# **FINAL**

Confirmation Sampling and Analysis Report POL Yard, Sites SS-06 and ST-40



Wurtsmith Air Force Base Michigan

**Prepared For** 

Air Force Center for Environmental Excellence Brooks Air Force Base, Texas

DISTRIBUTION STATEMENT A

Approved for Public Release Distribution Unlimited

and

Air Force Base Conversion Agency/OL-T Oscoda, Michigan

April 1999

# PARSONS PARSONS ENGINEERING SCIENCE, INC.

1700 Broadway, Suite 900 • Denver, Colorado 80290

# 20000818 026

DIAC QUALITY DISPROTED 4

## FINAL

# CONFIRMATION SAMPLING AND ANALYSIS REPORT FOR POL YARD, SITES SS-06 AND ST-40 WURTSMITH AFB, MICHIGAN

Prepared for:

## Air Force Center for Environmental Excellence Brooks AFB, Texas

and

# Air Force Base Conversion Agency/OL-T Oscoda, Michigan

### Contract F41624-92-8036, Delivery Order 17

**April 1999** 

**Prepared by:** 

Parsons Engineering Science, Inc. 1700 Broadway, Suite 900 Denver, Colorado 80290

# TABLE OF CONTENTS

| Page                                                                                                                                                                                                                                                                                              |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ACRONYMS AND ABBREVIATIONS iii                                                                                                                                                                                                                                                                    |
| SECTION 1 - INTRODUCTION1-1                                                                                                                                                                                                                                                                       |
| 1.1Purpose1-11.2Site/Project Background1-21.3Summary of Confirmation Soil Sampling Results1-21.4Report Organization1-2                                                                                                                                                                            |
| SECTION 2 - SITE CONFIRMATION SAMPLING AND ANALYSIS<br>ACTIVITIES                                                                                                                                                                                                                                 |
| 2.1Sampling Strategy2-12.2Soil Sampling Procedures2-22.2.1Sampling Locations2-22.2.2Sample Collection2-22.2.3Soil Sample Analyses2-42.2.4Field and Laboratory Data Quality Assurance/Quality Control2-42.3Equipment Decontamination Procedures2-42.4Management of Investigation-Derived Wastes2-5 |
| SECTION 3 - CONFIRMATION SAMPLING RESULTS                                                                                                                                                                                                                                                         |
| 3.1Laboratory Results3-13.2Comparison of Soil Sampling Results to Cleanup Criteria3-33.3Quality Assurance/Quality Control Procedures and Results3-63.3.1Laboratory QA/QC Procedures and Results3-63.3.2Field QA/QC Procedures and Results3-6                                                      |
| SECTION 4 - CONCLUSIONS AND RECOMMENDATIONS                                                                                                                                                                                                                                                       |
| 4.1Conclusions4-14.2Recommendations4-1                                                                                                                                                                                                                                                            |
| SECTION 5 - REFERENCES                                                                                                                                                                                                                                                                            |

# TABLE OF CONTENTS (Continued)

Appendix A – Final Confirmation Sampling and Analysis Plan Appendix B – Boring Logs Appendix C - Laboratory Analytical Results and Chain of Custody Forms

#### LIST OF TABLES

#### No.

#### Title

#### Page

| 3.1 | Summary Soil Sampling Analytical Results Summary               | 3-2 |
|-----|----------------------------------------------------------------|-----|
| 3.2 | Comparison of Pre- and Post-Bioventing Soil Analytical Results | 3-4 |
| 3.3 | Identification of Criteria Exceedances for Unsaturated Soils   | 3-5 |

#### LIST OF FIGURES

# No.TitlePage1.1Location of Sites Within Wurtsmith AFB1-31.2POL Yard Layout1-42.1Grid and Soil Sampling Locations October 19982-3

# ACRONYMS AND ABBREVIATIONS

| AFBAir Force BaseAFBCAAir Force Base Conversion AgencyAFCEEAir Force Center for Environmental ExcellenceASTaboveground storage tankbgsbelow ground surfaceBTEXbenzene, toluene, ethylbenzene, xylenesCOCchain of custodyCOPCchemical of potential concernLCS/LCSDlaboratory control sample/laboratory control sample duplicateMDEQMichigan Department of Environmental QualityMDNRMichigan Department of Natural ResourcesMSmatrix spikeMS/MSDmatrix spike/matrix spike duplicateNFRAPno-further-response-action-plannedParsons ESParsons Engineering Science, Inc.PCEperchloroethenePOLpetroleum, oils, and lubricantsPQLpractical quantitation limitQA/QCquality assura ace/quality controlRLreporting limitRPDrelative percent differenceSAISpecialized Assays, Inc.SAPSampling and Analysis PlanTMBtrimethylbenzeneTVHtotal volatile hydrocarbonTVHAtotal volatile hydrocarbon analyzerUCLupper confidence limitUSUS Environmental Protection AgencyUSTunderground storage tankVOCvolatile organic compound | µg/kg      | micrograms per kilogram                                       |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|---------------------------------------------------------------|
| AFCEEAir Force Center for Environmental ExcellenceASTaboveground storage tankbgsbelow ground surfaceBTEXbenzene, toluene, ethylbenzene, xylenesCOCchain of custodyCOPCchemical of potential concernLCS/LCSDlaboratory control sample/laboratory control sample duplicateMDEQMichigan Department of Environmental QualityMDNRMichigan Department of Natural ResourcesMSmatrix spikeMS/MSDmatrix spike/matrix spike duplicateNFRAPno-further-response-action-plannedParsons ESParsons Engineering Science, Inc.PCEperchloroethenePOLpetroleum, oils, and lubricantsPQLgractical quantitation limitQA/QCquality assura uc/quality controlRLreporting limitRPDrelative percent differenceSAISpecialized Assays, Inc.SAPSampling and Analysis PlanTMBtrimethylbenzeneTVHtotal volatile hydrocarbonTVHAtotal volatile hydrocarbon analyzerUCLupper confidence limitUSUnited StatesUSEPAUS Environmental Protection AgencyUSTunderground storage tank                                                                  |            | Air Force Base                                                |
| ASTaboveground storage tankbgsbelow ground surfaceBTEXbenzene, toluene, ethylbenzene, xylenesCOCchain of custodyCOPCchemical of potential concernLCS/LCSDlaboratory control sample/laboratory control sample duplicateMDEQMichigan Department of Environmental QualityMDNRMichigan Department of Natural ResourcesMSmatrix spikeMS/MSDmatrix spike/matrix spike duplicateNFRAPno-further-response-action-plannedParsons ESParsons Engineering Science, Inc.PCEperchloroethenePOLpetroleum, oils, and lubricantsPQLpractical quantitation limitQA/QCquality assurance/quality controlRLreporting limitRPDrelative percent differenceSAISpecialized Assays, Inc.SAPSampling and Analysis PlanTMBtrimethylbenzeneTVHtotal volatile hydrocarbonTVHAtotal volatile hydrocarbonTVHAtotal volatile hydrocarbonVHAUS United StatesUSEPAUS Environmental Protection AgencyUSTunderground storage tank                                                                                                                    | AFBCA      | Air Force Base Conversion Agency                              |
| bgsbelow ground surfaceBTEXbenzene, toluene, ethylbenzene, xylenesCOCchain of custodyCOPCchemical of potential concernLCS/LCSDlaboratory control sample/laboratory control sample duplicateMDEQMichigan Department of Environmental QualityMDNRMichigan Department of Natural ResourcesMSmatrix spikeMS/MSDmatrix spike/matrix spike duplicateNFRAPno-further-response-action-plannedParsons ESParsons Engineering Science, Inc.PCEperchloroethenePOLpetroleum, oils, and lubricantsPQLpractical qualitation limitQA/QCquality assura ace/quality controlRLreporting limitRPDrelative percent differenceSAISpecialized Assays, Inc.SAPSampling and Analysis PlanTMBtrimethylbenzeneTVHtotal volatile hydrocarbonTVHAtotal volatile hydrocarbonTVHAtotal volatile hydrocarbonTVHAUS Environmental Protection AgencyUSEPAUS Environmental Protection AgencyUSTunderground storage tank                                                                                                                            | AFCEE      | Air Force Center for Environmental Excellence                 |
| BTEXbenzene, toluene, ethylbenzene, xylenesCOCchain of custodyCOPCchemical of potential concernLCS/LCSDlaboratory control sample/laboratory control sample duplicateMDEQMichigan Department of Environmental QualityMDNRMichigan Department of Natural ResourcesMSmatrix spikeMS/MSDmatrix spike/matrix spike duplicateNFRAPno-further-response-action-plannedParsons ESParsons Engineering Science, Inc.PCEperchloroethenePOLpetroleum, oils, and lubricantsPQLpractical quantitation limitQA/QCquality assurance/quality controlRLreporting limitRPDrelative percent differenceSAISpecialized Assays, Inc.SAPSampling and Analysis PlanTMBtrimethylbenzeneTVHtotal volatile hydrocarbonTVHAtotal volatile hydrocarbonTVHAtotal volatile hydrocarbonTVHAUS United StatesUSEPAUS Environmental Protection AgencyUSTunderground storage tank                                                                                                                                                                     | AST        | aboveground storage tank                                      |
| BTEXbenzene, toluene, ethylbenzene, xylenesCOCchain of custodyCOPCchemical of potential concernLCS/LCSDlaboratory control sample/laboratory control sample duplicateMDEQMichigan Department of Environmental QualityMDNRMichigan Department of Natural ResourcesMSmatrix spikeMS/MSDmatrix spike/matrix spike duplicateNFRAPno-further-response-action-plannedParsons ESParsons Engineering Science, Inc.PCEperchloroethenePOLpetroleum, oils, and lubricantsPQLpractical quantitation limitQA/QCquality assura ice/quality controlRLreporting limitRPDrelative percent differenceSAISpecialized Assays, Inc.SAPSampling and Analysis PlanTMBtrimethylbenzeneTVHtotal volatile hydrocarbonTVHAtotal volatile hydrocarbonTVHAtotal volatile hydrocarbonTVHAUS Environmental Protection AgencyUSEPAUS Environmental Protection AgencyUSTunderground storage tank                                                                                                                                                  | bgs        | below ground surface                                          |
| COPCchemical of potential concernLCS/LCSDlaboratory control sample/laboratory control sample duplicateMDEQMichigan Department of Environmental QualityMDNRMichigan Department of Natural ResourcesMSmatrix spikeMS/MSDmatrix spike/matrix spike duplicateNFRAPno-further-response-action-plannedParsons ESParsons Engineering Science, Inc.PCEperchloroethenePOLpetroleum, oils, and lubricantsPQLpractical quantitation limitQA/QCquality assura nce/quality controlRLreporting limitRPDrelative percent differenceSAISpecialized Assays, Inc.SAPSampling and Analysis PlanTMBtrimethylbenzeneTVHtotal volatile hydrocarbonTVHAtotal volatile hydrocarbon analyzerUCLupper confidence limitUSUnited StatesUSEPAUS Environmental Protection AgencyUSTunderground storage tank                                                                                                                                                                                                                                   | BTEX       | benzene, toluene, ethylbenzene, xylenes                       |
| LCS/LCSDlaboratory control sample/laboratory control sample duplicateMDEQMichigan Department of Environmental QualityMDNRMichigan Department of Natural ResourcesMSmatrix spikeMS/MSDmatrix spike/matrix spike duplicateNFRAPno-further-response-action-plannedParsons ESParsons Engineering Science, Inc.PCEperchloroethenePOLpetroleum, oils, and lubricantsPQLpractical quantitation limitQA/QCquality assura ice/quality controlRLreporting limitRPDrelative percent differenceSAISpecialized Assays, Inc.SAPSampling and Analysis PlanTMBtrimethylbenzeneTVHtotal volatile hydrocarbonTVHAtotal volatile hydrocarbon analyzerUCLupper confidence limitUSUnited StatesUSEPAUS Environmental Protection AgencyUSTunderground storage tank                                                                                                                                                                                                                                                                    | COC        | chain of custody                                              |
| MDEQMichigan Department of Environmental QualityMDNRMichigan Department of Natural ResourcesMSmatrix spikeMS/MSDmatrix spike/matrix spike duplicateNFRAPno-further-response-action-plannedParsons ESParsons Engineering Science, Inc.PCEperchloroethenePOLpetroleum, oils, and lubricantsPQLpractical quantitation limitQA/QCquality assura ice/quality controlRLreporting limitRPDrelative percent differenceSAISpecialized Assays, Inc.SAPSampling and Analysis PlanTMBtrimethylbenzeneTVHtotal volatile hydrocarbonTVHAtotal volatile hydrocarbon analyzerUCLupper confidence limitUSUs Environmental Protection AgencyUSTunderground storage tank                                                                                                                                                                                                                                                                                                                                                           | COPC       | chemical of potential concern                                 |
| MDNRMichigan Department of Natural ResourcesMSmatrix spikeMS/MSDmatrix spike/matrix spike duplicateNFRAPno-further-response-action-plannedParsons ESParsons Engineering Science, Inc.PCEperchloroethenePOLpetroleum, oils, and lubricantsPQLpractical quantitation limitQA/QCquality assurance/quality controlRLreporting limitRPDrelative percent differenceSAISpecialized Assays, Inc.SAPSampling and Analysis PlanTMBtrimethylbenzeneTVHtotal volatile hydrocarbonTVHAtotal volatile hydrocarbon analyzerUCLupper confidence limitUSUs Environmental Protection AgencyUSTunderground storage tank                                                                                                                                                                                                                                                                                                                                                                                                            | LCS/LCSD   | laboratory control sample/laboratory control sample duplicate |
| MDNRMichigan Department of Natural ResourcesMSmatrix spikeMS/MSDmatrix spike/matrix spike duplicateNFRAPno-further-response-action-plannedParsons ESParsons Engineering Science, Inc.PCEperchloroethenePOLpetroleum, oils, and lubricantsPQLpractical quantitation limitQA/QCquality assurance/quality controlRLreporting limitRPDrelative percent differenceSAISpecialized Assays, Inc.SAPSampling and Analysis PlanTMBtrimethylbenzeneTVHtotal volatile hydrocarbonTVHAtotal volatile hydrocarbon analyzerUCLupper confidence limitUSUs Environmental Protection AgencyUSTunderground storage tank                                                                                                                                                                                                                                                                                                                                                                                                            | MDEQ       | Michigan Department of Environmental Quality                  |
| MS/MSDmatrix spike/matrix spike duplicateNFRAPno-further-response-action-plannedParsons ESParsons Engineering Science, Inc.PCEperchloroethenePOLpetroleum, oils, and lubricantsPQLpractical quantitation limitQA/QCquality assurance/quality controlRLreporting limitRPDrelative percent differenceSAISpecialized Assays, Inc.SAPSampling and Analysis PlanTMBtrimethylbenzeneTVHtotal volatile hydrocarbonTVHAtotal volatile hydrocarbon analyzerUCLupper confidence limitUSUS Environmental Protection AgencyUSTunderground storage tank                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | MDNR       |                                                               |
| NFRAPno-further-response-action-plannedParsons ESParsons Engineering Science, Inc.PCEperchloroethenePOLpetroleum, oils, and lubricantsPQLpractical quantitation limitQA/QCquality assurance/quality controlRLreporting limitRPDrelative percent differenceSAISpecialized Assays, Inc.SAPSampling and Analysis PlanTMBtrimethylbenzeneTVHtotal volatile hydrocarbonTVHAtotal volatile hydrocarbon analyzerUCLupper confidence limitUSUnited StatesUSEPAUS Environmental Protection AgencyUSTunderground storage tank                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | MS         | matrix spike                                                  |
| Parsons ESParsons Engineering Science, Inc.PCEperchloroethenePOLpetroleum, oils, and lubricantsPQLpractical quantitation limitQA/QCquality assurance/quality controlRLreporting limitRPDrelative percent differenceSAISpecialized Assays, Inc.SAPSampling and Analysis PlanTMBtrimethylbenzeneTVHtotal volatile hydrocarbonTVHAtotal volatile hydrocarbon analyzerUCLupper confidence limitUSUS Environmental Protection AgencyUSTunderground storage tank                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | MS/MSD     | matrix spike/matrix spike duplicate                           |
| PCEperchloroethenePOLpetroleum, oils, and lubricantsPQLpractical quantitation limitQA/QCquality assurance/quality controlRLreporting limitRPDrelative percent differenceSAISpecialized Assays, Inc.SAPSampling and Analysis PlanTMBtrimethylbenzeneTVHtotal volatile hydrocarbonTVHAtotal volatile hydrocarbon analyzerUCLupper confidence limitUSUnited StatesUSEPAUS Environmental Protection AgencyUSTunderground storage tank                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | NFRAP      | no-further-response-action-planned                            |
| PCEperchloroethenePOLpetroleum, oils, and lubricantsPQLpractical quantitation limitQA/QCquality assurance/quality controlRLreporting limitRPDrelative percent differenceSAISpecialized Assays, Inc.SAPSampling and Analysis PlanTMBtrimethylbenzeneTVHtotal volatile hydrocarbonTVHAtotal volatile hydrocarbon analyzerUCLupper confidence limitUSUnited StatesUSEPAUS Environmental Protection AgencyUSTunderground storage tank                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Parsons ES | Parsons Engineering Science, Inc.                             |
| PQLpractical quantitation limitQA/QCquality assurance/quality controlRLreporting limitRPDrelative percent differenceSAISpecialized Assays, Inc.SAPSampling and Analysis PlanTMBtrimethylbenzeneTVHtotal volatile hydrocarbonTVHAtotal volatile hydrocarbon analyzerUCLupper confidence limitUSUnited StatesUSEPAUS Environmental Protection AgencyUSTunderground storage tank                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | PCE        |                                                               |
| QA/QCquality assurance/quality controlRLreporting limitRPDrelative percent differenceSAISpecialized Assays, Inc.SAPSampling and Analysis PlanTMBtrimethylbenzeneTVHtotal volatile hydrocarbonTVHAtotal volatile hydrocarbon analyzerUCLupper confidence limitUSUnited StatesUSEPAUS Environmental Protection AgencyUSTunderground storage tank                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | POL        | petroleum, oils, and lubricants                               |
| RLreporting limitRPDrelative percent differenceSAISpecialized Assays, Inc.SAPSampling and Analysis PlanTMBtrimethylbenzeneTVHtotal volatile hydrocarbonTVHAtotal volatile hydrocarbon analyzerUCLupper confidence limitUSUnited StatesUSEPAUS Environmental Protection AgencyUSTunderground storage tank                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | PQL        | practical quantitation limit                                  |
| RPDrelative percent differenceSAISpecialized Assays, Inc.SAPSampling and Analysis PlanTMBtrimethylbenzeneTVHtotal volatile hydrocarbonTVHAtotal volatile hydrocarbon analyzerUCLupper confidence limitUSUnited StatesUSEPAUS Environmental Protection AgencyUSTunderground storage tank                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | QA/QC      | quality assurance/quality control                             |
| SAISpecialized Assays, Inc.SAPSampling and Analysis PlanTMBtrimethylbenzeneTVHtotal volatile hydrocarbonTVHAtotal volatile hydrocarbon analyzerUCLupper confidence limitUSUnited StatesUSEPAUS Environmental Protection AgencyUSTunderground storage tank                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            | reporting limit                                               |
| SAPSampling and Analysis PlanTMBtrimethylbenzeneTVHtotal volatile hydrocarbonTVHAtotal volatile hydrocarbon analyzerUCLupper confidence limitUSUnited StatesUSEPAUS Environmental Protection AgencyUSTunderground storage tank                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | RPD        | relative percent difference                                   |
| TMBtrimethylbenzeneTVHtotal volatile hydrocarbonTVHAtotal volatile hydrocarbon analyzerUCLupper confidence limitUSUnited StatesUSEPAUS Environmental Protection AgencyUSTunderground storage tank                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | SAI        | Specialized Assays, Inc.                                      |
| TVHtotal volatile hydrocarbonTVHAtotal volatile hydrocarbon analyzerUCLupper confidence limitUSUnited StatesUSEPAUS Environmental Protection AgencyUSTunderground storage tank                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            | Sampling and Analysis Plan                                    |
| TVHAtotal volatile hydrocarbon analyzerUCLupper confidence limitUSUnited StatesUSEPAUS Environmental Protection AgencyUSTunderground storage tank                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            | trimethylbenzene                                              |
| UCLupper confidence limitUSUnited StatesUSEPAUS Environmental Protection AgencyUSTunderground storage tank                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            | total volatile hydrocarbon                                    |
| US United States<br>USEPA US Environmental Protection Agency<br>UST underground storage tank                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            |                                                               |
| USEPA US Environmental Protection Agency<br>UST underground storage tank                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |            | A A                                                           |
| UST underground storage tank                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            |                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            |                                                               |
| VOC volatile organic compound                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            |                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | VOC        | volatile organic compound                                     |

.

ţ

#### **SECTION 1**

#### INTRODUCTION

#### 1.1 PURPOSE

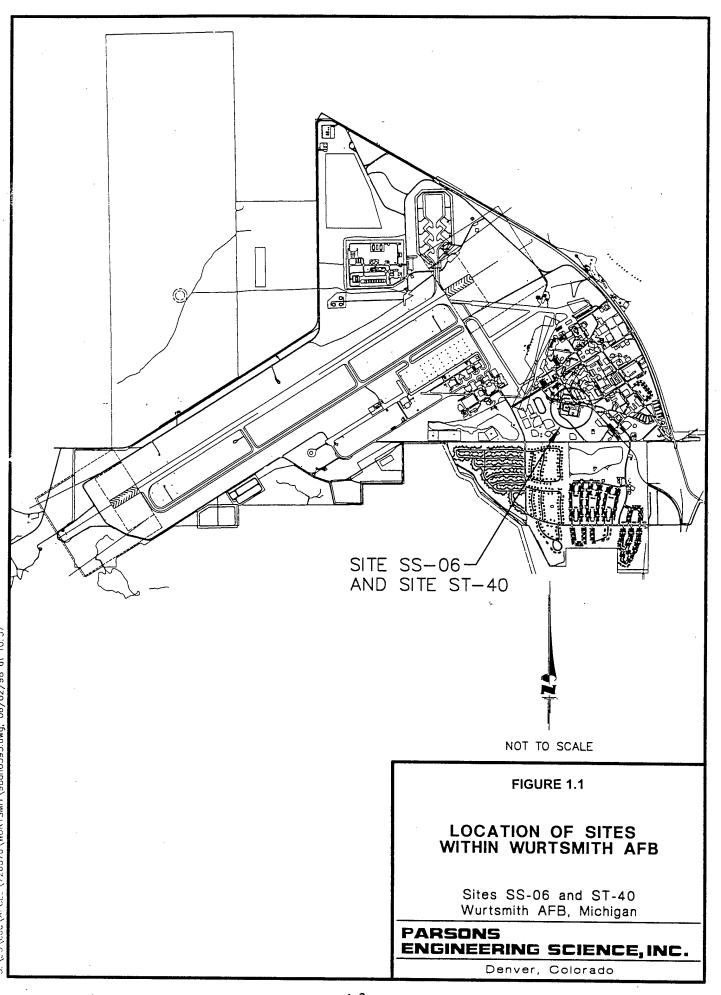
This confirmation sampling and analysis report for the Petroleum, Oils, and Lubricants (POL) Yard, Sites SS-06 and ST-40, at Wurtsmith Air Force Base (AFB), Michigan, has been prepared by Parsons Engineering Science, Inc. (Parsons ES) for submittal to the Michigan Department of Environmental Quality (MDEQ); the United States (US) Air Force Center for Environmental Excellence (AFCEE), Brooks AFB, Texas; and the Air Force Base Conversion Agency/OL-T (AFBCA), Oscoda, Michigan. MDEQ provides oversight of underground storage tank (UST) work at Wurtsmith AFB. This report has been prepared as part of the AFCEE Extended Bioventing Project (Contract F41624-92-8036, Delivery Order 17).

Soil sampling for laboratory analysis was conducted at the sites by Parsons ES in October 1998 in accordance with the MDEQ- and US Environmental Protection Agency (USEPA)-approved Confirmation Sampling and Analysis Plan (SAP) for Sites SS-06 and ST-40 (included as Appendix A of this report). The objective of the confirmation soil sampling and analysis was to determine if soils contaminated with petroleum hydrocarbons had been sufficiently remediated following 2 years of expanded-scale bioventing, and to determine whether a no-further-response-actionplanned (NFRAP) decision could be pursued, or additional soil remediation or other actions were required. This report summarizes field activities, field observations, and data collected during the October 1998 sampling event, and evaluates the reduction of petroleum hydrocarbon contamination in soil as a result of 2 years of bioventing system operation. The purpose of this report is to document the effectiveness of remediation of soil contaminated with petroleum hydrocarbons; to compare the recently collected soil analytical results to MDEQ risk-based generic cleanup criteria; and make recommendations based on these results.

The focus of the confirmation soil sampling and analysis was on the chemicals of potential concern (COPCs) that were identified during previous investigations (ICF Kaiser, 1998; Parsons ES, 1996) at Sites SS-06 and ST-40. COPCs previously identified for Site SS-06 were benzene, ethylbenzene and total xylenes; COPCs previously identified for Site ST-40 were benzene, total xylenes, acetone, carbon disulfide, and tetrachloroethene (or perchloroethene [PCE] (Appendix A, Table 3.1).

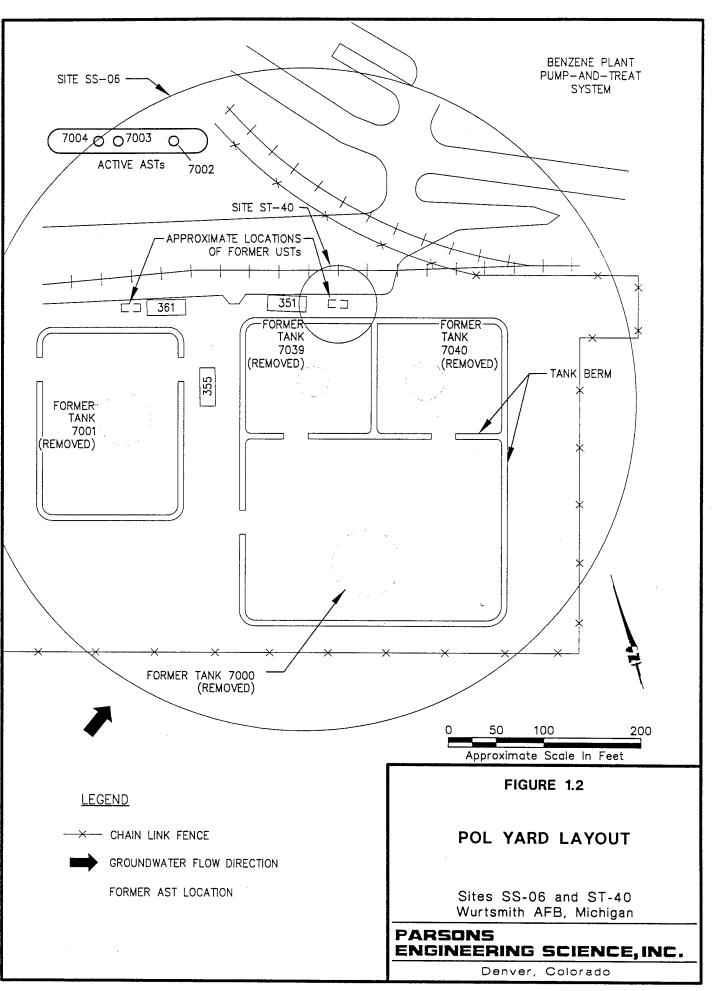
#### **1.2 SITE/PROJECT BACKGROUND**

Wurtsmith AFB, located near Oscoda, Michigan, is presently undergoing base closure activities. Site SS-06, a former POL bulk storage facility, is located in the eastern portion of the base as shown on Figure 1.1. A detailed layout of Site SS-06, which is inclusive of Site ST-40, is shown on Figure 1.2. With the exception of three active aboveground storage tanks (ASTs), which are located northwest of the main bermed area, the site is vacant and inactive. The four largest ASTs (Tanks 7000, 7001, 7039, and 7040), which were located within the bermed areas and contained JP-4 jet fuel, were removed between 1992 and 1996. Two USTs, located immediately north of the bermed areas, also have been removed from the site. A waste oil UST, formerly located east of Building 351, was removed in 1990, and a waste JP-4 UST located on the west side of Building 361 was removed in 1996. The three active ASTs (Tanks 7002, 7003, and 7004) that remain on the site provide JP-4 for current airport activities. A groundwater pump-and-treat system (referred to as the Benzene Plant), located approximately 400 feet northeast of the POL Yard, was installed to treat groundwater contaminated with benzene, toluene, ethylbenzene, and xylenes (BTEX), and a free-phase product plume originating at the POL Yard.


A full-scale bioventing system was designed and installed by Parsons ES in July and August 1996 and was operated for over 2 years prior to conducting confirmation soil sampling in October 1998. A detailed description of the bioventing system design and initial site activities are provided in the *Bioventing Pilot Test Results and Full-Scale System Installation Report for POL Yard, Sites SS-06 and ST-40* (Parsons ES, 1996). Performance of the full-scale bioventing system is presented in the *Two-Year Soil Gas Sampling and In Situ Testing Results Report for POL Yard, Sites SS-06 and ST-40* (Parsons ES, 1998). A more complete summary of the site history, geology, hydrology, previous investigations, and other remedial activities is presented in the SAP (Appendix A).

