to 
the factitious "interest", we proposed the new 
path of automatically enlightening directional 
mining according to "knowledge shortage" in 
basic knowledge base. 

2) The mechanism greatly decreases "the 
evaluating quantity" after discovering 
hypothesis rule. 3) According to the above 
mechanism of "structure mapping", the 
searching space is greatly reduced and the 
mining efficiency is improved. 4) The 
mechanism rather easily resolves the 
redundancy and consistency problem in 
knowledge after new and old knowledge 
synthesized. 5) During the KDD process and the 
wide relation with basic knowledge base, KDD 
regarded as a open system improves and 
optimizes its structure, process and running 
mechanism. 

in      4 Conclusions 

Comparing the structure of generalized 
diagnosis type expert system based on 
knowledge discovery (ESKD) with traditional 
fault diagnosis structure of expert system, we 
will find the following performance 
characteristics and creative idea. 

3.3.3 Significance 4.1  Abundance:  traditional knowledge base 
system only uses reasoning machine to extend 
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knowledge in basic knowledge base. However, 
the dynamic knowledge base of ESKD 
experiences a series of promotion process of 
basic—derived—integrated—synthesized—exte 
nded. Both the quantity and quality of the 
knowledge reserve are quite abundant. Its 
management system is perfect and is high 
intellective to discover deep layer knowledge 
and estimate knowledge; 

4.2 Strong reasoning (include Fuzzy, deduce, 
induce, qualitative, reasoning based on cases, 
statistics reasoning and so on) and interpretation 
ability; 

4.3 Independence: the system use structure 
system analysis. The whole expert system is 
divided into independent sub-systems that can 
perform different performance. Each sub-system 
can both work cooperatively and be used 
independently by different users; 

4.4 Practicality: during the process of 
diagnosis, when the test watch is placed where 
the blueprint has marked, this system can auto- 
send out the order and show kinds of target of 
hardware testing in this place. Meanwhile, it 
accepts the testing result and gives it to 
processor in turn, then the diagnosis result is 
showed. This system can also tell the operator 
whether the set is normal. The operator needn't 
do any other thing. Therefore, it is practical, 
convenient and popularizing; 

4.5 Self-learning and Self-adaptability: self- 
learning is improved by coordinator, learning by 
cases and knowledge training. New knowledge 
is acquired and set into dynamic knowledge 
base; at the same time dynamic knowledge base 
and database based on knowledge discovery 
extend in time and space. New knowledge is 
regenerated to fit to the changing environment 
following the increase if abstract level. This 
makes the system rather self-adaptive. 

4.6 Cocurrency: In accordance with 
generalized diagnosis problem, ESKD adapts to 
quite wide field. Meanwhile, ESKD support the 
cline/sever structure and different database 
system. 

Under the operating platform of Internet and 
Windows95/98, we have finished the 
development of demonstrating program of the 
two important modules in ESKD with VC++5.0 
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and Oracle. The result is satisfactory. The 
following gives the example of turbine engine 
vibrating to show the validity of ESKD: 

Suppose the following rules are known, it 
forms a branch of fault tree: 

The oil viscosity decreases -»the oil surface 
break -» burning the bearing bush -» the engine 
strong vibrates 

In addition, there is a group of rules: 

Dirt deposits in water beside oil-cooling 
equipment-> oil cooling equipment fault -> oil 
temperature is high 

If we only know the above rules, the result 
possibly is that new bearing bush is used to 
change the old one when diagnosing the reason 
of strong vibrating of engines. But it isn't the 
essential reason. The equipment will still burn 
the bearing bush. The fault generally is caused 
by low level which cause the higher level system 
fault, namely the propaganda of fault is a 
process of propaganda from low level to the 
high. 

The essential reason must be found in the 
diagnostic process so that the problem can be 
solved. The essential reason of the above 
problem is that dirt deposits in water beside oil- 
cooling equipment» The reason isn't found is 
absent relation between these two group of rules, 
namely the relation between the temperature of 
oil high and the oil adhesion degree decreasing. 

If KDD* is used, we can find such a rule from 
, database: 

The temperature of oil is high -» The oil 
adhesion degree decreases. 

Then these rules can be connected into a cause 
link: 

Dirt deposits in water beside oil-cooling 
equipment -> oil cooling equipment fault -» the 
temperature of oil is high-» The oil viscosity 
decreases -> the oil surface broken -»burning 
the bearing bush -> the engine strong vibrates. 

At this time the essential reason, dirt deposits 
in water beside oil-cooling equipment can be 
found so the problem can be solved completely. 
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Abstract 
Sensor data fusion/interpretation and the identification of 
failures are extremely important activities for the safety of 
complex, expensive or dangerous systems. If the system's 
description model is correct, conflicts among the data may 
only be attributed to temporary deterioration or permanent 
breakage of one or more sensors. Testing the sensors is 
sometimes impossible or too much expensive, as in 
unmanned space missions or nuclear power plants. This 
paper introduces and discusses three simple ideas: 
1. classical "Model-Based Diagnosis" can be extended 
straightforwardly to encompass the sensors' models into the 
system's description in order to diagnose even their own 
faults 
2. from the "log-file" of the diagnosed minimal conflicts 
among the sensors, one can draw interesting conclusion 
regarding their relative reliability (e.g., through Bayesian 
Conditioning) 
3. the estimated reliability of the sensors is useful when 
assessing (e.g., through Dempster's Rule of Combination) 
the actual state of the monitored physical system, even in 
cases of conflicting data. 
These ideas lead to the conception of a distributed 
monitoring system able to attach a statistically-evaluated 
relative degree of reliability to each sensor. This is 
especially useful for devices situated in dangerous zones or 
areas difficult or impossible to reach. This system is able to 
detect multiple faults of sensors and components. 

1. Introduction 

To control complex processes, (power plants, 
automated vehicles, aircraft) a large number of 
sensors are normally used. Sensor values directly 
affect the controllers' actions or the operators' 
decisions. Failures in generating adequate control 
actions as consequences of invalid sensor values 
often lead to total system shutdowns or hazards 
creating significant economic losses and sometimes 
even endangering the system's and human's safety. 
Hence, the reliability and the performance of the 
system are largely dependent on the validity and 
accuracy of the various sensors that are used. Errors 
can exist in the sensor readings due to the imperfect 
nature of the sensors, to permanent or temporary 
breakages and as a consequence of noises added to 

the readings, due to numerous known and unknown 
causes. Faults could be abrupt and/or incipient 
(slowly developing such as bias or drift in 
calibration). Sensor readings inconsistent with the 
normal model of the system, could be caused both by 
sensors faults or by breakages of the components of 
the monitored/controlled system, and it is very 
important to distinguish between the two. To 
improve the operational reliability it is necessary to 
validate the measured sensor data and isolate any 
faulty sensor; this is the task of Fault Detection and 
Isolation (FDI). 
In Model-Based Diagnosis, collected data are 
confronted with a theoretical model of the monitored 
process/phenomenon in order to specify its current 
state (in case of a control system) or to validate the 
theory (in case of a scientific experiment). 
Discrepancies between theoretical models and sensor 
data can be imputed either to the sensors or to the 
theory (or to both of them). We may distinguish 
between three basic cases: 
1. at least one sensor did not adequately report the 

quantity it should have measured 
2. the theoretical model is not (completely) 

applicable to the actual monitored system 
because: 
a) the (scientific) theory has to be refined 

(objective interpretation) 
b) the physical system is not working as it 

"should" (teleonomic interpretation) 

Case 1, often referred to as Sensor Data Validation 
(SDV), gained much interest in the last few years 
[1,2,3,4].  As illustrated  in  [5], methods can be 
distinguished into three categories: 
SDV1.     data-based: they rely on statistical models 

obtained from observed data 
SDV2.       model-based: they rely on an analytical 

model of the monitored system 
SDV3.        knowledge-based: they rely on human 

expertise 
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Case 2 has been deeply studied in Artificial 
Intelligence, both as a knowledge revision problem 
(BR for short, see [6] for an overview) and as a 
model-based diagnostic problem (MBD for short, see 
[7] for a survey). It seems evident to us that BR and 
MBD are dual problems. In the last decade, MBD 
moved from its theoretical foundation [8] [9] to some 
practical applications (see for instance [10]). In 
MBD, diagnoses are found from discrepancies 
between observation and prediction. The 
intermediate step is the exhaustive generation of the 
"conflict sets" for the tuple (SD,COMPS,OBS), in 
which System Description and Observations are sets 
of first-order sentences, COMPonentS is a finite set 
of constants each one representing a component of 
the system [11]. A diagnosis is a subset of COMPS 
that covers all the conflict sets. 

A main problem with MBD is that each of its three 
fundamental steps, prediction, conflict recognition 
and candidate generation, exhibits a combinatorial 
explosion for large devices [12]. However, the worst 
problem with MBD is related to the case 2a before, 
i.e., the fact that it is at least difficult to find out a 
correct model for the system to diagnose. This paper 
does not deal with these problems: both of them will 
be cravenly avoided by imposing the relative 
simplicity of the apparatus to be controlled or 
diagnosed. Instead, this paper introduces, discusses 
and reports experimental results about the following 
three issues: 
1. the problem of recognizing sensors' faults can be 

approached entirely within the framework of 
MBD (section 2) 

2. from the diagnostics of the sensors' faults one can 
formulate interesting conclusions regarding the 
various sensors' relative reliability (section 3) 

3. from the estimated reliability of the sensors one 
can hypothesize the actual state of the monitored 
physical system even in cases of not-redundant 
and conflicting data (section 4). 

Normally, sensors come labeled with many important 
qualifications (accuracy, average life-time, ...) which 
are necessary to estimate their a priori current 
reliability. By "reliability" of a sensor we mean the 
"probability that the sensor is providing the correct 
measure," whatever the term "correct" may signify. 
However, the actual current reliability of a sensor 
may be smaller than the "a priori" one due to 
unpredictable and/or unknown events that might have 
affected it from its assembly to its current 
employment in the monitoring system. Of course, 
any sensor's current conditions can be appraised 
through appropriate testing devices. But, apart from 
the academic problem of infinite regression (which 

devices will test the testing devices, and so on, ...), a 
concrete question is that "testing" has its own costs. 
For instance, in the monitoring apparatus of an 
automatic  production  line,  some  optical  sensors 
might have been altered after a temporary fault of the 
conditioning device that cleans the air from the 
pollution particles produced by the power generator. 
Since  testing  the   sensors   implies   stopping  the 
manufacturing process, other evidence about their 
possible    deterioration    would    be    appreciated. 
Furthermore, systematic controls and calibration of 
sensors "can lead to material degradation due to 
repetitive   manipulations"   [25].   Issue   2,   above, 
suggests that such an evidence may come from the 
theoretical       model       of       the       monitored 
process/phenomenon and from the global datum 
provided by the distributed monitoring apparatus. 

The group of the sensors acts as a testing device for 
each one of its own members.  Of course,  this 
evaluation depends on the average reliability of all 
the  sensors  in  the  group  (hence  including  the 
corrupted ones) and on the completeness of the 
monitored   entity's   model.   In   any   case,   these 
estimates will not be comparable (nor for quality 
neither for typology) with the evaluations made by 
specifically designed testing devices. Their point is 
that they do not interfere in any way with the 
manufacturing process, thus they have no expenses at 
all (apart from the fixed costs of a CPU, some data- 
acquisition boards and a mass storage device). A key 
idea with this distributed auto-estimate is that of 
"minimal   conflicts".   Intuitively,   if  it   has   been 
detected a minimal conflict between the sensors A 
and B (by confronting the collected data with the 
theoretical    model)    and,    subsequently,    another 
minimal incompatibility is found involving B and C, 
then    one    may    suppose    more    probable    the 
deterioration of B than those of both, A and C. 
Dealing   with  probabilities,   we  do  not   want  to 
reinvent the wheel since Bayesian Conditioning [13] 
(section 3) seems an appropriate tool to accomplish 
the task. Basically, the new reliability of a sensor S 
will be computed as the probability that S gave the 
correct value provided that it has been involved in 
some minimal conflicts. The greater the cardinality 
of these minimal conflicts, the higher the chance that 
S is working properly. The worst case is when S in 
involved in a singleton minimal conflict (i.e., it went, 
by itself, out of the range compatible with the 
theoretical model) so that its new reliability is 0. We 
will estimate statistically the current reliability of 
each sensor (over all its working life) w.r.t. the other 
ones. 

There are cases in which the cost of testing a sensor 
is infinite, i.e., the examination is impossible or not 
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convenient. Let us think about the sensor equipment 
of unmanned satellite stations or about real-time 
domains in which you receive impossible (or utterly 
improbable) global data and have no time to test the 
sensors. These cases fall into the classic discipline of 
decision support under uncertainty. In these 
circumstances, the estimated current ranking of 
reliability plays an important role since, although 
very rough, it provides a more justified and up to date 
(hence more adequate) estimate than the "a priori" 
one. To accomplish this task, the fundamental tool 
we adopted in our method is Dempster's Rule of 
Combination in the special form in which Shafer and 
Srivastava apply it to the "auditing" domain [14] 
(section 4). 
Section 5 describes the phenomenon of the 
"overexposure", which may penalize some sensors; 
in section 6 we introduce models whit fault 
behaviors. Section 7 compares our approaches with 
other related works and section 8 reports some 
tentative conclusions that might be drawn from our 
experiments, pointing the attention to the biggest 
obstacle we were faced with: the relative 
overexposure of some sensors. 

2. Diagnosing sensor faults 

Although these ideas come from an independent line 
of research [15, 16], diagnosing sensor faults can be 
done as well within the framework of MBD [9] by 
extending the system's description (e.g., figure 1-A) 
to encompass the sensors' models (e.g., figure 1-B). 

ABC 

f>rf> 
^ 

J> 

M- 
ä    di 

^*\A 
B 

Figure 1. Extending the notion of system to 
encompass the sensors models 

The system's description will be extended 
congruously (in bold below): 

COMPS: 
{ Al, A2,01, NX1, SA, SB, SO S. Sh Sa Sd } 

SD: 

ANDG(x) A -iAB(x) =* out(x) = and(inl(x), n2(x)) 

NXORG(x) A -iAB(x) =* out(x) = or(inl(x),in2(x)) 

ORG(x) A -iAB(x) =* out(x) = or(inl(x),in2(x)) 

SENS(x) A -,AB(x) => out(x) = in(x) 

ANDG(Al), ANDG(A2), NXORG(NXl), ORG(Ol) 

SENS(SA), SENS(SB), SENS(SC), SENS(Sa), SENS(Sb), 
SENS(SC), SENS(Sd) 

out(Al) = inl(Ol), out(Al) = inl(A2), 
out(A2) = in2(NXl), out(Ol) = inl(NXl) 

in2(Al) = in2(01), UI(SA) = INl(Al), 

in(SB) = IN2(A1), in(Sc) = IN2(A2), 
in(Sa) = OUT(Al), in(Sb) = OUT(A2), 

in(Sc) = OUT(Ol), in(Sd) = OUT(NXl) 

inl(Al) = 0 v inl(Al) = 1, in2(Al) = 0 v 

in2(Al) = 1, in2(A2) = 0 v in2(A2) = 1 

OBS : a finite set of first order ground sentences 

The system components COMPS is a finite set of 
constants each one representing a component of the 
system, sensors included. The system description SD 
describes how the system components normally 
behave by appealing to the distinguished predicate 
AB whose intended meaning is "abnormal". Thus, 
the first sentence states that a normal (i.e. not 
ABnormal) and gate's output is the Boolean and 
function of its two inputs. 
Recalling from [9], a minimal conflict set for 
(SD,COMPS,OBS) is a subset {xb...,xk} of COMPS 
such that SDu0ßSu{-iAB(x1),...,-iAB(xk)} is 
inconsistent and such that the same holds for no 
proper subset of {xi,...,X|.}. Any minimal hitting set 
on the collection of all the minimal conflict sets will 
be a diagnosis for (SD,COMPS,OBS). 
The strength of this framework is its ability to 
diagnose the contemporary faults of components and 
sensors (thus treating both the cases 1 and 2a before). 
However, often sensors observe physical systems in 
which there is no notion of component at all (e.g., 
distributed seismic monitoring systems [17,18]). In 
these cases, COMPS contains only the sensors, SD 
reduces to a mathematical model (maybe very 
complex) of the observed phenomenon and OBS is a 
simple array of numerical and/or boolean data. As an 
example, let us consider a metallic bar, heated at an 
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extremity and monitored by some thermometers as 
depicted in figure 2. 

SI    S2     S3 

zx:c 
Sn 

Figure 2. Diagnosing faults of pure sensor systems 

Even ignoring the bar's heat transfer equation, we 
may yet model the system with simple constraints (in 
bold face below for the case of only three 
thermometers): 

C0MPS:{Si,S2,S3} 

SD : SENSOR(x) A -,AB(X) => out(x) = in(x), 
SENS(Si), SENS(S2), SENS(S3) 

out(Si) > out(S2), out(S2) > out(S3) 
OBS : a triple of numerical data 

For instance, from 0AS={out(Si)=153°C, 
out(S2)=175°C, out(S3)=168°C} we draw the 
minimal conflict sets {{Si, S2}, {Si, S3}} and the 
diagnoses {{S^, {S2, S3}}. 

The strongest point with the adoption of MBD in 
SDV relies in the notion of good (as we called it for 
the obvious duality with de Kleer's nogood, called 
"minimal conflict set" by Reiter), that is a subset 
{xj xk} of COMPS such that 
5Du055u{-iAB(x1),...,-iAB(xk)} is consistent and 
such that the same holds for no proper superset of 
{xi,...,xk}. Each good is the complement of a 
diagnosis w.r.t. COMPS, i.e., a maximally consistent 
set of sensors. Goods play an important role when 
trying to hypothesize the system's status in presence 
of conflicting data. In fact, because of the duality 
between goods and diagnoses, choosing a most 
probable diagnosis means choosing a most probable 
good, i.e., a most probable (and complete) 
reconstruction of the system's status. 

A problem with MBD applied to SDV is that, 
independently of the accuracy of SD, the theory 
5Du05S'u{-,AB(x)| xeCOMPS} may be consistent 
even in cases of sensor faults. These hidden faults 
may occur, for instance, in cases of contemporary 
breakage of more than one sensor such that the global 
output is still a possible (although wrong) one. 

3. Estimating the sensors' actual reliability 

Whereas    hidden    faults    constitute    a   problem, 
successful recognition of minimal conflicts offers an 

invaluable opportunity to estimate, statistically, the 
actual current sensors' reliability from the "a priori" 
one. The most obvious way to do this is through 
Bayesian Conditioning, since we defined "sensor's 
reliability" as the probability that the sensor is 
returning the correct value. Let us denote with R( and 
NR(, respectively, the "a priori" and the "a posteriori" 
reliability of the sensor Si, and let us denote with S 

the set COMPS restricted to the sensors. Under the 
assumption that the deterioration of each sensor is an 
independent event (!?!), the hypothesis that only 
those belonging to <&QS are working properly has the 
combined "a priori" 

probability /?(<!>) = ]~J /?,, ■ J"J (l - R.). It holds 

that  ZJ R(O)=1. Of course, after the recognition of a 
®e2s 

minimal conflict (|>, A7?(<I>)=0 for each <lQ<t>, and any 
other <£> is subjected to Bayesian Conditioning so that 

E NR(<&) =1. The "a posteriori" reliability of Si is 
*G2SA()IC2* 

defined as NRj= 2JNR($>). If Si is involved in 

minimal conflicts, then NRi<Ri, otherwise NRi=Ri. 

Estimating the current reliability CRi of a sensor Si 
from Rj and from the history of the recognized 

minimal conflicts is a (debatable) statistical matter. 
In the experiments below, we took for CR{ the 
average of all the NR( calculated during the life of the 
distributed monitoring system. As we'll see, such a 
CR( provides an interesting relative ordering of 
reliability. The overall distributed sensor system acts 
as a testing device for each of its constituent member. 
Note that NRi is calculated only on the reception of 

conflicting data. Another important question is that 
of the length of the temporal window, i.e., how far 
we go back in the past to record conflicting data; 
intuitively, the wider the window the higher the 
inertia of the mechanism in registering the sensors' 
deterioration. 

4. Choosing the preferred good 

In Shafer's and Srivastava's multi-source version of 
the belief function framework [14], the sources' 
degrees of reliability are "translated" into belief- 
function values on the given pieces of information. In 
our method we follow them by taking the estimated 
reliability CRi as primary evidence in favor of the 

datum s. furnished by S(. Let Q denote the set of all 

the possible configurations of the monitored system, 
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and let [j.]cQ denote only those compatible with s~ 

The key assumption is that a reliable sensor cannot 
give false information, while an unreliable sensor 
can give correct data; the hypothesis that "5^ is 

reliable" is compatible only with [j.], while the 

hypothesis that "S. is unreliable" is compatible with 

the entire Q. Each S. gives an evidence for £2 and 

generates the following basic probability assignment 

(bpa) m. over the elements X of 2^: 

mi(X) = - 

CRt ifX=[st] 

l-CRt     ifX=Q 

0 otherwise 

All these bpas  will  be then  combined  through 
Dempster's Rule of Combination (DRC): 

Xm1(X,)-...-m„(X„) 
m(X) = m1(X)®...®m„(X) = ^^^ 

^m,(X1)-...-m„(Xj 
X,n...nlbt*e> 

From the combined bpa m, the credibility of a set of 
data (hence of a good) s is given by 

Bel{s)= %m(x) 
Xds] 

A major problem with the belief function formalism 
is the computational complexity of DRC; the 
straightforward application of the rule is exponential 
in the cardinality of Q and in the number of sensors. 
However, much effort has been spent in reducing its 
complexity. Such methods range from "efficient 
implementations" [19] to "qualitative approaches" 
[20] through "approximate techniques" [21]. 

5. The sensors' overexposure 

Normally, conflict sets contain sensors that are 
correctly providing the value they should. By 
"exposure" of a sensor we mean "its probability to be 
unjustly involved in a conflict". Unfortunately, some 
sensors are more exposed than the others, and such 
exposure depends not only on the model but also on 
the real (unknown) capacity of the sensors. Let us 
clarify the point with a simple example. Consider the 

monitoring system depicted in figure 2 with only 
three thermometers, SI, S2 and S3. Each 
thermometer has its own degree of capacity (which is 
unknow); suppose that S2 has a degree of capacity 
99, while SI and S3 have a degree of 90. The sensor 
S2 is more exposed than the others for two reasons: 
1 being it more accurate, probably it will be innocent 
in case of conflict with other sensors 
2 it appears in two relations in the System 
Description, while the others appear in only one 
relation each. S2 is involved both in the errors of SI 
and of S3, while SI and S3 are only involved in 
errors of S2. We say that S2 is "overexposed". In 
order to reduce the component of overexposure 
which is due to the model, we can try to explicitate 
all the relations which are only implicit in the model. 
For instance, in the example above, we can espicitate 
the relation out(Sl) > out(S3). Doing so, we do not 
render more complete the System Desription, 
however, in general, it is possible to add a new 
relation derived from other experiences and/or 
knowledge that makes the model more complete. 
Unfortunately, the overexposure due to differences in 
the real capacity of the sensors remains unknown. 
However, if it is possible to observe the system in a 
preliminary test, and calculate the exposure of each 
sensor, we can try to correct such overexposure. 
Having calculated the deviation of the exposure for 
each sensor, then those exceeding a threshold 
(defined from a), are the overexposed sensors. 

6. Faulty modes 

Till now we have considered models in which every 
sensor might be just normal or faulty. In general, 
models could contemplate modes of independent 
faulty behaviors. Let us think of an example with two 
faulty modes for some sensors. Then every sensor 
can be in one of the 3 possible states: Normal (N), 
Faultl(Fl) and Fault2 (F2). The "a priori" probability 
for each state of each sensor must be given (rispectly 
Ri, Fji and Fi2) and they must sum up to 1. In the 
Bayesian Conditioning, one must distribute the 
probability to the set of possible states (3n, n = 
number of the sensors), in accordance with the 
formula: 

*(<!>) = n*.'IlFtf U = 22) 
Hence the "a posteriori" reliability is calculated and 
used to estimate the actual current sensors' reliability 
and to choose the preferred good. 
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7. Related work 

The system presented in this paper belongs to both 
the  SVD1   and  SVD2  category  of sensor  data 
validation. The model-based methods presuppose the 
existence of an analytic model of the system and are 
based on a common methodology: generating and 
analyzing of the signals sensitive to the fault residues 
[26]. The main approaches to generate the residues 
can be classified in approaches based on analytic 
redundancy [25] (e.g. parity space) and approaches 
based on the observator (e.g. Kaiman filter). In Dorr 
et al. [23-25] faults are detected by comparing each 
residual with thresholds defined with respect to the 
sensor   measurement   accurancy.    Residuals   are 
generated by comparing each measurement with an 
estimate value. They can be obtained by simple 
redundancy (at least two sensors that measure the 
same physical variable) or analytical redundancy. 
The model-based methods are very efficient when 
there is a linear and well-known model of the system. 
The  problem  has  been   also  deeply  studied  in 
Artificial Intelligence. In [2] Lee presents a technique 
based on the analytic redundancy that needs an 
accurate knowledge of the process. Also in [22], 
Washio proposes a method to find the sensors' faults 
based  on  the  model  of the  monitored  process. 
Detection of faults is based on consistency checking 
between observations and optimal constraints, called 
"minimal    over-constraints",    consisting   of   first 
principles. If some inconsistencies are detected, the 
model-based  diagnosis   is   applied   to   derive  the 
candidate of faulty components. The individuation of 
the   sensors'   faults   and   the   diagnosis   of   the 
components are performed contextually in the same 
framework.    In   particular,   the   method   allows 
diagnosing   no   linear   components,   sensors   and 
components, and the width of the fault (table 1). 
Even if the methods overcome the non-linearity 
problem, all the model-based methods are sensitive 
to errors of the modeling. So, when it is not possible 
have an accurate model of the system, an alternative 
way is using a qualitative description based on the 
human    experience:    knowledge-based    methods. 
Typical examples of this category are the classical 
expert systems (formed by a knowledge base and an 
inferential engine) and fuzzy expert systems. 
In [27] is given a survey on the state of the art of 
model-based      diagnosis      employing      artificial 
intelligence  approaches.   Emphasis   is  placed  on 
neural network techniques and the use of fuzzy 
models for residual generation and fuzzy logic for 
residual   evaluation.   The   different   strategies   for 
diagnosing the faults in continuous systems with 

qualitative models can roughly be divided into two 
groups: 
1 fault model based 

2 normal model based 

It seems obvious that a fault diagnosis concept using 
a qualitative knowledge-based models can be 
organized in a configuration similar to that of the 
analytical model-based. 

Table 1. Compared work 
Character Our Dorr et al. Washio 
Method   of 
diagnosis 

Through 
minimal 
conflicts 

Through 
residuals 
analysis 

Through 
minimal 
conflicts 

Multiaul.            #                                      # 

of comp. 
Multiaul. 
of sensors 

• 

Non-lin. 
Models 

• 

Highly                 #                                      # 

non-lin. 
Dynamic              -                                        _ 
behaviors 
Human                - 
expertise 
Faults 
amplitud. 

• • 

Estimated 
reliability 

• 

Complexity Exp.in the 
card, of Q 

Iterative 
method 

Exp.in the 
numb.of 

undetquant 
inSD 

In this paper we presented a method based on the 
knowledge of the system that is not necessarily 
expressed by a mathematical model. The method 
needs any kind of knowledge to extract the minimal 
conflicts. This allows using both equation and 
constraints of real situations like "if the temperature 
is bigger than 100° C, then the alarm has to start"; the 
model-based methods cannot manage these 
constraints. 

In the SVD, it is supposed that the components are 
not corrupted. In our approach this constraint can be 
overcome extending properly the method. 

The historical analysis of the data allows exploiting 
information formerly draw out for solve the future 
conflicting situations. The systems proposed in [22] 
and [16] don't give indications concerning how to 
solve the conflicts and how to choose one of the 
possible diagnoses. 
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8. Conclusions 

Elaboration of data coming from multiple sensors is 
critical when conflicts emerge among them. This 
paper introduces and discusses three issues: 
1. the problem of recognizing sensors' faults can be 

approached entirely within the framework of 
model-based diagnosis; 

2. from the history of the sensors' faults it is 
possible to formulate interesting conclusions 
regarding the various sensors' relative reliability, 
by means of Bayesian Conditioning; 

3. from the estimated reliability of the sensors it is 
possible to hypothesize the actual state of the 
monitored physical system even in cases of not- 
redundant and conflicting data, by means of 
Dempster's Rule of Combination. 

We have proposed a monitoring system which is 
used to detect faults and to diagnose their location 
(Fault Detection and Isolation). Mathematical models 
can be not enough to perform efficient FDI. Our 
method can cope with both, analytical and heuristic 
expert knowledge, from complex dynamic equations to 
simple numerical constraints, rules and facts; in this 
manner we increase the robustness of the diagnostic 
process. The hardest problem with this method is 
what we called "overexposure effect", which depends 
on the model and on the real capacity of the sensors. 
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Abstract Actual systems uses data providing 
from several sources, this data may be for dif- 
ferent reasons heterogeneous,  uncertain,  im- 
precise,   and unreliable.    A system decision 
must manage with all of this qualitative and 
quantitative information. In some cases, at the 
finale decision step, a system must choose be- 
tween a coherent result even if it imprecise or a 
precise result even if it is incoherent. It is obvi- 
ous that a ideal system must be both precise an 
coherent, but when data we manage with does 
not allow it, one must make a choice. In this 
context, we propose in this paper a method to 
combine data providing from several sources, 
using the Dempster-Shafer rule.   Before tak- 
ing any decision, the system gives and addi- 
tional information concerning the sources in- 
volved (reliable or not), and it gives also an in- 
formation related the conflict produced by com- 
bining such sources. 

Keywords: Dempster-Shafer Theory , multi- 
ple hypothesis, uncertainty and ignorance manage- 
ment. 

1    Introduction 

The Dempster-Shafer Theory (DST) offers 
an interesting tool to combine data provid- 
ing from heterogeneous sources more or less 
reliable by managing imprecision and un- 
certainty.This is particularly important when 
dealing with multi-modality imaging (satellite 
image), where the fusion of information in- 
creases the global knowledge about the phe- 

nomenon. If 6 represents the universe of dis- 
course, also called frame of discernment the 
DST enables to assign mass to 2e rather to 
solely 0 hypothesis as in the Bayesian ap- 
proach. The DST has been used in many ap- 
plications as in Pattern recognition and Image 
Analysis, but without its all powerful. When 
using with singletons i.e an object belongs to 
a unique class even in uncertain situations, the 
DST falls in the Bayesian approach, which is 
considered as a particular case. In this con- 
text, some authors attempt to use double hy- 
pothesis but their method remains ad hoc. In 
order to better use the DST with multiple hy- 
pothesis, we propose in this paper a method to 
estimate the mass of ignorance from any belief 
measurements, and merge the close hypothesis 
to finally use the orthogonal Dempster-Shafer 
rule to split as most as possible, the most credi- 
ble hypothesis (unique or multiple), with a low 
degree of conflict, which enables to take a final 
and less risky decision. 

2    Fundamentals of DST 

2.1    Some functions in DST 

The DST uses a frame of discernment which 
is a set interpreted as a set of mutually exclu- 
sive propositions. The propositions of interest 
are assumed to be expressed as subsets of the 
frame 6 which is assumed to be a finite set. 
A mass function over 6 also known as a basic 
probability is a function m : 2e -*■ [0,1] such 
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that m(0) = 0, and '£,Aeem(^) = * Tne set 

of focal elements 9m of a mass function m is 
defined to be a set of subsets of theta for which 
m is non zero, i.e, {A C 6 : m(A) ^ 0}, the 
core Cm of a mass function m is defined to be 
a union of its focal elements, that is lUe3ro m 
can be viewed as being a mass function over 
Cm, which sometimes advantageous computa- 
tionally. 

1. The belief function Bel : 2e ->• [0,1] is 
given by Bel(A) = X)BCAm(-^)) if there 
exists a mass function m over 6 with, for 

all A e 1\ Bel(A) = EBCA™(
B

) 
B

<* is 
said to be the belief function associated 
with m. To every mass function over 9 
there corresponds a unique belief function; 
conversely for every belief function over 0 
there corresponds a unique mass function. 
To recover mass function m from its asso- 
ciated belief function Bel on can uses the 
following equation 

For A C ®,m{A) = £ {-l)\A~B\Bel{B) 
BCA 

2. The Plausibility function PI : 2e -*• [0,1] 
associated with mass function m is de- 
fined by the equations: for all A € 2e, 
Pl(A) — J2BnA^mrn(B) There is a sim- 
ple relationship between the belief func- 
tion Bel and the plausibility function PI 
associated with a particular mass function 
m: for A C 9,Pl(A) = 1 - Bel(Ä), and 
Bel(A) = l-Pl(A). The problem of com- 
puting values of plausibility is equivalent 
to the problem computation values of be- 
lief. A mass function is viewed as a piece 
of ambiguous evidence that may mean A, 
for any A € 9m; we consider that with 
probability m(A), it means A. Bel(A) can 
be thought of as the probability that the 
ambiguous evidence implies A, and Pl(A) 
as the probability that the evidence is con- 
sistent with A. 

3. The commonality function Q : 2e —> [0,1] 
associated with mass function m is de- 
fined by the equations :  for all -A G 2e, 

Q(A) = 52BDAm(B)- It doesn't usually 
have a simple interpretation but it allows a 
simple statement od Dempster's rule(ref). 
A commonality function determines and 
is determined by a mass function: if Qi is 
the commonality function associated with 
mass function mt- for i = 1,2 the Q\ = Q2 
if and only if mi = 7712- 

2.2    Dempster's Rule of Combination 

suppose we have a number of mass functions, 
each representing a separate piece of infor- 
mation. The combined effect of these, given 
the appropriate independence assumptions, is 
calculated using Dempster's rule of combina- 
tion. Let mi and m^ be mass function over 
theta. Their combination using Dempster'rule 
mi © m2, is defined by, for 0 ^ A C 0, 

mi®m2(i) = fe   ^T   mi(B)m,2(C) 
Bnc=A 

where if is a normalization constant chosen 
so that mi (Bm,2(A) is a mass function, and so 
is given by 

fc-1=   £   rn1{B)m2{C) 
BnCj® 

This combination is only defined whenfc is 
non zero; this happens only when if the cores 
of mi and m2 is non-empty. 

The operation © is associative and commu- 
tative. The combination ©i=i...fcmj of mass 
functions mi,m2, ...,mfc over theta is well- 
defined if the intersection of all the cores is 
non-empty, that is ni=i...feCm ^ 0. In this case 
their combination ©i=i...fcmj can be shown to 
be given by, for 0 = A C © 

®i=1m(A) = Klt...k       £       mi{Bl)...mk{Bk) 
BiCi...nBk=A 

Kit...k-
X =       £      miCBi)...mfc(£fc) 

Sin...nJ3fc^0 

The normalization constant -Ki,...fc can be 
viewed as a measure of the conflict between 
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the evidences. Let ®*=lBelmi and @i=1Qrm be 
the belief and the commnonality function re- 
spectively corresponding to the combined mass 
function ©f=1mj, they satisfy, for 0 ^ A C 0 

mass of ignorance is minimal if the separability 
between one hypothesis and the rest is max- 
imal, (no confusion occurs). This can be ex- 
pressed by: 

<b^B\r\..r\BkCA 

and 

The last result can be rewritten as 
k 

®i=iQmM) = K^kJlmkiA) 
i=l 

showing for commonalities, combination is just 
normalized product. 

3    Mass Ignorance Estimation 

In practical cases, and mainly in classification 
or pattern recognition problems, we manage 
with a finite set of classes, let's say {Q = 
u>i, W2, ..,«„}. The mass corresponding to each 
class is given by a classifier as probabilis- 
tic, possibilitic or any other measures. In a 
bayesian process for instance, all the unity 
mass is assigned to classes, and the informa- 
tion concerning this assignment (ignorance) is 
not represented. To overcome this situation, 
we propose to add to the initial set fi, an ad- 
ditional class 6 which represents the ignorance 
which can also indicates the reliability of the 
source. The mass assignment to this special 
class is calculated based on the following idea: 

If the entire mass value is assigned to igno- 
rance, then the source is considered non infor- 
mative and totally unreliable, and conversely, 
if its mass value is zero, then the source is con- 
sidered as completely reliable. 

In our case, the mass of ignorance m{9) is es- 
timated from the initial mass measures m(u;j). 
We assume that m{9) is maximal if the con- 
fusion degree among the given hypothesis is 
high, this situation occurs when all the mass 
degrees are identical and in the other hand the 

m(0) = 1 — sep where 

sep = m(uwr) - (n-1) 

Umax corresponds to the class with the maxi- 
mum mass value. 
After adding this special class to Q, the mass 
of the new set is normalized according to DST 
axioms 

X) ™(z) = 1 

XL a Ineiw 

4    Merge and Split hypothesis 
Process 

4.1    Merging Hypothesis 

At this point of process, the mass are assigned 
to a single hypothesis (class), with an addi- 
tional information concerning the reliability of 
theses assignments. To uses the DST with its 
powerful in the next stage, we are not consider- 
ing the 2® hypothesis which are very complex 
to estimate and to represent. The hypothe- 
sis which are close are merged in what we call 
a multiple-hypothesis, and hope that informa- 
tion providing by others sources will separate 
these hypothesis if these latest are concordant. 
The merge process is performed by assigning a 
part of the the mass let's say 1 < q < 0 to the 
merged hypothesis and the rest of the mass to 
ignorance. 

1- tt0id = {<jji} i = 1,...,0 

2. Sinew = {ttoidUui} if 
\m(Q,0id) - m(u>i)\ < e i = 1,...,9 
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3. finew represents the new set of merged 
class, or multiple hypothesis. fl0id is the 
previous set of classes with single or mul- 
tiple hypothesis. 

The update of the mass assignment of the 
merged class and ignorance are realized accord- 
ing to the following formulas: 

m(Qij) = m(tii) + q.m(uj) 

m(0) = m(0) + (1 - q).m(ojj) 

At the end of this process we get \flnew\ < \Q\ 
i.e the cardinalty of the new set of merged hy- 
pothesis is less or equal to the cardinality of 
the first set Q, (universe of discourse). 

4.2    Split Process with the DS com- 
bination rule 

The Dempster — Shafer rule is a scheme of 
inference to aggregate bodies of evidence pro- 
vided by multiple information sources. If mi 
and 7712 are the mass functions over 6 the 
frame of discernment or the universe of dis- 
course,their combination using Dempster'rule 
mi © rri2, is defined by, for 0 ^ A C 0, 

If enough agreeing information are providing 
by the sources, the decision is taken over a 
single hypothesis otherwise, the hypothesis re- 
main multiple. However, the conflict degree 
using the DS — rule with multiple hypothesis 
will be less or equal than the one obtained by 
the DS — rule using single hypothesis. 

Final Decision 

mi © m2(>l) = k   ^2   mi(ß)m2(C) 
Bnc=A 

where K is a normalization constant chosen 
so that mi © m2{A) is a mass function, and so 
is given by 

k -l J2   ml(B)m2{C) 
Bricht) 

k also represents the degree of conflict between 
the combined sources. 
A,B,C are assumed here to be both single or 
mutiple-hypothesis. The DS — rule is used to 
combine all information providing by different 
sources according to all the hypothesis (single 
or multiple), with an additional information 
concerning the reliability of the source, (fig- 
ure 1) After combining this data, the decision 
is taken over a single or multiple hypothesis. 

Figure 1: Merge and Split System 

5    Decision Rules 

The decision is taken from the hypothesis pro- 
viding the maximum value of credibility, plau- 
sibility or pignijstic probability this latest is 
estimated only on the single hypothesis see [4]. 

• Maximum of Credibility: 

Maxi{Cr{9.i)) 

Cr{Qi) =  X; rn(X) 

The credibility is a the minimal belief de- 
gree assigned to a given hypothesis.  For 
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a given hypothesis, the credibility is the 
sum of the mass of all the hypothesis sup- 
porting this hypothesis. The credibility is 
considered as a pessimistic decision. In 
our case the result maybe a singleton or a 
subset (multiple hypothesis) which verify 
the maximum of credibility, taking into ac- 
count the different opinions of the sources. 

• Maximum of Plausibility: 

Maxi(Pl(üi)) 

XMU& 

The Plausibility is a the maximal belief 
degree assigned to a given hypothesis. For 
a given hypothesis, the Plausibility is the 
sum of the mass of all the hypothesis not 
in contradiction with the hypothesis . The 
Plausibility is considered as a optimistic 
decision. 

• Maximum of Pignijstic Probability The 
credibility and plausibility are approxi- 
mate by a probability measure by assign- 
ing the mass placed in each multiple hy- 
pothesis between the single hypothesis 

Maxi(Pign(Qi)) 

Pign{tti)=      X)      TT\m^ 
Ae2D,iliCA 14 

This approximation is similar to one ap- 
plied in the bayesian inference when the 
lack of information. A uniform distribu- 
tion is used on the hypothesis, and the 
probability issued is called "pignistic prob- 
ability". The decision rule adopted here 
lead to choose a single hypothesis with the 
highest value of Pign(tii) 

6    Example 

Let Si and S2 be two different sources pro- 
viding their opinion on six singles hypothesis 
(classes), Let for instance mi and m2 be the 

belief function expressing these measures: 

0 = {cJi,W2,W3,W4,a;5,a;6} 

Si: mi(0.063,0.712,0.004,0.927,0.468,0.904) 

S2 •■ m2(0.852,0.651,0.947,0.592,0.354,0.237) 

From these belief functions, the mass of 
the set of single hypothesis Ui and the 
ignorance(0i,02) for Si and S2 are estimated 
and the mass function will be mapped to 

mi(wi, 0i) = (0.02,0.2,0.00,0.26,0.13,0.25,0.14) 

m2(wi,02) = (0.21,0.16,0.23,0.15,0.09,0.06,0.1) 

The mass assigned to ignorance for the sources 
Si and S2 are respectively 0.14 and 0.1 

6.1 Fusion with simple hypothesis 

The DS orthogonal sum with simple hypoth- 
esis (singleton) applied to the above example 
gives: 

mi©2(u;i,0) = (0.11,0.23,0.1,0.26,0.1,0.15,0.04) 

Cr{wi, 0) = Pl{ut, 9) = Pign(uh 0) = mi©2(wi, 0) 

The conflict degree among the two source k = 
0.67, is relatively great. The class u4 gives the 
maximum value of credibility, plausibility and 
pignijstic probability , so if a decision must be 
taken, it will surely be the class W4, knowing 
that the the conflict degree is high. 

6.2 Fusion with merging hypothesis 

In a second case, if we decide to use the DS rule 
after merging the hypothesis, we will have the 
following results with e = 0.025 and q = 0.5: 

1. Merging the hypothesis of the first source 
Si gives : 

mi(f2i3, fi2,046) ^5,0i) = 

(0.01,0.20,0.26,0.13,0.40) 

2. Merging the hypothesis of the second 
source S2 gives: 

m2(^i3, ^24) ^5> ^6i ^) = 

(0.22,0.15,0.09,0.06,0.48) 
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3. The DS orthogonal rule from these values 
gives: 

- rai©2(£2l3> ^2, ^4, ^6) ^46) ^5) ^24, 0) = 
(0.12,0.16,0.05,0.05,0.16,0.14,0.08,0.25); 
-Cr(fii3, ^2, ^4> ^6> ^46) ^5i ^24) #) = 

(0.12,0.16,0.05,0.05,0.25,0.14,0.29,0.25) 
-Pl(Ql3, ^2) ^4i ^6i ^46) ^5) ^24j 0) = 
(0.12,0.24,0.28,0.20,0.33,0.14,0.44,0.25) 
-Pign(Cli3, $^2) ^4> ^6) ^46) ^5) ^24, &) = 
(0.00,0.20,0.17,0.13,0.00,0.14,0.00,0.25) 
and the conflict degree A; = 0.21 

The maximum value of credibility, plausibil- 
ity is assigned to the the double hypothesis ^24- 
The interpretation of this result, is that with 
the available information of the actual sources, 
nothing allows us to decide between class u>x or 
W4. The system requires more information to 
discriminate between the two classes. If a deci- 
sion must be taken on a singleton hypothesis, 
the pignijstic probability of class U2 gives the 
highest value. Note also that the conflict de- 
gree k = 0.21 is relatively low compared to con- 
flict degree k of the previous case. One of the 
advantage of merging and splitting hypothesis 
is that the conflict degree is low and enables to 
take a less risky final decision. 

