
U. S. JOINT PUBLICATIONS RESEARCH SERVICE 205 EAST 42 nd STREET, SUITE 300

NEW YORK 17. N. Y.

$$
\mathrm{N} O \mathrm{~T} \text { I C } \mathrm{E}
$$

THIS DOCUMENT HAS BEEN REPRODUCED FROM THE BEST COPY FURNISHED US BY THE SPONSORING AGENCY. ALTHOUGH IT IS RECOGNIZED THAT CERTAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RELEASED fN THE INTEREST OF MAKING AVAILABLE AS MUCH INFORMATION AS POSSIBLE.

i

J16: 5872
050: 464 m

[This is a transiatton of a handook by 2. Y. Iontoy, B. M, Kovaiev, G. M. stepawor and N. E. Bacraroy entitied "Movaya $22 . \mathrm{K}^{2} a n{ }^{\text {B }}$ noye Apyaratura von Talegox revaniya po Vozduchnyw Lime
 sum aboval. Moesov 1950, pases 1-142].

Syez'iadat. The Stete Fublishing House fox Eleg. brocommuloation. Wew 12 Channel Eoutpment tom HE Tejewhony By Aerial Commaication Lines, Type V-12-2. Eajton-manher: I. E. Iontov, ECitor: V. E. Petrova. Techniol Eaitor: K. G. Marko. Revisor: S. N. Borkina. Bubmitted for type-setting on July 8,1959 . Fever format. $60 x 921 / 10 . \mathrm{T}^{2}-11248$ circulation: $12,000.9 .0 \mathrm{pech}$. 1. Zak. 1zd. 8747. Asaigned tox Eximt on oet. 19. 1959. 7.97 woh - tza. 2. Prioe: 4 rubles. Ovez'izdat,
 Frincing House, Moscommenter, 40 Hirov street. Zak. tip. 395.

MGE OF COMYDTS
Brefacem-
Chepter I. Basic Infomation of Apparatus Thpe
1.1. Technical Cherecteristios of Appaxatus
2.2. princtples of Stmotural Mounting

Chapter 2. Block-diagrams of Apparatus
2.1. Terminal office
2.2. Tandem office
2.3. Derived channel equipment

Chepter 3. Irdividual Equipment
3.I. Generel Infomation
3.2. Block-alagram
3.3. Differential System and Limiter (DSo)
3.4. Individual frequency converters and chamel filtexs
3.5. Low-frequency amplifier and voicefrequency dialing-ringing receiver
3.6. Ringer oscilletor (GTV)
3.7. Joint operation of sending and receiving devices for volce-irequency ringing and pulse dialing
3.8. Switchine board PVU
3.9. Neper meter
3.10. Test amplifiex

Chapter 4. Group Equipment
T.I. General infombtion
4.2. Linear amplipier
4.3. Etiters
4.4. Matching devices and devices for transmitting distance supply
4.5. Instial slope equalizers
4.6. Group frequency converters
4.7. Transmiswion ampiliter
4.8. Reception amplifier
4.9. Groun routes equalizers
t.10. Terminal station group route filters

Chapter 5. Generator Equipment
5.1. General infommation
5.2. Block-diagram
5.3. Master oscillator
5.4. 4 Xilocycle amplifier and hamonic oscillator
5.5. Current amplifiens for group camier prequencies
5.6. Generator equipment filters
5.7. $4 / 5$ kilocyole converter

Chapter 6. Tandem ontice
6.2. Gencrat infomation
6.2. Set notser and non-linear distowtions on tandrem onfice
6.3. Dx-2.8 and BM - 2.8 maters
6.4. Erow pontes equaliwos:

6.6. Spert-buaz device

Chaptor 7 . Autonatio Level Fegulation (Amo)
Devices
7.2. General infometion
7. 8 . Control chamel receiver
7.3. ARll control panel
7.4. Adpuating arcteded linem
7.5. 50 oycle fanerator

Chapter 8. Arparatue for Separatue Ommels
Q.I. General infomedon
8.2. Group amplicers
8.3. aroup whtes filuers

Chayter. Some matures of Equipment operation

Pravacs

Th the "Control figures of trser nathonal economso derelopment for 1959 - 1965". aproved by the 21st Congreas cr Cers, a purther growth of the inter-city commatication netwom is foroseen wh suoh an estomate that at the end of the seven-year plen netrox expansion wht cowle. This problem is solved matniy at the expense of cane math ocnetmotion and the oreation of matal. chamed matholesing systems of symetrion and non-symmotmoal cable lines.

Hovever, the manox of acral copper and bimetalito atocuthe in our country still contimes to be conslaerable, and therefore, the duftement high-mpequency telehony spparatua trpes requite for them constant mproving and bringing into aboord with the achieved development of dis. tance commanation techntque.

At the present time, 12 - chanel bye vole highfrequency telaphony sybtem squtpment is instalied on the princtpal aesian maine of the courtry. peration tests pevealed egumpent shorteomings and aided in the detemm.. metion of a mubor of reguluemonts for the equapment, and Raso to defne more exactiy the nemurements fomalabed
campar.
Somo of the shortompers ane mean btantity or coument paramoters. understated valve of the nontinear

 so on.

Tr 2957 thoustry fintshed motematebson on the $12-$

 modertion prouoed, At prebent the modempate on of the 3 - monne system $(v-3-2)$ as ochas competed.

The orection of the stated twpes of apparatus yat Surthe the technical arament of intermety commatictan tr correspondence wth the resoluthone of alet Conerens of ReS. Whan shomed the heceswty of implanthe modern acompthments of sefence and eng noching into ant the bromohes on notional eponomy in USQun.

The followne were conddered to be tre man
 onbtent the mbtwat syeten deta (ancen peatron, mone-
 cucer sectinne): produstug the possiblity of oporation on checutbe parisel wth V -12 sustencs mbistre the

 temsthes on apenetuses and ratsing the dimmel ommontoetron quelft conctomable docreastag of overath
 provathe whe orentzational poestbintur of mocem pacurtion metrods.

The present vate-up was ghven hy w. E Tontor.

A2 memarka on the ghen mesentathon ghould be
 2, Byyaztract.

Techatan comatstation of me whothy ot Commmertjax, UBSR.

Chapter i. BASTC IMFORMATION OF APPARATUS TYPE V-12-2 1.1. Technical cherecteristios of apparatuc

The 12-charyel apperatus syetem V-12-2, and also the apperatus v-12 which preceded tt, is intended for multipleatng aexiel circuttis made from nonwemrous metel with wine diameter 3.5 or 4.0 mm . Systen $\mathrm{V}-12-2$ is e two-tire two-band system. Its principah techioal oharacteristics are gaven in Table 1.I.
Table 1.1. Technteal characteristics of the system V-12-2

Chametenistic	Talue
mumer of chamels	12
Comon Innear irequency spectrim (ice)	
a) bottom chennel set (direction B-A)	$36-84$
b) top chamel set (dinection A-B)	92-143
Lumber of versions of Inear frequenoy spectroms	4
Control currents frequencies in the Ithe (ko)	
a) direction $\mathrm{B}-\mathrm{A}$	40 and 80
b) drection $A-B$	92 and 143
Tranmission level for each channel at the output of teminel and tandem of iccee (neper)	$+2.0$
Morimum amplification of tandem office at end frequencies (neper):	
a) bottom chennel set.	2.0 and 5.7
b) top channel aet	5.7 and 8.0
Veriation jimits of prequency chamacteristic	
slope of tanden and teminal offices (neper):	
a) direction B-A	0.5-3.7
b) direction $A-B$	$0.3-2.3$
Level of controh onments at the output of	
teminal and tanden offices (neper) Mon-	
linearaty loss of the tandem ofitice at output	
Jevel ${ }^{\text {\% }} 2.0$ nepers:	
e) at seoond hemmonic	8.5
b) at thind homondc	10.0
Mominal value of input reststance of tandem end terminal offices (0)	550-600
Replection coefricient from the line, \%	10
Limits of flat regulation of amplificetion	
for tandem ard termmad ofisices (neper)	5.0

In addtion to the Information given in the table, it is neoessmy to note, that four possibse alternetes of the linear spectmon of apparatus V-12-2, used with the operation of several systems on parallel circuits to decrease the twanstitons between them. are formed by in verting the chanel frequency bends in the lower frequency gromp and by Inverting and displacing on the operation band bpeotman in the upper frequency group (Fj g. 1. 1.)
the teminal ofice A tranmits the upper frequency group into the line and receives the Lower, and ofitee B trenmits the lower frequency group into the line and recelves the upper. It is obvious that offices A and B have a completely coinotdent individual equipment and difer ondy in the eroup part. Every teminal office is supplied by an apparatus, which provides the reception dr group
farrier currents only for one variant of the linear frequency spectrum.
Whg. 1.1. Versions of the linear frequency spectrum for equipment V-12-2.

The values of palot frequencies in the line remain constant In all alternates of the linear apectrum. The con trol currents with frequencies 80 and 92 ke are used for the fiat regulation of the level and with frequencies 40 and 143 ke for the slope regulation.

All carrier and some control currents are produced as a result of their harmonic generation. The master oscillator with quartz stabilization produces oscillations with frequency 4 kc and with stab11ity 2.10^{-6}, as a consequence or which the signal frequency variation in the range of one transducer section is not over I c when the signal passes. the channel.

Blectromechantcal system ARJ is used in the equipment To decrease comunication file periods with harsh meteoroLogical conditions, when the automatic regulation range of ampliffication is already used up, in the apparatus is prom wided a possibility of sudden flat increase of amplification fon comprison with the information given in Table i.i, by 0.5 neper for lower frequency group and by 0.8 neper for upper frequency group. This switching is made manually.

In the separate equipment of the temmal offices chameis the speakfng currents of all channels are transferred into the frequency $60-108 \mathrm{kc}$ spectrum, which is taken as the infital one for le-channel group in all home molelchamel systems.

Thansition from spectrum $60-108 \mathrm{ke}$ to Ithear frequency apeotmum (Fis. 1.1) is made by bwo steps of the frow convercton, wheneuwon the second convexston, step in the franemisston route and the first th the roception rowe are realtaed wth the atd of camier frequency, the value of Whioh depends on the selected speotrum alternate.

In the receptron route of each chemel, the possibt.m Lity of net loss oharactertstic compensation is provided with the conation thet its valmen et diferent frequencies would moty go out of ranes shown in Tig. I.e.
ptg. I. 2. Pemasshble deviation renge of the chamel not

The demved chamel equment was developed ghmafaneously wth syatem V-22-2. This egutpment pemmts to Werlve foth telephone chanels at and tancom offres, ft the byebem operates in the frost incar spectrun altemate.

The dervation is made whth the restoretion of the haed frequeney bend, tio. any tandem point cen get conneothon thwoug four channels in the dixecuion of each temman price. The dertved chamels hold frequenoy band 68m84 ko (1omen group) and ge-108 ko (upper group) fin the Ineer fre wency spectrum: acoorang to the estoblished mumexation these are the onannels 9-12.

Comection of the derfved chamel equapment practacally does not change the through chanmel characteristios, end the derivation of ohemels by theln deta folly meete Whe noms, egtablik ea for metn Itne chanels.

Equipment $\mathrm{V}-12-2$ can operate on one ciroult together Whether systems in which spectrum is used up to 28.5 kc . Telephone chamels formed by this equipment permit a second matiplexing, ie.s a voice requency telegraphy and photom telegraphy and with the incorpoxation of two or three teled fhowe chamele permit the transmission of a highouelity hrowdeasting moomam.

In relation to linear spectra, trancmiasion levels and control ourent mequencies coinctae in systeme V-12-2 fadtr-1e, and tt tumas out thet not only the operation of
 the equpptae of one wath line tre whemscelthacous equpm meat. Fowever. 4 for one ctrouts a diferent outpt at tha tandem offices (Pymie and pymp-2) and a drferent eroup
 ple, then the malvidual outidt on both temtral officer bhould be the same. This requirenent 1 s detemmed by the Wifference in the volec-requenoy mighng systens, taken fop geniment $V-12-2$ and $V-1 a$.

The auxiliam repeater offace (Vusma)s ghthed on Wuring unfaropale weather condtiont, can also operate on a criputt, equipped by spperatus $V-12-2$. A distamoe feeding device is introduced into the outhttine mokeup of teminal knd tander offaces, to provide for the operation of VUQ.

The emment conmuptson by dipenent offices, cnterm hag into the $7-12-2$ system, ts chown in Table 1.2.

Btation	Pilament cur. mant, amp. $4 n=24.20$	Fllanent curo rent, anp. $U_{e}=206 v$
Femmand ofetce:		
a) Group and generator equitment	10.0	0.61
o) Separate equipment	3.1	0.82
Pandem aftloe	5.5	$0.5 e$
bersved channel equipment	4.6	0.45

Table I.e. Pemosible deviathon range of the chanel net 10se.

Whth the operation of aignal circuite the curment bonmmution from 21.2 volt battery is increased by not more than 0.5 anp.

Tho types of electronic tabes are used in the equip. mente Ghup-E and 6p3s-E (besides the 4 ko gonerator, where p 102hat tube is used. Both tubes have arincreaded 11 fe bean (5000 houra). Pranctple paranetere of these tubes are given in Table 1.3.

Parameter	62h1PmE	$6 P 3 S-E$
Heater voltage, v	6.3	6.3
Heater ourrent, ma	170	900
Plate voltage (max), v	120	250
Plate current ma	7.5	70
Characteristic transconductance, ma/v	5.1	6
Output power (max), w	--	5.4
Bias voltage on control grio, v	-	-14
Screen gria voltage (max), v	120	250

mable 1.3. Parameters of electron tubes GRhP-E and GP3B-Ed
Total number of tubes on the rack frames, not countting the spare tubes, are given in Table 1.4.

Direct heating themistors TP-2/0.5, TP-a/2 and
pe-2/2 ere used in the equipment.

Fack	Number of tubes	
	62n1P-E	6P3S-E
ST0-12	36	-
SGO	37	6
PS	19	7

Table 1.4. Nunber of tubes on racks.
1.2. Principles of suructural mounting.

Stractural equipment arrangement in apoaratus $v-12$ provides grouping of similan type units fox severel systens fin the capacity of one rack fxame, e.e. the frame of sos for 9 systems, STV for 2 systeme, Schk for 5 systems and so on. In distinction from appanatus V-i2, in apparabus v.iae the outpttting is completed by a princtple of concentrating aifferent unite, releting to one system, on the minmum possible rack number.

The units of terminal and tandem outfits, following from thelr matual attractions are arranged on different racd forms with the consideration of convenience of operation.

Teminal equipment of apparatus $7-12-2$ is arranged pn two racks: STO (individual outittting wack) and Sco (group outitting rack) - Fig. 1.3 .

The SGO rack of office A or B is outfitted so that it is applicable to each spectrum alternate for one system, besides this the complete names of racks are: sGO-A- spectrum I, SGO-B- spectrum I, SGO-A-spectrum IT, Scob --spectrus II and so on. Thus, altogether there are eight altemates to outatit the SCO racks.

The generator equipment, axranged on rack SGO, can
feed two systems. In relation with this the manuracture of SGO racks without generaton equipment is also provided.

All equipment of the tandem office V-12-2 for one system is placed on one rack - PS.

Derived chanel equipment is also placed on one
rack-sui, on Pig. 1.4 the general viev of the tandem orfice is given and also of the rack SVK which is perating together with it.

Matching device panels (two panels on PS and one on SGO) are inciuded in the rack $S C O$ and PS sets. The matching device panels depending on the wave impedance of the oable, which is connected to the apparatus (oable with styrene-flerion insulation or cofi-loaded cable), have different construction. A device, in a separate box, is included in the apparatus to test the electron tubes (PIEL).

Besides the fundamental equipment, flexible cords and bows, necessary for witching and measurements, are included in the rack sets, and aiso spare parts, technical docunentation albums and the regulating instrument.

A unit princiole of apparatus structure is used in sybtem $V-12-2$, i.e. such, with which different units, which are electrically connected by interunit wirting and mechanicelly comected into a single supporting structure.

By a unlt is understood a structurally molded and electrically completed unit, e.g. linear amplifier, 4 ke oscillator, chanel fillter and others. The undt can be separately tuned and checked. Specifle requirements, as a mile, are presented to $1 t s$ parameters. The unit princtple of construction makes it possible to create compact units, in respect to structure, which can be easily weplaced when they are out of arder.

Lergest part of units in apperatus $\mathrm{V}-12-2$ is of the cut-1n type, i.e. they are joined with the common panel monting or rack by a special contact joints - jack and

rack. About $60 ;$ on all panels oontain cutwin untes, which car teke etther the whole panel width or oniy perte on the Ali untes wth eleetron twbes (cmplifiex gencrator devtaes; controt onanmel recetrexs. etot and units contatnthe the oontrol equente patems whth relays. switches, etco) ore made fin the form of cut-in unt ts. Filters, equalizers and sone othew untte, the procuehion of mich in the fom of out in structures were practicanly mecessexy, ase node fin form of panels which are pemanentig fued to the raok these panele are omaected to the prinothas cable of the wack by soldertre: which as mate on the diatributsing bloek or dixectly on the unit elenents.

Snell pate of panels has a combuned structure, tue. some of tits watus are out in and othens are directity fixed to the rack. an example of buch structuxe is the penel or the group transmasaton (reception) oonverter ow the sto rack, where the mplitien is made in the fotm of tuturn wit and the fllters and oonverters are not damountable.

Als outin mits, bestoes the contaot joints, exe provided wth studs, whan esx therr pocttion in the panel. Beantes that, In the latter there are durecting sudes, when ifmit the gide displecment of untt when 16 15 masertea.

The 26 and 30 -oontact blocks, fastenca by olemps on the bhats on beck of the whits, are used as the contact fointe.

In most cases the high-rrequenoy omoutts aro led wo to the out-in wht thongh a comection which conststa of shataded jucks and bow a Th addtuion to this, two jocks ame fasteried on the rront penel of the cut-in witty and the other tro jacks on the untt cover. Some mobiltty of one of the mentioned fach patus, pemits them to be comneoted by bous.

Alt cut-in untts, for the conventene of thetw atrangement on the sadr (and thetn withareval), are prom vaded by hanaes. General viet of the out-in panel-untt of the Inear amplitier, which tir Lncivded in the equip. menc set of Soo and PS racks is shom on Fig. 1.5 .

The width of all ponels is 646 mm , and the depth is 60 m (wthout the protrudig handies). In hetght the
penei dimensione, ae a xules are multiples of 30 mm (1e0, 250,180 m, eto,), whereupon the most moouently encoubered panel dimension is 120 mo Eenels wth unt ts are placod and Pariched on a standare thame, wade thon chemel wer and oomen sten and having e hetent of 200 mm wh a when of 649 mm . The pench wracrement J.s two-bided.

Those pencla and vntts, whioh durtas operathon ape subteot to control and regulation (RIT penelss thear ampluaters ond others). are paced on the mont suae of the raoke. In the centrat pert of tho reota the prow tector panel ts phaced on the pront siae. panels we moviced thth e protecting cover on haces made tron an bpante glese, fox ease of examinetion and replecenent of fuses.
 miner ambifien DUE.

On the Dack stae of the ponels, the fecting buses are placod at the ton. Whe blue bue is comected to the
 nectet to the bronded poles of the fecdme betterines and the wook frome.

Mot $6 T 0-12$ welghs $370 \mathrm{tg}, 510-24$ wetman $430 \mathrm{~kg}:$ sco - 360 ke, BS - 39 kg and $\mathrm{sex}-370 \mathrm{~kg}$
strueturet mounthe of the appenetus was detembined, to a corten extent, by the appated types on $\mathrm{sem}^{-}-$ mumhotered procucts and buthonen components, whot are durtmgrtmed by gnozt overall staes, fncreased dependabtitur mo the use of ner matextels. one of then wes opechally developed during the profeot poxtod of $7-12-2$ syrtem; obers nere borrowed fron the numbea of nev ejermbs, made th the adjecent branches on radioekeotronjo Encuatry.

PLE. I.6. Mntoturo mene "atrinser anc an old type Betmateres froue.

 monoreturec procucte $5 s$ given belon.

Gpe MI Wrebere mestatore hove porern of 0.5 2.0 and 2.0 , end the ninatere Wre - 0.12 te whe resfatons are made on ceramio and passtac wanes. the manature plastic trome "cathbuter", Bhom on Fig. Z. 6,
 on the cemomic frome se investrated on Ple. 2.7. "Whas Le reculeted by the misroneser soser.

We 3. 7 . Vantable mine robistance.

The ophottong inctalued in the aperatus can be Itvided into tro tyoes; one mess type. Wadely aphaded
but the radio eleotronio industry, auch as KSO, SGM, KVGI, MGVP, MVGO, KTK and KGK, two, especially acourote and stable pypes SsG end sGuz (micron, silver) on the given cepactors pith tolerance $\pm 0.3 \%$ (Fig. 1.8.

Fig. 1.8. General vem of capectoms SCMEA (from 50 to $400 \mu \mu \mathrm{f}$) and $\mathrm{BamZ}-\mathrm{B}$ (from 400 to $10,000 \mu \mu \mathrm{f}$):

20

2. $4,300 \mu \mu \mathrm{f}$ $\pm 0.3 \%$
$\mathrm{U}_{\mathrm{T}} 350 \mathrm{~V}$ Scine-A
2. $10,000 \mu \mu f^{2}$
$\pm 3 \%$
$U_{r} 350 \mathrm{~V}$
$5 \mathrm{an}-\mathrm{B}$

Styling rlexton capacitors KEG are inserted in film Wers DK-2.8.

Ferrocart $(\mu=1,000$ or $\mu=2,000)$ or plates from 6em alloy or transformers ateel ane ueed as the course for transformers in the apparatua.

The overell dimenations of fermocart ore (type osh-7) and of the cotl body axe given in Fig. 3.9 .

Fige 1.9. Ferrocart transfomer core type Oshm. Frame pe co:1 OSh-7.

Ferrocart in used for the form for more than 60% of all apparatus transfomers. From the other semi-manuactured mocucts, extensiveIy used in the apasatus, should be mentioned: gemanium diodes Der, wea and Da-meth; appears a orystan resonators, made from natural quartz and also from atcificially grown crystals; relays Ren , RPE 5, RPN and specially developed magnto electric relay RNE-2.

P2g. 1.10. 16 and 30 contact blocks.

Fifn. 2.11. ilttie bows.

Hg. 1.12. Socket strip.

The apparatus has a large number of ewitching elements, such as the abovementioned 16 and 30 contact blocks (T1g, 1.10), bow (H g . I, 11), strips shielded sockets (Fig. 2.ia), temanal lock, stripg with contect lobes, witing blocks and so oni.