#### **1.3 SUMMARY OF CONFIRMATION SOIL SAMPLING RESULTS**

Confirmatory soil sampling was conducted at the sites on 13 through 16 October 1998. Boreholes were advanced at 18 locations, and 28 soil samples (25 primary samples and 3 replicates) were submitted to the laboratory for volatile organic compound (VOC) analysis. Soil sample analyses indicate that residual fuel hydrocarbons are confined mainly to smear-zone soils in the western portion of the POL Yard. Several contaminants (i.e. benzene, ethylbenzene, xylenes, 1,2,4trimethylbenzene (TMB), 1,3,5-TMB, bromomethane, naphthalene, and npropylbenzene) were detected in site soils at maximum concentrations exceeding their respective cleanup criteria (i.e. MDEQ generic residential drinking water protection criteria).


#### **1.4 REPORT ORGANIZATION**

This site confirmation sampling and analysis report consists of five sections, including this introduction, and three appendices. Section 2 is a description of the



S:\F5\caa\AFCEE\726876\WURTSMIT\98dn0395.dwg, 06/02/98 at 10.57

1-3



1-4

confirmation soil sampling activities conducted at the site. Section 3 summarizes confirmation sampling analytical results and compares these results to the MDEQ generic cleanup criteria. Section 4 presents conclusions and recommendations for the site. References used in preparation of this report are provided in Section 5.

Appendix A presents a copy of the final confirmation SAP for Sites SS-06 and ST-40 that includes a detailed summary of previous site investigations. Borehole logs are included in Appendix B, and Appendix C provides the laboratory analytical results and chain-of-custody (COC) forms.

#### SECTION 2

## SITE CONFIRMATION SAMPLING AND ANALYSIS ACTIVITIES

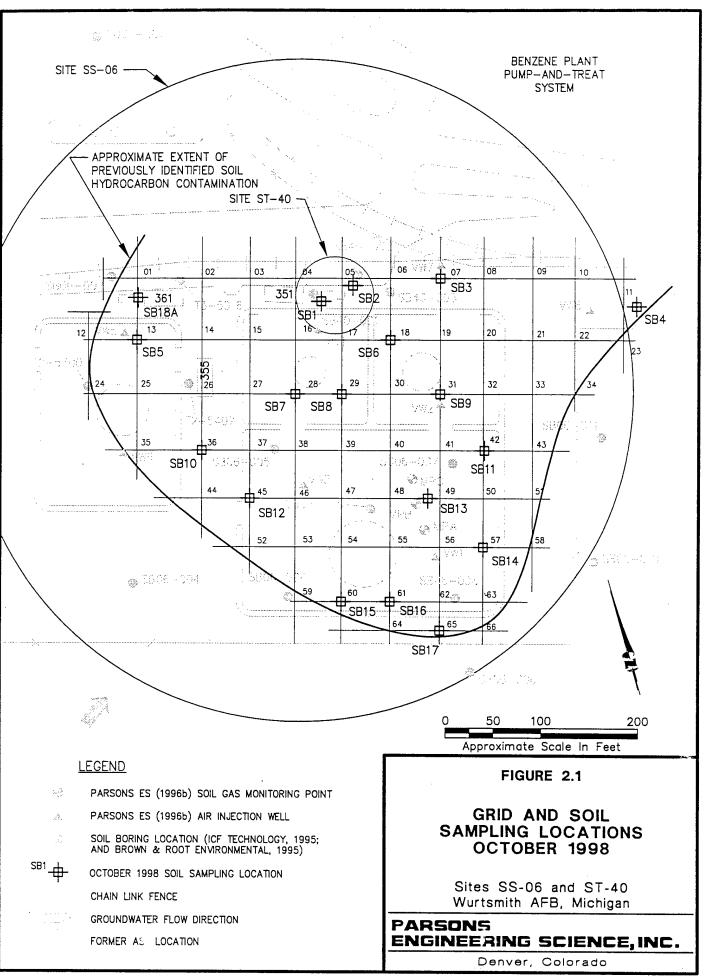
The purpose of this section is to summarize confirmatory soil sampling activities, including sampling locations and sampling depths, sampling procedures, analytical methods used, and field and laboratory quality assurance/quality control (QA/QC) procedures followed. These methods/procedures are described in more detail in the confirmation SAP (see Appendix A). The confirmation SAP was implemented by qualified Parsons ES scientists trained in conducting soil sampling, records documentation, and chain-of-custody procedures. Environmental sample analyses were provided by Specialized Assays, Inc. (SAI), of Nashville, Tennessee.

#### 2.1 SAMPLING STRATEGY

The sampling strategy presented in the confirmation SAP (Appendix A) was designed to provide sufficient soil analytical data to characterize the nature and extent of petroleum hydrocarbons remaining in site soil and, based on a comparison with MDEQ generic cleanup criteria, to determine if a NFRAP decision can be supported. The sampling strategy combined a statistically random strategy with a biased strategy that targeted previously-identified hot spots (zones with high contaminant concentrations). The statistically random strategy implemented at the site followed recommendations described in the Guidance Document (Michigan Department of Natural Resources [MDNR], 1994). This strategy employs the use of gridding to facilitate the unbiased selection of sampling locations, and statistical tools for evaluating the resulting data. Because of the relatively large size of the POL Yard site, the goal of the sampling strategy was to provide a 95-percent confidence level of determining any hot spot concentrations of residual fuel hydrocarbons remaining in site soils after 2 years of bioventing remediation. To meet this goal, soil samples were collected at 18 locations (27 percent of the 66 grid stations) which exceeds the minimum number of samples (25 percent of the grid stations) recommended in the Guidance Manual. Thirteen soil boring locations were selected at random, four soil boring locations (SB1, SB2, SB5, and SB13) were selected in areas with previously identified high concentrations of fuel hydrocarbons, and one soil boring (SB18A) was advanced at the location of a former UST at the request of Ms. Rose Forbes, the AFCEE field engineer. The purpose of boring 18A was to determine if contaminated soil remained in the vicinity of the former UST following tank removal. In addition to this one additional boring, the only other deviation from the SAP was that boring SB4 was moved approximately 25 feet south of the proposed location to avoid an aboveground pipeline and valves.

#### 2.2 SOIL SAMPLING PROCEDURES

#### 2.2.1 Sampling Locations


Confirmatory soil sampling was conducted at the sites on 13 through 16 October 1998. Soil samples were collected at 18 locations (SB1 through SB18A) at the sites to determine whether or not residual hydrocarbon compounds in soils have been remediated to concentrations equal to or less than the targeted MDEQ generic cleanup criteria. Soil borings SB1 and SB2 were advanced in the immediate vicinity of the former waste oil UST (Site ST-40). The remaining 16 borings (SB3 through SB18A) were located throughout Site SS-06. Figure 2.1 shows the locations of the 18 confirmatory soil sampling locations in relation to the previously identified estimated area of soil hydrocarbon contamination requiring remediation.

#### 2.2.2 Sample Collection

Soil samples were collected using a Geoprobe® system, a hydraulically powered percussion/probing machine capable of advancing sampling tools through unconsolidated soil. Depending on subsurface conditions encountered during sampling, soil samples were collected using either a Large-Bore<sup>\*</sup> sampler to collect discrete subsurface samples or a Macro-Core<sup>\*</sup> sampler, which collects continuous sample cores. The soil cores were retained within clear acetate liners inside the sampling barrels.

Because the greatest extent and highest concentrations of fuel hydrocarbons were previously detected in the groundwater smear zone, soil sampling focused on this zone. Contamination was previously detected in soils above the smear zone only in a few areas, which are likely the locations of former fuel releases. Outside the suspected fuel release areas, vadose zone soil contamination was restricted to within approximately 5 feet of the groundwater surface.

Each borehole was advanced to no less than 1 foot above the groundwater surface; maximum sampling depths were between 19 and 26 feet below ground surface (bgs). At locations where shallow contamination had previously been identified or was suspected due to the close proximity of former USTs or ASTs (sampling locations SB1, SB2, SB5, SB9, SB13, SB14, SB15 and SB16), soil samples were collected at 5-foot intervals from ground surface to the top of the groundwater surface. With the exception of boring SB13, two soil samples were selected from each of these boreholes for laboratory analysis; one sample was collected from the groundwater smear zone, and one sample collected from shallower soil based on apparent contamination and field headspace screening results. Only the smear-zone sample from boring SB13 was submitted to the laboratory because soil samples from the more shallow sample intervals at this location had low field headspace screening results and no visible evidence of contamination. At sampling locations where contamination was limited to the smear zone only, based on results of previous investigations (SB3, SB4, SB6, SB7, SB8, SB10, SB11, SB12, SB17, and SB18A), the probe was driven directly to the smear zone, and one soil sample was collected.



15:00

All soil samples were field-screened for total volatile hydrocarbons (TVH) and examined for physical evidence of contamination. A portion of each Geoprobe<sup>\*</sup> core soil sample was used for field screening using a TVH analyzer (TVHA). The soil was placed into a new, self-sealing plastic bag and after approximately 20 minutes, the TVH concentration in the headspace was measured by inserting the TVHA probe through the seal of the plastic bag. Soil headspace TVH screening results were recorded on the field borehole logs (Appendix B).

Samples selected for laboratory analysis were transferred directly from the Geoprobe<sup>\*</sup> core sampler to EnCore<sup>TM</sup> samplers and sealed according to manufacturerrecommended procedures. Soil samples for laboratory analysis were immediately placed in an insulated cooler containing ice. The soil samples were maintained in a chilled condition until delivered to the analytical laboratory. The remaining soil not included in the laboratory sample was removed from the Geoprobe<sup>®</sup> sampler for field TVH screening and lithologic logging. In the laboratory, soil samples were transferred from the EnCore<sup>TM</sup> samplers to soil sample vials and preserved with methanol within 48 hours of sample collection, as described in USEPA Method SW5035. After the samples for laboratory analysis were collected, chain-of-custody procedures were followed to establish a written record of sample handling and movement between the sampling site and the laboratory as described in the SAP (Appendix A). COCs are included in Appendix C.

#### 2.2.3 Soil Sample Analyses

Twenty-eight soil samples, including three field replicates, were submitted to the laboratory and analyzed using USEPA Method SW8260B for VOCs including BTEX, TMBs, butylbenzenes, and isopropylbenzenes. In addition, the four soil samples collected from Site ST-40 (from borings SB1 and SB2) were also analyzed for acetone, carbon disulfide and PCE. All samples were analyzed by SAI, a State of Michigan-certified laboratory.

#### 2.2.4 Field and Laboratory Data Quality Assurance/Quality Control

Samples were collected, preserved, transported, and analyzed in such a manner that sampling results yield information that provides a reliable representation of the soil quality at the site. To meet this requirement, the procedures described in the Quality Assurance Project Plan of the SAP (Appendix A) were followed during sample collection, handling, and analysis. In addition, laboratory and field QC samples were prepared and analyzed. Quality control (QC) samples were analyzed to assess laboratory methods. Laboratory QC samples included matrix spikes (MS), matrix spike/matrix spike duplicate (MS/MSD) pairs, and blanks. Three MS/MSD pairs for soil were prepared and analyzed as part of this project. Field QC samples consisted of two trip blanks and two equipment rinseate blanks.

#### 2.3 EQUIPMENT DECONTAMINATION PROCEDURES

All sampling and downhole equipment were decontaminated before use and between boreholes to prevent cross-contamination, as described in the SAP (Appendix A). Boreholes were backfilled with granular bentonite and hydrated with potable water following sample collection.

#### 2.4 MANAGEMENT OF INVESTIGATION-DERIVED WASTES

Investigation-derived wastes were handled following the base-wide procedures established by ICF Technology, Inc. (1994) and approved by MDEQ and USEPA. The use of the Geoprobe<sup>\*</sup> for collecting soil samples did not generate soil cuttings. Decontamination water was containerized, transported to Building 5092, and discharged into the oil/water separator.

.

#### SECTION 3

#### CONFIRMATION SAMPLING RESULTS

This section summarizes the analytical results of the October 1998 soil sampling activities. This section also compares these sampling results to the MDEQ generic cleanup criteria for soils.

#### 3.1 LABORATORY RESULTS

Soil sample analyses indicate that residual fuel hydrocarbons are confined mainly to smear-zone soils. Borehole logs from the confirmatory soil sampling activities are included in Appendix B. Table 3.1 presents a summary of compounds detected in site soils during the October 1998 soil sampling event and compares the sample results to the MDEQ (1998) generic residential drinking water protection criteria. The highest concentrations of organic compounds were detected in soil samples collected at depths between 18 and 23 feet bgs from borings SB2, SB4, SB5, SB6, SB7, SB9, SB10, SB13, SB14, SB16, and SB18A. Benzene, toluene, ethylbenzene and total xylenes were measured at maximum concentrations of 5,700 micrograms per kilogram ( $\mu$ g/kg), 222  $\mu g/kg$ , 140,000  $\mu g/kg$ , and 575,000  $\mu g/kg$ , respectively. Maximum concentrations of 1,2,4-TMB, 1,3,5-TMB, n-propylbenzene, and isopropylbenzene were 287,000  $\mu$ g/kg, 94,300  $\mu$ g/kg, 46,000  $\mu$ g/kg, and 25,300  $\mu$ g/kg, respectively. Naphthalene, which was detected in several samples, was measured at a maximum concentration of 41,400  $\mu g/kg$ . Bromomethane was detected in one sample at a concentration of 930  $\mu g/kg$ . Acetone, carbon disulfide, and PCE were not detected in any samples above their respective laboratory reporting limits.

The only significant concentrations of organic compounds detected in shallow soils (above the smear zone) were 1,3,5-TMB at SB14 (from 10 to 12 feet bgs) and SB16 (from 6 to 8 feet bgs), and xylenes at SB14 (from 10 to 12 feet bgs). These results indicate that the long-term potential source for groundwater contamination by partitioning of fuel hydrocarbons from shallow soil to groundwater has been greatly reduced by bioventing treatment of site soils. However, the relatively high concentrations of several fuel hydrocarbon compounds measured in smear-zone soils indicate that this zone continues to be a potential source of groundwater contamination.

Bioventing appears to have been less effective at treating smear zone soils than shallower subsurface soils. Bioventing treatment relies on supplying air (oxygen) to unsaturated soil to enhance biodegradation of fuel hydrocarbons. During much of the 2 years of bioventing treatment, the lower portion of the smear zone (where many of the soil samples listed in Table 3.1 were collected) was saturated and largely isolated from treatment. Therefore, smear zone soils are being remediated at a slower rate than the

SUMMARY OF SOIL SAMPLING ANALYTICAL RESULTS sites ss-06 and st-40 TABLE 3.1

| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | MUM                                           |                      | ATIMST                  | WURTSMITH AFB, MICHIGAN | AN         |          |                  |                             |                             |         |                       |                        |                       |                      |                     |          |                        |          |                         |             |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|----------------------|-------------------------|-------------------------|------------|----------|------------------|-----------------------------|-----------------------------|---------|-----------------------|------------------------|-----------------------|----------------------|---------------------|----------|------------------------|----------|-------------------------|-------------|
| $(\mu/\mu_0)$ < | Benzene Toluene Ethylbenzene m.p-Xylene       | Ethylbenzene         | Ethylbenzene m.p-Xylene | m,p-Xylene              |            | o-Xylene | Total<br>Xylenes | 1,2,4-Trimethyl-<br>benzene | 1,3,5-Trimethyl-<br>benzene |         | sec-Butyl-<br>benzene | tert-Butyl-<br>benzene | Isopropyl-<br>benzene | n-Propyl-<br>benzene | Carbon<br>disulfide | Acetone  | Tetrachloro-<br>ethene |          | 4-lsopropy1-<br>toluene | Naphthalene |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (μg/kg) <sup>b/</sup> (μg/kg) (μg/kg) (μg/kg) | (µg/kg)              |                         | (µg/kg)                 |            | (µg/kg)  | (µg/kg)          | (µg/kg)                     | (µg/kg)                     | (µg/kg) | (µg/kg)               | (µg/kg)                | (µg/kg)               | (112/kg)             | (11 <u>2</u> /kg)   | (116/kg) | (110/kg)               | (116/kg) | (44/60)                 | (110/kp)    |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 100 16,000 1,500 NA <sup>4/</sup>             | 1,500                |                         | NA <sup>d</sup>         |            | NA       | 5,600            | 5,100                       | 460                         | 1,600   | 1,600                 | 1,600                  | 90,000                | 1,600                | 16,000              | 15000    | 100                    | 200      | S VN                    | 17,000      |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                               |                      |                         |                         |            |          |                  |                             |                             |         |                       |                        |                       |                      |                     |          |                        |          |                         |             |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                               | 3.1 U                |                         | 3.1 U                   |            | 5.2 U    | 5.2 U            | . 7.3 U                     | 3.1 U                       | 5.2 U   | 7.3 U                 | 1311                   | 1158                  | 1116                 | 1151                | 11 6 0   | 1122                   | 1163     | 1169                    |             |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | I 5.2 U 3.1 U                                 | 3.1 U                |                         | 3.1 U                   |            | 5.2 U    | 5.2 U            | 7.3 U                       | 2,450                       | 5.2 U   | 7.3 U                 | 7.3 U                  | 8311                  | 2111                 | 151                 | 0.77     | 11.5                   | 11 6 5   | 0.7.0<br>90             | 111.6       |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5.2.0 3.1.0 3.1.U                             | 3.1 U 3.1 U          | U 3.1 U                 | n                       |            | 5.2 U    | 5.2 U            | 7.3 U                       | 3.1 U                       | 5.2 U   | 7.3 U                 | 7.2 U                  | 8.3 U                 | 2.1 U                | 150                 | 9211     | 13.0                   | 5211     | 6.2 11                  | 0112        |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <u>1,090 U</u> 2,720 U 12,000 175,000 62,0    | 12,000 175,000       | 175,000                 |                         | 62,(       | .,       | 237,000          | 117,000                     | 43,500                      | 2,720 U | 3,800 U               | 3,800 U                | 4,350                 | 4,890                | 761 U               | 4780 U   | 3,800 U                | 2,720 U  | 7,610                   | 7,070       |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | J 5.2 U 3.1 U 3.1 U                           | 3.1 U 3.1 U          | 3.1 U                   | _                       |            | 5.2 U    | 5.2 U            | 7.2 U                       | 3.1 U                       | 5.2 U   | 7.2 U                 | 7.2 U                  | 8.2 U                 | 2.1 U                | 4                   | 1        | 7.2 U                  | 5.2 U    | 6.2.1)                  | 2.1.0       |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | U 222 J <sup>g/2</sup> 21,000 109,000 10      | 21,000 109,000 10    | 109,000 10              | 10                      | 10,4(      | 00       | 119,400          | 82,200                      | 34,400                      | 556 U   | 778 U                 | 778 U                  | 6110                  | 6.100                | I                   |          | 11 8/1                 | 556 []   | 8 780                   | 5 560       |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ע 26.3 U 15.8 U 15.8 U                        | I 15.8 U 15.8 U      | J 15.8 U                | n                       | 56         | .3 U     | 26.3 U           | 36.8 U                      | 15.8 U                      | 26.3 U  | 36.8 U                | 36.8 U                 | 42.1 U                | 10.5 U               |                     | -        | 36.811                 | 26311    | 31.611                  | 10 \$ 11    |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | U 694 U 2,360 10,800                          | 1 2,360 10,800       | 10,800                  |                         | 69         | 4 U      | 10,800           | 972 U                       | 2,220                       | 694 U   | 556 JI                | 972 U                  | 1,110 U               | 278 U                |                     |          | 972 U                  | 0 169    | 833 U                   | 972         |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | U 694 U 3,470 14,000                          | 3,470 14,000         | 14,000                  |                         | 769        | n t      | 14,000           | 7,220                       | 2,500                       | 694 U   | 972 U                 | 972 U                  | 1,110 U               | 278 U                | 1                   |          |                        | 694 11   | 11 11 18                | 1.250       |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1 702 U 16,300 51,100                         | 16,300 51,100        | 51,100                  |                         | 202        | n u      | 51,100           | 26,800                      | 9,410                       | 702 U   | 983 U                 | 983 U                  | 1,120 U               | 281 U                |                     |          |                        | 702 U    | 1.830                   | 3 370       |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 395 U 26,200                                  | 395 U 26,200         | 26,200                  |                         | 8,950      |          | 35,150           | 27,100                      | 10,900                      | 658 U   | 921 U                 | 921 U                  | 1,050 U               | 263 U                | I                   |          |                        | 658 []   | 1.970                   | 3.030       |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1 735 U 588 1,760                             | 588 1,760            | 1,760                   | ,                       | 735        | D        | 1,760            | 1,030                       | 441                         | 735 U   | 1,030 U               | 1,030 U                | 1,180 U               | 294 U                | 1                   |          |                        | 735 U    | 882 U                   | 294         |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 17.0                                          | 17.0                 | 17.0                    |                         | 28.4       | D        | 28.4 U           | 39.8 U                      | 17 U                        | 28.4 U  | 39.8 U                | 39.8 U                 | 45.5 U                | 11.4 U               |                     | 1        |                        | 28.4 U   | 34.1 U                  | 11.4 U      |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 23.8 U 15.5 U 15.5 U                          |                      | 15.5 U                  | D                       | 25.5       |          | 25.8 U           | 36.1 U                      | 15.5 U                      | 25.8 U  | 36.1 U                | 36.1 U                 | 41.2 U                | 10.3 U               |                     |          |                        | 25.8 U   | 30.9 U                  | 10.3.0      |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 306,000                                       | 68,000 306,000 I     | 306,000                 |                         | 1,05(      |          | 307,050          | 193,000                     | 61,600                      | 581 U   | 814 U                 | 814 U                  | 930 U                 | 233 U                | 1                   |          |                        | 581 U    | 11,500                  | 23,300      |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 262 U 12,900 42,600                           | 12,900 42,600        | 42,600                  |                         | Ϋ́,        |          | 42,600           | 18,000                      | 12,200                      | 562 U   | 787 U                 | 787 U                  | 3,930                 | 7,080                | 1                   | !        |                        | 562 U    | 2,130                   | 5,390       |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2.2 U 3.1 U 41/                               | 3.1.0 41/            | 41/                     |                         | ġ,         | 7        | 423              | 521 J                       | 208 J                       | 5.2 U - | 7.3 U                 | 7.3 U                  | 8.3 U                 | 2.1 U                |                     |          |                        | 5.2 U    | 47.9                    | 45.8        |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                               | 105 414              | 414                     |                         | <b>m</b> 1 |          | 418              | 123                         | 23.3                        | 5.8 U   | 8.1 U                 |                        | 15.1                  | 24.4                 | I                   | 1        |                        | 5.8 U    | 7.0                     | 30.2        |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 22,800                                        | 22,800               | 22,800                  |                         | ñ          |          | 22,800           | 21,900                      | 7,790                       | 581 U   | 814 U                 |                        | 1,860                 | 3,600                |                     |          |                        | 930      | 1,740                   | 3,370       |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 581 U 1,400 7,670                             | 1,400 7,670          | 7,670                   |                         | ŝ          |          | 7,670            | 4,650                       | 1,980                       | 581 U   | 814 U                 |                        | 349 JI                | 698                  |                     |          |                        | 581 U    | 465 JI                  | 581         |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5,750 U 67,800 282,000                        | 67,800 282,000       | 282,000                 |                         | 5,7        | .,       | 182,000          | 198,000                     | 000'69                      | 5,750 U | 8,050 U               |                        | 7,200                 | 28,700               |                     |          | 1-                     | 5,750 U  | 13,800                  | 27,600      |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | J 25.8 U 15.5 U 15.5                          | 15.5 U 15.5          | 15.5                    |                         | 25.        | 8 U      | 15.5             | 36.1                        | 10.3 J                      | 25.8 U  | 36.1 U                |                        | 41.2 U                | 10.3 U               | 1                   | 1        | _                      | 25.8 U   | 30.9 U                  | 10.3 U      |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | J 27.8 U 33.3 133                             | 33.3 133             | 133                     |                         | 27.        | 8 U      | 133              | 1,060                       | 422                         | 27.8 U  | 38.9 U                |                        | 94.4                  | 172                  | 1                   | -        |                        | 27.8 U   | 156                     | 55.6        |
| 575,000     287,000     94,300     5,750 U     8,050 U     8,050 U     25,300     46,000       8,050 U     5,750 U     18,400       438,000     218,000     77,000     5,750 U     8,050 U     9,200 U     37,900      8,050 U     14,900       1     5,21     7,3 U     7,3 U     7,3 U     8,3 U     2,1 U      6,2 U       1     5,21     7,3 U     7,3 U     8,3 U     2,1 U       5,7 U     14,900       1     5,22 U     7,3 U     7,3 U     8,3 U     2,1 U       5,7 U     6,2 U       1     5,20 U     9,51 U     9,1 U     1,090 U     2,1 U       9,5 I U     6,2 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 266 U 160 U 904                               | 160 U 904            | 904 :                   |                         | ŝ          |          | 1,489            | 2,230                       | 2,020                       | 266 U   | 372 U                 |                        | 426 U                 | 106 U                |                     | L        | _                      | 266 U    | 851                     | 106         |
| 438,000     218,000     77,000     5,750 U     8,050 U     9,200 U     37,900       8,050 U     14,900       J     5,2 U     7,3 U     7,3 U     7,3 U     8,3 U     2,1 U       7,3 U     5,750 U     14,900       J     5,2 U     7,3 U     7,3 U     8,3 U     2,1 U       7,3 U     6,2 U       J     6,2 20     9,380     5,79 U     951 U     951 U     1,090 U     272 U      951 U     815 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | J 5,750 U 116,000 444,000                     | 116,000 444,000      | 444,000                 |                         | 131,00     |          | \$75,000         | 287,000                     | 94,300                      | 5,750 U | 8,050 U               |                        | 5,300                 | 46,000               | 1                   |          |                        | 5.750 U  | 18.400                  | 41.400      |
| 5.2.0 7.3.0 3.1.0 5.2.0 7.3.0 7.3.0 8.3.0 2.1.0 7.3.0 5.2.0 6.2.0<br>6.520 9.380 5.840 579.0 951.0 951.0 1,090.0 272.0 951.0 6.7.0 815.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1 140,000 279,000 159,                        | 140,000 279,000 159, | 279,000 159,            | 159,                    | 159,00     |          | 138,000          | 218,000                     | 77,000                      | 5,750 U | 8,050 U               |                        | 9,200 U               | 37,900               |                     |          |                        | 5.750 U  | 14.900                  | 34,500      |
| - 6.520 <u>9,380 5,340 679 U 951 U 1,090 U 272 U [ 951 U] (579 U]</u> 815 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1 5.2.U 3.1.U 3.1.U                           | 3.1 U 3.1 U          | 3.1 U                   | n                       |            |          | 5.2 U            | 7.3 U                       | 3.1 U                       | 5.2 U   | 7.3 U                 | _                      | 8.3 U                 | 2.1 U                | 1                   | 1        | _                      | 5.2 U    | 6.2 U                   | 2.1.0       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2/2 U 6/9 U 815 6,520 6                       | 815 6,520            | 6,520                   |                         | 9          |          | 6,520            | 9,380                       | 5,840                       | 679 U   | 951 U                 |                        | 1,090 U               | 272 U                |                     | L        | 951 11                 | 679 U    | 815 0                   | 543         |

NOTE: Analytes detected at concentrations that exceed a MDEQ-defined soil cleanup criterion have been shaded for easy reference. Outlined results indicate that the laboratory practical quantitation limit (PQL) exceeded the MDEQ-defined soil clean up criteria.

<sup>u'</sup> feet bgs = feet below ground surface.

<sup>b</sup> pt/kg = micrograms pr kilogram. <sup>c</sup> MDEQ generic residential drinking water protection criteria (MDEQ, 1998). <sup>d</sup> NA= Not applicable. An MDEQ-defined soil cleanup criterion has not been established for this analyte. <sup>d</sup> U = compound analyzed for but not detected above the practical quantitation limit (PQL). Number shown represents the laboratory reporting limit (RL).

---- = Not analyzed.

<sup>g</sup> J = Estimated value. The analyte was positively identified at a concentration between the PQE and the RL.

<sup>h</sup> (Rep) = Field replicate of preceding sample.

726876-820.xis/Table 3.1

3-2

shallower soils. During the October 1998 sampling event, water levels during the soil sampling event were approximately 2 to 3 feet lower than during installation of the full-scale bioventing system in August 1996.