7    Conclusion 

In this paper a method of updating the mass 
of hypothesis and ignorance is proposed, this 
method is integrated in a process of mass 
functions initialization in the case of multi- 
ple (2Ö) hypothesis in order to better use the 
Orthogonal Dempster — Shafer Rule to 
combine data providing from several hetero- 
geneous sources in a decision system. The 
method allows to combine data providing from 
several sources, and before taking any decision, 
the system gives additional information con- 
cerning the sources involved (reliable or not), 
and the conflict produced by combining such 
sources, we are actually testing the method 
on multispectral image satellite with various 
algorithms of classification considered as data 
sources more or less reliable and precise. The 
first results seem to be very promising. 
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Abstract Within the framework of pattern 
recognition, many methods of classification 
were developed. More recently, techniques 
using the Dempster-Shafer's theory or ev- 
idence theory tried to deal with the prob- 
lem related to the management of the un- 
certainty and data fusion. In this paper, we 
propose a classification method based on the 
Dempster-Shafer's theory and information 
criteria. After an original basic belief as- 
signment, we introduce an attenuation fac- 
tor based on the dissimilarity between prob- 
ability distributions. 

Keywords: Data Fusion, Dempster-Shafer's the- 
ory, Information Criteria, Classification. 

1    Introduction 

Data analysis and processing are two impor- 
tant tasks in today's information society. The 
data management becomes essential when the 
information is imperfect, that is to say impre- 
cise and uncertain. Traditionally, probability 
theory, which is inadequate in some cases as 
well known [1], is used for dealing with im- 
perfect data. In the recent past, other mod- 
els have been developed for handling imprecise 
knowledge (theory of fuzzy sets [2], possibility 
theory [3, 4]) or uncertain information (theory 

of belief functions [5]). In this paper, we deal 
with a classification method of imperfect data 
sets using evidence theory [5, 6, 7]. Recently, in 
this context, a new approach using neighbour- 
hood information has been developed [8]. Each 
nearest neighbour of a pattern to be classified is 
considered as an item of evidence. The result- 
ing belief assignment is also defined as a func- 
tion of the distance between the pattern and 
its neighbour. We propose an alternative solu- 
tion to this classification method in initializing 
the belief functions using information criteria. 
This paper is organized as follows. In section 2, 
we introduce notations allowing to describe the 
Dempster-Shafer's Theory of evidence. Section 
3 is devoted to present the proposed methodol- 
ogy. This work is applied to synthetic and real 
data (section 4). 

2    Dempster-Shafer's Theory 

In this section, a brief overview of the Evi- 
dence's Theory [5] is provided. Let © rep- 
resents the set of hypotheses Hn, called the 
frame of discernment. The knowledge about 
the problem induces a basic belief assignment 
which allows to define a belief function m from 
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2e to [0,1] such as : 

m(0) = 0 
£ m(Hn) = l. 

(1) 

(2) 
Hnce 

Subsets Hn of 6 such that m(Hn) > 0 are 
called focal elements of m. From this basic be- 
lief assignment m, the credibility Bel(Hn) and 
plausibility Pl{H„) can be computed using the 
equations : 

(3) Bel(Hn) =  Y, ™(A) 
ACHn 

pi(Hn) = J2 ™(A)- 
Hnr\Ajt0 

(4) 

The value Bel(A) quantifies the strength of the 
belief that event A occurs. These functions 
(m, Bel and PI) are derived from the concept 
of lower and upper bounds for a set of com- 
patible probability distributions. In addition, 
Dempster-Shafer's theory allows the fusion of 
several sources using the Dempster's combina- 
tion operator. It is defined like the orthogonal 
sum (commutative and associative) following 
the equation : 

m{Hn) = mi(Hn) © • • • © mM{Hn).      (5) 

For two sources Si and Sj, the aggregation of 
evidence for a hypothesis Hn C 0 can be writ- 
ten : 

m(Hn) = i • £    mi{A).mi{B)     (6) 
AC\B=Hn 

(7) 

where K is defined by : 

/C = l-   J2  mi(A).mj(B). 
AnB=Q 

The normalization coefficient K. evaluates the 
conflict between two sources. An additionnal 
aspect of the Dempster-Shafer's theory con- 
cerns the attenuation of the basic belief assign- 
ment rrij by a coefficient ctj for a source Sj. For 
all Hn C 0, the attenuated belief function can 
be written as : 

m(aj){Hn)   =   aj.mj{Hn) (8) 

™(aj)(®)   =   1 - aj + aj.mj(e).   (9) 

Methodology 
tion process 

of  classifica- 

The proposed methodology can be decomposed 
in three steps. The first one corresponds to 
the basic belief assignment based on analysis of 
the learning set (see section 3.1). The second 
one consists in attenuating the belief structure 
by means of a coefficient aj derived from the 
Hellinger's distance between probability distri- 
butions. This one has a lower bound equal to 
0 and an upper bound equal to 1. This dis- 
tance allows to estimate the similarity between 
two probability distributions and, in particular 
to check if the gaussian assumption is correct 
(see 3.2). Finally, the belief structures defined 
for each source of information are aggregated in 
order to decrease significantly the uncertainty 
for the later classification process (see 3.3). 

3.1    Basic Belief Assignment 

An important aspect of the classification con- 
cerns learning knowledge using data. In 
evidence theory, this problem leads to ini- 
tialize the belief functions m. We make 
the hypothesis that the data extracted from 
one information source Sj among M sources 
can be represented as a gaussian distribu- 
tion. This assumption is obtained by means 
of the study of the learning database defined 
as : X = {A'(n.1),... , #(n;M)} where X{n.j) = 
{X(ny-)} represents the set of vectors Xn clas- 
sified in the hypothesis Hn. For the value Xj, 
we determine the membership probability ac- 
cording to the hypothesis as : 

-<-xJ-»(*-,})'> 

P(xj/Hn) = 

that is to say: 

2a 

or(n;j)V^r 
(n;i) (10) 

P(Xj/Hn)  = M"(ß(n;j), CT(„y)). (11) 

The pair (p(tyj)ia(n-j)) represents respectively 
the mean and the standard deviation computed 
after the learning step for each hypothesis Hn 

and each source Sj. In addition, we compute 
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a third gaussian distribution representing the 
conjunction of the two hypotheses. This new 
distribution has the following mean and stan- 
dard deviation: 

^{{n.n'yj) ~ 2  (12) 

<T{(n,n')J)-max(ar(n-J)^(.n'-J))- (13) 

This assumption allows to generate the belief 
functions. Let X' a M component vector to 
be classify with X' = [x[,... , a/M]*. The belief 
given for each hypothesis Hn G 2e depends on 
the membership probability with respect to : 

mj(Hn) = Rj * Ptfj/Hn). (14) 

The coefficient Rj is a normalization factor. It 
allows to verify the condition given by equa- 
tion (2). It is defined for a hypothesis Hn e 2e 

as : 

3.2    Belief function attenuation 

(15) 

After this learning step, the main idea is to re- 
sume the information contained in each source 
Sj by means of an optimum histogram com- 
puted on the set U»eff„ 'tyy') m ^e sense °f 
the maximum likelihood and of a mean square 
cost. This histogram will be used in order to es- 
tablish the relevance of a source of information. 
First, we have to build an approximation of the 
unknown probability distribution with only the 
N-sample given in each source. That is done 
by means of a histogram building which is led 
by the use of an information criterion. We will 
see that different information criteria initially 
designed for model selection can be used. 

3.2.1    Probability   density   approxima- 
tion 

Let be A1A2...Ap...Aq an initial partition 
Q of an unknown distribution A with q = 
Card(Q). The aim is to approximate A with 
a histogram built on a subpartition C  = 

BiB2...Bc of Q with c bins such as c < 
q. The probability distribution Ac built with 
C is an optimum estimation of A accord- 
ing to a cost function to define. C results 
from an information criterion called IC is- 
sued from the basic Akaike's information cri- 
terion (AIC) [9], AIC* or <f>* [10] which are 
respectively Hannan-Quinn's criterion and Ris- 
sanen's criterion. These criteria have the fol- 
lowing form : 

JC(c) = 5(c)-£ *c In ^ 
B£C 

Ac(B) 
(B) 

(16) 

where g(c) is a penalty which differs from one 
criterion to another one. Let us note e a ran- 
dom process of a probability distribution A 
supposed absolutely continuous to an a priori 
given probability distribution v. Let u) be the 
set of all values taken by e. The probability 
density / of A is given by the Radon-Nycodim's 
derivative such as : 

Ve€o;       /(A,e) = ^(e). (17) 

The probability density / is approximated 
from N samples (e^) of e by means of a his- 
togram with c bins obtained with these N val- 
ues. An optimum histogram to approximate 
the unknown probability distribution A is ob- 
tained in two steps. The first one consists in 
merging two contiguous bins in a histogram 
with c bins among the (c— 1) possible fusions of 
two bins. This is made by minimizing the IC 
criterion. The second one consists in finding 
the "best" histogram with c bins. The opti- 
mum histogram with c = c^t bins is the one 
which minimizes IC. 

3.2.2    Maximum   likelihood   estimator 
for a partition Q 

Let Q be a partition with q bins and let 
ei... €N be a N-observation sample and let be 
XQ the probability distribution according to Q. 
The maximum likelihood estimator XQ of XQ is 
given by the following equation : 

1    v^ 
VpGw      XQ(AP) = — 2^ <* (18) 

ek€Ap 
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where Ap is a bin of the partition Q.   This 
result derives from the density expression of 

V«€«       /(AQ,e)=£3gfl,l(e)   (19) 
AQ(A), 

with 1.4(e) = 1 if e € A and 0 otherwise. 

3.2.3    Selection of the bin number of a 
histogram 

The obtaining of the optimum histogram is 
based on the use of an information criterion IC 
which gives the number of bins optimal thanks 
to a cost function based on the Kullback's con- 
trast or the Hellinger's distance. We define the 
cost to take A when A is the true probability 
density by : 

W(\,\) = Ex[iP 
/(A, 6) 

/(V) (20) 

where E\ is the mathematical expectation ac- 
cording to A and if) is a convex function. Ac- 
cording to the expression of if) the cost func- 
tion leads to different information criteria to 
choose the histogram with c bins. So, if ^ is 
the Hellinger's distance we get : 

AIC(e) = ^-2^:UB)m^.. 
Bee 

(21) 

It can be seen that it is identical to the classi- 
cal Akaike's information criterion. If the cost 
function W(X, A) is expressed according to the 
KullBack's contrast, we obtain two new crite- 
ria such as : 

Mc) = 
c(l+ln(lnJV)) 

N 

(22) 
Bee 

These criteria can be used to select the opti- 
mum histogram with c bins to approximate the 
unknown probability density of a N-sample. 
Detailed demonstrations are available in [9, 
10]. 

3.2.4 Optimum 
process 

histogram     building 

At first, an initial histogram with 
q = Card{Q) = 2.In[y/N - 1] bins is built 
giving the partition Q, where In\\ denotes 
the integer part [11]. Then, a partition with 
(q — 1) bins is considered. For each possible 
fusion of two contiguous bins among (q— 1) the 
criterion IC(q — 1) is computed. The choice 
of the best fusion is made according to the 
minimization of IC(q — 1). When it is done, 
we look for the best partition with (q — 2) 
bins according to the same rule. Finally, 
the histogram with c bins such as IC(c) for 
c € {1,... ,q} is retained. Figure 1 shows 
an initial histogram built with a N-sample 
(N = 90) randomly generated according to 
a gaussian distribution with mean equal to 0 
and with a variance equal to 1. This initial 
histogram is made of 16 = 2.Jn[v/90 — 1] bins. 
Final  histograms  according  to  respectively 

Initial Histogram 

e 
1L 

Bin number 

^(c) = c(l+1n*0_2l>(B)ln^|} 

Bee (BY 
(23) 

Figure 1: Initial histogram 

AIC, AIC* and (f>* are given in figures 2, 3, 4. 
Figure 5 gives the behaviour of the three 
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Figure 3: Optimum histogram with AIC* 

criteria. It can be seen that AIC* and (f>* 
give the same final histogram. AIC gives 
a final histogram with an upper bin num- 
ber. This difference is linked to the type of 
convergence for each information criterion [10]. 

The optimum histogram is computed on the 
set Uie.ffn X{i-j)- Once this histogram is ob- 
tained, we use the Hellinger's distance between 
the approximated distribution Ac computed on 
the set X(n-j) and the approximated distribu- 
tion X'c computed on the set X(n'-j)-   This 

I 

1 

1 3 
Bin number 

Figure 4: Optimum histogram with <j>* 

Criteria evolution 
4Ü5 
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Number of chase* 

Figure 5: Criteria evolutions 

distance gives a dissimilarity between the two 
probability densities that is to say the ability 
of the source to distinguish the two hypotheses 
Hn and Hn>. 

3.3    Information sources aggregation 
and decision 

We attenuate the belief structures according 
to the equations (8) and (9) where aj is the 
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Hellinger's distance 

a, i, /(A,e) 
/(A,e) 

4 £ A(Ä) 
B6C7 

1KB) 
X(B) 

-1 

(24) 

The information sources Sj are then ag- 
gregated using the Dempster's combination 
rule (see equation (5)). Finally, the decision is 
made by assigning the vector X' to the hypoth- 
esis Hn with the maximum credibility. The de- 
cision rule is based on the decision function S 
which assignes a vector X' to the hypothesis 
Hn following: 

S(X',Hn) = n iif Hn = arg max (BeltHi)) 

(25) 

4    Simulations 

The proposed method has been applied to sev- 
eral sets of artificial and real data in order to 
perform an evaluation of the algorithm. 

4.1    Synthetic data 

In this section, we present results obtained on 
synthetic data. For the simulations, we have 
generated three gaussian distributions such as : 
Aii = [1,1,1]* and a\ = 1; j*2 = [-1,1,0]* and 
a\ = 4; fi3 = [0, -1,1]* and a\ = 3. The first 
learning set is made of N = 90 elements (30 for 
each class) and the second one is made of N = 
200 elements (70 elements in the first class, 50 
elements in the second class and 80 elements 
in the third class). The test base is made of 
600 elements. Our method is compared to the 
method proposed in [12]. The results are given 
in the two following tables for the first learning 
set. 

For the method proposed by Zouhal, the 
good classification rate is of 59.16% and 
62.50% for our method. According to the sec- 
ond learning set, we get the following results 
(see tables 3 and 4). 

For the method proposed by Zouhal, the 
good classification rate is of 57.83% and 
60.33% for our method. 

Table 1: Results of method [121 
Classified 

Presented Cx c2 c3 
Cx 81 7.5 11.5 
c2 29.5 43.5 27 
c3 31 16 53 

Table 2: Results of our method 
Classified 

Presented Cx c2 c3 
Cx 87 3.5 9.5 
c2 33 42.5 24.5 
Cz 27 15 58 

4.2    Real data 

A second database concerns a set of 16 charac- 
teristics extracted from 122 images of dermato- 
logical lesions. Details concerning the features 
can be found in [13]. The database is composed 
of 101 naevi (no pathological lesions) and 21 
melanoma. Final results are presented in the 
following tables (Tables 5 and 6). The pro- 
posed method allows to obtain 81.1% of good 
classification towards 75.7% for the method 
presented in [12]. 

5    Conclusion 

In this paper, we have presented an original 
method of classification using both information 
criteria and Dempster-Shafer's theory. The 
proposed methodology consists in initializing 
the belief functions with probability densities 
obtained by learning.   By means of informa- 

Table 3: Results of method [12 
Classified 

Presented Cx c2 c3 
Cx 78.5 4.5 17 
c2 29.5 47 23.5 
c3 26 26 48 
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Table 4: Results of our methoc 
Classified 

Presented Cx c2 c3 
Ci 83.5 6.5 10 
c2 38 41 21 
c3 27.5 16 56.5 

Table 5: Results of method [12] 
Reality 

Decision Naevus Melanoma 
Naevus 99 1 
Melanoma 47.6 52.4 

tion criteria, we determine the attenuation of 
the belief assignment based on the dissimilar- 
ity between probability distributions. Results 
on artificial and real data demonstrate the ef- 
fectiveness of the proposed method. Concern- 
ing the real-world data (diagnosis in dermatol- 
ogy), tests on a larger base are processing at 
this time. Future work is concerned with anal- 
ysis of several decision rules using uncertainty 
measures proposed by Klir [14, 15]. 
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Table 6: Results of our method 
Reality 

Decision Naevus Melanoma 
Naevus 86.1 13.9 
Melanoma 23.8 76.2 
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Abstract - This paper describes recursive composition 
inference techniques (identified with inference on a Bayesian 
network) to efficiently and optimally reason about military 
units from partial observations of constituent vehicles. This 
model-based approach requires statistical models of the 
composition of military units as well as of the processes of 
vehicle detection and observation. Given these statistical 
models the Bayesian network both infers unit-type and refines 
vehicle-type conditioned upon partial observations of the 
detected vehicles. Monte Carlo experiments are performed to 
provide performance estimates under variable conditions. 
The main innovation of this approach is the recursive 
decomposition of composition hypotheses to efficiently infer 
between vehicle-level hypotheses and unit-level hypotheses. 
The primary benefit of this work is that it provides a means 
for reasoning about aggregates of objects which is simple, 
robust and rigorous. 

Key Words: force aggregation, situation refinement, 
Bayesian inference, Bayesian networks. 

1. Introduction 

Military units organize themselves in hierarchical 
structures to enable efficient deployment, operation, 
and command and control. Determining the 
hierarchical structure of an opposing force is critical to 
determining its capability, threat, and ultimately its 
intent. Sensor systems can detect and take 
measurements on individual entities, such as vehicles 
and installations. These measurements can be used to 
infer the class of individual entities. However, few 
collection assets provide direct measurements on the 
hierarchical force structure of units that the entities 
comprise. Consequently, it is desirable to develop the 
capability to draw inferences on the hierarchical 
structure of military units based on inferences and 
measurements of individual entities and sub units. 

This paper describes a technique for assessing the 
relative merit of force aggregate hypotheses from 
partial observations of a set of entities. That is, given 
partial observations of entities that comprise military 
units, the technique draws inferences about the type of 
military unit that is present. Furthermore, drawing 
inference about the type of military unit provides 
contextual information that enables improved 
inference about the type of individual vehicles. 

Unit              Pr(u) Pr(uly) 
Tank Unit:     0.33    0.08 
Supply Unit:  0.33    0.02 
S.A.M.Unit:  0.33    0.90 lil 

Vehicle 
Tank: 

p(y2lv2) Pr(v2ly) 
1.1         0.76 

<f\               Track: 1.1         0.10 
\l\              S.A.M. 0.8        0.10 hi V-^              Radar: 0.9        0.04 G/ 

Vehicle p(yllvl) Pr(vlly) 
Tank:     1.4        0.84 
Track:    1.1        0.06 
S.A.M.:  0.8        0.06 
Radar:    0.9        0.04 

Vehicle p(y3lv3) Pr(v3ly) 
Tank:      1.0      0.04 
Truck:     1.2      0.80 
S.A.M.:   1.1        0.08 
Radar:     0.9       0.08 

0 
Vehicle p(y5lv5) Pr(v5ly) 

Tank:      0.5       0.10 
Truck:    1.4       0.10 

0 
Vehicle p(y4lv4) Pr(v4ly) 

Tank:     0.6       0.05 
S.A.M.:  2.1        0.76 Truck:     1.0 0.10 
Radar:    0.8       0.04 S.A.M.:    1.3 0.10 

Radar:     1.2 0.80 

Figure 1. Illustration of a notional estimation scenario. 

2. Model Specification 

The force aggregation problem solved in this paper 
may be stated as follows. The available data are 
partial observations of a military unit in the form of 
target reports for detected targets. Each target report 
provides partial information as to the classification of 
the detected target. The objective is then twofold. 
First, fuse these target reports to infer unit-type. 
Second, exploit context to refine vehicle-type. Figure 
1 provides a notional scenario to illustrate this 
problem. The solution described in this paper operates 
strictly by reasoning about the composition of military 
units. 

In order to perform probabilistic inference we 
must formulate a probabilistic model for the 
underlying process being observed. The model we 
will employ in this paper is developed below. This 
model consists of three tiers: the composition model of 
the military units; the detection model of the vehicle 
detector; and the measurement model of the process by 
which the type of each detected vehicle is partially 
observed. A diagram of the overall structure of the 
model is provided in Figure 2. 
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Prior Model 

Unit Type 

Detection Model 

Equidistribution 
Postulate 

Measurement 
Model 

Detected Composition 

Joint State Assignment 

Marginal Vehicle Types 

Marginal Measurements 

Figure 2. Diagram of Bayes net used to model fusion 
problem. Note, the joint-state assignment node is 
replaced by a recursive binary tree model in section 
3.2 (Figure 5). 

2.1 The Composition Model 

The composition model specifies what unit-types may 
occur, the composition of these units and the prior 
probability of the occurrence of each unit-type. Unit- 
type is modeled by the random variable U assuming 
the values u=\,...,q with prior probability Pr(U=u). 
Vehicle-type is modeled by the random variable V 
assuming the values v=l,...,r. The composition of each 
unit-type is then specified as the number of instances 
of each vehicle-type present within the unit. The 
number of vehicles of type v present within units of 
type u is denoted n(v;u) for v=l,...,r and u=l,...,q. 
Hence, specification of the composition model consists 
of an r x q matrix of non-negative integers (vehicle 
counts) and a ^-length vector of prior probabilities 
(which sum to unity). Note, this composition model 
could easily be extended to also model uncertainty in 
the composition of a given unit-type. However this 
extra layer of uncertainty is omitted in this paper. 

2.2 The Detection Model 

The detection model is a statistical model of the 
process of detecting military vehicles in the signal- 
level data generated by some sensor. There are three 
sources of uncertainty that tend to obscure the identity 
of the military unit: undetected vehicles, extraneous 
clutter vehicles and false alarms. The detection model 
is included so as to provide robustness against these 
anticipated ATR operating conditions. The occurrence 
of these failures of detection are statistically modeled 
by the Bernoulli probability of detection as a function 
of vehicle-type PD(V) the Poisson clutter rate also as a 
function of vehicle type Xdv) and the Poisson false- 

alarm rate XFA. A diagram illustrating the cumulative 
effect of these three detection processes is shown in 
Figure 3. The "null hypothesis" v=0 is introduced to 
denote false alarms. 

n(l;u) n(r;u) 

*** I | 
I XcO)     PD(D Mr)       PD(r) 

I        \/\ \/\  , 
W\n(l;d) / \n(r;d)|        / 

XL/ - \U 
Class 0 Class 1 Class r 

Figure 3. Diagram of the detection model. 

As indicated in Figure 2, the role of the detection 
model is to specify the transition probabilities from the 
unit-type (of known composition) to the detected 
composition (the composition of the set of detected 
vehicles). However, these transition probabilities 
depend upon the number of detected vehicles n 
(implicitly part of our observation of the military unit). 
Once the number of detections is received the 
transition probabilities may then be computed as 
shown below. First, due to the independence of the 
various detection processes this transition probability 
from unit composition u to detected composition d is 
separable by vehicle-type (the number of objects 
accumulated in each of the left-hand bin partitions of 
Figure 3 are conditionally independent given the unit- 
type). 

(1) Pr(e? I u) = Pr(n(0; d))f[ Pr(n(v; d) I n(v;«)) 

Note, the notation n(y;d) indicates the number of 
detected vehicles of class v. The probability of the 
number of detected vehicles of each type v is then 
computed as 

(2) 
Pr(«(v;rf)l«(v;«)) = 

£ Hk; n(y; u), PD (v)) x p(n(v; d) - k; Xc (v)) 
*=o 

where b(k;n,p) are the binomial probabilities 

(3) b(k;n,p) = - 

o, 

p*(l-/>)*-",   ke[0,n] 

ke[0,n] 

and p(t,A) are the Poisson probabilities 
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(4) p{k;X) = 
\te-Klk\,   k>0 

0, Ar <0 

The number of false alarms generated by the detector 
is also modeled by (4). These transition probabilities 
will be used in Section 3 to infer between unit-type and 
detected composition. 

2.3 The Measurement Model 

The measurement model is a statistical model of the 
process of observing a detected vehicle so as to 
produce a measurement of that vehicle. Each vehicle 
measurement y is modeled as being a random function 
of the observed vehicle's type v. This random function 
is statistically characterized by a measurement 
probability density function p(y\v) for each of the 
possible vehicle types v=l,...,r. Also, if false-alarms 
are modeled then a measurement model must be 
provided for those as well. 

Figure 4. Plot of a notional measurement model. 

3. Composition Inference Algorithms 

The statistical models specified above provide the 
basis for implementing rigorous probabilistic inference 
algorithms for the optimal estimation of both unit-type 
and vehicle-type from partial observations of the 
detected vehicles. The data available to the inference 
algorithms are the number of detected vehicles n as 
well as a measurement of each of these vehicles yk for 
k= 1,... ,n. For the remainder of this paper y will denote 
the set of all such observations. Given these data the 
objective of the inference algorithm is then twofold. 
First, calculate the unit-type probabilities conditioned 
upon all observations Pr(t/=K I y) for u=\,...,q. 
Second, calculate the vehicle-type probabilities 
conditioned upon all observations Pr(V*=v I y) for 
k=\ n    and    v=0,l,...,r.        These    conditional 
probabilities then provide the basis for rendering 
optimal marginal estimates of the unit-type of the 
observed unit and of the vehicle-type of the detected 
vehicles. These inference calculations are outlined 
below. 

To infer unit-type from vehicle observations, first the 
measurement data are pre-conditioned under the 
measurement model. This involves computation of the 
measurement likelihood conditioned upon vehicle-type 
P(y* I V*=v) for each vehicle k=l,...,n as a function of 
vehicle-type    v=0,l r.        At    this    point    the 
measurements themselves may be discarded as these 
likelihoods are sufficient statistics of those 
measurements for the purposes of inferring both unit- 
type and vehicle-type. 

Next, the composition of detected vehicles is 
inferred by either of the methods discussed below in 
sections 3.1 and 3.2. This involves calculation of the 
measurement likelihood p(y\d) as a function of 
detected composition d. The fundamental postulate 
underlying either method is the Equidistribution 
Postulate stated below. 

Equidistribution Postulate: Conditioned upon the 
composition of some set of vehicles, all joint-state 
assignments of vehicle-type to those vehicles 
consistent with the composition constraint are equally 
probable. 

To state this mathematically the set of all joint-state 
assignments (of vehicle classes to vehicles) consistent 
with a specified detected composition hypothesis d is 
denoted as Q(d). Hence (according to the 
Equidistribution Postulate) the conditional probability 
of an assignment a conditioned upon a composition d 
is given by 

(5) Pr(a I d) = 
l/IQ(d)l,   aeQ(rf) 

0, agQ(d) 

where IßfcOI is the degeneracy of the composition (the 
number of assignments of vehicle types to vehicles 
consistent with the composition) given by the multi- 
nomial coefficients. 

(6) fi(d)\ = 
( n(d) 

n(l;d) n{r\d) 

Once the measurement likelihood as a function of the 
detected composition has been inferred, the 
measurement likelihood conditioned upon unit-type 
may then be inferred employing the transition 
probabilities from unit composition to detected 
composition as computed under the detection model 
(1-4). 

(7) P(y\u)=     ^p(y\d)PT(d\u) 
A=D(n,r+l) 
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This sum is taken over the set D(n,r+1) of all possible 
distributions of the n detected vehicles into the r+1 
vehicle-classes (included the false-alarm class). 
Finally, the unit-type probabilities are computed 
according to Bayes rule from the measurement 
likelihoods p(y I u) and the prior model PT(K). 

(8) Pr(M I v) = 
P(y) 

The denominator p(y) is the likelihood of all 
measurements which simply normalizes the relative 
probabilities computed by the numerator. 

(9) -i p(y) = \p(y\u)Px(u) 
«=1 

This is the basic structure of the unit-type inference 
algorithm (except for the composition inference step 
which is discussed in sections 3.1 and 3.2). 

To refine vehicle-type the detected composition 
(implicitly conditioned upon the number of detected 
vehicles) is inferred from unit type using the prior 
model and the detection model. 

(10) ~i Pi(d) = \Pr(d\u)Mu) 
u=\ 

Then vehicle-type probabilities Pr(Vk=v I y) for each 
vehicle k=\,...,n as a function of vehicle-type v=0,...,r 
are inferred from the detected composition 
probabilities Pr(rf) and the Equidistribution Postulate. 
This calculation is deferred to section 3.2. 

3.1 Brute Force Composition Inference 

Before developing the recursive composition inference 
techniques in the next subsection a simpler brute force 
approach is considered. This calculation operates by 
performing inference with respect to the set of all 
possible joint-states of the detected vehicles. Due to 
the independence of the vehicle measurements, the 
measurement likelihood conditioned upon the joint 
state assignment is simply the product of the marginal 
measurement likelihoods conditioned upon the 
respective marginal vehicle types. 

(11)      p(y\a) = Up(yk\vk) 

The likelihood of all measurements conditioned upon 
the detected composition may then be computed from 

the assignment likelihoods (11) and the transition 
probabilities (5). 

(12) 

p(y\d) = ^p(y\a)Pr(a\d) 
a 

=—-— y/>(yifl) 

This likelihood computation is performed for every 
possible distribution d of the n detected vehicles into 
the r+1 vehicle-classes. Once this likelihood function 
has been computed the unit-type may then be inferred 
as described previously (7-10). 

Under this approach the likelihood calculation 
(11) must be computed for each of the (r+l)" possible 
joint-state assignments of the detected vehicles such 
that the complexity of these calculations is 0(n(r+l)"). 
This prohibitive computational complexity is the 
motivation for the recursive composition inference 
techniques developed in the next section. 

3.2 Recursive Composition Inference 

In this section we develop recursive composition 
inference techniques which offset the computation 
burden of the simplistic approach described above. 
This technique avoids considering the set of (r+l)" 
joint-states of the detected vehicles by recursively 
partitioning this set of vehicles into half-sets and 
inferring between the composition of the halves and 
the composition of the whole. Figure 5 illustrates the 
Bayesian structure of this decomposition. Note that 
Figure 5 is an alternate expansion of the middle three 
tiers of the Bayes net shown in Figure 2 (replacing the 
"brute force" inference technique depicted there). 

Q{ (4,0), (3,1), (2,2), (1,3), (0,4)} 

{(2,0)*(2,0), (2,0)*(1,1), (2,0)*(0,2), 
(1,1)*(2,0),(1.1)*(1,1),(1,1)*(0,2), 
(0,2)*(2,0), (0,2)*(1,1), (0,2)*(0,2)} 

{(2,0), (1,1), (0,2)} 

{(1,0)*(1,0),(1,0)*(0,1), 
(0,1)*(1,0),(0,1)*(0,1)} 

{(1,0), (0,1)} 

Figure 5. Bayes net to recursively infer composition. 
For this example there are four vehicles which submit 
to two classifications. 

There are two types of nodes depicted in Figure 5. 
The state-space of a white node corresponds to the set 
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of all possible compositions of the vehicles beneath 
that node (the leaf nodes). For example, the states of a 
leaf node correspond directly to the vehicle-type of the 
associated vehicle, also the states at the root node 
correspond to the composition of all detected vehicles. 
In order to statistically relate the composition of a set 
of vehicles to the composition of its two subsets the 
grey nodes are introduced such that the state of the 
subtrees are conditionally independent given the state 
of the grey node. This is achieved simply by choosing 
the states of the grey node to be the joint-state of its 
two white-node children. Hence the states of a grey 
node essentially represent hypotheses as to how the 
composition of the whole is distributed between the 
halves. The composition of the two halves may then 
be considered independently. 

The transition probabilities from a white-node 
state dr (specifying the total composition of the nT 

vehicles contained within that subtree) to a grey-node 
state (dL, dR) (specifying the respective composition of 
the nL and nR vehicles in the left and right subtrees) are 
determined by the Equidistribution Postulate. 

(13) 

Pt(dL,dR\dT) = 

\Cl(dL)MCl(dR)\ 

0, 
lß(dr)l 

dr + d» =dT 

dL+dR *dT 

The requirement that dL+dR=dT indicates that the sub- 
compositions must be consistent with the total 
composition which is to say that 
n(v;dL)+n(v;dR)=n(v;dT) for v=0,...,q. The transition 
probabilities from grey nodes to white nodes are trivial 
since the state of the grey node is just the joint-state of 
its two white-node children. 

Below the standard Bayesian inference algorithms 
(see [2]) are adapted to take advantage of the sparsity 
of the transition probabilities described above (for the 
sake of efficient computation) as well as to exploit the 
special structure of (13) (to simplify the prediction 
operations). 

Recursive Composition Inference 

The objective of recursive composition inference is to 
propagate the information contained in the 
measurements at the leaves of the tree upwards fusing 
this information at each node s to yield statistics 
concerning the set of all measurement on that subtree 
ys. Rather then propagating the traditional likelihood 
function p(ys\ds) we instead propagate the likelihood 
function weighted by the degeneracy of the 
composition IQ(d,)l which is denoted by X„(d5). 

(14) ks{ds) = p{ys\ds)x\Q.{ds)\ 

The advantage of propagating these functions is that 
the degeneracy weights cancel with the transition 
probabilities (13) such that prediction and merging of 
these messages from the two subtrees simplifies to the 
formula below. 

(15) Ar(dT)=    J^AL(dL)xAR(dR) 
dL,dR 

Here the sum is taken over all possible compositions of 
each of the two subtrees (dL and dR respectively) under 
the constraint that their composition sum to the 
composition dT. An algorithm for accomplishing this 
calculation is outlined below. 

Inference Code 
Inputs:   AL,AR 

Outputs:   Aj. 
Initialize Ar 
for dTeD{nT,r+1) 

Ar(di.)=0 
end 
Accumulate Aj. 
for  dLe.D(nL,r+l) 

for  dReD(nR,r+l) 
let  dT=dL+dR 

Ar(dr)= Ar(dr)+ AL(dL)x.ZR(dR) 
end 

end 

This code fragment is recursively applied to the Bayes 
net starting at the bottom of the tree and propagating 
statistics up the tree until the root node is reached. 
This recursion is initialized at the leaves according to 
the measurement model (note, there is no degeneracy 
at the leaf nodes). At the root node of the tree the 
likelihood function p(y\d) is recovered from A(d) by 
dividing by the degeneracy function (6) in accordance 
with (14). 

Once these measurement likelihoods are computed 
the unit-type may then be inferred by formulas (7-9). 
These probabilities may then be used to render an 
optimal marginal estimate of unit-type. 

Recursive Composition Refinement 

The objective of recursive composition refinement is 
to propagate prior information down the tree as well as 
to redistribute the information passed up from each 
subtree to the other subtree so as to compute statistics 

1191 



at each node s conditioned upon all measurements not 
on that subtree ys = y\ ys. Rather than propagating 

the traditional probability mass function Pr(rfä \ys) 

we instead propagate a function 7is(ds) proportional to 
the probability mass function weighted by the inverse 
of the degeneracy \Q.{ds)\. 

(16)       *,<<*,). 
Pr(ds\ys) 

\Sl(d,)\ 

Again the degeneracy factor is included so as to cancel 
with the factors of the transition probabilities (13). 
The prediction of this function from parent node T to 
child nodes L and R then simplifies to the formula 
below. 

(17) 

nL{dL)=      %AR(dR)xxT(dL+dR) 
dReD(nR,r+\) 

nR(dR)=      Y*XLWL)xnTWL+dR) 
dLeD(nL,r+\) 

An algorithm for accomplishing these calculations is 
outlined below. Note, this algorithm requires that the 
composition inference has already been executed such 
that the statistics Xs{ds) are available for each node s. 

Refinement Code 
Inputs :   7tT, XL, AR 

Outputs:   nh,nR 

Initialize 7tL 

for  dL eD(nL,r+l) 
n:L(dL)=0 

end 
Initialize KR 

for  dR eD{nR,r+l) 
7tR(dR)=Q 

end 
Accumulate nh and nR 

for dL<ED(nL,r+l) 
for  dRe.D(nR,r+l) 

let  dr=dL+dR 

nL(dL)= KL(dL)+ ÄR(dR)   x nT(dT) 
nR(dR)= nR(dR)+ AL{dL)   x nT(dT) 

end 
end 

By applying this code fragment to the Bayes net in a 
recursive down-sweep manner (start at the root node, 
compute statistics of children and recurse on subtrees) 
the statistics ns(ds) are computed at every node s. This 
recursion is initialized at the root node according to 
(16)   from   the   prior   composition   statistics   (10) 

(conditioned upon the number of detections) and the 
degeneracy function (6). The final probability 
computation conditioned upon all observations as a 
function of the state of the node Pi(ds\y) is computed 
by merging these statistics ns(ds) with those computed 
during the composition inference algorithm As(ds). 

(18)       Pr(rfjy): 
p(ysiy~s) 

The likelihood ratio shown in the denominator is 
simply the norm of the relative likelihoods computed 
by the numerator. 

(19)      P(ys\ys) = ^s(d)^s(d) 
d 

Formulas (18) and (19) are used to compute the 
refined vehicle-type probabilities which may then by 
used to render optimal marginal estimates of vehicle- 
type. 

While the complexity of these recursive 
calculations is much improved over the brute-force 
approach, the complexity of the recursive calculations 
nevertheless grows rapidly with n (0(n2) for r=2). For 
this reason we briefly comment on the possibility of 
employing hypothesis pruning to limit the 
computational complexity of the recursive approach to 
0(n) (at the expense of performing sub-optimal 
inference). This is accomplished by implementing a 
pruning operation in the composition inference 
upsweep such that only those N compositions 
maximizing the function Af(d)/lfl(d)l (a lower-bound 
approximation of p(y\d)) are retained. 

4.   Monte Carlo Performance Estimation 

In this section Monte Carlo simulation techniques are 
used to characterize the performance of the inference 
techniques developed above under various 
circumstances. In this section we characterize the 
difficulty of the problem by the parameters listed 
below. Unless otherwise stated, these parameters are 
chosen as follows. 

n =3 number of vehicles per unit 
q =2 number of unit-types 
r =4 number of vehicle types 
PD =0.9 probability of detection 
Ac =0.25 vehicle clutter rate 
AFA = 1 detector's false alarm rate 
J =4 divergence between vehicle-types 
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For each Monte Carlo trial we randomly select the q 
unit composition models by sampling the vehicle-type 
of each of the unit's n vehicles uniformly from the r 
vehicle-types. The true unit-type is then selected from 
among these q unit-types with uniform probability. 
The detection model is then applied to the composition 
of the true unit-type to simulate the number of detected 
vehicles of each target class (including the false-alarm 
class). Finally, the measurement likelihood function is 
simulated for each detected vehicle conditioned upon 
the vehicle-type as described below. 

The divergence 7 is an information-theoretic 
measure (see [3]) of how easily two hypotheses 0 and 
1 may be discriminated on average given a 
measurement y. 

(20)       7(0,1)= ((p(yll)-p(y I0))log-^^<ry 

For Gaussian measurement models having a common 
covariance P and separation between the means A the 
divergence is J=ArP'iA. In this case, the distribution 
of the log-likelihood-ratio L(llO)=log(p(yll)/p(yIO)) is 
normally distributed having variance Jm and mean 
values -7/2 and +7/2 under the respective hypotheses 0 
and 1. Hence, the likelihood function may be simulated 
(up to an undetermined scale factor) under hypothesis 
1 as (Mp)=eL, M\)=\) for L~N(-J/2, Jm). We take the 
liberty of generalizing this model to the N-ary 
hypothesis case by independently sampling L for each 
confusor class (all vehicle-types except the true 
vehicle-type). The goal here is to simply characterize 
the uncertainty of the measurement process by the 
single parameter 7 in order to facilitate generic 
performance estimation. 

Given the simulated target-reports we may then 
apply the inference techniques of section 3 to infer the 
hidden unit-type and the hidden vehicle-type of 
detected vehicles. These estimates are then compared 
to the true values and estimates of the probability of 
correct-classification are accumulated for both unit- 
level and vehicle-level estimates. Unless otherwise 
stated, each of the performance plots provided below 
are based upon 1000 independent iterations of the 
above simulation for each data-point. 

First the performance of unit-type estimation is 
examined by plotting the probability of correct- 
classification as a function of the divergence between 
measurement models (Figure 6). 

3 4 5 
DIVERGENCE 

Figure 6. Plot of unit-type PCc vs. 7. 

Likewise, the performance of vehicle-type estimation 
is measured by the vehicle-level probability of correct- 
classification plotted as a function of the divergence 
between measurement models (Figure 7). Here we 
plot the estimation performance for both the unrefined 
estimates (each vehicle's type is estimated so as to 
maximize the likelihood of just that vehicles 
measurement) and the refined estimates (conditioned 
upon all measurements). 

3 4 5 
DIVERGENCE 

Figure 7. Plot of vehicle-type PCc for refined (top) and 
unrefined estimates (bottom) vs. J. 

It is also interesting to examine the unit-level 
classification performance as a function of the 
uncertainty of the detection process. Hence the unit- 
level Pec is plotted as a function of PD (Figure 8) and 
the clutter rate Ac (Figure 9) 
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Figure 8. Plot of unit-type Pec vs. PD of detector. 

0.95 

Figure 9. Plot of unit-type PCc vs. clutter-rate Ac. 

Finally, the trade-off between classification 
performance and run-time introduced by hypothesis 
pruning is examined in Figure 10. This is a plot of PCc 
vs. average run-time traced out by varying the 
maximum number of hypotheses control parameter N 
from 1 to 19 (both performance and run-time level off 
for larger values of N). For this simulation we chose 
the parameters q=2, n=3, r=6, PD =1, Ac=0, ÄFA=0, and 
J= 1. Each of these data points represent 10000 Monte 
Carlo trials. 

_8o.65 

4 5 6 
MEAN RUN TIME x10 

Figure 10. Plot of PCc (upper curve is unit-type, lower- 
curve is vehicle-type) vs. average run-time (ms) traced 
out by varying the pruning control parameter N from 1 
to 19. 

5. Example Application 

This section briefly introduces the application of the 
inference techniques developed in this paper to 
hierarchical force structures. The key idea here is that 
the same inference techniques used to infer unit-type 
from observations of the unit's constituent vehicles 
may also be employed to infer the type of a complex 
unit (consisting of multiple subunits) from knowledge 
of its subunits. This concept may be applied 
recursively to analyze an arbitrarily complex 
hierarchical force structure. This concept is illustrated 
below (Figure 11). 

Hierarchical Aggregation 

OTank Company or 
. ..    Supply Lino? 

Tank Squad or 
Supply Unit? 

•■ Tank or Truck? 

Figure 11. Illustration of hierarchical force inference. 
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An example of this technique is shown if Figures 12 
and 13. Figure 12 depicts a simulated hierarchical 
force deployment. Partial observations of the vehicles 
within this hierarchy were simulated (/=1, />

D=1» ^=0) 
and provided to the hierarchical estimator. The 
resulting estimates are shown in Figure 13. All entities 
were classified correctly except that the 
TelSquadConvoy was classified as TelSquadDefend. 
This is because the composition-based inference 
cannot distinguish between the different configurations 
of a unit. 

# Mruck "• 

W"   •  *    " 
■ * 

«<** 

«ft  *3»» 

6. Conclusions 

In this paper we have described a simple, robust and 
rigorous technique for inferring the unit-type of a 
partially observed military unit as well as refining the 
vehicle-types of the detected vehicles. The simplicity 
of the model insures its generality, robustness and ease 
of model identification. Monte Carlo simulations 
demonstrate the utility and robustness of these 
techniques. In future research we plan to extend these 
techniques to model the spatial deployment of military 
units, to utilize terrain information, and to provide for 
automatic clustering of detected vehicles by searching 
for the clustering which maximizes the likelihood of 
the observations. 
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Figure 12. A simulated hierarchical force deployment. 
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Figure 13. Estimates resulting from inference within 
this force structure inference. 
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Abstract In data fusion applications it is impor- 
tant that only the minimum set of relevant features 
are combined at any one stage in the fusion pro- 
cess. A hierarchical classification methodology is 
described which handles features at different levels 
of abstraction to produce a more robust and inter- 
pretable classifier. This is achieved by dividing the 
classes into contextual subgroups, which are further 
divided to produce a tree structure defining relation- 
ships between classes. 