Chanter 2. Blook diagams of the appayatus.*
(* Block diagrams of the principle forms of apparatus V-i2-2 equipment (teminal, tandem and derived chamel) examined be Iow, contain only the most faportant units, and also the Level velues and ixput impedences at some route points.)
2.I. Merminal office:

The blook dias of the terman of fioe for system V-12-2 is given in P1.5. 2.7.

The transmission route begins with the unst DSO, the differential system with initer. In distinction from the apparatus type $V-12$, both devices are combined here into one unt. The first divides the transuisetion and reception route, and the second limits the speen signal level, and throveh thas prevents oyerload of the group devices. After the DSO untt the dividing sockets of fourwire route are placed whan provide the possibility of channel control and measurement.

Individual conversion takes place in the nodulator M, to which the carriex frequency from generator equiphent supplied (its velue depends on the channel mober 108 kc for the fisst channel: 104 kc for the second chamel and so on up to 64 ke for the twelfth chamel). The tnterval betwen the adjecent individual carmer frequencies $=4 \mathrm{kc}$.

At the convertor output, the channel band filter Wr 1s comected, which contains paises of crystal remonators. This Piter suppresses upper side band and othew converston products, and also pextly the rematndex of the carrier freciency current. output terminals of all te chanel filters are connected in parallel.

A compensating cireust (Komp, kont) is connected With the some temmals in order to compenate for the filter loss frequency characteristic when they are operating in parallel.

Further, the converted speaking currents of all chat nels pass through the group route, the first element of Which is the band el mination filtera 7 Z

If the gavan onpue tranemts the uper frequency ghom ge-4h ko (ompoe A), then the bonc eltmination f116ew ts debtged to muphese the remennders of cempers

 Whe wemenders or curents tox bl and 10 do bre wapmobe 6 व.
 pecke prevente the thenct of campen frequanoy curent remencers thto the wetem channels, which operated on a
 nolse level pe iowened th these chanels and adotthond. thtentemene is entmanetra. Sunce the Lonem prequency wote wh ath bectmm athemetos does not hate a dis. plecement, then wheh the transmistion there te no dencer of acmen eurment matnders getting thto chanels on other syetens: thererone th the second case it is neeessemy to almanate mom the $50-108 \mathrm{k}$ mpectman ony those frequenctes, when constie with the froquenctes of the conthol curronte. In comesponcence whth thas filtere
 poctrton of themernence on the controt sught as a result of whoh the operetton scabllity of level regu18thon syetem is incressed.

 motuency 3 lo ke "carmes oren" the operating mequency bond 60 wo to to another pectrum negton 100 . 448 kc. Along wh ourwents fron Ludvicuat eqummets also the oontrot pequenoy ouments from the comemonding generaton devices Grot- a and GMote are convarted in the Gmal convertor. por oftice A the ournent frequenotes probuced by Grom I and omot-e ere comempondingy equat to $60(50)$ and 112 (109) ke; fon ordee B-64 ko and 104 ite

The band filter GPs, wheh is placed imedtately anter the apm convertor sepanetes the upper arequency
 conversions.

From 117 the vatues whah the stent has in the tanden ofthce rontes, tt has the lowet level (6.2 nepera) ot the onput of aptintor. Therefore aster GR filter the anolther UR PRe disploced ir the tranomsaion
route, when what a second Enoup conventor OP-2 is connected. The abrien froguenoy of thes converton depence on mioh altemate of the lineen gpectim in sequired to be reaonved (mig. 1. 1).

Fitten 0 -200 Intte the 10 en frequency sfde-band, Whoh ts whotet to tranmission who the line. The group route elements and firat of all filters introauced nonwunformtey anto sts emplttuce frequency charecterm Istic, and for the eliminetion of this phenomenon it is necessary to conneot an equallzen Vta. PER. A (into the route (in onfice B-VYR. PER, B). After the equatizer the sflter K-77 la placed, mheh 1 mmits the trensmttea band. from the low pequenoy side and by this prevents the over..
 oy the mused converston productos. This filter in inoluced ondy thto the transinston noute of offece A. Office B does not have this mater and after the equatemen the mothter uus is placed immedately.

Linear amplifer ratses the wevel in each chonot to the value t a a neper.

Faom the ampliser IUS output the linear epectrum currents enter into the uper meavency ghang rittex
 tronspomer into the Inear filter k-33, wheh serves to separete the le-chamel system curnent inon the watem whro cocuphes the lower srequenoy ppectrum.

The metehtre device bu, intended for the motohing of thput impecance of the cable entrance and the ofisee, is a franmiasion route element and the firat reception zoute element of the temminel offloe.

The reception route begins with the same elements, Wth which the tranmisston woute ends: su end $\mathrm{x}-33$. jurther in station a the f11tcen D-86 ws paced, mict sepanates the reception frequenoy-band fron the trans-

 and axe pert of the athonatic level regutation device. REG. Pa. WCH Whe change of line atteruetion changes the amplefaction introduced by it equally for all frequenctes (flat reguletion); REG. NAT. MCH changes the anolifucetion direrently for ditrerent frequencies in acomdanoe wth the lam of line attenuation ohenge
(slope regulation).
Amplification regulators REG. PL and PBC. NAKL are controlled by the control current receivers (PKK-I and PRY-2), wheh are comected to the output terminals of the last aqpirien th the group route TS. PR.

The regulation consist of aftehng the elements of artipicial lines by tuming the rotors of capacitance switch, which is brought into motion by a motor, which Is connected by a special circuit, controlled by converted signels of the control currents (UPR. ART). Correct action of the automatio level regulation system provides stability of the level at the receiver route output with an accutacy - + 0.05 nepers.

The K -22 enter and the D-88dop inlter, which is placed farther. Increase the reception route attemation at. frequencies outside the operation band. The inftial slope equalizer (VXR. NACH. NAKI, NGH) is placed between these elements. The irequency characteristics slope. is such that the attenuation for lower frequency x ange 35 to 84 kc exceeds the attenuation for upper frequencies of the some range by 0.4 to 0.6 nepers. Using such equajszer, which partly compensates the line attenuation frequency cheracteristic slope, makes it easier to accomplish the alternating slope regulation REG. NAKL. NCE, gince the regulation levels are drawn together.
one more equelizer VYR. PR. A, which corrects the amplitude frequency distortions introduced by reception route elements, is placed after D-88dop filter.

Group convertor GP-1, following after this equalizer, "compes over" the operation frequency-band from the Linear spectmon to the frequency range 400 to 448 kc , separated by filter GPr. Since the Inneer spectrum has several alternates, then the campier-frequency, applied to convertor GP-I has several values.

The reception route section from filter D-88 to fillter app which was examned by us has a different construction for office A and office B. Elements used in office A were listed above.

In office 3 . the K-88 filler is set in place of filter D-88, and after it the filter D-153 sometimes called the filler-roof. This last filter introduces into route a considerable attenuation for currents with frequencies
over I53 ke, by which it protects the telephone trans. mission fron radio broadcesting station interterences. Anten dilter D-153, the regulated artificial Lines of the mlat and slope regulations are oonected (fEG, PL. Vou and Red. NAKI, Vot), the purpose of which was ex. pleined when office tranomssion route wes studed. The dfference between anplifscation regulatomb of offlee a and optice D as in the range of the regulated frequencies and in the reguiation units. The initial slope equalicer VYR. NACH. NAKL, VOH, placed in the route after the regulatoms, having the same purpose as the equalizer Vtr. NACH, MAGL. NBH in ofrice a, Introduces the lover trequencles of the mange 92 to. 143 re and attenuation by 0.2 to 0.3 nepers greater then for the upger frequencies of the same temge. In vien of the small attemubion introdiced by futer $\mathfrak{K}-88$ for curxents of Iov mequericy transhaston direction (up to 84 kc), into the redeption route after the preliminary slope equalizen the filter 1588 dop is connected, Which precedes another equalizer VYR. PR, B, which cor. rects the amplutude frcquency distortions introduced by the group route elements. The first grou? reception onvertor (Gp-I) in otice b accomplshes the same function as that in offtice as homever the carmer froguencies applied to it from the generaton equipnent, have different values (depending on the speotrum altemete). The reception woute pent begtining with faltex opp
 sturucted for both office types.

The second group oonvertcr 6 - 2 in the reeeption route converts cuments of frequenoymbend 400 to 448 ko into amrents whth frequencies 60 to 108 ke with the atd of 340 ko carmien frequency. the tilter D-200 used in. the transmisston route twone out to be useful also for the separation of frequency-band 60 to 108 kc after the convextor GP-2. The recelved signas level at the output of filter Due 200 hes a very mall value. Because of this It is necescary to place the amplifier US. PR, which has such an amplification which provides at the input of individual equipment pert a level equal to - 0.6 nepers. The neception amplifler has two outputs: to one is con-
nected the reception route of individual equapment and to the other - the control cument receivers (PKK-1 and PKK-2):

In office A, these receivers are tuned to frequencien 64 and $104 k c$ and in oftice B, deperding on the spectrum alternate, to requencies 60 and 111 ro or 56 end 109 ke.

From the ampliffer US. PR. the duferent chanel cuments enter the channel Pitters p and after them to the demodulatoms DH, which restore the original voleem frequenczes spectrum. With the demodulation in each chamel the same sammer-inequency as that with the modulation is used.

It should be noted that the upper sade-band, fomed after demodulation, fells into the highmequenoy regton, and thererone no special intter is required to separete it from lower-frequency band. The necessary current suppression of the upper-frequency side band is provided by a capaciton connected at the demodulaton output.

The reception route of the temminat offtee ts completed by the lowimequency amplifier UNGH and by the durerential system DSO which is also involved in the transmassion poute formation.

The Low-frequenoy amplyier raises the signal level in the chennel up to a value mhich provides the reception of the necessary value of over-all circuit ettenuation. Exact detemmation of the over-all aphout attenuation is made by the amplification regulaton whioh is in the UNCH amplifier.

Those places of trammission and reception routes are shom on the block-dagram (Fte. 2, I), to whech equipnent is conrected for broadcasting tranmission in dowled chancle; they concide wish the Input and separation pleces"or the control currents.
2.2 Tanden orimee

The block-diogram of tandem office PV-12-2 is il. lustrated on Fig. 2.2. Whis office mplifies ourpents trancmitted by aerial line in the le-channel system spectrum, and also holds constant the level value at the office output.

Big. 2.2 Block diagram of tandem orfice $\mathrm{Vm} 12-2-\mathrm{Key}$

1. Complete by-pess

2. By-pase with lineam filter
3. Apparatus fon branch commandeation
4. Luf flat megulation
5. Hom slope negulator
6. H-f inftial slope equalizer
7. A-E equalizex
8. Matching transformer
9. Denived chamel equipment
10. B-A equalizer
11. Imf Inttial slope equaltaer
12. Lu filat regulatom
13. Tmf slope regulator
14. 3-6hanel system
15. Ifne
16. URR ARU

Level values, thom on the diagrem, are given for maximu ofitue ampletectlon and for ourrents mith frew quencues 34 lo (onrection b-a) and 243 ine (arection s-b).
mome tre comon ejememps from the line side for both tansmabson drpeothons: metohme devtee sus lines
 of the 12 -ohemels syetem) and the matchthg franoromen connected bethoen the stiter $\mathrm{K}-33$ and the bureoting filters.

In the tronsmbation drection a-b the first element as the atpectne wilter x-88, which seperates the upperfrequency grous from the lover. Further d-153 witwer sp praced. which tis necengary fon intertemence suppresSion, eppeathe with the operathon of brocdoasting madio stations. Who anplipying devices Rea. Ph. Vori and Ret. NAKL. VOH, Colloving after Dm I53 filter, introduoe anpinitetion into the poute, the value of what varies depending on the atbenuation vertation of the Itne section, whoh precedes the tanden offtce.

Bown reguleton mplieters (on, es they are freguently colled, the regulated arthtotad hnes, anoe Fintueliy varies not the tube crrevte amplificetion but the cotenuetion of the input amplitien ciront consisthe of complex ecualtaere) are ontrolled by controt currents. formed by the control onamel recenvers (Dut-143, PKK-ce) by the meane of the bpectel ofrout (UPR ARU). AL thange constoceds these ourrents will act on the byttohing chonent mechanim of wntts REG. PL, VCL and REG. NAKI. TCH: by mhon 3 provided the holding of the outout orpice level et a constant value.

The equelizer VVF, Whar: WhKI, VOH, shom in the degran after NBG. MAKL. VCH, th the range ge to Its mo creates a constent slope of the ampliticetion route mequenoy cherecterettic tri the oraer 0.2 to 0.3 nepers. Wth when tit namone the alternathe pegulation mance, t.e. meres the acomplishment of regulated artiftetal Ines ensien.

Fhter $4-88$ dop supplements the attentation of the atrecting pitters m-88 in the retardetion band, contin. buthe to the attenvathon increase in the intemedtate oftice loop and providing by this pancmeter the necessaxy nom 4.0 nepers in the poratton bend and 2.5 nepers
outside the frequeney-band.
The route equaizer VYR, A-E eliminates distortions introduced by the route elements, determining the required untromity of its mequency characteristio.

One of the rost ilebie units, entering into the tancem oftuce, is the liners amplithen Whe which increases the stignal Ievel by more than 6 nopers. The guiding filter K-88 completas the studied route with direction a-b.

The guiding filters D-88 are the first and last elements in the route of transmission drection b-a. The flat and slope regutation devices REG. WAKL, NOL and REG. DJ, NCH are comected after the first futcer D.88, whereupon indistinction from direction a-b theae is only one anglification element. The oontrol of these regulat. ion articictal line is accomplashed by oontrol current receivers ($\mathrm{RK}-40$ and DKK-80) and othen elements of the ARI equipment.

Fiter k-22 produces the given woute and addtion attenuation for the currents of thee chamel systems $(\mathrm{V}-3)$. Besides this the appearance possibillty of Intercoupling for eroitation in the loop, formed by the tandem ststion $7-3$ and $7-12-2$ routes, is excivded.
polloring wit in the block-dagram is the equalizer VYR, NAOR. MARL, NOH creates a prelintnary glope of the frequency characteristic by 0.4 to 0.6 nepers in the frequency range 36 to 84 ke , thus making easien the acooptament of alternating slope regnlations.

F Whar p-88 dop serves for the attenuation increase ovea the loop, fomed by both tranmission durections rotes of the tanden ofrioe, the equaluer VYM. B-A conboted after it elimnates distortions of the low-sreguency route frequency characteristic, introduced by pisters of the given route, including also the filter D-78 doy. The Innear amolifiex Jus, the next to the last eicment placed in the low-srequency route, amplifies atgats by value in the order of 6 nepers.

Bestices the above described princtiple equiment. the tamen office has also sone auxilary devices.
gince from this ofince, the distance power supply feeding to the auxilary repeter office (VOS-12) can be accomplished, then on the $\mathrm{PV}-12 \mathrm{~m}$ a rack the distance
feeding panel por ingtallation with measuring device and switching elenents is provided, and also the penels of dictance feedtrg chokes DDP.

कor the organzation of onder cirout at lownfequency, the filters DK- 3.8 and DDK- 2.8 , when can be conneoted anter filter $0-33$, are placed on the same tandem offtce rack. The ofice diagram is acomplished with a consideration of poasibility of the arrivins chamels from lnear spectrum and branohtag of the broadoasting program.

The derived chamel equipment is connected between mote equalizers and Inear amplifiers in each trancmiseion dimetion, whereupon a special trensfomer is proviaed for this purpose in the tandem office rack. The broadaasting program brenching of equtpment is comected parallel to the Inear amplifier output.
2. 3 Dextved chamel equipment.

The blook dagran of derived chamel eguipment is shom in Fig. 2.3. As it was already stated above, at the point where the given equipment is placed, derivation of 4 channels can be accomplished and namely ohamels $9,10,11$ and 12. These ohanels ocoupy Inear spectrum sections, whoh are adjacent to the bownary frequencipe of the guiaing filters.

Manirg the point as office where the dexived chan-
nel equipment is arranged, we will agree to dentgate:
a) the tranamission direction of mper-frequency grone from office A to office B - direction $A-B$,
b) the tranmatsion direction of lower-mequency
 tions $A-B$ and $B-A$ transmasion of 8 non-dexived ohannela is going on);
c) the transmission dixection from of itce A to ofrice V - direction $A-T$?
d) transmission dixection from ofthee V to office $A-$ darection $V-A$ (tranmission through 4 derived channels from the side of office A is gotng on in directions A-T and FA);
e) the transmission dinection from office V to
office B - direction Vm:
f) the transmission direction from office Q to office V - direction B-V (trangmseion through 4 derived chamels from ofitce B as going on in directions $V-B$ and $B-V)$.

Orfice V wh the aid of derived chanel equipment obtains the possibility of commanication organization through 4 telephone channels with ofitice A and also with oftree B. The frequenoy routes of derived chamel equipment are connected to the tardem office in front of the innes amplifier input for both transmission direotions.

In drection $A-B$ and $B-A$ two routes are formed: one for ejght telephone chamels and the other for control frequencies falling snto the spectmm of four derived channels - 92 and 80 kc .

First and common element of chese routes is the differential ofrcuit DSm (or DS-2), which divides the circutts of 8-channel and 4 -chamel groups. Eurther in ourrent path of the first group the group amplifier GR. US. $A-B$ (GR.US.BA) is placed, which compensates the attemuation introduced by passive route elements and first of all by the fillter K-108 (or Dm68). In the GR.US. $A-B$ (GR.US: B-A) the high-frequency (or low-frequency) transmission direom tion currents are amplified, including also the oontrol current with frequency 92 (or 80) kc.

```
!
Fig. 2.3 Block diagram of derlved channel equinment. Key.
1. Directon A-E
2. Grow anpluster (grys)
3. From vok (high frequency) route equalizer of tandem
office.
4. To LUS (line amplifier) of the tanden orisce.
5. Direction A-Y
6. Direction V-B
7. Dinection V-A
8. Direction H-MT
9. RASER MONHCHN (Fower distmbuton)
10. From erualizer poute
\longrightarrow
NOH (1-1) route
11. Direction B-k
```

Atten the molimen tho fitero are ooncoted: is quath $x+2 \operatorname{ter} \mathrm{~S}-108$ (on D-68), whioh derver the g-bhence grote, suppescthe the curments of other

 Wrate wo watod by mathene wandommet rat (os rep) the cevtee Rolhomag entex the transfommen is

 4 ohemel) into one comon route, elthmathe thetr motual influenoe. The dustrabutor RAspR. Moshom output

 Ievel at bhe tnput of 4 perinel oonected chornel Phten Pr. Mese prtere divae the mequenoybonds of the 4 denived mennels (oe to 96,96 to 100,100 to 104, 104 to 106 ke) and at the some the they awe mbo the andtrowe2 equmpent elements pon ech of then

The induraucl cqument consthtuthon th the cemped
 th the temmel ontace chanel-band flter pra denodu-
 statem whth 1 thtere DSO.

The the recection on 4 dertved onemel curarots 5 acomplsmed.

In buection $V-A$ the cumente of the same thencte are tathmetrac. Area the Anderbal pert of the equipment mathe mot ther pr a poup note on there chancie hetrmed, the farst element of whon ts the bend elamhetion fiter aty mon wopesaes the ournent
 We metontre thonstomer m $135 / 600$ anhons the groto convertor ab, mhoh tw necesary to tranepoed the grow
 zeno mequency 60 to 84 ko jnoen ppectrua section

 monto generatom devioe of the centrea chamel equapment.. The giren value of cemternerequency detemthos the

gettrac into the converton, 111 cause at 1 ts ottput, one congequeatIy, in the Ine the pppearmee of oument mth mequency $6010(276-96=80)$, when 4 the than will get Lnto the contron ohmael and will moch oft the 2ovel raculction.
 mapheabet whe ubelege onnension probucte, ond the
 velue, mhen wth the onsberathon of etwenation an the astrabutor Reser. Hogkom wil provec the required value - 4.1 nepers at the linear mplufler Anot of the Gancen ontuoc.

 a grom with pectram te to 100 k .

The group coute ontane metchne thonspomem m 600/235, band amanethon water 2 , amplufer us. TB and porer dictatbuter.

In dtreotion $B-7$, the deraved chench group chten the duferentat eysten De-2 gets thto the fituen D-100, which protects the 3 ohanel route how onversion proouctus, fomed in the group onvertom Gp. St ton thes conventor one more tiltex $2-208$ is coneoted, mhoh
 Indutham equipment olemerte for the tow detryed

Chapter 3. Indutguat Equipnent

3.2 Generes information

By hnaridued equipment are understood all those equfrent elenente and unter whon enter only theo a route of each eaparate chamel. Also the devices serving fon sutching and pressing of chanels are usuaily adace to this equipmeat. Thus, differential systems ond on plitude limiters VSO, modulatore and denodalatoze fand
 volce frecuenoy ringtrg and dialtng recetvers prove melay suoh, operating in the call sienal recolving and tratso mitthg orouits RTV and RTV, and $2 l$ so the votoe frequenot ringing generators GPV, control in suitching sockets,
speak-buze deviee FVU, neper meter NP and test amplifier IUs enter into the constitution of individual equipment.

In equipment $v-12-2$ aII disted units are arranged on one rack; foming the individual equipment reok sro. If lemehanels bets are anctalled on rach STo, then $1 t$ is ecmed the STOm 12 rack, and fom 24 sets, then $5 T 0-24$. (*Sometmes these racke are also called sIO-I and STO-2) Such outfitting pemits to use the rack in different multiplexing systems. Already at present the sto-24 racks are applied in the 24 and 60 chamel systems of high-frequency telephony through cable lines ($K-24$ and K -60), in the 12-ohanel system operating on single oable dines (KV-22), and also in the padto melay lines mutipaeming syotems.

Ghannel charecterintios are determined malnly by the quallty of untt performance and the time stabsifty on individual equipment. The amplitude frequency charecteristic of the overall chamel atteruathon depende fisest of all on the attenuation charactexietic of channel filtex. The armitute chatactentstic and the coefficient of nonminear distortions in the channel are determined by the openation of amplitude limiter and low-frequeney anplitier. The intelligible and unintelifgibie cxoss talk to nelehboring chancis can sometimes be explained by fulter derects and so on stability of frequency and output level of the voloe-frequency ringing generaton the conjunotion with sensitivity and selectivity of volcem frequenoy ringing-dtallug recelver and the comrect relay operations detemmnes the operation of semi-autometie communcation system and tha passing of call signat. Operation of ano units also telis on the group equipment characteristios. For example, with insuffletent suppresston of comier current renaindess or with oversized output level, the group devices cannot overload, distortions and noises and also trangent cumrents in other cinouits cannot apise.