A comparison of analytical results for soil samples collected prior to and following approximately 2 years of bioventing system operation indicates an overall reduction in BTEX concentrations. Table 3.2 presents the BTEX results for several pairs of soil samples collected before and after bioventing treatment. Samples from each pair were collected in close proximity to each other and were collected from the same or similar depth intervals. With the exception of sample pair SB40-002/SB2 (collected at depths between 19 and 21 feet bgs and 18 and 20 feet bgs, respectively) and sample pair VW5/SB5 in which ethylbenzene and total xylene concentrations were higher after 2 years of bioventing, concentrations of toluene, ethylbenzene, and xylenes were significantly lower following bioventing treatment. The increased concentrations noted for sample pair SB40-002/SB2 (collected at approximately 20 feet bgs) is likely the result of changing groundwater levels smearing free-phase petroleum hydrocarbons onto the soil. The increased concentrations for sample pair VW5/SB5 may be the result of the October 1998 sample being collected from a deeper portion of the smear zone, and does not accurately represent changes in BTEX concentrations for this location. Also, it must be noted that conventional soil sampling techniques were used during the 1995 and 1996 sampling events, while USEPA Method SW5035 was used during the October 1998 sampling event. USEPA Method SW5035 involves sample collection using EnCore<sup>™</sup> samplers, and extraction and preservation with methanol within 48 hours of sample collection. The improvement in sample collection techniques could partially account for apparent contaminant increases in smear zone soils. The overall reduction in soil fuel hydrocarbon concentrations presented in Table 3.2 indicates that operation of the bioventing system is effectively reducing residual fuel hydrocarbon concentrations in site soils.

#### 3.2 COMPARISON OF SOIL SAMPLING RESULTS TO CLEANUP CRITERIA

Land use assumptions and potential exposure pathways for site contaminants used to determine appropriate MDEQ cleanup criteria are described in the SAP (see Appendix A) and in the Final Feasibility Report for Sites SS-06, ST-40, SS-13, and OT-46 (ICF Kaiser, 1998). Although the current and projected future land use of Sites SS-06 and ST-40 is industrial, groundwater contamination resulting from fuel hydrocarbon releases at the site have migrated beyond the POL Yard. Because generic residential drinking water criteria must be met at the Base boundary, generic soil cleanup criteria which are designed to ensure contaminants do not leach from site soils and cause groundwater to  $exc \neq d$  residential drinking water protection criteria have been identified as the targeted cleanup criteria for Sites SS-06 and ST-40.

Soil sampling results were compared to the MDEQ (1998) residential drinking water protection criteria to determine whether the sites meet closure requirements or if further remediation is required. As shown in Tables 3.1 and 3.3, several contaminants (i.e. benzene, ethylbenzene, xylenes, 1,2,4-TMB, 1,3,5-TMB, bromomethane, naphthalene, and n-propylbenzene) were detected in site soils at maximum concentrations exceeding their respective MDEQ residential drinking water protection criteria. Table 3.3 also

|                 |                          |                       |                       | Analyt  | ical Results |                |
|-----------------|--------------------------|-----------------------|-----------------------|---------|--------------|----------------|
|                 | Sample                   |                       | Benzene               | Toluene | Ethylbenzene | Total          |
| Sample          | Depth                    | Date                  |                       |         |              | Xylenes        |
| number          | (feet bgs) <sup>a/</sup> | Sampled <sup>b/</sup> | (µg/kg) <sup>c/</sup> | (µg/kg) | (µg/kg)      | (µg/kg)        |
| SB40-001        | 19-21                    | 1995                  | ND <sup>d</sup>       | ND      | ND           | 6,900          |
| SB40 001<br>SB1 | 18-19                    | Oct. 1998             | $< 2.1^{e/}$          | < 5.2   | < 3.1        | 0,900<br>< 5.2 |
| 501             | 10-19                    | 001. 1998             | × 2.1                 | < J.2   | < 5.1        | < J.2          |
| SB40-002        | 14-16                    | 1995                  | ND                    | ND      | ND           | 35.000         |
| SB2             | 14-16                    | Oct. 1998             | < 2.1                 | < 5.2   | < 3.1        | < 5.2          |
| SB40-002        | 19-21                    | 1995                  | ND                    | ND      | ND           | 6,200          |
| SB2             | 18-20                    | Oct. 1998             | < 1090                | < 2720  | 12.000       | 23,700         |
| VW7             | 20-22                    | Aug. 1996             | < 110                 | 250     | 3,710        | 15,600         |
| SB3             | 20-22                    | Oct. 1998             | < 2.1                 | < 5.2   | < 3.1        | < 5.2          |
| VW5             | 17-19                    | Aug. 1996             | < 51                  | 85 J    | 2,300        | 9,820          |
| SB5             | 21-23                    | Oct. 1998             | < 278                 | < 694   | 2,360        | 10,800         |
| VW2             | 15-17                    | Aug. 1996             | 60 J                  | 160 J   | 2,680        | 12,900         |
| SB9             | 12-14                    | Oct. 1998             | < 10.3                | < 25.8  | < 15.5       | < 25.8         |
| МРВ             | 17-19                    | Aug. 1996             | < 100                 | < 210   | 7,080        | 34,500         |
| SB13            | 19-21                    | Oct. 1998             | 465                   | < 581   | -5,810       | 22,800         |

#### TABLE 3.2 COMPARISON OF PRE- AND POST-BIOVENTING SOIL ANALYTICAL RESULTS SITES SS-06 AND ST-40 WURTSMITH AFB, MICHIGAN

a' feet bgs = feet below ground surface.

<sup>b/</sup> 1995 - pre-bioventing soil sampling by ICF Kaiser (1995). Aug. 1996 - soil samples collected during installation of bioventing system (Parsons ES, 1996).
 Oct. 1998 - confirmation soil sampling.

 $^{c/}$  µg/kg = micrograms per kilogram.

 $^{d/}$  ND = Not detected.

e<sup>*t*</sup> <= compound analyzed for but not detected above the practical quantitation limit (PQL). Number shown represents the laboratory reporting limit (RL).

#### TABLE 3.3 IDENTIFICATION OF CRITERIA EXCEEDANCES FOR UNSATURATED SOILS SITES SS-06 AND ST-40 WURTSMITH AFB, MICHIGAN

|                            |                     | Maximum<br>Site             | MDEQ Generic<br>Residential Drinking    | Number of<br>Detections<br>Exceeding | Number of Times<br>Reporting Limits<br>Exceeded Criteria<br>Compound Not |
|----------------------------|---------------------|-----------------------------|-----------------------------------------|--------------------------------------|--------------------------------------------------------------------------|
| Compound                   | Units               | Concentration <sup>a/</sup> | Water Protection Criteria <sup>b/</sup> | Criteria <sup>c/</sup>               | Detected <sup>c/</sup>                                                   |
| SITE SS-06                 |                     |                             |                                         |                                      |                                                                          |
| Volatile Organic Compounds |                     |                             |                                         |                                      |                                                                          |
| Benzene                    | µg/kg <sup>d/</sup> | 5,700                       | 100                                     | 3                                    | 10                                                                       |
| Toluene                    | μg/kg               | 5,750 U                     | 16,000                                  | -                                    |                                                                          |
| Ethylbenzene               | μg/kg               | 140,000                     | 1,500                                   | 8                                    |                                                                          |
| Total Xylenes              | µg/kg               | 575,000                     | 5,600                                   | Ŭ                                    |                                                                          |
| 1.2.4-Trimethylbenzene     | µg.kg               | 287,000                     | 5,100                                   | 10                                   |                                                                          |
| 1,3.5-Trimethylbenzene     | μg/kg               | 94,300                      | 460                                     | 12                                   |                                                                          |
| n-Butylbenzene             | μg/kg               | 5,750 U                     | 1,600                                   |                                      | 2                                                                        |
| sec-Butylbenzene           | μg/kg               | 5.750 U                     | 1,600                                   |                                      | 2                                                                        |
| tert-Butylbenzene          | μg/kg               | 8,050 U                     | 1,600                                   |                                      | 2                                                                        |
| Isopropylbenzene           | μg/kg               | 25,300                      | 90,000                                  |                                      | -                                                                        |
| n-Propylbenzene            | μg/kg               | 46,000                      | 1,600                                   | 5.                                   |                                                                          |
| Tetrachloroethene          | μg/kg               | 8,050 U                     | 100                                     | 5                                    | 13                                                                       |
| Bromomethane               | μg/kg               | 930                         | 200                                     | 1                                    | 12                                                                       |
| 4-Isopropyltoluene         | μg/kg               | 18,400                      | NA <sup>r</sup>                         | ·                                    | 12                                                                       |
|                            | 45.45               | 10,400                      | INA                                     |                                      |                                                                          |
| PAIIs                      |                     |                             |                                         |                                      |                                                                          |
| Naphthalene                | µg/kg               | 41,400                      | 17,000                                  | 3                                    |                                                                          |
| SITE ST-40                 |                     |                             |                                         |                                      |                                                                          |
| Volatile Organic Compounds |                     | ,                           |                                         |                                      |                                                                          |
| Benzene                    | µg/kg               | 1.090 U                     | 100                                     |                                      | 1                                                                        |
| Toluene                    | μg/kg               | 2.720 U                     | 16,000                                  |                                      | -                                                                        |
| Ethylbenzene               | μg/kg               | 12,000                      | 1,500                                   | 1                                    |                                                                          |
| Total Xylenes              | µg/kg               | 237,000                     | 5,600                                   | 1                                    |                                                                          |
| 1,2,4-Trimethylbenzene     | μg/kg               | 117,000                     | 5,100                                   | 1                                    |                                                                          |
| 1,3,5-Trimethylbenzene     | μg/kg               | 43,500                      | 460                                     | 2                                    |                                                                          |
| n-Butylbenzene             | μg/kg               | 2,720 U                     | 1,600                                   |                                      | 1                                                                        |
| sec-Butylbenzene           | μg/kg               | 3,800 U                     | 1,600                                   |                                      | I                                                                        |
| tert-Butylbenzene          | μg/kg               | 3,800 U                     | 1,600                                   |                                      | 1                                                                        |
| Isopropylbenzene           | μg/kg               | 4,350                       | 90,000                                  |                                      |                                                                          |
| n-Propylbenzene            | μg/kg               | 4,890                       | 1,600                                   | 1                                    |                                                                          |
| Carbon Disulfide           | μg/kg               | 761 U                       | 16,000                                  | -                                    |                                                                          |
| Acetone                    | μg/kg               | 4.780 U                     | 15,000                                  |                                      |                                                                          |
| Tetrachloroethene          | μg/kg [             | 3.800 U                     | 100                                     |                                      | 1                                                                        |
| Bromomethane               | μg/kg               | 2,720 U                     | 200                                     |                                      | 1                                                                        |
| 4-isopropyltoluene         | μg/kg               | 7,610                       | NA                                      |                                      | •                                                                        |
| PAHs                       |                     |                             |                                         |                                      |                                                                          |
|                            |                     |                             |                                         |                                      |                                                                          |

NOTES. Site maximum concentrations that exceed a MDEQ-defined soil cleanup criterion have been shaded for easy reference.

Outline indicates that the maximum PQL exceeded a MDEQ-defined soil cleanup criterion.

<sup>a/</sup> Maximum concentration detected during the October 1998 soil sampling event.

<sup>b.</sup> Soil leaching criterion that is protective of underlying groundwater for residential potable use (MDEQ, 1998).

<sup>e<sup>+</sup></sup> Criteria does not include field replicate samples.

<sup>d</sup> μg/kg = micrograms per kilogram

 $^{\circ}$  J = Estimated value. The analyte was positively identified at a concentration between the PQL and the RL.

<sup>10</sup> NA = Not applicable. An MDEQ-defined soil cleanup criterion has not been established for this analyte.

 $s^{-}$  U = compound analyzed for but not detected. Number shown represents the RL

lists the number of samples in which detected concentrations of specific analytes exceeded their respective criterion. Typically, a statistical analysis would be performed to determine whether the 95-percent upper confidence limit (UCL) on the arithmetic mean of the concentrations of each analyte was above or below the respective cleanup criterion. However, these statistical analyses were not performed for this data set because the relatively large number of exceedances compared with the total number of samples, indicated that the 95-percent UCL would likely be exceeded for several analytes (i.e. benzene, toluene, ethylbenzene, total xylenes, 1,2,4-TMB, 1,3,5-TMB, and n-propylbenzene).

#### 3.3 QUALITY ASSURANCE/QUALITY CONTROL PROCEDURES AND RESULTS

Laboratory and field QA/QC procedures established for the site were followed to ensure that the analytical data were accurate and reproducible.

#### 3.3.1 Laboratory QA/QC Procedures and Results

Data-were evaluated for QC criteria in accordance with the USEPA (1994) Contract Laboratory Program National Functional Guidelines for Organic Data Review, and the USEPA (1983) Methods for Chemical Analysis of Water and Wastes. The QC criteria results were in accordance with method protocol, laboratory control samples and duplicates (LCS/LCSD), MS/MSD, surrogates, method blanks, and holding times. All additional method QC criteria (i.e., calibrations) were in control. No additional QC criteria are discussed as "out of control conditions" in the narrative review provided by SAI.

An overall assessment of the QA criteria indicated that the data are of valid quality, accurate, and precise. All reviewed method QC criteria were met. Analytical results for the QC samples are included in Appendix C.

#### 3.3.2 Field QA/QC Procedures and Results

To assess sample variability, three replicate soil sample pairs (sample pairs SB5/SB25, SB8/SB28, and SB16/SB26) were collected and analyzed by Methods 8260B. To determine the representativeness and precision of the sample analysis, either the relative percent difference (RPD) or the difference between analyte concentrations in the sample and its duplicate can be determined. USEPA procedures recommend that the RPD of duplicate analyses be determined for analyte concentrations greater than five times the reporting limit. RPD was calculated for ethylbenzene, n-propylbenzene, 4-isopropyltoluene, naphthalene, 1,2,4-TMB, 1,3,5-TMB, m,p-xylenes, and o-xylene. The RPD for m,p-xylene (46 percent) in the replicate pair SB16/SB26 was the only value exceeding the acceptable QC limit. Out-of-control analytes are believed to be related to matrix interference. Overall, precision of the field replicate results was in control.

Two trip blanks and two equipment rinseate blanks were collected and analyzed during the field investigation. The trip blanks, prepared and supplied by the

laboratory, consisted of pure distilled water. The trip blanks accompanied the sample containers to the site and was returned to laboratory with the samples. The trip blanks were analyzed for VOCs by USEPA Method 8260B. No target analytes were detected in the trip blanks. The equipment rinseate blanks were collected at the site from the distilled water used to rinse soil sample core barrels. The equipment rinseate blanks were detected in the equipment blanks.

#### SECTION 4

#### CONCLUSIONS AND RECOMMENDATIONS

#### 4.1 CONCLUSIONS

Results from the October 1998 soil sampling event indicate that, although contaminant reduction has occurred in site soils as the result of 2 years of bioventing treatment, significant fuel hydrocarbons remain in smear-zone soils. The potential source for groundwater contamination as a result of fuel hydrocarbons partitioning from shallow soil to groundwater has been greatly reduced by bioventing treatment of site soils. Results of soil gas sampling performed at the site following 2 years of bioventing system operation (Parsons ES, 1998) are additional evidence of contaminant reduction. Relatively high concentrations of several fuel hydrocarbons in smear-zone soils indicate that this zone continues to be a potential source for groundwater contamination. Benzene, ethylbenzene, total xylenes, 1,2,4-TMB, 1,3,5-TMB, n-propylbenzene, and naphthalene were m-asured at concentrations exceeding the most stringent MDEQ generic soil cleanup criteria (residential drinking water protection criteria) in multiple soil samples. Bromomethane exceeded cleanup criteria in one soil sample.

Bioventing appears to have been less effective at reducing fuel hydrocarbon concentrations in smear-zone soils than in shallower subsurface soils. Because bioventing treatment relies on supplying air (oxygen) to unsaturated soil to enhance biodegradation of fuel hydrocarbons, the deeper smear zone soils are being effectively remediated by bioventing only during times of relatively low groundwater levels when the smear zone is unsaturated. Therefore, smear-zone soils are being remediated at a slower rate than the more shallow petroleum-hydrocarbon contaminated soils.

#### 4.2 **RECOMMENDATIONS**

Continued operation and monitoring of the bioventing system at the POL Yard, followed by additional soil sampling, is recommended to further reduce fuel hydrocarbon concentrations in site soils. Because the deeper smear zone soils will continue to be effectively treated by the bioventing system only during times of relatively low groundwater levels, several additional years of bioventing system operation may be required to reduce concentrations of fuel hydrocarbons in these soils to below MDEQ generic residential drinking water protection criteria. The following specific actions are recommended for Sites SS-06 and ST-40:

• Continue operation and monitoring of the bioventing system;

- Conduct annual soil gas sampling and respiration testing during low water table conditions to monitor remediation progress; and
- Collect and analyze additional soil samples after soil gas TVH concentrations and respiration rates asymptotically reach low levels.

τ.

#### SECTION 5

#### REFERENCES

- ICF Technology, Inc. 1994. Final Sampling and Analysis Plan for IRP Sites SS-06, ST-40, and SS-13. June.
- ICF Technology, Inc. 1995. The United States Air Force Installation Restoration Program Site Characterization Summary, Sites SS-06, SS-13, and SS-40. March
- ICF Kaiser. 1998. Final Remedial Investigation/Feasibility Study Report, Sites SS-06 and ST-40, SS-13, and OT-46.
- Michigan Department of Environmental Quality (MDEQ). 1998. Soil: Residential and Commercial I, Part 201 Generic Cleanup Criteria and Screening Levels. March.
- Michigan Department of Natural Resources (MDNR). 1994. Guidance Document: Verification of Soil Remediation. Environmental Response Division/Waste Management Division. Revision 1. April.
- Parsons ES, 1996. Bioventing Pilot Test Results and Full-Scale System Installation Report for POL Yard, Sites SS-06 and ST-40, Wurtsmith Air Force Base, Michigan. November.
- Parsons ES, 1998. Two-Year Soil Gas Sampling and In Situ Testing Results Report for POL Yard, Sites SS-06 and ST-40, Wurtsmith Air Force Base, Michigan. November.
- U.S. Environmental Protection Agency. 1983. Methods for Chemical Analyses for Water and Wastes. EPA 600/4-79-020. March.
- U.S. Environmental Protection Agency. 1994. Contract Laboratory Program National Functional Guidelines for Organic Data Review. February.

5-1

# **APPENDIX A**

# FINAL CONFIRMATION SAMPLING AND ANALYSIS PLAN

# FINAL

Confirmation Sampling and Analysis Plan POL Yard, Sites SS-06 and ST-40



Wurtsmith Air Force Base Michigan

Prepared For

Air Force Center for Environmental Excellence Brooks Air Force Base San Antonio, Texas

and

Air Force Base Conversion Agency/OL-T Oscoda, Michigan

September 1998



1700 Broadway, Suite 900 • Denver, Colorado 80290

# FINAL

# CONFIRMATION SAMPLING AND ANALYSIS PLAN FOR POL YARD, SITES SS-06 AND ST-40 WURTSMITH AIR FORCE BASE MICHIGAN

Prepared for: Air Force Center for Environmental Excellence Brooks Air Force Base, San Antonio, Texas

and

Air Force Base Conversion Agency/OL-T Oscoda, Michigan

#### September 1998

Prepared by: Parsons Engineering Science, Inc. 1700 Broadway, Suite 900 Denver, Colorado 80290

022/726876/WURTS/7.DOC

# TABLE OF CONTENTS

n

|                   | rag                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|-------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ACRO              | INYMS AND ABBREVIATIONSii                                                                                                                                                                                                                                                                                                                                                                                                                   |
| SECTI             | ION 1 - INTRODUCTION 1-                                                                                                                                                                                                                                                                                                                                                                                                                     |
| SECTI             | ION 2 - SITE DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 2.1<br>2.2<br>2.3 | Site Location and History2-Site Geology and Hydrogeology2-Previous Investigations2-2.3.1 Investigations from 1979 Through 19852-2.3.2 1995 Investigations by ICF Technology and Brown & Root<br>Environmental2-2.3.3 1996 and 1997 Investigations and Bioventing System Installation and<br>Operation by Parsons ES<br>2.3.3.1 Soil Gas Survey2-2.3.2 Bioventing System2-2.3.3.1 Soil Gas Survey2-2.3.2.1 Initial Soil Sampling Results2-10 |
| 2.4               | 2.3.3.2.2 Initial and 1-Year Soil Gas Chemistry Results .2-14<br>2.3.3.2.3 In Situ Respiration Test Results                                                                                                                                                                                                                                                                                                                                 |
|                   | ION 3 - SITE CLEANUP REQUIREMENTS                                                                                                                                                                                                                                                                                                                                                                                                           |
| 3.1<br>3.2<br>3.3 | Site Characterization Requirements3-State Soil Cleanup Standards3-Cleanup Criteria for the POL Yard3-3.3.1 Land Use, Migration and Exposure Routes, and Potential Receptors3-3.3.2 Tier 1 Cleanup Criteria3-3.3.3 Additional Evaluation and Actions3-                                                                                                                                                                                       |
| SECTI             | ION 4 - 2-YEAR TESTING AND SOIL GAS SAMPLING FOR<br>FULL-SCALE BIOVENTING                                                                                                                                                                                                                                                                                                                                                                   |
| 4.1<br>4.2        | Soil Gas Sampling    4-      In Situ Respiration Test    4-                                                                                                                                                                                                                                                                                                                                                                                 |
| SECTI             | ION 5 - CONFIRMATION SOIL SAMPLING AND ANALYSIS<br>PLAN                                                                                                                                                                                                                                                                                                                                                                                     |
| 5.1<br>5.2        | Sampling Strategy5-7Soil Sampling5-75.2.1 Sample Collection5-75.2.2 Soil Analyses5-65.2.3 Equipment Decontamination5-7                                                                                                                                                                                                                                                                                                                      |
| 5.3<br>5.4        | 5.2.3 Equipment Decontamination       5-6         Field Quality Assurance/Quality Control Procedures       5-6         Management of Investigation-Derived Wastes       5-6                                                                                                                                                                                                                                                                 |

# **TABLE OF CONTENTS**

| SECTION 6 - CONFIRMATION SAMPLING REPORT FORMAT  | 6-1 |
|--------------------------------------------------|-----|
| SECTION 7 - WURTSMITH AFBCA SUPPORT REQUIREMENTS |     |
| SECTION 8 - PROJECT SCHEDULE                     |     |
| SECTION 9 - POINTS OF CONTACT                    |     |
| SECTION 10 - REFERENCES CITED                    |     |
|                                                  |     |

#### APPENDICES

| A - | Soil | Sampling | Grid | Determination |
|-----|------|----------|------|---------------|
|-----|------|----------|------|---------------|

- B Field Sampling Plan
- C Standard Operating Procedures For USEPA Method SW8260 B (Specialized Assays, Inc., Nashville, Tennessee)
- D Quality Assurance Project Plan

#### LIST OF TABLES

#### No.

#### Title

# Page

| 2.1 | Summary of 1995 and 1996 Soil Analytical Results                       | 2-6  |
|-----|------------------------------------------------------------------------|------|
| 2.2 |                                                                        | 2-15 |
| 2.3 | Initial and 1-Year Respiration and Biodegradation Rates                | 2-19 |
| 3.1 | Identification of Chemicals of Potential Concern for Unsaturated Soils | 3-4  |
| 5.1 | Proposed Soil Sample Analytical Methods, Reporting Limits, and         |      |
|     | Number of Samples                                                      | 5-5  |

#### LIST OF FIGURES

#### No.

#### Title

#### Page

| 2.1 | Location of Sites Within Wurtsmith AFB                    | 2-2 |
|-----|-----------------------------------------------------------|-----|
| 2.2 | POL Yard Layout                                           | 2-3 |
| 2.3 | 1995 and 1996 Soil Sampling Locations                     |     |
| 2.4 | Soil Gas Survey Sampling Locations and Results, July 1996 |     |
| 2.5 |                                                           |     |
| 2.6 | Location of Hydrogeologic Cross-Sections A-A' and B-B'    |     |
| 2.7 | Hydrogeologic Cross-Sections A-A' and B-B'                |     |
| 5.1 |                                                           |     |

Page

# ACRONYMS AND ABBREVIATIONS

| AFB        | Air Force Base                                |
|------------|-----------------------------------------------|
| AFBCA      | Air Force Base Conversion Agency              |
| AFCEE      | Air Force Center for Environmental Excellence |
| AS         | Air Station                                   |
| AST        | aboveground storage tank                      |
| ASTM       | American Society for Testing and Materials    |
| bgs        | below ground surface                          |
| BTEX       | benzene, toluene, ethylbenzene, and xylenes   |
| °C         | degrees centigrade                            |
| cfm        | cubic feet per minute                         |
| COPC       | chemical of potential concern                 |
| DOT        | US Department of Transportation               |
| DQO        | data quality objective                        |
| DRO        | diesel-range organics                         |
| ES         | Engineering-Science, Inc.                     |
| FSP        | Field Sampling Plan                           |
| GC         | gas chromatography                            |
| GRO        | gasoline-range organics                       |
| HPLC       | high-performance liquid chromatography        |
| IDW        | investigation-derived waste                   |
| IRP        | Installation Restoration Program              |
| IS         | internal standard                             |
| JP         | jet propulsion                                |
| LCS        | laboratory control sample                     |
| LNAPL      | light nonaqueous-phase liquid                 |
| mg/kg      | milligrams per kilogram                       |
| mg/L       | milligrams per liter                          |
| µg/kg      | micrograms per kilogram                       |
| μg/L       | micrograms per liter                          |
| MDEQ       | Michigan Department of Environmental Quality  |
| MDL        | method detection limit                        |
| MDNR       | Michigan Department of Natural Resources      |
| MP         | monitoring point                              |
| msl        | mean sea level                                |
| MS/MSD     | matrix spike/matrix spike duplicate           |
| NBS        | National Bureau of Standards                  |
| NFRAP      | no further response action planned            |
| PAH        | polynuclear aromatic hydrocarbon              |
| Parsons ES | Parsons Engineering Science, Inc.             |
| PCE        | tetrachloroethene                             |
| PID        | photoionization detector                      |
| POL        | petroleum, oils, and lubricants               |
| ppmv       | parts per million, volume per volume          |

| PQL   | practical quantiation limit              |
|-------|------------------------------------------|
| PR    | percent recovery                         |
| PRL   | project reporting limit                  |
| QA    | quality assurance                        |
| QAPP  | Quality Assurance Project Plan           |
| QC    | quality control                          |
| RBCA  | risk-based corrective action             |
| RF    | response factor                          |
| RPD   | relative percent difference              |
| RT    | retention time                           |
| SAP   | sampling and analysis plan               |
| SDG   | sample delivery group                    |
| SQL   | sample quantition limit                  |
| SVE   | soil vapor extraction                    |
| SVOC  | semivolatile organic compound            |
| TCE   | trichloroethene                          |
| TEH   | total extractable hydrocarbons           |
| TMB - | trimethylbenzene                         |
| TRPH  | total recoverable petroleum hydrocarbons |
| TVH   | total volatile hydrocarbons              |
| TVHA  | total volatile hydrocarbon analyzer      |
| UCL   | upper confidence limit                   |
| US    | United States                            |
| USCS  | Unified Soil Classification System       |
| USEPA | US Environmental Protection Agency       |
| USGS  | US Geological Survey                     |
| UST   | underground storage tank                 |
| VOC   | volatile organic compound                |
| VW    | vent well                                |
|       |                                          |

.

#### SECTION 1

#### INTRODUCTION

This confirmation sampling and analysis plan (SAP) for the Petroleum, Oils, and Lubricants (POL) Yard, Sites SS-06 and ST-40, at Wurtsmith Air Force Base (AFB), Michigan, has been prepared by Parsons Engineering Science, Inc. (Parsons ES) for submittal to the Michigan Department of Environmental Quality (MDEQ); the United States (US) Air Force Center for Environmental Excellence (AFCEE), Brooks AFB, Texas; and the Air Force Base Conversion Agency/OL-T (AFBCA), Oscoda, Michigan. MDEQ provides oversight of underground storage tank (UST) work at Wurtsmith AFB. This SAP is intended to guide soil sampling at Sites SS-06 and ST-40 to document the effectiveness of remediation of petroleum-hydrocarbon-contaminated soils. Site SS-06, which encompasses the POL Yard, is the location of several former aboveground storage tanks (ASTs) and USTs which contained JP-4 (jet propulsion) fuel. Site ST-40, situated in the north-central portion of Site SS-06, is the location of a former UST that contained waste oil. At each site, petroleum products have been released to the subsurface environment and have contaminated site soils and groundwater.

In 1995, Site SS-06 was selected as a pilot test and full-scale remediation site for the AFCEE Extended Bioventing Program. This ongoing program involves 52 *in situ* bioventing sites at 32 military installations nationwide and provides funding for pilotand full-scale bioventing system installation, extended operation of installed bioventing systems, and completion of confirmatory soil sampling and site closure documents, if extended bioventing testing results indicate adequate site remediation has been achieved.