A novel approach is proposed for the class struc- 
ture design which is formulated as a constrained 
search in the structure space. This can be per- 
formed via a forward search algorithm driven by a 
cost function dependent on the performance of the 
class structure and constraints on the required so- 
lution. 

Keywords: Statistical Pattern Classification, Con- 
text, Hierarchical 

1    Introduction 

In data fusion applications it is important that 
only the minimum set of relevant features are 
combined at any one stage in the fusion pro- 
cess. A hierarchical classification methodology 
is described which handles features at differ- 
ent levels of abstraction to produce a more ro- 
bust and interpretable classifier. Classification 
is important in many areas of data fusion such 
as automatic target recognition, situation as- 
sessment and ballistic missile defence [1]. 

In pattern classification tasks of many 
classes in a high-dimensional input space, e.g. 

document classification, remote sensing and 
automatic target recognition, traditional flat 
classifiers tend to suffer from the curse of di- 
mensionality [2]. Even after feature selection, 
a large number of inputs is still needed to dis- 
criminate the large number of potential classes. 
A hierarchical classifier overcomes this prob- 
lem by dividing the classes into contextual sub- 
groups, which are then further divided to pro- 
duce a tree structure defining relationships be- 
tween classes. 

It can be shown that by using arbitrary 
probabilistic classifiers to discriminate between 
subgroups at each node of the tree, poste- 
rior probabilities can be output equivalent to 
a standard flat classifier but the feature space 
for each classifier is significantly reduced [3]. In 
this case each classifier node can be more ro- 
bustly estimated as they perform simpler dis- 
crimination tasks in lower dimensional spaces. 

Previous methods have used various cluster- 
ing schemes to build the most appropriate class 
structure in terms of interpretation and accu- 
racy of classification [4]. Once the class struc- 
ture has been elicited, standard feature selec- 
tion and parameter estimation techniques can 
be used to specify each classifier node. 

Rose et al. [5] present a constrained hier- 
archical clustering method using simulated an- 
nealing. A small number of coarse clusters are 
identified at high temperature. As the temper- 
ature is lowered coarse clusters split into more 
detailed clusters. This leads to a course to fine 
hierarchy of clusters extracted during the an- 
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nealing schedule. Kim and Landgrebe [2] de- 
fine a hierarchical classifier and a hybrid hier- 
archy design process combining both agglom- 
erative and divisive clustering techniques. 

A novel approach to identifying the class hi- 
erarchy by discrete optimization search is pro- 
posed. Constraints on the structure of the hi- 
erarchies in the search space are defined. 

2    Context 

Dealing with situations in their proper context 
is an everyday notion that allows people to se- 
lect the right information in completing com- 
plex tasks. Researchers have previously identi- 
fied the use of context as an advantage in prob- 
lem solving. 

Toussaint [7] suggests that to solve a prob- 
lem instead of increasing the depth of analysis, 
one should widen the field of context in which 
the problem is viewed. 

Whereas Antony [8] refers to context in 
tactical data fusion applications as includ- 
ing 'current friendly force disposition, exist- 
ing weather conditions, natural domain fea- 
tures (terrain/elevation, surface materials, veg- 
etation, rivers, drainage regions), and cultural 
features (roads, airfields, mobility barriers)'. 

Context may be used in different ways to aid 
a classifier system. The above two references 
refer to widening the field of context by search- 
ing for extra information that may aid discrim- 
ination between classes. In terms of classifica- 
tion, this can be thought of as an intelligent 
method to generate more features for a classi- 
fier, given knowledge of the problem domain. 

An alternative standpoint is that one can use 
the context of a situation to refine and abstract 
only the relevant information in the context of 
the classification problem at hand. This can 
be thought of as decomposing a problem and 
focusing attention only on those features of im- 
portance. 

This paper is primarily concerned with the 
second view on context and a classification 
scheme is proposed that will fully exploit this 
notionl. 

P({C,,C2,C,,G,C5}lx) = l 

Input feature 
vector x  Classifier 1 

p({c,,c2}ix; P({C„ C C,}! x) 

Classifier 2 Classifier 3 

P(C,lx) P(C2lx) P(C,lx)   P(Clx)  P(C5lx) 

Figure 1: Hierarchical classifier structure 

3    Hierarchical classifier 

The framework described in this section is 
based on Schurmann [3]. Let f2a11 be the set 
of all the possible classes. This can be split, 
initially arbitrarily, into a number of subsets. 
The top level classifier provides posterior prob- 
abilities for each subset given the input vector, 
x. The second level classifiers then work on the 
individual subsets, breaking them down into 
smaller subsets, and incorporating the poste- 
riors from the level above. This is performed 
in a tree-structured hierarchy until a posterior 
has been calculated for each individual class. 
This is shown in figure 1. 

To formalise this hierarchical process con- 
sider a single classifier node as depicted in fig- 
ure 2. The classifier need only be concerned 
with the subset of classes that it has been des- 
ignated from the level above, this is called the 
input set, fim. The input set is split into S 
output subsets, ^ut,^ut,...,^ut. Each out- 
put subset is unique and all elements in the 
input subset are assigned to only one output 
subset. Formally, 

nout c fiin v< and fiout n nout = 0 Vi ^ j,   (1) 
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PCQ'Mx) 

Input feature 
vector * — Classifier 

Node 

\      I      1 
pcnr'ix) p(fi*ix) pcßfix) 

Figure 2: Individual classifier node 

5 

s=l 

out ft1 (2) 

The goal of the complete classification pro- 
cess is to calculate posterior probabilities for 
each class given the input vector. However, 
each classifier in the hierarchical structure can 
only generate posteriors that are valid given 
the input set Om: 

P(n°s
ut\tin,x)s = l,...,S. (3) 

Here we can use the law of conditional prob- 
ability to determine the relation between the 
input and output sets of the individual classi- 
fiers: 

P(nr\w»,x) = p{^?y)     (4) 

p(n°ut\nm,x) 

p(nin,x) 

P(nr,x) 
p(nin,x) 
p(n^\x)p(x) 
p(nin\x)p(x) 
p(n°nt\x) 
p(nin\x) (5) 

Using this relationship it is easy to demon- 
strate that to calculate the required class pos- 
teriors, all is required is to multiply the pos- 
teriors given at each level while following the 
route down the tree to the required class. 

3.1    Comments 

No assumptions have been made on the type 
of classifiers used, save that they return a pos- 
terior probability for each output. No as- 
sumptions have been made at all concerning 
the structure of the class subsets and the el- 
ements of the input vector, x. Schurmann 
[3] states that, given optimal discrimination 
at each node, optimal discrimination will be 
achieved for each final class regardless of the 
choice of tree structure. Evidently optimal dis- 
crimination is not always possible and a sensi- 
ble choice of the class subsets that defines the 
tree structure will maximise discrimination as 
each node and therefore maximise global dis- 
crimination. 

3.2    Difference   from   Decision   Tree 
Classifiers 

The princicple differences between hierarchical 
classifiers and decision tree classifier (such as 
Quinlan's C4.5 [9]) are the use of soft decision 
making at each node, allowing posteriors to be 
output for all classes, the use of arbitrary clas- 
sifiers at each node, and the manipulation of 
the set of class hierarchies. 

Although refence is made to the data in 
the input space via the distance metrics in 
the objective function, the space that is being 
searched in the construction of the hierarchy 
is not the set of possible splits in input space, 
but the combination of class subsets in the set 
of all possible class hierarchies. 

A given class is always considered complete 
with all points belonging to that class irrespec- 
tive of any class overlap in input space. Un- 
der the assumption of of normally distributed 
classes the collection of points in al class may 
be represented by their mean and covariance. 
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3.3    Existing methods for class hier- 
archy design 

Standard methods exist for generating class hi- 
erarchies. These tend to be motivated from hi- 
erarchical clustering techniques which are un- 
supervised methods. Two distinct approaches 
are agglomerative and divisive methods, de- 
pending on whether the hierarchy is grown 
from the top down, or from the bottom up. 

3.3.1 Agglomerative clustering 

When designing a class structure from the bot- 
tom up, the goal is to group the classes to- 
gether according to a similarity measure. The 
two most similiar classes are joined to form 
an intermediate class. Each new intermediate 
class replaces its members and the process is 
repeated until the last two classes are joined. 

The similiary measures used can be cho- 
sen depending on the assumptions made on 
the class distributions. Suitable distance mea- 
sures are the Mahalanobis distance, or the Bat- 
tacharyya distance, both of which assume nor- 
mally distributed classes with arbitrary covari- 
ance matrices. 

3.3.2 Divisive clustering 

The top-down approach to structure design 
works in an opposite fashion by considering the 
dataset as a whole initially and then splitting it 
into smaller groups according to a performance 
criteria. Each group can then be considered for 
splitting itself and a hierarchy is built in a re- 
cursive manner. 

The technique of splitting data into homoge- 
neous groups is well researched in the literature 
on clustering. 

in the dataset then methods are available to 
fill in these points with estimates of the most 
likely missing values [10]. Most classification 
algorithms require that all features are present 
for every point before training can take place. 
However, for the set of decision tree classifiers, 
including C4.5-type algorithms and the hierar- 
chical classifier described here, certain features 
may not have to be present for all classes. A 
feature may be used to discriminate between 
only a subset of the available classes, and in 
this case its value for points outside that sub- 
set are not important, and even need not be 
defined. 

In fact, the presence of such features, 
that may occur naturally in many real-world 
datasets such as in target recognition or med- 
ical diagnosis applications, can aid the design 
process of a hierarchical classifier. Regardless 
of any discriminative information that may be 
contained within such features their presence 
or absence can suggest a suitable class hier- 
archy. For example, studying the dataset in 
figure 3, one can determine the class hierarchy 
given alongside. 

Although it may be possible to generate a 
class hierarchy simply from the pattern of such 
contextual features, it is again a difficult search 
problem. It is much easier to verify that a given 
class hierarchy matches a feature pattern by 
checking for consistency of contextual features 
across class subsets. A feature may only be en- 
tirely present or absent for a given class subset. 
If this constraint is broken then the hierarchy 
can be assumed to be an unlikely solution for 
that dataset. This constraint can easily be in- 
corporated into the search procedure proposed 
below. 

4    Contextual features 

In most pattern recognition problems the 
dataset is defined by a set of points in an 
n-dimensional space. Each point represents 
an entity to be classified and each dimension 
represents a measureable feature of that ob- 
ject.  If a feature is not present for all points 

5    Solution requirements 

It is proposed that the class hierarchy can be 
found by a search in solution space (i.e. the set 
of all possible class hierarchies). The search 
strategy must allow for four specific require- 
ments on the eventual solution sought. That 
is: 
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c,   c 

E§1  Feature present 

D Feature not defined 

c, c, cs   c. 

Figure 3: Dataset with contextual features and 
matching hierarchy 

This distance measure reflects the separa- 
tion between the left and right class subgroups 
chosen at each level. This value is to be min- 
imised, since the classes at the leaves of the 
tree are required to be close together so that 
they may sensibly be contained by the class su- 
perset at the parent node. At levels higher in 
the tree the requirement of proximity becomes 
less important and this is satisfied naturally 
since there will always be more nodes at each 
descending level of the tree. The summation 
therefore gives greater significance to the leaf 
classes due to their number. 

• Accuracy - Evidently the final classifier 
should produce accurate classification re- 
sults. 

• Degrees of freedom - The number of pa- 
rameters for the final model should be con- 
trolled to prevent overfitting and the curse 
of dimensionality. 

• Smoothness - The models must adhere to 
predefined constraints on the structure to 
prevent unbalanced trees. 

• Prior Knowledge - If a prior model is 
given, the information represented in that 
prior must be respected. 

5.1    Accuracy 

To measure the accuracy of a classifier the 
most direct measure is the misclassification 
rate, as this truly reflects the desired perfor- 
mance. However this can be costly to compute, 
as it involves the complete training of each clas- 
sifier node in the hierarchy. A more efficient 
and reasonable approximation is a sum of Ma- 
halanobis distances between class subsets: 

J = £(W„ - /0T£_1(Wn - MrJ (6) 
nes 

where S is the set of all nodes in the hierarchy, 
ßin and \iTn are the means of the points in the 
left and right class subsets of node n respec- 
tively and X is the covariance matrix for the 
points in both class subsets. 

5.2    Degrees of freedom 

The dangers of overfitting and the curse of di- 
mensionality have been known for some time 
now [10]. Controlling the effective number of 
parameters in a model is important, especially 
in terms of small datasets where the parame- 
ters need to be specified by a few data points 
in a manner that is statistically significant. 

The number of nodes in the class hierarchy 
is fixed, due to the binary nature of the tree 
and the requirement that all classes should be 
present. The complexity of the model can be 
controlled by using the optimum minimal fea- 
ture set at each classifier node. 

However, distance measures such as in equa- 
tion (6) can only be used to compare features 
sets of the same dimensionality. This presents 
a problem since performing feature selection 
for each state to be evaluated in solution space 
will result in models of different dimensionality 
across nodes, rendering the summation mean- 
ingless. Again a solution to this would be to 
use the final classification accuracy as a per- 
formance measure but this is too computation- 
ally expensive. As an initial investigation, the 
search is performed on models containing all 
features, allowing equation (6) to be used. 

Feature selection and training can be per- 
formed on the model given by the final class 
hierarchy. 

1200 



5.3    Smoothness 

For a class hierarchy to be meaningful and in- 
terpretable, it is likely that is should be well 
balanced (i.e. no particular branch should be 
significantly deeper than the others). A con- 
straint on the maximum allowable depth of a 
single branch can be imposed on the required 
solution. Figure 4: Example of branch shift operator 

5.4    Prior Knowledge 

The data is not usually the only available 
source of information on the desired model. 
Prior knowledge should be used wherever pos- 
sible to aid the construction of a good model. If 
a class hierarchy is suggested through domain 
knowledge then it may be desirable to find a 
solution that does not differ significantly from 
the given hierarchy. 

Tree comparison algorithms are available, 
but can be computationally expensive. In some 
cases the distance between two trees is de- 
scribed by the number of transformations re- 
quired to transform one tree to the other. This 
distance is effectively the search depth if the 
search is initialised with a prior hierarchy. This 
can be easily and efficiently incorporated as a 
constraint on the search. 

6    Hierarchy design by combi- 
natorial optimization 

The search strategies presented in this section 
strive to find a class hierarchy that gives a 
mimimum value of the objective function. It is 
expected that there will be many local minima 
due to the discrete nature of the search space 
(the set of possible class hierarchies). There are 
several combinatorial optimisation techniques 
that have become standard in the literature, 
some of which are designed to overcome such 
local minima. As ever, there is no one algo- 
rithm which can guarantee the global minimum 
is found, but techniques can be used that in- 
crease the chance of finding a good result. 

The discrete optimisation problem can be 
defined as finding a solution from the set of 

all possible states such that minimises a given 
objective function within the given constraints. 
The constraints may be incorporated as hard 
constraints on the states allowed by the search 
procedure, the search rejects any states that 
do not adhere to the constrainst, or they may 
be incorporated as soft constraints by intro- 
ducing extra terms in the objective function. 
The technique in this paper uses hard con- 
straints, effectively reducing the search space. 
Soft constraints require free parameters to be 
estimated as coefficients for each term in the 
objective function which can be costly for 
large search spaces. The set of all possible 
states (state space) may be viewed as a graph, 
given operators that transform one state to an- 
other. Such graphs tend to grow exponen- 
tially with the size of a problem and opti- 
mal search techniques are NP-compete, that 
is the solution time increases exponentially 
with problem size for all algorithms. However, 
heuristic algorithms exist that can find sub- 
optimal solutions in polynomial time. Exam- 
ples are directed depth-first search (DFS), cost- 
bounded DFS (IDA*), depth-first branch-and- 
bound (DFBB) and best-first search (BFS). 
Many of these algorithms may be implemented 
on a parallel processor architecture [11]. 

A single operator can be defined on class hi- 
erarchies to generate a search tree. From a 
given node, a branch of a child node may be 
shifted to be the sibling of the opposite child 
node. This is illustrated in figure 4. Any valid 
hierarchy may generated from any other valid 
hierarchy using combinations of this operator. 
For simplicity only binary hierarchies are used. 
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7    Results 

Initial results have shown that anything other 
than a directed depth-first search without 
backtracking produces a search tree that is far 
too large to evaluate. (Simply backtracking to 
just the next best branch produces a search 
space of 7219 nodes for an 8-depth search on 
a 12-class problem, compared to 504 nodes for 
a 30-depth search without backtracking. The 
deeper search consistently found a better solu- 
tion.) 

Depth-bounded directed depth-first searches 
were performed on a selection of simulated 
datasets with the number of classes ranging 
from 8 to 32 and the number of features rang- 
ing from 7 to 93. The searches were initialised 
using the solution from an agglomerative de- 
sign procedure and all but one search showed 
an improvement on this initial solution, the im- 
provements becoming more significant as the 
number of classes increased. Figure 5 shows 
the increase in performance as the number of 
classes increase. 

Figure 6 shows for a dataset of 32 classes 
the improvement in the objective function as 
the search progresses. Figures 7 and 8 show 
the class hierarchies generated by the agglom- 
erative clustering procedure and the improved 
hierarchy given by the search. The hierarchy 
in Figure 8 displays a more balanced and rep- 
resentative tree. 

Figure 5:   Gain in performance (sum of dis- 
tances) against number of classes 

70 80 

Figure 6: Search criterion against search steps 

8    Conclusions 

A novel approach to defining the class hierar- 
chy for a hierarchical classifier using a search 
in solution space has been proposed and shown 
to improve upon results given by an existing 
method. 

Contextual features have been defined and it 
has been shown how they may assist a search 
as described above by producing a constraint 
that can reduce the size of the search space. 
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Abstract — In this paper, we consider optimal in- 
formation fusion (multisensors heterogeneous) problem 
from a Structural Analysis point of view. In this ap- 
proach, Information Theory is used to elaborate an op- 
timal fusion rule, i.e., to measure the performance of 
the data fusion structure given the sensors. A num- 
ber of sensors transmit their observations about a phe- 
nomenon to a fusion center. But, in employing a crite- 
rion from Shannon's (mutual) Information, we assume 
that the probability distributions are known. These as- 
sumptions are not always true. In this case, parametric 
approach and non-parametric are presented to solve this 
problem.  We present a design of data fusion algorithm. 

Keywords : Structural Analysis, Shannon mutual In- 
formation, data fusion heterogeneous, Maximum Likeli- 
hood and Maximum Entropy distributions, Fourier Se- 
ries methods. 

1    Introduction 

In heterogeneous perception, sensors must recog- 
nize and identify rapidly, i.e., in real time, a set of 
agents acting on the activation of a process. Some 
sensors provide informations on abrupt evolution 
(real or erratic) and lead to an important modifi- 
cation of the model. Each sensor provides infor- 
mation of different nature that it is necessary to 
merge with intend to elaborate a decision. Data 
provided by sensors constitute the initial data ta- 
ble on which, we effect a Structural Analysis. Tools 
of the Structural Analysis [1] [2] [3] are mainly ori- 
ented towards: 

• the identification of possible subsystems (struc- 
turing problems); 

• the updating of redundancies, i.e., the inter- 
nal organization of the system (explicative 
problem). 

Structural Modelling of complex systems using 
the concepts of Information Theory presents the 
advantage to apply to different variables (quanti- 
tative, qualitative, set of structured modalities or 
non-structured,...) as well as to different relation- 
ship (linear, non-linear, fuzzy, ...). 

This "system approach" is used, for example, to 
supervise complex industrial installations. In this 
case, a great number of sensors transmit their ob- 
servations to a data fusion center where they are 
appropriately combined to obtain a global decision. 

This paper is organized as follows. Section 2 
contains the statement of the problem and the nec- 
essary notational definitions. In section 3, we con- 
sider the probability distributions estimations prob- 
lem. In section 4, we study an optimum data fusion 
structure given the sensors. Finally, in section 5, 
we conclude and discuss of the major points of this 
paper. 

2    Statement of the problem 

We consider the data fusion problem with N sen- 
sors as shown Fig.l. The ith sensor transmit a data 
string of length M to a central processor, denoted 
by Xf 4 {Xij}jLlt i = 1,... ,N. We use the 
following notational definitions: 

Let S = {X,Y} be the set of relevant clas- 
sification and description variables of the system. 
Where: 
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• X = {Xi, Xi,... , XN} is the global observa- 
tions given by the sensors , and 

• Y = {Yi, Y\,... , Yjv} is the classification func- 
tion that associates a class at the phenomenon 
observed. See TAB. 1. 

Phenomenon 

Sensor 1 

Sensor 2 

Sensorn 

Data Fusion Center 

FIG. 1: Design data fusion 

We assume that the sensor observations (raw 
data) are statistically independent and identically 
distributed (i.i.d). We further assume that the sen- 
sors at high rules and/or are geographically close to 
each other. The problem of combining the various 
sensor observations, that is, the data fusion prob- 
lem involves simultaneous optimization the aggre- 
gation of the sensors (structuration problem) and 
fusion rule (explicative problem). It can be see as a 
classification problem subject to multiple hypothe- 
sis. 

Thus goal of data fusion problem is to find a 
design of the form Y = f(X), i.e, to process the raw 
data X in such manner that Y contains as much 
information as possible about the hypothesis. As 
a measure of information transfer, we shall use the 
Shannon's (mutual) information 

I{Y;X)±H(Y)-H(Y/X) (1) 

Where H(Y) measure the uncertainty about Y 
before X is observed (entropy of Y) whereas 
H(Y/X) the uncertainty after observations, i.e., 
the conditional entropy. 

TAB. 1: Initial data Table 

a   T Xi ^ X£    ... xM 
Y 

*>i 

0>2 

COj XiK) Y^j) 

(0K 

The optimal data fusion is obtained by max- 
imizing the mutual information I(Y;X). Maxi- 
mizing the mutual information is equivalent to si- 
multanemously maximizing H(Y) and minimizing 
H(Y/X). We choose the conditional entropy to be 
the criterion of the design performance. This quan- 
tity is given by 

H(Y/X)±H(X,Y)-H{X) 
M 

= - Y, Pr(X = Xi) ■ H(Y/X = Xi) 
i=l 
M 

= -Y,Pr(Xi) 
»=i 

* K 

x   ^Pr^/Xi) log Pr-^/Xi) 

(2) 

with ]OS(x) = {=§}. 
Before we proceed with solution to the problem, in 
the next section, we will estimate the probability 
densities. 

3    Probabilities learning 

The formula of the conditional entropy requires the 
computation of two type of probabilities: prior prob- 
abilities and conditional probabilities. These prob- 
lems are investigated in the following subsections. 

3.1    Prior probabilities 

Maximum Entropy-Likelihood distributions 

Shannon (1948) defines entropy (disorder or uncer- 
tainty) of density function ir(x) (with respect to 
Lebesgue measure) by 

/+0O 

7r(a;)log7r(a;)&; 
-OO 

(3) 

Maximizing H subject to various side conditions 
is well-known in the literature as a method for de- 
riving the forms of minimal information prior dis- 
tributions; e. g Jaynes (1968) and Zellner (1977). 
This problem, in its general form is the following: 

maximize   H(X) = - fir(x) log n(x) dx 
(P)     ^   subject to 

E[(j)k(x)] = fn(x) log7r(a;) dx = dk 

k = 0,... ,K 
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where do = 1, <ßo(%) = land^i), k = 0,... ,K 
are k known arbitrary functions, and dk,k = 0,... ,K 
are the given expectation data. The classical solu- 
tion of this problem is given, writing the Lagrangien 
and using variational calculus, by 

KME{X) 
1 

Z(X) 
■ exp 

K 

-Yl^faW 
k=0 

(4) 

where Z(\) is a normalization function 

zw-l exp 
K 

■^Xk<t>k{x) 
fc=0 

dx (5) 

\T ■ and A = (A0,... , AK) is the vector of Lagrang- 
ien parameters. They can be determined exactly by 
solving the (K + 1) nonlinear constraint equations 
given by (P) for TTME(X) 

Gfc(A) =  / <j>k{x) -exp 
K 

Y^^i4>i(x)dx 
;=o 

(6) 

= 0,...,K 

These equations are equivalent of the problem 
of calculating the maximum likelihood (ML) esti- 
mates of the parameters of a family of regular ex- 
ponential densities. In this ML problem, the pa- 
rameters are given by 

ölogZ(A) 

d\k 
= dk    k = 0,. ,K 

where 

1   M 

(7) 

(8) 

is empirical average. In fact, in practice , we do 
not have any values of du but a random samples 
Xi,... , XM independently drawn from a distribu- 
tion P = {n(X)/En[<f>k(X)] = dk;k = 0,...,K}. 

So, dk, k = 0,... , K are determined by their 
empirical estimates and we use the Maximum En- 
tropy principle (ME) to find unique solution of the 
problem of density estimation subject to empiri- 
cal constraints [6]. We have shown the equivalency 
between the ME distributions subject to empiri- 
cal constraints and ML estimates of the Lagrange 
parameters in exponential families. In general, we 
use the standard Newton-Raphson method to solve 
the nonlinear equations (6) or (7). This method 
consists of expanding Gk in Taylor's series around 
the trivial values A0 of the A's, drop quadratic and 

higher order terms, and solve resulting linear sys- 
tem iteratively [5] 

dk    =    Gfc(A)    for    k = 0,...K 

£   Gk(\°) + (\-\°) 0\T Gfc(A) (9) 
J A=A° 

Noting the vectors 5 et v by 

8   =   A-A0 

v   =    [Gk(X0)-d0,...,GK(X0)-dKy 

and the matrix G by 

k,l = 0,...K 

then equation (9) becomes 

G-S = v 

(10) 

(11) 

This system is solved for 5 from which we drive 
A = A0 + S, which becomes the new vector initial 
vector A0 and the iterations continue until 5 be- 
comes appropriately small. 

Fourier's components case 

In our problem, we are interested the case where the 
data are the Fourier components (complex data) of 
the distribution probability function TTME(X)- In 

this case, the Lagrange parameters are solution of 
Hermitian Toeplitz system (11) 

G-<5 = z/ 

where G = \Gi-k ) £ CKxK is positive de- 

fine and the element of the matrix G is given by 

GkW = / TTME(X) ■ exp(-jkuJox)dx        (12) 

k = 0,...,K 

This system can be solved by the conjugate gra- 
dient method (C-G method) [13]. 

Proposition 1 Suppose X\,Xi,... ,Xjv are i.i.d 
with exponential families densities 
n(x) = exp[- J2k=o A*«Ma:)], then, the problem of 
ME-ML distributions estimate has equivalent for- 
mulation 

{maximize    J2k=oXkdk, 
..   ..   ( G-S   =v    with 

subject to< r.    _ \ _ \ o 

The procedure has been implemented in MAT- 
LAB and C language, and they have been tested on 
a Sun SPARCstation and ULTRA Enterprise 450. 
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3.2    Conditional probabilities 

In this subsection, we shown that the estimation 
of the conditional probabilities by a parametric ap- 
proach is applicable only under certain conditions 
(for example form of law). We will show that a 
non-parametric approach is to better adapt. 

Parametric approach 

We propose initially to carry out series of test statis- 
tics on the sensor observations, in order to put for 
the assumptions on the law subjacents [8]. Next, 
we estimate these laws by a parametric approach. 

Let then Xi,... , XN be a sample of N i.i.d ran- 
dom variables from a distribution having unknown 
mean /z, and unknown variance a2 (aggregation of 
the sensor observations). We also assume N is large. 

1. compute the quantities: 
Skewness : 

(13) 
dz 7i=r d3 

' a3 

Kurtosis : 
di di 

if 

(14) 

2. test: 

■y-L = 0,    symmetric laws 
otherwise asymmetric laws 

72 ~ 3,    Gaussian hypothesis. 

We assume /< ~ JV(/i,<r). Hence : 
3. test statistics: 

We wish to test estimated law parameters. 
The test consist to test the variances initially 
and if they are not significantly different to 
then test the means by supposing that 
Ö = d\ = a [7]. 
(a) Fisher's variances test: 

The test statistic is given by 
a 

F = (15) 

where under suitable conditions, this ra- 
tio has a probability distribution known. 

(b) Student's means test: 
We suppose that a = a.   In this case, 
the appropriate test statistic is 

V 

a jyfN 
(16) 

with d\ = fj, and where under suitable 
conditions, this ratio has a probability 
distribution known. 

In summary, if overall tests are rejeted (for ex- 
ample, instability of the estimates parameters) then, 
we will use a non-parametric approach. 

Non-parametric approach 

The estimation of the probability density function 
(pdf) based on the Fourier analysis method is suit- 
able in this context. Then an estimator of the pdf 
based on independent samples Xi,... , XN with 
density / is given by 

KN 

fKN(x) = ^2äktN-ek(x) 
Jt=0 

(17) 

where ak,N - jfT,iLoek(xi) and \ek(x) \ 
I ) fcgN 

is an orthonormal basis of the Hilbert space L2 ([a, b]) 
and KN is an integer dependent on N, called the 
truncation point. 
Different theorems are provided for the convergence 
rate of K the terms of mean integrated square error 
(MISE) or mean square error (MSE) [9] [12]. The 

optimal choice for the MISE criterion is KN — Nf 
with p > 2. 

Description of the non-parametric EM (Esti 
mation-Maximisation) 

The form of the conditional pdf's does not need 
to be known is this approach, since we propose to 
define yj as yj : a,o,j —> üKN.J-   SO, we denote 

}KN.(X) = f{x/yj). The suggested algorithm con- 
sists of three following steps: 

1. Initialization step: 
The number of classes K is assumed to be 
known. The parameters of mixture can be 
initialized as following: 

7f9 = TtME    prior probability 

1     \ 

(18) 

(19) 

(20) 

where int[-] is the largest integer less than the 
real number x and iVJ* is the total number of 
observations in the class j. 

2. Expectation step: In this step, we estimate 
the a posteriori probability #"(£;) for the ob- 
servation Xi belonging to the class j at the 
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nth iteration: 

3. Maximization step: The a posteriori proba- 
bility 7r"(a;j) of each observation Xt is com- 
puted. So at (n + l)th iteration, we have 

^^Ew iV 
i=0 

^„+1=mi[(iV;+1)F 

where iV"+1 = iVfr?+1 and, 

(22) 

(23) 

^A^ 
xn+1 _ (24) 

for A; = 0,... , K^+i. 

We now proceed with the optimization of the 
data fusion algorithm. 

4    Data fusion 

In this section, we will consider data fusion algo- 
rithm, where each sensor transit its observations 
about the phenomenon in to the central processor 
where a global fusion is then effected.We wish to 
minimize H(Y/S), i.e., to obtain the optimum fu- 
sion rule Y = f(S), where S is a optimal partition 
of the system S = (X,Y) (see TAB.2). 

The problem consists then, on the one hand to 
built the sets S and f(S), and one the other hand 
to evaluate the quality or efficiency of the rule is 
derived. 
Consider the following properties : 

Property 1 (sub-additivity)  Let Si and S2 two 
sets of variables (Si, S2 € V(E)).  Then 

H(SiUS2)^H(Si) + H(S2) 

with egality if and only if Si and S2 are statistically 
independent. 

Property 2 (monotonicity) Shannon's (mutual) 
Information verifies the following monotonicity prop- 
erties: 

1. if X : ft >-> Mx and Y : ft >-> My 2 vari- 
ables of S defines on ft, then 

X < Y =► H(X) > H(Y) 

2. if Si, S2 eV(E), then 

SiCS2^ H(Si) sC H(S2) 

where P(£) C P(ft) the set of the partition of 
set of the samples producing the data (obsevation 
space) and Mx and My the modalities of X re- 
spectively Y. 

Optimum fusion rule 

Considering property 2 [4], the local optimum re- 
search will be much by levels (classes). 
Let Pfc(S) = {5i,52)... ,Sk} be the partition of 
S into k classes obtained via aggregations, with 
card(Si) = ki and 

hi    M 

Si = V f\ Xi 
i=i j=i 

(25) 

where V is operator of disjonction and /\ con- 
junction. The composed rule is expressed under the 
form 

XeSi^Y = f(Si) (26) 

We show without difficulty that 

H(Y/Sk) ^ H(Y/Sk-i) (27) 

Algorithm 

We propose a successive approximation algorithm 
combining an aggregative and desaggregative struc- 
ture, we obtain two possible operators: 

AHoDR :Pfc(E)^Pfc(£) 

Sk^AHo DR(Sk) = AH(DR(Sk)) 
(28) 

DRoAH :Pfc(E)V-»Pfc(E) 

Sk^DRo AH(Sk) = DR(AH(Sk)) 
(29) 

for 2 ^ k ^ N - 1 
where 

DR :Pfc(S)^Pfc+1(S) 

Sk ~» DR(Sk) = Sk+i\Xi) (30) 

with 

min   (H(Y/{Sk+1\Xi}))        (31) 
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AH :P*(E)>-+Pk-i(£) 
Sk^AH(Sk) = Sk-iUXi (32) 

with 

min     (H(Y/{Sk-UXi})) (33) 

Proposition 2 ^ £ P/s^E) is optimum partition 
(stability) if and only if 

*?(AH o DR{Sk)) = *?(DR o AH(Sk))   (34) 

= *f(Sk) (35) 

Vk,    2 < Jb ^ N - 1 

This algorithm research for each of levels of the 
treillis P(E) Fig.2, a partition verifying the propo- 
sition 2. 

Efficiency of rule 

We define the following expressions 

H(Y/X) 
m(Y/X) = 1 

H(Y) 

and, 

q(Y/S) 
H(Y) - H(Y/S) _ m{Y/S) 
H(Y) - H(Y/X) ~ m{Y/X) 

(36) 

(37) 

where m(Y/X) measure the modelisation 
Y = f(X) and q(Y/S) the quality of the optimum 
design Y = f(S). 

P,(T) {(Xl\JXi\J...UXi(J...\JXlr)} 
F,(S) {XX,{X, \J...UX„)}...Si...{(XlU.MXir_l),Xlf) 
P3(Z) {XJ,X„(X,l>..UX„)}...S1...{(XllJ...UXil_i),Xlf_l,X!f) 

P,(Z) ...S;... 

P„_2(]>)    {(X, [JXi U X,) XK}.~SM~{XI {X»-i U XH-VX»)) 

F*-.P) feUx,) ^)...Vi-(^i fc-iU^)} 
r*© {^..^ x, x„) 

FIG. 2: Le Treillis P(E) 

TAB. 2: Contingency Table 

Yi     Y2           Yj    ...   YK 

x, 
x2 

Xi              Pij   

XN 

p.j 

- Pi- = HjPih P-3 - HiPiJ are the marginal prob- 
abilities 
- p^ is the a posteriori probability 

5    Conclusion and discution 

In this paper, we considered the data fusion prob- 
lem from Structural Analysis point of view. It has 
been established that the optimum fusion rule was 
obtained by researching optimal partition of the 
system minimizing an entropy criterion. We also 
shown that the estimation of the pdf based on the 
ME-ML distribution (prior probabilities) and non- 
parametric EM improve the optimal data fusion. 
Our objective is to apply these results to more com- 
plex systems, for example, to the industrial process 
supervision. 
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Towards the Fusion of Distributed Binary Decision Tree Classifiers 
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Abstract 
Multiple sensor fusion and binary decision tree 
classifiers have been used to successfully solve many 
real world problems. These topics are usually studied 
separately. Fusion of binary decision tree classifiers in 
a multiple sensor environment has received very little 
attention. In this paper, we formulate the problem, 
investigate its scope, outline some issues associated 
with decision tree classifiers and multiple sensor 
fusion, and present some solution methodologies. The 
results are illustrated by means of an example. 

Key words: sensor fusion, binary decision tree. 

I. Introduction 

Multiple sensor decision fusion is an important 
problem with many practical applications. This 
problem has been studied quite extensively and many 
significant results on this topic have been obtained [1- 
3]. In most studies, one-stage decision making 
procedures are employed at the sensor as well as at the 
fusion center. By a one-stage procedure, we mean that 
a single test is employed to distinguish between all the 
hypotheses. Such one-stage decision procedures may 
become too complex and impractical in situations 
where there are many variables and many object 
classes (hypotheses). These types of problems arise in 
areas such as automatic target recognition (ATR), 
team medical diagnosis and telemedicine, and large- 
scale surveillance systems. In these situations, it may 
be desirable to use multistage decision making 
procedures at the sensors and/or at the fusion center. 
There are several approaches for implementing 
multistage decision making structures. One popular 
approach is by means of a binary decision tree (BDT) 
[4]. The basic idea is to take a complex M-ary 
hypothesis testing problem, break it into several 
simpler binary hypothesis testing problems that are 
organized in a hierarchical tree structure to make 
decisions regarding the M hypotheses or object 
classes. Here, we investigate the use of BDTs in 
multisensor fusion problems. The benefits of using 
BDTs in multisensor decision fusion are multifold: 

1. It is well known that the design of distributed 
detection systems that employ one-stage decision 
making for binary hypothesis testing problems is 

Pramod K. Varshney 
EECS Department, 121 Link Hall 

Syracuse University, Syracuse, NY 13244, USA 
Email: varshney@syr.edu 

NP-hard. This design for M-ary hypothesis testing 
is even harder. BDTs make a sequence of binary 
decisions in a hierarchical manner that are easier to 
design, efficient and computationally simpler to 
implement with simpler decision regions. Thus, the 
use of a BDT may make the decision making 
procedure feasible for practical situations that have 
time or processing constraints. In addition, 
communication bandwidth efficiency may be 
achieved because transmission of binary decisions 
instead of M-ary decisions will be required. 

2. Some of the available sensors may not be capable 
of distinguishing all the object classes in a pairwise 
manner. BDTs provide a framework for integrating 
the capability of all the sensors for multisensor 
decision fusion and for enhanced system 
performance. 

3. Decision making via a BDT has an inherent 
flexibility to design tests at the internal nodes. This 
flexibility provides the ability to handle sensor 
defects, missing sensor observations/decisions, 
etc., thereby enhancing system robustness. Also, 
the flexibility may help in improving system 
performance. 

The design of a BDT based multisensor fusion system 
involves the design of the BDT, design of the tests at 
the internal nodes of sensor BDTs, design of the fusion 
rule, and design of the system topology including 
communication structure of the multisensor fusion 
system. Goals of this design include enhanced overall 
system performance (recognition ability) and 
robustness, using least possible computation and 
communication. Some aspects of this problem have 
been addressed in the literature. Demirbas [5] 
proposed a non-parametric centralized object 
recognition scheme based on a BDT. Each sensor 
processes its data and extracts some features that are 
transmitted to the fusion center. Object recognition is 
carried out using a BDT generated from a training set. 
Dasarathy [6] concentrated on the architectural aspects 
of a system that fuses binary decisions into a single M- 
ary decision. The main goal was to design 
architectures that satisfy processing time constraints. 
Zhu et al. [7] also considered the problem of M-ary 
hypothesis testing using a parallel fusion topology 
where local detectors transmit binary decisions. They 
focussed on the design of decision rules and on system 
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performance. The main goal of this paper is to 
examine the overall problem of BDT based 
multisensor decision fusion problem, identify the 
issues that need to be addressed further and propose 
some solution methodologies. In Section n, we 
formulate the problem. In Section III, we consider a 
specific BDT based decision fusion system, hi Section 
IV, we give an example to illustrate the results of 
Section HI. In Section V, we make some concluding 
remarks. 

n. Problem Overview 

We focus our attention on the parallel architecture for 
BDT based multisensor fusion systems in this paper. 
The block diagram of a BDT based parallel decision 
fusion system is shown in Figure 1. The system 
consists of K sensors that observe a common 
phenomenon in parallel. The goal is to recognize a 
given unknown object that belongs to the set of objects 
{Oi, 02, ..., 0M}. Let Xk be the observation vector of 
the Jfeth sensor. Each sensor uses a BDT to make its 
decisions. Let Tk denote the BDT used by the Mi 
sensor and Uk the decision made by the fcth sensor. 
These decisions are transmitted to the fusion center 
that combines them to yield U0, the global decision. 
The fusion rule 7"J>(.) is a function that maps local 
decisions uu ..., uK into «0 and makes a decision 
regarding the unknown object. 

Sensor S , 

1 
Sensor S 

BDTf, BDT TV 

V, V, 

u^rivv...,u^ 

Figure 1: BDT based parallel decision fusion system 

We assume that the reader is familiar with the notion 
of tree and associated terminology. For details, the 
reader may refer to [4]. A general BDT is shown in 
Figure 2. X denotes the feature vector. U denotes the 
decision made by the BDT at terminal nodes. Since 
each value u of U corresponds to a unique path from 
the root node to a terminal node, « can be encoded as 
the sequence of binary decisions made by all the nodes 
in the corresponding path. At node t, <P(f) denotes the 
set of features used by the BDT, and T\t) denotes the 

decision rule, which is a function that maps the space 
of features specified by <S(0 into set {0,1}. 

x 

/ \ 

node f 

\, 

s*' K 
oa o„ 

V=uh 

Figure 2: A general BDT 

Using the basic system architecture for the decision 
fusion system shown in Figure 1, several design 
approaches and modes of operation can be envisaged. 
Here we categorize BDT based parallel decision 
fusion systems in four types: 

1. Each sensor employs a BDT for decision making. 
These sensor BDTs are assumed available and are 
designed independently of each other. Sensor 
decisions are sent to the fusion center. The fusion 
center either uses a one-stage procedure or a BDT 
to determine the final decision. The main issue 
here is the design of an optimum fusion procedure. 
This problem is analogous to the design of an 
optimum fusion rule in distributed detection 
systems [9]. This problem is applicable to the 
fusion of BDT classifiers that may have been 
designed independently. 

2. BDTs at the individual sensors are designed jointly 
by employing coupled cost functions. Decisions 
are available locally so that appropriate action can 
be taken at the sensor. Decision fusion is not 
employed to combine sensor decisions. This 
problem is analogous to the one considered by 
Tenney and Sandell [10] in a distributed detection 
context. 

3. Decisions made by sensor BDTs are conveyed to 
the fusion center that combines them to yield the 
final decision. No other communication is allowed. 
Sensor BDTs and the fusion rule are designed. 
This system is a generalization of distributed 
detection systems where only one-stage decision 
procedures are allowed. 

4. In this case, the system is the same as system 3 
except that two-way communication between the 
sensors and the fusion center is allowed.  The 
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sensors navigate through their BDTs under the 
supervision of the fusion center in a truly 
cooperative manner. This is a new system 
architecture that requires close coordination 
between system elements. 

In the four types of systems described above, some or 
all of the following issues need to be addressed. 

• Deign of BDTs for each sensor and/or the fusion 
center. 

• Selection of sensor features for sensor BDT 
design and decision-making at internal nodes of 
sensor BDTs. 

.    Decision-making rules at internal nodes of sensor 
BDTs. 

.    Decision-making rules at the fusion center. 

.     Communication protocol used by the sensors and 
the fusion center for coordinated navigation of 
their BDTs. 

• Evaluation of system performance - recognition 
ability, robustness etc. 

The treatment of the above issues is guided by many 
factors, such as sensor characteristics, available 
processing resources, operating environment and the 
nature of the objects, etc. Due to the novelty of these 
problems, much effort is needed to develop a 
systematic solution to the overall BDT based 
multisensor fusion problem. In the following we make 
some observations on the differences between how the 
above issues are treated in the conventional sense and 
under the formulation of BDT based decision fusion. 
Conventional BDT design methodologies can be 
applied here, but with the goal of optimizing the 
overall system performance instead of just the 
performance of individual sensors. All BDTs should 
be designed in such a way that they collectively make 
the best classification of the unknown object. A single 
sensor BDT may not be optimal when used as a stand- 
alone classifier. Sensor features ought to be selected in 
such a way that objects are best separated across the 
sensor suite for enhanced performance of the overall 
system. The selected features may not be the best for 
individual sensors. The decision rules at internal nodes 
of sensor BDTs need to be designed such that best 
system performance is achieved. These rules may not 
be the best for individual BDTs. 

m. Design of BDT Based Interactive 
Systems 

In this section, we focus on BDT based decision fusion 
systems that involve two-way communication and 
where all system components are jointly designed. The 

quality of such a decision fusion system is given by 
me recognition rate of each object and the associated 
average number of steps in a recognition operatioa 
The first quantity serves as a measure of effectiveness 
of the fusion system in carrying out 
detection/recognition, while the second quantity 
indicates the efficiency in terms of computational 
time/effort. We propose a method of designing BDTs, 
sensor rules and fusion rules. We assume that the 
sensor observations are conditionally independent 
given the object class. We also assume that each 
sensor observation is characterized by a probability 
distribution function given each object class and that it 
is known a priori. Finally, each sensor uses all the 
available features at each node of its BDT. 