It is clear from the given examples that in the temminal office it is necessary to wetoh the condition of judividual equipment, aithough meanurea were taken in the equipment to malntain stable system operation for e long time.

The presence of large mamer of identical units in rack GIO (differential system, converter, UNCH-PINV, etc) in necessary ease pemits to accomplish easily their re-armangement between channels or amrangement of reserve units, which are recommended to be kept in readiness.

3.2 Block diagran

The Individual equipment rack diagram is given on Fig. 3.1 with the indication of level values in different route places does not require a detailed explanation, since the general block diagran of teminal. office was examined above.

We will only note here that these routes are of the same type for all chamels. The chamel number detemines only the oharacteristic and elements of channel filiters (KF) which depend on the operating frequency range. Wher 12 fillers WF are comected in parallel, it is necessary to comect their totel output (or input) impedance. This correction is accompliahed by ciroutt KK.

A series of jacke is shown on the diagrem. The separation jacks are installed in the two wire and four. whe routes, and also in the call signel tranmission clreutts: the control jacks are placed at the high frequenoy input and output of the rack and in the carrier frequency current feeding circuits. These jacks permit to check separate route sections, to accomplish tandem comections, to measure the level at different cirouit points, etc.

Transformer Treper and attenuator Udv are the last clenents of the sto tranmiseion route.

Transfomer Tr.per and also transformer Tr.pr are mace according to a differential circuit and have three output teminal pasis. Trensmission route ia connected to the first teminal pairs i.e. the band fllter output; atbemator UC_{v} is connected to the gecond terminal patx, and the third terminal pair is used for the comection of equipment for broadcasting which is transmitted by doubled channelis.

When uaing SIO racks, making contacts by cable Ines, in the terminal offlces the attenuator Ud V is disconnected, as a consequence of which the output level increases by 0.3 nepers and becomes equal to -4.5 nepers.

Fig. 3. 1 Block diagram of individual equipment

A detelict description of units, included in the SIO reck, is given below, but the given cirouit will also be used to explatn the different parts interaction in the individuel equipment.
3. 5 Differential system and Imitor (DBO)

The difrerential aircutt divides the two wire route whion is common fox both transmission direetions into two reception and transmlssion routes, which together fom a four wire route.

The enplitude Imitor is connected into the tranmission poute and is intended to protect the group devices from the increased levels of speaining ourrents, Whion can appear with short subseribers lines or with loud gpeech and can cause amplifier overload, whtch fimet of all, wlly influence the operation of trice frequency ocrrier telegraph.

Diterential ciroust and amplitude limbtor fom a single oirouit (rig. 3.2) and single structural unt in the individual outittting of the $V m-2$ eq equipnent. Tranafomer Trog is the basis of diferentyal system. The blocking apacitor C_{1}, whloh deoweases the shunting transtomer action for minging ouments, is comected from the soritchboard to thic trancfomer.

Restetance $\mathrm{F}_{2}=600$ ohme and two capecttors $\mathrm{C}_{2}=$ $0.5 \mathrm{pt}^{2}$ and $\mathrm{C}_{3}=1$ ht are the balanced load of the diffexental systen.
 0.30 nepers) and $V d_{3}(b=0.25$ nepere), which sexve to establish nominal values of measurang levels in two. Whre and rour whe swithing jacke, are in the transmituthg and recelving branches of the differenbial systera.

Input timpedance of differential system from the swithing board stae equals 600 omms. A capacitor $\mathrm{C}_{4}=0.01$ He tion plaged into the transmission rack of the diferential system to compensate for the reactive component of this input impedance.

Fesistance Rg, which $=600$ ohns serves to match the 300 onm differential syetem output with the 600 ohm Imitor input.

The amplitude limiter is an unolanoed differential system, rade with the differential transfomer Try. Gemantun diodes DI and De are connected to one input of this differential system, and diodes D_{5} and D_{4} (type DeB) ane comeoted through trensformer Tre to the other Amput, The inrst two diodes have a positive bias from a battery, and the other two a negetive bias.

With the absence of a call and with nomel goeaking cument levels, the diode restistance is detemmed by the bias voltage from the constant current source.

When at the trput a speaktrg curcent limiter with forreased level 1s placed, the alterneting voltage on the diodes is greater than the constant voltage blas. The diode resistances th this cese chenge such that the amplifude inmiter attenuation increases. Indeed, the restatence of sexpes coneoted diodes D_{1} and D_{2} at high signal levels increases, and decreases with parellel coneoted diodes D_{3} and D_{4}. All thines connidered this leade to en improverent of differential system balanoing (Mry) : i.e. to the increase of its attenuation.

The amplitude cheractertstio of the differential system trensmission route with Imiter is represented on Fif. 3.3. The operating atternation of this differential
system route with nomai levels equals 1.1 nepers and of the receiving route 0.9 nepers.

Differential system and Imtter are installed in one unit, having small dimenstons (32 by 90 by 140 mm) which permit to awange 12 such units on a mounting plate 120 mm wide.

H15. 3.3 Agythuge charateristic of atferential systen mith 1 miter:

Al DSO mit traneformers are made wth permalloy cores, whion matres it possible to deorease substantialiy thatw anzes.

留he nooesmary awitohing of elements (attenuators, balancing circuits and otherrs) are accomplished by reachaterng at the terminals, placed on the front taxponit watt covex.
3.4 Ingriduct frequency convertens end chamed filtera

Ind viduel frequency convertera enter into trencmisinon route (modulators) and into the reception route (derodulatows) of each chennel.

The frequency band of apeakine currents is converted in the modulatore to the hesh frequenoy band whtoh ocouptes depending on the chamel number (1.e. on the camper frequency value) a depintte gection in the princtple 12 channel group spectrum 60 to 108 KC.

Demoduletors make reveree converston of high frequency Etgnals into low frequency gignais with the aid of the same carder frequency which is used in the modulator.

From the potat of wiew of economic end miform consumption of energy by the converters from theobyrier
frequency ourrent souree, it is advisable to oppositely connect the modulatom and demodulator dode bridges in each ohanusl rom the alde of aqmier frequency reeding, B.t. in gith a way that one half woutd "open" the diodes, e.g. the modulator, and the other the dentodulator.

The lower side band demived by the band chemmed filter after the modulator is the operation bend for tranamsaion and also for reception after the conversion.

The diode oridge (FIE. 3.4) which is made from cuprous oxtde rectifiexs HRV5-1 is the basis of modulator and demodulatom eimexit.

Fsg. 3. 4 circutts of individual conrentend.

The attemuctozs vaper (b 0.35 to -0.65 nepers $)$ and Ud, ($b=0.8$ nepers) per comected in front and aifter the modulator, and they make 1 to balanaing with the loans easier, in the first place with the band filter. Bestides this, these attemators permit to change thetr attenuation by changing (3 solderinge) the arm resistances and by this pernit to establish the extot required level value at $\$ T 0$ output.

Attemuator $\mathrm{Va}_{2}(b=0.8$ nepers), having the seme purpose, $1 s$ placed in front of the demodulator. Protection of low frequency circutts from high frequency signals getting into them is provided by low pass filters, fomed by transformer Mry bindure and capacitor on and also by the colls Irs. I_{3} and the input capacitance of low frequency antifler.

On the other alde, the high pass filterg the elements of which ere I_{1}, O_{1} and C_{2} supprese the low srequency currenta at the modulator output and demodulator input.

The attermation of each individual converter is 1.0 to 1.1 nepers. The above mentioned low pass and high pass filters which eliminate the shunting of operating slgaial by converter loads aid the decrease of attenuation.

It is important for the modulator to have such a. selection of bridge elements (4 rectitiers), which would provide a minimum leakage of carxier frequency current to the circuit output. With great aiminarity of these elements it is possible to reach the level of cerpler frequency current remainder at the moduator output equal to -5 nepers (usually -4.5 nepers).

Al unused conversion products in the transmission route are suppreased by band filitex. In the reception route similar filters dexive only one chanmel band from the frequency range 60 to 108 kC .

Since frequency bands arranged between channels have relatively small width, then the requifements for illter attenuation increase outside the pass band are very high. Such mattenation characteristic steepness on the spectrum sections adjoining the pass band together with high paraxeter stablitity can be provided by filters with piezo crystal restnetors which at our place are even made from natural quariz or from artifically ground crystals.

A typical characteristic of channel band filter As given on Fig. 3.5. The filter consists of two bridge eircuit sections matched by resistors F_{1} to F_{6}. The Input and output filter resistances equal 600 ohns.

The ciroutt element values and the pass band are detemined by channel number.

Parallel comection of 12 filters involve the distortion of their attenuation characteristics and the increase of reactive component of input impedance. Its compensation is made by connecting the special. cimout KK (Fig. 3.1) which is a four element tube termina: networx.

Structurally the panel of individual channel
converters PIK (a for 3 chamels) contains 3 modulator blocks, 3 demodulator blocks and 6 individual chamel filters. All these units are placed on a frame made from flat bar steel, they are braced together by screws, acoesthle from the front and if necengny could be token

Chanel filters are mede with ptego electioic resinators and inductoms wth ferrocart magnetio cirouet. The filters are mounted on a chasais fined tnatac a coldered oover. The extemel viow of the channel filter tis shown on Fig. 3.6. The thductor used in the fister (fig. 3.7) was suggested by I. T. Rebkin (NITMB). The application of fertocart pemativ to reduce lits overal size dimensions by more then half whith respect to a cojl. without a core.

Fig. 3.7 Inductance cot of the chamel filter.

Four ferrocart inge (1) with permeability $u=$ 400 which make the external cylfider of inductance magnetic ofroutt are enchosed in red copper case (2). Taside this cyltuder a coil is placed whto has a ceramic tube (3) ap a frane for windings. Universal type winding Is made in sections. The core (4) and also the emall adjustors (5) are placed inside the ceramic tube.
3. 5 Low frequency amplifier and voice-frequency dajingminging receivers.

The low frequency amplifier (UNoH) and the volcefrequency dialing and ringing receiver (PrNV) are combined into one untt and form one common circuit 11ustrated on Fig. 3.8. The cirouit contains two tubes 6zinl-E. One of them is in the amplification stage Which is common for apeaxing currents and call signal. The second stage duffers only to the ETNV recelver and ciroutits are connected at tits output which determine the recelver selectivity and its protection from random operations owing to componente in Prequency close to 2100 c contained in the speech spectrum.

The amplifier input transiomer (Tr_{2}) is made with ferrocart core with $\mu=2000$. Two reatstances one of which is variable are comected parallei to the primary winding. It is used as amplification control (RU) and is placed on the swithboard outside the unit (UNOH-DINV). The control RU changes the amplipication in the renge 1.1 nopers.

The amplifier output transfomer (Tr) is an unequal branch differential. system destgned from the condition of mintmum losses of the spearing signals used for power in the volce-frequency dialing-ringing receiver, and also from the condition of the best receiver protection from interference currents entering from the switchboard.

A combined feedback (C_{4}, R_{6} and $\mathrm{F}_{3}, \mathrm{~K}_{4}, \mathrm{R} 6$) which encompasses the output transfomer is introduced to frmpove the amplifler characteristic. The feedback depth equals 1.5 nepers in the frequency range, 300 to 3400 e.

The maximum amplifier amplification is 4.3 ± 0.05 nepers, and without the feedback approximately 5.7 nepers.

The wiplifier ampletude characteriatic maintains the strajght 1 ine shape with an accuracy of 0.01 nepers up to +1.6 neper level at the amplifier output. The reflection coeffictent of the amplitier frput fimpedance with maximum armifincation is not greetere them 158 wth respect to the 600 ohm realistanee. wth the exception of frequency 300 e where it can be somewhat greater. The reflection coefficient amplifier output reststance with respect to 600 om resistatice 1 not greater than 10% in all opexation recuenoy range.

The comeotion elements of amplifier frequency chapactertstic ($D_{1} C_{1} I_{1} G_{2}$ and $I_{3} C_{f}$) prowide a posefbility of amptipfotition rasse at the ends of Itedueney rance (300 to 700 c. 2300 to 3400 c) in the range 0.5 neper and in the middie of the band (500 to 1700 6) in the range 0.3 neger (Fig .3 .9).

The sending and reception of a call in Vm 12 m equipment is made by a 2100 c volee-frequency current.

Fhe. 3. 2 Fxequency chercoterstios of UNCH whth convected oompenseting circuita.

霊 47
nominal (2l00 o) whth oureent levela of +1 neper at a point whexe the measuring level equals t 0.5 neper. Pulae distortrons when the bobe Ilyted whevoreble conditiono
 50 to 60 rese.

FLe. 3. 10 Ampiture end frequency charectertatic of pmots 1) Ievel at the thon output -1.7 neperg, 2) level at Uuth output - 0.2 nep., 3) Jevel at (nor output +0.8 aep.

Ave atamation

> What aren cot
 of out-in block, rhe wrav recetren elementa exe in tote wper pate and पWCR amplifhen elements fo the hower part. The wht is proviaed by o 6 oontact contactor blook placed In the back part of the chasala ($\mathrm{F} \mathrm{g} . \mathrm{g} .3 \mathrm{II}$).

The front block plate has daoks for the measurement of tube wurents, currents tr relay windinge and for perallel omoctron of mesuring devioes to Wum amplifser frput end outputs bNompary blocins are placed on the ra-12 rack on 4 pancia -3 blocks on each panel. The 3 tube heater fllaments of atererent block ampliftens on one panel are comected in teries; also the filaments of praty recedver 3 tuber are conmected in seriea.

3.6 Votce-frequency ringing generator (arv)

The vouce-frequency ringing generatory (fug. 3.12) has three tubes, two of which L_{1} and L_{0} form an $R 0$ coupled master stage, and the third tube (Ig) amplifies the generated oscillations. The current frequency prom duced by the generator is determined by elements \mathbb{R}_{3}. C_{1-2} and $R_{2} C_{3}-4$ its nominal value equals $2100 \pm 5 \mathrm{c}$.

The appication of negative feedback (resistors R_{1} and R_{6}) and $1 t$ comection into the thermistor (I_{4}) cifrust aid in the stabilization of output level and the improvenent of ringing current curve form.

A circuit consisting of the primary transfomer T_{1} winding and capacitor C_{10} and tuned to the 2100 c frequency is the plate load of the output amplifying tube. Transformer is made with a tcu-60 type torroidal core, having 24 m outer diameter and 13 mm inner diemeter.

The generator has 2 outputs. A current of 2100 c and with level -1.5 nepers is applied to the telephone chanmels through the first operating output (Vykharab); the same signal with level -3 nepers can be applied to 600 ohn UNCH-PINV input for the checking through the second test output (Vylkh.1sp).

Signal level coming from the operating and also from the testing output can vary in range ± 0.5 nepers with the aid of variable resistances R_{22} and $\mathrm{R}_{1} 9$.

A noticing lowerimg of output level (by 0.3 to 0.4 nepers) owing to the tube aging or as a consequence of other reanons is registered by lamp aignallaetion activated by polarized relay R. This relay is sed by the reotified current applied to 1 te winding (1-2) from the tyre Des diodes, which exe conneoted into the IV winding atroutt of transtornets Txy By lovering the voltage value on the winding the reday erwature (as a consequeroe of ampere turns predominatoe formed by the magntitatig ourrent) closes with a contact placed in the signel Iamp cirouit. The ontput aigngl power with 2100 o frequency 15 provided of anch a value thet the atuded genevetox clucatt, that $1 t$ is poasible to send ringing ourment through 24 channels the same time and with this the level at the Imput of any ohamel doed not becone lower than 0.I neper:

F1g. 3.12 Voioe-frequency minging genergtor (orv)

The voice-frequency ringing generator is rhaped in the form of cut-in block, on the front panel of which besldea the tubes (eleotron and algnel) are placed facks of the both outputg, jaxks for masuring tube cathode

1. Operattion output
2. Heat output
for regulating outpet levels (R_{19} and R_{22}).
A reservation of voice-frequency ringing generator is provided in the equipnent by another exactiy similar generator.

A sumton located between the pincipite and reserve generator blocks can switch over the load from one to the other: in adation to this the signal lamps at the switch mark which one of the generators is feeding ringing frequency ourrent into the channels.
3.7 Joint operation of gending and recelving devices for voice-freguency xinging and pulse dining

Equipment constitution. The following units and elements of the individual equipment rack (Fig. 3.1) are froluded in the transmission and the reception cirouit of voice-frequency ringing and dialling: a) voice-frequency ringing genexator (Grv); b) iow frequency amplifier, jotned with the voice-frequency dialing winging recesver (UNCI-DMN): c) relay set for ringing devices RIV (magneto ringing relay) and RTV(woice-frequency ringing relay); d) control devices, arranged on the switching fleld, telephone jacks to cheok volce-mequency dialing. (Prov. TM), buttons to check the sending of volce. trequency Finging (Prov. EINV), signal lamp to control call sending (Pos.vyz), signal lamp to control. cull interception (Px. vyZ). A dowel to cheok Pmy is installed in the unfversals PVU lock.

We will examine in order the operation of listed devices first with the sending of ringing current and then with the sending of dial pulses. The first takes place with e manual comection of customers, and the second presumes the realization of semi-automatic conneotion.

Cali sending. Magneto ringing owarent with frequency of 15 to 50 c incoming trom the swatohboard passes choke Dr_{1} and rectifier briage W of the RIV unt. The rectifted voltage which appears in the bridge diagonal forces to opexwe the relay R_{2} which forms a circuit by fits contact into which enters also the relay K_{3} of the ETY unit (the relay Rig contacts of firt unit are closed, (since relay itself is under current). Relay R1 operation frivolves the switchover of contacts, through which the ringting frequency 2100 c Is applied from gity to the
modulator input. The ringing signal passes further through the route in the same way as the speaking signal up to the low frequency ampliter of the other terminal office. With the operation of relay K_{I} FIV the relay R_{2} is simulteneouslykooked wheh first was fed through the left contact of ETV polarized relay. This blocking is necessary for the case of simultaneous incoming of a call from the high frequency channel, since without it relay R_{2} would drop out as a consequence of circuit break in the polarized relay contacto. Following R_{2}, R_{1} would also drop out, 1.e. the sending of the call would stoop.

The call can be also sent by a constant current. In this case the "Erom wfre termination of the channel) is directly applied by the connecting wire to RIV relay RI_{1} and further occurs everything as stated above.

When there les a two wire channel termination, the call sending by constant curvent is accomplished through the operating pair of wires. The relay R_{2} of block RIy also operates, which for this case is connected in series with choke Dr_{1} (rectifier bridge is excluded from the circuit).

Operation of relays involved in call sending can be checked by observing the lighting of signel lamp Pos.vyz. in order to make the check, the button Prov. of PINTY should be pressed, which is provided for every channel on the Sro switching board. With this the mentioned lamp pos.vyz. will light up every time, when the performing relay R_{1} of RTV attracts its armature.

Call reception. Getting into UNCE-PTAN block, the call signal with frequency 2100 c is rectified in the pTNV circuit and acta on the polarized relay which is in this block (Fig. 3.1 and Fig. 3.8). The relay armoture fis throw over from the left to the right contact, as a consequence of which a circuit is formed through Prov.PINV which is in a released condition, contacts of RTV relay R_{2} transmission route jacks, placed on the switching board, contacts of RIV relay R2 and finally winding of RIV relay R1. The operation of the last relay connects altemating current source with frequency 15-50 cycles (e.g. power ringing generators Na) of conetant current 24 volt source, to the two wire channel output. After this the entry of a call is raconded on the switching hoand.

Control of Privy operation can be accomplished by foroing the Prov. PTNV key. With this the polarized relay amature is throm over to the right contant and the Lamp Ex.vyz instalied on the GIO switehing board lights up.

Seading and recelving dial pulses. Sending of dial pulses is made by a relay device which is not included in the sTo rack equipment. This device (outgoing voice-frequency dialing set - IKTW) provides the sending into the chamel of alternating cumrent pulses with frequency 2100 o duration 40 to 60 nsee and with intervals of the same ordex. The altemation speed of pulses and intervals, and also their duration is determined by the rotation speed of the dial disc.

Accompishment of semi-automatic connection specifists four whe chancl termination at SHo. Elements of the two whe route part in this case are difcomected by bxerctug the output differential bystem circuits (renoval ct Dot juwhers - Gn. per and Gne pr in the circutt of Fig. $3 . x$) whe by breaking relay R_{0} cipentt in the RTV block (rertoval of 10 jumpers - nathual operation).

Pulses pess practically undistorted through the high frequency channel. In the receiving part of equipment they are separated by the volce-frequency dialingringing recedver and also as the call signal are rectified In the FMVI cirouit, acting atter this on the polamized prelay R_{3} :

With armoture oselilations in time with incoming puldes, the positive of the 24 voit battery ("ground") is applied thrugh the wight contact of the polarized relay, the tey of Prov.pruv, the closed contact of relay R_{e} FTV, the jack per add further to the entering set of voice $f_{\text {frequency }}$ dialing - VITN which is present in the ams equipnent.

The entire sro route introduces pulse distortions pot over 6 nsec.

Constant curcent pulses. which are sent from the polarized relay contecta can be appised by pressing the key Prov. Provy through jack. Prov. TW to any control device in order to check thetr form, determine their duration, ete

If it is necessaxy to check the operation of Ururpowv by way of applying this input a series of undistorted puises, then one proceds in the following way. The input
of Uref is connected by cords with Prov. TV jacks which are located on the panel of speak-buzz device (PVO). Manipulating the diel dise and the corresponding PVU svitohes, a necessery number of 2100 e altemation cument pulses can be applied with the required level to the UNOH-PWN input. These puises converted into sending of constant ourrent can be observed by devicea connected by the already mentioned jack Prov. TV.

All relays of the described circuit, except the relay R_{2} of unit RIV, have an operation and drop out delay In the order of 75 to 120 msec, which prevents the sending of magneto pinging in the switching board direction with random operations of putv.

Structurally the RIV and RITV sets are made in the fom of cut-in blocks. In one block type, fours relay sets of magnetomingtrg are contained, and in the other four voice-frequenoy minging relay sets. Thus there are three blocks of each type on the STOm. 12 rack, which occupy two 120 m wide panels at the back of the rack. There are four such panels on STO-24 raok.
3.8 Swt tohing board and PVU

The SiO switch board is schematically illustrated on Fig. 3.13. It contains element groups relating separately to each channel and elements comon to all chanacla.

The cut-in block of speak-butz device PVU is a part of switchboard and it makes with it a single structural unit.