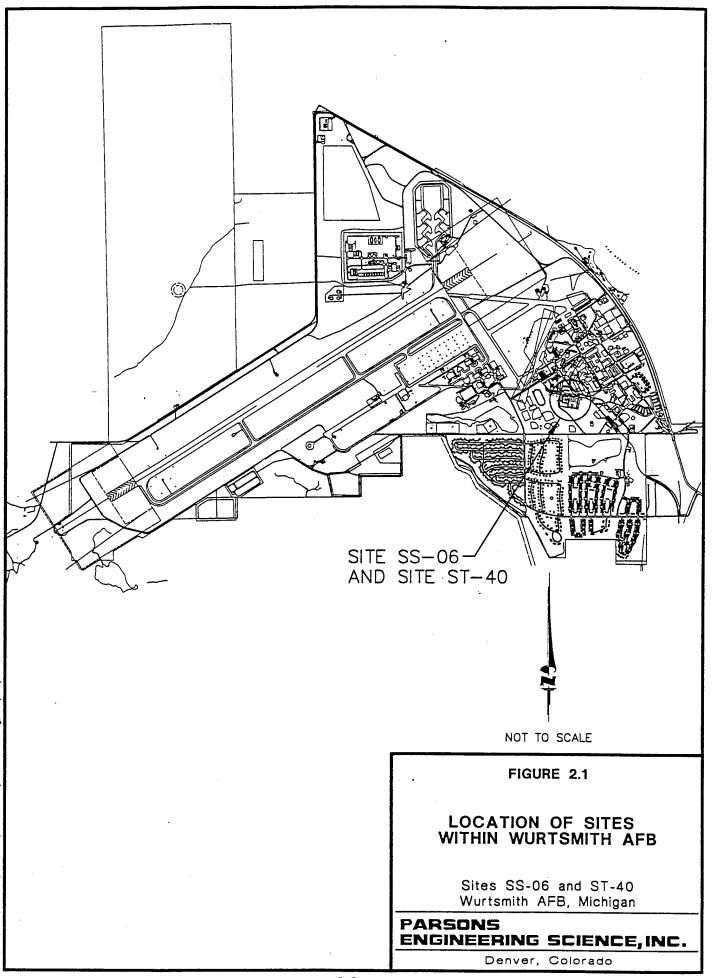
The pilot-scale bioventing system was installed and initial pilot testing was performed at Site SS-06 in July 1996 (Parsons ES, 1996a and 1996b). The purpose of the pilot test was to evaluate the effectiveness of bioventing in remediating unsaturated soils contaminated with petroleum hydrocarbons (JP-4) released from the former ASTs and USTs. Following initial testing, a full-scale bioventing system was designed and installed at the site in July and August 1996. The full-scale bioventing system was optimized, and system operation continued for 1 year. One-year testing was performed in September 1997 to assess system performance and remediation progress. Based on the results of the 1-year test, *in situ* bioventing appeared to have reduced petroleum-hydrocarbon contamination in site soils, but additional bioventing treatment was required to further reduce contaminant concentrations to meet MDEQ (1998c) generic residential drinking water protection criteria for several compounds. Following 1-year testing, the bioventing system was restarted to continue soil remediation for an additional year (September 1997 to September 1998). Based on the results of 1-year

testing and the estimated additional remediation to be achieved during the second year of system operation, it is anticipated that the concentration of all petroleum hydrocarbons in site soils will be reduced to levels below MDEQ (1998c) generic cleanup criteria.

The soil sampling effort is being performed as part of the AFCEE Extended Bioventing project. The objective of the confirmation soil sampling is to document the effectiveness of soil remediation at Sites SS-06 and ST-40, and to demonstrate compliance with MDEQ requirements for closure. The proposed confirmation sampling described in Section 5 targets vadose zone (unsaturated) soils beneath and adjacent to the bermed areas of the POL Yard. If soil confirmation sampling results demonstrate that MDEQ (1998c) generic residential drinking water protection criteria (see Section 3 of this SAP) have been met for all analytes of concern, then the data will be used to support a no-further-response-action-planned (NFRAP) decision. In this event, Parsons ES will prepare an NFRAP decision document for vadose zone soils at the POL Yard, and will recommend that the bioventing system be shut down and decommissioned. However, if soil confirmation sampling results demonstrate that any analyte exceeds the MDEQ generic residential drinking water protection criteria, then Parsons ES will prepare a results report in which the recommendation will be made to continue operating the bioventing system until generic residential cleanup criteria are met for all analytes.

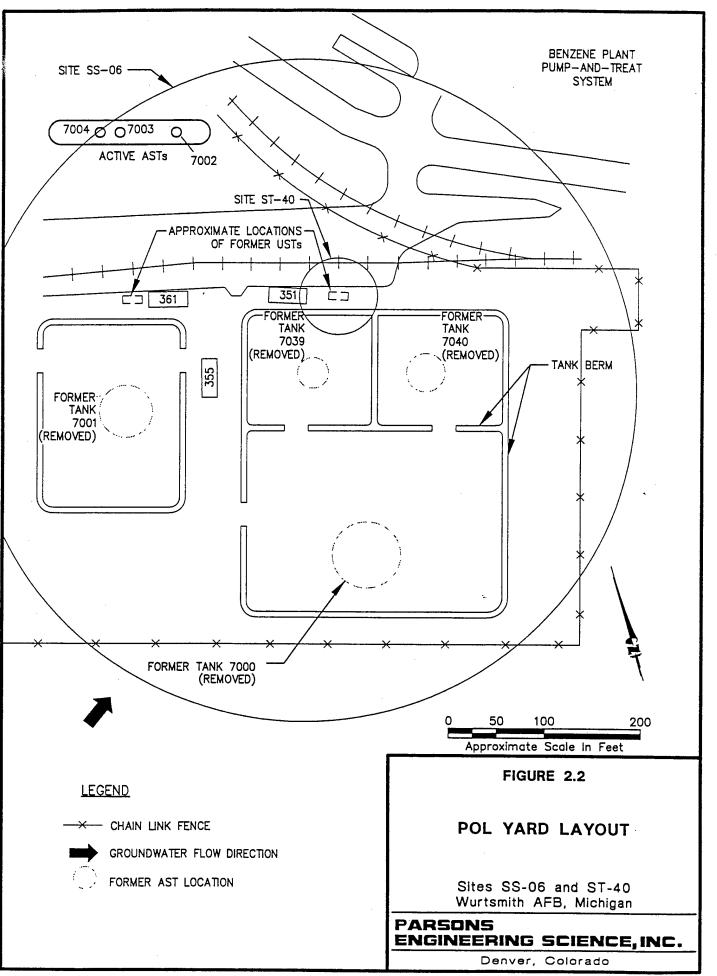
This SAP consists of 10 sections, including this introduction, and four appendices. Section 2 includes a site description, site history, and summaries of previous investigations and remediation activities. Section 3 summarizes MDEQ cleanup criteria and requirements. Section 4 describes the soil gas sampling and *in situ* respiration testing to be performed following the second full year of bioventing treatment. Detailed sampling and analysis procedures for confirmation soil sampling are presented in Section 5. Analytical results from the soil sampling effort will be presented in a confirmation sampling report as described in Section 6. Section 7 lists Wurtsmith AFB support requirements, and Section 8 presents the proposed project schedule. Air Force, regulatory, and contractor points of contact are provided in Section 9, and the cited references are provided in Section 10. Appendix A contains the Soil Sampling Grid Determination, the Field Sampling Plan (FSP) is included as Appendix B, Appendix C contains the Standard Operating Procedures for USEPA Method SW8260B, and the Quality Assurance Project Plan (QAPP) is included as Appendix D.

### SECTION 2


#### SITE DESCRIPTION

#### 2.1 SITE LOCATION AND HISTORY

Wurtsmith AFB, located near Oscoda, Michigan, is presently undergoing base closure activities. Site SS-06, a former POL bulk storage facility, is located in the eastern portion of the base as shown on Figure 2.1. A detailed layout of Site SS-06, which is inclusive of Site ST-40, is shown on Figure 2.2. With the exception of three active ASTs, which are located northwest of the main bermed area, the site is vacant and inactive. The four largest ASTs (Tanks 7000, 7001, 7039, and 7040), which were located within bermed areas and contained JP-4 jet fuel, were removed between 1992 and 1996. Two USTs, located immediately north of the bermed areas, also have been removed from the site. A waste oil UST, formerly located east of Building 351, was removed in 1990, and a waste JP-4 UST located on the west side of Building 361 was removed in 1996. The three active ASTs (Tanks 7002, 7003, and 7004) that remain on the site provide JP-4 for current airport activities. A groundwater pump-and-treat system (referred to as the Benzene Plant), located approximately 400 feet northeast of the POL Yard, was installed to treat groundwater contaminated with benzene, toluene, ethylbenzene, and xylenes (BTEX), and a free-phase product plume originating at the POL Yard.


Several investigations were conducted at and downgradient from Sites SS-06 and ST-40 between 1979 and 1997 to characterize the nature and extent of fuel hydrocarbons in subsurface media. The primary contaminants at this site are fuel-related petroleum hydrocarbons, which have been detected in the soil gas, soils, and groundwater. The source of the hydrocarbon contamination is thought to be leaks from the former JP-4 tanks and underground JP-4 pipelines. In 1996, bioventing pilot testing was performed, and a full-scale bioventing system was installed by Parsons ES to remediate site soils. In September 1997, Parsons ES collected additional soil gas samples and performed *in situ* respiration testing to evaluate soil remediation progress. These investigations and remedial actions are described in Section 2.3.

In the fall of 1997, Amtech performed a soil vapor extraction (SVE) and air sparging pilot test between Site SS-06 and the Benzene Plant to determine the effectiveness of these technologies at remediating petroleum-contaminated unsaturated soils and groundwater, respectively (Paul Rekowski, 1998). Additional sampling to further delineate the area to be remediated and full-scale SVE/air sparging system installation was performed in the summer of 1998. The system was installed approximately 100 to 300 feet northeast of Site SS-06, and is scheduled for startup in December 1998 (John Ratz, 1998).



S: \ES\cod\AFCEE\726B76\WURTSMIT\98dn0395.dwg, 06/02/98 at 10:57

2-2



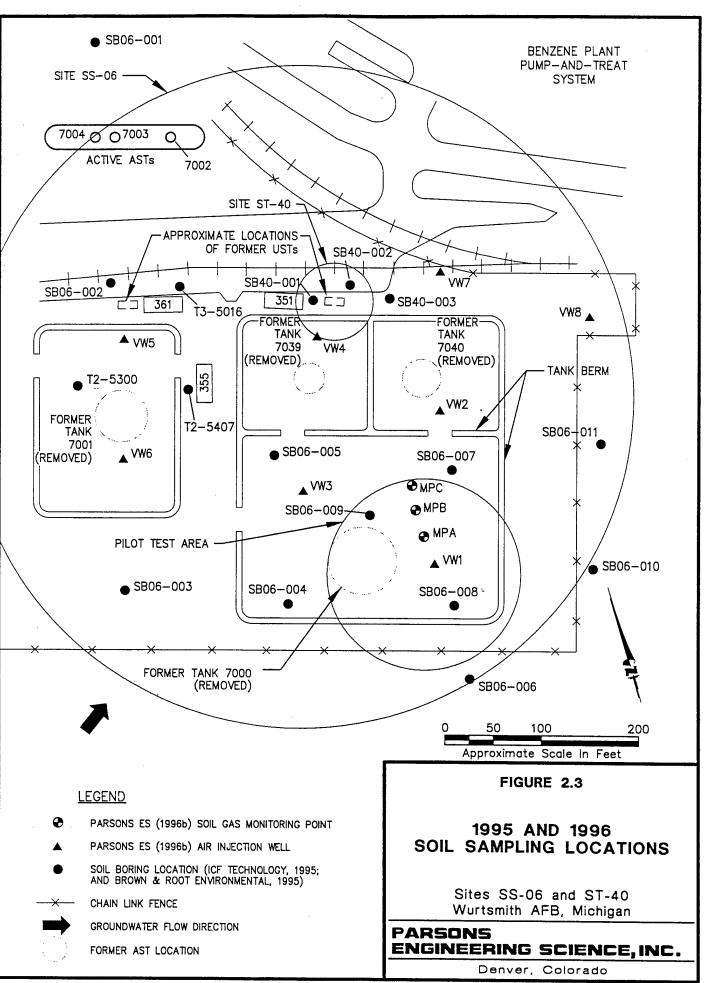
S: \ES\cod\AFCEE\726B76\WURTSMIT\98dn0396.dwg, 06/02/98 at 12:15

### 2.2 SITE GEOLOGY AND HYDROGEOLOGY

The geology of Wurtsmith AFB consists of approximately 140 to 200 feet of unconsolidated deposits overlying the Mississippian-aged Marshall Formation sandstone and Coldwater Shale bedrock (US Geological Survey [USGS], 1990). Based on soil borings drilled in 1996 during installation of the full-scale bioventing system, the shallow unconsolidated deposits underlying Sites SS-06 and ST-40 consist predominantly of fine- to medium-grained sand (Parsons ES, 1996b).

Shallow groundwater at the site is unconfined (i.e., under water table conditions) and occurs at a depth of approximately 20 feet below ground surface (bgs). The groundwater flow direction beneath Sites SS-06 and ST-40 is to the northeast, toward the Benzene Plant pump-and-treat system. There is no surface water in the immediate vicinity of Sites SS-06 and ST-40.

### 2.3 PREVIOUS INVESTIGATIONS


### 2.3.1 Investigations from 1979 Through 1985

A USGS investigation conducted at Wurtsmith AFB in 1979 detected benzene, toluene, and other organic compounds in groundwater in the vicinity of Site SS-06 (Cummins and Twenter, 1986). Subsequent investigations characterized the nature and extent of the dissolved petroleum hydrocarbon plume, which apparently originated at the POL Yard. Soil contamination at the POL Yard was not investigated during these early investigations.

# 2.3.2 1995 Investigations by ICF Technology and Brown & Root Environmental

In July 1994, a passive soil gas survey was conducted by ICF Technology (1995) to assess the extent of JP-4 jet fuel contamination in the soils at the POL Yard. The survey was conducted by installing sorbent collection devices 3 feet bgs at 83 locations within and adjacent to the POL Yard. The devices were retrieved after 1 month and analyzed for BTEX and other selected hydrocarbons. Soil gas results from the ICF Technology survey indicated high concentrations of volatile organic compounds (VOCs) and semivolatile organic compounds (SVOCs) within the bermed area, immediately adjacent to the former location of Tank 7000.

In 1995, ICF Technology (1995) and Brown & Root Environmental (1995) collected soil samples from borings within and adjacent to the POL Yard to further delineate the extent of soil contamination at the site. Soil samples collected by Brown & Root were primarily from borings completed near the buried JP-4 fuel lines, and soil samples collected by ICF Technology were concentrated near the former AST locations. Soil boring locations are shown on Figure 2.3. Soils were analyzed for VOCs, polynuclear aromatic hydrocarbons (PAHs), and lead. Analytical results indicated detectable concentrations of BTEX, PAH, lead, and carbon disulfide in soil. Soil analytical results for the ICF Technology and Brown & Root investigations are included on Table 2.1.



S: \ES\cod\AFCEE\726876\WURTSMIT\98DN0397.dwg, 06/25/98 at

08:01

TABLE 2.1 SUMMARY OF 1995 AND 1996 SOIL ANALYTICAL RESULTS SITES SS-06 AND ST-40 WURTSNITH AFB, MICHIGAN

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                      |                            |         |            |        |              |         | SITE:<br>WURTSN | SITES SS-06 AND ST-40<br>WURTSNIITH AFB, MICHIGAN | ST-40<br>ICHIGAN |              |         |             |              |         |           |            |         |                  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|----------------------------|---------|------------|--------|--------------|---------|-----------------|---------------------------------------------------|------------------|--------------|---------|-------------|--------------|---------|-----------|------------|---------|------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                      |                            |         |            |        |              | Total   |                 |                                                   |                  |              |         |             |              |         | Carbon    |            |         |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Detected An                          | alytes                     | TEH     |            | •      | Ethylbenzene |         | Acenaphthene    | Anthracene                                        |                  | Fluoranthehe |         | Naphthalene | Phenanthrene | Pyrene  | Disulfide | Lead       | Acetone | PCE <sup>*</sup> |
| More Chanter i we for parameter i service and a large servic |                                      | Units                      | (mg/kg) |            |        | (µg/kg)      | (µg/kg) | (µg/kg)         | (µg/kg)                                           | (µg/kg)          | (Hg/kg)      | (µ&/kg) | (µg/kg)     | (µg/kg)      | (HR/R)  | (µg/kg)   | (mg/kg)    | (µg/kg) | (Jig/kg)         |
| State Tubie                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                      | MDEQ Criteria              |         |            | 16,000 | 1,500        | 5,600   | 300,000         | 41,000                                            | NLL "            | 720,000      | 390,000 | 17,000      | 12,000       | 470,000 | 16,000    | 21         | 15,000  | 001              |
| All hat         All hat </th <th>Sample Location</th> <th>Sample Deptl<br/>(feet bgs)</th> <th>ا ع</th> <th></th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Sample Location                      | Sample Deptl<br>(feet bgs) | ا ع     |            |        |              |         |                 |                                                   |                  |              |         |             |              |         |           |            |         |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Parsons FS (1996h) Da                |                            |         |            |        |              |         |                 |                                                   |                  |              |         |             |              |         |           |            |         |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | VIII 19                              |                            | 163     | <b>, 1</b> |        | 1 010        | 18 000  |                 |                                                   |                  |              | ]       | 0111        |              |         | NA V      | N.A        | NA      | NA               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | MPA-II                               | 10 - 12                    | 60E     |            |        | 580          | 4.190   |                 |                                                   |                  |              |         | 379         |              |         | NA        | NAN AN     | AN      | AN               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | MPB-18                               | 17 - 19                    | 751     |            |        | 7.080        | 34.500  |                 |                                                   |                  | 1            |         | 1.170       | 1            |         | NA        | AN         | AN      | NA               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | MPC-18                               | 17 - 19                    | 699     | ł          | ]      | 3,600        | 18,500  |                 | ł                                                 |                  | 1            | -       | 1,370       | I            | 1       | AN        | AN         | NA      | ٩N               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | VW2-16                               | 15 - 17                    | 499     |            | 1601   | 2.680        | 12.900  | 1               |                                                   | 1                | 228          | 78.3    | 828         | 425          | 1       | NA        | NA         | NA      | NA               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | VW3-19                               | 19 - 20                    | 246     |            | 571    | 870          | 4,580   | 1               | 1                                                 | 1                | 109          |         | 406         | 204          |         | NA        | NA         | NA      | NA               |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | VW4-19                               | 18 - 20                    | 535     |            | 1      | 9,630        | 41,800  | -               | 87.8                                              | 1                | 172          | 47      | 2,910       | 332          | 1       | NA        | NA         | NA      | NA               |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | VW5-18                               | 17 - 19                    | 220     |            | 85J    | 2,300        | 9.820   | -               | 1                                                 | 1                |              |         | 473         | 102          | 1       | NA        | NA         | NA      | ٨A               |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | VW7-21                               | 20 - 22                    | 746     |            | 250    | 3,710        | 15,600  | •               |                                                   | 10.9             | 589          | 92.6    | 616         | 587          | I       | NA        | NA         | NA      | ٩N               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | VW8-21                               | 20 - 22                    | 2,960   |            | 1      | 24.600       | 161,000 | I               | I                                                 | 1                | 478          | 205     | 5,670       | 1,060        | 1       | ٩N        | ٧N         | ٨A      | ٩N               |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <u>ICF (1995) Data</u><br>SITE SS-06 |                            |         |            |        |              |         |                 |                                                   |                  |              |         |             |              |         |           |            |         |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                      |                            | MA      |            |        |              |         |                 |                                                   |                  |              |         |             |              |         | 17.6      |            |         |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 100-0000                             | 11-6                       | A N     |            |        |              |         |                 |                                                   |                  |              |         |             |              |         |           | 0.94       |         |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                      | 14 - 16                    | AN      | 1          | 3.01   | I            | I       | 1               | I                                                 |                  | 1            | I       | 1.300       | 320          | 1       | 14        | 1.2        | 1       | ł                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | SB06-002                             | 11-6                       | NA      | I          | 1      | ł            | 016     | ł               | -                                                 | 1                | I            | 1       | .           |              | I       | 1         | 0.88       | 1       | i                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                      | 14 - 16                    | NA      | 1          | 1      | 1            | 006'E   | 1               | 1                                                 | 1                | I            | 1       | 1           | 110          | 011     | !         | 0 87       | 1       | 1                |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                      | 19 - 21                    | ٩N      | i          | 1      | ł            | 830     | 1               | 1                                                 | !                | 1            | !       | 1           | 1            | 1       | ;         | ł          | 1       | 1                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | SB06-003                             | 4.6                        | ٩N      | ;          | 1      | ł            | 4,000   | 1               | 1                                                 | -                | -            | 300     | 740         | 430          | !       | 1         | 1          | i       | 1                |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                      | 9-11                       | AN .    | 1          | !      | 1            | 3,000   | ł               | 1                                                 | 1                | 1            | 150     | <u>92</u>   | 011          | ł       | :         | 1          | 1       | 1                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                      | 14 - 16                    | AN 2    |            | !      | 1            | 18,000  | ł               | 1                                                 |                  | 1            | 240     | 640         | 300          | 1       | 1         | ;          | 1       | 1                |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | SB06-004                             | • •                        | AN 2    | 1          | 1      | 1            |         | 1 3             | 1                                                 |                  | 1            |         | 0.0         | 1            | 1       | 1         | 2.67       | ł       | I                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | SB06-005                             | 0 - 10                     |         |            |        |              | 0071    | 3               |                                                   |                  |              | 2       | 009         |              |         |           | - 0<br>- 0 |         |                  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                      | 19.5 - 21.5                |         |            | 1      | I            | 1       | 1               | 1                                                 | -                | I            | -       | I           | 1            | 1       | 1         | 2.8        | ĺ,      | 1                |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | SB06-007                             | 4 - 6                      |         | 1          | 1      | I            | 5.6     | -               |                                                   | 1                |              | ]       | ļ           |              | I       | 1.1       | 1          | ł       | !                |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1                                    | 11-6                       | NA      | 1          | I      | 83           | 45.0    | ł               | 1                                                 | 1                | !            |         |             | !            | ł       | 13        | !          | 1       | !                |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                      | 14 - 16                    | AN 3    | •          | 1      |              | 0.1     |                 |                                                   |                  | 1            | 1       |             | 1            | I       | 01        | !          | 1       | ļ                |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | SB06-008                             | 4-6                        | Y X     | 1          | 1      | 1            | 13,000  | 1               | 1                                                 | 1                | 1            | 270     | 660         | 270          | 1       | 1         | 1          | 1       | 1                |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                      | 1-6                        | Z Z     | !          |        |              | 20,000  | 1               |                                                   | 1                | !            | 260     | 520         | 061          | ł       | ļ         | 77         | ł       | ł                |
| 4.16       NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (Dund)                               |                            | V V     |            |        |              | 12,000  |                 |                                                   |                  |              |         | 340         |              | !       |           | 2.4        |         |                  |
| 9-11       NA         30,000         0.2         14-16       NA         31,000         0.2         14-16       NA         300       3,300         0.2         14-16       NA          390       3,300         0.2         9-11       NA             0.2         9-11       NA             0.2         9-11       NA             0.2         9-11       NA                 11         19-21       NA <t< td=""><td></td><td></td><td>NA</td><td></td><td>ļ</td><td>I</td><td>00005</td><td></td><td></td><td></td><td>I</td><td></td><td>6 400</td><td></td><td></td><td></td><td>3 66</td><td></td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                      |                            | NA      |            | ļ      | I            | 00005   |                 |                                                   |                  | I            |         | 6 400       |              |         |           | 3 66       |         |                  |
| H-16       NA         23,000 <t< td=""><td></td><td>11-6</td><td>NA</td><td>1</td><td>I</td><td>-</td><td>30,000</td><td>-</td><td>1</td><td>1</td><td>1</td><td>320</td><td>3,300</td><td>1</td><td>1</td><td>1</td><td>0.92</td><td> </td><td>i</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                      | 11-6                       | NA      | 1          | I      | -            | 30,000  | -               | 1                                                 | 1                | 1            | 320     | 3,300       | 1            | 1       | 1         | 0.92       |         | i                |
| 4-6       NA            10         9-11       NA            10         19-21       NA         1400          11         19-21       NA         1400          11         19-21       NA         1400          11         19-21       NA         1400           11         9-11       NA             11         0.10hitate)       9-11       NA           11        13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                      | 14 - 16                    | NA      | !          | 1      |              | 23,000  | !               |                                                   |                  | -            | 390     | 3,300       | 1            |         |           | ł          |         | 1                |
| 9-11     NA <td>SB06-011</td> <td>4-6</td> <td>NA</td> <td> </td> <td>l</td> <td>-</td> <td></td> <td></td> <td>•</td> <td>1</td> <td>!</td> <td>1</td> <td>1</td> <td></td> <td></td> <td>i</td> <td>01</td> <td>:</td> <td>!</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | SB06-011                             | 4-6                        | NA      |            | l      | -            |         |                 | •                                                 | 1                | !            | 1       | 1           |              |         | i         | 01         | :       | !                |
| 19-21         NA           1,400                                                                             13          11         N              11         N             13          11         N           13         N          <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                      | 9 - 11                     | NA      | 1          |        | !            | 1       | 1               | !                                                 |                  |              | 1       |             | -            | 1       | 1         | 1.1        | 1       | -                |
| 4.6         NA                13           9.11         NA               13           9.11         NA              11          11           (Duplicate)         9.11         NA            18          11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      | 19 - 21                    | NA      | 1          | 1      | 1            | 1,400   | !               | !                                                 | l                |              | ļ       |             | 1            | !       | I         | 1          | -       | ł                |
| 9.11 NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | SB06-012                             | 4 - 6                      | NA      | l          | 1      | :            |         |                 | !                                                 | 1                | 1            | 1       | 1           | :            | :       | :         | 1.3        | 1       | 1                |
| 9.11 NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                      |                            | NA      | 1          | i      | 1            | -       | -               | 1                                                 | 1                | 1            |         | ļ           | -            | !       | :         | Ξ          | 1       |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (Dup)                                |                            | NA      | :          | 1      |              |         |                 |                                                   |                  |              |         |             |              |         |           | 18         |         | :                |

022/726876WURTS/4 xIs/Table 2 1

2-6

| TABLE 2.1 (Continued) | SUMMANT OF 1773 AND 1770 SOLL ANALT TICAL RESULTS<br>SITES SS-06 AND ST-40 | WIRTSMITH AFR MICHIGAN |
|-----------------------|----------------------------------------------------------------------------|------------------------|
|-----------------------|----------------------------------------------------------------------------|------------------------|

|                            |                            |                                                  |      |                    |                                                         | Total              |                                                                                                                                                  |                       |                     |                         |                     |                        |                         |                   | Carbon               |                 |                    |                 |
|----------------------------|----------------------------|--------------------------------------------------|------|--------------------|---------------------------------------------------------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|---------------------|-------------------------|---------------------|------------------------|-------------------------|-------------------|----------------------|-----------------|--------------------|-----------------|
| Detected Analytes<br>Units |                            | TEH <sup>v</sup><br>(m <u>g</u> Ag) <sup>v</sup> |      | Toluene<br>(Hg/kg) | Benzene Toluene Ethylbenzene<br>(μg/kg) (μg/kg) (μg/kg) | Xylenes<br>(µg/kg) | Xylenes Acenaphthene Anthracene Chrysene Fluoranthene Fluorene Naphthalene Phenanthrene<br>(192/kg) (192/kg) (192/kg) (192/kg) (192/kg) (192/kg) | Anthracene<br>(µg/kg) | Chrysene<br>(µg/kg) | Fluoranthene<br>(µg/kg) | Fluorene<br>(µg/kg) | Naphthalene<br>(µg/kg) | Phenanthrene<br>(µg/kg) | Pyrenc<br>(µB/kg) | Disulfide<br>(µg/kg) | Lcud<br>(mg/kg) | Acctone<br>(µg/kg) | PCE*<br>(Hg/kg) |
|                            | MDEQ Criteria 🖌 No 🕯       | No *                                             | 00   | 16,000             | 1,500                                                   | 5,600              | 300,000                                                                                                                                          | 41,000                | NLL "               | 720,000                 | 390,000             | 17,000                 | 12,000                  | 470,000           | 16,000               | 21 °            | 15,000             | 001             |
| Sample Location            | Sumple Depth<br>(feet bgs) |                                                  |      |                    |                                                         |                    |                                                                                                                                                  |                       |                     |                         |                     |                        |                         |                   |                      |                 |                    |                 |
| SITE ST-40                 |                            |                                                  |      |                    |                                                         |                    |                                                                                                                                                  |                       |                     |                         |                     |                        |                         |                   |                      |                 |                    |                 |
| SB40-001                   | 4-6                        | NA                                               |      | 1                  | I                                                       | 1                  |                                                                                                                                                  | 1                     | ł                   | ł                       | ł                   | I                      | I                       | 1                 | 6.6                  | 7.9             | 1                  | 1               |
|                            | 9-11                       | AN<br>N                                          | 1    |                    |                                                         | 69,000             | 1                                                                                                                                                | ł                     | -                   |                         | -                   |                        | !                       | I                 | I                    | 7.4             | I                  |                 |
|                            | 19 - 10                    | AN<br>AN                                         |      |                    |                                                         | 2,200<br>A 900     |                                                                                                                                                  |                       |                     |                         | 170                 | 000 0                  | ŝ                       |                   |                      | 1.1             | •                  | I               |
| SB40-002                   | 4-6                        | AN                                               | 1    | 1                  |                                                         |                    |                                                                                                                                                  |                       |                     | ]                       | 2                   |                        | ş                       |                   |                      | 0.98            | 191                | 63              |
|                            | 11-6                       | NA                                               | 1    | ł                  | 1                                                       | 670                | 1                                                                                                                                                | 1                     | I                   | 1                       | 1                   | I                      |                         |                   | 000'61               | 4.1             |                    |                 |
|                            | 14 - 16                    | ٩N                                               | 1    | 1                  | 1                                                       | 35,000             | ł                                                                                                                                                | 1                     |                     | ł                       | -                   | 870                    | 110                     | •                 |                      | 1.0             |                    | 1               |
|                            | 19 - 21                    | NA                                               |      | 1                  | 1                                                       | 6,200              | ł                                                                                                                                                | 1                     |                     |                         | 110                 | 920                    | 210                     |                   |                      | 0.87            | !                  | 1               |
| SB40-003                   | 4-6                        | NA                                               | 2.9J | -                  | 1                                                       |                    | I                                                                                                                                                |                       |                     |                         | l                   | !                      | 1                       | 1                 | 4.8                  | 1.2             | -                  | ł               |
|                            | 11-6                       | NA                                               | 2.41 | 1                  | 1                                                       |                    | 1                                                                                                                                                | 1                     | 1                   |                         |                     | 1                      | !                       | 1                 | 80                   | 0.97            | -                  | !               |
| (Duplicate)                | cate) 9 - 11               | ΝA                                               | 2.7J |                    |                                                         | 1                  | -                                                                                                                                                | 1                     | l                   |                         | ł                   | 1                      | -                       | I                 | 31                   | 13.6            | 1                  | 1               |
| Brown & Root (1995)        |                            |                                                  |      |                    |                                                         |                    |                                                                                                                                                  |                       |                     |                         |                     |                        |                         |                   |                      |                 |                    |                 |
| SITE SS-06                 |                            |                                                  |      |                    |                                                         |                    |                                                                                                                                                  |                       |                     |                         |                     |                        |                         |                   |                      |                 |                    |                 |
| T2-5300                    | Unknown                    |                                                  | 1    |                    | 1                                                       | 1                  |                                                                                                                                                  | 1                     |                     |                         | 1                   | I                      | 1                       |                   | ٩N                   |                 | ٩N                 | NA              |
| T2-5407                    | Unknown                    | 1                                                | ł    | ł                  |                                                         | -                  |                                                                                                                                                  | I                     | !                   | 1                       | 1                   |                        | 1                       | -                 | NA                   | 1               | AN                 | NA              |
| T3-5016                    | 01                         | 2,720 <sup>4</sup>                               | 1    | 550                | 1                                                       | 29,000             |                                                                                                                                                  | 1                     | 1                   | 7,200                   | !                   | 5,800                  | 8,100                   | 6,400             | NA                   | 21              | NA                 | NA              |

Note. Analytical results that exceeded generic MDEQ and soil cleanup criteria have been outlined

• TEH = total extractable hydrocarbons; PCE = perchloroethene or tetrachloroethene.

nış'ı k-ınılı işruns per kilogram, µg/ış = micrograms per kilogram
 <sup>6</sup> Generic soil crieria for residential drinking water protection (MDEQ, 1998a, 1998c)

 $^4$  No = No MDEQ criterion has been established for this compound

<sup>r</sup> Value represents state-wide background fevel.

sample result less than method detection limit.