First, we propose a way to cooperatively use BDTs at 
the fusion center and the sensors. The fusion center 
BDT is used to carry out a sequential partition of the 
object space. At each internal node of its BDT, the 
fusion center tests one subset of objects against 
another subset of objects. It collects sensor local 
decisions and uses them to make a global decision on 
which subset to test further, i.e., it selects the path of 
the tree to follow. Based upon this global decision, it 
chooses an appropriate child node at which it tests two 
new subsets of objects. The fusion center repeats this 
procedure till it reaches a terminal node where exactly 
one object is left, and then declares this object to be 
the unknown object. We notice that at each node of the 
fusion center BDT, the local decision from a sensor 
reflects to what degree this sensor distinguishes the 
two subsets of objects that are under test. To optimally 
utilize the capability of this sensor, it is necessary that 
this sensor test the same two subsets of objects as the 
fusion center because adding/removing objects to 
these two subsets would make the local decision of 
this sensor less relevant to the recognition task at the 
fusion center. Based on this fact, we let every sensor 
BDT partition the object space in the same way as the 
fusion center BDT does. For this reason, all the BDTs 
may be considered identical with respect to the object 
space. However, since sensor local decisions may not 
always agree with the global decisions, some sensors 
may not choose the same path as the fusion center if 
the sensors use their own local decisions to select child 
nodes. If so, the local decisions from these sensors are 
less useful to the fusion center. To make sure that all 
system elements follow the same path of their BDTs, a 
mechanism of coordination is necessary. Such a 
mechanism is implemented via a simple two-way 
communication protocol. Suppose the sensors and the 
fusion center arrive at a node t, the sensors transmit 
their local decisions to the fusion center. Based upon 
these local decisions, the fusion center makes a global 
decision and sends it back to the sensors. Then both 
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the fusion center and the sensors use this global 
decision to choose the same child node. Although all 
sensor BDTs are the same in the object space, they are 
generally different in the feature space and sensor 
decision rule space. Furthermore, each sensor uses the 
past global decision to determine which features and 
what sensor decision rule to use at a node. 

Now let us investigate how the structure of a BDT 
affects the recognition rate and the average number of 
steps. The ability of such a decision fusion system in 
achieving high recognition rates relies more on the 
actions at the higher level nodes of its BDTs. To see 
this, we note that rejection of an object at a node 
prohibits any further classification and ultimate 
recognition of this object. Therefore, an error that 
occurs at a higher level node is more costly than an 
error that occurs at a descendent node. From this 
viewpoint, at each node of the BDT one needs to 
distinguish objects that appear most dissimilar to the 
sensors. For this purpose, one would construct a BDT 
that tests and distinguishes the pair of most different 
objects at each node. However, the total number of 
internal nodes of such a BDT grows astronomically 
with the total number of objects because only two 
objects are distinguished at each internal node. Thus, 
the average number of steps may become prohibitively 
large. To alleviate this burden, one may choose to test 
more than two objects at each node, but this 
consequently decreases the dissimilarity between the 
objects being tested and hence the recognition rates. In 
the extreme case, one may choose to test all the 
remaining objects at a single node. This will use the 
least average number of steps but inevitably increase 
the probability of error. Therefore, we need to make a 
compromise between the dissimilarity of objects being 
tested and the number of objects to test. In the 
following, we propose a BDT construction method 
that makes such a compromise. Using this method, the 
more distinct the objects are, the earlier the stage at 
which they are tested. Thus, the quality of 
classification monotonically degrades along a path. 
This provides a natural way of encoding the global 
decisions into a sequence of binary bits with 
decreasing significance. Such a format becomes useful 
when it is desired to determine only the group to 
which an object belongs but not its exact identity. 

where a set A(r)of objects remain to be further 
classified. Our goal is to select subsets A/ and Ar of 
A(r) according to a criterion that balances the goal of 
object dissimilarity and the number of objects to test. 

Let |A,UA,| denote the cardinality of AjllA,., 
which is the number of objects to distinguish. 

Let £>(A/,Ar) be the dissimilarity between subsets A/ 
and Ar which is defined as 

D(A.,A,)=      min     d(0,,Or) 

where rf(0,,Or) is an information distance measure 
between objects 0/ and Or. An overview of such 
distance measures can be found in [8]. 

Let D(n)- maxD^.A,.) where D(ri) is the best 

possible dissimilarity that can be achieved when n 
objects are tested. It is not difficult to see that D(n) is a 
monotone decreasing function of«. 

During the construction of a BDT, it is desirable to 
maximize both D(n) and n. But they are conflicting 
objectives and we need to balance these two 
objectives. Her we maximize n subject to 

a>2ln^-D(n)+D(2) 

where a is a prescribed constant. 

(1) 

This criterion is based upon the following observation. 
Suppose all objects occur with the same probability n. 
In a centralized recognition scheme, given {A/, Ar} 
and |A, U A, | = n, the probability of error Pe(n) can be 
bounded by the following [8] 

P.(f>U 2   5^,(0,,O,) 
O, GA, 0,eA, 

where P,(0,,0,) is the probability of error when 
only O; and Or are tested. 

The right hand side can be bounded by a class of 
information distance measures between O; and Or [8] 
and we have 

C^eA, O.eA, 

where c is a constant. 
0,<=A, 0,eA, 

Construction of BDTs 
In our method, we start with the root node, and then 
repeat the following procedure for all new nodes as 
long as they contain more than one object. At each 
node we choose the two subsets of objects to 
distinguish, create its child nodes and associate with 
them the appropriate sets of objects for further 
classification. Suppose we are dealing with node t 

Using the best possible dissimilarity D(n) we have 

Pt{n)< S   Ece-DW<c(y)VcW 

0,eA, O.eA, \2J 

Using the above bound as an approximation for Pe(w), 
we have 
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-($)= 21n--Z)(«)+£>(2) 

The left-hand side reflects the performance loss due to 
an increase in the number of objects to test. Denote the 
maximum tolerable performance loss by a, we have 
the criterion (1). 

Sometimes, there are multiple pairs of {A;, Ar} that 
correspond to the same value of D(n), i.e., they yield 
the best possible dissimilarity. In such situations, one 
may compare two designs using the following method. 
For each design, find the shortest inter-object distance 
between A; and Ar, and then choose the design with 
the smaller such distance. If there is a tie, count the 
number of all the object pairs between A/ and Ar that 
bear this distance, choose the design with the smaller 
count. If there is still a tie, repeat the previous 
procedure for the next shortest distance. If at the end, 
the two designs are still tied, randomly choose any one 
of them. This method is based on the fact that shorter 
distances contribute more to the error than longer 
distances. 

Finally we present our algorithm for the construction 
ofBDTs: 
1. Set a. Let N denote the set of new nodes. Put root 

node t0 into N. Set t0 as the current node t. 
2. If the current node t contains exactly one object, 

remove f from N, and go to step 3; otherwise use a 
to find the maximal n, D(n) and the corresponding 
{A;, Ar}. Create left child node t,, let A( U)= A( /)- 

Ar. Create right child node tr, let A( tr)= A( r)-A/. 
Put nodes tt, tr into N, remove r from N. 

3. If N is empty, stop; otherwise find a member of N, 
set it as the current node t, and then go to step 2. 

Design of the fusion rule and the sensor rules 
At each node t, the sensors make local decisions 
regarding {A/, Ar}. Based on these local decisions, the 
fusion center makes a global decision. Recall that a 
node affects the system performance more than any of 
its descendent nodes. Therefore at each node, we want 
to design the corresponding fusion rule and sensor 
decision rule in such a way that the probability of 
misclassification at that node is minimized regardless 
of what happens at its descendent nodes. This is 
basically a greedy algorithm. Such rules can be 
considered as the solution to a binary hypothesis- 
testing problem in which objects in A; are tested 
against objects in Ar. Since BDTs are used at all the 
system elements, and the optimal fusion rule and the 
optimal sensor rules for the current node depend upon 
past sensor decisions and past global decisions. This 
adds to the complexity of the problem. It has been 

shown [11] that under a mild condition this problem 
reduces to a conventional binary decision fusion 
problem, and the optimal fusion rule and sensor rules 
can be designed based on results available in [1]. 

IV. An Example 

In this section, we present an example to illustrate the 
results developed in the previous section. We use the 
communication protocol developed in the previous 
section to coordinate the sensors and the fusion center. 
We will discuss construction of the BDT, design of the 
sensor rules and the fusion rule, and performance 
evaluation. We also compare this design with the 
centralized scheme, an ad-hoc M-ary decision fusion 
scheme and the optimum single sensor scheme. 

Let us consider a decision-fusion system consisting of 
three independent identical sensors and a fusion 
center. By identical sensors we mean that the sensor 
observations have the same characteristics and all the 
sensors use the same BDT. This system is used to 
identify four equally likely objects Oi, 02, 03 and 04. 
Each sensor observation is assumed to be a scalar. The 
objects are represented by four evenly spaced points 
on the real line in the sensor observation space as 
shown in Figure 3. The distance between adjacent 
points is assumed to be a. A sensor observation is 
corrupted by additive white Gaussian noise of zero 
mean and unit variance. 

o4 o3 o2 o, 

-1.5a -0.5a 0.5a 1.5a 

Figure 3: Object constellation 

For the purpose of comparing our design to an ad-hoc 
M-ary decision fusion scheme that uses 2 bits for each 
sensor, we need a two level BDT that uses one bit at 
each level. Since the average number of steps is equal 
to 2 in this problem, we design a BDT and the 
corresponding sensor rules and the fusion rule that 
maximizes the average recognition rate. 

Tree construction 
We use the Kullback divergence to compute the 
dissimilarity between subsets of objects. Since the 
three    sensors   are    identical    and    conditionally 
independent, the dissimilarity is additive and we have 

40i,0>3^(0j,0,) 
where K\p„Oj) is the Kullback divergence between 
O, and O, using a single sensor observation. 
Furthermore, since the noises are additive white 
Gaussian, the Kullback divergence is a quadratic 
function of the Euclidean distance between objects 
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The inter-object distances for our problem are shown 

X, 

in Table 1. 

Table 1: Inter-object distances 

d(.,) o, 02 0,  04 

Oi 0  3a2 12a2 27a2 

02 3a2  0 3a2 12a2 

03 12a2 3a2 0  3a2 

04 27a2 12a2 3a2  0 

Since the desired BDT has two levels, we need to 
evenly divide all objects into two subsets at the root 
node. Here w=4, and it is not difficult to find out that 
D(4)=3a2. There are three candidate designs 

Design 1: Ar={01; Oi}, Af={03, 04}. 
Design 2: Ar={Ob 04}, A/={02, 03}. 
Design 3: AHOi, 03}, A^Oz, 04}. 

Using the selection method that we developed in the 
previous section in case of ties, we find that the 
Design 1 is the best. Hence at the root node, we test 
Aj={03, 04} against Ar={Oi, 02}. The design of the 

two second-level nodes is trivial, hence is omitted. The 
fusion center BDT is shown in Figure 4. 

node 1 

node 3 

«„=00 »o=10 

Figure 4: Fusion center BDT 

The BDT used by the Mi sensor is shown in Figure 5. 
In Figure 5, d is the binary decision made by the Mi 
sensor at stage 1. We note that the Mi sensor uses the 
global decision to navigate its BDT. 

node 1 

«t=dl 

Figure 5: The Mi Sensor BDT 

Sensor decision rule and fusion rule 
The system takes two stages to identify an unknown 
object. At stagel, it tests {Oi, 02} against {03, 04} 
and then chooses one of them say {Oi, O2}. At stage 2, 
it tests Oi against 02. Thus we need to design sensor 
rules and the fusion rule for each stage. At each stage, 
we minimize the total probability of misclassification. 

Stage 1 
At this stage, we have a binary hypothesis-testing 
problem of {0i,02} vs. {03,04}. The sensor decisions 
«1, M2 and M3 are single binary bits. Based on these 
sensor decisions, the fusion center makes a binary 
global decision. It is well known [9] that given fixed 
sensor rules, and given that the sensors are 
conditionally independent given the unknown object, 
the optimal fusion rule is the MAP fusion rule which 
can be expressed as 

1 ifihpX^iupM) 
0 if±hpi(

u
l)<ifiPjk) 

where p,{uk) is the conditional probability of decision 
Mi of the Mi sensor when the unknown object is O,. 

It is also well known [1] that the necessary condition 
for a sensor rule to be optimal under the conditional 
independence assumption is that it is a likelihood ratio 
test. Since each sensor observation Xk is a Gaussian 
random variable, a likelihood ratio test results in a 
threshold test and a binary partitioning of the real line 
Xjfc. Recall that identical sensor rules are used, and one 
can easily see that the decision boundary is at the 
origin xt=0. With such sensor decision rules, the 
optimal fusion rule further simplifies to a majority rule 

«„ = 
1   Hul+u1+u3>2 

0   if M, +u2 + M3 <1 
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Stage 2 
At this stage, the system either tests Oi vs. 02, or O3 
vs. 04. Because of the symmetry of the object 
constellation, the sensor decision rules and the fusion 
rule at stage 1, the result on testing Oi vs. 02 is 
essentially the same as that for testing 03 vs. 04. So 
without loss of generality, we only consider testing Oi 
vs. 02. 

Now the sensor decisions «1, u2 and «3 are two-bits 
vectors with the first bit representing the sensor 
decision at stage 1 and the second bit representing the 
sensor decision at stage 2. Based on these vectors, the 
fusion center makes a global decision. Similar to the 
result at stage 1, the optimal fusion rule is 

'11 ifnA(«t)>nA(«J 
*=1 t=l 

10 ifnA(«t)<iW"J 
where p,{uk) is the conditional probability that the Mi 
sensor decision is uk when the unknown object is O,. 

Again by the same argument as used for stage 1 [1], 
the optimal sensor rules are likelihood ratio tests. Such 
a test corresponds to a binary partitioning by means of 
a threshold either in region xpK) if the first bit of uk is 
1, or in region x^O if the first bit of uk is 0. These 
decision boundaries are functions of the inter-object 
distance a. 

We let a range from -15dB to +5dB with step size 
equal to 0.5dB. For each value of a, we compute the 
optimal sensor decision rules, and then express the 
MAP fusion rule as a Boolean function of the binary 
sensor decision vectors. This result is given in Table 2. 
Here u0 is the global decision that the fusion center 
makes at node 3. When K0=11, Oi is declared, and 
when «o=10, 02 is declared. uu u2 and u3 are the 
incoming sensor decision vectors. Since the fusion 
center chooses {Oi, 02} at the root node using a 
majority fusion rule, there are at least two Is out of the 
first bit of «i, «2 and u3. Different permutations of 
these vectors share the same entry in this table. One 
can see that the fusion rule changes with the inter- 
object distance a. Such phenomena are marked by 
adjacent 11 and 10 for u0 in Table 2. For small values 
of a (<-5dB), the fusion center prefers Oi(ll) to 
O2(10) unless the sensors have strong support for 02. 
This is because 02 is sandwiched between {03, 04} 
and Oi, and there is little room for 02. For large values 
of a (>4dB), the fusion center chooses O2(10) over 
Oi(ll) unless the sensors strongly support Oi, In this 
situation, because the signal is sufficiently strong, 
most of the time the sensor decision vectors belong to 
the upper four entries in Table 2. In such cases, the 
fusion  rule   is   essentially   a   majority   rule.   For 

intermediate values of a (from -5dB to 4dB), the 
fusion rule exhibits a change from the weak signal 
form to the strong signal form. 

ble 2: Stag e2fi lsion ri ule:Oi («o=ll L)vs. ( )2(«o=l 
a (dB) (-15,-5) (-4.5,-3) (-2.5,3) 3.5 (4,5) 

ui 
U
2 

U3 
uo 

10 10 10 11 10 10 10 10 

10 10 11 11 11 11 10 10 

10 11 11 11 11 11 11 11 

11 11 11 11 11 11 11 11 

10 10 00 10 10 10 10 10 

10 10 01 10 10 10 10 10 

10 11 00 10 10 10 10 10 

10 11 01 11 11 10 10 10 

11 11 00 11 11 10 10 10 

11 11 01 11 11 11 11 10 

Performance evaluation 
The system performance is given by the probability of 
misclassification Pmc. In Figure 6, the Pmc of the BDT 
based decision fusion system is plotted against the 
inter-object distance a as a solid curve. In the same 
figure, we also plot the performance of the optimal 
centralized classifier and the performance of the 
optimal single sensor classifier. The optimal 
centralized classifier uses all the raw sensor 
observations to make a one-stage classification of the 
unknown object. It has the smallest possible Pmc that 
serves as a lower bound to the Pmc of any other 
scheme. This Pmc is plotted as a dotted curve. The 
optimal single sensor classifier uses one sensor 
observation to classify the unknown object. The 
corresponding Pmc is plotted as squares in Figure 6. 
The BDT based decision fusion system outperforms 
the optimal single sensor classifier. Also it is slightly 
inferior to the optimal centralized classifier. This is 
further shown in Figure 7 where the increase in Pmc 

normalized by that of the centralized classifier is 
plotted. For instance, when a=-10dB, for the optimal 
single sensor classifier, Pmc=0.6558; for the optimal 
centralized classifier, Pmc=0.5881; for the BDT based 
system, Pmc=0.5998. 

In Figure 7, the BDT based decision fusion system is 
compared with the ad-hoc decision fusion system in 
which the three sensors are designed as identical optimal 
single sensor classifiers and the MAP fusion rule is used 
to fuse their decisions. For each system, the increase in 
Pmc with respect to the optimal centralized classifier is 
plotted. It is shown that the BDT based decision fusion 
system is better than the ad-hoc decision fusion system. 
For instance, when a=-10dB, for the ad-hoc system, 
Pmc=0.6047. The increase of Pmc for the BDT based 
system is -17dB, for the ad-hoc system is -15.5dB. 
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V. Summary 

We considered a new class of decision fusion 
problems that employs binary decision trees at the 
sensors and/or at the fusion center. Such problems 
were categorized into four types according to how the 
binary decision trees are designed and used by the 
fusion system. Various aspects of the design of such 
systems were discussed. We proposed a systematic 
design  methodology  for   one   such   system.   This 

methodology was illustrated by means of an example. 
Many aspects of this class of problems remain 
unsolved and provide a fruitful area for future 
research. 
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Abstract: This paper explores the fusion of moving 
High Range Resolution (HRR) and stationary 
Synthetic Aperture Radar (SAR) for automatic target 
recognition and classification. The tradeoffs of 
resolution and time-to-classify are investigated 
through simulation. By using a fusion approach, 
targets are effectively classified in a multitarget- 
multisensor scenario; however the Bayesian analysis 
does not account for measurement confidences. 

1. Introduction 

Multisensor automatic target recognition (ATR) 
algorithms include target detection, classification, 
recognition, and identification [1]. One of the key 
issues in a moving and stationary ATR assessment is 
the decision when to use the Synthetic Aperture 
Radar (SAR) mode to get an two-dimensional image 
of the target, shown in Figure 1. A radar sensor 
manager must select sensors, select the detected 
moving and stationary targets to classify, and align 
the sensors to the target [2]. Thus, the sensor manager 
must control the measurement and ATR process from 
recognition to classification. A sensor classification 
policy is best described as a problem in sequential 
decision making under uncertainty. Prominent 
elements of the problem include competitors, a 
dynamic environment with uncertainties in target 
movement and measurement clutter, and complexity 
arising from many possible sensor actions and 
outcomes. 

From an ATR point of view, geometric target 
information of movement is essential to selecting 

radar modes. Since you can't generally predict the 
geometric perspective of an object in the image it 
makes it difficult to determine whether the target is 
moving or stationary. You can simplify the target 
recognition and classification task by determining 
coarse information concerning the target type and 
movement from a one-dimensional HRR sensor. If 
the target is stationary, the HRR return will be 
cluttered, but this procedure saves time in 
determining whether to wait for the SAR update. 
Many algorithms have focused on the finer analysis 
of automatic target recognition [3,4], however, these 
algorithms may have a processing time constraint for 
real-time operations. In the cases of tracking 
scenarios, it might be beneficial to have a coarse 
measurement system to capture moving targets and a 
fine measurement system to classify the target. We 
seek dynamic target properties, as measured by 
spatial/spectral intensity of a 2D SAR output and ID 
HRR range measurements. Thus, understanding the 
sensor management HRR and SAR tradeoffs can be 
useful for ID and 2D radar fusion. 

ATR is the ability of a system to detect and recognize 
a target. Fusing information obtained from other 
sensors, the ATR solution can be extended to include 
target classification and identification. One of the 
inherent limitations of radar processing for target 
classification is that the target dynamics need to be 
known a priori as in the case of HRR for moving 
targets, shown in Figure 2, or SAR for stationary 
targets, shown in Figure 1. We explore the use of a 
Bayesian metric to capture unknown target dynamics 
to determine whether a detected target is transitioning 
from moving to stationary or stationary to moving 

Figure 1. Synthetic Aperture Radar Collection for a Tank. 
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modes. In the case of a moving target, a one- 
dimensional HRR profile can be used to classify the 
target size, whereas in the case of a stationary target, 
a 2D SAR image can be used to determine the target 
type. 

Magnitude 
Peak (a) 

50 100 

Range Bins-(0 

Figure 2. HRR Profile, showing target size. 

This paper explores radar fusion, resolution 
comparisons, and confidence differences to 
determine whether a target is in a stationary or 
moving mode. The initial work is focused towards 
addressing the ATR problem of classifying targets 
transitioning from a stationary to moving state or vice 
versa. Section 2 formulates the problem and Section 
3 describes the Bayesian approach. Section 4 
presents results and Section 5 draws conclusions and 
suggests further work. 

2. Problem Formulation 

Feature extraction can be used for object tracking, 
identification, and classification. For tracking, image 

content and registration are important for time and 
location referencing [4]. The image content includes 
coarse information on the target type and movement. 
Additionally, ATR algorithms are subject to capacity 
constraints. For instance, if the image is thought to be 
traveling through an information channel, then the 
desired output is to maximize the information 
available, given bandwidth and time constraints. 

Radar systems are effective for surveillance 
applications due to their distance range resolution 
invariance,    all    weather, and    measurement 
capabilities. The radar antenna has a tradeoff between 
ground moving target indicator (GMTI), HRR, or 
SAR modes, shown in Figure 3. HRR radar offers a 
method for imaging moving targets by extracting 
energy returns from range profiles. If the target is 
stationary, a collection of HRR radar signatures can 
be processed to form a SAR image. In the HRR radar 
mode, the cross range resolution is the radar beam 
width, which is large at long range. However, the 
both HRR profiles and SAR images are formed from 
radar scans, but differ in number of scans used in 
coherent integration. SAR processing can be 
achieved in conjunction with GMTI for detection of 
the relative target location which limits the beam 
width. Once detected, SAR information values can 
enhance target classification confidence. HRR and 
GMTI information enhances the target classification 
by reducing the search area associated with the target 
and determining the target size, but is limited in 
confidence since it is a ID scan. Likewise, target 
classification helps predict movement detection for 
each target. In addition to correctly classifying 
targets [5], a target classification system in military 

Stationary 
Targets 

Low 
Resolution 

SAR& 
GMTI     Nol 

Additional 
Sensors or 

Signals 

 >-jFUsroNiN 
f" #. REPORT J 

Moving 
Targets 

Clutter Cancel 
via Multiphase 

Process 

CD' 
HRR Target 

Profiles 

Process 
Range/Doppler 
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Figure 3. Detection and SAR Image Extraction for Stationary Targets versus HRR Data for Moving Targets. 
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scenarios must also robustly classify unknown 
targets. 

2.3 Scenario 

The scenario is an aircraft classifying a target using 
multi-sensor fusion [6,7]. There are two kinds of 
sensors: an HRR and SAR. Each sensor returns two 
elements: 1) a probability value and 2) a 10 bit 
measurement vector that represents the proposition to 
which the probability is attached. There are 10 types of 
targets that can be grouped into four SAR target 
classes: {truck, small tank, large tank, other}, and three 
HRR sizes: {short}, {medium}, and {long}. If a bit is 
set to 0, this reflects that the sensor declares that the 
target in question is not of the type associated with that 
bit, and if the bit is 1, the target may be ofthat type. 

In the simulation, the aircraft is 100 nautical miles (nm) 
away from and approaches the stationary or moving 
target. The measurements are taken every 1 nm for the 
HRR sensor and every 7 or 10 nm for the SAR sensor, 
depending on whether the target is moving or 
stationary. Uncertainties vary with the type of sensor 
and are proportional to the distance between the aircraft 
and the target. The performance confidence^ priori 
sensor characteristic probability) is shown in Table 1. 
Each sensor is provided with an array of data. The data 
set includes the {{range (nm)}, {10 measurement bits}, 
{sensor performance confidence value}}. Two sets of 
data (for a truck and tank) are analyzed for the different 
methodologies. 

Table 1. Sensor Characteristics 
Tl T2 T3 T4 

prior        0.10 0.10 0.10 0.10 
P(Hs|Tk)    0.50 0.50 0.50 0.25 

P(HM|Tk)    0.25 0.25 0.25 0.25 

P0HL|Tk)    0.25 0.25 0.25 0.70 

P(STr|Tk)    0.70 0.10 0.10 0.70 

Small Tank    P(SST|Tk)    0.10 0.70 0.10 0.10 

Large Tank    P(SLT|Tk)    0.10 0.10 0.70 0.10 

Other P(S0lTk)    01° 01° 01° 01° 

Short 

Medium 

Long 

Truck 

'5 *N 
0.10 0.50 
0.25 0.33 

0.70 0.33 

0.25 0.33 

0.10 0.25 

0.10 0.25 

0.10 0.25 

0.70 0.25 

3.0 Theoretical Background 

3.1 Bayesian Probability Analysis 

The joint, marginal, and conditional probabilities can 
be combined to form the mutually exclusive 
properties ofBay es' Rule: 

P(Bj|Ai) = - 
PfAjIBp.PCBj) 

(1) 

where P(Aj|Bj) is the likelihood function, and P(Bj) 
is the update from the a priori information. From 
Bayes' Rule, these axioms hold: 

P(*) = 0 (2) 

P(Äi) = l-P(Ai) (3) 
P(AiuBj) = P(Ai) + P(Bj)-P(AiBj) (4) 

P(A;) = P(Ai|Bj). P(Bj) + P(Ai|Bj). P(Bj) (5) 

To update the uncertainty based on the new evidence, 
Bayes' Rule is formulated as: 

P(B: C | A;) 
p(clAiBj) = -RB-|Ä-)- (6) 

If C is an element of a mutually exclusive and 
collectively exhaustive set of potential outcomes, and 
B is a set of data that has been collected, then: 

P(Ck|AiBj) = - 
P(BjCk|Aj) 

(7) 
SPtBjICkA^.PtqjAi) 

from which it can be rewritten as: 

SPCAjIBj.PCBj)) 

PCBjICkA^.PtqjAj) 
PCqjAiBj)-  N     J  S_L_     (8) 

SPtBjICkA^.PCqjAi) 
k=l     J 

where: 

1. P(Ck|A;) is an a priori (or prior) probability of Ck 

occurring, based on the state of information A;; 
2. p(Ck|Ai.Bj) is the a posteriori (or posterior) 

probability of Ck given data B: observed and prior 
state information A;; 

3. p(Bjlck,Ai) is the likelihood function, the 
likelihood of observing data B: conditioned on Ck 

and prior information state Ajj 

4. k?,p(BjlckAi),p(cklAi) is the preposterior 
probability of the observing the occurring data, 
given the prior state information, but conditioned 
on all possible outcomes Ck. 

It is possible to aggregate the probability statements 
from a lower level of abstraction to a higher one 
using the equations above, and the development can 
be derived for continuous as well as discrete events 
and scalar and vector and matrix notations. The 
likelihood expressions represent how confident 
(subject to change) a given probability statement is. 
The functions must be developed prior to collecting 
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the data by analysis. Note that the preposterior is 
simply the combination of all the likelihood functions 
and the prior distributions. 

3.2 Bayesian Analysis of the HRR Sensor 

The Bayesian method is based upon the basic 
probability axioms. The first step in the Bayesian 
approach is to determine, for each sensor, its 
likelihood function based upon target type. Thus, for 
the HRR sensor, the relationship is: 

PHRROTO = 2 PHRR (DISj) • P(Sjl Tk) (9) 
i=l 

where Sj is Sizej (S - short, M - medium, L - Long), 

D is Data, and T is the type. PHRR(
D

|SJ) must be 

determined from the data measured and the prior 
probabilities learned through experience as shown in 
Table 1. The probabilities are combined by the 
relationship: 

PH = 1 = PH(D|S) + PH(D|M) + PH(D|L) (10) 

The data given is in the form of binary values for 
detection form a single sensor, such as : {{ 1, 1, 1, 0, 
0,0,0,0,0,0}, {0.5}} which is in the from {{Pr(Detect 
Short), Pr(Detect Medium), Pr(Detect 
Long)},{Pr(Prior)}}. Taking into account data 
confidence and bit values, the following probabilities 
are updated: 

PH(D|L) = [l+Pr(Prior)]. PH(D|L). PH (11) 

So, PH(D|L) = [1+ 0.5] • (0.222) = 0.333 
and similarly, PH(D|L) = PH(D|M) = 0.222. 

The above analysis satisfies the condition that if the 
confidence of the data is zero, then the maximum 
uncertainty entropy is achieved, while if the 
confidence of the data is one, mutual information is 
obtained from measurements in time. For the above 
data, if the confidence is zero, each probability would 
then equal 0.222, which satisfies the entropy 
condition. 

3.3 Bayesian Analysis of the SAR Sensor 

Following the same procedure, the SAR sensor (over 
its set) gives: 

PSAR (Data|Tk) = PSAR(Data|Ti). P^))^) + ... + 
+ PSAR(Data|TN).P(TN)|Tk) (12) 

and the relationship below holds: 

„,m,™ ..     J   1     for / = k 
(13) 

So the probability of the type data can be simplified 
for the SAR sensor to be just equal to the measured 
data itself. The interpretation of the data for the SAR 
sensor is similar to that the HRR sensor. For 
example, if the SAR sensor returns the data string: 
{{0,0,0,1,1,0,0,0,0,0}},{0.7}} of the form {{P(TM0) 
}, P(Prior)}; then the probabilities would be 
determined as follows: 

lPSAR(Data|Ti) = PSAR=l 
i=l 

Ps(D|Tj)) = (l+Pr(Prior). Pr(Detect Tj).^- 

N 1 

1 = Z [( l+Pr(Prior). Pr(Detect TOW 

(14) 

(15) 

(16) 

So with the data given 

1 
= 2.(1+1.0.7)+ 8.(1+0.0.7) =3.4 

rSAR 
which gives PSAR = 0.294 

So with the data given PSAR(P|T(4 5\) = 0.5 and 

PSAR(D|T(I,2,3)) = 0.294. 

3.4 SAR/HRR Fusion 

The fusion of SAR and HRR information is a 
function of whether the target is moving or 
stationary; however fusion is necessary if a target is 
transitioning from stationary to moving. 
Additionally, a situation may result where a target is 
moving and stopping in which case there is fusion of 
information over time. The sensor data fusion is 
completed by the Bayesian update of information. 
Since the above information is assumed available, 
then independent likelihood functions can be 
integrated to get the joint likelihood function based 
upon target dynamics. The data fusion is performed 
by: 

PFused(Data|Tk) = PHRR(D|Tk). PSAR(D|Tk)    (17) 

but the information desired is the likelihood of target 
type, given the data instead of likelihood of data 
given the type. Using Bayes' Rule, the relationship 
is: 
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PFusedCW3^ 
PF(Data|Tk).PPrior(Tk)      (18) 

P(Data) 

where the normalizing factor is: 

P(Data) = Z PpCDatalT^.P^iJTk) (19) 

To determine the target SAR class and HRR target 
size, the axioms of probability are used, where the 
joint likelihood function and the prior information are 
used to obtain the data: 

Target Size: {Short, Medium, Long} 

P(Ni|D) = £ PF(Tk|D) • P(Ni|Tk) (20) 

P(S|Tk) + P(M|Tk) + P(L|Tk)=l (21) 

Target Class: {Truck, Small Tank, Large Tank, Other} 

P(Ci|D) = £ PF(Tk|D). P(C;|Tk) (22) 

P(Tr|Tk) + P(ST|Tk) + P(LT|Tk) + P(0|Tk) = 1 (23) 

A concern in using Bayes1 rule is the need for a prior 
distribution over the events of interest. In the real 
world, Bayes' rule necessitates a subjective 
interpretation of probability. By using the principle 
of indifference, one can arbitrarily set the 
probabilities equal for each outcome. The Bayesian 
approach to sensor integration recursively updates 
probability information at each measurement; 
however, measurement uncertainty is not captured 
with its implementation. 

4.0 Results 

Four test cases were run. The first case was the 
normal, control test for target 2 with one SAR update 
for every 7 seconds and a measured confidence. The 
second test was run with lower confidences. The 
third case was run for a different test target. The 
fourth case was run with SAR updates of 10 seconds. 

4.1 Normal Case 

For the normal test case, a short tank was run with a 
SAR update of every 7 seconds. 

Note from Figures 4-6 that the HRR is faster to 
determine the length of the target and that SAR is 
slower but has a higher probability. The final 
Bayesian probability is the a priori probabilities 
associated with the sensor; however the fused result 
reaches a higher confidence. 
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Figure 4. HRR Probability. 
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Figure 5. SAR Probability - Update 7 Seconds. 
Case 1: Fused HRR/SAR Target 

T2 - short, small tank 

T3 - medium, large tank 

T4-long, truck 

Tl-short, truck 
T5-other 

10     20 40     50     60      70      80 

Measurement No. 

90      100 

Figure 6. Fused HRR and SAR(7) Probability. 

4.2 Lower Confidence Updates 
For the second test case, the short tank was run with a 
SAR update of every 7 seconds and the probabilities 
were reduced by half. Note that the inherent 
normalization by the Bayes' rule results in the same 
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Cue 1: Fused HRR/SAR Target Case 1: Fused HRR/SAR Target 

T2 • short, small tank 

T3 - medium, large tank 

T4-long, truck 

Tl - short, truck 
TS- other 

20      30 40     50     60     70     80 

Measurement No. 

I 

0.9 

08 

0.7 

Pr(Ti) o.6 

0.5 

0.4 

0.3 

0.2 

0.1 

0 

./    a»j     T2 - short, small tank 

j                 I     . T3 - medium, large tank 

/        4£      j     . T4 - long, truck 

j{            A^\ '      ^ TI * snort>truck 

~sCs ~ - *• ^^     \c^"^      TS ' 0l,ler 

0       10     20     30     40     50     60     70     80     90     100 

Measurement No. 

Figure 7. SAR Probability - Lower Confidence. 

values. The same values are a function of the 
available probabilities. Hence, Bayes' rule has a 
limitation in that it does not capture incomplete 
sensor knowledge. 

4.3 Another Test Target 
For the third test case, the long truck was run with a 
SAR update of every 7 seconds with the measured 
probabilities. 

Case 2: HRR - Shrt(g) Med(r) Long(y) 

Pr(Ti) Long 
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Figure 8. HRR Probability. 
Case 2: SAR - Truck(b) SmlT(r) LargT(g) Other(y) 
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Figure 9. SAR Probability - Update 7 Seconds. 

Figure 10. Fused HRR and SAR Probability. 

In Figures 8-10, we see that the probability updates 
are similar to the first target case. 

4.4 SAR Update Every 10 Seconds 

For the fourth test case, the short tank was run with a 
SAR update of every 10 seconds with the measured 
probabilities. Note, HRR is given more confidence 
in the decision making since the target is moving. 
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Figure 11. HRR Probability. 
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Figure 12. SAR Probability - Update 10 Seconds. 
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5.0 Conclusions 

The paper addressed a situation in which a target was 
recognized and classified when it was transitioning 
from a stationary to a moving scenario. The research 
included methods to detect and classify a lone dim 
target with imperfect HRR and SAR sensors. In a 
series of simulation experiments, the fused result 
obtained a desirable solution. Using a Bayesian 
metric in a recursive approach classifies the target; 
however, it does not account for sensor confidences 
and thus is not robust. Further research will focus on 
a combination of predicting target dynamic 
techniques for classification problems and 
exploration in problems involving multiple stationary 
and moving targets, multiple sensors, and inclusion 
of state preferences and obscured image features. We 
will further explore real data and develop an 
algorithm to overcome the limitations of non robust 
classification through confidence measures. 
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Abstract 
We present an automatic target recognition (ATR) 
system which fuses information from synthetic 
aperture radar (SAR) and forward-looking infrared 
(FLIR) images in air-to-ground applications. The 
system is a hierarchical architecture, in that fusion of 
information takes place at detection, indexing and 
hypothesis levels. Combining complementary 
information from SAR and FLIR allows us to achieve 
higher detection and lower false alarm rates than are 
attainable with a comparable ATR system using FLIR 
images only. For hypothesis fusion, we use the 
Dempster-Shafer (D-S) belief function for its 
convenient representation of uncertainty and its ease in 
weighting information from multiple sources. 
Experimental results using real SAR and FLIR data 
are presented. 
Key Words: Automatic Target Recognition, ATR, 
Information Fusion, Sensor Fusion, Dempster-Shafer 

1.  Introduction 

Automatic Target Recognition systems relying on a 
single sensor can have serious performance limitations 
due to problems inherent in the specific sensor 
modality. For example, an ATR system using a 
forward-looking infrared sensor may have a good 
recognition capability at close range to the targets 
even in complete darkness. But the system's range 
capability and the area of coverage might be limited 
by the resolution of the FLIR sensor the system has. 
Also, FLIR sensors are susceptible to weather such as 
rain or snow, which lowers the thermal contrast of the 
scene. A synthetic aperture radar-based ATR system, 
on the other hand, has excellent long-range capability, 
and can operate in adverse weather conditions. 
However, SAR sensors have resolution-dependent 
aperture times, which restrict multiple map processing 
gain, and SAR target signatures are strongly 
dependent on viewing geometry. 

In this paper, we present an ATR system which 
combines information from both SAR and FLIR 
images for air-to-ground targeting applications. Our 
SAR-FLIR fusion ATR system ("fusion ATR system" 
for short) tries to combine the best of both sensor 
modalities to achieve a target recognition performance 
level neither sensor alone can reach.    Our system 

consists of a hierarchical fusion architecture with 
emphasis on fusion of information at detection, 
indexing and hypothesis levels. Detection level fusion 
associates target candidates detected from SAR with 
those detected from FLIR. This association reduces 
system false alarms significantly, thanks to the 
complementary responses to SAR and FLIR for 
natural clutter. Feature level fusion allows us to inject 
information extracted from one modality into the 
processing in the other modality restrict target 
candidate hypotheses and reduce the probability of 
object misclassification. The fusion of SAR and FLIR 
at the hypothesis (class) level is carried out using the 
Dempster-Shafer (D-S) belief function calculus. D-S 
belief function formalism has a more natural 
representation for the information at hand and also 
offers a good mechanism to weight different 
information sources. A system block diagram of our 
fusion ATR system is shown in Figure 1. 

The rest of the paper is organized as follows. We 
first introduce the D-S representation and the 
Dempster's Rule of Combination in Section 2. In 
Section 3, we discuss detection-level fusion, i.e., the 
matching of SAR and FLIR detections. We present 
hypothesis generation methods for SAR and FLIR in 
Sections 4 and 5, respectively. In Section 6, we 
discuss the issue of modeling and handling non-target 
(clutter) objects. Hypothesis fusion method is 
presented in Section 7. Finally, we give experimental 
results in Section 8, and conclude this paper with a 
summary in Section 9. 

2.  Information Fusion Using Dempster- 
Shafer Belief Function Theory 

The Dempster-Shafer belief function theory [1] is one 
of the calculi used by researchers for uncertainty 
reasoning [2] and information fusion [3] [4]. The D-S 
theory can be considered as an extension of the 
traditional probability theory in that it assigns mass to 
sets of discrete outcomes of a variable, rather than 
only to singleton outcomes as in the case of 
probability. In D-S theory, the domain of a variable D 
is called the "frame of discernment," denoted as WD, 
and is represented by a set of finite and exclusive 
outcomes that the variable can take: 
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Figure 1. The Fusion ATR system block diagram. 

Wjy={db d2>..., dL) (2.1) 

A belief function representation of certain 
knowledge about D is often represented as a basic 
probability assignment, or BPA, over the frame of 
discernment. A BPA on WD is a mapping from the 
subsets of WD to [0, 1]: 

m:2w° -»[0.0,1.0] 

with the following constraints: 
£m(A) = 1.0,  m(0) = O.O 

AcWD 

(2.2) 

(2.3) 

where 2W" is the power-set (the set of all subsets) of 
WD. The definition of the BPA requires that m(A) 
represent the evidence of, or support for, the subset A 
and only A, not each individual elements or subsets of 
A. This is a way of representing ignorance about how 
the mass is distributed among the elements of the 
subset. Therefore information can be appropriately 
represented at either fine-grain (element by element) 
level, or at a coarser (subset) level, offering different 
level of ignorance and commitment for each piece of 
information. At one extreme, if all mass is allocated 
to singletons, the BPA becomes a familiar probability 
distribution, and we call the result a Bayesian BPA. 
On the other hand, when all the mass is assigned to a 
single subset: 

m(A) = 1.0,    AcWD (2.4) 
This is called a logical BPA. When the subset A in the 
above equals to the whole frame WD, the BPA is called 
a vacuous BPA: 

m(WD)=l.O (2.5) 

It is "vacuous" since it does not tell us anything about 
the variable D. It represents the state of complete 
ignorance. 

Two alternative representations of the BPA function 
are the belief function Bel() and the plausibility 
function Pl(), which have the following relationships 
with the corresponding BPA: 

Bel(A)=£m(ß).     AcWD 
BszA 

P1(A) =   £m(B),      AQWD 

BnA*0 

(2.6) 

(2.7) 

While a BPA represents each individual pieces of 
support for the subsets of the frame of discernment, 
Bel(A) represents the sum of evidence in support of A 
and evidence which implies A, and P1(A) represents all 
evidence that may potentially support A. Any 
representation among the three of BPA, Bel() and Pl() 
are entirely interchangeable. Hence they are often 
collectively referred to as the "belief function" 
representation. 

To use D-S belief function to combine or fuse 
information from multiple sources, we use the so- 
called "Dempster's Rule of Combination." Suppose 
we have two BPA's, m; and m2, on the same frame 
WD, which represent distinct pieces of information. 
Then the combined belief function m3 can be written 
as 

m-s=m1@m2 (2.7) 

where "©" is the operator for the combination using 
Dempster's rule, and m3 is defined by 

WI3U) = V  S»i(fi)m2(C).  A^W
D (2-8) 

K BnC=A 

where Kisa normalization constant 
K = l-   ^mi(B)m2(C) (2.9) 

Br\C=0 

When a piece of information comes from an 
unreliable source, we can use "discounting" [1] to 
discount its BPA before combining it with other 
BPA's. The discounting operation is carried out as 
follows: 

m\A) = 
(l-a)m(A) A±Wn 

m(WD) + a(l-m(WD))   A=WD 

(2.10) 

where 0 < a < 1 is a discount factor. The bigger the a 
is, the more the BPA m is discounted. If a is 1.0, then 
the resulting BPA m' becomes a vacuous BPA. 
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3.  Detection Level Fusion 
Our current system assumes that separate SAR and 
FLIR subsystems work on their own to detect potential 
target candidates, called "areas of interest" or AOI for 
short. In order for the fusion ATR system to combine 
information about the AOI's, each AOI from the FLIR 
needs to be matched with an AOI from the SAR, and 
vice versa. That is, we need to find some mapping R: 

if p and q are of the same object 
R(p) = 

0      if there is no correspondence 
(3.1) 

where pe{pi} and qe{qj}, {pi} and {qj}, are the sets 
of AOI's in the FLIR and the SAR images, 
respectively. A secondary, but very important, goal of 
the matching is to remove clutter AOI's from the 
candidate list to reduce false alarms. 