The control switching elements set of the chamel (24 sets) consists of amplification regulator RU taken out on the bank from uncri I jack pair connected into two wire chamel part (2 proin and 2 pr. komr), one jack paix comected into transmission route (4 per. In and 4 per. komm), one Jack paix connected into reception route (4 pre In and 4 pr. komm), lanps recording the busy condition of the channel IE and keys Kn Z by pressing of which the lamp Lif lights up, if the channel is indeed occuppied by service personnel for checking purposes. Weing jacks in two and four wire grounds a conversation can be conducted and a call can be sent with the aid of pyu in the switchboard direction and also into the line ajrection separately or at the sane time. The same iaciss
permit to make measurements and tests of the channels. Twenty-four keys Prov. PTNV the purpose of Which was already explained in section 7 of this chapter are placed separately at the bottom right of the boam. Lamps Pr. vyz and Pos. vyz semving for the control of generator (Gry) and volce-freguency minging receiver (ETNV) operation, are located in the middie section of the sulitchboand. They are connected to this or that chanel by pressing the comesponding keys Prov. PTMV.

Sone suthohing board jacks - transition, connecting lines, service lines and others were introduced for diferent switchings and factitties with equipment operation.

The switching board of SIO rack is set up from jack spacers with jacks, keys and lamp holders, compact-
ly made from plastic and metaliic components. The application of such jack specers permitted to reduce the switchboard dimensiona, in spite of the large number of elements installed on it. The switching board is divided into two parts, each of which is fixed on hinges and can be folded back, moviding acoess to elements from the assembly side.

LIock PVU SIO performs a number of functions Which make easiex the servicing of the equipment and the control of its operation. PVU can be connected to a two wine and also to a four wire chanel part, permitting with this a separate or simultaneous conversation in both arrections from the place of connection. Comurication is accomplished with the aid of EVU through the connecting and also through the service Iines (including also the number dial with the connection to ATS). PVU js used when checking the voice-frequency dialingminging receiver, when controling the load frequency amplifier and also with other checks, whereupon the ampification stage in the undt permits to raise the level of signals entering finto the telephone. With a four wire connection of PVU the above mentioned dividing jacks are used on the switching board 4 per lin, 4 per. komm and 4 pr, lin, 4 pr. komm, the signal level in which in correspondence with the level diagram equals -1.5 nepers (transmission) and to. 5

On Fig. 3.14 a pert of the pyr eiroutt is illustrated, made from its elements in the case of four wire connection.

Fig. 3.14 WU cirovit with 4 wire connection.

Transfomer Try forms a nonequal branch differential system. Attemuation from microphone M to jacks Per is higher by two nepers then from the mjerophone to jacks Pr , which provides the necessery level values, when speech is made from PVU in the line direction and in the switching boerd direction.

Cross talk attemation between transformers Tre and Tx 3 is 4.5 nepers. These tranefomers permit to obtain input resistance values in the PVU dinection equal to 600 chms with separate conversation and 5000 ohms with common (simultaneous) conversation. To accomplish this or the other form of conversation was possible as a consequence of special soldertng system of separating facks in the switchins board (comon conversation and control are possible only with jacks connected in the switching board direction).

For the attenuation compensation introduced by the differential trancformer from jacks peredacha in the telephone T direction, an amplifien is provided consistine from a tube L_{1}, input transfomer Try, output transformer Try and two load resistors F_{7} and T8. The latter is connected only with separate convercation, when
the signal level entering the telephone lnoweases. As a result the telephone level is always of the order -1 neper A vojoe-rrequenoy minging can be sent from
Fu in the ine direction, a constant cumpent calu in the switching board dixgetion and a call from the switchw ing boand can be recetved (these circuits are not shown On FiE. 3.14 fox the similcity of the schematic).

With two wire connections of DVU a ciroult is formed Illustrated on Fig. 3.15 as the previous cirouth, ft permits to acomplish a sepaxate and common conversam tion from jecks 2 pr. Iin and 2 pr. komm, to send a call in the gwitching board direction and to receive a call from the line and also from the switching board. For this the circutt has reotifier bridge M, relay R_{1} and signal lamp I_{1}.
Fige. 3.15 PVU ofrcutt with 2 -wire conection.

Approximately the same two wire circuit is mades, when it is necesaary to carry a conversation from any of the two sexvice lines.
3.9 Neper meter

The neper meter serves to measure the overal
channel attenuation and also control the level in the frequency range from 300 to 3400 c . Generator and level recorder are included in the neper meter constitution (me. 3.16).

The Generator $1 s$ a two stage RG coupled amplitier With tubes I_{1} and I_{3} of the type 6ZHIp-E, having positive and negative feedbacks circuits. The positive feedback cireuit consists of 2 ULI type resistors (R_{1} and R_{8}) and 9 pairs of type $S S G-1$ capacitors (C_{1} and C_{2}).

The settfong of generated frequency is accomplished by a switch, having 9 positions comesponding to fixed frequencies $300,400,600,800,1600,2100,2400,3000$ and 3400 c . This switch connects different capacitances into the circuit conditionally represented on Fig. 3.16 by capacitors O_{1} and O_{2}.

Fig. 3.16. Neper meter cirouits

The positive feedback circuit voltage is taken of the potentiameter R_{9} which is part of the tube L_{3} plate load. The generator output level can be varted within a small range (0.1 neper) at the expense of the potentiameter resistance variation, i.e. at the expense of positive feedback circuit varsation.

With the presence of negative feedback, the ciroutt of which is formed by themistor L_{2} and resjstors
P_{0} and Fr , the level in certain ranges does not depend on voltage oselllations of power supplies.

The generator hes a cathode oubput. The output transtomen Try is designed in guch a way that the Beneraton output impedance $z_{\text {out }}=600$ onns. The level at the output is reculated by a two way anftoh which commtates the H-shaped attenuators UdI. 5. With the connection of attemators the output level $=+0.5$ nepers. With the introduction of attenuators Ud5, Udy, Ud3, Uda and Ud, the level correspondingly decreases to 0, -0. 4 , $-0.7,-1.5$ and -2.0 nepers.

Gerexator output oiroults are womd on the switch
Kll contacts after the attenuator and then are ferminated by Gny jacks. The generator output is connected with the level indicator input by the key Kli. Besides this, the ontput level value is cheoked with different two way switch positions.

If the generator level somewhat changes when the tubes and themistor are replaced. then it can be restored by the potentiameter Fg .

The level indicetor can measume levels at the range -4 repers to +3 nepers. It consists of input device ($R_{13}, \mathrm{Tr}_{2}, \mathrm{R}_{14}$), one amplifier stage with tube I4 (6 ZHLP $-E$), a rectifier device and constant cument (ma) indicating device which is calibrated in nepers. The level indicator Input is let out to the Gre jack. Besides this, at the level indicator input are found the key kle by which the 600 ohm and π resistance input impedance of the device can be eatablished, and the voltage divtdex R14 with two way switch PK_{3} serving to establish the required indicaton level sensitivity +3 , $+2,+1,0,-1,-2,-3$ nepers. The measurement exror at fxequency 800 o at the 0 neper mark is not over ± 0.05 nepers.

The detector device (M) is made by a full wave rectifier oirouit with gemarium diodes Des; micromameter M-2t for 10 ya with the first class is used as the indicating device.

Resistance R16 is connected in gexies with the bridge for temperature compensation of diode resistance variation.

3.10 Test ampl1fier

The test amplifier (IUs) is intended to cheok the chanrels of indivjaual equipment "on itself" by connecting it between transmission and reception routes. The amplutex extout (2 fig. 3.17) has tro stages
Wth tubes 6 mipme and with negative feedbaok, the depth of which 1.3 .4 nepers. The teedback voltage is baken off part of the transformer Tre secondary winding through elements C_{5}, F_{7} and applied Into the cathode circuit of the first tube.

EA8. 3.17 Circuit of test amplifter IUs.

The amplifier amplification in the operating frequency band $60-108$ ko $=3.2$ nepers, and the nonwhe formity of frequency chanacterdstic ts not over 0.03 nepers. The amplitude characteristic is a straight line up to the output level value te nepers. Nominal values of input and output impedences $=600$ ohns.

For a better amplifier matching with loads, the attenuatoxs Udi ($b=0.5$ nepers). $U d_{3}$ ($b=1$ neper) are conneated at its input and attenuator Ude ($b=0.5$ nepers) 13 connected at ita output.

The amplifier is connected to the tested channel between the output of tranmbeaton route chamel filter and the fmput of reception route channel filter of $\$ 10$. The riosaument levels at these points have the values -4.2 and -1 nepers correapondingly." It can be also used to check the entire equipment STO "on itself" to which are
plso subject the group elementa of this rack (Fig. 3.1). It is necessary to use Iine transformere in this case to match the amplifier input and output with the Sro transmission and reception routes output and input (having resistance of 135 ohms). Similar transformers ctre used for example in the measurement bench IP-150. With complete oheck of SIO, amplification of IUs should be increased to 1 neper for which the atteruator Udz is disconnected.

Ghapter 4. Group equipment
4.1 General information

Group equipment is intended for conversion and amplification of currents incoming from the individual part of equipment (SIO) with frequency speotrum 60-108 kc into 1 inear frequency spectrum 36-84 ko or 92-143 ko, and for inverse conversion of ourrents incoming from the Iine into the frequency spectrum 60 - 108 kc .

Group equipment is combined into one rack (SCO) With generator devices, to supply the group and individual converters by carrier cuments, and with automatic level regulation devices.

Depending on the transmisaion direction $A-B$ or B-A and on the linear spectrum alternete I, II, III, or TV (Fig. 1.1), SGO has two principle forms: SGO-A and SGO-B (their construction difrerence is show on Fig. 2. I). In the $S G O-A$ rack, the upper frequency group $92-143 \mathrm{ke}$ in transmitted into the lire and the Iower $36-84 \mathrm{kc}$ is received, and in the rack $S G O B$, the lower frequency group is transmitted into the line and the upper is recelved.

- Units entering into the group equipment can be subdivided into two groups.

To the first group are related units whloh are oommon to the terminal and also to the tandem offices. To them relate: Inear amplifiers (high frequency LUS. or low frequency LUa,), directing filters (DK-88), linear filters ($\mathrm{DK}-33$), reguleting antificial lines (RTL), matching device (SU), devices for distant power transmiscion to satellite repeater office VUS-12 (DDP and PDP), additional fllters (D-88 dop or K-88 dop) and low-pass
filter (D-153).
To the second group refer untte used only in group equipment of the teminal office: band elimination filters ($2 F-A$ or $2 F-B$), transmission route group convertens of frequency (GP-J and $G E-2$) ano reception route group converters of frequency (GP-1 and GE-2), group band filter (app), tranmission amplifier (Us.per"), Iow-pass filter ($D-200$), transmission route rectifier (Vyr. per). and reception route rectifier (Vyr. pr). low pass filter (K-77), additional filter (K-22) for the SGO-A rack and reception amplifier (us. px).

Frinciple informetion which characterizes the group equipment routea is the following: the trancmission measuxement level at the line output $=+2$ nepers, at the tronsmission route input -4.8 nepers and at the reception route output -0.6 nepens.

The frequenoy characteristic of transmission route maintains stg straight line feature with an acouracy of $0 . I$ nepers, and that of the reception route Wth ditferent positions of regulators PTI with an accuracy of ± 0.07 nepers.

The maximum amplification of reception routed for racks SGO-A and $S G O-B$ is by 2.6 nepers lowex than the amplification of the corresponding routes of the tandem office EV-12-2. The tranmission and reception amplitude chamacteristio mantains its strajght line With an accuracy 0.03 nepers with the increase of the output level by 2 nepers relative to the nominal value.

The nominal value of input resistance from the side of matching devices $S U$ connection ecuals 600 ohs.

The reflection coefrleient at this point with respect to the 600 ohm resistance is not over 10%. The nominal value of input and output resistance from the Slo connection side $=135$ ohms.

Below in sections 2, 3, 4 and 5, untts are examined which are comon for terminal and tandem offices, and in sections 6, 7, 8 and 9, the units which enter into the constitution of group equipment only for terminal offices.

4.2 Linear amplifier

Inear amplifiers (LUs) are intended to amplify
frequenoy spectrom currents and to produce a transmission level equal to +2 nepers at the office output.

Two types of Inear amplifiers are used in $V-12-2$ equipment. The lower frequency group amplifier connected into the tranmibsion route of the temmal office E and into the route $B-A$ of the tendem office, and the upper group inequency amplifier connected into the transmission route of teminal oflice A and into the route $A-B$ of the tandem office. They differ only by input transformers and resistence values conmected in the secondary windings of these transfomers.

The Inear amplifiee (Fig. 4. I) has three amplifier stages. In the first two, the tubes 6aH1P-E are used, and the third containo three parallel comected twhes 6PzS-E. The application of these tubes permitted to produce undistorted power at the anplifier output over 6 watts (up to +4.5 nepers).

The amplifiex olrouit is prowided by a deep combined negative feedback which encompasses all stages and the output transformes Tre.

The feedback voltage is applied from the output transfonmer through resistorg $\mathrm{R}_{2} 6$ and $\mathrm{R}_{2} \mathrm{~F}_{\text {the }}$ into the cathode ciroutt of the first tube $\left(R_{2}\right)$. The fesdoack circutt is constructed in such a way that the amplifier cutput Impedance which is $=$ to 135 ohms i.E basically determoned by the resistance $R_{2} 6$ value. Its variation In kown range proctically has a little influence on the feedback, and consequenty, on the amplifser anplificam thon. At that same time, by varging the value of resjetance R_{2}, the amplifier amplification oan be regulated: its output impedance with this practically remains constant.

Almost the whole value of negative feedback depends on the external feedback which encompasses all the ettages, and ony a negligible value in the order 0.4 nepers is on the local feedback, which encompasses the amplifier output stage.

The amplifier amplification value without the feedback is 11 nepers, and with the feedback it is 6.2 nepers. The frequency characteristic nomunformity in the operation frequency band is not over 0.03 nepers. A cirouit Rg, C5 which lowers the amplification in low

frequency range and circuit $\mathrm{R}_{2} 7 \mathrm{Cl} 6$ which lowers the amplification in high frequency range are provided for amplifier stablitu.

To elininate motual effect of amplifiers through power shpplies, the coupling fllters are placed in the feeding circults of each anplifiem filtex Dra Cls in the comon plate cipoutt and filter Dri O 77 in the heater circuit.

Nominal value of amplisier input and output impedances $1 s 135$ ohms. With this the amplifier reflec. tion coefficient with respect to 135 ohm resistance is not over 15% from the input side and 5% from the output side.

Nonlinearity attemuation of the amplifier with output level +2 nepers is not less than 8.5 nepers by the second hamonic and not less than 10 nepers by the third hamonic.

High guality indices of the linear amplifier are very stable in time. This is attained by the application of deep negative feedback in the examined cireuit, that encompasser all stages, by the adopted measures of stabllity lnoreasing and also by the selection of reljeved conditions for the output stage.

4.3 Filters

Durecting filters DK -88 are intended to separate the transmisaion directions, i.e. to separate the inear spectmm of the 12 chanael system finto lower 36 - 84 kc and upper $92-143 \mathrm{ko}$ erequenoy groups. Each directing filter set consists of low pass filter D-88 and high pass filter $K-88$ comected in parallel (Fig. 4.e). Both filters are made by an unbalanced ciroult.

A directing cirouit Ig Ci7 is connected from the parallel filtex operation stde and it increases the filter attenuation in the difiltration band (84 to 92 kc) end also provides better matching conditions of the filter input resistance with loads.

Nominal value of filter input impedance $=135$ ohns. The reflection coefficient between the filter input impedence and the 135 chm resistance is not over 10%.

Linear filtere DK- 33 divide the linear spectrum of 12 and 3 chamel systems operating on one circuit.

Fig. 4. 2 circuit and characteristics of DK-88 filters.

Each set of the stated P11ters consists of low pass filter $D-33$ and high pass filten $K-33$. The principle cixm culte and frequency characteristios of these filters are Hllustrated in Fig. 4.3. These filters are made with balanced circuit, in so far as they are connected to the
aerial line which requires load symmetry relative to ground.

Asymmetricai attemation of these filters $A_{\mathrm{U}}=\operatorname{In}$ $\frac{U n}{\Delta U}$ js not smaller than 5 nepers in the operating frequen-
cy band, here U_{n} - voltage meanured on the filtex load resistance: ΔU - voltage measured between the mid-point of load resistance and ground (frame).

The correcting circult $\mathrm{C}_{8} \mathrm{C}_{7} \mathrm{C}_{8}$, which improves filter matohing with load and incteases attenation in the deflltation band, is conected from the parallel fiter operation stae.

Nominal value of filuer input impedances $=600$ ohns. Between filter K-33 and the directing filter DK-88, the Itne transformer Try is connected, which matohes the input impedances of these filters (600 and 135 ohms.

In the temsnal and also in the tandem offices, linear and direoting filters are comected from the side of theif parallel operation to thote route places, where the currents of both transmission directions pass, whereupon curaents of one direction pass with high level and. currente of other direction with low level. This circunstance requires a high degree of linearlity from filtiens and consequently from the elements which make up these filters. Otherwise, the hamonic components and combined currents would introduce considerable mutual interferences into the channels.

Therefore, the filter inductors do not have ferromagnetic coresi, and capacitor bodies, filter whelds and brackets inside the shields are made from red copper.

- Linear and directing filters are structually analogous and represent two hermettcally acaled seven section tanks. Oircuits are placed inside them, made of especially stable capacitons SsG and inductors on plastic frames.

External view of filter tank and one standard section 1 s ghown on Fie. 4.4 .

When making celoulabions it should be considered that filter D-33 sometimes operate in somewhat more complicated conditions than other filters: With the comection of satellite repeater offices (VUS-12), a

Additional falters D-88 dop and $\mathrm{K}-88$ dop amplify the effect of principle directing fiters DK-88 in the attermation band, providing by this the necessary athemuation for reverge dreathon curcents (loop attenuation). These filters are comeoted into growp rontes at low level pownts, therefore no high requirements on non-linearity attenution are presented to the elements of these fillters.

The principle circuit and frequenoy charaoteristic of attenkation for filter D-88 dop are shom in Fig .4 .5 and fon $\mathrm{illten} \mathrm{K}-88$ dop on $\mathrm{Et} \mathrm{g}_{\mathrm{g}}$. 4.6. It in seen from the circuits that each eilter consusts of two m type sections. Thauctons with carbonyt iron coree and mica capactbors are used as the filter elements.

Dig. 4.4 Extemal view of the fllter tank.

Low pass filter $\mathrm{D}-153$ is intended for the protection of the grow route of the upper frequency group from interferences created by broadoasting statione operating in frequency range from 160 ke and higher. This filter is connected into the upper frequency group route at the regulating artificial line input, i.e., in airect proximity to the linear equipment input. The
arouit and the filter attemution chameteristie are 11ustrated in Fis. . 4.7 .

Fig. 4.5 drmat and charantertatios of Dme dop filter.

Filter $\mathrm{j}-153$ is accomplished by an unbalanced olmout. Its attemation the pase band up to 143 kc is not over 0.03 nepers, while in the attemation bend (mon 162 ko and highen) it has an attenvation not meller than 6.4 nepers. Nomana value of fflter fmput impedanoes $=155$ ohns. The reflection coeftratent between fropt and 135 ohm reaistance is not over 8% in the operation frequency bend.

Type somz mioa eapacitore and inductors with sheath carbonyl cores sv-4a are the filter elements.

Structuraily the finters are made in the fom of hemetioally aealed blocks. All fllter components ame mounted on a chassts, which is placed into a housing with
glase partition inculators. Structural information of type SB cores is giver in Fig. 4.8. As seen from the figure, the SE core consists of a oup with thread 1 , a smooth eup 2 , and fine aduster 3.

FIE. 4.6 Cixouit and characteristic of $K-88$ dop filter.

Because of the small nonlinearity the filter coils prevert the appearance of nonlinear distortions with favorable meteorological conditions, when the attemution of the preceeding amplifier gection is small and large level currents enter the filter input.

F1g. 4.7 Ciroust and characteristic of D-153 filter.

4.4 Matching devices and devices for transmitting distance eupply.

The metching device SU is intended for the metching of equipment input impedance with the tmpedance of Ine connected to it.

Cables with paper cordal or styroflection $1 n a u l a-$ thon are used in moxt cadea for leading in the ilne to the temmal and tandem offices. Aemial or coil loaded jnets are used lest frecuenty, Deperding on the type of inlet cables, having different wave impedences, three form of matching devicea are provided: 1) automtransComer with load impedance ratio 550:140 and conductor diameter 1.4 mar cable with cordel paper insulation; 2) auto-tranefomer with load impedance xatio 550:180 and conductor diameter 1.4 mm for cable with styrotleation insulation; 3) coil loading office set Kes for coll loaded cable with atyroflection insulation, conductor dianeter 1.2 mm and load-cojl spacing 120 m .

Fig. 4.8 Structure infomation of $S E-2 a$ and $S B-4 a$ cores.

Each matching device has resistors which establish the output impedance value of equipment in the range Erom 550 ohms to 600 ohms. These resistances are commected in paraliel at the office output of the matching device.

Devices for dastance power supply transmission to eatelite repeater stations VUS -12 are provided on the group equipment racks of the temjnal and tandem offices. These devices conslat of distance power supply yokes DDP through which diatence power aupply current is applied to Inear filters D- 35 and further into the Ines and transmission panels of distance power mupply pDP, on which the following switching is accomplished: the distance power supply voltage is switched on and of f , distance power supply current is regulated by variable resistance, distance feedine current and poltage are controlled by indicating fastmment, telephone transit relay is switched on with the absence of distance

$$
-76-
$$

feeding, signalization is switched on when the distance feeding current value is over the standerd specification.

With the aid of the examined devices, separate feeding is acomptished for amplifters of both directions in equipmeat vus-12 by the ctroutt whem-ground. Nominal current value of amplifiex feedreg for each direction $=180 \mathrm{ma}$. Nominal voltage value of distance feeding at the input of Ppe device $=206 \mathrm{v}$.

Operation of all elements of the diatance supply feeding device can be traced in the ciroutt illustrated on Fig. 4.9.

The supply is swltched on by key Kly or the key Sl_{2} depenaing into which cincutt wire the distance supply has to be comected. Ey tuming it on, e. g, into Wire a, the key Kly should be firet placed in the center position (-21), and then in the upper $(+206)$. When the key is put in the center position the differential relay DRa operates (fron the current flowing through ompensation windang $1-2$) and also the auxiluary comeotion relay FVVa. Besldes that, relay Fy operates in DDP, which by its contact $13-14$ prepares the circuit for aistance supply feeding to fllterg DR-33 and by contacts II-12 takes off the shun's from separation capacttor $C_{1}=10 \mathrm{pe}$ which prevents the distance feeding current from getting into the equipment.