<sup>b</sup> Outlined results exceed MDEQ criteria shown.

 $i^{*}$  NA = sample not analyzed for this compound.

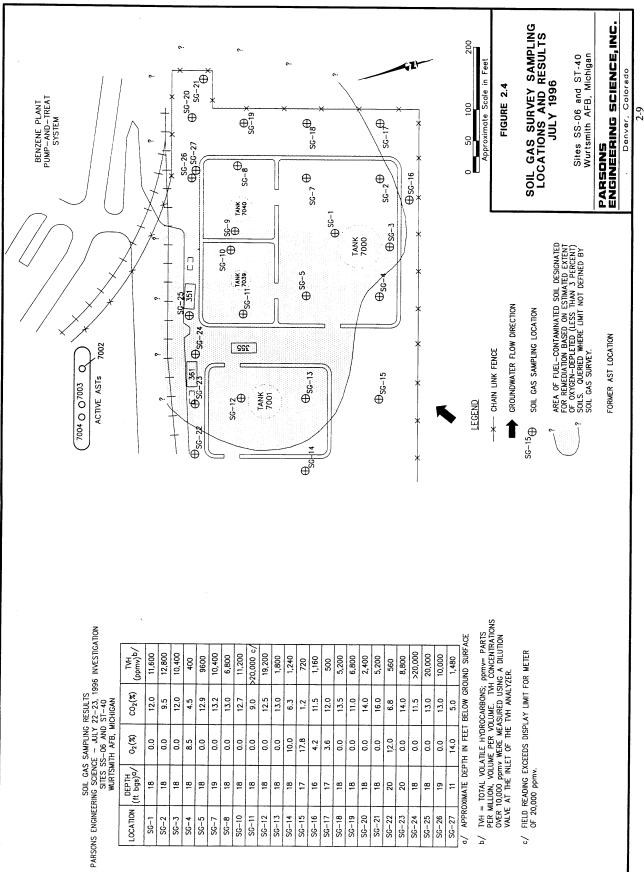
 $\frac{1}{2}$  ] = Indicates a laboratory estimated value; compound was detected, but below the laboratory reporting limit,

\* Sample result is the sum of the diesel-range organic (DRO) fraction (1,900 mg/kg) and the gasoline-range organic (GRO) fraction (820 mg/kg).

022/726876WURTS/4 xIs/Table 2 1

# **2.3.3** 1996 and 1997 Investigations and Bioventing System Installation and Operation by Parsons ES

Between July 1996 and September 1997, Parsons ES (1996b and 1997) conducted a soil gas survey; installed and tested a pilot-scale bioventing system; designed, installed, and optimized a full-scale bioventing soil remediation system at Sites SS-06 and ST-40, and monitored the system for 1 year. Soil and soil gas sampling activities were performed during installation of the pilot- and full-scale bioventing systems. Additional soil gas sampling and *in situ* respiration testing were conducted in September 1997, following 1 year of full-scale bioventing system operation. A detailed description of the bioventing system design and initial site activities is provided in the *Bioventing Pilot Test Results and Full-Scale System Installation Report for POL Yard, Sites SS-06 and ST-40* (Parsons ES, 1996b), and 1-year testing results are described in the *1-Year Results Report for Full-Scale Bioventing at the POL Yard, Sites SS-06 and ST-40* (Parsons ES, 1997). Bioventing pilot testing and soil gas and soil sampling results are summarized in the following subsections.


### 2.3.3.1 Soil Gas Survey

A soil gas survey of the POL Yard was conducted by Parsons ES in July 1996, prior to conducting the bioventing pilot test, to determine the extent of soil contamination and determine the optimum locations for bioventing air injection vent wells (VWs) and vapor monitoring points (MPs). Soil contamination was evaluated in July 1996 by measuring oxygen and total volatile hydrocarbon (TVH) concentrations in soil gas samples collected from 26 locations (SG-1 through SG-5 and SG-7 through SG-27) in the vicinity of the former ASTs and USTs. A truck-mounted, direct-push Geoprobe<sup>®</sup> was used to collect soil gas samples. Soil gas survey results and sampling locations are shown on Figure 2.4.

The majority of soil gas samples were collected approximately 1 to 2 feet above the groundwater surface, at sampling depths ranging from 16 to 19 feet bgs. Soil gas samples collected from within the bermed areas surrounding the former ASTs and from locations immediately north and east of the bermed areas had depleted oxygen concentrations (< 3 percent), elevated carbon dioxide concentrations (> 5 percent), and TVH concentrations exceeding 2,000 parts per million, volume per volume (ppmv). Anoxic conditions in subsurface soil gas are indicative of significant soil contamination and increased biological activity. Figure 2.4 presents the results of the soil gas survey and delineates the approximate extent of source area soils designated for bioventing remediation. The full extent of "smear zone" soil contamination northeast of the site, in the direction of the Benzene Plant pump-and-treat system, was not determined by the soil gas survey.

### 2.3.3.2 Bioventing System

In July 1996, a pilot-scale bioventing system was installed and tested at Sites SS-06 and ST-40 by Parsons ES as part of the AFCEE Extended Bioventing program (Contract No. F41624-92-D-8036, Order 17). Under this program, Site SS-06 (including Site ST-40) was funded for pilot-scale bioventing system installation and testing, installation of a full-scale bioventing system, and 2 years of extended system

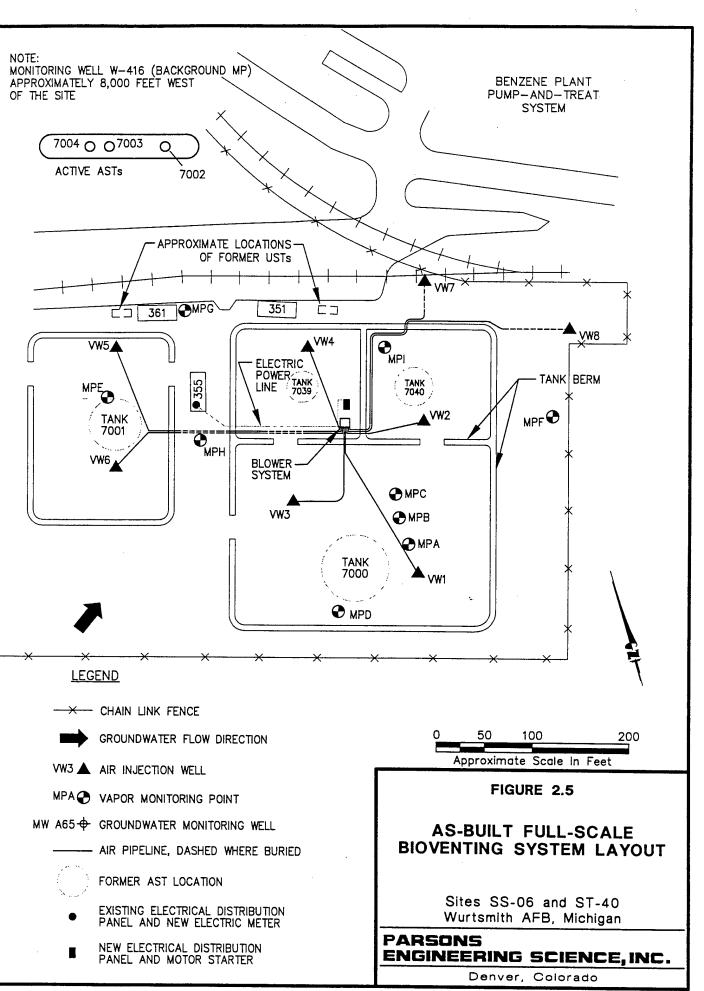


| OCATION         DEPTH<br>(t bgs)q/<br>SG-1         O2(%)         CO2(%)         TVM<br>(pmW)b/<br>(pmW)b/<br>SG-2         TVM<br>11,600           SG-2         18         0.0         12.0         11,600           SG-3         18         0.0         12.0         10,400           SG-4         18         0.0         12.0         10,400           SG-5         18         0.0         12.9         10,400           SG-5         18         0.0         13.2         10,400           SG-1         18         0.0         13.2         10,400           SG-1         18         0.0         13.0         1,800           SG-11         18         0.0         12.5         19,200           SG-13         18         0.0         13.0         1,800           SG-14         18         0.0         13.0         1,800           SG-15         17         17.8         1.2         720           SG-16         16         4.2         11.5         1,160           SG-15         18         0.0         1.2         720           SG-16         18         0.0         1.1.5         5,200           SG-15         18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                  |        |        |        |      |      |        |       |        |       |        |       |       |       |       |       |       |       |       |       |       |       |         |        |        |       | E          |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|--------|--------|--------|------|------|--------|-------|--------|-------|--------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|---------|--------|--------|-------|------------|
| Oca mon         (rth bgs)p/(rth bg | /d(vmqq)                         | 11,600 | 12,800 | 10,400 | 400  | 9600 | 10,400 | 6,800 | 11,200 |       | 19,200 | 1,800 | 1,240 | 720   | 1,160 | 500   | 5,200 | 6,800 | 2,400 | 5,200 | 560   | 8,800 | >20,000 | 20,000 | 10,000 | 1,480 | DUND SURFA |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | c02(%)                           | 12.0   | 9.5    | 12.0   | 4.5  | 12.9 | 13.2   | 13.0  | 12.7   | 9.0   | 12.5   | 13.0  | 6.3   | 1.2   | 11.5  | 12.0  | 13.5  | 11.0  | 14.0  | 16.0  | 6.8   | 14.0  | 11.5    | 13.0   | 13.0   | 5.0   |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  | 0.0    | 0.0    | 0.0    | 8.5  | 0.0  | 0.0    | 0.0   | 0.0    | 0.0   | 0.0    | 0.0   | 10.0  | 17.8  | 4.2   | 3.6   | 0.0   | 0.0   | 0.0   | 0.0   | 12.0  | 0.0   | 0.0     | 0.0    | 0.0    | 14.0  | TH IN FEET |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | DEPTH<br>(ft bgs) <sup>a</sup> / | 18     | 18     | 18     | 18   | 18   | 19     | 18    | 18     | 18    | 18     | 18    | 18    | 17    | 16    | 17    | 18    | 18    | 18    | 18    | 20    | 20    | 18      | 18     | 19     | μ     | XIMATE DEP |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | LOCATION                         | SG-1   | SG2    | SG-3   | SG-4 | SG-5 | SG7    | SG8   | SG-10  | SG-11 | SG-12  | SG-13 | SG-14 | SG-15 | SG-16 | SG-17 | SG-18 | SG-19 | SG-20 | SG-21 | SG-22 | SG-23 | SG-24   | SG-25  | SG-26  | SG-27 | a/ APPRO   |

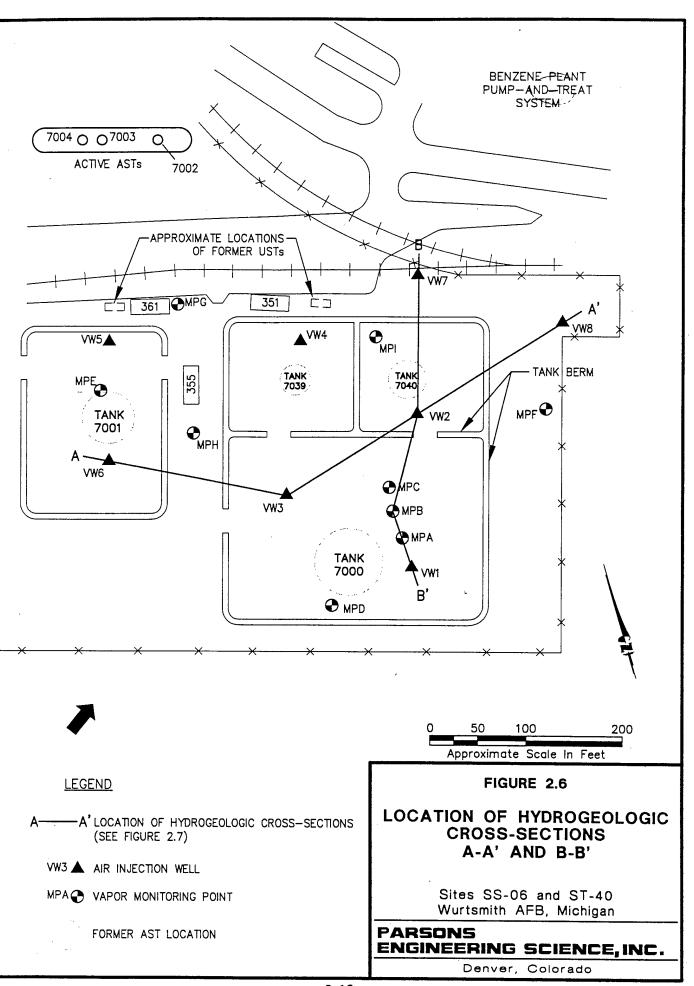
TVH = TOTAL VOLATILE HYDROCARBONS, PPMV= PARTS PER MILLON, VOLUME PER VOLUME. TVH CONCENTRATIONS OVER 10,000 PPMV WERE MESURED USING A DILUTION VALVE AT THE INLET OF THE TVH ANALYZER. 4

FIELD READING EXCEEDS DISPLAY LIMIT FOR METER OF 20,000 ppmv. ~

operation with maintenance and monitoring. In anticipation that 2 years of full-scale bioventing system operation would effectively reduce petroleum-hydrocarbon contamination in unsaturated soils, funding also was provided for confirmatory soil sampling and site closure documents.

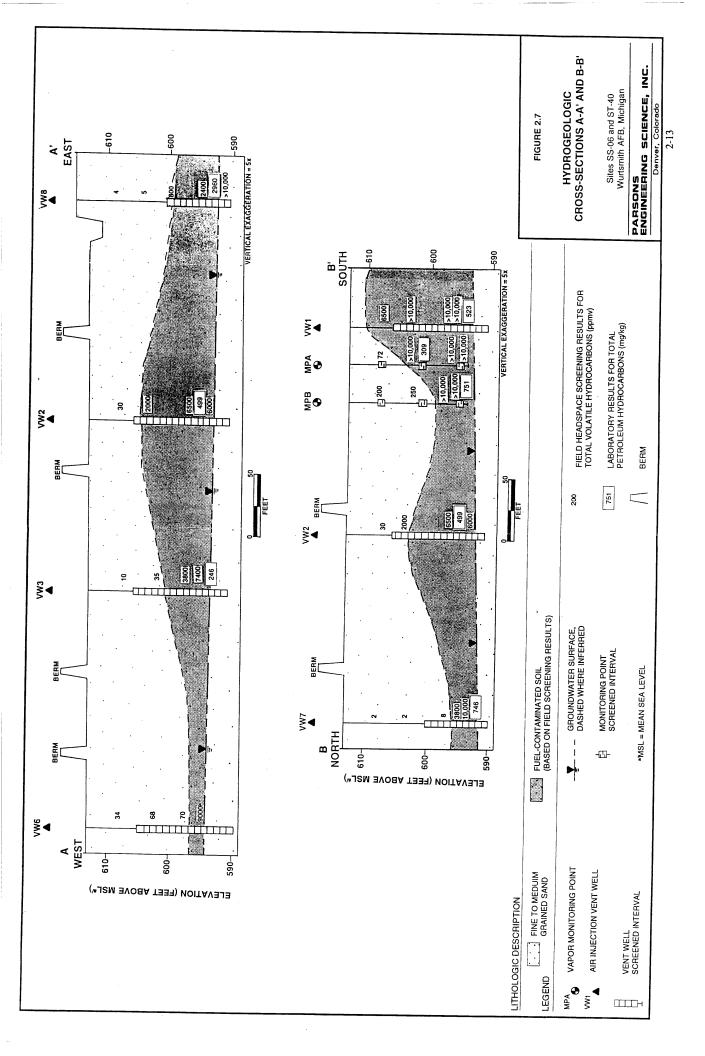

Following the successful testing of the pilot-scale bioventing system, a full-scale system was designed and installed in July and August 1996. The full-scale bioventing system is shown on Figure 2.5. The full-scale bioventing system consists of eight VWs, nine MPs, and a blower unit. During installation of the pilot-scale system, respiration and air permeability testing and soil and soil gas sampling were performed. Based on the results of the oxygen influence and air permeability test performed during installation of the pilot-scale system, the long-term radius of oxygen influence was expected to exceed 65 feet at depths between 5 and 14 feet bgs and 100 feet at depths between 14 and 20 feet bgs.

The full-scale bioventing system was started and optimized in September 1996, and was operated continuously from September 1996 until August 1997. In August 1997, the system was shut down for 36 days to allow soils and soil gas to return to equilibrium conditions in order to compare initial and 1-year site conditions. Following the 36-day shutdown period, soil gas samples were collected and *in situ* respiration testing was performed from 15 through 18 September 1997. The blower system was restarted following 1-year testing to continue bioventing treatment of site soils. Results of the initial soil sampling, initial and 1-year soil gas sampling, and initial and 1-year respiration testing are presented in the following subsections.


### 2.3.3.2.1 Initial Soil Sampling Results

Soil samples were collected from borings completed at 11 locations during installation of bioventing VWs and MPs. Soil samples were collected at 5-foot intervals during drilling and field-screened using a direct-reading TVH meter for headspace analysis. Headspace analysis results were used to determine the presence of contamination and to select soil samples for laboratory analysis. Contaminated soils were identified based on odor, staining, and headspace TVH field screening results. The locations of two hydrogeologic cross-sections for the full-scale bioventing system are shown on Figure 2.6, and the cross-sections are depicted on Figure 2.7.

Soil samples were analyzed for several parameters, including total extractable hydrocarbons (TEH), BTEX, and PAHs. Analytical results indicated significant fuel hydrocarbon contamination in all 10 samples submitted for laboratory analysis. Xylenes and ethylbenzene were the only compounds detected above MDEQ (1998a) generic cleanup criteria of 5,600 micrograms per kilogram ( $\mu$ g/kg) and 1,500  $\mu$ g/kg, respectively. Table 2.1 summarizes the laboratory results and highlights those results that exceed MDEQ generic soil cleanup criteria for groundwater protection (i.e., the most stringent of the generic soil cleanup criteria). PAHs and other BTEX compounds also were detected, but at concentrations below MDEQ criteria. TEH results ranged




2-11



S: \ES\cod\AFCEE\726B76\WURTSMIT\98dn0405.dwg, 06/02/98

at 13:02



from 220 milligrams per kilogram (mg/kg) at VW5-18 to 2,960 mg/kg at VW8-21. Soil cleanup criteria for TEH have not been established by MDEQ.

### 2.3.3.2.2 Initial and 1-Year Soil Gas Chemistry Results

During bioventing system pilot testing and prior to starting the full-scale bioventing system, initial soil gas samples were collected from the VWs and MPs to establish baseline values. Soil gas oxygen, carbon dioxide, and TVH concentrations were measured using direct-reading field instruments, and samples from eight locations were submitted for laboratory analysis of TVH and BTEX. Table 2.2 presents the initial soil gas chemistry results at the full-scale MPs and VWs.

At all sampling locations, soil gas oxygen concentrations were below the atmospheric concentration of approximately 21 percent. Oxygen depletion was evident at VW7 and VW8, but not to the same degree as in the source area soils. The low oxygen concentrations observed at the full-scale system VWs and MPs correspond to high TVH concentrations (ranging from 2,400 to greater than 20,000 ppmv). Similarly, the results indicate significant soil contamination and biological activity in contaminated soils.

Field screening and collection of 1-year soil gas samples for laboratory analyses were performed from 15 through 17 September 1997, following approximately 1 year of system operation and 1 month of system shutdown. Soil gas samples were collected from the VWs, each MP screened interval, and groundwater monitoring wells MW-A64 and MW-A66. Samples were field-screened to assess soil gas concentrations of oxygen, carbon dioxide, and TVH. As can be seen from the results presented in Table 2.2, field TVH measurements and laboratory results indicate petroleum-hydrocarbon contamination in unsaturated soils decreased significantly at most locations as the result of the first year of full-scale bioventing system operation.

Static oxygen concentrations in soil gas samples collected from three of the VWs (VW2, VW3, and VW6) have increased considerably with continued bioventing at the site, while static oxygen concentrations have remained at or less than 0.5 percent at VW1, VW4, VW5, and all MPs (Table 2.2). One-year oxygen concentrations at VW7 and VW8 were 8.5 and 7.0 percent, respectively; these concentrations are basically the same as initial conditions and reflect the fact that fuel contamination in these locations is limited to a thin smear zone associated with the groundwater surface. Depleted soil gas oxygen concentrations measured at most locations indicate that aerobic hydrocarbon biodegradation rates remain relatively high and exceed the rate at which oxygen can naturally diffuse into the soils from the ground surface and adjacent uncontaminated areas. Natural diffusion of oxygen into the soils is greatly restricted at this site because of the impermeable liners covering most of the site. However, these results suggest that significant substrate (total fuel hydrocarbons) remained in unsaturated site soils at the end of the first year of full-scale bioventing.

Although soil gas field screening results for oxygen suggest that a significant mass of biodegradable fuel hydrocarbons remained in site soils, soil gas field TVH measurements and laboratory results for TVH and BTEX in soil gas indicated a substantial reduction of residual fuel hydrocarbons in soils at most locations following 1 TABLE 2.2 INITIAL AND 1-YEAR SOIL GAS FIELD AND LABORATORY ANALYTICAL RESULTS SITES SS-06 AND ST-40 WURTSMITH AFB, MICHIGAN

|          |                        |                     | Field  | field Screening Data | Data                 |            | Laborate           | Laboratory Analytical Data <sup>*</sup> | I Data <sup>*</sup> |         |        |
|----------|------------------------|---------------------|--------|----------------------|----------------------|------------|--------------------|-----------------------------------------|---------------------|---------|--------|
|          | Screen                 |                     |        | Carbon               |                      |            |                    |                                         | Ethyl-              |         | Total  |
| Sampling | Depth                  | Sampling            | Oxygen | Dioxide              | TVH <sup>b/</sup>    | TVH        | Benzene            | Toluene                                 | benzene             | Xylenes | BTEX   |
| Location | (ft bgs) <sup>c/</sup> | Event <sup>d/</sup> |        | (percent)            | (ppmv) <sup>e/</sup> | (nund)     | (vmqq)             | (vinqq)                                 | (viiidd)            | (ymqq)  | (ppmv) |
| VWI      | 7-22                   | Initial             | 0.0    | 12.1                 | > 20,000             | <i>I</i> , | ł                  |                                         |                     | I       | 1      |
|          |                        | 1-Year              | 0.0    |                      | 17,000               |            |                    | 8                                       |                     |         |        |
| VW2      | 7-22                   | Initial             | 0.0    | 14.2                 | 8,000                |            | -                  |                                         |                     |         |        |
|          |                        | 1-Year              | 1.8    | 9.0                  | /a                   |            |                    |                                         |                     |         |        |
| VW3      | 7-22                   | Initial             | 0.0    | 13.0<br>3.0          | 5,600                | 1          | 1                  |                                         | 1                   | -       |        |
|          |                        | I - Y ear           | 0.0    | 0.7                  | 320                  |            | -                  |                                         |                     |         | 1      |
| VW4      | 8-23                   | Initial<br>1_Vear   | 0.0    | 8.8<br>8.8           | > 20,000             |            |                    | -                                       |                     |         |        |
| •        |                        | 1 - 1 Cal           | C.D    | ן.<br>י              | 040                  |            | :                  |                                         |                     |         |        |
| VW5      | 8-23                   | Initial<br>1-Ycar   | 0.0    | 12.6<br>9.5          | > 20,000<br>2.000    |            |                    |                                         |                     |         |        |
| 7.MG     | 8-23                   | Initial             | 0.0    | 13.4                 | 11 200               |            |                    |                                         |                     | 1       |        |
|          |                        | l-Year              | 8.9    | 3.5                  | 400                  |            |                    |                                         |                     |         |        |
| VW7      | 13-23                  | Initial             | 7.8    | 7.5                  | 4,600                | 1          |                    |                                         |                     | -       | 1      |
|          |                        | l-Ycar              | 8.5    | 6.2                  | 260                  | ł          |                    |                                         | 1 1 1 1             | ****    |        |
| VW8      | 14-24                  | Initial             | 6.8    | 9.2                  | 2,400                |            | ļ                  |                                         | I                   | 3       |        |
|          |                        | l-Year              | 7.0    | 7.6                  | 1,120                |            | 5                  |                                         |                     |         | .      |
| MPA      | 5                      | Initial             | 0.0    | 12.2                 | 17,200               | 1          | 1                  |                                         |                     |         |        |
|          |                        | 1-Year              | 0.0    | 10.8                 | 440                  |            |                    | 1                                       |                     | 1       | 1      |
| MPA      | 11                     | Initial             | 0.0    |                      | > 20,000             | 22,000     | 69 M <sup>h/</sup> | 100                                     | 31                  | 65      | 265    |
|          |                        | I-Ycar              | 0.0    | 10.9                 | 5,000                | 1,500      | < 0.11             | .37                                     | 0.25 M              | 1.4 M   | 2.02   |
| MPA      | 18                     | Initial             | 0.0    |                      | > 20,000             |            | 5                  |                                         |                     |         |        |
|          |                        | I-Year              | 0.0    | 10.6                 | 9,800                | 1          | 1                  |                                         | 1                   |         |        |
| MPB      | S                      | Initial             | 2.0    | 10.2                 | 17,600               |            |                    |                                         |                     |         |        |
|          |                        | l-Year              | 0.5    | 10.5                 | 280                  |            | 84.94              | 1                                       | -                   | -       |        |
| MPB      | 12                     | Initial             | 0.0    |                      | > 20,000             |            |                    |                                         |                     |         | 1      |
|          |                        | I-Year              | 0.0    |                      | 1,780                | 1          |                    | 3 8 8                                   | 3<br>8<br>2<br>3    | -       | 1      |
| MPB      | 18                     | Initial             | 0.0    |                      | > 20,000             | 25,000     | 70                 | 110                                     | 33                  | 76      | 289    |
|          |                        | 1-Year              | 0.0    |                      | 16,000               | 7,100      | < 0.53             | 11                                      | 23                  | 130     | 164    |

022/726876/WURTS/4 XLS/Table 2 2

TABLE 2.2 (Continued) INITIAL AND 1-YEAR SOIL GAS FIELD AND LABORATORY ANALYTICAL RESULTS SITES SS-06 AND ST-40 WURTSMITH AFB, MICHIGAN