In general the matching problem can be very 
complicated due to the non-linear nature of the 
imaging transforms involved. In our case, we can 
assume that the sensor parameters, including the 
location, sensor viewing geometry and the (intrinsic) 
sensor model, are known. If the sensor parameters are 
accurate, we can easily achieve the mapping in 
Eq.(3.1) using a geometric transformation TR derived 
from the sensor parameters: 

qj=^(Pilqj=/?(Pi)) (3.2) 
In reality, there are always noise and errors associated 
with the sensor parameters. Therefore Eq.(3.2) is only 
correct in theory. 

Our approach to the problem consists of two steps, an 
initial match step and a refinement step. In the initial 
match step, we first use the sensor parameters to 
construct an approximation of the transformation TR. 
Let us call it T'R. We then project the FLIR AOI's 
into the SAR image coordinates 

qi'= T'R(pd (3.3) 
Now let 

C={(qk, q'k) I qk= R(pd, qk'= T'R(p{) } (3.4) 

be the set of pairs of SAR AOI's and the 
corresponding transformed FLIR AOI's for all the 
common objects detected in SAR and FLIR. Due to 
the noise and errors in the sensor parameters, qk and 
q'k usually do not align exactly. That is, 

dk = qk-q'k*0 (3.5) 

These residual errors are solved in the match 
refinement step. We use the fact that under certain 
assumptions, the difference in the locations between 
qk and q'k can be approximated by a global 
translation: 

d1= d2=...=dk=d fc=l,...,IICII (3.6) 

where IICII is the cardinality of the set C. Therefore 
our goal is to find the global translation d.  We have 

developed a method based on a generalized Hough 
transform [9] to solve this 2-D matching problem 
involving only translation. Our method solves for d in 
Eq.(3.6), and also updates the estimated 
transformation T'R. Due to the page limit of this 
paper, the details of this technique has been left out for 
a separate presentation elsewhere. 

The result from the matching process is the set C 
(see Eq.(3.4)) which establishes the correspondence 
among the SAR AOI's and the FLIR AOI's. Note that 
C only represents the common set of objects detected 
in both SAR and FLIR. Since the target detection 
process in either SAR or FLIR could miss certain 
targets, we may not have all the targets we want in C. 
There are two ways we can reduce the risk of missing 
a target. One is to keep the remaining AOI's from 
both SAR and FLIR, knowing that we will not be able 
to fuse any information from the other modality for 
them, and the recognition result will be as good as 
with a single sensor. Another way, which is what we 
are using in this paper, is to lower the detection 
thresholds in both the SAR and FLIR processing 
modules to ensure that all targets are detected. This 
will inevitably increase the number objects detected as 
AOI's, which act as "noise" and may cause problems 
for the matching process. Fortunately, our matching 
method is very robust to this high clutter-to-target 
ratio situation. By keeping only the common object 
set in C, we can eliminate most of the clutter AOI's 
that do not appear in the other sensor's image. The 
primary benefit of this is to be able to achieve both a 
very low miss rate (due to the lowed detection 
thresholds) and a very low false alarm rate at the same 
time. A secondary benefit is the reduced system load 
and therefore increased throughput due to the reduced 
number of AOI's the system need to process from that 
point on (especially for FLIR). 

4.  SAR Hypothesis Generation 
SAR target candidate detection is carried out using a 
standard constant false alarm rate (CFAR) detector. 
Once the CFAR processing is carried out, the points in 
the SAR image exceeding a set threshold are clustered 
and screened to rule out unlikely targets (e.g., either 
too small or too large). The image point clusters form 
the SAR AOI's, and their locations are computed from 
the center of gravity of the points in each cluster. 
Other properties of the clusters that may bear clues 
about the underlying objects' identities can be 
computed. These include target length, width and 
orientation, among others. We call these properties 
"target features." The list of SAR AOI's is used for 
matching with the FLIR AOI's as described in Section 
3. The result is a reduced list of matched AOI's. We 

1230 



then can use the features of each SAR AOI from this 
reduced list to generate target identity hypotheses. 

But before we can generate SAR hypotheses, the 
system needs to know the relation between the objects 
we are interested in (the targets) and the features. Let 
F={fi, f2,..-, fu) be the set of features, X={xh x2,...jK) 
be the set of values a feature/eF can take, and 0={th 

t2,...,tN) be the set of targets. In a traditional statistical 
pattern recognition system, target features are 
collected from a large collection of sample target 
images, and the conditional probability distributions 
for the features, P(ft I tj), are estimated. (We have 
assumed that the feature values of a given target type 
are mutually independent). At run-time, a set of 
feature values, one for each feature, of an AOI is 
computed and the identity t of the AOI can be 
determined according to the maximum a posteriori 
(MAP) principle: 

t=t. max 
k nw*> (4.1) 

In Dempster-Shafer, there is an analogous way of 
computing posterior belief, which is called 
"conditional embedding" [5] or "generalized Bayesian 
Theorem" [6]. The conditional embedding scheme 
encodes the conditional probability distribution P(fMj) 
for a given tj into a BPA my on the joint frame of the 
targets O and the feature measurements X. This belief 
function has the desirable properties that when 
marginalized to the frame of the feature values, it 
yields vacuous belief, and when conditioned on a 
feature observation fj=x, it results in the conditional 
probability P(fj=x\tj) itself. Combining all the /n,/s for 
all target types f/s using Dempster's Rule of 
Combination gives us a BPA for feature/, 

mt=mil@ma®...@miN (4.2) 

When given the measurement of a feature, fj=x, we 
can combine the BPA representing this feature 
measurement, with m, in Eq.( 4.2), and marginalize the 
result to the target frame O, which gives us the 
posterior belief given the feature measurement. It can 
be shown that the resulting posterior belief, denoted as 
mS!, can be expressed in a closed formula [7]. We 
can then combine all the posterior beliefs from all 
features with Dempster's rule: 

ms=msl@mS2< (4.3) ■®mSM=®mSi 

This represents the combined hypothesis from the 
SAR for a single AOL 

5.  FLIR Processing and FLIR Hypothesis 
Generation 

5. /   FLIR Detection and Model Indexing 

Like most model-based ATR system using FLIR 
images as input, ours works as follows. A target 
candidate detection process detects "hot spots" in a 
FLIR image where a cluster of image pixels contains 
higher (or lower) values than the surrounding 
background due to IR emission from the potential 
target. These "hot spots" can be further filtered to 
screen out clutter objects using the target size 
anticipated to be seen in the FLIR images. This results 
in a list of AOFs from the FLIR module, which is 
used for matching with the SAR AOFs as described in 
Section 3. The SAR-FLIR matching module returns a 
reduced list of AOFs to the FLIR module for further 
processing, carrying with each FLIR AOI the 
corresponding SAR AOI and its features. 

The next step in the FLIR module is model 
matching. The system stores a model database 
consisting of a set of "templates" for each of the target 
types in the target set. A matching process evaluates 
the similarity of an AOI to each of the templates in the 
model database. A similarity measure is computed for 
each template thus visited. At the end, the AOI is 
given a score for each target type based on the best- 
scored template for that target type. 

Obviously, this exhaustive search strategy for the 
best match is not very appealing since the model 
database can get quite large. The model templates for 
each target need to cover the entire view of the target 
at full 360-degree aspect and at different elevation 
angles. In addition, the models also have to cover 
targets as seen from different distance. To reduce the 
computation involved in the search, we use the 
information from the corresponding SAR AOI to trim 
the model database and reduce the number of model 
templates that need to be compared. We call this 
model "indexing." For example, each SAR AOI has 
an estimated orientation and size of the underlying 
object. These can be used to index a set of model 
templates that fit these features. With indexing we can 
usually reduce the search space by a factor of five 
without sacrificing the system performance. 

5.2  FLIR Hypothesis Generation 

Hypothesis generation in FLIR converts the output 
from the model-based ATR system into BPA's for 
hypothesis fusion. As mentioned in the last section, 
the FLIR model matching process gives scores to each 
AOI based on the similarity measures of the AOI to 
every target type in the model database. Let G={glt 

g2>—>gN] be the set of scores an AOI receives, where 
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0<g, <gmax is the score for target type tb i=l N, 

and gmax is a fixed positive number. In our case, the 
bigger the score g, is, the better the match of the FLIR 
AOI to the target. Now we need to convert the set of 
scores G into a BPA representation so that we can 
combine it with the BPA's representing the SAR 
hypotheses for the corresponding SAR AOI. 

There are many ways we can perform the above- 
mentioned conversion. In a simple-minded treatment, 
we can normalize the scores by the sum of the scores 
so they add up to 1.0, and use the result as a Bayesian 
BPA over the target type frame. The disadvantage of 
this approach is that there is no fixed scale in the 
resulting number (since the normalization factor is 
different for each AOI). An immediate consequence 
of this is that one will not be able to compare the 
converted scores of two FLIR AOI's for the same 
target type to see whether either AOI is more similar 
to the said target type. It can also result in false 
confidence in the result since if all g,'s are small (i.e., 
the AOI matches poorly to the models), the 
normalized scores can become large. 

Our current method involves in three steps, 
equalization, normalization and encoding. The idea 
behind equalization is that we know the similarity 
score g, has an uneven distribution (more densely 
distributed towards the lower end). An equalization 
process can bring the scores into a uniform 
distribution in the range [0, 1], which linearizes the 
scale of the similarity measure, and makes comparison 
with a variable threshold easier, if desired. Since we 
have limited training image for FLIR, we use an 
approximation to the equalization by a function as 
follows: 

*,'=!—r-r.g^G (5.1) 

The resulting g', has a range of [0, 1]. In the second 
step, we use a fixed normalization (by the maximum 
of the total score, AO because we need to preserve the 
scale across all AOI's. The disadvantage is that the 
mass (and therefore the belief) for any single target 
has a limit of \IN. Finally we can express the FLIR 
hypothesis in BPA form as: 

Target Feature Distributions 

m,(A)= N 
A = {ti},tieO 

(5.2) 

:tHi 

where N is the total number of targets in the target 
frame. In other word, we first re-normalize the 
equalized score, and then assign the result as the mass 
for each target type. The remainder of the mass goes 
to the full target frame. This corresponds to the 
system's "ignorance" about the AOI based on the 
FLIR. 

Clutter Feature Distribution 

Figure 2. Modeling clutter feature distribution 
as the complement of the target feature 
distributions to help target discrimination 

6.  Modeling Clutters 

Clutters are non-target objects detected in the SAR or 
FLIR images. Clutter objects are not explicitly 
modeled in our system so far. Part of the difficulties 
in modeling clutter objects is that there can be too 
many types of clutter, caused by both man-made and 
natural objects. Therefore it is not feasible to have a 
representative set of images of different types of 
clutter for training. In our system, these issues are 
dealt with separately in SAR and FLIR. 

For SAR, since we can screen the AOI's based on 
the size, the type of clutter that the detection module 
will pick up in SAR is limited. We can use a uniform 
feature distribution to model the clutter objects, as is 
done in the traditional Bayesian approach. An 
alternative method is to model the clutter features for 
better discrimination than recognition in that it will 
provide target or non-target information rather than 
which target type. This is because the resolution of 
the SAR image in our system is not high enough for 
reliable target identification. The SAR information is 
used mostly to screen out non-target clutters. We can 
achieve this by using a distribution that contains 0 or a 
very small value in the range of all target feature 
distributions, and high values otherwise, as shown in 
Figure 2. This way, we can include "clutter" as 
another type of target (e.g., tN) in our database for 
target hypothesis generation as described in Section 4. 

For FLIR, since there is no "model" for clutter 
objects, we cannot perform model-based matching as 
we do with the known targets. Therefore we do not 
have "clutter" scores from the model-based ATR 
system. However, we still maintain a clutter type in 
the target frame O in our system. If tN is assigned to 
the clutter type as in SAR, then the FLIR hypothesis 
BPA shown in Eq.(5.2) needs to be modified as 
follows: 
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mF(A) = 
i-i- A = {t,};t,eO,i*N 
N 

l-jtg'i   A = 0 = {tl,t2,-,tN] 
(6.1) 

In other words, we do not attribute any positive mass 
toward clutter objects, which is reasonable since we do 
not have any measured evidence about it in our 
system. 

7.  Hypothesis Fusion 

We have discussed how to generate SAR hypotheses 
from SAR feature distributions and FLIR hypotheses 
from FLIR model matching scores in Sections 4, 5, 
and 6. Now we are ready to perform the next step of 
fusion in the ATR system, the hypothesis fusion. In 
this section, we discuss how hypothesis fusion is done, 
special consideration and the treatment of unbalanced 
information contents between SAR and FLIR, and 
how we make decisions for target identification based 
on Dempster-Shafer belief functions. 

7.1   Combining Hypothesis 

Due to the way the SAR images are collected, we do 
not get updated SAR images as frequently as we do 
with the FLIR images. In fact we have only one SAR 
image for a sequence of FLIR images. This is often 
the case in a tactical air-to-ground ATR scenario, 
where a SAR image is acquired by the host aircraft or 
a third-party, and the FLIR is acquired by the host 
aircraft when it is near the target area. This means all 
information we have about the targets through the 
SAR comes from the same SAR image, while the 
information from the FLIR gets updated frequently (up 
to the FLIR image rate). 

Since we only have one SAR image, the SAR 
detection and hypothesis generation need to be carried 
out only once. As each FLIR image comes in, we 
need to perform SAR-FLIR AOI matching for each 
FLIR image with the same SAR image, resulting in 
possibly a different set of matched AOFs for every 
FLIR frame. For hypothesis fusion, we combine the 
SAR hypothesis and the FLIR hypothesis for each 
matched AOI using Dempster's Rule of Combination, 
resulting in a separate set of fused hypotheses for each 
FLIR image. An alternative approach would be to 
track the FLIR detections across the sequence of 
images and use some integrated measure (based on the 
model matching scores) as the basis of FLIR 
hypotheses. This will potentially give better and more 
consistent results than if we consider each FLIR image 
separately. This is currently not done in this paper. 

7.2 Hypothesis Discounting 

Another issue is related to the relative weights of 
SAR and FLIR hypotheses. We have found that if we 
proceed hypothesis fusion as outline above, we are 
putting too much weight on the SAR hypotheses. This 
is because the low-resolution SAR images we use are 
not very informative as mentioned earlier. As a result, 
any error in the SAR hypotheses will show up in the 
fused results for the entire FLIR sequence. 

Discounting the SAR hypotheses solves this 
problem. Referring to Section 4, »15, is the posterior 
belief given feature/'s value. According to Eq.(2.10), 
the discounted BPA is 

m',AA) = 
(l-a)mSi(A), AcO 

mSi(P)+a{\-mSi(p)\   A = 0 
(7.1) 

where a is a discounting factor between 0 and 1. In 
our tests, a is set to 0.8 through experiment. As a 
result, Eq.(4.3) needs to be modified accordingly: 

ms =m'sl®m'S2®
m ■®m' SM-®™'Si 

(7.2) 

7.3  Making Decisions for Target Identification 

Using the results from Equations (6.1) and (7.2), the 
combined hypothesis for each matched AOI can be 
written as 

mfused=ms®mF (7.3) 

In order to make final decisions on the AOFs identity, 
we must have a scalar measure, such as a probability 
distribution, that represents the confidence level that 
an AOI belongs to certain target type. Since the 
Dempster-Shafer belief function (a BPA) does not 
support decision making directly, the Bel(), or Pl() 
values on the singletons have been used in the past for 
this purpose. We have used a method introduce by 
Smets [8], which converts the combined mjuSed into a 

so-called "pignistic probability" distribution over the 
target frame O as follows: 

PfiiseÄh)- X" 
«,e A 

m fused (A) 

H 
(,eO (7.4) 

The pignistic probability is optimal for decision 
making and it follows the so-called "generalized 
insufficient reason principle."[8] Once we obtain the 
pignistic probability, we can assign an AOI, say p, 
with target type r, which has the largest pignistic 
probability: 

TargetID(p) = 11 P>je^f)= max (Pj^Jf,)) (7.5) 
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Figure 3. Sample SAR (a) and 

8.  Experimental Results 

We have tested our fusion ATR system on a number 
of test cases with real data, each of which includes a 
SAR image and a sequence of FLIR images. In these 
test cases, the SAR and the FLIR images contain three 
different targets, which, together with the "clutter" 
type, constitute the target frame O for the tests. Figure 
3 shows a SAR and a FLIR image used in the tests. 
For each FLIR frame, we evaluate the pignistic 
probabilities (Eq. (7.4)) of the matched AOI's. For 
each matched AOI, the target type with the maximum 
pignistic probability is declared as the identity of the 
AOI (Eq.(7.5)). The result is then compared with the 
known truth. 

To qualify the system's performance, we plotted the 
system ROC (receiver operating curve) using a scoring 
method called "top-n" as described below. From the 
matched AOI list we remove those AOI's that have 
been declared as clutter. Then we pick n AOI's with 
the largest (hence the name "top-n") pignistic 
probabilities as the potential targets and reject the rest. 
This gives us the performance shown in Figure 4. 

Figure 4 shows the system performance for all test 
cases, with a total of 87 FLIR images. Figure 4(a) 
shows the system's recognition rates and (b) shows the 
detection rates. Three ROC curves showing the rates 
as functions of average false alarms per FLIR frame 
are plotted in each figure. The data points on the 
curves correspond to (from left to right) the n being set 
to 3, 4, 5 and so on in the top-n method. The first of 
these three curves (labeled as "HypothesisFusion") in 
each figure shows the performance of the full fusion 
ATR system. As a comparison, the third curve in each 
figure shows the system's performance without using 
any information from the SAR. This curve is labeled 
as "FLIR-only (50 AOIs)" because in each FLIR 
image, up to 50 most promising FLIR detections are 
kept and  passed  to  the  model-based  FLIR  ATR 

FLIR (b) images used in the tests 

module. Since there are many more clutter objects 
than there are targets in the AOI's, the false alarm 
rates are very high as expected. This, however, is not 
a fair comparison between the fusion ATR and the 
FLIR-only ATR system, since if only FLIR images are 
used, we would not have retained 50 FLIR AOI's in 
each FLIR image. The reason we keep 50 of them for 
fusion ATR system is that our fusion system is able to 
reject clutters and reduce false alarms through 
detection-level fusion even if we use many more FLIR 
detections. This has the potential of increasing 
detection rates as has been shown in the performance 
curves. A more realistic operating level for a FLIR- 
only system would be to take only a few most 
promising FLIR detections for the model-matching 
process. On the one hand this reduces the system false 
alarm rate, but on the other hand it also increases the 
possibility of missing the real targets, causing the 
system detection rate to drop. The second curves 
(labeled as "FLIR-Only (5 AOIs)") in Figure 4(a) and 
(b) show what happens when we only use 5 AOI's for 
each FLIR frame in FLIR-only mode. Comparing this 
with the results for hypothesis fusion (the top curves), 
we can see the fusion ATR system is markedly 
superior to the comparable FLIR-only ATR system in 
both detection and recognition performance. 

9.   Conclusion 

We have presented a fusion ATR system combining 
detection-level, indexing level and hypothesis-level 
fusion in a hierarchical architecture. Our experiments 
with real data show an increase of more than 15% in 
recognition and about 10% in detection rates 
compared with a FLIR-only ATR system at the same 
operating point in terms of false alarms per frame. 
The SAR images used in our experiments do not 
provide sufficient information for target identification 
purpose due to their relatively low resolution. Yet, our 
fusion ATR system is able to take advantage the 
complementary   property   of  the   SAR   and   FLIR 
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Figure 4. Fusion ATR system performance in comparison with that of a FLIR-only system 

modalities and use information from both modalities 
to achieve a performance level neither SAR nor FLIR 
alone can achieve. 

We use Dempster-Shafer belief function theory for 
the hypothesis fusion in our system. The belief 
function representation proved to be very useful in 
representing the type of information encountered in a 
typical ATR system. Statistical information (such as 
that for SAR features) is encoded into belief function 
through conditional embedding based on the 
Generalized Bayesian Theorem. FLIR model- 
matching scores are encoded into after equalization 
and fixed re-normalization. Furthermore, the D-S 
belief function provides a natural and powerful 
mechanism to weight multiple information sources 
before combining them through discounting, taking 
into account of the reliability and usefulness of the 
different information sources. 
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Abstract-A bird's view of modern command and control 
(C2) systems is presented. The concept, functions and 
structures of the C systems are discussed, with an attempt to 
clarify some confusions existing in the community. Special 
emphases are on two fundamental subsystems, data fusion 
and target tracking, and their interrelationships with the 
modern C2 systems. 
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1. Introduction 

For a modern command and control (C2) system, its 
two basic responsibilities are combat command (or 
auxiliary command decision-making, or decision sup- 
port) and fire control (or weapon control). The quality 
of command and control, however, relies directly on 
data fusion and target tracking, two information refin- 
eries and/or converters in a C2 system. Fusion, track- 
ing, command and control are so important and so 
closely interrelated that they constitute the backbone 
of the whole combat system. 

Of these four, data fusion is, relatively speaking, a 
newcomer, but it is one of the systems under most 
active development over the past few years. Although 
older, target tracking also has made great advances in 
resent years. In fact, it is the combination of fusion 
and tracking that makes most of these advances possi- 
ble. Fusion and tracking are so tightly coupled that it 
is sometimes difficult to separate them. The juncture 
of fusion and tracking has formed a very active re- 
search arena and their development enforces each 
other. This combination has also strengthened the 
capability of modern C2 systems remarkably. 

Apart from fusion and tracking, advances in many 
other aspects, such as computer, network and infor- 
mation processing technologies, have also contributed 
to the fast development of C2 systems. As a result, C2 

systems have greatly changed over the years.  These 

changes are reflected in almost every facet of a C 
system, including its basic features such as the con- 
cept, functions and structures. These developments 
and changes, however, have not been systematically 
examined and studied. Confusion and chaos have 
emerged in many aspects. They have hindered aca- 
demic exchanges in these areas. In the end they will 
in turn impede the development of C2 systems per se. 

This paper studies the aforementioned changes and 
their impact on the development of C2 systems. Spe- 
cial emphases will be on those changes brought about 
by the advances in data fusion and target tracking. 

2. C2 System—Its Concept 

In recent years, some technical terms of military sys- 
tems are so widely abused that they often cause confu- 
sion and chaos, and may even mislead people. Great 
diversity and the fast development pace of military 
systems should take more blame for this chaos than 
those less careful users. For the sake of the system 
development itself as well as for convenience of aca- 
demic exchange, clarification should be in order now. 

It is impossible to describe a C2 system without men- 
tioning combat systems first because they are so 
closely connected. For a modem military system with 
the responsibility of a combat, three basic components 
are necessary. First, it must have necessary sensors 
and other intelligence channels that can provide in- 
formation about the enemy force, own force and the 
combat environment. Secondly, it should have neces- 
sary weapons, both hard and soft, to attack or anti- 
attack the enemy force. Thirdly, for the purpose of 
converting the sensor information into weapon 
launching control information, a processing unit is 
also necessary. Roughly, such a military system can 
be called a combat system. Some may argue that cor- 
responding military personnel to operate and com- 
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mand the military system should also be part of the 
combat system. But more often by a combat system 
we mean the "machine" part. 

Modern combat systems are evolved from older fire 
control systems. Before and during World War II, the 
concept of a combat system had not formed yet. At 
that time, there was no direct information channel 
between sensors and weapons. Weapon firing was 
controlled by a system that later was called fire control 
system or weapon control system. Fire control sys- 
tems at that time were very simple. They usually can 
control only one piece of weapon to attack one enemy 
target. The computational devices in these systems 
were mechanical, or mechanical and electrical, and 
therefore the computational ability was quite limited. 
Information from sensors was orally reported and then 
entered manually into the computational device of the 
fire control system. 

Great changes took place only after computers were 
introduced into military systems. On one hand, com- 
puters facilitated the processing and conversion of 
sensor information for the fire control system. Conse- 
quently, real combat systems began to emerge. On the 
other hand, with the ever-growing power of comput- 
ers, more and more functions had become necessary 
functions of the system. For example, sensor infor- 
mation processing, tactical situation evaluation and 
display, threat evaluation, attack or evade decision- 
making are some of the functions that were impossible 
in those early systems. Now they are very typical 
functions of combat command or auxiliary command 
decision-making. Of course, fire control functions 
were maintained and enforced in these newer systems. 
Therefore, for the central processing part between sen- 
sors and weapons, its responsibilities lie in roughly 
two aspects: combat command and fire control. That 
is why it is widely called command and control (C2) 
system. According to this definition, a combat system 
consists of three parts: sensors, C2 system and weap- 
ons. So a C2 system is a subsystem of a combat sys- 
tem and obviously it is the core subsystem. 

However, in reality there exist many other names for 
C2 systems. Some of them are even quite popular. C2I 
(command, control and intelligence) system, C3 

(command, control and communication) system, C3I 
system, C4 (with the last C for computers) system, 
and C4I system are some of them. These names may 
be defined clearly in military encyclopaedias, though 
different countries may have different definitions. Dif- 
ferent names for the C2 systems are used with an em- 
phasis on certain part of the systems. For example, the 
names with an "I" usually emphasize the importance 
of information or intelligence gathering and process- 

ing. C3 emphasizes the importance of communica- 
tions and C4 emphasizes computers. Other less popu- 
lar names - e.g., tactical data processing and fire con- 
trol system, combat information and weapon control 
system - can also be found occasionally. There are 
various reasons for this chaos. System diversity is one 
reason. Different countries and different system de- 
velopers have their own naming systems. Technology 
progress is another reason. System developers keep 
on upgrading their products, and they often tend to 
emphasize their innovation by changing their names. 
This may be justifiable in some senses but so many 
names for a basically the same system is really an- 
noying. 

Nowadays, the combat system has been highly devel- 
oped in almost every aspect. The number of sensors 
and weapons has greatly increased. The computers 
and the network are much more powerful and effec- 
tive. The man-machine-interface (MMI) is friendlier. 
They can handle more and more targets and weapons 
simultaneously. New technologies such as data fusion 
and advanced target tracking techniques have great 
impact on almost every aspect of the entire system. 
The basic functions of the command and control sys- 
tem, however, remain virtually unchanged. They are 
still combat command and fire control. So the name 
of command and control system is not out of date yet. 

3. C2 System—Its Functions 
It is important in many ways to understand the func- 
tions of the C2 system. One of the reasons resulting in 
the naming chaos is the difference in system function 
designation. To define the functions exactly, however, 
is not so easy. The difficulty is that the functions of 
C2 systems keep changing, and they may be quite dif- 
ferent for different systems. Nevertheless, the basic 
lines can be drawn. 

As stated before, the fundamental functions of a C2 

system can be roughly divided into two major parts: 
combat command and fire (or weapon) control. Com- 
bat command includes functions involving command- 
ing information processing and display. On the other 
hand, fire control includes functions dealing with 
weapon launching information processing and display. 

Combat command provides necessary information and 
means to assist associated commanders in decision- 
making. That is why it is sometimes called auxiliary 
command decision-making or decision support. Listed 
below are some basic command functions of a typical 
C2 system. 
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1) Information gathering and processing: collect all 
possible information and convert it into a battle 
field situation picture as complete, accurate, and 
reliable as possible within system constraints. 

2) Threat evaluation: evaluate the potential threat of 
every enemy target to own forces according to the 
situation picture and other necessary information 
like data base information. 

3) Attack feasibility analysis: evaluate possible out- 
comes of attacking each target. 

4) Choice making: attack or defense: the results of 
threat evaluation and attack feasibility analysis, 
among many other considerations, are used to 
make this choice. 

5) Target indication and fire channel creation and 
management: once the decision to attack or de- 
fense is made, select targets to be attacked or 
evaded from; notify other related systems, e.g., 
the fire control channels; and choose weapons and 
corresponding launching devices. 

6) Attack aid: if attack is chosen, provide necessary 
decision-making information for attack needed by 
the commander and the operators. 

7) Defense aid: if defense is chosen, provide neces- 
sary decision-making information for defense. 

Basically, fire control subsystem accepts instructions 
and necessary information from the command sub- 
system to fulfill the weapon launching and other re- 
lated tasks. The following are some important fire 
control functions of a C2 system. 

1) Command and target acceptance: accept the tar- 
get indication from the combat command subsys- 
tem and the related measurement sequences for 
each target. 

2) Target motion analysis (TMA) or target tracking: 
estimate the kinematic states or parameters of the 
targets, such as position, velocity, heading and ac- 
celeration, with a significantly better accuracy 
than what is done in the command system. 

3) Setting firing parameters: with target state esti- 
mates and property parameters of the selected 
weapon, it is possible to calculate the firing pa- 
rameters like lead angle, turn angle, firing order 
and timing, etc. These parameters then should be 
preset into related weapons and launching de- 
vices. 

4) Weapon launching control: the system can con- 
trol the weapon launching procedure according to 
the preset time chain. 

5) Weapon guidance and control: sometimes multi- 
ple firing waves are needed. The system should 
evaluate former waves to adjust upcoming waves. 
In other cases, system can control the weapons 
even after their launch.    Wired torpedoes and 

wired anti-tank rockets are such examples. In 
these cases, the system should finish the guidance 
and control of the weapons at their targets. 

It can be seen that the basic functions of both com- 
mand and control remain almost unchanged. The 
contents of each function, however, have been re- 
markably enriched or strengthened. For example, in- 
formation gathering and processing in early days may 
simply mean getting the measurement information 
from a single sensor and passing it over to the target 
tracking unit. It is definitely not comparable to the 
modern multisensor system with powerful information 
fusion abilities. Similarly for TMA - those primitive 
approaches with deterministic parameters are in no 
way comparable to advanced filters now widely em- 
ployed in modern C2 systems. 

Apart from these basic functions, many systems have 
their own special capabilities. For example, naviga- 
tion is so important to strategic ballistic missile sub- 
marines (SSBN) that accurate navigation ability is 
considered one of the necessary functions of their C2 

systems. This is not necessary the case for surface 
warships and attack submarines, although navigation 
is also very important for them. In addition, some 
other more technological than military functions are 
also very important. For example, modern systems are 
usually featured with user friendly interfaces in order 
to be more flexible and effective. 

The automation of control functions is much earlier 
than that of command functions. Before their automa- 
tion, command functions are human responsibilities - 
the commander and his subordinators made all as- 
sessments and decisions with the aid of primitive tools 
e.g., sand table and plot board. 

4. C2 System—Its Structures 

The structure of C2 systems is another complicated 
topic, primarily due to the great diversity of the sys- 
tems. Roughly, three basic structures have been 
widely adopted. They are centralized, separated and 
distributed structures, respectively. The structure 
evolves naturally out of the advances in technology. 

Computers were very expensive and clumsy when 
they were in their babyhood. One computer for one 
system was a natural choice. With all command and 
control functions centralized on such a primitive com- 
puter, they can not be expected to be powerful. That is 
why centralized C2 systems usually can handle only 
single-target single-weapon situations. When better 
and less expensive computers became available, what 
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made the elimination of such systems inevitable are 
the more fatal defects, such as poor survivability, in- 
convenience of maintenance and lack of flexibility for 
system extension or redesign. 

Separated C2 systems are the consequence of less ex- 
pensive yet more reliable computers, as well as the 
great advance in computer communication techniques. 
A few computers are used in a separated C2 system. A 
typical example is a two-computer system, with one 
for command and the other for control. One notable 
feature of such separated systems is the overlapping in 
the responsibilities of the computers. The command 
computer can support some basic fire control functions 
as a back up. In case of failure of the fire control 
computer, the back up fire control functions in the 
command computer will be activated. So the system 
will not collapse, though some functions may be lost. 
For the same reason, the fire control computer has the 
potential of part of the command capability. This is 
the key to its superiority in survivability to the cen- 
tralized systems. Of course, many other functions are 
also significantly enhanced, because of the more pow- 
erful computers and other innovations. For example, 
multitarget processing is a common task for the sepa- 
rated C2 systems. 

Some separated systems evolved naturally from their 
predecessors: fire control systems. During the transi- 
tion from the fire control systems to the C2 systems, 
some fire control systems had been inherited by their 
C2 systems with little modification. Only a command 
subsystem was designed and added on the top of an 
already existing fire control system. A typical sepa- 
rated C2 system then is formed. 

In spite of its advantages over the centralized systems, 
a separated system is still relatively too "centralized." 
Its functions are "centralized" on a few computers. 
Although it is better than centralized on one computer, 
the improvement is limited. It is not difficult to 
imagine having a much better system if the system 
functions are more finely divided and implemented by 
more computers, and if the communication among 
these computers is sufficiently effective. This is the 
idea underlying a distributed C2 system. The advances 
of microprocessors and network techniques in the late 
80s provided a wonderful basis for the development of 
distributed C2 systems. Now the newly developed C2 

systems are dominantly distributed in structure. 

Although the computers used in the centralized and 
separated systems in the early days were called mini- 
sized or medium-sized, they were not as powerful as 
today's microcomputers. In modern distributed C2 

systems, more and more such powerful microproces- 

sors are used, along with faster and faster local area 
networks. For the submarine C2 systems example, 
some newly developed systems contain more than 100 
powerful 32-bit microprocessors like Intel 80486 for 
general-purpose processing. Parallel computers are 
also used for special tasks, such as sonar and radar 
signal processing. In addition, optical fiber local area 
networks with transmission rate above 100M bps are 
widely used. With such a tremendous processing ca- 
pability, many new devices, ideas and functions can be 
added into the system. Multisensor fusion and ad- 
vanced tracking techniques are two important exam- 
ples. Furthermore, this also makes it possible to have 
a high-degree functional redundancy, which is a 
prominent merit. 

Another important feature of such distributed systems 
is that the traditional lines in a combat system to sepa- 
rate sensor, weapon and C2 system blur now. With the 
high-speed data bus or information network as the 
center of a combat system, its component units are 
equally connected and treated. To the common data 
bus or network, each device is simply a node whether 
it is a sensor, a piece of weapon or a command and 
control module. A C2 system is becoming more and 
more inseparable from a combat system and a combat 
system of this kind tends to be called a comprehensive 
combat system. In the meantime, the information flow 
within the system has also changed significantly with 
the structure development. Information in a central- 
ized system flows predominately in one direction: 
from the sensor end to the weapon end. Information 
feedback from the weapon end to the sensor end is 
greatly enhanced in a separated system but the main 
stream is still sensor to weapon. Information in a dis- 
tributed system flows in both directions with virtually 
equal opportunities. From this point of view, the line 
between command and control has also blurred. 

5. Fusion and C2 System 

Obviously the realization of the command and control 
functions is based on information available, including 
information about the battlefield environment, own 
forces and enemy forces, etc. Information gathered 
during military operations is not only inaccurate, am- 
biguous and incomplete, but also with high false alarm 
rate and is very possibly deceptive [1-3]. That is why 
more and more sophisticated sensors are developed 
and introduced into the combat systems. Multisensor 
system is expected to draw a clearer and more accurate 
battlefield situation picture because at least sensors 
can cross check with each other. 
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However, multisensor information processing is not so 
easy. With more and more modern processors in each 
sensor, the processing ability of each sensor grows 
tremendously. Almost every modern target detection 
sensor can detect and process multiple targets simulta- 
neously. This multisensor multitarget information will 
explode if it is not coped with effectively [4]. In addi- 
tion, information from different sensors often conflicts 
with each other in a military environment. To face 
these challenges, there comes the important technique, 
fusion. 

Basically, fusion answers a number of questions, in- 
cluding: 
1) How many targets exist in the battlefield envi- 

ronment? 
2) What are they? 
3) What are their identities? Are they friend, foe or 

neutral? 
4) What are the most probable measurement se- 

quences (or if possible, the motion states) of each 
target? 

Such basic information is needed to have a clear pic- 
ture of the battlefield situation and for command and 
control. While each sensor may have their own an- 
swers to these questions, fusion provides answers that 
should be more comprehensive and reliable to some 
degree, because they synthesizes single-sensor an- 
swers. The unit that performs fusion in a C2 system is 
often known as the fusion center. 

The aforementioned questions include two types of 
target information, positional (or kinematic) and char- 
acteristic [3]. The former is about target position and 
motion, such as bearing, distance, course and velocity. 
Characteristic information includes target type and 
identity. To split the target information in this way is 
mainly for the convenience of processing because the 
techniques to handle these two types of information 
are usually quite different [3]. Positional information 
fusion is often conducted along with tracking, a topic 
to be discussed later, where the main approaches are 
based on estimation and filtering [5-7]. Techniques 
used to deal with characteristic information include 
reasoning with uncertain information [4,8,9] and arti- 
ficial intelligence [10]. 

Fusion can greatly enhance command and control 
ability of a C2 system. If a multisensor system could 
provide the potential of such enhancement, it would be 
fusion that makes this potential reality. Traditionally, 
a C2 system uses single-sensor information for com- 
mand and control directly, even if there are many sen- 
sors serving as information providers. The valuable 
potential of information enhancement among the sen- 
sors is pitifully wasted.  Furthermore, with sensor in- 

formation not well refined and condensed, the system, 
not to mention its operator and commander, can be 
easily flooded by redundant information. 

Fusion has also physically changed the C2 systems and 
combat systems. There is no special processing unit 
between sensors and the C2 system. Data fusion cen- 
ter serves as a bridge and adapter between the mul- 
tisensor system and the traditional C2 system. This 
physical change raises the question of where to best 
locate the fusion center. Should it be considered as a 
newly added part of the C2 system to maintain the tra- 
ditional definition that a combat system is composed 
of sensors, C2 system and weapons? Or, should it be 
treated as an entity outside the C2 system so that a 
combat system is redefined as a combination of a sen- 
sor system, fusion center, C2 system and weapons? 
The former seems a more reasonable choice. First, the 
responsibility of the fusion center virtually is informa- 
tion processing, which is a basic function of a C2 sys- 
tem. Secondly, this choice reserves the traditional 
definitions of the combat systems and C2 systems. 

Since fusion center is such a key junction, it is very 
possible to become an information "bottleneck." That 
is why its design is so important. It should be effec- 
tive, reliable and flexible. It should also be well- 
coordinated with sensors, the rest of the C2 system and 
other related units. 

6. Tracking and C2 System 

Tracking is a much older concept than fusion because 
it is not confined to multisensor multitarget problems. 
Simply put, target tracking tries to find out where the 
target is and how it moves, by using measurements 
from sensors. More technically, tracking is estimating 
the target motion states by using estimators or filters, 
which really are algorithms. Typical target motion 
parameters or states include bearing, distance, speed 
and acceleration. In the old C2 systems with single- 
target ability, the measurements are usually directly 
from sensors. Fusion is not necessary. The only pos- 
sible incoming information processing is measurement 
preprocessing such as smoothing and outlier removal. 
The corresponding tracking techniques used are also 
primitive, based mostly on approaches with determi- 
nistic parameters. 

In modern multisensor multitarget cases, fusion is a 
necessity. Sensor measurements are processed at first 
in the fusion center. The condensed and refined in- 
formation then is used as input for tracking algorithms. 
This relationship between fusion and tracking, how- 
ever, does not necessarily mean that tracking is proce- 
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durally behind fusion. This was the case in the early 
days of developing multisensor multitarget techniques. 
Nowadays, fusion and tracking are more and more 
integrated [7]. They are processed simultaneously. 
That is why in many cases fusion and tracking are 
inseparable. 

Tracking sometimes may be time consuming. This 
surely depends on many factors, such as the measure- 
ments available, the measurement error type and size, 
and the algorithm used. Another important factor that 
is often overlooked is the requirement for the tracking 
solution. Obviously, it will take a longer time to get a 
more accurate solution. In practice, the accuracy re- 
quirement changes greatly for different tactical con- 
siderations. For example, for decision-making pur- 
poses, quite often, it cannot be afforded to wait until 
the solution is very accurate to make a decision. The 
solution may be needed at any time, no matter what 
accuracy the solution reaches. For fire control pur- 
poses, the accuracy requirement is relatively more 
stringent. But different weapons may still have differ- 
ent requirements. For example, a guided weapon usu- 
ally does not need as stringent an accuracy require- 
ment as straight run weapons. For this reason, there 
are usually several tracking algorithms in a C2 system 
for the same tracking problem. For example, one is 
for decision making purposes and the other for fire 
control purposes. The former may be fast and com- 
putationally efficient. The latter should be accurate 
because accuracy is important in this case. Sometimes 
in both cases, there are more than one algorithm im- 
plemented for different considerations. Tracking is 
not necessarily simply a problem of algorithm. For 
example, it should assume some responsibilities of 
sensor management in some cases. In some other 
cases, the tracking result has a very close relationship 
with the maneuver pattern of the platform [11,12] and 
thus maneuver strategies should be recommended by 
the tracking algorithm. 

As stated earlier, target tracking depends on the infor- 
mation from sensors as well as the fusion center. This 
means that tracking is interrelated closely with sensors 
and the fusion center. At the same time, the result of 
tracking is the basis for command and control. So 
tracking also has a tight connection with command 
and control. From these relationships tracking can be 
seen as the center of a C2 system. This shows partly 
why advanced tracking techniques are key to a supe- 
rior C2 system. As a matter of fact, the primary goals 
of tracking are higher tracking accuracy and shorter 
tracking time. Tactically these goals are very critical 
to the result of a battle. From the viewpoint of system 
design, to reach these goals is not easy. Apart from 
the requirement of having advanced tracking tech- 

niques, the coordination of tracking with fusion, com- 
mand and control should also be treated well. 

Listed below are examples of research hot spots in 
target tracking in recent years: 
1) Maneuvering target tracking 
2) Tracking with multiple sensors 
3) Tracking with uncertain measurements 
4) Tracking with passive sensors. 
Most tracking problems have not yet been solved well. 
For this reason, some alternatives for command and 
control in real applications have been successfully 
developed. For example, the emergence of smart 
weapons with self-homing and anti-jamming abilities 
has profoundly lowered the requirements for target 
tracking. This trend will continue in the future. 

7. Conclusion 

Command and control are two basic functions of a 
modern military combat system. Fusion and tracking 
are fundamental components of a command and con- 
trol system. Their interrelationships are studied in this 
paper. Some considerations for system development 
are given. It should be recognized that their research 
and development involves not only theoretical studies, 
but also engineering practices. Further work is needed 
to keep pace with new developments. 
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Abstract - Target recognition and tracking is a very 

important research area in pattern recognition. Systems for 

target recognition and tracking based on single sensor (radar 

or infrared image sensor) have their limitations. We present 

the approaches of target recognition and tracking based on 

data fusion of radar/infrared image sensors, which can make 

use of the complement and redundancy of data from different 

sensors. Data fusion at characteristic level can combine 

characteristics from different sensors to improve the ability of 

object recognition. Approaches of target recognition based 

on inference of rules and a neural classifier are presented to 

deal with the recognition of dot targets and surface targets. 

Data fusion at decision level can improve the reliability and 

anti-interference of object tracking, an approach of object 

tracking by on decision certainty is presented. 

Keywords: Target Recognition and Tracking. Data Fusion, 

Pattern Recognition, Neural Networks. 

the robustness and reliability because failure of signals 

from a sensor will not cause failure of the whole 

system. So data fusion of multi-sensors become very 

important research direction in target recognition and 

tracking °'6,7\ Different kinds of fusion models (for 

example, Radar-IRK5J, SAR-IR, Laser radar-FLIRn!, 

Shipboard radar-IR) are used to realize target 

recognition and tracking. According to the levels of 

information described, the approaches of data fusion 

are usually divided into three classes: fusion at data 

level, fusion at characteristic level, fusion at decision 

level. Fusion at data level is usually used for fusion of 

images obtained from different sensors. Fusion at 

characteristic level is usually used for target 

recognition according to the characteristics derived by 

data from different sensors. Fusion at decision level is 

usually used for target tracking by jointly inferences of 

tracking decisions derived by data from different 

sensors. 