When differential relay DR_{a} operates, the signal lamp Li lighte up and ciroust is created for signalling operettion on row transpanency.

Bigealling operating continues until the key KI_{1} will not be switched over to the upper position, after which distance feeding current through choke DrI winding 1-8 and filter D-33 enters the line. A circuit is made for distance supply feeding by wire b through the second half winding seperated from the first by capacitor $\mathrm{c}_{3}=$ 10 मf:

Attenuation introduced by choke at frequencies 0.3 to 36 ke is not over 0.05 nepers.

Simultaneously with placing the switch Kl to the upper position, the key Kn_{1} should be pressed to exclude the posatbility of supply switching off relay RVPa operation. This latter can remove distance feeding from the line with momentaxy operation of relay $\mathrm{DRa}_{\mathrm{a}}$ from the

Fig. 4.9

Fig. 4.9 (Contimation).

increased current thich flows in the line winding in the rum-up period of budes in VUS-12.

For nomal operation of distance feeding devices operation, the currents in the line and compentation windinge of relay Dra are adusted to be the same $=t 0$ 130 ma. As a result of this, melays DRa and RVPa are in a nonoperating condition, wheh is mexred by the bumm ing of neon lamp NL, which indicates the good condition of distance feeding oirouit.

Current meacurement in relay DRa windings is made by EIEL device at the facks which have conrespondins inf somptions Ifin and Komp. Besides that, there is a device rif on the distance supply feeding panel which measures ourrent and voltage of distance reeding. Connection of the device to this or the other. curouit is made by the switch KI_{3} the ghant in the device ss destged to measure currents up to 300 ma . When voltage is measured, the key Kne 1 ts pressed, which connects reststances in series with the device, which extend the measurement range up to 300 v . When the distance teeding ourrent changes by more than so\% relative to the nominal value, relays DR_{a} and $\mathrm{RVP}_{\mathrm{a}}$ operate, the distance feeding circuit lis open, nem lamp W_{1} goes out and ojrouit is made for signaling operation on the transparemoy.

Analogously, the passing of cument in different ciroutts with supply feeding through wire b can be traced on the elrouit of Fig. 4.9. Relays with subscript operate in these circults.
4.5 Tmtial slope equalizers

Intial slope equalizers, Vyx. nach, nakl. noh and Vyre nach. nakl. voh, are introduced into the reception route of racks $560-A$ and $s G O-B$ and into the corresponding routes of the tandem ofice for simplifying the principle equalizer cinoults of the regulating artficial line RIL and for decreasing group equipment set noises at low frequencies in the operation range.

Eninciple ofrout and frequenoy characteristic of equalizer Vyr. nach. naki. nch are illuttrated on FiE, 4.10, and of equatizer Vyr. nach. nakl. voh on Fig. 4.11.

Fig. 4.10 Circuit and characteristic of low-irequency initial slope equalizer

Fse. 4.11 Cincult and characteristic of hwf instial slope equalizer.

It is seen from the figures that both equaltzers are made with unbalanced circuits and their characteristice in operation frequency band have a straight ine sloping character. The characteristic slope of equalizer Vyr. nach nakl. noh 1 s b $36-\mathrm{b} 84=0.5$ nepers, and of equalizer Vyr. nach. noki. voh $18 \mathrm{~b}_{\mathrm{ge}}-\mathrm{b}_{145}=0.3$ nepers.

At upper frequencies of operating range the equalizer attenuation is not over 0.05 nepere.

Induetore with cores SB-2a and SB-4a and mioa capacitons SSG and sonz are the equalizer elements.

Wth equipment operation on the matn lines containtig short amplifying seettons, the equalizers can be switched off.
4.6 Group incouency converters

Ring ciroutt conventers (Tig. 4.12) axe used in the two stages of froquency group converston in transmission and reception routes.

An advantege of the ming converter circult over othere is the production of the mallest number of spurious conversion products. This circuit property Is very important for group convertera, since the elimina-m tion of these products from the operation spectrum alde the Increase of mutual protection between channels, excludes group poube amplifier overioad and finally ellmanates the appearence of transtent curcents with diferent frequency combinations on the parallel ciroutts.

Pie. 4 ale croup frequenoy converter cirouit

The necessary relation $1 s$ also selected between voltages of modulating $\left(\mathrm{U}_{\mathrm{S}}\right)$ ard carrier aignals $\left(\mathrm{U}_{\mathrm{n}}\right)$ on . the dioder, fo provide a complete guarentee from the appearance of these undesirable effects in group converteroz. The quantity $\frac{U_{s}}{U_{n}}$ approaches values in the order.
0.007 to 0.005 , Whtch leads to negligtble amplitudes of perabitic osciilations. A good convetter belancing which is obtained by caxeful diode selection serves the same puppoces. By upeoting the balance at the oubput of this unit, and corsequently at the office output, a number of new composite converstion products appeax. which are not inherent in the iceal ring cirouit.

Besides four nonlinear elements (diodea), the converter contams also three transfomers. Two of them, input and output (Try and Tr3), have mid pointa in one of the winding through which carrier freguency current is applied. The thiad transformer (Tre) connected from the slde of camper frequency current feeding, matohes the converter with group camier frequency amplifier output. Gementum diodes Des are used as a nonlinear element.

An exception is the second group converter in the tranmingion route with conected copper oxide reatlfiexs Mry-7-1, with the preatnce of which the output spectrum contains the mallest mumber of spurious conversion products.

The inpub signal level F_{s} and camier frequenoy voltage v_{n} should correspand the datum given in table 4.1 on the comresponding input teminels of the convertex.

The converter attenuation $=1$ neper. The carrier ourent level at the output of any group converter is not over - 4.0 nepers.

Table 1
The group converters ap-2 per have a somewhat diftement cixcult from that llustrated on Fig. 4.12. Its input transfomer is a differential one, whereupon currents of spectrum 60 to 108 kc are applied to one input, and control frequency currente to the other.

4.7 Transmisston amplifier

The transmision amplifier U_{5} per is connected into the tranmission route after the group band filltex GFF and is intended for amplification of currente with frequencies 394 to 451 kc , obtained after the first group conversion of frequency.

The amplifier (Fig. 4.13) has two amplifjer stages with tubes L_{1} and L_{2} (type 6zhip-E). Transformer Try is on the amplifter input and transfomer Tre is at the output, whoh contain ferrocart cores and together with loads $\mathrm{R}_{1} \mathrm{O}_{1}$ and $\mathrm{H}_{15} \mathrm{C}_{9}$ specify the input and output mplifier inpedance $=135$ ohms.

Fig. 4.13 Transmission mplifier olrouit

Negative cumpent feedback with a depth 2.1 nepers Is provided in the amplifier ciroutt, which is applied from the tube I_{2} cathode cireutt (resistors $\mathrm{R}_{10}-\mathrm{R}_{11}$) to the amplifter input (realstance R_{2}). Amplification te thes amplifer* in operation frequenoy band equals 3.7 rupers. Nominal value of output level is -2.5 nepers. The cmplifier ampltude characteristic mantains its atralght inne up to the output level value of 0 nepers.
4.8 Reception amplifier

Reception amolifier Us pr is connected at the output of group reception route and serves for the amplification of currente with frequency spectrum $60-$ 108 kc , separated by $\mathrm{D}-200$ filiter after the reception
frequency converter GP-2 pr.
The amplifier circult (Fig. 4.14) has two tubes I_{1} and $I_{2}\left(T_{\text {gpe }} 6\right.$ GHP-E). There is a two winding transfomer tra at the input of the amplifier and a differential trensfomex $\operatorname{Tr} e$ at the output. Do one input of the latter the reception route of the individual equipment rack is comected, to the other - the control channeI receiver. A combined negative feedback with depth 2.5 repers is used in the receiver, which is applied from whane JI of transformer The and resistance R_{12} to resistance R_{2} inserted tnto the cathocie cirouit of tube I_{1} 。

Fig. 4.14 Feoeption amplifler cirouit

Amplipier Us. pr has the followne prinolple parameters. Amplification in the operation frequency bond is 5.5 nepens, the nominal level at the output 1e -0.6 nepers: nominal value of input and output impoconces is 135 ohms; the amplitude characteristio matriains its stratght line up to the output level of +1.5 nepers; nonlineartty attenuation at the second harmonic is not leas than 8 nepers and at, the third hamonic not less then 9.5 nepers.

Structurally the reception amplifier is made in the from of cut-in block, which is placed on one panel With band filter GPE filter D-200 and with two route conventets of cecrefition route frequency
4.9 Group route equalizers

Group route equallzers Vyr. per A.M and Vyr. pr A-B serve to compensate the amplitude frequency distortions, introduced by diferent grow equipment units and principly by the flutere DK-33, DK-88, D-88 dop, K-88 dop, and D-153. The mentioned distortions arise at the ends of operdtion requency band and are close in character in the terminal and also in the tandem stations. Therefore, all group route equalizer circustes are analogous and differ from each other only by element values entering into the equalizers.
the praciple toup route equalizer ciroutt is 111ustrated on Fis. 4.15a, which consists of two unbalanced bridgedrin sections. Inductors with cones SB from carbonyl iron and mica capacitors SGMZ are the elements of the equalizer. Resistons F_{2} and R_{4} are comected into the equalizer circuits, whith the atd of which the steepness of equallzer attenuation curve can be charged at the ends of operation frequency band.

On B1e. 4.15b and c, the equalizer attenuation charactertstics for thansmssion router of racks 3 GO-B and SGOMA are illusorated, and on Fig. 4.150 and e, the attenuation charactewistics of reception route equalizers for racks $5 C 0-B$ and $500-\mathrm{A}$ are illustrated the band shape characteristics at the ends of operation frequency rance is obtained when resoldexing the resistance R_{2} and $R 4$ taps which are comected in the longitudinal and also in the tranafor equalizer branches.

Group route Erequency characteristic is usually comect by equalizers when the equipment is adfusted in the factory. In operation conditions the group route should be equalized by cormection to terminal networks which are present in the cathode circuits of the regulating amplitiers.

Structurally each equalizer should be mounted in diferent block, which has a taribont cover with clamps on which all necessary resolderingis are made. Attenuators for $0.1,0.2$ and 0.3 nepers the inputs and outputs of which are also brought out to the temmals on the block cover, are also arranged in the same block.

The atteruators serve to fix the wequired level values and therefore are included in the route with

Fig. 4.15 (Continued).

frectony adjustment of the equipment. :
4.10 Terminal station group route filtexs

Eend elimination filters ZFrA and Zw-B. Band eliminetion filter ZFMA (Flg. 4.16) is installed at the . Input of temminal office a group equipment, and filser LFAB (PIG. 4.17) - in office B. The purpose of these fslters was mentioned in section 1 , chapter 2 .

F11ter attenuation on the spectrum frequency sections occuppied by the channels is not over 0.1 nepers, and at frequencies coinciding with individual carrier frequencies for filters $7 f-A$ is greater than 2 nepers and for $Z P$ - - greater than 3 nepers.

Such conditions can be fulfilled only with the presence of quarta resonators. Owing to the high quality fractor, they introduce attemuation in very namrow frequency band, which includes the suppressed carriex frequency. Besides resonators, the capacitors (mica and
ceramic with variable capacitance) axe also used in the filter, and also the inductors with ferrocart magnetic oircuit.

Fig. 4. If Crroutt and chareoteristio of zF-E filter

Filler elements are placed in hermetically sealed housing, inside which are also found the matching transfommers, which flx the load resistanoe (135 onms) input and output filter impedances.

Filtens GPF and D-200. Filterg GPF (F1g. 4.18) and D-200 (Ftg. 4.19) are placed after the group converterd of the terminal office and are intended to derive useful conversion products.
\square
Fig. 4.18 csrouit and oherccterstic of GEF filter

Both filbers are acomplished by unbalanced cimoult ana have input impedances in pess bend equal to 135 ohms. The attenation of riltex GPF in the frequeney band fpo to 448 ko is not over 0.15 to 0.25 nepers, and in the attenuation band it is greater then 7 nepens. Attenvation of filler D-200 is not over 0.1 nepers at frequencies up to 150 ks , and $1 t$ je greater than 7 nepers sit frequencies above 240 kc .

Structurally, the EAlters are made in the form of hemetically seeled blocks. Mica capecttors and induotors whth shell type cores of carbonyl iron are the filter elements.

Filtere. K-77 and K-2e. Eilter K-77 (fig. 4.20)
serves to amplify the effect of the directing filter W-88, protecting the receiving route of the teminal
office A from interfecences which originate in the transmission route of the same ofrice.

R28. 4.19 Gtrentit and characterastio of Dr200 fiter.

office A mom interferences which onginate in the transmission route of the same offfice.

Pilter $K-77$ is sccomplished by an unbalanced
cirouit and hes input impedances in pass band equal to
135 ohs. The filter attervation in the pass band from
90 ko and higher is 0.1 meper, and in the attenuation bend more than 4 nepers.

Inductors with shell type cores from carbonyt iron land mica capact tors are the filter elements.

F11ter K-22(F1g.4.21) serves to amplify the effect of flying filter $\mathrm{K}-33$, preventing the current transfer from the 3 channel system fnto the low frequency group poute of the 12 channel system. This filter is also made by an unbalanced cirouit and also has tnput
ingedance in pass band equal to 135 ohms. Filler attenuation in pass band from 22 ke axd higher is 0.15 nepers, and in the cutoff range about 4 nepers.

Inductors with torodal cores from carbonyl iron and mica capacitors are the fillter elements. All examined filters are placed in hermetically sealed housings and the comection of inside inlter whring With the outside is made through glass insulators with petalilic tube.

Fig. 4.20 Circuit and characteristic of K-77 filter.

Fig. 4.21 Cirouit and chargeteristic of $K-22$ filter.

Chapter 5. Generator equipment

5. 1 General informetion

Stable operation of generator equipment in many Ways atemmines the operation dependability of the ertire system.

The texminal office generator equipment of $7-12-2$ system should provide the comation of 12 meparate carrier requencles (64, 68, 72, 76, 80, 84, 88, 92, 96, 100, 104 and 108 kc), the 340 kc group carrater fequency and also 2 carmer freguencies and 2 control frequencles detemmined by one of the alternates of the Itne spectmm and office type In correspondence with table 5.1.

Requancy								
			- I		- IR		IV	
	st.e.	县.8	ton		E.eA	Et. ${ }^{\text {a }}$	坥.t	-6..38
Sesond group tiewem								
mission conversuica.	308	484	543	364	541	484	306	364
First reap reaser	sta	308	304	543	484	541	304	306
	4,	S	30	54.	4	-	5	1
	60	64	111	104	103	64	58	104
SLopo wisutao.e.o.s.	111	104	60	64	58	104	109	64

Pable 5.1 Group and pilot meguency values for different spectrun alternatives.

On the reliable operation of generaton devicen depend the transmiscion quality and in the ffret place such properties as speech intelligibility, timbre preservation and also stability of the prinotple ohamel characterietics the absence of outside interferences fu them and so on.

Spearing on the generator stablifty, we have in mind in the fixst place the constancy of frequenct value in thme and with the influence of afferent unfavorable factorg (variation of temperature and poter supply voltage, meplacement of chruit elements and bhelr aging and the studneas of zevel valus also wth different equiprent operation conditions.

Although it is known that with the tranemisetion of conversation the displacement of the entire volcemequency spectrun up to 15 to 20 o at the reception relative to tranamiscton doen not effectively diatort the speaking shenala, percepted by the ean, neyertheless requirements for carries current generntor devices determine the permissible value of this daplacement for one tranducer section 15 not greater than 1 c .
mhis requirement for the hieh frequency stabjlity

$-95-$

is determined by the necessity for transmitting voleefrequency telegraph signals, photo-telegraph signals and broadcasting programs through telephone channels with second kyster multtpizeing. For these kfods of commancathon the loneming of genemator stablity leade to nonpemismible atatortions; with telegraph transmission to gtmg distontions, with broadeasting tranemssions - to the violation of soundine naturalness.

Hequirements for frequency stablitty of control current generators ($2.10-5$) are determined by the narrow band quarta filters of the control chamel recetvers.

It is no less important to have a stable level of control signals, stroe its oscillation distumb the main line level diagram, causing either amplifiex overload or a decrease of the ratio sitnal. over noise. Besides that, level variation of control currents and also of ammer frequency currents leada to stebjlity distumbance of the overal channel attenuation. The temmal orfice gonexatox system of $V-12-2$ equipment hes an eswentiat difference fron V-I2 equipment thsertea construction ana elso fn the princtple and structural working of separate units.

5.2 Block diegran

Block diagram of the generator equipment is given on Fig. 5.1, which provides the fomation of all necessamy frequenciec. The principle frequency of 4 be is generated by quarts gecillatox $G-4$, which has a stabllity not lower than 2.10^{-5}.

From the 4 ko oscilletor output the voltage is applied to the 4 kc power amplifier input (Us-li) and warther to the hamonic osolllator which is stwucturally combined with the amplutier. In the hemonic oscillator the sinusoldal oscillations are converted into sharp pointed frpulses which contain e laxge nurber of harminio components of the osciliations with slowly deoreasing amplitude. The tmpulses at the hamonic oscillator output are symmetrically amanged on both sides on the time axis and contain thexefore only odd hamonios of the fundamental frequency. In order to obtain even harmonics which determine the current production for a number of separate carrien frequencies, ft ls necessary to have an impulse series

```
|
FIg.5.1 Block-diagram of genemator equipment.
```


twelth channels are produced by generatoxs that are synchronized (ox held) by the oumenta of these carmer frequencies.

As seen from the examined block dlagram, the stability of all camcher frequenctes if detemmed by the atabiluty of the master 4 ke oscillator, i.e. equala 2. 10^{-6}. This provides a frequency displacement of the operating aignal, passing the temmal office route, by a value not grester than 0.3 c . Stabifity of control frequenciess produced by the independent generators, is not required to be that high, and therefore, it is taken exam to 2.10^{-5}.

The eguipment located on separete panela is circumseribed by dotted Ined on the block diagrem. The cut-1n bloek construction permita to assemble easily on the rack that generator equipment which is necesaary for the glven temanal office operating on a speciffe Ine spectur altemate. When changing from one spectrum altemate to another, the UGN blocks Wth Bet ititers and also the control frequency genemtors should be replaced. Pan and $\mathrm{Pr}_{\mathrm{r}} 4 / 5$ convertere are additionally installed for II, IIT and IV spectrum altemates.

5.3 Master otefllator

Fasic circuit for the master osclilator is given on Fig. 5.2. The generator is made as a oridge circuit. With themfston and tuned cirouit in the plate otrouit of the output tube. * The bridge ams are formed by (* At present, tubes 10 zHLL are used in generator G-4. In the future, the generator tubes are proposed to be changed to GZHIP-EI quartz reannators RP1, themistor I_{r}, resistors H_{12} and R_{3} The plate ciroutt Log-10 of tube $\mu_{-2} 1$ tuned to the freguency 4 kc .

The thermistor In stabilizes the oscillating voltage on the quartz resinator and provides a constant output level. The variable capacitance C_{3} pemmits to twe the generator frequency in the range (+70 to -100). times $10^{-8}(0.3$ to 0.4 c$)$. Inorease of the regulation reserve in the direction of frequency lowering is explathed by the presence of natural proceas of generator frequency increasing as a reault of quartz resinator aging whteh

In the first months of operation is (20 to 30). 10^{-6}. The generator frequency gtability with the action of other influenolig factors (oscillation of feeding voltages by plas on finus lot, varstion of sumpounding temperature tube replacement) does not go beyond the rance $5 \cdot 10^{-7}$.

Gontrol of themostat heating and slenaling notifying the disturbance of fts nomal themel condition, Is made by 2 thermal contacts mk_{1} and TM2, tube I_{3} (IOZMI) and 3 relays $\mathrm{P}_{1}, \mathrm{P}_{2}$ and F_{3} (Fig. 5.3).

The temperature in the thermostat plus $15^{\circ} \mathrm{C}$ ehould be held with an eccurecy off or - 0.2 degrees. Themostat winding $1-2$ is the heating winding: it is comeoted by relay $\$ 3$ contacts. Measuxing minding 3-4 made of copper wixe pernito to control the temperature \qquad ingide the thermostat by measurfig its resistance which is beforehand detemuned at $20^{\circ} 0$ temperature. Usually its value 15 in the range 600 to 700 ohnas.

Mig.5.2 Master oscillator circuit

The cinouit operating dynamios are as follow. Atter the generator is turned on, the themostat heating begina which laste fox mout an hour. During this time, the lamp L_{5} (Temm.vkl) is on, stnoe the mercury in the themal ooftact Whas hot yet reached contact 2 . At the anme time the grid blas of tube LS is fixed by potential fomed at a point between the plate divider resistore P_{1} and R_{4}. The tube js open, and the current flowing in the plate cirouit causes the operetion of reley $\overline{3}$, the contacta of which together with the heating Winding tum on also the lamp I_{5}.

If the temarature in themostat is $+50^{\circ} \mathrm{C}$, then contacts I and 2 of the themal regulator Thy are closed through a meroury colum and "eround" (i.e. -206v) is applied to twbe I_{3} erid. The tube is cutoff, relay P_{3} drops out tuming off the heating winding and signelling* A new lowertng of meroury level below contact 2 in Tk causes heating to tum on. Thus, tabe I_{3} permits to fix exactly the swhtohtng on moment and the switching on of the beating minding, which detemanes the negligible temperature oscillations inside the thermostat.

The thermal contact Tk_{2} controls the operation of golarized relay P_{2}. If the meroury level in Tke is above contact 2 bute below contact 3 , relay pe armature is in the neutral position, since the currenta in both windings detemined by resiators R_{10} and H_{1} are approximately equal If the mercury is at the level of contant 3 or below contact 2 , (which oceurs when temperature in the themostet for some rearon reaches comeapondingly 54 or $44^{\circ} 0$), then the ampere tums of some winding predominate and relay P_{2} amature is closed with one of the contacts. Followhe this relay P_{1} operates and the emergency signaling ie turned on (lamp If 15 on), which indicate the inacouracy of the thermostat heating system.

The stenal Iamp L6 osm. razr. illustrated on Fig. 5.3 lights on in the principle generator block when $1 t$ is switched over to the reserve (or vice versa). Master 4 ke oscillators of type $G-4$ (principle and reserve) are fixed on the backicde of the rack on its upper part.

Fig. 5.3 Regulation cirouit by heating themostat.