,

|              |                        |                     | Etala     | Concording           | Data                 |                      | T - hand            | 1: Y Y                     | D. L. a/         |                  |        |
|--------------|------------------------|---------------------|-----------|----------------------|----------------------|----------------------|---------------------|----------------------------|------------------|------------------|--------|
|              |                        | •                   | rieia     | FIEId Screening Data | Dala                 |                      | Laboral             | Laboratory Analytical Data | Dala             |                  |        |
|              | Screen                 |                     |           | Carbon               |                      |                      |                     |                            | Ethyl-           |                  | Total  |
| Sampling     | Depth                  | Sampling            | Oxygen    | Dioxide              | TVH <sup>b/</sup>    | TVH                  | Benzene             | Toluene                    | benzene          | Xylenes          | BTEX   |
| Location     | (ft bgs) <sup>c/</sup> | Event <sup>d/</sup> | (percent) | (percent)            | (ppmv) <sup>e/</sup> | (nmqq)               | (vuidd)             | (ppmv)                     | (ymqq)           | (ymqq)           | (ppmv) |
| MPC          | 5                      | Initial             | 0.0       |                      | > 20,000             | 24,000               | 58                  | 120                        | 32               | 70               | 280    |
|              |                        | l-Year              | 0.0       | 12.0                 | 1,240                | 570                  | < 0.11              | 1.7                        | 1.3              | 3.3              | 6.3    |
| MPC          | 12                     | Initial             | 0.0       | 11.0                 | 19,200               |                      | 1                   |                            |                  |                  |        |
|              |                        | l-Year              | 0.0       | 12.5                 | 5,600                | Ι.                   |                     | 2                          |                  |                  |        |
| MPC          | 18                     | Initial             | 0.0       | 11.0                 | > 20,000             | 20,000               | 57                  | 94                         | 26               | 58               | 235    |
|              |                        | l-Year              | 0.0       | 12.8                 | 19,200               | 11,000               | < 1.1               | 25 M                       | 12               | 64 M             | 101    |
| MPD          | 12                     | Initial             | 0.0       | 13.1                 | 6,000                |                      |                     | ł                          |                  |                  |        |
|              |                        | 1-Year              | 0.0       | 14.5                 | 10,400               | 11,000               | < 1.1               | 23 M                       | 14               | 58               | 56     |
| MPD          | 18                     | Initial             | 0.0       | 13.2                 | 4,000                | 16,000               | 38                  | 66                         | 34               | 40               | 211    |
|              |                        | l-Year              | NSN       | NS                   | NS                   |                      |                     |                            | ł                |                  |        |
| MPE          | 18                     | Initial             | 0.0       | 11.2                 | > 20,000             |                      |                     |                            | ļ                |                  |        |
|              |                        | l-Year              | 0.0       | 10.7                 | 4,000                | 6,300                | < 2.66              | 12                         | 20               | 130 M            | 162    |
| MPF          | 20                     | Initial             | 0.0       | 13.8                 | 3,600                | !                    |                     |                            |                  |                  | ]      |
|              |                        | l-Year              | NS        | NS                   | NS                   |                      |                     |                            |                  |                  |        |
| MPG          | 18                     | Initial             | 0.0       | 10.4                 | > 20,000             | 38,000 <sup>j/</sup> | 145 <sup>j/</sup> M | 96 <sup>i/</sup>           | 30 <sup>i/</sup> | 54 <sup>j/</sup> | 325    |
|              |                        | l-Year              | 0.0       | 14.0                 | 16,400               | 18,000               | < 1.1               | 61 M                       | 23 M             | 110 M            | 194    |
| HdM          | 18                     | Initial             | 0.0       | 7.8                  | 19,600               | 21,000               | 43                  | 61                         | 14               | 26               | 144    |
|              |                        | l-Year              | 0.4       | 14.0                 | 4,000                |                      | -                   |                            |                  | 1                | 8788   |
| IdM          | 18                     | Initial             | 0.0       | 13.8                 | 9,800                | 15,000               | 55                  | 81                         | 20               | 34               | 190    |
|              |                        | l-Year              | 0.0       | 15.0                 | 19,200               | 32,000               | < 5.4               | 41 M                       | 26               | 130 M            | 197    |
| MW-A64       | $N/A^{k\prime}$        | Initial             | 1.0       | 1                    | > 20,000             | ł                    |                     |                            |                  |                  |        |
|              |                        | l-Year              | 0.0       | 14.0                 | 16,400               | ]                    |                     |                            |                  |                  |        |
| MW-A66       | $N/A^{k'}$             | Initial             | NS        |                      | NS                   |                      | ł                   |                            |                  | -                |        |
|              |                        | l-Ycar              | 0.0       | 15.2                 | > 20,000             |                      | 3                   | 1                          |                  |                  | 8      |
| W-416        | 8-18                   | Initial             | 20.5      | 0.7                  | 16                   |                      |                     | 1                          |                  |                  |        |
| (Background) | (pı                    | l-Year              | ł         | 1                    | I                    |                      |                     |                            |                  | 1                | 1      |

022/726876/WURTS/4 XLS/Table 2.2

# INITIAL AND 1-YEAR SOIL GAS FIELD AND LABORATORY ANALYTICAL RESULTS TABLE 2.2 (Continued) SITES SS-06 AND ST-40

WURTSMITH AFB, MICHIGAN

- <sup>al</sup> Laboratory analysis of soil gas performed using USEPA Method TO-3. Laboratory TVH referenced to jet fuel (MW=156). <sup>bl</sup> TVH = total volatile hydrocarbons.
- - <sup>cf</sup> ft bgs = feet below ground surface.
     <sup>df</sup> Soil gas sampling performed in July and August 1996 (Initial), and September 1997 (1-Year).
     <sup>ef</sup> ppnv = parts per million, volume per volume.
     <sup>ff</sup> --- = not analyzed.
- <sup>g'</sup> Field TVII measurement not documented in the field book.
- $^{W}~M=1.aboratory$  reported value may be biased due to apparent matrix interferences.  $^{V}~NS$  = No sample collected; MP was flooded.
- $\vec{\mu}$  Result averaged with duplicate sample result.  $\vec{\nu}$  N/A = Information not available.

year of bioventing system operation. Soil gas field TVH screening results presented in Table 2.2 indicate a 1 to 2 order of magnitude reduction at 9 of 24 VW and MP locations, less than 1 order of magnitude reduction at 10 locations, and an increase at 2 locations (MPD-12 and MPI-18). Comparison between initial and 1-year data for 3 locations (VW2, MPD-18, and MPF-20) could not be made due to insufficient data.

Soil gas samples for laboratory TVH and BTEX analyses were collected at eight locations before bioventing system startup (initial), and at eight locations following 1 year of system operation (1-year). Six of the eight sampling locations were the same for the initial and 1-year sampling events. As can be seen from the results at MPA-11, MPB-18, MPC-5, MPC-18, and MPG-18, total BTEX and TVH concentrations in soil gas were reduced between approximately 40 and 99 percent during the first year of system operation. The only exception to this trend was the soil gas sample for MPI-18, which showed an increase in TVH concentration (15,000 to 32,000 ppmv) and a slight increase in total BTEX concentration (190 to 197 ppmv) after 1 year of system operation. Although an overall decrease in total BTEX concentration was observed. results for xylenes indicate increased concentrations of this compound at 4 locations (MPB-18, MPC-18, MPG-18, and MPI-18). The apparent increase in xylenes at three of these locations may be the result of the 1-year laboratory-reported values being biased due to matrix interference. Field and analytical soil gas results suggested a significant degree of remediation of hydrocarbon contaminants in the unsaturated soils at Sites SS-06 and ST-40. However, these results also indicated that sufficient fuel hydrocarbons remained in unsaturated soils to warrant continued bioventing treatment.

### 2.3.3.2.3 In Situ Respiration Test Results

Initial and 1-year *in situ* respiration (oxygen utilization) testing was performed at the POL Yard in August 1996 and September 1997, respectively. Table 2.3 summarizes initial and 1-year respiration and fuel biodegradation rates at the site. Observed oxygen utilization and calculated fuel biodegradation rates decreased at two locations (MPA-11 and MPE-18) and increased at two locations (MPC-12 and MPC-18) following 1 year of full-scale bioventing system operation. Although the results were mixed, the average rates for these four locations decreased approximately 25 percent compared with the initial rates. Initial respiration testing was not performed at MPG and MPH, so comparisons with the 1-year rates cannot be made for these locations.

Oxygen utilization and fuel biodegradation rates typically decrease with continued bioventing as the lighter, more readily biodegraded hydrocarbons are preferentially destroyed over more biologically recalcitrant, higher-molecular-weight hydrocarbons. As demonstrated by the soil gas results presented in Table 2.2 and *in situ* respiration testing results presented in Table 2.3, fuel hydrocarbon concentrations have been significantly reduced, but sufficient hydrocarbons remained in the unsaturated soils to sustain moderate respiration rates.

### 2.4 SOIL SAMPLING RESULTS SUMMARY

Soil sampling results for the 1995 and 1996 investigations indicated significant petroleum-hydrocarbon contamination in vadose zone soils beneath Sites SS-06 and ST-40. The greatest extent and generally highest concentrations of soil contamination

2-18

|        |        | 1      | -      |            |
|--------|--------|--------|--------|------------|
| 1,080  | 1,000  | 930    | 1,910  | 1,680      |
| 0.19   | 0.18   | 0.19   | 0.40   | 0.35       |
| -      | 1      | ł      | 1      | <b> </b> . |
| 820    | 780    | 2,100  | 1      | 1          |
| 0.15   | 0.15   | 0.44   |        |            |
| MPC-12 | MPC-18 | MPE-18 | MPG-18 | MPH-18     |

<sup>2/</sup> Location-Depth gives screened interval location and depth below ground surface (bgs).

 $^{\rm b/}$  %  $\rm O_2$  /hr = percent oxygen per hour.

<sup>c'</sup> Initial and 1-Year biodegradation rates based on moisture content of the soil during initial sampling. 1-year soil sampling was not performed.

 $^{dr}$  mg/kg/ycar = milligrams of hydrocarbons per kilogram of soil per year.

e' ---- = not measured or not calculated.

022/726876/WURTS/4.xls/Table 2.3

at Sites SS-06 and ST-40 have been detected in a smear zone located approximately between 17 and 21 feet bgs. In localized areas near VW5, VW1, SB06-008, and the former Site ST-40 UST the vertical extent of soil contamination is much greater, with contamination beginning between about 1 foot bgs (VW5) to 9 feet bgs (Site ST-40), and extending downward to the groundwater surface at depths between 18 and 21 feet bgs. The distribution of vadose zone contamination suggests that the areas near VW5, VW1/SB06-008, and the former Site ST-40 UST are locations of previous fuel releases. Petroleum hydrocarbons appear to have migrated vertically from these assumed release locations to the groundwater surface, then have become smeared through capillary fringe soils while migrating horizontally in the direction of groundwater flow (northeast).

Table 2.1 summarizes soil sampling results and highlights values exceeding MDEQ generic soil leaching cleanup criteria for protection of residential groundwater. Prebioventing ethylbenzene and total xylenes soil concentrations exceeded the residential soil leaching criteria at several locations, indicating that these petroleum constituents should be considered chemicals of potential concern (COPCs) at Sites SS-06 and ST-40. Based on the general reduction of BTEX concentrations observed during the 1-year soil gas sampling event, it is anticipated that ethylbenzene and xylenes concentrations in site soils will meet applicable MDEQ cleanup criteria after 2 years of full-scale air injection bioventing at the site. MDEQ cleanup criteria applicable to Sites SS-06 and ST-40 are further discussed in Section 3.

### SITE CLEANUP REQUIREMENTS

### 3.1 SITE CHARACTERIZATION REQUIREMENTS

The objective of confirmatory soil sampling is to support a NFRAP recommendation for the soils contaminated by JP-4 jet fuel in the vicinity of the former ASTs and USTs. These soil sampling results will be used, as appropriate, to pursue formal closure of vadose zone soils at Sites SS-06 and ST-40 with MDEQ. This SAP targets unsaturated soils beneath and in the immediate vicinity of the POL Yard bermed areas.

### 3.2 STATE SOIL CLEANUP STANDARDS

MDEQ has adopted a tiered, risk-based approach to the remediation of petroleumhydrocarbon contaminated sites that is similar to the American Society for Testing and Materials (ASTM, 1995) risk-based corrective action (RBCA) process and Air Force strategy outlined in the *Handbook for Remediation of Petroleum-Contaminated Sites* (AFCEE, 1998). This approach allows for the establishment of site-specific corrective action requirements based on an analysis of potential receptor exposures to chemical contamination at or migrating from the release site. Under the RBCA paradigm, both generic cleanup criteria (developed by MDEQ) and site-specific chemical fate and exposure data can be used to identify the most cost-effective remedial strategy for a particular site.

The first level of evaluation in MDEQ's (1998a) approach, a Tier 1 or screeninglevel assessment, involves comparing contaminant concentrations measured in site media to MDEQ-defined, nonsite-specific generic cleanup criteria. The generic cleanup criteria are based on conservative exposure assumptions and vary depending on current and foreseeable land use scenarios. MDEQ (1998a, 1998c, and 1998d) has defined generic cleanup criteria for unrestricted (i.e., residential) and industrial and commercial (I, II, III, and IV) land use. These criteria were developed by MDEQ (1998a) using standardized algorithms designed to be health protective of potential human receptors under each land use scenario.

The generic cleanup criteria are used to identify which, if any, contaminants and environmental medium may warrant additional evaluation or remediation to protect human receptors. If measured site concentrations do not exceed the applicable generic cleanup criteria, no additional remedial action is necessary. However, institutional controls such as deed restrictions may be appropriate if industrial/commercial cleanup criteria are used. In the event that measured site concentrations exceed the applicable

3-1

generic cleanup criteria, additional corrective action, or a more comprehensive evaluation (i.e., Tier 2), must be pursued.

A Tier 2 evaluation is more comprehensive than a Tier 1 analysis because it requires quantitative contaminant fate and transport calculations and development of site-specific cleanup criteria based on site-specific conditions. The Tier 2 evaluation is used to identify if any unacceptable exposures could occur at the site considering existing contaminant concentrations in site media, potentially completed exposure pathways, and possible receptor scenarios. Although Tier 2 evaluations usually involve a more rigorous analysis, they result in a more focused evaluation of those contaminants that actually pose a risk to potential receptors.

### 3.3 CLEANUP CRITERIA FOR THE POL YARD

### 3.3.1 Land Use, Migration and Exposure Routes, and Potential Receptors

The current and projected future land use of Sites SS-06 and ST-40 is industrial. A two-lane road and railroad tracks are located north of Sites SS-06 and ST-40, and vacant land is located adjacent to the east, west, and south sides of the site. The sites are planned to remain industrial, with the northwest portion of the site being used as an active bulk fuel storage area for the airport operations. The sites are surrounded by a chain-link fence and locked gates restrict access to only authorized personnel.

It is anticipated that the most significant contaminant migration pathway resulting from soil contamination at Sites SS-06 and ST-40 is leaching of contaminants from soil to groundwater. Currently, there is no on-base beneficial use of groundwater from the shallow aquifer. Wurtsmith AFB obtains its drinking water from the local municipality. As a result, exposure of onsite and off-site human receptors to site contaminants through ingestion of, inhalation of, or dermal contact with contaminants in groundwater extracted for potable use is unlikely. Chemicals in groundwater at Sites SS-06 and ST-40 do not reach surface water because groundwater in the vicinity is pumped and treated before it reaches any surface water body (ICF Kaiser, 1998).

Current and future onsite workers and future construction workers are likely to represent the primary human receptor populations. The potential exposure routes for these population groups include inhalation of fugitive dust, dermal contact with soil, and incidental ingestion of soil. Dermal contact with groundwater is not expected because of the typical depth of the water table at these sites (i.e., 17 to 21 feet bgs). However, the actual exposure potential for current and future onsite workers and future construction workers is expected to be minimal. Site access restrictions will limit exposure to onsite workers. Additionally, the unused USTs and ASTs have been removed, and the associated piping has been abandoned. Therefore, most construction/demolition activities at the site have been completed, and the potential for worker exposure to contaminated soil is minimal. Soil sampling results from previous investigations (Table 2.1) indicate that soil contamination appears to be significant only within soils located greater than 4 feet bgs (Table 2.1; Figure 2.7). No ecological receptors are likely to be exposed to contaminants in impacted site media under current or anticipated future land uses, because the site has been so highly disturbed that adequate permanent habitat does not exist.

### 3.3.2 Tier 1 Cleanup Criteria

Based on the land use assumptions and potential exposure pathways described in the previous section, the generic MDEQ cleanup criteria appropriate for Tier 1 screening of unsaturated soils at Sites SS-06 and ST-40 include the cleanup criteria for industrial and commercial (II, III, and IV) land uses (MDEQ, 1998d). Site contaminant concentrations measured in soil (maximum concentration, unless noted otherwise), as determined during the 1995 and 1996 sampling efforts are presented in Table 3.1 along with MDEO-defined cleanup criteria. Generic cleanup criteria for soil that are protective of underlying groundwater and that are health-protective for the direct exposure pathways are provided. As discussed in the Final Feasibility Report for Sites SS-06, ST-40, SS-13, and OT-46 (ICF Kaiser, 1998), conditions in the POL Yard do not pose unacceptable risks to human health if the Benzene Plant pump-and-treat system continues to operate until generic industrial drinking water criteria are satisfied. However, because generic residential drinking water criteria must be met at the base boundary, soil cleanup criteria which are designed to ensure contaminants do not leach from site soils and cause groundwater to exceed residential drinking water protection criteria have been used as conservative screening criteria to determine the COPCs to be analyzed for during confirmation sampling.

As shown on Table 3.1, the only pre-bioventing contaminants detected in site soils at concentrations exceeding the most stringent cleanup criteria (i.e., soil leaching criteria that affords residential drinking water protection) are ethylbenzene and total xylenes at Site SS-06, and total xylenes and carbon disulfide at Site ST-40. Benzene, acetone, and tetrachloroethene (PCE) were not detected at concentrations above generic soil cleanup criteria; however, some sample reporting limits for these compounds exceeded the most stringent soil cleanup criteria (ICF Kaiser, 1998). The highest reporting limits for these compounds exceeded the MDEQ (1998c) generic residential drinking water protection criteria. The elevated reporting limits presumably are the result of sample dilution that was required due to high concentrations of other analytes (typically xylenes) in these soil samples. Based on this comparison, these nondetected compounds are conservatively considered COPCs. Consequently, benzene, acetone, and PCE, along with ethylbenzene, xylenes, and carbon disulfide, are targeted for the confirmation sampling event, as described in Section 5.

Lead and naphthalene have not been retained as COPCs for Sites SS-06 and ST-40. Although lead concentrations in three subsurface soil samples were at or exceeded the statewide default background level of 21,000  $\mu$ g/kg, lead was eliminated as a COPC following a statistical analysis of analytical results for lead (ICF Kaiser, 1998). MDEQ (1995a and 1995b) allows for the use of representative concentrations (such as the 95-percent upper confidence limit [UCL]) for comparison with Tier 1 criteria. The 95-percent UCL value for lead at the POL Yard was conservatively calculated in the Final Remedial Investigation report (ICF Kaiser, 1998) to be 5,400  $\mu$ g/kg, which is well below the state default background level. Naphthalene, which originally was considered a COPC for the site (MDEQ, 1998b), is not included for confirmation sampling because the pre-bioventing maximum site concentration (6,400  $\mu$ g/kg) is below the revised generic soil cleanup criterion of 17,000  $\mu$ g/kg for residential drinking water protection (MDEQ, 1998b and 1998c).

| Compound                                        | Units               | Site<br>Concentration*  | MDEQ Generic<br>Residential Drinking<br>Water Protection Criteria <sup>6</sup> | MDEQ Generic Industrial<br>and Commercial Drinking<br>Water Protection Criteria <sup>e</sup> | MDEQ Generic<br>Industrial Direct<br>Contact Criteria <sup>d</sup> | Statewide<br>Default<br>Background<br>Levels <sup>e</sup> | Representative<br>Concentration<br>Exceeds<br>Criteria |
|-------------------------------------------------|---------------------|-------------------------|--------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|--------------------------------------------------------------------|-----------------------------------------------------------|--------------------------------------------------------|
| <u>SITE SS-06</u><br>Volatile Organic Compounds |                     |                         |                                                                                |                                                                                              |                                                                    |                                                           |                                                        |
| Benzene                                         | μg/kg <sup>f/</sup> | 6,800#                  | 100                                                                            | 100                                                                                          | 4.0E+05                                                            | NA <sup>h</sup>                                           | Yes                                                    |
| Toluene                                         | µg∕kg               | 550                     | 16,000                                                                         | 16,000                                                                                       | 2.5E+05                                                            | NA                                                        | No                                                     |
| Ethylbenzene                                    | µg/kg               | 24,600                  | 1,500                                                                          | 1,500                                                                                        | 1.4E+05                                                            | NA                                                        | Yes                                                    |
| Total Xylenes                                   | µg/kg               | 161,000                 | 5,600                                                                          | 5,600                                                                                        | 1.5E+05                                                            | NA                                                        | Yes                                                    |
| Carbon Disulfide                                | µg/kg               | 14<br>5.0 <sup>2/</sup> | 16,000                                                                         | 46,000                                                                                       | 2.8E+05                                                            | NA                                                        | No                                                     |
| Tetrachloroethene                               | μg/kg               | 5.0-                    | 100                                                                            | 100                                                                                          | 8.8E+04                                                            | NA                                                        | No                                                     |
| PAHs                                            |                     |                         |                                                                                |                                                                                              |                                                                    |                                                           |                                                        |
| Acenaphthene                                    | μg/kg               | 100                     | 3.0E+05                                                                        | 8.7E+05                                                                                      | 8.1E+08                                                            | NA                                                        | No                                                     |
| Acenaphthylene                                  | μg/kg               | 130                     | 2,900                                                                          | 8,500                                                                                        | 1.6E+07                                                            | NA                                                        | No                                                     |
| Anthracene                                      | μg/kg               | 87.8                    | 41,000                                                                         | 41,000                                                                                       | 1.0E+09                                                            | NA                                                        | No                                                     |
| Chrysene                                        | µg/kg               | 10.9                    | NLL <sup>V</sup>                                                               | NLL                                                                                          | 2.1E+07                                                            | NA                                                        | No                                                     |
| Fluoranthene                                    | μg/kg               | 7,200                   | 7.2E+05                                                                        | 7.2E+05                                                                                      | 5.4E+08                                                            | NA                                                        | No                                                     |
| Fluorene                                        | µg/kg               | 390                     | 3.9E+05                                                                        | 8.9E+05                                                                                      | 5.4E+08                                                            | NA                                                        | No                                                     |
| Naphthalene<br>Phenanthrene                     | μg/kg               | 6,400                   | 17,000                                                                         | 50,000                                                                                       | 1.6E+08                                                            | NA                                                        | No                                                     |
| Pyrene                                          | μg/kg<br>μg/kg      | 1,060<br>6,400          | 12,000<br>4.70E+05                                                             | 34,000<br>4.70E+05                                                                           | 1.6E+07                                                            | NA                                                        | No                                                     |
| •                                               | μg/kg               | 0,400                   | 4.702-03                                                                       | 4.702+03                                                                                     | 3.4E+08                                                            | NA                                                        | No                                                     |
| Metals                                          |                     | الأمدين                 |                                                                                |                                                                                              |                                                                    |                                                           |                                                        |
| Lead                                            | µg/kg               | 5,400                   | NA                                                                             | NA                                                                                           | 9.00E+05                                                           | 21,000                                                    | No                                                     |
| <u>SITE ST-40</u><br>Volatile Organic Compounds |                     |                         |                                                                                |                                                                                              |                                                                    |                                                           |                                                        |
| Benzene                                         | μg/kg               | 28,000                  | 100                                                                            | 100                                                                                          | 4.0E+05                                                            | NA                                                        | Yes                                                    |
| Toluene                                         | μg/kg               | 1.0*/                   | 16,000                                                                         | 16,000                                                                                       | 2.5E+05                                                            | NA                                                        | No                                                     |
| Ethylbenzene                                    | µg∕kg               | 1.0 <sup>2'</sup>       | 1,500                                                                          | 1,500                                                                                        | 1.4E+05                                                            | NA                                                        | No                                                     |
| Total Xylenes                                   | μg/kg               | 69,000                  | 5,600                                                                          | 5,600                                                                                        | 1.5E+05                                                            | NA                                                        | Yes                                                    |
| Acetone                                         | · µg/kg             | 280,000#                | 15.000                                                                         | 42,000                                                                                       | 7.4E+07                                                            | NA                                                        | Yes                                                    |
| Carbon Disulfide                                | μg/kg               | 19,000                  | 16,000                                                                         | 46,000                                                                                       | 2.8E+05                                                            | NA                                                        | Yes                                                    |
| Tetrachloroethene                               | μg/kg               | 28.000                  | 100                                                                            | 100                                                                                          | 8.8E+04                                                            | NA                                                        | Yes                                                    |
| PAHs                                            | <i></i>             |                         |                                                                                |                                                                                              | 0.02704                                                            |                                                           | 105                                                    |
| Acenaphthene                                    | µg/kg               | 100#/                   | 3.0E+05                                                                        | 8.7E+05                                                                                      | 8.1E+08                                                            |                                                           |                                                        |
| Acenaphthylene                                  | μg/kg               | 100                     | 2,900                                                                          |                                                                                              |                                                                    | NA                                                        | No                                                     |
| Anthracene                                      |                     | 100                     |                                                                                | 8,500                                                                                        | 1.6E+07                                                            | NA                                                        | No                                                     |
|                                                 | µg/kg               |                         | 41,000                                                                         | 41,000                                                                                       | 1.0E+09                                                            | NA                                                        | No                                                     |
| Chrysene                                        | µg/kg               | 100                     | NLL                                                                            | NLL                                                                                          | 2.1E+07                                                            | NA                                                        | No                                                     |
| Fluoranthene                                    | µg/kg               | 100                     | 7.2E+05                                                                        | 7.2E+05                                                                                      | 5.4E+08                                                            | NA                                                        | No                                                     |
| Fluorene                                        | µg/kg               | 170                     | 3.9E+05                                                                        | 8.9E+05                                                                                      | 5.4E+08                                                            | NA                                                        | No                                                     |
| Naphthalene<br>Phenanthrene                     | µg/kg               | 920                     | 17,000                                                                         | 50,000                                                                                       | 1.6E+08                                                            | NA                                                        | No                                                     |
|                                                 | µg∕kg               | 400                     | 12,000                                                                         | 34,000                                                                                       | 1.6E+07                                                            | 'NA                                                       | No                                                     |
| Pyrene                                          | µg/kg               | 100"                    | 4.70E+05                                                                       | 4.70E+05                                                                                     | 3.4E+08                                                            | NA                                                        | No                                                     |
| Metals                                          |                     |                         |                                                                                |                                                                                              |                                                                    |                                                           |                                                        |
| Lead                                            | μg/kg               | 5,400 <sup>0</sup>      | 1,000                                                                          | 1,000                                                                                        | 9.00E+05                                                           | 21,000                                                    | No                                                     |

### TABLE 3.1 IDENTIFICATION OF CHEMICALS OF POTENTIAL CONCERN FOR UNSATURATED SOILS SITES SS-06 AND ST-40 WURTSMITH AFB, MICHIGAN

NOTE: Site maximum concentrations that exceed a MDEQ-defined soil cleanup criterion have been shaded for easy reference.

<sup>4</sup> Maximum concentration detected during ICF Technology (1995), Brown & Root Environmental (1995), and Parsons ES (1996b) investigations except as noted.

<sup>b'</sup> Soil leaching criterion that is protective of underlying groundwater for residential potable use (MDEQ, 1998a; 1998c).

<sup>c/</sup> Soil leaching criterion that is protective of underlying groundwater for industrial/commercial potable use (MDEQ, 1998a; 1998d).

<sup>d'</sup> Health-protective value to protect workers from long-term, systemic health effects from incidental ingestion and dermal absorption of chemicals in soil (MDEQ, 1998a; 1998d).

<sup>e'</sup> Statewide background default levels from Part 201 Training Manual (MDEQ, 1998a).

<sup>t'</sup> mg/kg = micrograms per kilogram.

<sup>g</sup> Representative concentration is maximum detection limit for high nondetect value.

<sup>*bv*</sup> NA = Not applicable.

 $^{i\nu}$  NLL = Chemical is not likely to leach under most soil conditions (MDEQ, 1998a).

<sup>j</sup> Representative concentration is the 95 percent upper confidence limit (UCL) for this compound (ICF Kaiser, 1998).

### **3.3.3 Additional Evaluation and Actions**

Following confirmation soil sampling (Section 5), soil sampling results will be compared to MDEQ (1998d) generic residential soil cleanup criteria. For those soil contaminants with site concentrations below the generic residential cleanup criteria, no further evaluation will be necessary. If some soil contaminants exceed the generic residential cleanup criteria, three options are available; 1) continue bioventing system operation until generic residential criteria are met; 2) develop Tier 2 site-specific cleanup criteria; and 3) pursue closure based on generic industrial cleanup criteria.