1. Introduction 

Target recognition and tracking is a important 

research area in pattern recognition. Systems with 

single sensor (radar or infrared image sensor) have 

their limitations in target recognition and tracking. For 

the system with radar sensor, its precision of target 

recognition and tracking is relatively low. For the 

system with a IR image sensor, its sphere of action is 

relatively short, it is affected by weather environment 

(cloud, rain, fog). A system with multi-sensors can fuse 

data from different sensors to overcome the limitations 

in the system with single sensor, it can make use of the 

complementary and redundancy of data from different 

sensors to improve the precision of target recognition 

and tracking. A system with multi-sensors can improve 

In our system for target recognition and tracking, 

radar and infrared image sensors are used. As radar 

sensor in our system can provide the information of the 

distance and direction of the target (not the image of 

the target), data fusion is realized only at characteristic 

level and fusion at decision level. For data fusion at 

characteristic level, characteristics of a target obtained 

from radar can be used in the subsystem based on IR 

Image to improve the ability of object recognition; 

characteristics of a target obtained from IR image can 

be used in the subsystem based on Radar to improve 

the ability of object recognition. The approaches of 

object recognition based on inference of rules and a 

neural classifier are presented in Section 2 to deal with 

the recognition of dot targets and surface targets. For 

data fusion at decision level, the subsystem based on 
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ER. Image and the subsystem based on Radar infer 

decisions of target tracking respectively, the decision 

of target tracking in the system is determined by jointly 

inference based on decisions of target tracking of made 

from the subsystem based on IR Image and the 

subsystem based on Radar. An approach of target 

tracking based on the decision certainty is presented in 

Section 3 to improve the reliability and anti- 

interference of target tracking. Following is the 

structure of target recognition and tracking system 

based on data fusion of Radar and IR image sensors. 

Radar Target Recognition and Tracking By Radar 

tracking decision characteristics 

based on Radar detonator 

from IR image 

from Radar 

Controller for fusion 

IR Image Target Recognition and tracking decision of 

tracking decision 

Tracking By IR Image 

based on DR. image 

servo-control mechanism for target tracking 

fusion at characteristic level 

fusion at decision level 

Figurel: Target tracking system based on data fusion 

of Radar and IR image sensors 

2. Target recognition based on the data fusion 
at characteristic level 

process of target recognition based on IR image 

analysis are composed of signal pretreatment (signal 

detection, noise elimination), image segmentation, 

recognition of objects segmented. Signal pretreatment 

based on FFT and other technique is not discussed in 

this paper. For image segmentation, a IR image is 

transformed into binary image according to the 

threshold of grayness, objects in the IR image are 

segmented by searching the edges of objects based on 

the algorithm of worm tracking (see figure 2, figure 3). 

According to area (number of pixels) of objects 

segmented, the recognition of objects segmented is 

divided into two classes: recognition of dot targets, 

face targets. When the area of a object segmented is 

less than 3X3, the object is seen as dot target; When 

the area of a object segmented is equal to or greater 

than 3 X 3, the object is seen as face target. Rule-based 

reasoning is used to deal with the recognition of dot 

targets; classifier based on neural network is used to 

deal with the recognition of surface targets. 

Figure 2 (left) an IR image, Figure 3 (right) Segmentation 

of the IR image based on worm tracking 

2.1 Recognition of dot targets based on inference of rules 

For data fusion at characteristic level, characteristics 

of a target obtained from radar can be used in the 

subsystem based on IR Image to improve the ability of 

object recognition; characteristics of a target obtained 

from DR. Image can be used in the subsystem based on 

Radar to improve the ability of object recognition. In 

this section, we only discuss the former situation. The 

For a dot target, its characteristics obtained from a DR 

image is limited, the recognition of a dot target is 

mainly based on intelligent models. Intelligent models 

in our system are: the experimental relations between 

the distance of a dot target (obtained from the 

subsystem based on Radar) and the area of the target in 

the DR. image; the prediction of motion direction of a 
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dot target; the continuity of motion path of a dot target. 

For a specific DR. image sensor, its waveband and 

resolution is defined, the possible biggest area of a 

target under its known distance can be estimated. 

Especially for a dot target (its distance is long), the 

experimental relations between the distance of a dot 

target and its area in the IR image is relatively stable. 

For simplification of mathematical model of the 

relations, only the thresholds of maximum distance 

Ri,R2,R3 need to be estimated under different areas (1, 

2 X 2,3 X 3) of a dot target Rl means that a dot target 

has 1 area only if its distance less than Rj; R2 means 

that a dot target has 2 X 2 area only if its distance less 

than R2; R3 means that a dot target has 3X3 area only 

if its distance less than R3. So under known distance 

and area of a dot target, if the experimental relation is 

not satisfied, then the dot target is false target; if the 

experimental relation is satisfied, then the dot target 

Will be recognized further. 

For a true target, the direction of target motion 

predicated by the subsystem with Radar should be 

consistent with the direction of target motion 

predicated by the subsystem based on DR. Image. 
Considering the complexity of the transform of space 

coordinate, the predication of the direction of target 

motion in a IR image is simplified by cross division 

(left up, left down, right up, right down). 

According to the variation of the central position of a 

dot target in the sequence of two IR images, the 

direction of target motion can be predicated. Assume 

the coordinate of the IR Image is :  0    X 

The central position of a target in the sequence of two 

DR images are: (xi.yO, (x2,y2). Y 

If X]< x2, yi< y2, then the prediction of target motion in 

the IR image is right up. 

If xi< x2, yi> y2, then the prediction of target motion in 

the IR image is right down. 

If xi> x2, yi< y2, then the prediction of target motion in 

the IR image is left up. 

If Xi> x2, yi> y2, then the prediction of target motion in 

the IR image is left down. 

Meanwhile according to the direction of target motion 

obtained by the subsystem based on Radar, and the 

relations of angles among axes of the missile, radar and 

IR image sensor, the direction of target motion in the 

IR image can be predicated. The following is the figure 

about the relations of angles among axes of the missile, 

radar and IR image sensor, where OX0 is the 

coordinate of the earth; OX] is the axis of the missile; 

OXR is the axis of Radar; OXi is the axis of IR Image; 

OM is the line of vision to the target (M is the target); 
OR is the angle between axes of Radar and the missile; 

0; is the angle between axes of IR Image and the 

missile; AqR is the angle between the axis of Radar 

and the line of vision to the target. 

M 

Xi 
Aqj       XR 

OfiX, 

AqR   Oj 

o Xo 

Assume $>RX, Oix , Aq^ are respective projection of 

OR , 07, AqR in the horizontal direction; <&Ry, 

Q?iy , AqRy are respective projection of <t>R , <&j, AqR 

in the vertical direction. 
ff ®Rx + A^Rx < ®lx , ®Ry + ^Ry > ®Jy , then the 

prediction of target motion in the ER. image is right up. 
If     ®Rx + ^Rx < ®lx , ®Ry + ^Ry < ®ly ,    then    the 

prediction of target motion in the IR image is right 

down. 
If *ßx + telRx > ®ix, ®Ry + &lRy > ®iy, then the 

prediction of target motion in the DR. image is left up. 
If     ®Rx+&lRx>®Ix,®Ry+&lRy<®Iy,    then    the 

prediction of target motion in the DR image is left 

down. 
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If two predictions are not consistent with each other, 

then the dot target is a false target; If two predictions 

are consistent with each other, then the dot target will 

be recognized further. 

2.2 Recognition of face targets  based  on  a  neural 

classifier 

When the distance of a target is short, the 

topological shape of the target in the IR Image, the 

variation of position and motion direction of the target 

between a sequence of two IR images are strongly 

affected by the distance and motion direction between 

the target and the missile. Their mathematical relations 

are complicated and difficult for modeling. Because of 

the characteristics of self-learning, self-adaptation and 

fault-tolerance, neural network has been widely 

researched and applied KS. Multi-layer perception 

network is used to realize a fault-tolerance classifier for 

recognition of face targets. IR images of face targets 

under different distances and directions are used to 

train the neural network. 

Following characteristics of target are used as inputs 
of the neural classifier: 

■ distance of the target obtained from the subsystem 
with Radar. 

■ area of the target in the IR image, the variation of 

areas of the target in the sequence of two IR 

images. 

■ the mean grayness of pixels of the target. 

■ the variation of centrum positions of the target in 

the sequence of two IR images. 

■ the topological shape of the target (e.g. ratio of 

length to width, the number of forks in the frame 

extracted.  K see figure 4, figure 53) 

■ the direction of the target motion predicated by 

radar and the relation of angles among the axes of 

the missile, Radar and IR Image. 

■  * 

Figure 5 (left): targets in a IR image, 

Figure 6 (right): The extracted frame of the targets 

Classification model for target recognition can be learned 

automatically  by  a  multi-layer  perceptron  networks 

(figure 6) according to a pair of training examples. Nodes 
Z]...Zjrf in the input layer represent the descriptors of 

characteristics of a target to be recognized. Oj...Og in the 

output layer represent the result of recognition of the 
target. dj...d^ represent the desired output of OJ...OJ(, 

For example, dj=\, d2=:0 represents that the target is 

recognized as true target; dj=0, d^=l represents that the 

target is recognized as false target. According to Error 

Back-Propagation Algorithm and differences between the 

desired and actual neuron's response, weights of the 

output layer and the hidden layer W<r-W+ t]S0y\ 

<- V + T]öyz are adjusted until cumulative cycle error 

is less than Emax. 

For example, the characteristics of a target obtained from 

the subsystem based on Radar and the subsystem based 

on IR Image are inputted into the neural classifier. The 
outputs of the classifier are: Oj=0.9, 02=0.1, then the 

face target is recognized as true target and will be tracked 

according to the variation of its centrum positions in the 

IR image. 
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3. Target tracking based on decision fusion 

After data fusion at characteristic level, a true target is 

recognized by the subsystem based on Radar and the 

subsystem based on IR Image. The subsystem based on 

Radar gives the decision of target tracking qRadar 

(tracking angular velocity of the axis of Radar); the 

subsystem based on IR Image gives the decision of 

target tracking qIR (tracking angular velocity of the 

axis of IR Image); according to these two respective 

decisions data fusion at decision level is to make joint 

decision of target tracking q^am  (tracking angular 

velocity of the missile). According to the flight stage of 

the missile, data fusion at decision level is divided into 

three stages (initial stage, middle stage, end stage). 

1) At initial stage (the distance of the target is long, 

IR Image sensor can not detect the target), the 

decision of target tracking given by the 

subsystem based on Radar is used to control the 

servo mechanism of the missile to track the 

target; that is, ?^0„ =q Radar, and is used to 

guide the servo mechanism of IR Image to track 

the target so that the target will be in the visual 

angle of IR Image sensor. 

2) At end stage (the distance of the target is short, 

the subsystem based on IR Image can recognize 

and track a target independently and reliably), 

the decision of target tracking given by the 

subsystem based on IR Image is used to control 

the servo mechanism of the missile to track the 

target; that is,    q^on =Qm, because at end 

stage the decision of target tracking given by the 

subsystem based on ER. Image is more reliable 

than that given by the subsystem based on 

Radar. 

3) At middle stage (the subsystem based on IR 

Image can detect the target but can not 

recognize and track a target independently), 

factor "decision certainty" is introduced to 

realize data fusion at decision level, which 

represents the relatively certainty of decisions of 
target tracking, 0<CFR ^l,0^CFm <1. 

Decision certainty CFR of the subsystem based on 

Radar is defined as following: 

P 

CFR =aR xARxßRadar x —  
"R-falarm 

where  aR   is the normalizing factor,   AR is the 

distance of the target, ßRadar e[°>1] is the ratio of 
signal  to  noise,   PR-capture   is  the  probability  of 

capturing the target,  PR-faiarm is the probability of 

false alarm. 

Decision certainty CFjR of the subsystem based on 

IR Image is defined as following: 

p 
CFIR = aIR x Tmatch x Npjxe} x ßIR x — 

"lR-fa\arm 

where am is the normalizing factor, rmatch is the ratio 

of match obtained by the neural classifier. Npixej is the 

number of pixels of the target in the IR image, 
ßIR e[0,l] is the ratio of signal to noise, Pm-capture is 

the probability of capturing the target, Pm-faiarm is the 

probability of false alarm. 

The joint decision of target tracking (that is, tracking 

angular velocity of the missile) is: 

Ifisi -    CFm+CR 

CrjR CFR 
xqm+ „T?      . nr?    * QRadar FlOHl CFm +CFR 

the definition of CFR,  CFJR ,   q^on, following 

conclusions can be derived: 
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— CFR declines along with the decrease of the distance 
of the target; CFJR ascends along with the decrease of 
the distance of the target. At the beginning of middle 

stage, qßsio„ is mainly determined by qRadar; along 
with the decrease of the distance of the target, the 

proportion of qRadar  in  q fusion decreases gradually 

while  the  proportion   of   qIR   in   q^on increases 
gradually. So the joint decision of target tracking can 
realize   the   smooth   transition   from   initial   stage 

(9fusion = 1 Radar) to end stage (qfusion =qm). 

When the subsystem based on Radar is interfered, the 

joint decision of target  tracking   q^on is  mainly 

determined by the decision of target tracking q1R 

obtained by the subsystem based on ER Image; when 
the subsystem based on ER Image is interfered, the joint 

decision of target tracking q fusion is mainly determined 

by the decision of target tracking qRadar obtained by 
the subsystem based on Radar. 

4. Conclusions 

Data fusion is very important and useful for target 

recognition and tracking. A system with multi-sensors 

can fuse data from different sensors to overcome the 
limitations in the system with single sensor, it can 

make use of the complementary and redundancy of 

data from different sensors to improve the precision 

and robustness of target recognition and tracking. Data 

fusion at characteristic level can combine characteristics from 

different sensors to improve the ability of target recognition. 

Recognition of dot targets based on inference of rules 

and recognition of face targets based on a neural 

classifier have been presented, which simplify the 

modeling of target recognition and can deal with target 

recognition effectively. Data fusion at decision level can 

improve the reliability and anti-interference of object 

tracking, target tracking under three stages and based on 

decision certainty have been presented, which combines the 

advantages of Radar (e.g. big sphere of action) and the 

advantages of IR Image (e.g. high precision of target 

recognition and tracking when the distance of the target is 

short) and can realize the smooth transition of three stages. 

Hardware realization ^ of our system target 

recognition and tracking will be discussed elsewhere. 
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Abstract In this paper we introduce an 
approach to fuzzy reasoning where negative 
rule weights are taken into account. Bipo- 
lar weights are applied to standard additive 
system, (SAM). It is shown that such bipo- 
larly weighted SAM is capable to perform 
reasonig over time which corresponds to 
Kaiman filtering. Moreover, we consider 
a possibility to apply random fuzzy sets in 
such a reasoning. This enables a fusion 
of fuzzy sets and random variables in the 
context of Kaiman filtering. 

Keywords: Extended fuzzy reasoning, Informa- 
tion fusion, State estimation 

1    Introduction 

Standard additive system (SAM) is a well- 
known fuzzy reasoning model. In such a 
reasoning system product is used as a T- 
norm, combination of multiple conclusion 
sets is carried out by summation and cen- 
troid is used as a defuzzification method 
[1]. It can be shown that SAM determines 
the defuzzified output as a weighted average 
where the averaging weights are convex co- 
efficients. The averaging is performed over 
the centroids of rule patches and the averag- 
ing weights are normalized firing strengths of 
the set of rules in a given rulebase. In this pa- 
per we extend the conventional convex SAM 
to non-convex SAM where rules are weighted 

with a possible negative weight. Tradition- 
ally, the rule weights are positive but we ap- 
ply also negative weights and consider the 
consequencies into reasoning system. 

Ellipsoidal rule patches are commonly 
used in SAM-modelling. Rule patches are 
defined by the corresponding antecedent set, 
conclusion set and an ellipsoid associated to 
these sets. In this paper we concentrate 
on applying non-convex SAM as an infor- 
mation filter which is algebraically identi- 
cal to Kaiman filter. It will be shown that 
the estimation scheme can be represented as 
two non-convex SAMs. The ellipsoidal rule 
patches of these SAMs depend on each other. 
The rule patches are defined from the covari- 
ance matrices of the apriori estimate and the 
observation. Together these vectors form an 
aposteriori estimate which is a sum of two 
output vectors of the two above mentioned 
SAMs. As the covariance matrices are up- 
dated by the formula defined in the Kaiman 
filter the two parallel reasoning systems act 
identically to the Kaiman filter. 

The prediction-correction estimation 
scheme is essentially a fusion process where 
two vectors, apriori estimate and observa- 
tion, are fused together so that they produce 
aposteriori estimate. Thus, the above 
mentioned procedure can be generalized 
into more general fusion schemes where 
two pieces of information will be fused 
together.   This kind of fusion scheme is a 
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non-convex adaptive SAM whose adaptation 
procedure is adopted from the Kaiman filter. 
Additionally, the system is a fuzzy reasoning 
system which allows a use of fuzzy sets as 
inputs. The adaptation procedure assumes 
that uncertainty information related to 
covariance matrix is associated to each fused 
variable. Thus, we use random fuzzy sets for 
including fuzzy sets into the fusion process. 
This fusion process enables integrating 
fuzzy linquistic information with stochastic 
observations. Stochastic observations are 
modelled as conventional random sets which 
are a singleton-case of random fuzzy sets. 

2    Standard    Additive    Sys- 
tems 

Standard additive systems (SAMs) are a spe- 
cial case of fuzzy reasoniong systems. SAMs 
are described by the following properties: 

• product is used as a T-norm 

• addition is used for rule combination 

• centroid  is  used  as  a  defuzzification 
scheme 

The above properties define the following 
equation [1]: 

V = Hz) = ^  (1) 

where y is a defuzzified output of the reason- 
ing system, F represents the reasoning system 
itself, m is a number of rules, WJ is a weight 
of the jth rule, a,j (x) is the firing strength of 
the jth rule, Vj is a volume of the jth rule 
patch and Cj is a corresponding centroid of 
the jth rule's conclusion set. 

The Eq. 1 defines the output as a weighted 
average of the rules' conclusion centroids: 

Pj(x)    = 

^2PJ(Z)CJ 

3=1 

Wjaj(x)Vj 
m 

J2wjaj(x)Vj 
(2) 

where Pj(x) is a convex coefficient for the jth 
rule. 

3    Bipolarly weighted SAM 

In the SAM equation (Eq. 1) a weight WJ 

is assigned for each rule. The weight Wj 
determine rule's relative impact to the out- 
put. Rules with larger weights have bigger 
impact to the concluded output value y than 
rules with smaller weights. Thus, the weights 
are used for describing each rule's nature 
with respect to other rules. All fuzzy rea- 
soning systems with rule weighting assume 
that the rules are weighted with positive 
weights. We introduce a bipolarly weighted 
SAM which uses both positive and negative 
weights. Bipolarity has been used , for exam- 
ple, to describe inhibitory-exhibitory natures 
of neurons. In [2] it is shown that it would be 
beneficial to apply bipolarity in fuzzy reason- 
ing in the context of function representation 
abilities. 

The    reasoning    equation    of   bipolarly 
weighted SAM is the following: 

Y^wtaoix)VJci 
3=1 

V=-m  
YsWta3iX)V3 
3=1 

(3) 
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where Wj denotes possibly negative rule 
weight for the jth rule. 

4    Information granularity 

Information granularity is a concept that 
deals with the information's representation 
problem [3, 4]. The same information can 
be represented in different levels of specifity. 
Information granules can be understood as 
pieces which are used to build up an overall 
understanding on the universe of discourse 
[5]. In particular, information granularity 
takes place among human beings who tend 
to process concepts with granules that are 
rougher than infinitely accurate scalar num- 
bers [6]. We apply the concept of information 
granularity to illustrate the basic differencies 
between fuzzy sets and random sets.  Fuzzy 



sets concern directly the vagueness caused by 
the observer's way of describing the concept 
under consideration [7]. In contrast, ran- 
dom sets model the uncertainties related to 
stochasticity included in the process. 

Fuzzy sets can be used to describe con- 
cepts. One fuzzy set is defined with a mem- 
bership function whose shape and position in 
the universe of discourse illustrates one possi- 
ble way to describe that one specific concept. 
Moreover, a set of fuzzy sets define alphabets 
with which the whole universe of discourse is 
handled. A key feature in the information 
description is a number of fuzzy sets used to 
fill the whole universe of discourse. An ex- 
treme case is to use singleton sets defined on 
the continuous basis. Thus, the number of 
sets is infinite and one single set describes 
exactly one value. It does not overlap with 
other fuzzy sets. On the other hand human 
beings are the other extreme as we may use 
very few fuzzy sets for dealing with such con- 
cepts as age and temperature. These fuzzy 
sets usually overlap each other which is a key 
feature of fuzziness. 

As fuzziness describes the alphabets used 
for describing a variable, randomness de- 
scribes uncertainties associated to alphabets. 
Such uncertainties are caused, for example, 
by an imperfect detection mechanism. These 
two different kind of uncertainties can be de- 
scribed with random fuzzy sets which are es- 
sentially fuzzy sets coupled with random sets 
[8]. Thus, each fuzzy set has its own proba- 
bility distribution function. Randomness can 
be attached to fuzzy sets in several ways. We 
treat randomness as uncertainty in the posi- 
tion of the corresponding fuzzy set. A sin- 
gleton random fuzzy set is the conventional 
random variable which is defined by its prob- 
ability distribution. For example a singleton 
set S(xo) may be normally distributed de- 
noted as N(So, S), where S is the covariance 
matrix of the gaussian distribution function. 
Similarly, a fuzzy set Ai may be normally 
distributed N(Ai,Yi). Thus, each fuzzy set 
Ai has its own covariance matrix describing 
stochastic uncertainty associated to it. 

5    Matrix inverse with bipo- 
larly weighted SAM 

A matrix inverse may be interpreted as a tool 
for resolving linear dependencies. Thus, it is 
a kind of reasoning mechanism that defines 
causes based on the given detections. A sim- 
ple problem is to resolve values x\, X2, ■ ■ •, xn 

in x from detected y based on the following 
relation: 

y = Ax 

If solution exists, it is 

x = A~xy 

(4) 

(5) 

The Cramer's rule [9] defines the inverse of a 
square matrix as follows: 

i-i 
adj(A) 
det(A) (6) 

where adj(A) is an adjoint matrix of A and 
det(A) is a determinant of A. Both the ad- 
joint matrix and the determinant are defined 
by A^-.s which are the minors of the matrix 
A. ijth minor of matrix A is a determinant of 
the submatrix , denoted as Aij which is ob- 
tained from A when ith row and jth column 
of A are removed. The definitions of adj(A) 
and det(A) yield the following formula for Xi, 
the ith component of x: 

i=i 

X{ — (7) 

Assume a n-dimensional set whose base 
is (n-i)-dimensional polygon and height in 
the nth dimension is h. Assume further that 
the base polygon is defined by n-1 row vec- 
tors of the submatrix Aij and the height is 
equal to element Oy. By definition, the (n- 
l)-dimensional volume of the base polygon 
is equal to absolute value of Ali which is the 
determinant of the matrix A^. Thus, the 
volume of this hyperpolygon denoted as Vfi 
is 
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Figure 1: Polygons as THEN-part sets. 

Eq.(7) can be formulated by using the vol- 
ume V? as follows: 

V 

Xi     

£«4*5 
3=1 

Vj 
3*. Hj 

(9) 

This is equal to bipolarly weighted SAM 
(Eq. (3)) with the following settings: 

ws 

Vj 

W% = {-ly+higniV^) 

<*i(y) 

yji 

Vi 
Hj 

w, = (—1)%+3sign(Vijo) defines the im- 
pact of the jth. rule on the resulting 
Xi in a supporting/not-supporting or ex- 
hibitory/inhibitory sense. V? is a volume of 
the THEN-part sets, which are graphically 
illustrated in Fig. 1 for one dimension. a,j (y) 
is a membership value of the IF-part fuzzy 
set. It is natural that this value is equal to 
one since nothing fuzzy is considered so far. 
The inverse equation is formulated for crisp 
numbers only. Finally, Cj is a linear function 
of yj : Cj = jji;. This corresponds to Sugeno 
model which is one form of generalized SAMs 
described in [1]. 

6    Kaiman  filter  with  fuzzy 
observations 

An information filter [10,11] is an alternative 
representation of Kaiman filter algorithm. 

These two algorithms are algebraically equiv- 
alent although the formula and representa- 
tions are very different. The fusion of two 
vectors into one vector is carried out as fol- 
lows: 

x = (Vu + Vv)"1(VuU+nv) (10) 

where Y is an information matrix of the 
variable denoted in the subscript. The in- 
formation matrix is an inverse of the vari- 
able's covariance matrix. An intuitive inter- 
pretation of the above equation is that it is 
an weighted average of the vectors where the 
weights are information ellipsoids. The more 
certain variable is the bigger is the weighting 
ellipsoid since the inverse of the covariance 
matrix comes larger. This principle is very 
similar to basic idea of the SAM reasoning 
method. However, this kind of interpreta- 
tion is not strictly valid for matrices. 

The matrix calculations in the above equa- 
tion can be manipulated in the following way: 

(Vu + vy-1/,, = (Vu + vy-W)-1 

=     (^(Vu+Vv))-1 

=   (Z+V^Yi)-1      (11) 

Using the following matrices: 

U   =   l+Y^Yv 

V  =   /+V71V!i 

and applying Cramer's rule yields: 

x   =    I/^M+V^V 

-    i^adj(l0u + ^adj(V0v   (12) 

where | U\ denotes a determinant of U and 
adj((7) is l/'s adjoint matrix. Definition of 
the adjoint matrix [9] yields the following 
form for ith. component (i is odd) of x: 

Xi     — 

+ 
\u\ 

1 

[Uu, —U21, ■ . 

[Vu, 
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and for even i 

J_ 
IM 
j_ 
M 

-v2i, 

Xi      — 

+ 

[—Uu, U2i, 

[-Vu,V2i,. 

, (-l)nUni][u1,u2,.. 

(-l)nVni][vl,v2,... 

,(-i)n+1Ey[ui,u2,. 

(-l)n+1Vni][vuv2,.. 

, Vnf 



Thus the general formula for X{ is the follow- 
ing: 

Xi = p E (-l^^i+M £, (-^Vavi M i=i 
(13) 

This formula is of the same form as the 
bipolarly weighted SAM. Thus, summarizing 
the above formula: Information filter, and 
thus Kaiman filter, can be represented as a 
sum of two bipolarly weighted SAMs as it is 
illustrated in Fig. 2. 

With fuzzy logic concepts the above sys- 
tem is a combination of two parallel adap- 
tive fuzzy reasoning systems. The adaptivity 
means in this case that the covariance matri- 
ces that directly defines the rulebase of these 
systems are tuned by the means of informa- 
tion filter's updating equations. 

The above reasoning formula can be un- 
derstood as a bipolarly weighted SAM whose 
IF-part sets are singletons. This implies the 
fact that the rule firing strength is always 
one since the input fuzzy sets are also sin- 
gletons. However, this is natural since only 
crisp values are considered in the above rea- 
soning system that performs the state esti- 
mation task. 

Given a random fuzzy set A with covari- 
ance matrix E it is straightforward to apply 
the bipolarly weighted SAM formula which 
allows rule firing strengths between 0 and 1. 
Such an equation is given in Eq. 3. 

7    Conclusions 

We present a bipolarly weighted SAM which 
is a fuzzy reasoning system with possibly 
negative rule weights representing the in- 
hibitory role of the rule. It is shown that 
such a system can be used for fusing fuzzy in- 
formation to stochastic estimation processes. 
This approach enables adding human expert 
knowledge or human observations into esti- 
mation process of stochastic random vari- 
ables. 
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Abstract This paper introduces an uncertain rea- 
soning approach for adaptive object recognition un- 
der changing perceptual conditions. The uncertain 
reasoning is carried out for the fusion of model- 
based segmentation and data-driven segmentation 
of an image obtained under a new condition. The 
model-based segmentation is achieved by the RBF- 
based classifier and the data-driven segmentation is 
based on a boundary melting algorithm. The pa- 
per presents examples of segmentation results of two 
segmentations (i.e. model-based and data-driven), 
and an uncertain reasoning approach applied to the 
fusion of the results. 

Figure 1: Problem Definition. 

Keywords: fusion, model-based segmentation, 
data-driven segmentation, uncertain reasoning, 
Dampster-Shaper theory 

1    Introduction 

We focus on a specific problem, which the res- 
olutions of object surfaces change when an ob- 
server approaches object scenes gradually. We 
limit the experimental work to the texture 
recognition problem where the texture char- 
acteristics change significantly, but smoothly, 
with the change in perceptual conditions. It 
means that some detailed and visible informa- 
tion is brought over the increasing resolution. 
There are uniformed textures under low reso- 
lution whereas detailed and visible textures are 
coming up under high resolution. 

Object models learn from the first image in a 
supervised way. In the typical research, the ob- 
ject models are applied to recognize the same 
image under the given condition.  However, a 

challenging problem is how to recognize objects 
on forthcoming images of sequence through 
gradual model adaptation (model modifica- 
tion) to these new images under changing per- 
ceptual conditions. Figure 1 illustrates the se- 
quence of texture images with different reso- 
lutions under changing perceptual conditions. 
When these models are applied to recognize 
the next image, it is not expected that they 
be well matched with the next image. It is so 
because direct matching results are just feed- 
back obtained from the recognition of next im- 
age. The feedback is very useful to update the 
model, only if it is analyzed appropriately in an 
unsupervised way (without any human help). 
This paper presents an approach for analysis 
of the feedback information by using a fusion 
technique to integrate data-driven and model- 
based segmentation paradigms. 
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Evolution 
Direction 

Evolution 
Direction 

Figure 2: Overlapping problem and rejection 
concept. 

2    Problems  in  Model  Based 
Segmentation 

This section presents a model-based segmenta- 
tion. It also supports the necessity of fusion 
technique to integrate data-driven and model- 
based segmentation paradigms by presenting 
some problems happening when only a model- 
based segmentation is applied to analyze feed- 
back information for efficient model modifica- 
tion. 

Object models are applied to a new incom- 
ing image using an RBF based classifier [1]. 
Recognition and segmentation processes are 
applied to separate the image into homoge- 
neous areas. An image is segmented by classi- 
fying and grouping all pixels within the image 
to one of several classes according to the cur- 
rent model. The result is an annotated image 
with confidences supporting these annotations. 
The image contains class labels. Associated 
confidences are measurements reflecting clas- 
sification strength. When classification confi- 
dences of a group of pixels are low, these do 
not pertain to any real pattern class. Instead, 
they are in an imaginary (background) class 
that indicates a rejection. 

The results of image recognition and seg- 

Image 1,5,9 Image 13,17,21 

Figure 3: Six selected images from a sequence 
of 22 images. 

mentation may be confused when an image is 
recognized by models associated with the pre- 
vious one due to overlapping problem of object 
models for two or more classes. The results of 
image recognition and segmentation may not 
be satisfactorily good when an image is rec- 
ognized by models associated with the previ- 
ous one. It is so because these two consecutive 
images are always slightly different or objects 
change their appearance. Therefore, if only a 
model based segmentation technique is applied 
to feedback analysis, model modification may 
be performed incorrectly. 

To resolve the difficulty, the basic and essen- 
tial approach [2] is to use the rejection concept 
of object classification. The usage of the rejec- 
tion concept can reduce the risk of using incor- 
rect feedback information by avoiding the anal- 
ysis of image areas of uncertain situation. Fig- 
ure 2 presents an overlapping problem (uncer- 
tain situation) and a rejection concept for the 
overlapping problem. However, when the over- 
lapping problem is more serious, model mod- 
ification is impossible since most of classifica- 
tion results are rejected. Therefore, this pa- 
per presents an application of hybrid methods 
for image segmentation, which integrate super- 
vised and unsupervised paradigms. 
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Figure 3 illustrates 6 selected images from 
a sequence of 22 images acquired by a digital 
b&w camera. Images were registered with the 
change in distance between the camera and the 
scene. The distance was gradually decreased. 
The next image was registered under the dis- 
tance reduced by 4%. Total of 22 b&w images 
were obtained from the same scene. The size of 
each image is 240x320 pixels with a single pixel 
coded on 256 gray levels. Each image contains 
four classes of texture areas corresponding to 
different fabrics. Figure 4 shows an example of 
image segmentation results when these models 
are applied to the next image. It is seen that 
applying models from previous images to the 
next images, without modifying them to reflect 
the changes, causes significant quality degra- 
dation of image segmentation. Figure 4(a) 
shows class annotations and Figure 4(b) shows 
confidence values. In Figure 4(a), dark gray, 
medium gray, light gray, and white colors rep- 
resent class A, class B, class C and class D, 
respectively. Black color represents a rejection 
class. In Figure 4(b), white areas represent 
high confidence whereas dark areas represent 
low confidence. In particular, pixels belonging 
to the rejection class have very low confidences. 

3    Unsupervised Segmentation 

Texture images are not appropriate for data- 
driven segmentation. This is so because pixels 
with similar intensity values within a texture 
image are scattered in regular patterns rather 
than they form homogeneous areas by getting 
together within some boundaries. To resolve 
this problem, appropriate filters (eg. Gabor fil- 
ter set) are applied to texture images. Such fil- 
tering helps to convert similar texture patterns 
of an original image to similar feature values of 
a feature image, which is obtained through fil- 
tering with one of filters. Pixels with similar 
feature values are grouped through data-driven 
segmentation. 

Gabor filters [3] are useful to deal with tex- 
ture images characterized by local spatial fre- 
quency and orientation information present in 

(a) Class membership image 

(b) Confidence level image 

Figure 4: Image segmentation results when 
models learned from previous image are ap- 
plied to the next image. 

an image. Gabor filters are obtained through 
a systematic mathematical approach. They 
are normally used for image decomposition and 
are frequency-related. A Gabor function con- 
sists of a sinusoidal plane of particular fre- 
quency and orientation modulated by a two- 
dimensional Gaussian envelope. 

Boundary melting algorithm [5] is employed 
for data-driven segmentation. It helps to de- 
rive accurate separation lines between regions 
and to merge less significant regions. Bound- 
ary melting is more suitable for our application 
because it is using boundary finding techniques 
based on a local gradient operation rather than 
region statistics. Gradient operation simply 
guarantees that area boundaries are preserved 
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Figure 5: Feature image of image 8 obtained 
by using a Gabor filter. 

Figure 6: The segmentation result of image 8 
obtained by using a data-driven segmentation 
technique. 

rather than smoothed. Figure 5 and 6 presents 
a feature image and a result of data-driven seg- 
mentation for it. 

4    Uncertain Reasoning for Fu- 
sion 

An uncertain reasoning approach is applied to 
the fusion of the results from two segmenta- 
tions (i.e. model-based and data-driven). The 
architecture of the hybrid approach for the 
fusion is presented in Figure 7. The results 
from the two segmentations are aligned on top 
of each other. The region boundaries of the 
"fused" image are the same as the ones in 
the data-driven segmentation, since this type 
of segmentation preserves precise boundaries. 

Within precise boundaries, the region annota- 
tions are determined by consideration (uncer- 
tain reasoning) of class memberships and clas- 
sification confidences, of the pixels in those re- 
gions, which are determined from the model- 
based segmented image. The region within the 
boundary is regarded as a homogeneous region, 
which is annotated by a same class. How- 
ever, some of such regions may be annotated 
by two or more different classes. Therefore, 
it is said that the identities of pixels in the 
region are still unknown, and class member- 
ships and confidences of pixels in such regions 
are called uncertain data. The goal of the fu- 
sion is to explore a representative class mem- 
bership of a homogeneous region. For class 
exploration, it is first required that the un- 
certain data should be formalized into eviden- 
tial forms (evidence measurement). The class 
exploration is achieved by an inference of the 
results obtained by combining the formalized 
evidences (Evidence Combination/Inference). 
The two processes are called uncertain reason- 
ing. 

• Evidence measurement - To formalize a 
classification confidence into a piece of evi- 
dence. The evidence is a degree to support 
a certain hypothesis that a pixel (or an ex- 
ample) within a certain region should be 
annotated by a specific class. Pascalian 
gradation of the force of evidence is em- 
ployed to measure the formulized evidence 

[4]- 

• Evidence Combination/Inference - To 
combine efficiently a couple of partial and 
auxiliary evidences and to verify the hy- 
pothesis according to the results through 
evidence combination. Dampster-Shaper 
theory is applied for the evidence combi- 
nation and inference [4]. 

5    Conclusions 

In this paper, we introduced a fusion approach 
by using an uncertain reasoning for adaptive 
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[3] Farrokhnia, Farshid. Multi-channel filter- 
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Figure 7: The architecture of the hybrid ap- 
proach for the fusion. 

object recognition. The fusion is hybrid ap- 
proach to integrate two segmentation tech- 
niques with probability reasoning techniques. 
The hybrid approach complements the feed- 
back analysis for the model modification by 
adding the data-driven segmentation technique 
to cover weaknesses of the model-based seg- 
mentation technique. It is promised that recog- 
nition results of objects under changing per- 
ceptual conditions will be better by the object 
models modified after feedback analysis with 
the cooperation of the hybrid fusion approach. 
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Knowledge Fusion in the Large - taking a cue from the brain 
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Abstract Even the most commonplace cognitive behaviors 
such as vision and language understanding involve large-scale 
fiision of disparate pieces of evidence. Therefore, our capacity 
to rapidly and effortlessly produce coherent interpretations of 
visual and verbal inputs points to the remarkable ability of the 
human mind/brain to fuse evidence. We will discuss a neurally 
motivated computational model that attempts to replicate some 
of this remarkable ability, and illustrate the functioning of the 
model with the help of a few examples. 
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1    Introduction 

Even commonplace cognitive behaviors such as vision 
and language understanding involve large-scale fusion 
of evidence from disparate sources. Consider the task of 
understanding language wherein squiggles on a surface 
or fluctuations in air-pressure are mapped by the reader 
or hearer into coherent mental descriptions of events 
and situations. The process underlying this mapping 
appears to be remarkably complex. It involves, among 
other things, recognizing words, disambiguating word 
senses, incorporating grammatical constraints, and car- 
rying out inferences based on fuzzy and partial knowl- 
edge to establish causal and referential coherence.1 

Any system that attempts to explain our ability to es- 
tablish causal and referential coherence during language 
understanding must possess a number of properties. 
First, such a system must be representationally adequate. 
It must be capable of encoding specific facts as well as 
general regularities (aka rules) that capture the causal 
structure of the environment. In particular, the system 

1 Causal coherence refers to the establishment of causal relation- 
ships among various events mentioned in a discourse. Referential 
coherence involves keeping track of entities referenced in a discourse 
and determining which entities are the same. It is well known that 
inferences required to establish causal and referential coherence occur 
rapidly and automatically during text understanding (see e.g., [6,7,5]). 
The evidence for the automatic occurrence of predictive inferences is 
mixed, but their occurrence cannot be ruled out [9]. 

should be capable of encoding context-dependent and 
evidential cause-effect relationships. Second, the sys- 
tem should be inferentially adequate, that is, it should 
be capable of drawing a wide range of explanatory and 
predictive inferences. In doing so, the system should be 
able to combine evidence provided by disparate sources 
and arriving at coherent and mutually reinforcing inter- 
pretations. Third, the system should be capable of es- 
tablishing referential coherence. In particular, it should 
be able to posit the existence of entities that may be only 
implicit in the "input" ("John bought a book" implies 
the existence of an entity that sold the book to John) 
and unify (or merge) entities by recognizing that two 
entities referred to in a discourse may be one and the 
same. Fourth, the system should be capable of learning 
and fine-tuning its causal model based on experience, 
instruction, and exploration. Finally, the system should 
be scalable and computationally effective. 

In this paper we describe a neurally motivated sys- 
tem that exhibits — at least to a certain extent — the 
properties enumerated above. This system is an exten- 
sion of SHRUTI [11]. It can express causal knowledge 
involving n-place relations, limited quantification, and 
type restrictions. It can encode specific events as well 
as context-sensitive priors over events. It expresses dy- 
namic bindings via the synchronous firing of appropriate 
node clusters and performs inferences via the propaga- 
tion of rhythmic activity over node clusters. This prop- 
agation amounts to a parallel breadth first activation 
of the underlying causal graph, and hence, the reason- 
ing in SHRUTI is extremely fast. The use of weighted 
links and activation combination functions at nodes al- 
low SHRUTI to encode soft rules and perform evidential 
inference. SHRUTI supports supervised learning which 
allows it to fine-tune its causal model in a data-driven 
manner. Moreover, SHRUTI supports short-term asso- 
ciative learning which allows it to dynamically favor 
stable coalitions of activity. The latter plays a critical 
role in establishing coherence. In this paper we focus 
on the ability of SHRUTI to (i) rapidly establish causal 
and referential coherence and (ii) combine evidence in 
a flexible and context-dependent manner using a family 
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of evidence combination functions. Other details may 
be found in [11, 10]. 

2   Representational Overview 

To motivate and concretize the description of 
SHRUTl's behavior consider the following narrative: 
"(SI) John fell in the hallway. (S2) Tom had cleaned 
it. (S3) He got hurt." Upon being presented with the 
above narrative (we will see how below) SHRUTI rapidly 
infers the following: (i) Tom had cleaned the hallway, 
(ii) The hallway floor was wet, (iii) John was walking in 
the hallway, (iv) John slipped and fell because the floor 
was wet, and (v) John got hurt because he fell. Notice 
that SHRUTI draws several inferences required to estab- 
lish referential and causal coherence. It explains John's 
fall by making the plausible inference that John was 
walking in the hallway and he slipped because the floor 
was wet. It also infers that John got hurt because of the 
fall. Moreover, it determines that "it" in (S2) refers to 
the hallway, and that "He" in (S3) refers to John, and not 
to Tom. SHRUTI draws these inferences based on com- 
monsense knowledge such as that shown in Figure 1, as 
well as several additional commonsense rules and facts 
about cleaning, wet floors, and being hurt. 

2.1   Interplay of structure and dynamics 

A description of SHRUTI requires the specification of its 
structure as well as a description of its dynamic behav- 
ior. All long-term (persistent) knowledge is encoded 
in SHRUTI via structured networks of nodes and links. 
The dynamic aspects of SHRUTI involve the encoding 
and propagation of dynamic bindings via synchronous 
activity, the activation of long-term facts in response to 
dynamic bindings, evidence combination, the dynamic 
instantiation and unification of entities, the short-term 
increase (potentiation) of weights due to convergent ac- 
tivity, and the emergence of coherence in the form of 
reverberant activity along closed loops. 

2.1.1    Encoding Relations Using Focal Clusters 

Each relation is represented by a focal cluster depicted 
by a dotted ellipse in Figure 1. Consider the focal cluster 
for slip. This cluster includes an enabler node labeled 
?:slip, two collector nodes labeled +:slip and -:slip, and 
two role nodes labeled slip-pat and slip-loc for its two 
roles patient and location. In general, the cluster for 
an n-place relation will contain n role nodes, with the 
synchronized activity of each indicating a particular role 
binding (as described below). 

Activity in ?:slip indicates the strength with which 
information about the particular instance of the slip re- 

lation is sought. The activation levels of the collectors 
+:slip and -.slip encode a graded belief ranging contin- 
uously from no on the one extreme (only -:slip is active), 
to yes on the other (only +:slip is active), and don 'tknow 
in between (neither collector is very active). If both the 
collectors receive comparable and strong activation then 
both collectors can be active, despite mutual inhibition. 
This signals a contradiction. 

Links from the collector nodes to the»enabler node of 
a relation convert a dynamic assertion of a relational in- 
stance into a query about the assertion. Thus the system 
continually seeks an explanation for active assertions. 
The weight on the link from +:slip (-:slip) to ?:slip is 
proportional to the system's propensity for seeking ex- 
planations and inversely proportional to the probability 
of occurrence of a positive (negative) instance of slip. 

Nodes are computational abstractions and correspond 
to small ensembles of cells, and a connection between 
nodes corresponds to several connections from cells in 
one ensemble to cells in the other. Phasic nodes, of 
which role nodes are an example, respond only to syn- 
chronous activity and fire only in synchrony with their 
inputs. Enabler and collector nodes, however, can inte- 
grate activity over a broader time window (see [10]). 