Generator $G-4$ ds made in the form of out-in penel. The 4 kc quartz resonator is enclosed in the themostat, the structure of which is shown in Fig. 5.4. Its themal insulation is provided by a felt layer (2), laid between the masstve alminum cylinder (1) and externel bucket (3). Themostat windinge are wound on the external oylinder stde (4). Thermal contacts of the thermostat (at 5000 and 44 to 5400) are enclosed in protecting tubes (5) and con be removed (screved off) from the external panel side.

The variable capacitor installed in the generator for frequency tuning is provided by a vernier which insuxes smooth motion of the capacitor rotor.
5.44 kc amplifter and hamonio osolllator

Principle oirouit of the 4 ko amplifter and hamonic oscillator 1 s given on Big. 5.5. The amplifier is made with a resonance circuit with tubes 6ZHIP-E
(preliminary stage) and 6p3s-w (output stage). The power at amplifier output is not less then 3 W . In onden to
obtain simusoidal oscillation forms at the amplifier output which is very important for undistorted hamonic oscillatox operation, apert from the parallel circuita in the firet and second stage anode circuits (Tr - C5; Tre -$\mathrm{C}_{9}-10$.

FIE. 5.4 Generator G. 4 themostat.

- 104 -

Owing to the presence of these circuits, the hamontos and 4 ke frequency fomed in the hamonic oscillator are not chunted by the amplifiex output impedance.

EAS: 5.54 kc amplifer and hamonio osolllator efroutt.

The hamonte oscillator consista of cot I and capaostons Cy and Cit A A selecton of permalloy rings each 50 to 60 mk that were uned in the cotil core. The coil fnductance shamply depends on the value of the curcent flowing through it. With large inouctance value of coil Ir, when the instantaneous current vaue in close to 0 , capanitom 63 and G_{1} ame charged. With staggeming fnductance doomease, deternined by quick soturation of the core material, when the instantaneous current value approaches the amplitude value, capacthors are discharged trough load nesistance and incuctor. phys process 1 mepeated in the following pertod. The
aischarge current pulses have sharp pointed form, are altexnating according to airection, and therefore contain a large numbex of odd hamonics. Even bamonts of 4 ke frequency axe obtesned after full wave reetruseation (nectifiex D) of the 2 way pulses.

Whe harmonic oscillator has 2 outpute; Vyme neohep and Vykh. chet., a direction pulses are present on the first output, and 1 derection pulse is on the second. The operation of 4 ke amplifier and hamonic genenctor to a greater degree depends on the exact corrempondence of some oircuit elenents to their nombal parameters, than the operation of other units. Thus for exampe, it is very tropotant that the data of the output tube and especialy of the non-1 mean oojl wowl not change noticeably during the operation time.

Two cut-in blocke Us-4 (princtple and reserve) enter into the 4 ke amplifier plate. The switehing over of amplifiess Us 4 (together with generatorg c-4) is made by a switch in the midale of the panel.
$\frac{5.5 \text { Current amplifiers for group carrier frequencies }}{\text { Cument mapifers for group oarmer frequencies }}$ Uad are mode according to thmee diperent circulta: This is detemaned by the differenos in their operacion
 $5.6), 308$ and $364 \mathrm{ke}(\mathrm{Hg} .5 .7)$ are one-stage resonance amplifiers with tube GZHP $-\mathbb{E}$. The voltage at their input is 0.7 to 1.5 volts. UKN for isequency 340 ke in dastinction rron the other amplifiers is designed to feed 4 group oonverters, which make it necessary to introduce into it 2 tabes 6 rimp-z operating parallel to the 1000.

Amplifierr van for frequencies $306,484,541$ and $543 \mathrm{kc}(\mathrm{mg} .5 .8$) contain 2 ampifier stages. The signal voltage equals 0.05 to 0.10 volts at the amplefter input in view of the high number of the used harmonjos and the introduction of addttion filters and converters. Depending on the level oscillation of the amplified harmonic, the amplifiers operate in the clipping condition to decrease the power oscillation range at the amplifier output.

All amolifiers have transformer inputa and outputs.

Transformers Mr y and ore are made wi th camongl iron dust cores. They are tuned to the frequency of the amplified osotilathons by capacitor $0_{2}-2$ and 0_{5} (or of). Tn parailat with the secondary winding of output transformers tho a stengel device zs comected, conelathog of resistors bunch prevent output abating, geranium diodes DeRv forming the rectifier D and polarized relay P which tums on signalling. When amplifier output voltage is lowered by 0.5 volts, ampere tums predominate which are produced in the relay field winding. The relay mature ja thrown over to the operation contact which tams on the signet lamp, placed on the algnoling panel.

Mi s. 5.6 GRout of 340 ko group omer frequency antifier.

1. Output system 1. 2. Oxatut system 2.
2. To reception convertor
3. To transmission cbrounton

A1 current amplifiers for group currier frequendies Uaw, with the exception of amplifier for 340 kc , have 2 outputs (according to the number of fed gyetemg). If only one system is connected the other output is loaded by a 200 ohm resistance. Amplifier UGW for 340 ke has 4 outputs for 2 systems; the group reception converttens and group transmission converters are connected separately.

Fig. 5.7 Ciroult of 308 and 365 kc group cerrien irequency anplifier.

Fig. 5.8 oircuit of $306,484,541$ and 543 ke group cemrier frequenoy.

The group camrier frequency amplifier is structurally made in the form of cut-in block which occuples the right panel pert. Shielded receptacle blocks are fired to ite rront slde, which connect the pancl cipout with ract assembly tith the aid of bows. Quartz filter for group oamper frequenoied is installed In the left panel part.

5.6 Generator equipment filtems

Two $1+1 t e r$ types enter the generator equipment: separate and group camier irequency filters (FINCH and FGW) Principle cinouits and characteristics for both filter types are given on Fig. 5.9 and fig. 5.10.

The attenuation of these filters ghould increase rast on both sides of the pass bands in order that the 4 ke frequenoy harmontes, neighooming then the derived frequenoy, would not leak into the converters and would mot cause the appearance of different interferences from additional converaion products. For this purpose, quartz pesinators are introduced into the filters which provide:
a) In one section FIWOE, 3000 e pass band; attenuation at wated camper frequency $f_{n}-0.2$ nepexs; attenuation at frequency $f_{n} \pm 4000$ o -4.5 to 5 nepers; input and output impedarice 700 ohns; b) in 2 section BGN, pass band 400 os attenuation at rated frequency $f_{n}-0.4$ nepera; attenuation at erequency $f_{n} \pm 4000$ o- 8 nepers; input and output impedance 135 ohme.

Diatributing devices RU are the last elements in all curment feeding routes of separate and group carmer frequencies. As seen From Pigs. 5.6. 5.7 and 5.8 , this device conarats of resistors, comected so, that the mutual effect of converters ror different systens and tranmission directions is eliminated.

It was necessary to use only one conversion stage to produce some group camrier frequencyen (306, 541 and 543 kc) . Converter PGN (Big . 5.1) is made by a bridge ciroutt and operaties between filters FuN which derive only the used rrequencies.
$5.74 / 5$ ke converter
As was already stated, in order to form a number of group carmer frequencles, the presence of 5 and 10 kc

Erequency is necessary.

Ftg. 5.9 Circult and charaoteristics of filter for individuel carrier frequencies.

The 5 kc frequency is obtathed from the fundanental 4 kc frequency by a special convertor. Prinolple circuit of the convertor is glven fn Fig. 5.11.

The convertor contalns 5 tubes 6ZHIP-E: Fixst
stage is intended to amplify the input signal with 4 ke
frequency, to which the circuit C_{5} Try is tuned. Frequency multiplien is connected to amplifler input, consisting of gemanium diodes D_{1} and D_{2}, which distort the curve Bhape of the fundanental oaclilation and resistences TG and Rg, which make the entire circuit symurtrioal and males the diode replacement easfer with the presence of ane spread in thein perameters.

Fig. 5. 10 Cireult and characteristic of group carrier frequency filber.

The necesnary frequency 20 ko , which $1 s$ the smallest comon multiple for frequencjes 4 and 5 kc , is derived by chrouts $\mathrm{C}_{7} \mathrm{Tr}_{\mathrm{p}}$ and $\mathrm{O}_{\mathrm{g}} \mathrm{L}$, is amplinied by tube L_{2} and is adationally filtemed by cirouite C_{12} te and G_{15} mh3 which are also twned to this frequency.

Thith and fowrth steges are frequenoy aviders with division ooefficient 2 , which provides the most stable circuit operation. At the output of the ismotivider the frequency value is 10 ke and at the output of the second, 5 kc . The frequency dytiders represent 10 and 5 wo frequeney cument voltage genemators, in the feedback circulte of which ring type modulatons are conneoted. With the absence of extexnal signal (20 kc) the ring type modulatoz D1 has a high atteruation, therefore oncillations do not arise. When appiysig an external mignal the modulatom attenuation decreases up to a value et which the automgenerator 1 s self.exclted. The frequence of 10 kc (on $5 \mathrm{ko} \mathrm{in} \mathrm{the} \mathrm{geoond} \mathrm{divider)} \mathrm{pro-}$ cuced by it is applied to the modulator as the carriex frequency.

During the convention a current whth dircerent Preguency $20 \mathrm{~m} 10 \mathrm{kc}\left(0 \mathrm{~K}^{2} 10-5 \mathrm{kc}\right)$ is produced, which maintains generation with stability of the inttial 20 kc oscillation.
ctrouits $\mathrm{C}_{1} 6 \mathrm{Tr}_{4}$ and $\mathrm{C}_{19} \mathrm{Tr}_{5}$ are tuned to 10 kc
 frequency. Resistom R9, $\mathrm{F}_{17}, \mathrm{R}_{2}$ are Intended to shunt the grid efroutt, which excludes the fomation of selfosciliation. In the last stage a final filumation and ampification of 5 ko frequency current are made.

The converter input voltage can vary in the range 1.5 to 3.0 volts, the eonverter output voltrage - not less then 5 volts (when connested to a resi losd). The $4 / 5$ converter plate tncludes 2 cut-in converter blocks (princivie and reserve) mede according to the accepted princtple for this system of cut-in constructions.

5.8 Control current generators.

Two typen of control current generators okct are used in V-12-2 equipment: generators with quartz

Quartz generatons have only one tube 6zHip-E. Coupling between oscillating cixeults $\mathrm{C}_{10} \mathrm{Tr}_{2}$ and C_{5-6} Tri is accomplished by quartz resinators RP. Fon the stablutation of generatox output power and the voltage on the quarti, a bridge is comeoted in the feedback circult, 2 oppostte branches of which have themmitoms TR $-2 / 0,5$ (L_{2} and I_{3}).

Any change of output level because of tube aging, voltage change of power supplies, etc. cauaes a change in the value of current flowing through themmistors, and conseguentily causes a change in thelx resistance. As a
result of this the feedback voltage changes corresponding Iy (on the primary winding of Tr^{2}), which leads to the mantatnatioe of constant value for the output level.

The quatz raginator is piaced to the themmotat to Ancrease the preduency stability. The temperature regulation deviee in the themostat in this case is simpler then that in the 4 ke oscillator, and besides a relay which tums on the heating and the themal contactor, contatns only a signal lemp which notifies the tumang on of heating winding.

Gapacitor G_{1} serves for exact frequency adurtment of the generator, the atebiltty of which during one month 1s held not lower than 2.10". The generator output Level ts regulated by resistor R12 up to 0.15 nepers. For the control of generator outple level volume and for semding the signalling with level deviation by tor 0.05 nepers from the nomal value, a rectifier made with diode D_{1} in the oiroutt of which is connected the signal magnetomelectric relay (not shown on the ciroutt) is connected to the output voltage divider.

A clear and exact asgalling operation for the deviation of the level from the nominal value $4 s$ very Importanti, stnce its oscillations cause umecessary operation of ARU system on the entire main Iine. Therefore the generator oincuits provide a stability of the output level not smaller than ± 0.02 nepers from sil the influencing factors.

The blocking generators have 2 tubes GzH1P-E. The phate cimoutt of the first tube $95-6 L_{1}$ is tuned to the amplified frequency (64 or 104 kc). The feedback voltege is applied from the plate of the aecond tube to the grid of the first tube through a stabilizing buidge which is made similax to the previous cipcutt; in th and R_{2} bridge ams, capacitors C_{I} and C_{2} are additionaliy comected with the aid of which the set frequency tundng of the generator oscillatione is made.

The locking voltage $1 s$ applied through the third winding of trangromer Tr. The output ofrouft is made the same as that in the quartz generators.

Frequency atability of these generators is detemined by the stablilty of the mastex oscillator: the output level stability, as in the previous case, is not lower than +0.02 nepers.

From the total number of 6 control current generatots, provided by $V-12-2$ syetem, in each terminal station, depending on its type (A on E) and the line spectrum thembete, only two generatore are installed, whereupon each of them can supply two aystems by controlled curxents.

Ghapter 6. Tandem office

6. 1 Generat infommation

Tandem office PS of system V-12-2 acomplishes the followng functions ampliftes cument of unpor and lowe frequenoy groups of the line speotmun automatical. Iy reguiates the leveis in both transmission directions; separates the lune frequency spectrun for pystems $V-3$ and V-12-2; forme chamel for the Ine between operators In the volcemfrequency spectrum.

Thus, the matn purpose of tanden offices conciste In fnoreasing the commotation distance, becau*e with all thinge consldered the acomplument of the above listed functions serves fust this purpose.

The tandem office route contains a number of unita which wexe also used in the temanal office (see chapter 4).

Units which are characteristic only for the tandem office are. illters DK-2.8, BDK-2. 8 with line tronsformer Tr 600/600; bypess route equalsmers VK-33; motte equalizers 7 ym. An and Fir. 㰦; speak-buzt device PVU; control channel receivers Pur.

As a rule, several tandem offees, and in many cases a number can reabh several tenths, are installad between two teminal offices on the aerial mains. Theretore the system operation stablitity and commuication quality are detemined to a large degree by the paranetar athbifty of the tandem oftice.

A laxge number of such officen on multiplex lines causes the accumbletion of different distortions, notses and intexterences. It is obvious, that in each repeater offece only such dinensions of distortions end level nowes cen be permitted, whe ch would not disupt nomal communication fith maximum tranmission diatances.

In section 6.2, some information is given on the

deteminttion methods of set notees values for the tandem offloe and on the sources of their fornation. possessing Informetion on the noise level at the output of one office, the potection value on the given specise main can be detemaned (with the consideration of temminal office set notises) and consequently the trankmisaion quality can be judged.
6.2 Set nolses and non-linear distortions of tandem ofrlae

The construction difference of low frequency and hiek frequenoy tanden office mouter couses the necensity to eveluate in different ways the power? of set nolses which are introdued by each separate office route into the common ine routes of the aystem.

Let us examine the low freguency route first. A simplified block diagram of equipment relattag to this trensmission direction is given on Pig. 6. 3.

Hfe. 6.1 Simplifled gireutt of the I-f route.

The reguiating armisfiex input in this circuit as a pofnt with the lowest level, which detemmes the principle noise value. An adational fector, which Increases the notse level, is the absenoe of gxid trancformer at the regulating molifier input.

Tt is neceasary to tum attention to two olroutt Peatures:

1. Connection of indtal slope ofroutt detempnea the level difference for end channel current at the low level point at the velue of eircuit attenuation drop, 1.e. at 0.5 nepers.
2. Independent of line attenuation, i.e. office amplification, the regulating capacitore KNR and KPR
hold constant (with ANJ operation accuracy) the signal voltage at amplifier input.

Wt th the consideration of the second feature, the problem of dotemtning noise power in low frequency route for all possible amplification values reduces to level comparison of thermal and tube noises of the regulating amplifier with signal level at any known route point. It can be done most simply for the regulating amplifier output.

The equivalent circuit of regulating amplifier input is given on Fig. 6.2. In this circuit: 0 - the rotor capacitance of the flat regulation capacitor with respect to ground (with the consideration of assembling capacitance); depending on the position of flat regulatron capacitor KPF, the capacitance 0 can vary in the range 20 to 70 ur, K_{I} and F_{2} - amplifier circuit elements; the values of these resistances are corespondingly $430 \mathrm{kilo}-\mathrm{hns}$ and 150 ohms; Rehi - equivalent noise resistance of the tube; for the applied tube $6212 \mathrm{P}-\mathrm{E}, \mathrm{K}_{\mathrm{ghI}}=1800$ okas .

Pig. 6.2 Equivalent circuit of the input of $1-f$ route control amplifier and hoof route flat regulation amplifier.

To determine the amplifier node emf, it is necessary to know the real component of the total CR_{1} circuit impedance, which with some approximation is expressed as

$$
R_{g_{1}}=\frac{1}{\omega^{2} C^{2} R_{1}}
$$

The total equivalent noise resistance equals

$$
R_{\mathrm{sh}}=\mathrm{R}_{\mathrm{sh}}+\mathrm{R}_{2}+\mathrm{R}_{\mathrm{sh}} \mathrm{~A}^{2}
$$

Enf, fommed in resistance H_{gh}, is determined by the well known expresgion

$$
\mathrm{E}_{\mathrm{sh}}=2 \sqrt{\mathrm{~A}_{\sin } \mathrm{m} \mathrm{P}}
$$

and the noise voltage at the regulating amplifter output will be

$$
\mathrm{U}_{\mathrm{sh}}=2 \sqrt{\mathrm{R}_{\mathrm{sh}} \mathrm{kT} \Delta \mathrm{~F}} e^{S_{n i}}
$$

Hexe k - Boltman conctant, equal to $1.38 \times 10-23$, watt-gecond/degree; T - absolute temperature; F frequency band wath common os S_{n}-ampliffer amplification (voltage): nepere, in our case $\mathrm{S}_{\mathrm{n}}{ }^{2}=2.0$ nepers.

Knowing the loed reeistance ($\mathrm{F}=135$ ohms) and noise voltage at mplifier output, thedn power level. can enstly be determined and then, knoving the measuring signal level st this point, the noise power at 0 relative level point can be detematned.

Calowation reautts of nolse powers, produced by low frequency route of the tanden office, at the 0 Felative level point are given in table 6.3.

The tncreage of office ampitication ia accompanted by a decrease of flat reguation capacitance (capacitance C), which involvea the fncrease of set (themal and tube) noises th the tandem offlce. From the examination of table 6.1 asn be geen, that for the increase of inne fregueney speotrum, the power of set notses of the tandem office high frequerey route decreases.

Regulathog anplifier notses axe adusted to the nolses of the entite low frequency route in the tandem office. The line amplifier set noises do not afrect the total notse balance.

Notse power, produced by line amplifjer at the O relative level point, can be detemaned from the expression

$$
0.562 e^{2\left(P_{s h u}{ }^{-T} c\right)} 109
$$

Where 0.562 - psophometric power co-erficient; Pshu the amplifier set nofse level, applied to its input (for line amplifiers in the $V-12-2$ equipment is -15.2

```
nepers): F
input (acoording to the level diagram 4.0 neperg).
    Subtritatine numerical values, we wlly find that
In any chawnol the nolse power from line amblufler is
0.5 W.
Let us examne now the high frequeroy route, a
simplisied blook diagram of whioh is given on Fie. 6.3*
The inqut of flat and slope regutation gmpliflers UPR
and UNR are the low level points which detemmine the
nolae value. In onjer to determine the specific weight
of each amplifier in the total novse value at a channel.
output, we wlly make caloulations fon following alternam
tes, analogous to the above stated: 1) nolses, detemmined
by unf amplinicr imput; 2) nolses, detommen by TBR
amplifien input with a O position of ospacttox KNR; 3)
the same, at looths position of capacitor KMR.
```


Ifg. 6.3 Simplipied circuit of $h \rightarrow f$ route.

Initial data for the finst altemate changes somewhat. The equivalent cirouit of slope regulation amplifiter fuput is given on Fig. 6.4. on this ligures 0 - total capacitance between rotor and two adjacent parallel connected stator plates, approximately equal to 130 i'; resistors R_{10} and R_{1} are the circuit amplifier elements and equal correspondingly 430 kilom ohms and 150 ohms: $R_{\text {ghi }}$ has the previous volues: $R_{n}-$ load resistance of slope regulation cireuits, $=600$ ohms.

Big. 6.4 Equivalent cirout of the slope regulation amplifier input.

The real component of the totel reatstance of circuit $C R_{n} \mathrm{R}_{10}$ is detemmined by the expression

$$
R_{u}^{\prime}=\frac{R_{10}\left[1+w^{2} C^{1}\left(R_{10}+k_{H}\right) R_{H}\right]}{w^{2} C^{2}\left(R_{10}+R_{H}\right)^{3}}
$$

The total equivalent nolse resistance in thes case Will equal

$$
R_{u}=R_{u}+R_{11}+R_{u t \cdot}
$$

Purther detemination of UNR notse power at the O relative level point will be complete analogous to the

```
l
Investigated case, in addition to this }S=2.5 nepers
Culoulation regults of noise power at UNR Input ere given on table 6.2.
It is adviable to examine this table together when ealoulation results of noise power, detemmed by DRR amplifter imput. When making such caloulation, the orfolnal princlple premeguisites memain the same ss in the previous hojse calculations tor low frequency route. The equivelent amplifiec input cirouit (Fig. 6.2) is also kept the same. The difference is only in the mutifiex UPR ampluicetion ( \(S_{n}=2.4\) nepers) and aiso In the vazue of 1ts output ingedance ( 600 ohnt), which should be consticred when detemming notse level at ita output. Addtionally, it ahould be kept in mind, thet with capecttor KNR position "O" the NM-reh block (route acetion betreen pointa a - b on Fig. 6.3) in the frequency band 92 to 143 kc introduces atteruation of 1.0 nepera; with oxpectitora KNR position "lo0" the block hats for \(f=243 \mathrm{kc} 5=1.1\) neperts, for \(f=92 \mathrm{kc}\) \(S=-1.0\) nepers (attenation).
The block ampltfication for intemediate frequen* cies oan be determined from a straight line comecting 2 end points. Calculation results of noise powems at Wer input are given in trale 6.3.
Comparing datg of tables 6.2 end 5.3 , the following conclusions can be made:
1. With mall amplification of the tandem office (capacitors of the flat and slope regulations are alose to 0 positions) the high irequenoy route nolses are very Anstgnficant and are principlly determined by the slope regulation amplifier.
2. With office amplification close to limiting (caparitors of the flat and slope regulation are alose to looth position), the noises in lower chanmels are determined by both amplifier* to the same degree; in the upper chamels the nolses are completely detemined by the flat regulation ampliter. hoxe complete caloulations show that the amplifiex UPR influence begins in chamels, the line spoctmum of which occupples frequency region above 120 kc .
3. The glope regulation mplifter noises do not depend on the oapacitore KNR postition.
```

Total values of set noises in high frequency route (Wts) are given in table 6.4. They are obtained by adaing the data of tables 6.2 and 6.3.