Continued operation of the bioventing system until generic residential criteria are met would be the preferable option because it would ultimately result in site closure without restrictions, and it is generally much easier to get regulatory concurrence on meeting generic criteria than with Tier 2 (site-specific) criteria. Pursuing site closure based on generic industrial criteria would involve establishing land-use restrictions, and performing a contaminant fate and transport evaluation and long-term groundwater monitoring to assure that residential groundwater criteria are met at the base boundary.

# 2-YEAR TESTING AND SOIL GAS SAMPLING FOR FULL-SCALE BIOVENTING

Prior to performing confirmation soil sampling, *in situ* respiration testing and soil gas sampling will be performed at Sites SS-06 and ST-40. Remediation progress as the result of 2 years of full-scale bioventing system operation will be evaluated by comparing the 2-year testing and soil gas sampling results to the initial and 1-year results. Approximately 30 days prior to soil gas sampling and respiration testing, the blower system will be shut down to allow subsurface conditions to return to equilibrium. Parsons ES will contact Wurtsmith AFB personnel to request that the blower be turned off at the appointed time. Soil gas sampling and *in situ* respiration testing procedures are described in detail in the *Draft Final Bioventing Pilot Test and Full-Scale System Installation Work Plan, Sites SS-06 and ST-40, Wurtsmith Air Force Base, Michigan* (Parsons ES, 1996a) and summarized in this section.

### 4.1 SOIL GAS SAMPLING

Soil gas samples will be collected from the VW and MPs for field and laboratory analyses. Soil gas from the VWs and all MP screened intervals will be analyzed using direct-reading field instruments for oxygen, carbon dioxide, and TVH. Soil gas samples from eight locations (MPA-11, MPB-18, MPC-5, MPC-18, MPD-12, MPE-18, MPG-18, and MPI-18) will be collected in 1-liter SUMMA<sup>®</sup> canisters in accordance with the *Field Sampling Plan for AFCEE Bioventing* (Engineering-Science, Inc. [ES], 1992) and the site-specific field sampling plan (Appendix B), and submitted for laboratory analysis of BTEX and TVH by US Environmental Protection Agency (USEPA) Method TO-3, with TVH referenced to jet fuel. The soil gas sampling results will be used to determine reductions in BTEX and TVH concentrations during the 2-year period of operation of the full-scale bioventing system.

Soil gas sample canisters will be placed in a small cooler and packed with foam pellets or other material to prevent excessive movement during shipment. Samples will be shipped at ambient temperatures to prevent condensation of hydrocarbons. A chainof-custody form will be filled out, and the cooler will be shipped to the laboratory for analysis.

### 4.2 IN SITU RESPIRATION TEST

The objective of the *in situ* respiration test is to determine the rate at which soil bacteria degrade petroleum hydrocarbons. To quantify the changes in respiration rates caused by 2 years of bioventing system operation, respiration tests will be performed at

MPA-11, MPC-12, MPC-18, MPE-18, MPG-18, and MPH-18. Soil gas sampling and respiration testing performed during previous pilot testing and system monitoring events at these six MP locations has provided the following evidence of bacterial depleted oxygen concentrations (0 biodegradation of petroleum hydrocarbons: percent), elevated carbon dioxide concentrations (> 10 percent), and estimated hydrocarbon biodegradation rates > 1,000 mg/kg/year (see Tables 2.2 and 2.3). Using l-cubic-foot-per-minute (cfm) pumps, air will be injected into approximately six MP depth intervals containing low levels (< 2 percent) of oxygen. A 20-hour air injection period will be used to oxygenate contaminated soils in the vicinity of the MP intervals. At the end of the 20-hour air injection period, the air supply will be cut off, and oxygen, carbon dioxide, and TVH concentrations will be monitored for the following 48 to 72 hours. The decline in oxygen and increase in carbon dioxide concentrations over time will be used to estimate rates of bacterial degradation of fuel The 2-year testing results will be compared with previous results to residuals. determine changes in respiration rates resulting from decreases in residual hydrocarbons in unsaturated soils. Additional details on the *in situ* respiration test can be found in the bioventing protocol document (Hinchee et al., 1992).

# CONFIRMATION SOIL SAMPLING AND ANALYSIS PLAN

The following SAP describes the sampling locations and procedures and the analytical methods proposed to collect sufficient data to verify remediation of Sites SS-06 and ST-40 soils to MDEQ (1998c) generic residential cleanup criteria and support a NFRAP recommendation for the sites. The sampling strategy discussed in this section was developed using recommendations in the *Guidance Document for Verification of Soil Remediation* (Guidance Document) (Michigan Department of Natural Resources [MDNR], 1994).

As described in Section 2, soil contamination at Sites SS-06 and ST-40 was characterized during the 1995 and 1996 investigations. Based on results from these investigations, petroleum-hydrocarbon contamination exceeding one or more of MDEQ (1998c) generic residential cleanup criteria appear to have been confined to vadose zone soils between 1 and 21 feet bgs, but predominantly between 17 and 21 feet bgs. To verify that petroleum hydrocarbon contaminants in site soils have been remediated to within acceptable levels, Parsons ES proposes to sample subsurface soils within the area of soil contamination determined based on previous soil and soil gas sampling results.

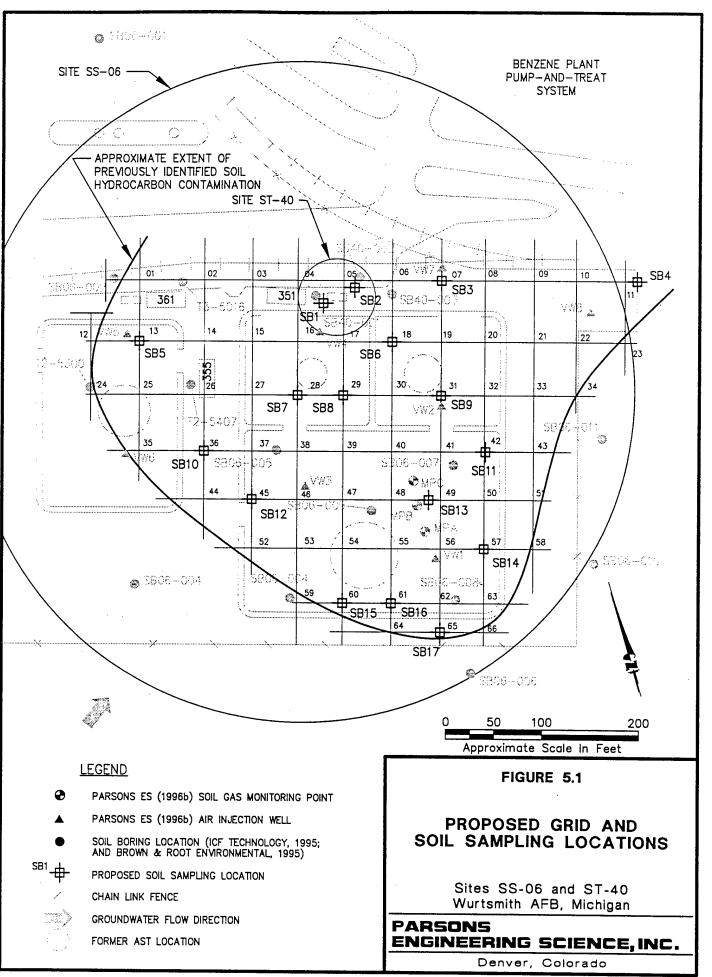
### 5.1 SAMPLING STRATEGY

The sampling strategy presented in this SAP combines a statistically random strategy combined with a biased strategy that targets previously-identified hot spots. The statistically random strategy is described in the Guidance Document (MDNR, 1994) and employs the use of gridding to facilitate the unbiased selection of sampling locations, and statistical tools for evaluating the resulting data. Because of the relatively large size of the POL Yard site, the goal of the statistically random strategy is to provide a 95 percent confidence level of determining any hot spot concentrations of residual fuel hydrocarbons remaining in site soils after 2 years of bioventing remediation. In addition to the random strategy, four soil sampling locations are proposed for areas with previously identified high concentrations of fuel hydrocarbons to confirm that these former hot spots have been adequately remediated.

Sampling locations for the random strategy were determined, following procedures described in the Guidance Document (MDNR, 1994), by first establishing a grid for the site, then selecting a subset of grid stations using a random numbers table. Although greater than the calculated value suggested in the Guidance Document (MDNR, 1994), a 50-foot grid interval was selected for this site based on the relatively large size of the site and the continuity and relative consistency of the smear zone.

Only the grid stations within the area of previously detected contamination were included in the set used for selecting the sampling locations. The proposed sampling locations and grid are shown on Figure 5.1. Soil samples for laboratory analysis will be collected at 13 grid stations selected using a random numbers table and at four additional locations (25 percent of the 66 grid stations within the contaminated area) to allow a data pool large enough for statistical analysis. The four additional locations were selected in order to increase the confidence level of determining any hot spots remaining in site soils following remediation, by resampling locations where ethylbenzene and total xylenes previously exceeded their respective MDEQ (1998d) generic cleanup criterion. Supporting calculations for the random sampling strategy are presented in Appendix A.

Because the greatest extent and highest concentrations of fuel hydrocarbons were previously detected in the smear zone, the proposed sampling strategy focuses on this zone. Contamination was detected in soils above the smear zone only in a few areas, which are likely the original fuel release locations. Outside the suspected fuel release areas, vadose zone soil contamination is restricted to within approximately 5 feet of the groundwater surface. Therefore, the majority of soil samples submitted for laboratory analysis will be collected from the smear zone. Soil samples collected above the smear zone will be submitted for laboratory analysis only if field headspace screening results indicate the presence of hydrocarbon contamination, or if the samples are collected in areas where shallow contamination previously has been identified. The number of soil samples, soil sampling procedures, and the analytical methods proposed for the confirmation soil sampling event are described in the following sections.


### 5.2 SOIL SAMPLING

This section describes the scope of work required for collecting confirmation soil samples at Sites SS-06 and ST-40. Soil samples will be collected at an estimated 17 locations. One or two soil samples will be collected at each location. A maximum of two additional locations may be sampled if field screening results indicate significant contamination extending beyond the proposed sampling area. Proposed borehole locations are shown on Figure 5.1.

Soil sampling will be conducted by qualified Parsons ES scientists and technicians trained in the conduct of soil sampling, records documentation, and chain-of-custody procedures. In order to provide complete documentation of the sampling event, detailed records will be maintained by the Parsons ES field hydrogeologist. In addition, sampling personnel will have thoroughly reviewed this SAP prior to sample collection and will have a copy available onsite for reference. Additional details of sampling procedures are presented in Appendix B, the FSP.

### 5.2.1 Sample Collection

Soil samples will be collected using a Geoprobe<sup>®</sup> system, a hydraulically powered percussion/probing machine capable of advancing sampling tools through unconsolidated soils. This system provides for the rapid collection of soil samples at



shallow depths while minimizing the generation of investigation-derived waste (IDW) materials.

For the confirmation sampling event, each borehole will be advanced to no less than 1 foot above the groundwater surface; maximum sampling depths are expected to be between 16 and 20 feet bgs. At soil borings where shallow contamination has been identified or is suspected due to the close proximity of former USTs or ASTs (proposed locations SB1, SB2, SB5, SB9, SB13, SB14, SB15 and SB16), soil samples will be collected at 5-foot intervals (5, 10 and 15 feet bgs) from ground surface to the top of the smear zone at 16 feet bgs. These samples will be field-screened for VOCs and examined for physical evidence of contamination. A sample also will be collected from the smear zone between 16 and 20 feet bgs. At soil borings where contamination is present in the smear zone only, based on results of previous investigations (SB3, SB4, SB6, SB7, SB8, SB10, SB11, SB12, and SB17), the probe will be driven to the smear zone, and only one sample will be collected between 16 and 20 feet bgs.

The majority of soil samples submitted for laboratory analysis will be collected from the smear zone (16 to 20 feet bgs). Soil samples collected above the smear zone (0 to 16 feet bgs) will be submitted for laboratory analysis only if field headspace screening results indicate the presence of hydrocarbon contamination or if the samples are collected in areas with previously identified shallow contamination. Based on field screening results, a minimum of one and maximum of two samples with the greatest apparent contamination from each borehole will be selected and submitted for laboratory analysis.

Discrete soil samples collected during the proposed confirmation sampling effort will be classified according to the Unified Soil Classification System (USCS) and described in accordance with the standard Parsons ES soil description format. However, continuous sampling will not be performed because soils at the site have been characterized in previous investigation efforts as uniform, well-sorted silica sands from beneath the berm liner to the groundwater surface. All soil samples will be visually examined and field screened for VOCs using a photoionization detector (PID) or a total volatile hydrocarbon analyzer (TVHA).

Samples selected for laboratory analysis will be transferred directly from the Geoprobe<sup>®</sup> core sampler to EnCore<sup>TM</sup> samplers and sealed according to manufacturerrecommended procedures. Soil samples for laboratory analysis will be immediately placed in an insulated cooler containing ice. The soil samples will be maintained in a chilled condition until delivered to the analytical laboratory. The remaining soil not included in the laboratory sample will be removed from the Geoprobe<sup>®</sup> sampler for field TVH screening and lithologic logging. In the laboratory, soil samples to be submitted for laboratory analysis will be transferred from the EnCore<sup>TM</sup> samplers to soil sample vials and preserved with methanol in the laboratory within 48 hours of sample collection as described in USEPA Method SW5035. Soil samples will be analyzed using USEPA Method SW8260B for BTEX, trimethylbenzenes, butylbenzenes, isopropylbenzenes, carbon disulfide, acetone, and PCE, as listed in Table 5.1. After the samples for laboratory analysis have been collected, chain-of-custody procedures

# TABLE 5.1 PROPOSED SOIL SAMPLE ANALYTICAL METHODS, REPORTING LIMITS, AND NUMBER OF SAMPLES SITES SS-06 AND ST-40 WURTSMITH AFB, MICHIGAN

|                        | Maximum               |                     |                     | Field or   |
|------------------------|-----------------------|---------------------|---------------------|------------|
|                        | Number of             | Reporting           |                     | Fixed-Base |
| Analytical Method      | Samples <sup>a/</sup> | Limit <sup>b/</sup> | Units <sup>¢/</sup> | Laboratory |
| USEPA Method SW8260B   |                       |                     |                     |            |
| Benzene                | 23                    | 2.0                 | μg/kg               | Fixed-base |
| Toluene                | 23                    | 5.0                 | µg/kg               | Fixed-base |
| Ethylbenzene           | 23                    | 3.0                 | µg/kg               | Fixed-base |
| m-Xylene               | 23                    | 3.0                 | µg/kg               | Fixed-base |
| o-Xylene               | 23                    | 5.0                 | µg/kg               | Fixed-base |
| p-Xylene               | 23                    | 7.0                 | μg/kg               | Fixed-base |
| 1,2,4-Trimethylbenzene | 23                    | 7.0                 | μg/kg               | Fixed-base |
| 1,3,5-Trimethylbenzene | 23                    | 3.0                 | µg/kg               | Fixed-base |
| n-Butylbenzene         | 23                    | 5.0                 | μg/kg               | Fixed-base |
| sec-Butylbenzene       | 23                    | 7.0                 | μg/kg               | Fixed-base |
| tert-Butylbenzene      | 23                    | 7.0                 | μg/kg               | Fixed-base |
| Isopropylbenzene       | 23                    | 8.0                 | µg/kg               | Fixed-base |
| n-Propylbenzene        | 23                    | 2.0                 | µg/kg               | Fixed-base |
| Carbon disulfide       | 4                     | 1.4                 | μg/kg               | Fixed-base |
| Acetone                | 4                     | 8.8                 | μg/kg               | Fixed-base |
| Tetrachloroethene      | 4                     | 7.0 -               | µg/kg               | Fixed-base |

<sup>a</sup> Excludes QC samples. If optional boreholes are required, additional soil samples per optional borehole will be collected and analyzed.

<sup>b/</sup> Project reporting limit as specified in subcontract for analytical services.

<sup>c'</sup> µg/kg = micrograms per kilogram.

will be followed to establish a written record of sample handling and movement between the sampling site and the laboratory as described in the FSP (Appendix B).

### 5.2.2 Soil Analyses

The proposed soil analytical methods, estimated number of samples, and reporting limits are presented in Table 5.1. A maximum of 23 samples will be collected for laboratory analysis for BTEX and trimethylbenzenes by USEPA Methods SW5035 and SW8260B. The soil samples collected for BTEX analysis also will be analyzed for trimethylbenzene (TMB) isomers (1,2,4-TMB and 1,3,5-TMB), butylbenzenes and propylbenzenes at the request of MDEQ. In addition, four of these samples (from SB-1 and SB-2 in the vicinity of Site ST-40) will be analyzed for PCE, acetone, and carbon disulfide by USEPA Method SW8260B. All samples will be analyzed by Specialized Assays, Inc., State of Michigan-certified, and AFCEE-approved laboratory. Quality control (QC) samples also will be analyzed to assess laboratory methods. The laboratory will perform analyses on a minimum of one matrix spike, one laboratory control, and one laboratory blank for each analytical method requested. Field OC samples will be collected and analyzed as described in Section 5.4. A discussion of laboratory quality assurance (QA)/QC procedures, including matrix spike duplicate (MS/MSD) samples is presented in the QAPP (Appendix D). Two MS/MSD samples will be collected (one pair for every group of 20 samples).

### **5.2.3 Equipment Decontamination**

All sampling and downhole equipment will be decontaminated before use and between boreholes to prevent cross-contamination, as described in the FSP (Appendix B). All decontamination fluids will be stored in 55-gallon, US Department of Transportation (DOT) approved drums for proper disposal (see Section 5.4 and Appendix B).

### 5.3 FIELD QUALITY ASSURANCE/QUALITY CONTROL PROCEDURES

Field QC for soil will include collection of field replicates, rinseate blanks, and trip blanks. Soil QC sampling will include three replicates (minimum frequency of 10 percent) for VOC analysis; one rinseate blank; and one trip blank for each cooler submitted to the laboratory. Additional field QA/QC procedures are described in the QAPP (Appendix D).

### 5.4 MANAGEMENT OF INVESTIGATION-DERIVED WASTES

Handling of IDW will follow the base-wide procedures established by ICF Technology, Inc. (1994) and approved by MDEQ and USEPA. Decontamination water will be containerized, transported to Building 5092, and discharged into the oil/water separator. The use of the Geoprobe<sup>®</sup> for collecting soil samples will not generate significant amounts of soil cuttings, therefore disposal of contaminated soil will be limited to soils used for headspace screening and logging. Additional procedures for management of IDW are described in the FSP (Appendix B).

# CONFIRMATION SAMPLING REPORT FORMAT

Following receipt of the laboratory soil gas analytical results, a letter report will be prepared and submitted to AFCEE and Wurtsmith AFBCA. The letter report will summarize soil gas sampling and respiration testing results, and compare them with previous results to estimate remedial progress over two years of air injection bioventing.

Following receipt of the laboratory soil analytical results, a draft confirmation soil sampling report will be prepared and submitted to Wurtsmith AFBCA and AFCEE.

The report will contain the following information for Sites SS-06 and ST-40:

- Site plot plan showing sampling locations;
- Summary of field activities;
- Assessment of analytical results in comparison to applicable MDEQ soil cleanup criteria for benzene, ethylbenzene, xylenes, PCE, carbon disulfide, and acetone.
- Analytical results for toluene, butylbenzenes, propylbenzenes, and TMBs;
- Laboratory analytical reports and chain-of-custody forms;
- Borehole logs; and
- Conclusions and recommendations. If soil confirmation sampling results demonstrate that MDEQ (1998c) generic residential drinking water protection criteria have been met for all analytes of concern, then the data will be used to support an NFRAP decision document for vadose zone soils at the POL Yard. However, if soil confirmation sampling results demonstrate that any analyte exceeds the MDEQ generic residential drinking water criteria, then Parsons ES will prepare a results report in which the recommendation will be made to continue operating the bioventing system.

If MDEQ approves the closure of vadose zone soils at Sites SS-06 and ST-40, then Wurtsmith AFBCA will need to decommission the bioventing system; the AFCEE Extended Bioventing project does not provide for system decommissioning (i.e., well abandonment, blower system, and shed removal).

6-1

# WURTSMITH AFBCA SUPPORT REQUIREMENTS

The following Wurtsmith support is needed prior to the arrival of the drillers and the Parsons ES sampling team:

- Assistance in obtaining drilling and digging permits;
- Provision of a potable water supply for drilling and decontamination activities; and
- Assistance in obtaining access to Building 5092 for disposal of decontamination water.

# **PROJECT SCHEDULE**

The following schedule is contingent upon approval of this confirmation SAP and fulfillment of the Wurtsmith AFBCA support requirements outlined in Section 7.

| Event                                                                                  | Date           |
|----------------------------------------------------------------------------------------|----------------|
| Submit Draft Confirmation SAP to AFCEE, Wurtsmith AFBCA, USEPA, and MDEQ               | June/July 1998 |
| Receipt of AFCEE and Wurtsmith AFBCA, USEPA, and MDEQ Comments                         | August 1998    |
| Submit Final SAP, to AFCEE, Wurtsmith AFBCA, USEPA, and MDEQ                           | September 1998 |
| Perform Confirmation Sampling                                                          | October 1998   |
| Submit Draft Confirmation Sampling Report to AFCEE and Wurtsmith AFBCA                 | December 1998  |
| Receipt of AFCEE and Wurtsmith AFBCA Comments                                          | January 1999   |
| Submit Draft Final Confirmation Sampling Report to AFCEE,<br>Wurtsmith AFBCA, and MDEQ | February 1999  |

# POINTS OF CONTACT

Mr. Paul Rekowski AFBCA/OL-T 3950 East Arrow Street Oscoda, MI 48750 (517) 739-8155 Fax: (517) 739-2980

Major Ed Marchand AFCEE/ERT 3207 North Rd., Bldg 532 Brooks AFB, TX 78235-5363 DSN 240-4364 (210) 536-4364 Fax: (210) 536-4330

Ms. Laura Ripley USEPA Region 5 Waste Management Division 77 West Jackson Blvd. Chicago, IL 60604-3590 (312) 886-0850

Mr. Bruce Moore Michigan Department of Environmental Quality Environmental Response Division 300 South Washington Square Lansing, MI 48933 (517) 373-6413

Mr. John Hall Site Manager Parsons Engineering Science, Inc. 257 A 28 Road Grand Junction, CO 81503 (970) 244-8829 Fax: (970) 244-8829

Mr. John Ratz Project Manager Parsons Engineering Science, Inc. 1700 Broadway, Suite 900 Denver, CO 80290 (303) 831-8100 Fax: (303) 831-8208

Mr. Tom Pavlik Snell Environmental Group 1120 May Street Lansing, MI 48906-5599 (517) 374-6800 Fax: (517) 374-7390

022/726876/WURTS/7.DOC

# **REFERENCES CITED**

- Air Force Center for Environmental Excellence. 1998. Draft Handbook for Remediation of Petroleum-Contaminated Sites (A Risk-Based Strategy). Technology Transfer Division.
- American Society for Testing and Materials. 1995. Standard Guide for Risk-Based Corrective Action Applied at Petroleum Release Sites. Designation E 1739-95. November.
- Brown & Root Environmental. 1995. Final Report for the Closure of the Fuel Hydrant System, Wurtsmith AFB, Michigan. December.

Cummins and Twenter. 1986.

- Engineering-Science, Inc. 1992. Field Sampling Plan for AFCEE Bioventing. January.
- Hinchee, R.E., S.K. Ong, R.N. Miller, D.C. Downey, and R. Frendt. 1992. Test Plan and Technical Protocol for a Field Treatability Test for Bioventing. January.
- ICF Kaiser. 1998. Final Remedial Investigation/Feasibility Study Report, Sites SS-06 and ST-40, SS-13, and OT-46.
- ICF Technology, Inc. 1994. Final Sampling and Analysis Plan for IRP Sites SS-06, ST-40, and SS-13. June 27.
- ICF Technology, Inc. 1995. The United States Air Force Installation Restoration Program Site Characterization Summary, Sites SS-06, SS-13, and SS-40. March.
- Michigan Department of Environmental Quality (MDEQ). 1998a. Training Manual for Part 201. January.
- MDEQ. 1998b. Memorandum from Mr. Bruce Moore, Support Unit, Field Operations Section, Environmental Response Division, Michigan Department of Environmental Quality. Subject: Comments Regarding the One-Year Testing Results Report for Full-Scale Bioventing at the POL Yard, Sites SS-06 and ST-40, Wurtsmith AFB. February 26.
- MDEQ. 1998c. Soil: Residential and Commercial I, Part 201 Generic Cleanup Criteria and Screening Levels. March.

10-1

- MDEQ. 1998d. Soil: Industrial and Commercial II, III, and IV, Part 201 Generic Cleanup Criteria and Screening Levels. March.
- Michigan Department of Natural Resources (MDNR). 1994. Guidance Document: Verification of Soil Remediation. Environmental Response Division/Waste Management Division. Revision 1. April.
- Parsons Engineering Science, Inc. (Parsons ES). 1996a. Draft Final Bioventing Pilot Test and Full-Scale System Installation Work Plan, Sites SS-06 and ST-40, Wurtsmith Air Force Base, Michigan. May.
- Parsons ES, 1996b. Bioventing Pilot Test Results and Full-Scale System Installation Report for POL Yard, Sites SS-06 and ST-40, Wurtsmith Air Force Base, Michigan. November.
- Parsons ES. 1997. Letter to AFCEE re: 1-Year Testing Results for Full-Scale Bioventing at the POL Yard, Sites SS-06 and ST-40, Wurtsmith AFB. October 14.
- Ratz, John. 1998. E-mail message to Major Ed Marchand. August 26.

Rekowski, Paul. 1998. Telephone correspondence with John Hall. April 23.

US Environmental Protection Agency (USEPA). 1996.

US Geologic Survey (USGS). 1990. Installation Restoration Program, Phase II, Confirmation/Quantification, Stage 2, Wurtsmith AFB, Michigan: An Environmental Database System, Final Report, Volumes I & II. USGS Water Resources Division, Lansing, Michigan. August.

# APPENDIX A

# SOIL SAMPLING GRID DETERMINATION

022/726876/WURTS/7.DOC

| ES ENGINEERING-SCIENCE, INC.                                                                                                                                                                          |                                                          |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|
| Client AFCEE/ERT: AFBCA/OL-T Job No. 726876.<br>Subject Soil Cleanup Verification Sampling By JFH<br>Strategy Calculations - #& location of somples Checked <u>CBS</u> 5/18/98                        | Sheet <u>/</u> of <u>/</u><br>Date <u>4/22/98</u><br>Rev |
| Procedure to determine number and location of<br>samples - Using Guidance Document, Verification<br>Soil Remediation [DHR] DEQ Environmental Resp<br>Division, Waste Management Division, APril 1994. | of                                                       |
| Determine Site Size Category<br>Previously identified area of contomination<br>480' × 380' = 182,000 ft² = approx 4.2 ac<br>"Large Site"                                                              |                                                          |
| @ Determine Grid Interval (GI): >30' for long                                                                                                                                                         | se site                                                  |
| $GI = \sqrt{\frac{ATr}{SF}} = \sqrt{\frac{182,000 ft^2 Tr}{480}} = 35'$ A=are<br>SF= gri                                                                                                              | o<br>Llongth                                             |
| Because of continuous & relatively uniform sm.<br>contamination - use larger GI = 50'                                                                                                                 | ear zone                                                 |
| 3) Determine number of sample locations<br>greater of 12 or 25%. I grid nodes<br>.25 × 66 nodes = 17 locations<br>(see figure 5.1 for grid layout)                                                    |                                                          |
| (4) Select 13 grid stations plus 4 additional<br>where previous investigations indicate ge<br>cleanup critoria exceedances and with<br>nearby randomly-selected locations                             | neric                                                    |
| 5) Randem selection of grid stations using column<br>of random numbers table in Guidance Document<br>in a downward direction                                                                          |                                                          |
| - selected grid stations 11,60,07,05,42,<br>29,36,65,16,2<br>4 additional locations - station 13 (near VWS); existing<br>- adjacent to MPB; station 31 (near                                          | 8,45<br>boring \$840-001                                 |
| . Total of 17 suil sampling locations                                                                                                                                                                 |                                                          |

ES-COR-8 -5-881

# **APPENDIX B**

# FIELD SAMPLING PLAN

022/726876/WURTS/7.DOC

# **APPENDIX B**

# FIELD SAMPLING PLAN

# **B.1 FIELD OPERATIONS**

This field sampling plan (FSP) provides guidance for the field procedures to be followed while conducting the activities specified in the Final Confirmation Sampling and Analysis Plan for POL Yard, Sites SS-06 and ST-40, at Wurtsmith AFB, Michigan.