The dynamic encoding of a relational instance cor- 
responds to a rhythmic pattern of activity wherein 
bindings between roles and entities are represented by 
the synchronous firing of appropriate role and entity 
nodes [12, 11] With reference to Figure 1, the dynamic 
representation of the relational instance (fall: ifall- 
pat=John), (fall-loc=Hallway)) (i.e., "John fell in the 
Hallway") will involve the synchronous firing of +:John 
and fall-pat, and the synchronous firing of +:Hallway 
and fall-loc. The entities +:John and +:Hallway will 
fire in distinct phases. 

SHRUTI encodes two types of facts in its long-term 
memory: episodic facts (E-Facts) and taxon facts (T- 
facts). These facts provide closure between the enabler 
node and the collector nodes. While an E-fact corre- 
sponds to a specific instance of a relation, a T-fact corre- 
sponds to a distillation or statistical summary of various 
instances of a relation and can be viewed as coding prior 
probabilities. T-facts can be conditioned on the type 
of role-fillers (e.g., the T-fact buy(Person.Car) encodes 
how likely it is that a person would buy a car). 

2.1.2    Encoding of Types and Instances 

This is illustrated at the right of Figure 1. The focal 
cluster of each entity, A consists of a ?:A and a +:A node. 
In contrast, the focal cluster of each type, T consists of 
a pair of ? (?e:T and ?v:T) and a pair of + nodes 
(+e:T and +v:7). The pair of v nodes and the pair of 
e nodes signify universal and existential quantification, 
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Figure 1: An example SHRUTI network encoding a subset of the knowledge base for the "John fell" example. 

respectively. The activation levels of ?:A, ?v:T, and 
?e:Tnodes signify the strength with which information 
about entity A, the type T, and an instance of type T, 
respectively, is being sought. Similarly, the activation 
levels of +:A, +v:T, and +e.Tsignify the degree of belief 
that A, T, and an instance of type T, respectively, play 
appropriate roles in the current situation. 

2.1.3    Encoding of Rules 

A rule is encoded via a mediator focal cluster (shown as 
a parallelogram) that mediates the flow of activity be- 
tween the antecedent and the consequent clusters. The 
mediator consists of a collector and an enabler node and 
as many role-instantiation nodes as there are distinct 
variables in the rule. The enablers of the consequent 
relations are connected to the enablers of the antecedent 
relations via the enabler of the mediator. The appropri- 
ate (+/-) collectors of the antecedent relations are linked 
to the appropriate (+/-) collectors of the consequent re- 
lations via the collector of the mediator. Each of these 
enabler and collector links for a rule has a weight which 
can be specified by a knowledge engineer and/or learned 
via supervised learning. The roles of the consequent re- 
lations are linked to the roles of the antecedent relations 
via appropriate role-instantiation nodes in the media- 
tor. This linking reflects the correspondence between 
antecedent and consequent roles specified by the rule. 

If a role-instantiation node receives activation from 
one or more consequent role nodes, it simply propagates 
the activity onward to the connected antecedent role 
nodes. If on the other hand, it receives activity only from 
the mediator enabler, it sends activity to the ?:e node 
of the type specified in the rule as the type restriction 
for this role. This causes the ?:e node of this type to 
become active in an unoccupied phase. The ?:e node 
of the type conveys activity in this phase to the role- 

instantiation node which in turn propagates this activity 
to connected antecedent role nodes. This interaction 
between the mediator and the type hierarchy, in effect, 
creates activity corresponding to "Does there exist some 
role filler of the specified type?" 

2.1.4    Mutual Exclusion and Collapsing of Phases 

Entities in the type hierarchy can be part of a phase-level 
mutual exclusion cluster (p-mex cluster). The + node 
of every entity in a p-mex cluster has inhibitory links to 
and from the + node of all other entities in the cluster. 
As a result of the mutual inhibition, only the most active 
entity within a p-mex cluster can remain active in any 
given phase. A similar p-mex cluster can be formed by 
mutually exclusive types. Mutual exclusion also occurs 
in the type hierarchy as a result of inhibitory connections 
from the + nodes of a type (or an entity) to the ? nodes 
of all its siblings. This inhibition leads to an "explaining 
away" phenomenon. If for example, the type query "Is 
it a Person?" (i.e., activation of ?e:person) leads to the 
queries "Is it a Man?" and "Is it a Woman?", then strong 
support received by +e: Woman reduces the strength of 
the query ?e:Man. In essence, the query "Is it a Man?" 
is no longer considered important by the system since it 
was seeking a person and it has already found a woman. 

SHRUTI allows separate phases to coalesce into a 
single phase, or new phases to emerge, as a result of 
inference.   The latter is realized by the allocation of 
new phases resulting from the interaction between role- 
instantiation nodes in mediators and the type hierarchy. 
The unification of phases is realized in the current im- 
plementation by collapsing of phases based on activity 
within an entity cluster or within a focal cluster. In the 
first case, phase collapsing occurs whenever a single en- 
tity dominates multiple phases (for example if the same 
entity comes to be the answer to multiple queries). In 
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the second case, phase collapse occurs if two unifiable 
instantiations of a relation arise within a focal cluster. 
For example, an assertion +:fall(John,Hallway) along- 
side the query 3 x:man ?:fall(x,Hallway) (Did a man 
fall in the Hallway) will result in a merging of the two 
phases for "a man" and "John". 

SHRUTl's ability to flexibly instantiate entities 
and collapse them into a single entity during 
inference is due to its use of temporal syn- 
chrony to represent dynamic bindings. 

2.1.5 Short-term Potentiation 

If ?:P, the enabler node of P receives activity from a me- 
diator enabler node and concurrent activity from one of 
P's collector nodes, then the weight of the link from the 
mediator enabler to ?:P increases for a short-duration.2 

With reference to the "John fell" example, this increase 
in weight has the following functional significance (re- 
fer to Figure 1): The activation arriving at ?:slip from 
?:medl means that "John slipped" is being sought as 
a possible explanation of "John fell". The concurrent 
arrival of activity from +:slip would mean that at this 
very time "John slipped" is also being asserted. Un- 
der these circumstances, it is highly likely that "John 
slipped" may indeed be the explanation of "John fell". 
The increase in weight of the link from ?:medl to ?:slip 
marks slip as a more likely explanation for fall under the 
existing circumstances. 

If +:P (-:P) receives activity from one of its T-facts 
and concurrent activity from a mediator collector node, 
then the weights of the links from the mediator collector 
to +:P (-:P) and from the active T-facts to +:P (-:P) in- 
crease for a short-duration. With reference to the "John 
fell" example, this increase in weights has the following 
functional significance (refer to Figure 1): The activa- 
tion arriving from +:medl at +:fall means that "John 
fell" is being predicted as a possible consequence of 
"John slipped". The concurrent arrival of activity at 
+:fall from ?:fall (via a T-fact) would mean that at this 
very time "John fell" is also being sought as a possible 
explanation of some event (this is why ?:fall is active). 
Under these circumstances, it is highly likely that the 
event "John fell" actually occurred and is an effect of 
"John slipped". The increase in weight of the link from 
?:medl to +:fall marks fall as a more likely effect of 
slip under the existing circumstances. 

2.1.6 "Explaining away" in the Causal Model 

A "explaining away" phenomena also occurs in the 
causal model as a result of inhibitory connections be- 

300 
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Figure 2: The activation trace of collector nodes +:slip 
and +:trip during the processing of the "John fell" story. 
X-axis records the number of cycles. Each cycle may 
correspond to ~50-100 msecs. 

tween rules which share the same consequent. For the 
structure shown in Figure 1, there is for example an in- 
hibitory link (not shown) from +:medl to the link from 
?:fall to ?:med2. As a result, a strong activation of +:slip 
reduces the activation flowing from ?:fall'm\.o ?:trip. In 
essence, if the system is seeking an explanation for fall, 
then a strong belief in slipping is taken to be a sufficient 
explanation of falling, and hence, the search for tripping 
acquires lesser significance.3 

Taken together, the short-term associative in- 
crease in weights and the inhibitory interac- 
tions leading to the explaining away phenom- 
ena, provide a powerful and neurally plausible 
mechanism that enable SHRUTI to prefer co- 
herent explanations over non-coherent ones. 

3    Simulation Result 

The activation trace resulting from the processing of 
the "John fell" story is shown in Figures 2 and 3. Fig- 
ure 2 shows the actual activation levels of the +:slip 
and +:trip nodes as the story is processed by SHRUTI. 
Figure 3 depicts the activation trace of a larger subset of 
nodes. The depiction in this figure, however, has been 
simplified to highlight key aspects of the network be- 
havior. In particular, several nodes have been omitted, 
some intermediate cycles have been omitted and the ac- 
tivation levels of collector and enabler nodes have been 
discretized to four levels. Please note that due to sim- 
plifications made to Figure 3, the time scales along the 
x-axis in Figures 2 and 3 are not the same. To minimize 
confusion, we will refer to the times in Figure 2 as cycles 
and in Figure 3 as steps. 

A sentence is conveyed to SHRUTI by activating the 

2This is modeled after the biological phenomena of short-term 
potentiation (STP) [2]. 

3 The use of inhibitory connections for explaining away is moti- 
vated in part by [1]. 
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+ node of the appropriate relation and establishing role- 
entity bindings by the synchronous activation of the 
appropriate role and entity nodes. The sentences are 
presented in sequence and after each sentence presenta- 
tion, the network is allowed to propagate activity for a 
fixed number of cycles. For example, the first sentence 
(SI) is communicated to SHRUTI in step 1 (cycle 0) by 
activating the node +:fall, the nodes/a//-/?af and +:John 
in synchrony, and the nodes fall-loc and +:Hallway in 
synchrony. The firing of nodes +John and +:Hallway 
occupy distinct phases —p\ and p2, respectively. 

Activation from the focal cluster for fall reaches the 
mediator structures of rules (1) and (2) shown in Fig- 
ure 1. Consequently, nodes rl and r2 in the mediator 
for rule (1) become active in phases p\ and p2, respec- 
tively. Similarly, nodes si and s2 in the mediator of 
rule (2) become active in phases p\ and />2, respectively. 
At the same time, the activation from +:fall activates 
?:fall which in turn activates the enablers ?:medl and 
?:med2 (the activity of mediator nodes, and role nodes 
of slip and trip is not depicted in Figure 3). The acti- 
vation from nodes rl and r2 reaches the roles slip-pat 
and slip-loc in the slip focal cluster, respectively. Ac- 
tivation also reaches trip-pat and trip-loc. In essence, 
the system has created new bindings for the slip and 
trip relations. These bindings together with the activa- 
tion of the nodes ?:slip and ?:trip encode two queries: 
"Did John slip in the hallway?", and "Did John trip 
in the hallway?". At the same time, activation travels 
in the type hierarchy and activates the nodes ?v:Man, 
then ?v:Person, and then ?v:Agent in phase p\, and the 
?v:Location node in phase pi. The coincident activity of 
slip-pat and ?v:Agent node, and the coincident activity 
of the slip-loc and ?v:Location nodes leads to the firing 
of the T-fact Fl associated with slip. The activation of 
Fl causes activation from ?:slip to flow to +:slip. The 
T-fact F2 associated with trip also becomes active in an 
analogous manner and conveys activation from ?:trip to 
+:trip. The level of these activations is a measure of 
the prior probabilities that a person may slip or trip. At 
this time, "John tripped" is believed to be a more likely 
explanation of "John fell" than "John slipped." 

While the activation spreads "backwards" from the 
fall focal cluster as described above, activation also trav- 
els "forwards" to the hurt focal-cluster (not shown in 
Figure 1) and leads to the prediction that John got hurt. 

The introduction of sentence S2 in step 6 (Fig- 
ure 3) (cycle 40 Figure 2) results in the instantiation 
of clean with the bindings ((clean-agt=+:Tom), and 
(clean-loc=+e:Location)). As a result, Tom gets active 
in phase p^ and +e:Location in phase p$. Note that now 
we have two instantiations of a location. The second 
instantiation gets merged with the first (Hallway) as a 
result of phase merging described in Section 2.1.4. This 

happens in step 8 (see activity of +e:location in Fig- 
ure 3). At this time, +:wetFloor also becomes active as 
a result of activity arriving from +:clean via the media- 
tor of the rule "cleaning leads to a wet floor" (not shown 
in Figure 1). By step 10 (Figure 3) +:slip becomes more 
active as a result of the high activation of +:wetFloor. 
The effect of "explaining away" kicks in and causes the 
activation of +:trip to go down by step 12. The strength 
of +:slip increases even further due to (i) the potenti- 
ation of links from the mediator for the rule "walking 
on a wet floor may cause slipping" (not shown in Fig- 
ure 1), (ii) the potentiation of the link from ?:medl to 
?:slip, and (iii) the effect of explaining away. The effect 
of these changes on the activation levels of +:slip and 
+:trip may be seen more vividly in the detailed trace 
shown in Figure 2.4 

S3 is introduced in step 14 (cycle 80) with the binding 
((hurt-pat-+e:Man)). This leads to +e:Man becoming 
active in phase p4 and a second dynamic instantiation 
of hurt (in addition to the earlier instantiation resulting 
from the inference hurt(John)). These two instantiations 
get merged immediately, and phase pA gets merged with 
p\ (John) in step 15 as a result of the phase merging 
described in Section 2.1. 

4   Evidence combination 

The problem of evidence combination arises even in 
the limited example discussed above. This probolem, 
however, can become far more complex in real-world 
situations. It becomes apparent as the system is used to 
model increasingly complicated domains that there is a 
need for a significant degree of flexibility in the manner 
in which evidential values are combined. 

There are many places in SHRUTI where activity 
converging on a node from different sources must be 
combined to determine an output value for the node. 
The combination of collector activity from multiple an- 
tecedents and also across multiple rules, and of enabler 
activity from multiple consequents and multiple rules, ' 
are prime examples of this. At the locations where ev- 
idence from facts is incorporated, in the influence of 
collector activity on an enabler node, and in propaga- 
tion of activity through the type hierarchy, as well as in 
a number of other situations, evidence combination is 
also being performed. 

Evidence combination in SHRUTI takes the form of 
a set of evidence combination functions, or ECFs. At 
each point in the network where evidence must be com- 
bined, a particular ECF is chosen. In selecting the range 

4 If sentence S2 were delayed, the activity in slip would lead to 
the instantiation of an instance of clean with an entity of type agent 
being instantiated as a potential filler of the role clean-agt. This entity, 
however, would get unified with Tom upon the introduction of S2. 
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values is generally straightforward, and these two cat- 
egories are prime candidates for evidence combination 
functions in SHRUTI. 

In neural networks, greater representational com- 
plexity is achieved by adding more and more nodes 
and interconnections, keeping the combination function 
at the nodes very simple. The commonest form of ev- 
idence combination in this context is the sigmoid-sum; 
this function has a number of properties which make it 
appealing for use in neural nets. Although other func- 
tions can certainly be used as well, it would not make 
sense with a standard neural net to pick and choose par- 
ticular functions for particular nodes, since the nodes 
have no special meaning. In a structured connectionist 
system like SHRUTI, however, nodes are meaningful and 
the network structure is relatively fixed, so it is useful to 
push more flexibility into the combination functions than 
is either necessary or possible in standard neural nets. 
Belief nets also utilize a form of evidence combination, 
found in the conditional probability tables associated 
with each node. In the case of a full CPT, the flexibility 
of combination is high but so are the storage and com- 
putational demands. The often used noisy-OR function 
[8] reduces these demands but when used universally, 
as is often the case, is overly restrictive. Other means 
of reducing complexity of the CPT, such as encoding it 
with a tree structure, demonstrate a different approach 
to evidence combination than that envisioned here [4]. 

Figure 3:    Schematized activation trace of selected 
nodes. 

of functions, the goal was to have a set large enough 
to adequately model real-world data, but small enough 
such that the choice between functions for a particular 
situation is relatively simple. Moreover, these functions 
should be computationally simple, or at least decom- 
posable into very simple parts, such that the biological 
plausibility of the system is not sacrificed. The set of 
functions developed is not intended to cover all possible 
relations, but instead to be sufficiently flexible so as to 
capture the vast majority of practical situations. 

4.1    Background 

An obvious source of inspiration for this undertaking is 
fuzzy logic, where a multitude of functions have been 
developed to combine fuzzy membership values in dif- 
ferent ways [13]. Of particular note are the classes of 
binary operators known as T-norms and S-norms. These 
represent, respectively, general forms of fuzzy set inter- 
section and union. The extension of T-norm and S-norm 
operators to handle combination of multiple evidence 

4.2   Combination Functions 

The combination functions developed for SHRUTI can 
be thought of as forming a continuum, with and at one 
end and or at the other. In between these two extremes 
are four basic categories of functions: soft-and (with 
values up to min), sofi-min (ranging from min to av- 
erage), sofl-max (ranging from average to max), and 
sofi-or (ranging from max and up). Although specific 
functions have been chosen to represent each of these 
categories, many of the functions developed for fuzzy 
logic could be used here. As a general rule, antecedents 
or consequents which are correlated will be combined 
into a single multiple-antecedent or multiple-consequent 
rule in SHRUTI, whereas uncorrelated factors will reside 
in separate rules. This means that for the former case, 
evidence combination functions should allow for this 
correlation, while in the latter assumptions of indepen- 
dence are usually justified. It is proposed that most 
meaningful combinations of evidence can be character- 
ized as belonging to one of these four basic categories, 
on the basis of the necessity or sufficiency and also de- 
gree of correlation of their inputs. 

Link weights can play an important and context- 
dependent role in many of these functions. The standard 
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use of link weights is to multiply them with the input 
values prior to doing evidence combination. However, 
instead of simply affecting values before they are com- 
bined, weights can also be used as additional function 
parameters, with different interpretation for different 
functions. The use of link weights in this manner, elabo- 
rated for each of the ECFs below, provides a significant 
degree of flexibility in the kinds of relations that can 
be represented. While this use of link weights appears 
to run counter to biological intuitions, it is possible to 
replace each of the so-weighted combination functions 
with an expanded network which involves only very 
simple combinations and which employs link weights 
in a more standard manner. 

4.2.1    Soft-And and Soft-Or 

At one end of the spectrum of functions are the and- 
like functions, corresponding to the T-norms of fuzzy 
logic, which are appropriate for combining eviden- 
tial values which are deemed necessary.    The basic 
weighted and is calculated as Ylii^ ~ 0 ~" Xi)W{) 
(where X{  is the evidential value and  Wi  is the 
weight for the z'th incoming link).    This and func- 
tion is most appropriate for combining independent 
sources of evidence,  such as in the following ex- 
ample rule:   Vw,x-Person, y:Object[AND(canSell(x,y) 
1000,wants(w,y) 800) => sells(x,w,y) 500] where both a 
potential seller's ability to sell and a potential buyer's de- 
sire to buy are necessary and independent prerequisites 
of a sale actually taking place.  The collector node of 
the mediator for this rule, which combines activity from 
the antecedents canSell and wants, will utilize the and 
function. The weight of 500 specified for the consequent 
means this can only be concluded with half of the maxi- 
mum possible strength. With the independence assump- 
tion relaxed, assuming instead that combined values are 
positively correlated, a soft-and function is appropriate 
which has a value greater than the product-based and. 
The function chosen for this purpose is the and(X)/or(X) 
function which is similar to the Hamacher product T- 
normH(x,y) = xy/(w + (l — w)(x + y — xy)) (where 
w is a weight in [0,1 ]) generalized to n variables [3]. The 
utilization of link weights brings another dimension to 
the standard and function. Since the main characteristic 
of the and is that combined values are regarded as nec- 
essary, an obvious interpretation for the link weights is 
that they reflect the degree of necessity. In probabilistic 
terms, this would be the probability that the consequent 
is false given that the antecedent is false. This means 
that lower link weights on the and function generally 
result in higher output values. While this fact may be 
counterintuitive when considering the network behavior, 
assignment of degrees of necessity seems quite practical 

Figure 4: Graph of a weighted and function with an- 
tecedent weights of 1.0 and 0.6. 

from a knowledge engineering standpoint, and makes 
the simple and function remarkably flexible. In the 
above example, the interpretation is that while canSell 
is absolutely necessary in order to draw any conclusion 
about a sale taking place, wants is not. 

Shown above is a graph of a weighted and function 
with two antecedents of weights 1.0 and 0.6 (see Figure 
2). The relative importance of the first value is seen in 
that the function value changes slowly while traveling 
along the near axis, but rapidly when traveling along the 
far axis. 

At the other end of the spectrum is the weighted or, 
given as (1 - fj^l - X{ * Wi)). Or-like functions, 
which can be thought of as those having output values at 
least equal to the maximum input, are used when there 
is a notion of sufficiency of individual antecedents to 
affect the consequent. These correspond roughly to the 
S-norms of fuzzy logic, and many of these fuzzy op- 
erators might be adapted to the task. Or is the most 
commonly used function for combining activity from 
different rules that converge on a particular concept. As 
or assumes that antecedents are independent, a soft-or 
(the complement of the soft-and) is provided to han- 
dle cases where antecedents are correlated. This is in 
particular the function of choice for combining enabler 
activity from multiple consequents, which are most cer- 
tainly correlated. The general requirement for soft-or 
is that its value be less than the or but still greater than 
the max. The natural interpretation of link weights for 
or-like functions is that they represent the degree of suf- 
ficiency of the source concept - the probability of the 
consequent given only the particular antecedent. 

4.2.2    Weighted Averages: Soft-min and Soft-max 

Covering the range between min and max are the 
weighted averages. Weighted averages are appropri- 
ate when individual antecedents are neither necessary 
nor sufficient. For all of these functions the link weights 
represent degrees of influence, giving the relative ef- 
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feet of an antecedent value on the output. There are 
two main functions in this class: the sofl-min func- 

tion ((£,- X?Wi)/(Zi Wi))l/k for k G (0,1), and the 
soft-max function with k G (1, oo). It should be noted 
that min and max are the limits of the given soft-min 
and soft-max functions, as k —► 0 and k —► oo, re- 
spectively, so this whole range from min to max is re- 
ally only one functional form with a varying parameter. 
Soft-min is used when it is necessary that most of the 
evidence for the antecedents be available in order to 
conclude the consequent, but unlike and no single piece 
is required. Combining evidence about the symptoms 
associated with a particular syndrome is a place where 
soft-min can be appropriate. A syndrome is a specific set 
of co-occurring symptoms and so in deciding whether a 
particular syndrome is present, lack of evidence for one 
of the particular symptoms should weigh heavily against 
a positive conclusion. But it should still be possible to 
conclude that a syndrome is present even if evidence for 
one of its symptoms is absent, so any and-\ike function 
would not be quite appropriate and soft-min is the func- 
tion of choice. With soft-max, only a fraction of the 
potential evidence is sufficient to lead to strong activ- 
ity in the consequent, but unlike or no single piece is 
alone enough. The following rule provides a reasonable 
example usage of soft-max: 
Vx:Person[SOFTMAX(tall(x) 500, athletic(x) 800, prac- 
ticeDaily(x,Basketball)) =$> goodAt(x,Basketball)] 
Here each factor can contribute significantly to the re- 
sult, but none is really sufficient to draw much of a 
conclusion absent some other support. 

5   Conclusion 

We have discussed how causal and referential coherence 
can arise within a neurally plausible system as a result of 
spontaneous activity in a network. The network's struc- 
ture reflects the causal model of the environment and 
when the nodes in the network are activated to reflect a 
given state of affairs, the network spontaneously com- 
bines evidence, seeks coherent explanations, and makes 
likely predictions. The time taken to perform an infer- 
ence is simply proportional to the depth of the causal 
derivation and is otherwise independent of the size of 
the causal model. The state of coherence is reflected 
as reverberation around closed loops. The reverber- 
ating pattern of rhythmic activity also codes dynamic 
bindings via synchronous activity. Coherence arises in 
SHRUTI as a result of (i) flexible evidence combination, 
(ii) inhibitory interactions among sibling entities, types 
and rules, (iii) short-term increase in link weights result- 
ing from short-term potentiation, and (iv) the dynamic 
merging and instantiation of entities. 
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Abstract - Attaching storage devices to the network 
provides direct transfer between clients and storage. This 
new distributed storage architecture model has a potential 
to offer high bandwidth, low latency, scalability, and 
availability of storage to clients as well as multiple servers. 
Realizing this new technology require careful consideration 
in the design of the storage devices, the choice of a network 
technology, and the design of the high-level file system. 
Moreover, promoting the storage devices from I/O 
peripherals to network peripherals imposes new security 
concerns. This paper describes the performance gain of this 
new storage architecture as well as the design and security 
issues involved. A brief survey of the current research is 
also presented. 

Key Words: Storage Area Network, Network Attached 
Storage, Network Security, File system, Distributed 
Systems. 

1.   Introduction 
Data sharing between a working group is a 
fundamental aspect of today's organizations. 
Typically, the working group has a number of 
workstations connected by a local area network such 
as Ethernet, FDDI, or ATM. One or more 
workstations have large-capacity storage devices 
attached to them and are dedicated for the storage and 
retrieval of data that need to be shared. These 
dedicated workstations are called servers; the other 
workstations, which are majority, are called clients. 
The storage devices are attached to the server by an 
I/O bus such as SCSI as illustrated in Figure 1. 

Server 

Storage devices 

Figure 1: Server Attached Storage. 

Typically, the data is represented as files, and a 
distributed file system, such as NFS (Network File 

System) [20] or AFS (Andrew File system) [21], 
abstracts the distributed files into a common file 
system for the applications running on the client 
machines. The distributed file system provides access 
to the remote files by sending requests to a file server. 
All data travelling between clients and storage devices 
must be stored and forwarded by the server which 
frequently gets overloaded and becomes a bottleneck 
limiting thus the data bandwidth offered to the clients. 
The problem aggravates as the size of the transferred 
data increases which is the case for many I/O bound 
applications such as multimedia or data mining 
applications [2]. 

Although, the server attached storage architecture, 
described above and shown in Figure 1, is the most 
common architecture in today's offices and campuses, 
it limits the performance and availability of the system 
to the server's I/O channel capacity and load. 

The key to decreasing the server workload and thus 
increasing the effective bandwidth offered to the 
clients is to have direct transfer between clients and 
storage, at least for large data sets. This requires 
attaching the storage devices directly to the network as 
illustrated in Figure 2. In this architecture, a storage 
device is promoted from an I/O peripheral to a 
network peripheral. The architectural model is 
generally referred to as the Storage Area Network or 
SAN. We call the storage devices in question the SAN 
devices. 

/,,,    A Server 

Storage devices 

Figure 2: Network Attached Storage. 

Direct transfer between clients and storage improves 
scalability, that is, the bandwidth linearly increases by 
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increasing the number of clients and storage devices, 
up to the limit of the bandwidth of the network, not 
the limit of server architecture. Scalability can be 
further improved through data striping which is now 
easier and cheaper to implement over storage instead 
of servers. 

However, exposing the storage devices on the network 
introduces new security risks not encountered when 
storage was connected to a trusted file server through 
a private bus like SCSI. 

To realize this storage architecture, the following 
issues must be considered: 
1. The design of the network-attached storage device 

and the functionality that the device should 
provide. 

2. The selection of a network capable of carrying the 
high bandwidth gained by this new storage 
architecture. 

3. The distributed file system. The file system 
services need to be repartitioned between storage 
devices, clients, and servers. The file system must 
be efficient enough to pass the increased gain in 
bandwidth all the way to the clients' applications. 

The design aspects of SAN devices are presented in 
section 2; the different networking options available 
for SAN are described in section 3. Section 4 and 5 
discuss the file system and security issues for SAN 
respectively. Section 6 discusses how to extend the 
functionality of storage devices through 
programmability for supporting certain applications. 
Section 7 concludes this paper. 

2.   SAN Device 
Externalizing a storage device from a server and 
directly exposing it on the network imposes new 
functionality on the storage device such as how to 
communicate with a requester, what operations to 
provide to the requester, etc. This new functionality 
can be categorized as follows: 

• Communication: Being directly connected to the 
network, a SAN device must support a communication 
protocol to communicate with clients and servers. The 
NASD project at CMU used RPC over UDP/IP for 
their prototype. Their results showed that 90-97% of 
the time spent in reading/writing 64 KB of data was 
spent in communications [1]. A light-weight 
communication mechanism is definitely needed for 
SAN. This issue is still under research. The Netstation 
project at USC favors Internet protocols 
(TCP/UDP/IP)   for   Network-Attached   peripherals 

because of their support for heterogeneous networks 
and high-connectivity [4]. 

• Self-Management: Achieving self-management 
on storage devices is important for scalability issues. 
Traditionally, storage devices are block-addressable. 
Their storage space is represented as an ordered set of 
fixed-length data blocks called sectors and it is the up 
to the file system to manage the fixed-length blocks. 
SAN devices take the responsibility of self- 
management by abstracting their internal organization 
into variable-length objects [1,3]. An object on such a 
storage device consists of an ordered set of sectors 
associated with a unique identifier. Data is referenced 
by the identifier to the object and an offset. An object 
also has a set of attributes associated with it. The 
Storage System Program at HPL works on achieving 
Quality-of-Service (QoS) by associating an object 
with QoS attributes such as capacity, performance 
capabilities, and a set of availability and reliability 
metrics to satisfy QoS requirements of the application 
workload [6]. 

• Operational: SAN Devices must provide an 
interface to process requests such as read data, write 
data, set an object attribute, etc. They can also provide 
richer retrieve/store semantics beyond simple 
read/write such as compressed/decompressed 
write/read operations [7], atomic transactions, and 
lock management (for concurrency) [6]. 

• Access Control: Since traditional storage devices 
are privately connected to a server, they execute every 
command they receive without worrying about any 
authorization. However, SAN devices must decide if a 
request for an operation should be granted or denied. 
It is the high-level file system that defines the access- 
right policy. 
When a client request to perform an operation, two 
actions must be taken: access decision and 
enforcement of the decision. It is important to 
differentiate between the two actions because they can 
be done by two different entities as in the NASD 
project at CMU which introduced the concept of 
"Asynchronous Oversight" where access decisions are 
made once by a server and are asynchronously 
enforced by the drives [1]. 

• Network Security: Networks are inherently 
insecure. An adversary can eavesdrop, modify, or fake 
a request or a response. The concerns about security 
are well known to programmers of distributed 
systems, but not common issues for designers of I/O 
peripherals. SAN devices must provide cryptographic 
capabilities for privacy, authentication, and integrity. 
Secret keys used by the cryptographic algorithm must 
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be safely stored on the drives on a tamper-resistant 
hardware. Software implementations of cryptographic 
algorithms are prohibitive. The best solution is to add 
a secure coprocessor on the drive that can perform the 
cryptographic operations at an adequate speed, 
preserving thus the offered bandwidth, and can also 
encapsulate the cryptographic keys [9]. More details 
on access control and security can be found in section 
4. 

It is better to design the storage device such that it 
offers a fixed interface independent of a file system. 
This gives users the freedom to select a filesystem that 
best suit their applications and allows the storage 
device and filesystem to evolve independently [8]. 

3.   Storage Area Network 
The choice of a network technology is critical to the 
performance of the network attached storage 
architecture. The architectural model of SAN is 
somewhat independent to the physical layer and the 
link layer of the network. In general the network 
should satisfy SAN's requirements on bandwidth, 
latency and reliability [10,11,12,13]. 

SAN has the following components: SAN-interfaces, 
SAN-interconnects, and SAN-fabrics [11]. SAN- 
interfaces are generally ESCON, SCSI, HIPPI, or 
Fibre Channel. Like LANs and WANs, SAN- 
interconnects have routers, hubs, switches, and 
gateways. The most common SAN-fabrics are 
Switched SCSI, Fibre Channel Switched, and 
Switched SSA. SAN interconnects link SAN 
interfaces to SAN fabrics as shown in Figure 3. 

Workstations 

Storage 

Interconnects Interconnects 
Fabrics 

Figure 3: Components of a SAN Network. 

Among the different SAN interfaces, the best fit for 
network attached storage is Fibre Channel because of 
its three desirable features: speed, distance, and 
connectivity. The current Fibre channel operates at a 

transfer rate of 1 Gigabits/s and can span up to 10km 
distance with single mode fibre. [12]. 

Fibre Channel offers a single standard interface 
capable of simultaneously, supporting both data 
channel and network connections. Fibre Channel can 
be used to carry a number of data channels and 
network protocols such as ATM (Asynchronous 
Transfer Mode), FDDI (Fibre Distributed Data 
Interface), Ethernet, HIPPI (High Performance 
Parallel Interface), SCSI and IPI over a single medium 
and with the same hardware connection [13]. 

4.  Distributed File systems and 
Storage Area Network 

Widely used distributed file systems such as AFS [21] 
and NFS [20] were designed mainly for the server- 
attached storage architecture described in section 1. 
However, as the SAN technology gets increasingly 
omnipresent, it becomes reasonable to consider 
distributed file systems that exploit the network- 
attached storage architecture and address new issues 
such as synchronization and parallelism and provide 
better availability and scalability. 

Distributed file systems that allow direct data transfer 
between clients and storage devices and allow the data 
on the storage device to be shared by more than one 
client are broadly called Shared File Systems [18]. 

Shared file systems that allow large files to be striped 
into subfiles on several storage devices and allow 
parallel scattering and gathering of files are called 
Parallel File Systems (PFS). 

The design of shared file systems may differ in many 
aspects: 

• Inclusion of a sever: A shared file system may be 
serverless, that is clients can perform all operations 
directly on the storage devices without the need of a 
file server. This category of shared file systems is 
called symmetric. If the shared file system requires a 
file server, often called file manager, to provide the 
clients with information or authorization for accessing 
the storage devices, the file system is called 
asymmetric. Although symmetric shared file systems 
allow the design of storage devices to be independent 
of the file system [8], they are vulnerable to file 
manager failure. 

• Lock management: To allow more than one 
client to access the same data simultaneously, a 
locking mechanism must be provided to ensure mutual 
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exclusion. The locking can be performed either on 
clients or storage devices. Asymmetric shared file 
system give the option of performing the locking on 
the file server. Although, locking performed on clients 
has the advantage of balancing the lock management 
among clients, the mechanisms to recover from client 
failures are complex and may limit the overall 
scalability. Locking on storage devices is easier and 
faster than client-based locking. 

The following two subsections present two shared file 
systems: 
• The Global File System at UMN 
• NASD Parallel File Sustem at CMU. 

4.1 Global FUe System (GFS) 
Global file system or GFS is a project carried at the 
University of Minnesota [19]. GFS is a symmetric 
shared file system (serverless), with device-based 
locks. It provides parallel access to storage devices 
through UNIX file system semantics: open, close, 
read, write, and fcntl. 

In GFS, the storage devices form a global pool called 
Network Storage Pool (NSP) which is partitioned into 
a number of subpools. Each subpool may be 
configured with different characteristics. A system 
administrator performs the partitioning and 
configuration. 

GFS employs a SAN to connect clients to the network 
storage pool and offers a thin protocol layer for 
communication between clients and storage. Their 
preliminary results show that GFS scaled well for 4 
clients. 

4.2 NASD Parallel File System 
NASD is a project carried out by the Parallel Data Lab 
at Carnegie Mellon University [1]. NASD is an 
asymmetric storage architecture; it uses a file manager 
for managing global naming, access control decisions 
and consistency. 

They first attempted to port NFS and AFS to the 
NASD environment but since NFS and AFS didn't 
exploit the potential high bandwidth offered by the 
NASD architecture, they implemented a parallel 
filesystem (NASD PFS) capable of making large 
parallel requests to files striped across several storage 
devices. However, they introduced an additional 
server called storage manager responsible of handling 
concurrency, mapping and redundancy. The extra 
server hides the file striping and allocations from the 
file manager by presenting itself as a virtual NASD 
drive storing the entire file. To access a striped file, 

clients first contact the file manager, which directs 
them to the virtual drive i.e. storage manager, which in 
turn directs them to the physical storage devices 
storing the actual subfiles. 
Their results showed that they achieved an aggregate 
bandwidth that scales linearly. More on CMU's 
NASD can be found in the following section 

5.   Security and Network Attached 
Storage 

Exposing storage devices to the insecure network 
imposes the security concerns involved in any 
distributed system, namely: privacy, authentication, 
and key management. 

• Privacy: Privacy is achieved through encryption 
algorithms such as DES [16]. Data and/or control can 
be encrypted while being transmitted to protect 
against eavesdropping by adversaries. Furthermore, if 
the device is stored in a physically unsafe location, 
data can be stored in an encrypted form on the storage 
device. 

• Authentication: Message authentication is 
achieved through cryptographic algorithm such as 
HMAC [17] to protect data and/or control parts of the 
exchanged messages against "man_in_the_middle" 
attacks. 

• Key management: All cryptographic algorithms 
require the usage of keys and the security of the 
algorithms depends on keeping those keys private. 
The best way to store the keys is to keep them on a 
tamper-proof hardware. 

Software implementations of cryptographic algorithms 
are time-consuming. It is best to use hardware support 
such as a secure co-processor for performing the 
cryptographic operations efficiently and for storing 
cryptographic keys safely [9]. 

5.1    Access Control 
Another security concern of the network-attached 
storage architecture is adherence to the high-level file 
system's access right policy. 

Access rights define the types of operations that a 
client can perform on a particular set of data. If the 
storage device has to make the access decisions by 
itself, the design of the storage device will become file 
system-dependent, which is undesirable. 
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A better approach would be to let the storage device 
enforce an access decision taken by another file 
system-dependent entity such as a file server. In other 
words, the access right functionality is distributed 
between the storage device and the file server. The 
server makes a decision; the device applies it. This 
leads to another security concern: how the server 
conveys to the storage the access decision through the 
unsecured network. Hostile users can eavesdrop 
and/or modify the network traffic and can fake 
requests and/or responses. 

The next 2 subsections describes the security approach 
of two projects: 
• The Netstation project at USC. 
• The NASD project at CMU. 
A comparison of the two approaches concludes this 
section. 

5.2    Security of ISPs Netstation 
Netstation is a project carried out by the Information 
Sciences Institute at the University of Southern 
California. The goal of this project is to demonstrate 
that gigabit LANs can effectively replace the system 
bus in conventional workstations [4,14]. 

The project proposes a mechanism called DVD 
(derived virtual devices) for secure shared access of 
client to network-attached peripherals. The system 
components, involved in security, are a Kerberos 
server, a ticket-granting server (TGS), disks, a file 
manager server called "storage manager", and clients. 
The system relies on Kerberos for authenticating 
disks, the storage manager, and clients. 

When a client attempts to open a file for reading, the 
following procedure occurs (see Figure 4): 

1-4) The client authenticates itself to Kerberos and 
acquires a ticket from TGS to access the storage 
manager. 
5) The client sends a request to the storage manager. 
6) The storage manager sends a request to the disk to 
create a DVD (derived virtual disk) that includes only 
the required file. The request includes the access 
rights for the new DVD that is who can access it and 
what operations are permitted. 
7) The disk creates the requested DVD and sends an 
acknowledgment to the storage manager. 
8) The storage manager returns to the client a handle 
for this newly created DVD. 
9-12) If this is the first time the client accesses the 
disk, the client must request a ticket from TGS to 
access the disk. Otherwise, this step is omitted. 
13) The client sends a request to the disk. 

14) The disk validates the request then sends the 
requested data to the client. 

117    J ^ 
Storage 

Manager 

Figure 4: Netstation procedure for opening a file for 
reading. 

5.3    Security of CMU's NASD 
The goal of the NASD project at CMU is to design a 
high-bandwidth, scalable, and cost-effective storage 
architecture [1,2,6,8]. 

The project proposes an access control mechanism 
called "asynchronous file system oversight" where 
once an access right is granted for a client, this client 
can use this right over and over without further 
consultation. 

The system components are clients, disks, and a file 
manager server. The file manager does the file 
system-dependent functionality such as name-space 
management and access-control decisions. Access 
rights for a client on an object are made once by the 
file manager and are enforced asynchronously by the 
drive. 

The procedure for reading a file is illustrated in Figure 
5 and consists of the following steps: 

1-2) The first time a client accesses the file, the client 
requests a capability from the file manager. The file 
manager validates the request according to the file 
system's access policy and issues a capability to the 
client. Once the capability for accessing a file is 
acquired by the client, this step is omitted for future 
accesses to this file. 
3) The client uses the capability in sending requests to 
the drive. 
4) The drive validates the request then sends the 
requested data to the client. 
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Figure 5: NASD procedure for reading a file. 

The design of the capability uses cryptography to 
allow the drive to verify that the file manger generated 
the capability and that the capability was not modified 
on its way. This is achieved by having the drive share 
secret keys with the file manager. Each object on the 
disk has a key associated with it called working key. 
The file manager uses the working key of an object to 
sign the capability given to the user to access this 
particular object. The capability includes the type of 
operations that can be performed by the client on the 
drive. 

5.4    A Comparison of ISI's Netstation 
and CMU's NASD Security 

The following is a comparison between the two 
security approaches: 

• Number of messages: The number of messages 
exchanged in the Netstation project is clearly larger 
than the number of messages exchanged by CMU's 
NASD. However, 8 of 14 messages shown on Figure 
4 are for client authentication by Kerberos. CMU's 
NASD does not specify how the file manager 
authenticates the client. In ISI's Netstation, the file 
manager informs the drive directly about the access 
rights and gets an acknowledgement from the drive; in 
CMU's NASD, the file manager passes the access 
rights to the drive though the client eliminating thus 2 
messages. 

• Persistence of access rights: In ISI's Netstation, 
DVDs are dynamically created and destroyed when a 
client opens or closes a file respectively, that is, a 
client's access right to a file are lost once the file is 
closed. In CMU's NASD, the access right given to a 
client through a capability persists as long as the 
capability did not expire (capabilities are time- 
limited). Because of the long persistence of 
capabilities on CMU's NASD, a revocation 
mechanism is also provided to be able to cancel a 
capability issued to a client for an object when the 
object's access rights are changed. 

• Drive States: ISI's Netstation requires the drive 
to have more states because of oustanding open 
requests. CMU's NASD does not keep track of any 
"per client" information. 

Although NASD offers a better security mechanism in 
many aspects than Netstation, it also has its 
drawbacks. NASD security mechanism is suitable for 
the case where a request accesses only a single object. 
However, if the drive supports "batch-style" requests 
i.e. a single request can access a large number of 
objects, the security mechanism might become 
cumbersome. 

It might be useful to consider a security mechanism 
that relies on public keys. Digital signature using 
public keys offers the advantage of non-repudiable 
communications. Certificate servers are becoming 
widely used in organizations and can be used to issue 
the keys instead of the file manager. 

6.  Mobile Agents on Network 
Attached Storage Devices 

There is a potential computation power embedded in 
the storage devices that needs to be exploited. 
Applications that process a massive amount of data 
can take advantage of this computation power by 
sending code (mobile agents) to execute remotely on 
the storage devices near the data instead of 
downloading large data over the network. Storage 
disks that can accept code for execution are called 
Active Disks. 

To realize the full benefits of active disks, the 
following issues need to be considered: 

• Parallelism: One storage device by itself may not 
have a processor as powerful as those on workstations 
(where the application code runs), but the combined 
computation power of the processors on all the storage 
devices is definitely high. (The data is striped anyway 
over the storage devices). 

• Communications: the storage device must 
provide an interface for receiving mobile agents and 
provide a communication mechanism so the 
downloaded code can communicate the results. 

• Safe execution: the storage device must provide a 
safe environment for executing the mobile agents. The 
execution environment must ensure that the 
downloaded code does not violate the access right 
policy imposed by the file system, is not corrupting 
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memory or the execution environment itself, and is 
not consuming the drive's resources. 

• Application type: Applications that can benefit 
from sending code to execute on the storage devices 
are those that include operations which scan a large 
amount of data to extract a relatively small amount 
e.g. exhaustive search, data mining, and contour 
tracing of images. The high-level file system can also 
benefit from sending code to execute on the drive. 
Moreover, code can be added to the drive to optimize 
and customize its standard interface to the high-level 
file system e.g. provide a response for hints on future 
read operations or provide a user authentication 
mechanism. 

Executing functions on storage and near the data has 
been exploited for a long time in database systems. 
Recently, UCSB [23] and CMU [22] have exploited 
the idea for storage disks. 