The line amplifier notses as in the low frequency
route, can be nestected.
The tader office notse power, detemaned by non-Inear distortione, when using the chamels for telephone tronamssions can be determined from the relations

$$
\begin{aligned}
& W_{2}=4 e^{4 H_{0}+2 p-2 t_{22 O}} \frac{\Delta f}{\Delta f} Y_{3} K^{* 1} 10^{4} \text {, nom, } \\
& W_{31}=24 \mathrm{e}^{6 f_{4}+2 f-2 b_{n}} \frac{\Delta f}{\Delta F} Y_{31} K^{2} 10^{3}, n B m, \\
& W_{Y 2}=24 e^{6 P_{0}+2 P-2 b_{k 30}} \frac{\Delta f}{\Delta f} y_{3 z} K^{3} 10^{9}, n e m,
\end{aligned}
$$

where W_{2} - power of the second oxder non-linearity products: W31 - power of first kind thitw order nonIinearity products; w3e - power of second kind third order non-Inearity productss g_{0} - the total load level at the 0 relative level point, i.e. the difference between average power level of all channels and the normal measuring level of one chamel ($p_{0}=0.7$ nepers): P - the trangmssion level through one channel at the Iine anplifter output (+2.0 nepers) : byoo the amplifier non-1fneardty attenuation at the second hamonic with 0 level at the amplifler output (10.8 nepens); $b_{k 30}-$ the same, for third hamonic (14.8); ; $\Delta \mathrm{f}$ - the (\% values $b_{k g o}$ and $b_{\text {Ik }}$ are takan from experimental data as average of a number of measurements.)
efrectively tranmitted chanel frequency band (3.1 ko); ΔE - Width of the frequency line spectrum (48 kc); Y - the co-eflicients, characteriaing the distribution of noa-11nearty products through the operating frequency spectrum: k - psophometric power co-efficient.

Mhe value E_{0} is detexmined fron the expermental gromb of the tataj iosi of syatern group routes with

Table 6.5 Noise power values, determined by URR input:

Tabie 6.3. (continuation).

Freauency band	Nonlineaxtty products	
	W_{2} yuw	w_{31} wyy
$36 \div 40$	15	9
$80 \div 84$	10	9
92-.96	-	5
$139 \div 143$	-	5

 twanctia.

Where. Wh the thermal notse power for all main line Sor all main line offices at the zero relative level point, Hus
Wha - the same, for one tanden orfices Huw;
$W_{2 m}^{t z}$ non-1inear nofse power of second order for all tandem offices on the main line at the zero relative level point. Hiw:
Wh the same, for one tandem office, Huw;
$n^{2 s}$ - the number of tandem offices.
Determination of the resultant first kind thind onder nolaes. Wis conelderably more complicated. In it fs assumed thast the main ine will have a straight ine frequency phase characteristic, then with analogous designations

$$
W_{31 m}=n^{2} W_{316}
$$

But the presence of $2 n$ sets of directing filters, inderinite number of offlce and line cell loading sets, matching autotpensfomers and cable inserter on the main Ine leads to the fact that eack specific main possesses a natural, inherent to it, frequency phase chanacteristic, which without fail deflects from the straicht line, and therefore the values of resultant first kind third order non-llnearity notses will be contained in the range

$$
n_{31 s} \leqslant w_{31 m} \leqslant n^{2} w_{31 s}
$$

The rosultant power of office noises for all main Ine at the zero relative level point is obtained by adaing aeporate componenta.

There are known definite recomendations MTKm on the roise dictrobuthon in aertal matn Itnes mathplexed by 12-chamel systems.

In the stuated problem, it was suggested to make the total nolse power equal to $20,000 \mu$ at the end of a hypothetical $2,500 \mathrm{~km}$ long ciroutt (with three three transducer sections). From the value, 175,000 muw was suggested to set aade for group. tandem route noises, which in theip tum can be dustribubed in the following proportion:

Tandem office notses $2,500 \mu 4$ m
Transtition noises from parallel circuits $20,000 \mu \mathrm{w}$, Ine noises 5,000 HuW.
The suggested values are average noise values or budy hour in periods when the line does not undergo the infiuence of the most unfavorable climate conditions, i.e. approximately in 90% or the time (Red Book Volume it).

Assuming for half of the offices the amplification to be maximum, and for the other half $8=\$$ - -4 neperss. it can be found using the above expressions mat the suggested notse value of tandem office equipment equels 2,500 $\mu \mathrm{m}$, if with the addttion of first kind third order non-1thearity products n. 13 ja taken for the dower channel of the lower frequency group and nh. 91 - for the upper channel of the upper frequency group (other channels of each group will be under more favorable conditions). * (* With the calculations, an average length of 125 km fro the repeater section was assumed; the reception ample fiems of teminal and transducer offices were counted as Ine repeaters.)

Wrom the obtained results a conclubion can be made, that the magnitude of noides produced by the equipnent should be reater in the lower group chamels than in the upper eroup chamels. Fowever the measurement experience on the main lines, when the measurement results are detemmed by ine nolses, refutes this assumption, and therefore 14 is advisable to examine the problem on diffierent nomes for notse values from trangient currents and line notses for upper and lower frequency groups. Accordfing to all asmuptions for lower frequency group they can
be decreased for the beneft of the corresponding noise increase in the tanden equipnent.

FILtere DK-2.8 and BDK-2.8 serve to Pom the order circutt chamel in frequenoy band $300 \rightarrow 2,400$ of the tindem office. On rack ps there are two DK-2.8.filter sets and two BDE-2.8 filter sets, which permit to form serwice chamels in both directions from the office.

Each set of DR-2. 8 f土ltere (Fsg. 6.5) consists of low pass fither D-2. 8 and hlgh pass filter K-2.8. Both filters are made by a balanced cirount and from the parallel connection side have a compensating oirouit $\mathrm{I}_{6} \mathrm{C}_{24}$ tuned to 2,770 e xrequency.

The filter geries branch elements are selected in pains with very great acuracy in owdea that the mymaetry attenuation would not be smaller than 6 nepers in the passband.

Order cinout channel, derived by DK-- 2.8 futhers, ss equipped by twowtre low-frequenoy amplifiers on long main Lines. Fhe armangenent of these amplifiems on the oincutt is accomplished in such a memner that the pleces of their location ootnotae with repeated tandem offices PV-1R2.

In this case for stable operation of thowire dum plez amplituens balanotre filters bokm. 8 similan to DW-2.8 inlterg are comeded into the balanoing cirouits of duplex mptifterg.

On raok Pa there are Tr 600/600 tronsformers, with the aid of which telegraph tranaminkion through Piker cirm cult can be axganized when distance feeding of office Vus-12 is connected. These tranafomens are connected at D-2.8 sinter input and are deasigned to pass not only the speaking curcents but also the magneto ringing currents. 6. 4 Qrour route equelizere.

These devices aerve for the compenation of amplim tude frequency diatortions, introduced by diffexent group route untte. In both group routes the greatest distortions loceur at the ends of the operation frequency bands they are leaused principally by faltexs in the route. Analogous distortion character of woutes for lower and upper frequency
groups $A-B$ and $B-A$ determines a alngle form of the equalize princtple olrouit (Fig. 6.6a).

Hig. 6.5 Girouit and charactexistics of DK-2. 8 xilters.

The low-frequency route equalizen difeers from the high-frequenoy route equalizer only by element values.

The attemuation charecteristic of low-frequency route equalizer is aenorstated in Fig. 6.60 , and of highfraquency route equalizer on Fig. 6.60.

Fig. 6.6 Cincuit and loss characteristics of $B-A$ and A-B route equalizers.

a)

Hexe as in the groum route equalizers of the tex minhl office, "tan bhapeal characteristios can be obtained at the end ryequencies of the operating range with the ata of variable resiators R_{2} and K_{4}.

A selection of attemuters 0.1 nepers, 0.2 nepers and 0.3 nepers enters into the equalizer bjock constitutions Which sexve for the establiahment of the necessary route amplifloction When the equipment 1 tuned. Besides this selection of gttenuctens. in the low-frequency route equaluzer block there are attenuatoms whe attenuations 0.5 and 0.2 nepers, and in the highmerequency route equalizer block - attenuaters with attenuations 0.8 and 0.5 nepers.

Attenuaters with ereatest attendetion are usually connected into both routes and only in some cases, when it is necescairy to increase the "fat" route anplification, they are eather disconnected or replaced by attenuaters With smaller attenuation. The mentioned switchings bre
made on the equaliter block cover by bows.
$\frac{6.5 \frac{V K-33 \text { equalizex. }}{\text { With tovorable }}}{\text { woen }}$
Whth favorable weether conditions sone tandem oftioes can be dipooneoted from the main line by forming by-pass cirouits (Fig. 2.2). In addition to this, the routes of both transmission directions are completely alsm connected, but the line filters remain connected. They introduce additional anpitude frequency distortions, for the compensation of which the VK-33 equalizer is conneated srto the by-pass ofrout. Grouit and charaoteristic of stich equalizer is 11 lustrated in Fig. 6.7 .

Fig. 6.7 Cixouit and characteristic of VK-33 equaizer.

In the operation frequency band from 36 ko and higher the by-pass oircuit attemuation is 0.28 nepers, the equalizes comrecte the bymass route with an eceuracy of
I 0.05 neper.
6.6 speatubuze devices. tandem of ice equipment, and serves for conduthet coverstation and call through the service chanel, formed by fillers DK-2.8.

EVW circuit is illustrated in Fie. 6.8. The pronsiple oftoutt elements are: hand set, consisting of micro phone (m) and telephone (n), differential transformer Tr_{1} and balancing resisters R_{3} and $R_{4} *$, with the aid of (* Resistor H_{4} is connected only when conducting common conversation for better balancing of enti-stae tone device. which the anti-side tone device of hand set connection is made, switches Kl_{1} and Kl_{2}, ringing devices having copper oxide rectifier bridge KM , signal lamp L_{2}, load resistors ($R_{1}=2$ to hms and $R_{2}=600$ ohms $)$ and blocking capacitor $\left(\mathrm{c}_{1}=1 \mu \mathrm{P}\right)$, which prevent e the shunting of the ringing current when connecting PVU in one direction.

Fig. 6.8 Circuit of speak-buaz device (PVU).

The speak-burz device permits to accomplish the following operations:

1) conducting a seperate conversation and oall in both afrections ixtom the tendem offlee:
2) conducting e common (simultaneous) conversation with netghbordng offloe personnels
3) accomplishment of converatation passage control through the service chansel.

Transition to call or control is made by awitching of Kl switch, the sending of the call is accomplished by presclng the key KJ2. How to acoomplinh all these opera. tions, can be easily determined py the above-mentioned cincurt. PVU 1s connected to the Iine by banana jacks on the EVU block and on the awitchine boavd.

Stmoturally the PVU block is made as a out in block and is plac d on one penel with the switchine boaxd.

The switohing boaxd 1 filled with shielded and unshtelded jacks, the puxpose of which is cleared up when examning the block diagrem of PS rack (mig. 2.2).

Ghapter 7. Autoratic level regulation (ARU) devices.
7. I General Information.

Attenuation in aerial commuication Ines depends on whether ais temperature, precipltation, 1.6. , on the entire set of factore called the meteorologioal conditions. Consequently, to obtain high quality stable communcation. it is neeessaty to install devices into the equipment Which Would compensate the circuit attenuation variation by regulating the ampification. Without such regulation. which is acoomplished automatically, ARU, ft is impossible to provide htgh quality continuous commulcation operation during the entire year in our country with considereble line extenstons.

There are some differences from othem systems in the ArI device of $V-12-2$ gystem. Fixet of all they constst In a somewhat diflerent approach to the determination of limits for flat and espectaly for the slope regulation.

Operation experience of $V-12$ equipment showed that tt is precticaly imposstble to use maximum amplification of 9 nepers in the tomaem offices at requency 143 ke , since the line notses at such attenuation (9 nepera) of the
repeater section charply increase. On the other hand, in a number of casea, lack of amplification was noted at frequency 92 ke , whioh was detemined by the extremedy large (above 4 sepera) $14 n t t i g$ glope of the wper frequency group amplutcation charactexistio.

In $y-12-2$ equipment the maximum amplification value of tandem offices at 143 kc frequency equals 8.0 nepers. It compenates the attenuation of ine gection with travense profile and 4 mu wide diameter, 125 km long with weather conditions "frost 10 mm ". * The frequency characteristic (* To maintain commancation at giazed frost or more inm tense frost, offices VUswiz can be comected between offices PV-12-2.)
of Ine attenuation at theat conditione is given in Big. 7.1 (curve a). Curve b illustrates the attemation characteristic of the same section 1 ine with meteorological conaitions corresponding to minimum cirouit atteruction.

Fig. 7.1 Loss charactewistle of 4 mm eircuit, 125 km long. b, nep.

* a) frost 10 mm
b) winter $=\mathrm{dry}$
$(a=20 \mathrm{~cm})$
These two characteristics detemune the limiting values of tandem office regulation ablulty. In the low frequency transmission direction, the tandem office
amplification charecteristio slope should vary from 0.5 to 3.05 nepers and in the high orequency direction - from 0.4 to 2.3 nepers. With the equipment development this regulation renge wag sonewhat extended to provide a apectfic margin.

The necessary minimum amification cheractexistic slope of the tandem office is reproduced by constantiy connected luttial siope cimoutts, which are found in each transmission direction. For low frequency route this slope is 0.5 nepers and for high frequency route - 0.3 nepers.

The flat mplification variation (regulated by con troi currents with frequencies 80 anc 92 ko) should reach up to 3.6 nepers in the low frequency route and up to 4.2 nepers in the high frequency route. In the equipment this regulation for both tranmission directions is acomplished for not lest than 5.0 nepers.
ro pegulate the slope in low ixegueney route (control current frequency 40 ke) an adational attenuation is introduced at lower frequenoieg of the tranmitted range and in the hieh frequency route (control curcent frequency 143 kc) the ampliftcation is increased at upper frequencies.

An eleotronechanical type two frequency ARU system is used in the $V-12-2$ equipment.

The amplification regulation priviple in this
system is the following. The control ourrents from the output of line amplifiers are selected by narrow band filters mat get into the control channel receivers, atter amplification and rectification these currente (with deviation of thein value from the nomal) through tandem pelays cause the action of motom tuming the capacitance potentiometers. The Iatter switoh over the regulating ciroutts of artificial lines, as a consequence of which their attenuation changes, and consequently also the route amplification of tandem offices or group reception route of the teminal office. After the changed Ine attenuation ts compensated by changed office amplification, the motors atop.

Principle unitf entering into ARU equipment are examined below.
7.2 Contwal channel reociver.
The principle receiver cirouit of control channel
isgiven in Fig. 7.2. The control channel receiver con-
taine a narrow band quartz filters a twomstage amplufier
and a rectifter. The perfomming device in the fomm of
Eenstifve magnetoelectric relay RME-2 is placed on the
control ARU ponel.
All control channel recefvers have simllar ofroutts
differing only by some element values.
The amplifier input is separated from filter by a
balancing transfomer Try. The control channel fillter
characterastuic is given in FIg. 7.3.
Fig. 7.2 Circuit of the control channel receiver.

```