7.   Conclusion 
SAN provides direct transfer between clients and 
storage, which results in a high and scalable 
bandwidth to clients. Striping data over storage 
devices further enhances scalability. 

Exposing the storage devices on the network requires 
them to provide sound security mechanism to protect 
clients' data. Hardware support for cryptographic 
operations is needed to preserve the bandwidth offered 
by the storage device. 

Widely distributed file systems such as NFS and AFS 
fail to provide the high aggregated bandwidth provide 
by SAN technology. Applications that need to utilize 
the full performance of SAN should replace the old 
file systems with new ones that can support parallel 
I/O. 
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Abstract 
Situation assessment is the discrimination of concise 

summary descriptions of the state of uncertain paramet- 
ric models. This paper considers the problem of provid- 
ing summary descriptions of dynamic state histories of 
multitarget models. It shows that under the product-of- 
marginals approximation of the posterior distribution 
of these models it is possible to evaluate the likelihood 
of asynchronous multistage situations involving multi- 
ple interacting elements. Such situations include indi- 
vidual and multiple target manoeuvres. 

A dynamic programming algorithm is described that 
solves the problem of associating the stages of multi- 
ple situation elements with discrete time instants. The 
search space is much reduced by reparameterising the 
problem as an optimisation of the interaction times. The 
problem of associating tracks with situation elements is 
solved by selective enumeration. Methods are provided 
for eliminating a priori the vast preponderance of un- 
interesting possibilities, so that they never need to be 
calculated. 

Keywords: situation assessment, tracking, association, 
dynamic programming, viterbi algorithm. 

1    Introduction 

A situation assessment is a summary of a compli- 
cated dynamic system appropriate for high level 
decision making. The methods used in situa- 
tion assessment have tended to be informal, and 
are usually based on various techniques for auto- 

mated reasoning. However, methods are begin- 
ning to emerge that enable such inferences to be 
computed by applying rigorous probabilistic ap- 
proaches. Koller and Pfeffer have proposed a man- 
ual design scheme, the object oriented Bayesian 
network [1]. This idea provides a mechanism 
for packaging Bayesian networks into subnetworks 
so that much unnecessary design detail can be 
avoided. However, the key algorithmic question 
is how to construct such networks automatically in 
real-time [2]. 

The purpose of this paper is to propose sta- 
tistical models suitable for inferring complex be- 
haviours and situations from tracks of one or more 
targets generated from reports from one or more 
sensors. These models can be interpreted as vari- 
able structure Bayesian networks; specialised in- 
ference schemes are required. 

"The authors gratefully acknowledge the support of the 
Defence Science and Technology Organisation of Australia, 
and of the Sir Ross and Sir Keith Smith Fund. 

Figure 1: A situation picture expressed in terms of 
tracks, behaviours and situations. 

Situations are assessed at two levels: target be- 
haviours, and patterns of behaviours. Figure 1 
shows the Bayesian network of a particular associ- 
ation of a situation to behaviours and of behaviours 
to tracks and (without showing any detail) of tracks 
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to data. Algorithms for automatic track/data asso- 
ciation have been in practical use for many years 
[3,4, 5,6], but higher-level associations have been 
assigned manually. To facilitate automatic meth- 
ods, the problem can be parameterised and trans- 
formed into a problem of statistical inference over 
the space of association parameters. Such param- 
eters are shown in figure 2. They switch the inter- 
action between parents and their possible children. 
We refer to Bayesian networks that contain such 
association variables, which reside in the network, 
but also determine its effective structure, as asso- 
ciation networks (section 3.2). Such structures are 
an example of those with state dependent structure 
investigated by Boutilier et dl. [7]. The situation 

Figure 2: Introducing explicit association vari- 
ables to parameterise which data, tracks, be- 
haviours and situations are related. 

assessment problem is therefore one of marginalis- 
ing over association networks to find the marginal 
probabilities of the occurrence of a set of candi- 
date situations. We address the problem by ap- 
proximation. We evaluate the maximum likelihood 
behaviour/track associations, marginalise approxi- 
mately over the track states, and then reapply the 
same approach at the situation/behaviour level. In 
the technical sections below, the exposition is sim- 
plified by omitting the behaviour level, and situa- 
tions are inferred direct from the posterior distribu- 
tion of the tracks. 

2   A Process Model 

Situations comprise situation elements which are 
entities (like targets) that may interact. Situations 
proceed by discrete stages i = 1,...,NS and are 
modelled by tied state transition diagrams, such as 
that shown in figure 4. The state trajectory of el- 

ement e during stage i is Ye(i). The ties indicate 
interaction between the states of the elements. Sit- 
uations can also be represented by Bayesian net- 
works. These networks can be associated with 
tracks or behaviours to form an overall model. 

Figure 3 shows a situation/behaviour that takes 
place on a physical network of roads. Three 
elements are involved; a vehicle to supply fuel 
(dashed), which rendezvous with the other two at- 
tack vehicles at points 1 and 2 respectively; the lat- 
ter two (black and grey) approach the target and 
escape afterwards along different routes. 

Attack 
Site 

Figure 3: A situation on a physical network: three 
elements are involved; one to supply fuel (dashed), 
which rendezvous with the other two elements at 
points 1 and 2 respectively; the latter two (black 
and grey) approach the target and escape after- 
wards along different routes. 

This physical event sequence is shown in ab- 
straction in figure 4. The ties indicate element in- 
teractions for refuelling and attack. 

Figure 4: An example of a process model for situa- 
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Hon elements corresponding to figure 3. 

3 Extracting Situations from Pos- 
terior Distributions of Target 
Tracks 

Let Zk be the available batch data up to time k 
from all sensors. Let the state histories of all the 
targets up to time k be Xk, i.e., 

NT ** = {{*;(0}«U};Ji. (i) 

where j is the target index, NT is the total number 
of targets. Although it is not a requirement of the 
algorithms described, it is notationally convenient 
that we assume that there is no target birth or death. 

The posterior distribution p(Xk\Zk) is the dis- 
tribution of the set of target histories given the data 
up to time k. The process of tracking approximates 
this distribution by its product-of-marginals: 

NT   k 

Pm(Xk\Zk) = Ylllp(Xj(t)\Z
t) (2) 

j=lt=0 

Usually, trackers further approximatep(Xj (t) \Zl). 
Formally pm{Xk\Zk) can be generated either 

by direct marginalisation or by iterative propor- 
tional scaling. In practice, p(Xk\Zk) is never cal- 
culated. 

3.1 Notation for Situations 

Let a situation S contain elements EI,...,ENB. 

Let Ye = {Ye(i)}^0 where i is the stage of the 
situation, e is the index of the stage in the situa- 
tion, Ye(i) is the state of target e at stage i of the 
scenario. Let Y = {Ye}^Iv Note that many dis- 
crete time instants may be associated with the same 
stage. 

3.2 Association Networks 

The associations between situation states and track 
states can be represented within a single Bayesian 
network structure as an association network. 

Figure 5: A fragment of an association network for 
relating the states of three tracks to the states of 
three situation elements. The lower diagram shows 
the Bayesian network in the case when a\ = 3, 
Ü2 = 1, and 0,3 = 2. The time variable is not 
introduced, for simplicity of presentation. 

Association networks contain nodes that deter- 
mine the operative links of the Bayesian network. 
These links are associations, for example between 
tracks and situation elements. Figure (5) (top) 
shows a typical association network. If ai = 3, 
02 = 1. and a,3 = 2, the operative network reduces 
to that shown in figure (5) (bottom). 

3.3   The likelihood of a Situation 

To carry out inference we need the likelihood func- 
tion of the situation S given the data Zk. This re- 
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quires that we eliminate both the track states Xk 

and the situation states Y. Formally, we may write: 

p(Xk\S) = I p(Xk\Y)p(Y\S)dY, (3) 

and thereby evaluate the 

p(Zk\S)   =    f p{Zk\Xk)p{Xk\S)dXk 

)-p(Xk\S)dXk p(Xk\Zk)p(Zk)„,vhc,Jvk I 
P(Zk) J 

p(Xk) 

p{Xk\Zk)„(vk 

p(Xk) 
p(Xk\S)dXk 

(4) 

We parameterise the distributionp(Y\S) by the set 
of variables Ts to obtain p(Y\Ts) . If the situation 
contains no cross chain links, and all the stages are 
independent 

NE NS 

p(Y\rs) = Hl[p(Ye(i)\7ei), (5) 
e=li=l 

where 7e; are situation parameters and Ts = 
{{lei}^=i}i^v We will examine situation infer- 
ence in this case first, and then return to the prob- 
lem of inferring situations with interacting ele- 
ments. 

We need to express e and i in terms of j and k. 
To do this we introduce the association variables 
aj and bk, where a3- is the association element as- 
sociated with target j, and bk is the situation stage 
associated with time k. 

Where a track is not associated with a target, 
aj = 0; Xo(i) is a null state associated with nui- 
sance tracks. Integrating out the situation states: 

NT   k 

p(Xk\Ts) = Ylllp(Xaj(bt)\lajbt).        (6) 
j=l 1=0 

If the prior distribution of the track states is condi- 
tioned on parameters 0 then we may write p(Xk) 
asp{Xk\e)md 

NT   k 

p(xfcie) = nn*(*;Wie),       (7) 
j=lt=0 

and, applying the product-of-marginals approxi- 
mation (2), equation (4) becomes 

Nk    k 

p(Zk\S,a,b,ro,rs,e)Kp(Zk)Hll 
j=it=o 

■ P(xj(t)\z
t)p(Xj(t)h*ii>t) I p(x,(t)\Q) 

■m-dXjit). 

(8) 

This integral is large if the track state distributions 
generated from the data and those derived from the 
situation template overlap. The "overlap" function 
is defined to be 

o(s,3,t,e,i,rs,@)=j —J p(Xj(t)\4) dXj(t).    w 

Such functions are relatively easy to calculate, es- 
pecially if the track states are Gaussian and/or dis- 
crete. The log-likelihood of the data is therefore 

logp(Zk\S,a,b,Ts,e) * logp(Zk) 
NT    k 

+ £]CiogO(s,./,t,fljA»rs,e). 
3=1 t=0 

(10) 

This likelihood is conditioned on the time-stage 
and track-element association variables a and b. 
To facilitate a fast algorithm we require that the 
situation parameters, Ts to be known a priori: soft 
situation templates are formulated in advance. 

4   A Dynamic Programming Algo- 
rithm for Situation Assessment 

The product-of-marginal approximation yields the 
log situation likelihood, logp(Zk\S, a,b, Ts, @), 
in a decomposable form to which dynamic pro- 
gramming can be applied. We consider a lattice 
in which the state at each time k is the stage of 
the situation. (In this treatment, we assume that all 
the situation elements transition between stages to- 
gether) For each element-track configuration a, we 
maximise over b by dynamic programming. 
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Figure 6: Possible stage transitions subject to the 
order constraint. 

The order constraint imposes a massive reduc- 
tion in the computational load: instead of requir- 
ing Ngk calculations of the overlap functions, only 
(2Ns-l)k such calculations are needed. If known, 
initial and terminal conditions can likewise save 
large amounts of computation. 

The optimum path maximises 
p(Zk\S, a, b, Ts, Q) over b; it is found as follows: 
Forward Phase: At each stage, find the maximum 
partial sum log p(Zt\S, a, 6, Ts, ©) at time t. Do 
this recursively by finding the maximum, for each 
value of i, of the log-likelihood by enumerating all 
possible transitions leading to state i. There are at 
most two (see figure 6). 
Backward Phase: From the terminating condition 
backtrack down the trellis, recording the optimum 
path. 

The target-element associations still have to be 
enumerated. 

4.1    Prior Deletion 

Large numbers of possible values of a can be ex- 
cluded by doing a prior evaluation of each possi- 
ble track-element association [it may be sufficient 
to use simple approximate methods for this opera- 
tion]. All implausible pairwise associations can be 
deleted. The result of this thinning is a reduced set 
of possible targets that are candidates for associa- 
tion with each track element. If the set of possible 
tracks for element Ee is Te, the total number of 
target-element hypotheses is < 17i |. 1721 | TNE I • 

5   Interacting Situation Elements 

In this case, the function p(Y\Ts) does not fac- 
torise into separate terms for each element. Inter- 
acting groups of elements generate single factors. 

At time t let the NT elements have gt interacting 
groups and let the m-th of these have state Xm(t), 
which is the concatenation of all the states of the 
elements in the m-th interaction group. Hence 

k     gt 

P(z
k\s,a,b,rs,e) = p(zk)llll 

t=0 m=l 

>(Xm(i)|ZXXm(0|rs,a,6) 
/ p(xm(t)\e) 

dXm(t). 

(11) 

Aside from this small change, necessitating that 
the chains for all the elements be evaluated as one, 
the dynamic programming algorithm for b is un- 
changed. 

5.1   Asynchronous  Interacting Situation 
Elements 

So far, we have only considered the case in which 
the stages of all the situation elements are synchro- 
nised. We now relax this constraint. 

The associations between situation element 
stages and times may be different for each element. 
The stage-time association variable bk is now also 
indexed by the situation element to which it refers, 
and becomes bek- Equation (10) becomes: 

logp(Zk\S,a,b,rs,Q) n log p(Zk) 
NT    k 

+ EElog°(5^''*'^'^fc'r5'e)- 
(12) 

If elements do not interact, the chains for each of 
the elements can be solved separately. The target- 
element associations a are decided using ML or 
MAP criteria by enumeration after prior deletion. 

Sparsely interacting elements pose the richest 
problem. Consider the situation with two elements 
shown in figure 7. To avoid needless complexity 
in presentation, we require that: interacting stages 
begin and end simultaneously. This constraint can 
be relaxed without difficulty. The trellis diagram 
becomes 2-dimensional, as the state space at each 
time is the pair of stages of the two elements. We 
identify the possible stage transitions on a rectan- 
gle with arrows pointing from states at time t to 
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Figure 7: Transitions and interactions for a two- 
element situation with two physical interactions. 

states at time t + 1. Figure 8 shows the permitted 
transitions. Self transitions are also allowed. 

A solution could be obtained by extending the 
state space of the process accordingly (to the Carte- 
sian product of the stage spaces of all the ele- 
ments). This approach leads to representation of 
vast numbers of unreachable states. Alternatively, 
the problem could be resolved onto a more efficient 
representation. 
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Figure 8: Permissible transitions for the transition 
diagram of figure 7. 

We can easily recognise that the majority of the 
transition possibilities are generated by the sec- 
tions where the elements are independent. How- 
ever these sections can be handled efficiently by 
a single element dynamic programming algorithm. 
Unfortunately, the beginnings and endings of these 
sections are unknown in time, but they can easily 
be found. 

5.2   An Algorithm 

1. Evaluate optimum trellis paths and corre- 
sponding contributions to the overall criterion 
for all possible start and end times of each in- 
dependent section. 

2. By enumeration or otherwise, find the opti- 
mum set of start times for each interacting 
stage of the situation e.g., \T\ T2 ... Tn]. 

3. Back track and apply dynamic programming 
for the intervening independent sections to 
complete the entire optimum allocation of 
stages of all elements to times. 

5.3   Prior Deletions 

1. Remove impossible pairings of targets to el- 
ements by reference to the observed track in- 
teractions. Delete target-element associations 
where any such pairings occur. 

2. Remove impossible element-target associa- 
tions by first marginalising the element mod- 
els and testing as in section 4. 

6   Evaluating the Overall Situation 

The situations we have discussed are summary de- 
scriptions of subsections of the observed data. We 
have seen how to evaluate their likelihood approx- 
imately. Discriminating between multiple situa- 
tions is achieved by simple Bayesian inference us- 
ing these approximate likelihoods: 

p(s\zk,r,&) = P(Zk\S,Ts,Q)P(S) 

J2{s}P(zk\s,v§,e)P(s) ,(13) 

where T = {r,s}{5}. This Bayesian solution 
is approximated by substituting P(Zk\S, T,Q) by 
P(Zk\S, as, bs, r5, G), where the as and bs are 
estimates. Appropriate distributions p(Xj(k)\S) 
are required for the tracks that are not associ- 
ated with a situation element. Without these 
P(Zk \S, T, 0) cannot be calculated. 
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7   Discussion 

The product-of-marginals approximation facili- 
tates the use of dynamic programming to evalu- 
ate large numbers of time-stage associations ef- 
ficiently. However, consideration of even simple 
scenarios, indicates that computational speeds may 
still be too slow. It appears that the key to making 
the procedures described here run fast is the elim- 
ination of the vast majority of possible association 
hypotheses from consideration. Various rules for 
prior deletion have been proposed. 

The product-of-marginals approximation is 
likely to be significantly wrong, but although the 
situation probabilities will be over-estimates, it 
also appears likely that discrimination of the most 
likely situations will be possible. 

[6] R.L. Streit, editor. Studies in probabilistic 
multi-hypothesis tracking and related topics, 
volume SES-98-01. US Naval Undersea War- 
fare Centre Division, Newport, Rhode Island, 
1998. 

[7] C. Boutilier, N. Friedman, M. Goldszmidt, 
and D. Koller. Context-specific independence 
in Bayesian networks. In E. Horvitz and 
F. Jensen, editors, Proc. Twelfth Annual Con- 
ference on Uncertainty in Artificial Intelli- 
gence, pages 115-123, Portland, Oregon, Au- 
gust 1996. Morgan Kaufmann. 
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Abstract A complete evidential mapping 
approach in the contect of Dempster- 
Shafer reasoning is applied to target iden- 
tification task in the case of hierarchi- 
cally dependent attributes. The mapping 
defines causal links for all possible evi- 
dence sets. Such causal links are then 
used to propagate evidencies through vari- 
able chains. Finally, the independent ev- 
idencies propagated to aircraft type node 
are combined with Dempster's rule of com- 
bination. The complete evidential map- 
ping is compared to more common many- 
valued mapping by analyzing the identifica- 
tion probabilities after detection serieses. 

Keywords: Dempster-Shafer reasoning, target 
identification 

1    Introduction 

We address a target identification problem 
in a case of hierarchically formed attributes. 
A root variable of the hierarchical attribute 
tree is aircraft type. This attribute is of par- 
ticular interest in the case of target identi- 
fication. Other nodes are attributes which 
explain the root node. These other nodes 
may have indirect impact to the type of the 
target. The problem is to infer the type of 
the target (root node) given attributes (de- 
scendant nodes). 

A   common   approach   is   to   use   the 

Dempster-Shafer theory for reasoning the 
target type. Dempster introduced concepts 
of lower and upper probabilities in his pio- 
neering work [1] which was refined by Shafer 
[2]. These works generated an inferencing 
method known Dempster-Shafer reasoning 
which has got great interest in area of ap- 
proximate reasoning and its applications. 

A frame of discernment contains all given 
attributes. The elements of the frame of dis- 
cernment are the leaf attributes of the tree. 
All ancestor attributes can be described as 
unions of these attributes. This approach as- 
sumes multivalued mappings in the attribute 
tree i.e. causal matrices that link the de- 
scendant attributes to their ancestors con- 
tain only ones and zeros. By using this ap- 
proach to describe to attributes' hierarchical 
structure the conventional Dempster's rule of 
combination can be used for mass function 
evaluations. Such an approach is described 
by Bogler [4] who applies Dempster-Shafer 
reasoning for target identification. This ap- 
proach is commented by Buede [5] who fi- 
nally gives a comprehensive comparision of 
the Dempster-Shafer reasoning and Bayesian 
reasoning approaches in the context of tar- 
get identification [6]. A Bayesian approach 
is represented also in [3]. 

We apply the complete evidential mapping 
approach described by Liu et.al. [17]. This 
approach enables soft causal links between 
the sets.    It also defines additional causal 
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links to complete the causal links to all pos- 
sible evidence sets. 

2    Attribute Fusion 

A motivation of attribute fusion is twofold: 

• identification of target's aircraft type 

• resolving ambiguities in observation-to- 
target associations 

In this paper we concentrate on the tar- 
get identification process. This process can 
be understood as a part of the whole data- 
association scheme. 

2.1 Target Identification 

Target identification concerns determination 
of the target's aircraft type. The identifica- 
tion can be done by direct aircraft type de- 
tections or with supporting attribute detec- 
tions. Attribute detections do not identify 
directly the aircraft type. They induce a set 
of possible aircraft types that could have the 
detected property. The direct aircraft type 
detections and the attribute detections in- 
clude uncertainties and inconsistencies which 
makes the identification problem untrivial. 

2.2 Attributes' Hierarchy 

Attributes' internal relationships define a hi- 
erarchical attribute structrure. The leaf at- 
tributes can be used to explain their ancestor 
attributes' values. Furthermore, these ances- 
tors may explain some other attributes. Fi- 
nally, this attribute structure converges to 
aircraft type which is a root node of the hi- 
erarchical attribute tree. 

We investigate two different kind of hier- 
archical structures: 

• naive trees 

• simple hierarchical trees 

In naive trees the root node is aircraft type 
and all other attributes are direct descen- 
dants of the root node. Simple hierarchi- 
cal trees may contain several layers i.e. the 
direct descendants of the aircraft type node 
(root node) may have own descendants. 

3    Dempster-Shafer   Reason- 
ing 

Dempster-Shafer method combines two dif- 
ferent mass functions mi and m,2 into one 
mass function m*. The combination is car- 
ried out based on seeking consensus between 
the mass functions. Given two sets D and 
E and their mass function values m\{D) 
and m,2(E) a joint mass function value is 
mi (Z))m2 (Ü7) which is assigned to a set C 
that contains all elements common to D and 
E, i.e. C — Df)E. Finally, masses of empty 
intersections are assigned to zero and the re- 
maining non-zero mass function values are 
normalized to one. The following formula 
presents the idea described above and it is 
known as a Dempster's rule of combination: 

m(C7) = 

]T     mi{Di)m2{Ej) 
DiC\Ej=C 

1-     J2    rni{Di)m2{Ej) 
DiDEj=9 

,    (1) 
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where summations over joint mass functions 
indicates that the final mass function value 
m(C) is a sum of all joint masses of intersec- 
tions equal to C. 

3.1    Multivalued Mappings 

Both sets D and E have to belong to a same 
power set 2Sx. Thus, they describe the same 
discrete variable X. Dempster's rule of com- 
bination does not directly apply to reasoning 
from one variable to another. One way to 
overcome this is to map a set in 2°x for all 
possible values yi of Y: 

f:yi  ->  Dj   ■ yieeY, Dj e 28x   .    (2) 

Such a mapping is called as a multival- 
ued mapping. It induces a set Dj for yi 
which may present a detection. The map- 
ping assigns a mass equal to y,:s mass to DJ; 

m(Dj) = m(yi). Since Dj is defined in 2°x 

its mass m(Dj) can be combined with other 
mass functions in 28x. Hence, this approach 
enables reasoning for X given a value of an- 
other variable Y. 

Multivalued mapping links together two 
frames of discernments T and ©. Here T is 
a set of attribute's possible values and 0 is 



©® ©© 

Figure 1: A naive tree and a simple hierarchical tree. 

Table 2: Mapping from attributes to sets of aircraft types. 
Sets of aircraft types A G 2° 

Attributes {01,02} {01,03} 02 {02,03} 

T *i 1 0 0 0 
*2 0 0 1 0 
*3 0 0 0 1 

U «l 0 1 0 0 
U2 0 0 0 1 

a set of all aircraft types. Multivalued map- 
ping defines for each element t £ T corre- 
sponding subsets in 0. It is assumed that 
these subsets are not empty. There is no 
such value t G T which has not even one cor- 
responding element in 0. In other words the 
set of possible attribute values T does not 
contain such a value that is impossible for 
the given set of aircraft types 0. This kind 
of mapping represents the information that 
defines all possible attribute values t G T for 
each element (aircraft type) a G 0. One ex- 
ample of aircraft types' possible properties is 
given in Table 1. '1' indicates that the at- 
tribute on the row is possible for the aircraft 
type on the column. 

An attribute detection yields a probability 
distribution P{T) for the corresponding at- 
tribute T. Additionally a confidence value of 
the detection itself will be taken into account. 
This is done by addressing a certain amount 
of mass to the whole frame of discernment of 
the corresponding attribute. The mass m(T) 
equals to 1 — c where c is a given confidence 
value of the detection. Thus the detection 
induces two focal elements; one for the sub- 

set A corresponding to the detection and one 
for the whole frame of discernment 0. 

3.2    Evidential Mapping 

Attribute T has N possible values: 

T = {tltt2,...,tN} (3) 

A subset Ti G 2&T contains n values from 
T: 

J-i == \Hi,ti2,.. . ,tin} (A) 

A basic matrix (BM) is a matrix that links 
each single attribute value ti G T to sets of 
aircraft types. An element of BM is denoted 
as b(ti, Aj) and it describes a strength of the 
causal link between attribute value U and the 
set Aj G 2@A. 

Ai=      Ai=      A$= Ai= 

{01,02} {03} {01,03} {01,04} 

ti   r  0.1   0.9    0     0 
t2 0.4        0        0.6        0 (5) 
t3      0.1    0    0.8   0.1 

An image of an attribute value U in @A is 
a set of aircraft types that may possibly have 
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Table 1:   Aircraft types' properties for at- 
tributes Q, R, S, T, U andF 

1. Calculate average of the causal links 
Mij. Denote this average with b*j\ 

Aircraft types 6A 

Attributes a\ 02 03 (24 

T h 1 0 1 0 
«2 0 1 1 1 

U «1 1 1 1 1 
U2 1 1 0 1 

"3 1 1 0 0 
«4 1 1 0 1 

V Vi 1 0 0 1 
V2 0 1 0 1 
Vz 0 0 1 1 

Q qi 1 0 1 0 
<12 1 0 0 0 

Q3 0 0 0 0 

Q4 0 1 1 1 

Q5 1 1 1 1 
R r\ 1 1 1 1 

T2 0 0 1 1 
r-3 0 0 1 0 

S si 1 0 0 1 
S2 0 1 0 1 
«3 0 1 1 1 
s4 0 0 1 0 

(8) 

2. • If all causal links in M^ are nonzero 
establish a causal link from 2$ to Aj. A 
strength of this link c(Ti,Ar) is b*j. 
• Otherwise, if at least one of the causal 
links in My is zero define a set of aircraft 
types Ar which is a union of the image 
sets of all single attribute values in Tf. 

(J   Aik 
(9) 

Hk €Ti 

Add a column into CEM for As if such 
does not exist yet. Set c(Tt,Ar) — b*j. 
If a column for As exists already set 
cpu^i-ciTu^ + bfj. 

A complete evidential mapping matrix 
(CEM) that is produced from the basic ma- 
trix given on the previous page is the follow- 
ing: 

attribute value t{. Image of t{ is denoted as 

^=LM; b(ti,Aj)>0}        (6) 

Construction of complete evidential map- 
ping matrix (CEM)has following steps: 

1. Expand BM so that its rows contain all 
subsets Ti e 2&T except the empty set 
0. 

2. Copy causal links in BM directly to 
CEM. 

A set of causal links from single attribute 3.3     Belief Propagation 

Ax A2 A3 A4 As A6 

«1 "O.l 0.9 0 0 0 0 
«2 0.4 0 0.6 0 0 0 
*3 0.1 0 0.8 0.1 0 0 

{hM 0.25 0 0 0 0 0.75 
{tuts} 0.1 0 0 0 0.9 0 
{t2te} 0.25 0 0.7 0 0.05 0 

{*l,t2,*3} 0.2 0 0 0 0.8 0 

^1={ai,a2} 

A2={a3} 

A3={ai,a3} 

A4={ai,a.4} 

As={ai ,02,03,04} 

A6= :{0l,02,Q3} 

values tik G Tj to one set of aircraft types 
Aj, j = 1.. .r is denoted as Mi ij- 

Mij = {b(tik,Aj)}
n

k=1 (7) 

For all pairs of newly created sets Tj and sets 
Aj, j = 1... r that are defined in the basic 
matrix perform the following steps. 

Complete evidential mapping matrices are 
used to propagate beliefs from the evidence 
node to all its ancestors [17]. The belief is 
propagated on a basis of sets rather than sin- 
gle elements. The complete evidential map- 
ping matrix defines a belief mapping to hy- 
pothesis space for all possible evidence sets. 
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Thus, CEMs can be used to propagate be- 
liefs through a chain of variables. The leaf 
variable induces sets to its parents and these 
sets are mapped to third variable using the 
corresponding CEM matrix. 

Belief propagation procedure contains the 
following steps: 

1 Create basic matrix (BM) from the set 
of known rules. 

2 Construct complete evidential mapping 
matrix (CEM) from BM. 

3 CEM  is  used for belief propagation 
based on the given propagation rules. 

A propagation through two CEM matrices 
can be simplified to one CEM matrix map- 
ping. Let C\ be a CEM matrix from X to Y 
and C2 be a CEM matrix from Y to Z. One 
set of Y-values is assigned to each column of 
C\ and hence C\ introduces a set of sets in 
Y. The rows of C2 are defined for all pos- 
sible sets in Y. A new matrix C2 is formed 
based on C2 by picking the rows correspond- 
ing to sets induced by C\. Now there exists 
a row in C2 for each column of C\. Further 
it is assumed that the rows of C2 are ordered 
similarly to the column order of C\. Now 
the belief propagation from X to Z through 
Y can be expressed by one single CEM ma- 
trix instead of two cascaded CEM matrices. 
This CEM matrix performing the mapping 
is a matrix product of the two separate ma- 
trices: 

CEMX->z = CixC2 (10) 

This principle extends easily to a chain of 
variables where the resulting CEM matrix is 
a product of several CEM matrices. 

4    Simulations 

In the simulations the aim was to compare 
the target identification performance of the 
two represented methods. Simulations in- 
cluded 50 different detection series which 
contained observations from seven different 
attributes. The causal relationships obey the 
hierarchical tree illustrated in Fig. 1. It 
was assumed that number of different target 

types is 4. Each target type had own pa- 
rameters in the attribute tree. All attributes 
are discrete and their number of possible val- 
ues is between 2-5. The detection distribu- 
tions for hierarchical tree are shown in Fig. 
3. Each column corresponds to aircraft type 
and each row is one of the seven attributes. 
The top row describes the aircraft type itself 
and thus the distributon on the top are the 
direct aircraft type distributions. 

Each simulation run produced a belief dis- 
tribution to aircraft type node. These dis- 
tributions describe the identification proba- 
bilities. Two distinct analysis were carried 
out to describe the identification performan- 
cies. First, one aircraft type with largest be- 
lief value was selected as an identified type at 
end of the detection period. The identified 
type distributions were compared by picking 
the detection serieses made from the same 
aircraft type. These serieses should produce 
a distribution with very high peak at the cor- 
rect aircraft type value. The distributions 
are illustrated in Fig. 4. The top row is a 
distribution for multivalued mapping and the 
bottom row is for complete evidential map- 
ping. 

Another analysis was made by collecting 
distribution of ith. target type's probabilities 
at the end detection period against the cor- 
rect target type. Such distributions are given 
in Figs. 5. and 6. The (i,j)th distribution in 
these tables describe how the probability of 
zth target is distributed when the detections 
are made from the jth target. Thus the di- 
agonal elements of the table of distributions 
correspond to correct identifications. 
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Abstract: This paper proposes a novel minimal 

norm based learning subspace method 

(MNLSM) , which can satisfy the requirements 

of being insensitive to the order of presentation of 

the training samples. This MNLSM is applied 

to recognition of simulating high resolution radar 

{H RR) targets {two for ships, one for chaff). 

Experimental results show that the performance 

of proposed MNLSM such as rate of correct 

recognition and convergence speed is satisfactory ■ 

Keywords; Self-Supervised Learning, Sub- 

space,Pattern Recognition,Minimal Norm, Dis- 

ordered Learning , Radar Targets. 

1.     Introduction 

The learning subspace method (LSM) pro- 

posed by Kohonen in 1978[l], in essence, is an 

adaptive method of extracting principal compo- 

nents of pattern vectors from each class. This 

approach assumes the class labels for all input 

samples to be known, and uses Hebbian rule to 

update the basis vectors corresponding to each 

subspace. So it is also called the self-supervised 

neural network approach [2], which designs 

each subspace in terms of the label for each sam- 

ple. However, the essential drawbacks to the 

LSMs are sensitive to the order of presentation 

of the input samples, in other words, the prior 

learned samples which might be recorded in the 

basis vectors of the corresponding subspace may 

be offset or forgotten by the learning of the late- 

coming samples, which leads to total perfor- 

mance decreasing [2, 3, 4, 6]. In 1982, E. Oja 

et. al proposed the averaging learning subspace 

method (ALSM)[3,4]which can avoid the sen- 

sitiveness to the order of presentation of the in- 

put samples. But it needs to compute three con- 

ditioned correlation matrices and their eigenvalue 

decompositions which leads to the convergence 

speed much decreasing [5]. To avoid or reduce 

the defects for those existing methods, this pa- 

per proposes a novel self-supervised learning 

subspace methods, called minimal norm based 

learning subspace method (MNLSM), which are 

not sensitive to the order of presentation of the 

input samples, and much improve the conver- 

gence speed. 

This new LSM , to verify its validity, is ap- 

plied to the recognition of high resolution radar 

(HRR) targets (two for simulating ships and 

one for simulating chaff). The experimental re- 

sults support our claims. 

2. A Novel Minimal Norm Based 

Learning Subspace Method 

2. 1    General Presentation 

®   This work was supported by Grants 69705001 from NSF and DSR of China 
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suboptimal) solutions. The training sample for 

each iteration needs to be selected not only "ran- 

donly" but also some specific criterion based 

from the training sample set. In fact, it is easily 

thought that for some class, the training sample 

with the minimal orthogonal projection length 

on its own subspace can be selected to design 

corresponding subspaces. Thus this method is 

called as minimal norm based learning subspace 

method (MNLSM). Fig. 1 depicts the scheme 

of the learning process for MNLSM. 

2. 3 Minimal Norm Based Learning 

Subspace Iterating Algorithm 

Firstly, assume that, at the *th iteration, 

the sample with minimal norm from thetth sub- 

space is selected as 

xf = argmin{<J(xf) = {xfTPwxf^ 

,j=l,2, — ,Nt) (4) 

where argmin{ •} denotes the operator of select- 

ing the training sample with minimal orthogonal 

projection length on its own subspace, <5(xf) 

the orthogonal projection length of xj0 on thetth 

subspace. 

So, the sample with minimal norm xf is 

used to learn its own subspace with the positive 

manner and learn other subspaces with the nega- 

tive manner. According to Eq. (1), the iterat- 

ing formulae for the MNLSM can be stated as 

follows 

L4
W = (/ + ^"M0^)^,,; = 1,2,-,K 

(5) 

LP = (/ - ^'»x<M)T)L&, ) ¥=■ i 
(6) 

Generally, the above learning process could be 

unlimitedly gone on, but after several iterations, 

the formed subspace might become stable. The 

iterating algorithm for the MNLSM is summa- 

rized as follows: 

Algorithm      Minimal   Norm   Based   Learning 

Subspace Iterating Algorithm 

Step 1 * = 1 , select the dimensionality pw , 

the termination accuracy y and learning 

coefficient ft(i\i = 1,2, —,c) , set the 

initial basis vectors of the c subspaces , 

and compute the orthogonal projection 

matrixes Pt
w(t = 1,2,—,c) . 

Step 2 for each pattern vector xj° of the tth 

class, compute its orthogonal projection 

length (norm) on its own subspace 

<5(xf ) = (xf Pwxf )! 

,t = 1,2,— ,c,j = 1,2,— ,Nt) 

Step 3 select the training sample with minimal 

norm from the training sample set of 

each class 

xi° = argmin{<5(xf ) 

,i = 1,2,—,c;j = 1,2, — ,2V(} 

Step 4 rotate its own subspace with the posi- 

tive manner in terms of Eq. (5) and ro- 

tate other subspaces with the negative 

manner in terms of Eq. (6) using the 

training sample with minimal norm. 

Step 5 compute the averaging orthogonal pro- 

jection length, Ti , of all training sam- 

ples with minimal norms x^° from the 

tth class on their own subspaces accord- 

ing to Eq. (3) 

Step 6 if Ti :>)? , skip to Step 8; else, contin- 

ue to Step 7. 

Step 7    k=k + l »return to Step 2. 

Step 8    stop. 

Note that whole iteratinng process will be 

terminated until the termination accuracy y is 

satisfied. 

3.     Experimental Results 

The simulating range profiles of radar tar- 
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Assume that the tth class <BJ has Nt pattern 

vectors {x4
(i) £ R', k = 1, 2, ~, Nit i= 1,2, 

• •• ,c) , respectively. The self-supervised learn- 

ing subspace method proposed by Kohonen is 

stated as follows[1] 

L« = (/ + ^xj"^)^, 

Lpo = (/ - yipix(.)xwr)Lp2] 

(j^t = 1, 2, -, c) 

L4
(0 = L[u»(t), uj°(t),   ■•, u^)(i)] 

(1) 

where /tj°, /t^ are the positive learning coeffi- 

cients. Generally, |^"| < l/||x||f and Kj) l< 

l/||x||2 ); T denotes matrix or vector transpose? 

xi° = [>{0(*),zf (*),"■ ,*i° (*>]' ; /is an u- 

nit matrix; L»° = £[•] indicates the tth sub- 

space composed of p(i1 basis vectors uj0(*)(* = 

1 , 2, —, p<0) at instant k . 

It should be, however, noted that the basis 

vectors u,w(t) (n = 1, 2, —, p<0) should be 

kept orthonormal in the learning process of the 

LSM. Usually, the orthonormal approach avail- 

able  is the Gram-Schmidt one.   Supposed  that 

the converged orthogonal projection matrices 

corresponding to c subspaces are PM{i = 1,2, 

••• ,c) , respectively. For an arbitrary input vec- 

tor x , the classification rule of the self-super- 

vised LSM for pattern recognition is that if[l] 

||Pwx||2 = xTPwx 

rm 

= V(xTuf )2 = max  ||Pwx||2 (2) 
i-i > 

classify x in class i , i.e. x 6 &>* • 

Assume that the confidence coefficient for 

stopped iterating of subspaces is?? (0. 5^)?<1) 

, if the averaging orthogonal projection of an ar- 

bitrary pattern vector x on the c subspaces, at 

the tth iterating 

Tt =— Wi,rP®xw (3) 
c i= l 

satisfies Ti ^ JJ , c subspaces are thought to have 

converged to the given accuracy,  the iterating 

will be stopped[2]. 

2. 2 Basic Idea of Minimal Norm Based 

Learning Subspace Iterating Algo- 

rithm 

o - o o ••• 

o o ••• o 

• o ••• o 
f~\   pattern sample 

•O -  O O   - Oi 

■o 

First iteration cycle 

C_)        * * *      C-/^^l   Second iteration cycle 

•o •• o o ••• o 
selected  sample with minimal norm 

Arth iteration  cycle 

Fig 1.    Scheme of the learning process for MNLSM 

To avoid the effect of the order of presentation        be selected "randonly" from training sample set. 

of the input samples on the classification perfor- 

mance, the training sample for each iteration can 

However, in doing so, it is very difficult for the 

learning subspace to converge to the optimal (or 
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gets (ship 1, ship 2 and chaff) are used as the 

experimental data that will be classified by the 

self-supervised LSM.   Assume that the resolu- 

tion of radar is A« = 7. 5m , the radar echoes 

of multiple resolution cells of targets relative to 

radar in the range of 3000 m to 3480 m are mea- 

sured ,    where   the   azimuths   of   targets   are 

changed at intervals of A» = 0. 5°. As a result, 

for each class 50 range profUes whose dimension- 

ality is 64 are obtained.  In addition, in experi- 

ment the 50 range profiles in the time-domain 

are transformed to those in the frequency-do- 

main by Fourier transform.  These transformed 

experimental data are also used to train corre- 

sponding subspaces. 

0.65 

£     0.60 

0.55 

IB 33 46 50 

Iterating Niaber 

68 76 

tively. In the light of the selection method of di- 

mensionality of a subspace dicussed in [2], the 

dimensionalities of the subspaces corresponding 

to ship 1, ship 2 and chaff are selected as 10, 8 

and 2, respectively. Before experiments, let all 

training sample vectors be normalized to unit 

vectors. Regardless of the properties of individu- 

al training sample vector, assume that the learn- 

ing coefficient fi is selected as follows[2] 

/.(x)-aVl-BÄHi <7> 
where x is the orthogonal projection vector of the 

training sample vector x on its own subspace; a is 

an adjusting coefficient. Generally, 0 < a < 1 . 

In the practical training process |#'° is assumed 

tobe/c(x<?<)', i.e. , ft™ . 

In simulation, the obtained 50 sample vec- 

tors in the two domains for each class are divided 

into training sets which consist of 25 odd num- 

bered samples and testing sets which consist of 

25 even numbered  samples.   Assume  that  for 

each class one sample randomly selected  from 

the 25 training samples is used to design the ini- 

tial subspace. Fig. 2 shows the dynamic learning 

processes of three training samples with minimal 

norms from three classes, respectively.  Table 1 

gives the testing  recognition results of testing 

samples from three classes in the two domains 

with the iterative number. 

Fig 2. Dynamic learning processes of three 

training samples with minimal norms respectively from 

three classes for MNLSM classifier 

Assume that the numbers of strong scatter 

centres of ship 1 and ship 2 are 9 and 7, respec- 
Table 1    The testing recognition results of testing sample, from three classes in the two 

domains with the iterative number for MNLSM classifier 

Iterative Number 

Time 

domain 

Frequency 

domain 

chaff 

ship 1 

ship 2 

chaff 

10 20 

23.4%    34.2% 

19.5%    31-5% 

23. 3%    33. 7% 

ship 1 

ship 2 

12.5%    20.4% 
8. 6%  | 15. 6% 

30 

45.5% 
37.3% 
43.4% 
26.7% 

40 

56.7% 

45. 6% 

49.7% 

6.7%  I 13.2% 

21.4% 

21. 2% 

34. 6% 

50 

61.2% 

59.3% 

61.8% 

37.5% 

30.4% 
26.2% 

36.6% 

60 

68.7% 

66.4% 

65.2% 
41.3% 

70 

75.1% 
73.2% 
70.8% 

31.5% 

42.3% 
35.5% 

48.9% 

80 

81.2% 
76.6% 

73.4% 

51.5% 

40.2% 

54.2% 
58.6% 

90 

81.6% 

78.5% 
76.9% 
58.5% 

100 

82.1% 
79.2% 
78. 4% 
61.5% 

48.1% 

61.3% 

52.6% 

63. 4% . 

'■ 2% 1 57. 

in addition, assume that three kinds of self-su-        pervised   LSMs,   ..    e. ,   LSM,    ALSM   and 

1295 



are used to test the rate of correct recongnition, 

the classification results are shown in Table 2. 

MNLSM ,   are  used   to classify the simulating 

range profiles (time and frequency domains) of 

three classes. After Eq. (3) is satisfied ( )? = 0. 

8 ), the 25 testing samples in the two domains 

Table 2    Comparisons of correct recognition rates of testing samples from three classes in 

the two domains using the three classification methods of LSM, ALSM and MNLSM 

Classification Method LSM ALSM MNLSM 

Rate of Recognition 
(Time-Domain) 

chaff 79.   8% 83.   4% 82.   8% 

ship 1 78.   9% 84.   5% 83.   7% 

ship 2 78.   2% 83.   7% 82.   4% 

Rate of Recognition 
(Frequency-Domain) 

chaff 60.   4% 64.   2% 64.   3% 

ship 1 61.   2% 63.   9% 64.   1% 

ship 2 60.   6% 64.   7% 63.   9% 

From the above experiments, it can be found 

that the MNLSM possesses the better perfor- 

mance whether the convergence speed or the 

correct recognition rate. 

4. Conclusion 

Learning subspace method (LSM) for pat- 

tern recognition is one of efficient self-supervised 

learning neural network classifiers. This paper, 

based on the LSMs proposed by Kohonen, pro- 

posed a novel self-supervised LSM with higher 

correct classification rate and less computation 

time, i. e. , minimal norm based learning sub- 

space method (MNLSM), which is not sensitive 

to the order of presentation of the input sam- 

ples. To verify the validities for this method , 

this paper discussed applying this method to 

recognition of simulating high resolution radar 

(HRR) targets. Experimental results show that 

the performance of proposed MNLSM such as 

rate of correct recognition and convergence speed 

is satisfactory. 
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