```

The receiver operation frequency range is determined by the quartz filter passband and by the tuning of circuit Trectc5. The amplifier feedback depth (winding ITL of transformer Tr s, resistors R 8 and N_{4}) is not smaller than 3 nevers. The receiver sensitivity regulation In the range - 0.7 nevers is accomplished by resistor: R_{4} vacation. The second winding of output transformer Tr 3 is connected to a rectifying device, consisting of Germanium diode D and capacitor Cg .
The rectified control frequency current enters, as It was already stated, the magnetoeleatric relay At a

```



Wh. 7.4 Key
1. From ght equalizer
2. From lowalevel wast motor switoh
3. From upper level unit motor switch
4. Motor
5. Signal switch
6. Output trantromer
7. Signal switch
8. Preliminary signal
exactly in the some way, and thererore is omited from the eircuit.)
are plicedragnetolectric rejay RPR; relay sets RNU and RVO, which control the switohing on and switching off of the flat and slope regulation motoxas signal relays RAS, RSN and \(R S V\) with lamps, and also level vaciation indicators. In this dideult magnetoelectric relays RMF-2 (RPR) are used, whick possess stable operation threshold, high sensitivity and matntengace of regulation for a long time.

The control circuit performs the following functions
I) accompisshes the control of amplification regula-
tion (switching on and off of the motors) with controlled current Level oacilations in the range from 40.05 nepers and higher and from -0.05 nepers to -0.5 nepers;
2) acompliehes antometic awitehing on of amplification regulation mechenism in the case if: the control current level decreased by more than - 0.5 nepers; the rotons of capacitance potentioneters (avitohes) reached extreme positiones
3) permits complete manual disconneation for all level regulation devices;
4) tums on the looal, the overall rack and overall station emergency signaling with level variations by value equal to or greater than 40.3 or -0.5 nepers; this aignaling acts with the retaxdation by 35 to 20 seconds, which is produced by speciei thyyatron circuit;
5) permits to deternine approximate magnitude of the relative level variation of control current by indicathig devices whioh have different colored sections on the scale;
6) permits to tum of the emexgency algnaling with prolonged damage of line or equipnent with full restoration of the initial signaling circuit after the emergency is eliminated.

Operation dmamics of control device Aru and the ourrent passage circuit, because of its slmplicitysare not examined here.
7. 4 Adjusting artificial Ines.

Line attenuation is compensated by adjusting artificial Ifines RJL, which consist of equajizers, capacitors of flat and slope regulations and amplifiers. All this
equipment set is stmoturally and electrically avided into two parts, of which one provides flat regulation and the othes chargea the mallifleation oherectertstic slope. REL have diferent construotion ron lower and upper frequenoy groups.

The didusting artifictal Ines ane made in fou foms, which cen be denoted: ETL nok pl. RTI noh nakl. RTL voh gls EHE voh neir.

Al PIT axe placed th the beginning of tandem office group routes and teminal office peception routes. The adfustring la acomplished automatically by connecting capaathor blocks\%, however manul adjusting is also permitted.
(* Th multiplexing systema of early productions, units analogoue in function were called motormeapacitor blocks.)

We will examine a more complicated curcuit - the adjusting artiplciat Ines circuit fow the apper frequency group (5lg. 7.5).

Stnce during untavormble meteorological condtions the fnyut stenat in the uper frequency group has very Eucll level, then to retse the Intembl nolse protection of the station, first of all the level of this signal has to be inoreased. Follouthg from these constaerations, the flat regulation deviee, whioh with small slenals does not introduce any conctidexable attenuation, is ploced before the slope regulation device and the flat regulation ampliLer acoomblishes the necessary level increase.

The equipment oircuit begins with the ettenuator Un, When hea an atteruation of 0.3 nepere and is intended to maintain a constant value of the input impedance with different plate positions of flat regulation capacitor
 shunt \(R_{6}\) the input impedance of RIL, a thomatage capacitance divider is placed, consisting of two series conected twostater diferential varlable eapacitors. The presence of two capacitorb with mechanically ooupled notong pemits to exten the regulation range. The difference between attenuation values, introduced by these capeaturs with extheme rotor positions, is 5 nepers; this essentialiy detembines the flat regulation range. Maximum capacitance of each capecitor equals \(60 \pm 10 \mu\) hi, and the minimum \(7 \mu \mu f^{2}\).

The faty reculation amplifier contana two tubes

( \(I_{1}\) and \(I_{2}\) ) of type 6ZhiP-E. Itis feature is the high input impedance, determired by the leakage resistance of the furt two which is noceasary to make for efficient regulator oper ation. Eoth amplitiem Btages are encompasted by the negative cwarent and voltase feedback ( \(C_{1} R_{G}\) ). Output transfomer Jne provides the matehing of mapifier with 10 ed equal to 600 ondas.

The amplipler amplification value ahould not be laree, gince overioad of the followng elements and the amplifler itaelf canot be pamitted with favorable weather Therefore it approxtmately eguals 1.7 nepers with feedback the depth of which is 2.8 nepers.

The alope regulation circuit FRH follows attex RIL veh pl. Itd bacis is the L-shaped equalizer consusting of a number of circuits from the elerments of which onty IIve branches are made (F1g. 7.6): which lead to the stater sections of capacitor Kut. Two terminal networics, providing the straight Ine shape of reckifier intemediate
 the three center taps. The capaciton Kik rotor, tumed by * motor, is comected to alope regulation amplisier, the ampletioction of moloh equal: 3.4 nepers.

Big. 7. 6 simplified connection curouit of h-f route slope regulation equatioine cimouts.


When the rotor passer the intermediate sections from the firet section to the fifth, the RLL amplification
chanacteristic alope changes, reaching a maximum when the dinserence betweex amplifioation values at the end frem quenolea of the band ( \(\mathrm{S}_{1} 3^{-5} \mathrm{~S}_{\mathrm{g}}\) ) equats 2.1 nepers.
the effoct of slope regulation oxroutt doen not chenge the gmpiffomtion wor cracents with frequency 92 ke. Whe rate pi amplification change whth turning of the motor Ls 0.035 nepers per maute at 143 ke frequeney and the passage of rotor from one extrene position to the other takes about 60 minutes.

Reb. 7.7 Lobs oharacteristaces of the slope regulation robte eguarizers.
b. nep.

 Prequency tranalacion toute in shataz to plat regulation amplefodtion efromt, The difference is ony th the feedback clroutt ta which there are three correcting efrm
 pernt to comede ube constant distomtione of the line route at the extmene and at the mtade frequencies (Fig. 7.8) . Trangfomen Thy matchea the amplifler output with 135 ohm load. With joint action all Ry devices introduce anglification into the high frequency tronsmisation route of the tanden office, the limiting values of which for different frequenciec are chown in Fig. 7.9. The numbers low the ourres indicste the poation of the flat ( \(p\) ) and the slope ( \(n\) ) regalations in the variable capactiong boale

gradustions.
ELL Simpler than the above exmmed HL veh.

The slope reeulator consists of three series conmected Jucheped equalikens with taps and seven aection variable aip capacito. Since the level at REL noh nakl. input at any weather is not very low, then only one amplifler can be used and Kht should be placed first and then KPR, which requires high registance load.

Fig. 7.9 grequenay characteristics of h-f route amplificetion.


The mequired attenuetion chatactertstic slope with twring of the capacitor KNF rotor is obtained by summing the attenuations of separate equalizer sections. Each of the three such sections gives a slope to a charecteristic, determped by the afiference of attenuation values (with frequenctes 84 end 36 ke ), which equals I.I nepers. Thus the mbximan slope will be 3.3 nepers.

Seven stater sections of the capacttance switch of

the flat regulation are located in two capacitors, the rotors of which are on one axis, are connected and displaced by the rotor plate width. Taps from the equalizer are altemately coneded with the tuming of the rotor through the capacybance sections to the output termsnala of RII noh nall. The rate of slope regulation at 36 ke frequency is on the average 0.073 nepers/minutes.

The flat regulation oapacitor KPR is made similar to capacitor KPR in the hich frequency route. Its attenuation between extreme rotor positions changes in the range of 5 nepers.

Block RII noh pl ampifier ( \(S=2.9\) nepexs \()\) has a clroust analogous to the above examined amplifiers of block RIIL poh pl. EIements \(\mathrm{I}_{12} \mathrm{C}_{18}, \mathrm{I}_{13} \mathrm{C}_{20}\) and \(\mathrm{I}_{14} \mathrm{C}_{23}\) are contaned in the feedrack circuit, fntended for the correction of aerial line attenuation characteristic at the ends and at the modie of lower freguency group.

The effect of slope and flat regulation is demonstrated in 7 y . 7.11 , where the frequency amplification charactexistics of the tanden office low frequency route are given with different regulator positions.

F1g. 7.11 Frequency characteristics of e-f route amplification.
\(s\), nep.

\(\qquad\)
Structurally the RIS panel is divided into two cut In block (slope and flat regulation), which are connected to the Intexpanel cable by 16 contact blocks (for heating and elgnainge circuit ) ard by shielded jook n and bows (for high frequency drovite The blocks include equal1zers (In hemettoally sealed case), regulated notifiers and capacitor blocks, which con be easily removed from the common panel. The panel width is 180 mm.

The capacitor block installed on the RTL plate, are manufactured in two different structure forms - for flat and slope regulations (Fig. 7.12).

Fig. 7.12 Capacitor units of flat and sloping regulations


A motor with a reducer (type sx-2, 50 o, 2 revoluthond/minute) are placed in the back part of the block. Magnetic system of the motor consists on two wind eng palm, displaced in space by \(90^{\circ}\). Transformer plata of y-phaped form are used as the core. The block motor 1 f fastened with the capacitors by four columba. The rotation from the reducer \({ }^{\text {is }}\) transmitted through two bevel gears and a warm gear to the principle rotation axis of the variable capaaitore, The diameter ratio of gear drives provides slowing

Down of the rotation speed for the principle capacitor axts 120 times for RII nch and 240 times for RIL veh with respect to the rotation speed of the reducer axis.

To provide free wheeling, the capecitor rotation aris is set in ball beartngs. The further rotabion transmission for capacitor blocks of fiat ard alope regulation is not the amme.

The rotorw of two sectoned capacitore are directly connected to the axis and have the sane speed in the slope regulation capacitor blocks (Fig. 7.12, from the right). In the slope regulation blocks (Fig. 7.12, from the left) there in one more gear arive with 1.4 times slower rotation between this axls and two \(2-s t a t a r\) variable capacitors. A diso with graduation from zero up to 100 is fixed to the capacitor rotation axis in front of the blook. The highest value of capacitor attenuation corresponds to the zero scale position.

The friction gear in the block provides the possi= bility of tuming the capagitoma by hand with the atd of a hendle fixed to the end of the axis. In front of the block under the diso, the sprine contact groups are installed. which switeh over at extreme stalepositiona which leads to the tumang on of signalization and thming of of the motor.
\(7.5 \quad 50\) a Generators
The 50 c generator ( \(6-50\) ) (Hig. 7.13) feeds the synchronoun motors, which tum the regulating capacitor roters.

The generaton has two tubes. The master stage mith
 and the amplifier stage by \(6830-\mathrm{E}\) tube.

The power given of 1 by the output tube into the load ( 1.6 w ) is Euffictent for tuming four motors at the same time, \(1 . e\). all megulatoxs of the tanden ofrice. Disappearance on congiderable level dearease of the 50 c frequency current at the amplisier stage output is recorted by gignaling acting from a special relay \(P\), whioh is conneoted into the simplest rectifier \(D\) oircuit.

Since there are no high requirements for the generatox frequency stability, level stability and for nonm ifnear distoxtion coefercient, then its circuit does not
have any features worthy of attention, and therefore are not examined here in detall.

Fig. 7.13 dirout of (b-50 generator.


The motors can be also connected to the alternating current grid with voltage 220 volts and inequency 50 o (the generator unt \(G\) m 50 has a stepdom transformer \(\mathrm{Tr}_{3}\) and a jack lock ak for comesponding swatening).

\section*{Chapter 8 Apparatus for separettng channele.}

\subsection*{8.1 General Information.}

As it Wes already mentioned in Chenters 2 and 3, the equipment for aeriving foum chanels from the line spectrum of the I2wchannel system (Fig. 1.4) is Installed in the tandem office, whereupon the routes of demived and through chanrels are connected in front of the line amm plifiers, le., after equalizing the frequenoy characteristics in RIL voh and RIL nch. To accomplish the channel. dexivation by the assumed cirouit turned out to be possible only as a result of the development of low pass and high pass iflters ( \(D-68\) ana \(\mathrm{K}-108\) ).

The attenuation charactersetic non-uniformity in
the passband (up to 0.25 nepers) for these filters is in creased. Therefore it is undestreable to install the derived chamel equipment in several tandem offices in the raxge of ons transucer section. If such an equipment is connected in more than three tander points, then to correct the distortions at the terminal offices, introduced into the 8 through channel route, is already aifricult. The data of these chennels will not correspond to the accepted norms.

In Ohapter 2 in Fig. 2.3 the measurement level values ame given at diferent route points fomed by dexived charrel equipment. At these levels a nomal overall attenuation is provided in the derived oharmela, which by other deta are not different from other channels of \(V-12-2\) system.

Untta fintajled on the derfved channel rack SVK can be divaded into three groups:

Puat group - individual equipment mits derived Trom the 510 reck of the terminal office (see Chapter 2). To them relate diferertial systems wth limiters (DSo). Individual convertors ( \(M\) and DM), channel falters (PB), Low frequency amplipters and volee fregra noy calling-dialing receivers (uvompmiv), relay sets for magneto and voice frequenoy ringing (TIT and RTV), jacks of twowire and foutwine switching, voice frequency ringing generator (onv), neper meter, speakmbuz device (FVU).

Second group -- generator equipment units, derived from 50 rack (bee Chapten 5). To them relate: the master 4 ko oscillator ( \(a-4\) ), the 4 ke amplifier with hamonic oscinlator (Uswi), the separate carrier frequency filters (HI and CH) for the first, second, thind and fourth channels.

Mhind group - units used only in SVK rack. To them refes the route amplifiers of derived channel equipment (US AB, Us BA, Us AV, Us Vb; Us EV and Us VA), Low pass guartz filter ( \(D-68\) ), high pass quartz filter ( \(K-108\) ), group convertors for four channels, low pess filters (DIo8), bandyass filter (ZF), control curpent by-pase filters (TKGH-80 and FKCH-92), the group carmer frequency amplifier ( 176 kc ), the group odxuter frequency filter (FaN-176)

Bejow the construction of units is examined referring the the third group, which do not have similar units

In other foms of Vmi2-2 gystem oquipment.
Q.e oroge emplificgs.

There ane alu group ampliftems in the dernved channey, equipment, whereupon two of then are conneated into the through chanel poutes (US AB and US BA), and courinto the derved chanol routes (Us AV, Us WA, Us BV, Us VB). These amplifiers increase the signal level up to a value estainshed by the level diagram.

The ampinter ofrouits (except Ve VB) are similam (fte. 8.1). They differ only by the construction of output droutte and feedback ciroutte.

The amplifiers have two stages with tubes GZHPP-E. Tranefomars Tre and Tre ane placed at otroutt input and output. In Us AB and US BA the output transformer Tho has four windinge. One winding is connected to filter D-68 (on \(\mathbb{K}-108\) ) and thus is an the through shanel route. othem wiraing is oomected to filten FKOH-bo (on mKOMge) and is in the control rrequenoy by-pass route. Whth the ald of thim winding, the feeding of the feedbook voltage Into the grid cincut of the first atage is acomplished. Amplification of these amplifers equals 3.5 nepens with seedoeck, the depth of whon is 4.1 nepers.

The relative wath of irequenoy band, is deperdent on amplifleation, and therefore it is not difficult to obtein in it a whiform requency characteristic (with an accuracy to. 0.03 nepers).

The amplitide characteristic is a straight line up to the level +2.5 nepers with accuracy 0.03 nepers. The inputand output fimpecances are not much diferent from 135 ohms, which provides a replection coeffleient not Lower than \(10 \%\).

Transfomer cirouits are simpler in amplifiers Us AV, Us VA and Us BV. They have only three windings, of whion one is connected to the extemal ioad. Us AV has an amplification of 3.8 nepers with the depth of feedbaok (OOS) 4.3 nepers. Us BV has an amplipication egual to 4.95 nepers with depth 0083.5 nepers. Us VA has an amplefeation of 3.25 nepers with depth 0084.2 nepers. Al three amplifiex types are designed fon cument amplification in the frequency band 68 to 108 ke . The nominal value of input impedance is 135 ohms. The output


Fig. 8.2 Cirout of VE amplifier.


Amplifiler Us VB (FIg. 8.2) has a somewhat different ciroutt from other amplifiews. It has only one stage with amplifiction 1.8 nepers. The nominal value of input and output impedance equals 135 ohms.
8.3 Group roubes filters.

Low pass and high pass quartz filters ( \(D-68\) and K-108) are connected into the routes of elght through channels, pasaing the currente of frequency band in which they are placed and suppressing currents of the four deryed chennels. only the application of quartz resonatons in these filters permitted to obtain such a steep attenua tion characteristic, that the derivation is accomplished without channel loss. Filter D-68 circuit is shown in Fig. 8.3 and that of f11ter K-108 on Fig. 8.4 .

It is seen from these cirousto that each filter consists of tho bridge circut sections and some additional elements. Together with inductors and copacitors, eight quartiz resonators axe included in the sections. Resistors \(\mathrm{M}_{1}\) to \(\mathrm{R}_{8}\) serve for the balancing of the filter section branches, their vaiue is selected when the filter is tuned Attenuatore Wdi axd Vde, connected et the input and output of the fintex; are necessexy for better matching with load. In filter D-68, there is one more anditional section from the input side, which raises Lts attenuation in the attenuation band. The filters without transformers have input and output impedances in the order 4 kohms 3 trangfornsx Tri ard Try Lower this value to 135 onns. Finter attenuation in the pasmband is not higher than 1.9 nepers and in the attenuation it reaches 9 nepers This provides a sufficient protection from trengient currents between channela.

Natural quaxta resonators, inductora with ferrocart magnetio circuit, capactors SGM, KPR and KTIK are used as filter elementa.

Filtex \(D-108\) is connented in the route VA and VB , i.e., there where there is group conversion. This filter is connected twice in the BV route (betore and after convertor). In the first cade it protects route BA from currents with camper frequency 176 kc , and in the second case (same as in route VA) serves for the derivation of lower side bend and for the auppression of unused

Fig. 8.3 Oiroutt and characteristics of D-68 fitter.



\section*{conversion products.}

The filter cirouit and charactenistic axe iliustrated in Aig. 8.5. It has thre seations, whereupon sectiond are connoted at the input and output, which protite bettert matchtne with 135 ohm load.

Fig. 8.5 Cirout and characteristic or D-108 filter.


Filter attenuation in the passband is not oyer 0.5 nepexs and in the attenuation band is not lower then 4.5 nepers. Inductors with carbonyl fron cores and mica capaoutoms SGa are used as the fillter elements.

The malts examined above do not exhaust all the original units applied in the raok SVK. However, those which vere not described in this section have a great stuilactcy with units already described in other chopters. For example, the eroup carrier 176 kc frequency amplifier is similer to group carrier 340 ko frequency anplifier (Chapter 5). This can be also said in relation to filter
PGM fox the same frequenoy: the control current by-pass filters MKOH 80 and HROR 92 ane composed of two control channel fithers of the tandem office; the band elimination filters rip (Fug, 8.6) do not difer much from band elfmnation pilters of the terminal office ete.
Fig: 8.6 Girout and oheractematho of Zef fiter for BA route.
Inmot

Chapter 2. Some fectures of equipment operation.
Now cirout and struetural solutions, used in the degign of Vma-2 equipnont involve sone special features of its operetion. Finst of all it ts necessary to polnt out the new appeaming possibilities of equipnent undts reservation. The cut -in construotion of most blocke perm mits to heve ftandard emergenoy blocks and when neoesaray to weplace quickly the dameged block by the reserved. Interchangebiluy of stmiler thpe blocks permits to reaxrange them from one postition to the othex; by this raistng the operation flexibiltty of the eguipment; be aldes that, defect in different devices can be found quicky.
When dantge is fomo on when the wits are carefull checked, any block can be taken of the rack and again
connected to tt by a hoae with blocks. Thus, testing cen be made in operating conditions with complete aocessibilitr to the assembly and to the block elements.
Complete aet of \(7-3-2\) equipment includes three separate measuming devioes. The one most mequentily used 1 s the nepermeter, installed on the sto rack, which gives evtensive possiblifties for measurements and testing, sines its generator and level indicator have improved characterm tstios and the latter, bestidee tht, an increased sensiw tivity. The nepemeter is placed closed to the suttohing bozrd which has jocks that dupheate generatox output and level indicator imput. Twomire and poux wire channol output, terminating by sepanating jacks on the switching bobrd, are mounted in 8 uoh a way that loading and parallel conneotion of devices can be made at different points of the low freguency route part. Almost every block in the enuipment (or small group of blocks) can be tested separately, beaause, as a rule, it is treluded between the separating jacks, which pemit parallel connection.
The unfversal ppeakmbuzz device put on racks Sto and SVK, as it was already stated in Chapter 4 , can perfoxm many functions Including conversations and calls through ohanels, connecting and service lines, and also the ohecking of volce fuequency ranging and pulse dialing of sending and recelving devices.
As it is know these devices which connect electromechantom elements (relays) require mome irequen checking then others and the ppesence of a handy device for thelr control should make easier the keeptng of the equipment in good wonking condition.
The preaence of ampliftiex in the pro telephone ovroutt permita to lister in on the noise and interference charaoter in the chanels, which sometimes simplties the finding of interference source. PVU can be connected to the chanels through the jecka by cords, in addition to this a separate and comon conversation is posstble in both dinections from the place of PVI connection. The connection with local telephone system is acoomplishea through aervice Ines independent of the ofty ofrice type NB, TSE CR ATS.
The Installation of the testing amplifier on the Sto rack should be referred to the number of additional
factilties provided in the teminal office. Connecting the trasemision route output wh the reception route Anput through the terting amplufiex, tho indivadual equapment melating to any chamel wan be checked (chapter 4, section 10).

The toncem of tree can aiso be proviaed by measurtig device 0U-1500p, which is a level indicatory the feeding to which is brought though special facks (cen also be comected in the distance supply stations, e.g., VUs-12).

The operation frequency renge of this device is
from 0.3 to 150 kc . It messures the level gt the of ilice output and othere places of the low frequency and high frequency routes in \(P V-12-2\) rack.

A device for testrig exectron tuben PJTIN is also a measuring device, wdded to the equipment, which measwres the cathode activity and cathode currents of the tubes ro accomplish such weakuements there are jacks and shunts fir the cathode circutt of each tube, and in the heating atreut - jacks and reostats. These and the other elements are placed on the front parsel of the blocka.

Herminal and tandem ofrices of the \(V-12-2\) sytuem contain aditional devices, which were not in the equipment set \(V-12\). First, these are the panels with elements providing distance supply feeding to VUS, and second, two filter sets DK-2.8 and BDK-2. 8 (only on PS rack). The latter permit to organize a link between operators at low frequency betmeen offices for which on rack PS there is also a twowtre pro. The organization of auch length undoubtedly will raise the quallty of main line service.

Arrangement of the equipnent units on the racks is made with the consideration of providing minimum interrack withing. Wot only the decrease of rack number in the terminal and tandem offices, but also a rational arrantement of the equipment on the racks would make the installation and essembly of equipment in LaZ much easter.

On the lead in terminal blooks placed at the top of the racks, all input and output circuits are looped in which do not require shielding, and large number of shielded circuites are also looped in.

Matn fuses for difecent kinds of feeding are in troduced into the rack feeding circuits. This makes it possible to eastiy and quickly disconnect ary voltage from
the rack. When some voltage disappears, the signalling is on. The sigwalling circuit is made in compespondence with new redurements, as a consequence of which it was possible to apply a simgle ordinary "transparenoy" for the entipe multiplexing system.

Expertmental operation of equipment samples on one of the main lines for one year and some data, obtained by observing system \(7-12-2\) operation in different locations of the country permit to give its characteristic from the point of view of parameter time stability, and also to evaluate measurement methods used during the taning.

The results stated below were obtained after inttat sybem turing and after eliminating some defects in the line and in the equipment (the latter sometimes appeared with transportation, rack installation, etc.).

The frequency stabtlity of 4 kc master oscillator muetuates in the range \(2.5 \cdot 10^{-6} \div 4: 10^{-6}\). The highest tranmitted frequency 143 kc veries by 0.3 to 0.5 c , which is not higher than the assigned nomm. In conditions of long equipment operation a necessity of fine cuning of the oscillator can amise, since becarse of the natural aging of quartz resonetor the oscfllator frequenoy oan dem Viate from the nominal value. The mine adjustment is made by a varjable capacttor ( 0 g Fig. 5.2) in the matter osclilator ciroult, by comparing its frequency with the frequency of other source. Frequency equality for compaxison with occillograph indication is not compulary, only mutuplicity between them is necessery.

Prequenoy stability of control cuxxent independent genaratoms is hisher than the standard (standand e"10-5) and approximately equals \(0.7 \div 0.9 \cdot 10^{-5}\). Theyel variation at 4 ke oscilletor output is not higher than 10.1 neper, and at the control current genemator output not higher than \(\pm 0.04 \div 0.05\) nepers.

Fluctuation value of side frequency levels at the output of termanal and tondem offlces in time is not over 0.09 nepers and the variation of group route frequenoy characteristios is in the range 0.1 nepers.

The terminal offlee set notses for long observation period had the values \(0.25 \div 0.50 \mathrm{mv}\) at the polnt where the measuring Jevel equals to. 5 nepers. Noises are measured at the fack Fru. Itn by type TMPw sophometer, if

DK- 88 reaks are loaded by 135 ohm resistance.
On the mair Iine with an extent in the order of 800 he durage a half year observation pertod, the level diagrem vaxied at the points of terminal and tandem oftite outputs in the range to.2 to w 0. 1 neper. Varatuton of reception levels (overall cirout atteruation fluctuation) for the same time was not higher than 40.2 nepers for separate channels and ror more than half of the channels \(\pm 0.1\) nepers.

A great aignificance for nomal system operation have the maintenance of high degree lineamity of the group routes, which can gradualiy or sudaenly decreaz because of the tube aging, the variation of resicotris and capacitons values, the breaking of contacts, etc.

The anplifier eguipment of tandem and temanal oftices has great "reserves" in this parameter, as a consequence only prophylsctic observation is necessary after the good working condition of the given equipment and the possetion of method for fast finding of the defective element.

The measurement of currents of non- 1 near transitions between chameln instide the system is made by using individuel equipment, These measurements are mede with four-wire connection of chamels in the combined frequency of the third order of the fom fixom \(=f_{j}+f_{2}-f_{3}\). Frequencien \(f_{1}, f_{2}=\dot{t}_{3}\) and also ohamels through which signals with these frequenctee axe transmitteds are gelected in such a way that the non Inneardty product in the voice frequency spectrm would have frequency equal to 1,000 (Table 9.1)

Totel voltage ( \(U_{i m m}\) ) of combined (Unon \()\) and natural ( \(\mathrm{U}_{\mathrm{gh}}\) ) interferences is measured at the recelving end of the channel subject to influence. The voltage value of combined frequency is detemmined from fomula
\[
U_{\text {kom }}=\sqrt{\mathrm{U}_{\mathrm{izm}}^{2}-\mathrm{U}_{\mathrm{sh}}^{2}} .
\]

With increased non-Inear tronsitions, it is necessamy to determine the office which is the source of these interferences. The finding of office with increased nonInnearity is made by altemately setting the blocking filter, tured to one of the measuring frequencies.


Tabie 9.1 Trequenctes ard chamels recommended for the measurement of mon-linear distartions by the combined frequency of the form \(\mathrm{f}_{\text {kom }}=\mathrm{f}_{1}+\mathrm{I}_{2}-\mathrm{I}_{3}\).

A ciroutt conslsting of semies connected inductors and capachtors with very small losses can be used for such a filter. Suoh a oirouth is comected parallel to the tendem of ice fnput, and if the non-1thearity products dsappear when disconneoted, then the cause of the increasta non-Inearity should be looked for in this office. If however, the non-linear transitions do not disappear, then the ceuse of thelr spoearance should be looked for in anm other tandem oflce, closer to that tanden ofrice, from whion the measmenctit signals are applied.

Most tubes 6ZHIP-E and 6P3S-E, used in this equipment, as the oxperience showed operate more then the guarenteed 5,000 hours and even over 8,000 hours. Howm ever \(5 \%\) of the tubes lose emission before this time and besties thet. 3 to \(4 \%\) of the tubes had to be replaced before their guerenteed lifetime is up for different reesons and mainly because of the increased set noise level, which is more noticeable in thrH.

Sometimes tubes 6P3S are installed instead of

6P3S-E in some PS and \(5 c 0\) racks. Type 6P3S tubes have a guaranteed Iffetime of 500 hours, but practically they work \(700-1,000\) hours, after which the amplifier non-inearity increases, 1.e., tubes gradually go out of onder. These tubes shoutd not be lett in the operating equipment for a period longer than 1,000 hours, The reserve set of such tubes is twice greater than the usual.

With equipment V-12-2 installation in LAZ containing the equipnent of systens \(V-12\) and \(K-24\), a necess1ty can arise of using the generator equipment of these systems to teed \(V-12-2\) SIO racks by carrier curpents. The comection of generator racks of \(V-12\) (STNX) system and K-24 (SNK) system with SIO rack is made in the same way as before with rack SIP of the systems \(V-12\) and \(K-24\).

It is only necessary to discomeot the adatitional restistances in the dititibuting device (RD) of STO and to establish carcter current levels equal to -0.5 nepers (by voltage) at the modulator and demodulator inputs. This recommerdation camot be extended on that small number of SIO rocks, which was manufactured with Dav instead of MKV-5-1 diodes in the modulators and the derodulators.

2128

> END```