# **B.1.1 Record Keeping**

All field activity information will be recorded in a permanently bound notebook with sequentially numbered pages. The date, job number, and initials will be recorded at the top of each page. Minimum information required for each entry includes:

- Time (recorded in the column under the date),
- Ambient temperature (°F);
- Weather conditions during previous 24 hours;
- Persons performing the drilling, sampling, testing, or other activity;
- Drilling and well construction information;
- Site identification;
- Sampling location;
- Sample number;
- Sample medium (soil or air);
- Sample type (grab, composite, etc.);
- Sample description;
- Chemical analysis to be performed;
- Preservation method;

B-1

- Laboratory to which samples were sent and air bill numbers, if applicable;
- Photograph numbers and description;
- Equipment decontaminated and procedures utilized;
- Equipment serial numbers;
- Calibrations;
- Field measurements not recorded on other data sheets;
- Records of pertinent telephone conversations;
- Names, titles, and organization of any visitors entering the site; and
- Comments (suitable for reconstructing incident without memory).

All entries will be made in waterproof ink. Any errors will be corrected by drawing a single line through the mistake, and all corrections will be initialed and dated.

# **B.1.2** Equipment Decontamination

All downhole equipment will be cleaned before use and between boreholes to prevent cross-contamination. The Geoprobe<sup>®</sup> drive rods and ancillary equipment will be cleaned using Alconox<sup>®</sup> detergent, followed by successive potable and distilled water rinses. Prior to sample collection and between each sampling location, the soil sampler(s) and sampling tools will be decontaminated using the following protocol:

- Clean with potable water and phosphate-free laboratory detergent (Alconox\* or equivalent);
- Rinse with potable water;
- Rinse with distilled or deionized water; and
- Air dry the equipment prior to use.

All decontamination fluids will be stored in 55-gallon US Department of Transportation (DOT)-approved drums for proper disposal.

# **B.1.3 Borehole Abandonment**

Geoprobe<sup>®</sup> sampling operations will produce boreholes that are a maximum of 2.5 inches in diameter. Boreholes that do not naturally collapse will be backfilled with bentonite.

# **B.1.4** Waste Handling

Handling of IDW will follow the base-wide procedures established by ICF Technology, Inc. (1994) and approved by MDEQ and USEPA. IDW will be handled in accordance with the procedures detailed below.

# **B.1.4.1** General Trash

The general trash that will be generated may include (but is not limited to) such items as packaging material, unused sample containers, cement bags, pallets, wood, and any other non-contaminated trash that may fall under this category. General trash will be disposed of in the same manner as other trash generated on base.

# **B.1.4.2** Contaminated Clothing, Filters, etc.

The used personal protective equipment and other material that will be generated may include, but are not limited to, such items as Tyvek, clothing, used sample containers, used preservation equipment, used filters, etc. This waste will be placed in heavy-duty plastic bags, removed from the site on a daily basis, and placed in a secured staging area to be designated by Wurtsmith AFB environmental compliance personnel.

# **B.1.4.2** Drill Cuttings

The use of the Geoprobe<sup>•</sup> for collecting soil samples will not generate soil cuttings; however, excess soil samples not submitted to the laboratory will be handled in accordance with procedures established by ICF Technology, Inc. (1994) for drill cuttings.

At sites where metal contamination is known or expected based on site history, drill cuttings will be drummed and stored at a central location to be determined by the Base Realignment and Closure (BRAC) Environmental Coordinator (BEC) until procedures for proper disposal are determined. After site work is completed, results of the analysis of soil samples will be reviewed to determine proper disposal. All disposal activities will follow all current state and federal regulations and guidelines. Drums of drill cuttings will be marked with date, site ID, soil boring number, number, and depth interval of cuttings. At other sites, drill cuttings can be spread out at the site as long as they 1) do not have any organic vapor meter readings above background (less than 10 ppmv); 2) are not stained; and 3) do not exhibit any unusual odors. Cuttings which do not meet any one of the three criteria will be drummed and stored as mentioned above, until proper disposal is determined.

At Sites SS-06 and ST-40, soils are not expected to be contaminated with metals. Therefore, cuttings will be screened with an organic vapor meter and examined for physical evidence of contamination (e.g., staining and odors) to determine whether they should be drummed or spread out onsite.

# **B.1.4.3** Decontamination Water

Decontamination water will be containerized, transported to Building 5092, and discharged into the oil/water separator.

# **B.2 ENVIRONMENTAL SAMPLING PROCEDURES**

# **B.2.1** Soil Vapor Sampling Procedures

The purpose of soil vapor sampling and analysis is to determine the levels of oxygen  $(O_2)$ , carbon dioxide  $(CO_2)$ , and total volatile hydrocarbons (TVH) in the soil gas. These data will be used to estimate levels of contaminants remaining in site soils and to determine *in situ* microbe respiration rates. Soil vapor samples will be collected from all VWs and all MP screened intervals. Soil vapor sampling procedures are described in detail in the *Test Plan and Technical Protocol for a Field Treatability Test for Bioventing* (Hinchee et al., 1992) and summarized below.

Soil vapor samples for both field screening and laboratory analyses initially will be collected in new 3-liter Tedlar<sup>®</sup> bags. For each sample, the Tedlar<sup>®</sup> bag will be connected to the sampling point using new Tygon<sup>®</sup> tubing, and the soil vapor sample will be drawn directly into the bag utilizing a desiccator and vacuum pump. Field measurements for O<sub>2</sub>, CO<sub>2</sub>, and TVH will be made by connecting the appropriate field instrument to the Tedlar<sup>®</sup> bag. For laboratory analyses, the sample will be transferred to a 1-liter SUMMA<sup>®</sup> canister as described below.

Soil vapor samples for laboratory BTEX and TVH analyses will be transferred from a Tedlar<sup>®</sup> bag to a 1-liter, evacuated, stainless steel SUMMA<sup>®</sup> canister provided by the analytical laboratory. Because the canisters are evacuated, when they are opened, the sample is collected almost instantaneously by vacuum. According to the laboratory, one does not need to record pressure and temperature because the samples are brought to standard pressure and temperature at the laboratory. Once the sample transfer is complete, the valve on the cylinder will be closed immediately and sealed with tape to prevent reopening. Following is a detailed description of this sampling procedure.

# Required Equipment:

Evacuated SUMMA<sup>®</sup> canisters A 2-7 micron filter A 1/2" open end wrench A 9/16" open end wrench A hose barb adapter to adapt the threaded fitting on the canister to 3/16" Tygon<sup>®</sup> tubing.

Assembly of the sampling hardware:

- 1. Remove the brass cap from the canister.
- 2. Connect the filter to the canister. Tighten the filter on the canister using the 9/16" wrench.
- 3. Connect the hose barb to the filter.

4. Connect the well head or the Tedlar<sup>®</sup> bag to the hose barb using 3/16" Tygon<sup>\*</sup> tubing (using as short a connector as possible).

The assembly is now complete, sampling will commence when the valve on the canister (green handle) is opened.

#### The Final Step

When the sample interval is complete, close the valve (green handle) on the canister and remove the filter. It is not necessary to over-tighten the valve upon closing. Replace the brass cap. Fill out the sample tracking tag. The canister may now be returned to the laboratory for analysis.

Field soil vapor analyses will be made using a TVH meter for TVH; and an  $O_2/CO_2$  meter for oxygen and carbon dioxide. Laboratory soil vapor samples will be analyzed for specific BTEX and TVH using USEPA Method T0-3.

# **B.2.2** Field Headspace Screening

A portion of each Geoprobe<sup>\*</sup> core soil sample will be used for field screening for TVH using a TVH analyzer. The soil will be placed into a new, self-sealing plastic bag. After approximately 20 minutes, the TVH concentration in the headspace will be measured by inserting the probe from the TVH analyzer through the plastic bag. Soil samples for laboratory chemical analysis will be chosen based on headspace TVH screening.

## **B.2.3** Soil Sample Collection and Handling

The purpose of soil sampling and analysis is to determine the concentrations of BTEX and other VOCs in subsurface soils at the two sites. These data will be used to determine whether or not soils have been remediated to levels meeting generic residential criteria (MDEQ, 1998c).

Soil samples will be collected using a Large-Bore<sup>•</sup> sampler to collect discrete subsurface samples. However, a Macro-Core<sup>•</sup> sampler, which collects continuous sample cores, may be used in place of, or in addition to, the Large-Bore<sup>•</sup> sampler, as necessary. The Large-Bore<sup>•</sup> sampler serves as both the driving point and the sample collection device and is attached to the leading end of the probe rods. To collect a soil sample, the sampler will be pushed or driven to the desired sampling depth, the drive point is retracted to open the sampling barrel, and the sampler is subsequently pushed into the undisturbed soils. The soil cores are retained within clear acetate liners inside the sampling barrel. The probe rods are then retracted, bringing the sampler to the surface. Boreholes will be backfilled with granular bentonite from total depth to the ground surface following extraction of soil samples.

Soil samples for laboratory analysis will be transferred directly form the acetate liners to  $EnCore^{TM}$  samplers in preparation for shipment to the laboratory. The following steps will be followed for collecting samples with the  $EnCore^{TM}$  samplers:

- Fasten the coring body to the T-handle;
- Using T-handle push sampler into soil until coring body is completely filled;
- Cap coring body while it is still on the T-handle;
- Remove the capped sampler from the T-handle;
- Attach sample label to coring body;
- Return sampler to zipper bag and seal bag; and
- Store on ice.

Soil samples will be properly labeled, wrapped in plastic, placed in a cooler, and maintained at a temperature of approximately 4 degrees centigrade for shipment. A chain-of-custody form will be completed, and the cooler will be shipped to an AFCEE-approved laboratory for sample analysis (see Appendix D).

## **B.3 FIELD MEASUREMENTS**

Typical field parameters that may be measured and the equipment that will be used for the measurements are described in Table B.1. The equipment calibration, maintenance, and decontamination also are described in Table B.1.

# **B.4 FIELD QA/QC PROGRAM**

Field measurement parameters, control checks, control limits, and corrective actions are identified in Table B.2.

# **B.5** IN SITU RESPIRATION TESTING

The *in situ* respiration tests will be conducted as described in the work plan (Parsons ES, 1996a).

# TABLE B.1 FIELD MEASUREMENTS

| Parameter                       | Equipment                                        | Calibration              | Source of<br>Calibration<br>Standards | Equipment<br>Maintenance            |
|---------------------------------|--------------------------------------------------|--------------------------|---------------------------------------|-------------------------------------|
| O <sub>2</sub> /CO <sub>2</sub> | Gastech O <sub>2</sub> /CO <sub>2</sub><br>Meter | two-point<br>calibration | Commercial<br>vendor                  | Follow manufacturer's procedures    |
| Total Volatile<br>Hydrocarbons  | Gastech TVH Meter                                | two-point<br>calibration | Commercial vendor                     | Follow manufacturer's<br>procedures |

# TABLE B.2 FIELD PARAMETERS, CONTROL LIMITS, AND CORRECTIVE ACTIONS

| Parameter                       | Control Checks         | Control Limits         | Corrective Action <sup>a/</sup>                      |
|---------------------------------|------------------------|------------------------|------------------------------------------------------|
| O <sub>2</sub> /CO <sub>2</sub> | Calibrate meter        | $\pm$ 0.2 percent      | Recalibrate daily,<br>Check battery,<br>Clean filter |
| Total Volatile<br>Hydrocarbons  | Calibrate TVH<br>meter | ± 1 ppmv <sup>b/</sup> | Recalibrate daily,<br>Check battery,<br>Clean filter |

<sup>a/</sup> Required if control limits not achieved
 <sup>b/</sup> ppmv = Parts per million, volume per volume

# DRAFT

# APPENDIX C

# STANDARD OPERATING PROCEDURES FOR USEPA METHOD SW8260 B

# (SPECIALIZED ASSAYS, INC., NASHVILLE, TENNESSEE)

S.O.P No. 77 Rev Date: 10/8/97 Page C-1 of C-10

# METHOD SW8260B

# VOLATILE ORGANIC ANALYSIS BY GC/MS

# C1.0 SCOPE AND APPLICATION

This method is suitable for the determination of volatile organics, boiling points less than 200 C, in water and various solid matrices including oils. The estimated quantitation limit will vary with each compound but is about 0.002 mg/L or 0.002  $\mu$ g/g. For applicable compounds with retention times see chromatogram at end of procedure. This procedure is restricted to use by analysts experienced in purge and trap GC/MS and skilled in the interpretation of mass spectra.

# C2.0 SUMMMARY OF METHOD

Volatiles are purged from the matrix using an inert gas, trapped on a solid sorbent, thermally desorbed and quantitated by capillary GC/MS. Identification of targets is accomplished by comparing their mass spectra with the electron impact of spectra of authentic standards. Quantitation is accomplished by comparing the response of a major ion relative to an internal standard.

# **C3.0 INTERFERENCES**

C3.1 Interferences usually consist of elevated SW-846 Method 8260 blanks due to volatiles used in the lab or carryover from a previous sample that was very concentrated. Do not blank subtract. Prep lab personnel are not allowed in volatile lab.

# C4.0 APPARATUS AND MATERIALS

- C4.1 Gas Chromatograph/Mass Spectrometer Hewlett Packard 5971 or 5972 MSD. Hewlett Packard 5890-II programmable gas chromatograph. HP Chemstation and Enviroquant software used to control, acquire and process data. Column: DB-VRX 60 m x 0.25mm, 1.4um film thickness.
- C4.2 Purge and Trap Device Tekmar LSC 3000/ALS 2016 or Dynatech PTA30 with Teckmar 3000. Systems must be able to heat soils to 40 C and purge 5.0 ml or 5.0 g of sample.
- C4.3 Syringes, Hamilton or equivalent, 10  $\mu$ l, 25  $\mu$ l, 50  $\mu$ l, 100  $\mu$ l, 500  $\mu$ l, 1 ml and 5 ml.

S.O.P No. 77 Rev Date: 10/8/97 Page C-2 of C-10

- C4.4 Balance, top-loading, 0.1 g accuracy, commercial source.
- C4.5 Glassware, class A, 10 ml and 100 ml.

# C5.0 REAGENTS

- C5.1 Methanol Purge and trap grade or equivalent, commercial source.
- C5.2 Reagent Water Deionized or distilled water in which no interferences are noted at a level above the practical quantitation limit (PQL) for any parameter of interest.
- C5.3 Stock VOA Standard Stock standard solutions (200  $\mu$ g/ml) may be prepared on a weight/volume basis in methanol using pure standard material, or may be purchased as certified solutions commercially (Ultra DWM-580 or equivalent). Store in amber bottle with a teflon-lined screw cap at -10 C or less. All certified standards are good for 6 months. Second Source Calibration Verification - NSI -C-350, 200  $\mu$ g/ml.
- C5.4 Working VOA Standard Dilute 500  $\mu$ l of stock VOA standard to 2.0 ml in MeOH for a 50  $\mu$ g/ml standard. Store at 10 C or less, good for one week.
- C5.5 Synthetic Soil, Sea Sand, precleaned, commercial source.
- C5.6 Working Internal and Surrogate Standard Obtain a 2000  $\mu$ g/ml internal standard (Ultra STM-341N, chlorobenzene-d5, 1,4-difluorobenzene, 1,4-dichlorobenzene-d4 and pentafluorobenzene) and a 2000  $\mu$ g/ml surrogate mix (Accustandard M8260A/B-SS, 4-bromofluorobenzene. dibromofluoromethane and toluene-d8). For the working IS/SS standard for the 2016 system dilute 30  $\mu$ l each to 2.0 ml with MeOH for a 30  $\mu$ g/ml each standard. Add 5.0  $\mu$ l to 5.0 ml water sample or to 5.0 g soil for a 30  $\mu$ g/L or 30  $\mu$ g/kg solution. For the PTA-30 dilute 2.0 ml of stock to 26.65 ml MeOH for a 150  $\mu$ g/ml solution. Place in autosample standard syringe, 1.0  $\mu$ l in 5 ml or 5 g equals 30  $\mu$ g/L or 30  $\mu$ g/kg each.
- C5.7 4-Bromofluorobenzene (BFB) standard, Accustandard CLP-004-IOOX, 2500  $\mu$ g/ml or equivalent dilute 20  $\mu$ l to 2.0 ml with methanol for a 25  $\mu$ g/ml standard, use 10  $\mu$ l per 5.0 ml water for purging (50  $\mu$ g/L) or inject 2.0  $\mu$ l for 50 ng.
- C5.8 Safety Treat all chemicals as potential carcinogens. Minimize exposure, wear gloves and prepare all standards in a hood, if possible. MSDS's located in Client Services.

# C6.0 SAMPLE COLLECTION, PRESERVATION AND HANDLING

C6.1 Aqueous samples should be collected in duplicate using pre-cleaned VOA vials with teflon-lined septa screw cap. Preserve to pH < 2 with HCI. Refrigerate at

4 + - 2 C. Analyze within 14 days. (Non-preserved samples must be analyzed within 7 days).

C6.2 All glassware should be Class A, clean per SOP # 32.

# C7.0 PROCEDURE

C7.1 TUNING - The GC/MS system must be tuned to meet the Bromofluorobenzene (BFB) requirements every 12 hours. Inject 2.0  $\mu$ l of 25  $\mu$ g/ml BFB working standard onto the GC column and analyze using a 35C to 110 C temperature program ramping at 8 C /min. Display the scan of interest and generate a list of the masses and their percent relative abundances. Compare to the requirements stated below and if the requirements are met, generate a copy of the relevant data. No calibration or sample analysis may begin until a successful tune has been generated.

| MASS | ION ABUNDANCE CRITERIA                           |
|------|--------------------------------------------------|
| 50   | 15 to 40 % of mass 95                            |
| 75   | 30 to 60 % of mass 95                            |
| 95   | BASE PEAK, 100% RELATIVE ABUNDANCE               |
| 96   | 5 to 9 % of mass 95                              |
| 173  | less than 2% of mass 174                         |
| 174  | greater than 50 % of mass 95                     |
| 175  | 5 to 9% of mass 174                              |
| 176  | greater than 95% but less than 101 % OF MASS 174 |
| 177  | 5 to 9% of mass 176                              |

<u>NOTE</u>: Purging a 50  $\mu$ g/L BFB standard is acceptable for tuning.

C7.2 INITIAL CALIBRATION - A 5 point calibration curve must be generated for every target compound and surrogates. The levels required for initial calibration are 10 ppb, 20 ppb, 50 ppb, 100 ppb and 200 ppb for all surrogates and target compounds. Prepare as follows using the 50  $\mu$ g/ml working standards:

Each of the five analyses should contain 30  $\mu$ g/1 of each internal standard.

| IS (μl) | SS            | VOA Std.         | final vol. | conc.    |
|---------|---------------|------------------|------------|----------|
|         | (μl 50 μg/ml) | (μl of 50 μg/ml) | (ml)       | (µg/L)   |
| 5       | 1             | 1                | 5          | 10<br>20 |
| 5       | 5             | 5                | 5          | 50       |
| 5       | 10            | 10               | 5          | 100      |
| 5       | 20            | 20               | 5          | 200      |

Analyze each standard and each sample under the same conditions i.e.,: Purge Time: 11.0 minutes; Trap Temp: <30 C; Desorb Time: 2.0 minutes; Desorb Temp: 225 C; Bake Time: 10 minutes; Bake Temp. 250 C; Jacketed Heater: soils to 40 C. Set GC as follows: Init.Temp: 45° C; Time 1: 6.0 minutes; Rate 1: 10.0 C/minute; Final Temp: 190 C; Final Time: 2.0 minutes.

The average response factor and relative standard deviation are calculated for each of the five concentrations, and the 5 point analysis is evaluated for the following:

C7.2.1 The RSD of all target compounds must be less than 15%.

- C7.2.2 The 6 CCC compounds (1,1-Dichloroethene, Chloroform, Vinyl Chloride, 1,2-Dichloropropane, Toluene, and Ethylbenzene) must have a relative standard deviation of less than 30 %.
- C7.2.3 The 5 SPCC compounds (Chloromethane, 1,1-Dichloroethane, Bromoform, 1,1,2,2-Tetrachloroethane, and Chlorobenzene) must have an minimum relative response factor as follows:

| Chloromethane and 1,1 DCA | 0.1 |
|---------------------------|-----|
| Bromoform                 | 0.1 |
| Chlorobenzene and TCA     | 0.3 |

If the 5 point calibration curve fails to meet these criteria, corrective actions should be taken and the calibration curve re-analyzed. All target compounds are quantitated using linear-regression, the correlation coefficient must be equal or greater than 0.99 or recalibrate. When using regression do not force the line through zero and do not incorporate a zero concentration standard as a sixth point. Verify initial calibration using a 50 ppb second source standard (NSI C-350). Results must be within 20 % or recalibrate.

C7.2.4 Calculate response factor as follows:

RF = (area of ion target x conc. int. std) / (area of ion int. std. x conc. target)

C7.2.5 Calculate final concentration as follows

Conc.  $(\mu g/L \text{ or } \mu g/kg) = (\text{area target x conc. IS x dilution factor}) / (\text{areas IS x RF})$ 

- C7.3 DAILY CALIBRATION After a satisfactory initial calibration curve has been established and verified, the system must be checked every 12 hours using a daily tune standard (50 ng BFB) and a continuing calibration verification standard containing 50 ppb of each target analyte (5  $\mu$ l of working VOA standard in 5 ml water). After quantitation of the standard, the CCC and SPCC compounds are checked against the 5 point calibration for the criteria described below.
  - C7.3.1 The 6 CCC compounds must have a relative percent difference of less than or equal to 20 as compared to the 5 point calibration.
  - C7.3.2 The response factor for the 5 SPCC compounds must be as specified in p.7.2.3.
  - C7.3.3 The % D ((true calibration.check conc.-measured conc.))(100)/true calibration check conc. of all targets must be equal or less than 20 except for oxygenated compounds which must be equal or less than 40.
  - C7.3.4 Evaluate the internal standard responses and the retention times. If the RT of any internal standard changes by more than 30 seconds or the area of any internal standard changes by a factor of two, correct problem and reanalyze all affected samples. (see chromatogram at end of SOP)
  - C7.3.5 If the daily standard does not meet the above criteria, re-prepare the 50  $\mu$ g/ml solution and re-analyze. If this does not correct the problem, a new 5 point calibration curve must be generated. All data relevant to the 5 point calibration standard and the daily calibration standard should be maintained in the QC data book.
- C7.4 METHOD BLANK Before analysis of each batch of samples, a method blank must be analyzed using 5 ml DI water or 5 g synthetic soil. Fill a 5.0 ml gas tight syringe with DI water, add 5.0 microliters of the IS/SS solution containing 30  $\mu$ g/ml of each to 5.0 ml of DI water. Fill position on autosampler to be purged. After quantitation, the method blank should not contain any of the analyses of interest at a level greater than the PQL. If any analyte is present at a level greater than the PQL, a new blank must be analyzed until the system is free from any interferences. Surrogate recovery in the blank must conform to at least the criteria listed below:

|            | WATER    | <u>SOIL</u> |
|------------|----------|-------------|
| 4-BFB      | 86 - 115 | 74 - 121    |
| DBFM       | 86 - 118 | 80 - 120    |
| Toluene-d8 | 88 - 110 | 81 - 117    |
| 1,2-DCA-d4 | 80 - 120 | 80 - 120    |

S.O.P No. 77 Rev Date: 10/8/97 Page C-6 of C-10

If the recovery of the surrogates do not meet the specified criteria, the blank must be reanalyzed. All data relevant to the blank should be filed with other QC data for documentation.

C7.5 SAMPLE ANALYSIS - Allow samples to reach room temperature before analysis. When using the Tekmar 2016 autosampler place 5.0 ml of the sample into the 5.0 ml gas tight syringe and transfer to open position on the 2016 autosampler. Add 5.0  $\mu$ l of the IS/SS solution containing 30  $\mu$ g/ml of each internal standard and surrogate standard to the unknown and purge the sample as described above. For soils weigh a 5.0 g aliquot, place in autosampler, place 5.0 ml of DI water in a 5 ml gas-tight syringe, add 5.0  $\mu$ l of the 30  $\mu$ g/ml IS/SS internal standard and surrogate standard, add to soil position in autosampler, heat to 40 C and purge as before. When using the Dynatrap PTA-30 autosampler, fill the standard syringe with 150  $\mu$ g/ml internal standard and surrogates. 1.0  $\mu$ l is automatically added to each sample for a final concentration of 30 ppb each. The recovery of the internal standards and surrogate standards are calculated and compared to the limits specified above. If recovery is not within the specified range, the sample must be reanalyzed. If reanalysis of the sample does not correct the situation, the system should be examined and action taken to correct the situation. If the concentration of any analyte is above the working range of the instrument (i.e., 200  $\mu$ g/L), an appropriate dilution of the sample must be analyzed. Use a second unopened VOA vial to repeat analysis or prepare a dilution. The operator's experience with both this method and with the instrument should weigh heavily on the dismissal or acceptance of the data generated. Check the pH of the sample with indicator paper. Note in logbook to nearest whole pH. Dilute water samples by injecting appropriate amount into 5 ml gas-tight syringe partially filled with DI water. For water-miscible liquids prepare a 50 X dilution by injecting 100  $\mu$ l into a 5 ml DI water in a 5 ml syringe. For soils, dilutions may be made by reducing the amount purged i.e. min. of 1 g or extracting 5 g with 5.0 ml methanol and injecting 100  $\mu$ l into 5 ml DI water in a 5 ml gas-tight syringe for a 50 X dilution. Do not inject more than 100  $\mu$ l of methanol per 5 ml water.

- C7.6 Determine dilution factor as if 1 g was purged instead of 5 g the enter a dilution factor of 5. Enter in dilution field of LIMS which will multiply the integrated result times that factor. For methanol extractions when using 5 g sample to 5 ml methanol. If needed, determine dilution factor for solids as follows: 5 / ml MeOH purged.
- C7.7 All calculations must be performed by the analyst and indicated on the worklist prior to entry into the LIMS.

# **C8.0 QUALITY CONTROL**

C8.1 MATRIX SPIKE / MATRIX SPIKE DUPLICATE/LCS - A matrix spike, matrix spike duplicate and LCS should be analyzed per batch, not to exceed 20 samples of a given matrix. Recovery ranges for matrix spikes shall be within statistically derived limits. After analysis of the original sample, 5.0 ml (water)

S.O.P No. 77 Rev Date: 10/8/97 Page C-7 of C-10

or 5.0 g (soil) of the sample is reanalyzed after spiking with 5  $\mu$ l of working VOA standard (50 ppb) of the target compounds. Check % recovery and confirm that the following are within limits below: 1,1-dichloroethane, trichloroethene, benzene, toluene, and chlorobenzene. If the sample required dilution on the original run in order to bring all analyte concentrations into the calibration range of the instrument, the same dilution should be analyzed for the matrix spike and matrix spike duplicate. The percent recovery and RPD of the matrix spike and spike duplicate compounds is calculated and compared to the QC limits specified:

|                 | %Recovery |            | %Recovery | RPD         |
|-----------------|-----------|------------|-----------|-------------|
| <u>Compound</u> | Water     | <u>RPD</u> | Soil      | <u>Soil</u> |
| 1,1 - DCE       | 61 - 145  | 0 - 14     | 59 - 172  | 0 - 22      |
| TCE             | 71 - 120  | 0 - 14     | 62 - 137  | 0 - 24      |
| Benzene         | 76 - 127  | 0 - 11     | 66 - 142  | 0 - 21      |
| Toluene         | 76 - 125  | 0 - 13     | 59 - 139  | 0 - 21      |
| Chlorobenzene   | 75 - 130  | 0 - 13     | 60 - 133  | 0 - 21      |

All relevant QC requirements as pertains to internal and surrogate standard recoveries is also evaluated. The amount of each of the matrix spike compounds present in the original sample should be subtracted from the values determined by the matrix spike and matrix spike duplicate analyses. The relative percent difference between the matrix spike and matrix spike duplicate is calculated as follows:

[matrix spike] - [matrix spike duplicate] \* 100% [matrix spike + matrix spike duplicate/2]

For every batch, a 50 ppb LCS (laboratory control standard) using 5  $\mu$ l of working VOA standard containing all target compounds in 5 ml DI water or 5 g synthetic soil must be analyzed. Determine % recovery for each analyte. Recovery must be 70 - 130 % or repeat all affected samples. If any IS/SS fails repeat all samples in the batch.

All QA/QC data pertaining to the calibration procedures (both the initial 5 point calibration curve and all daily standards), all method blanks, and all matrix spike/matrix spike duplicates should be filed in a separate QA/QC file for documentation and quick reference to any sample analyses to which they pertain. All QA/QC data should be approved by the GC/MS supervisor or senior analyst before sample analysis begins.

- C8.2 MDL's must be determined yearly per 40 CFR 136 Appendix A. For waters use a 0.002  $\mu$ g/ml concentration and for soils use 0.005  $\mu$ g/g. Calculate using the standard deviation of seven consecutive replicates, multiply std. deviation by 3.14. The result must be less than the reporting level.
- C8.3 Control charts will be used for trend analysis on the LCS, MS and MSD. These are generated monthly. Examples are attached.

S.O.P No. 77 Rev Date: 10/8/97 Page C-8 of C-10

# **C9.0 REFERENCES**

C9.1 SW-846 Method 8260B, Rev.2, Jan 1995

# **C10.0 CORRECTIVE ACTION**

- C10.1 Each applicable section contains the required corrective action if specified criteria are outside limits.
- C10.2 Most problems may be corrected by changing traps, remaking a standard, performing column maintenance, etc. All maintenance is to be recorded in the maintenance log.
- C10.3 If routine maintenance does not correct the problem notify your supervisor immediately.

S.O.P No. 77 Rev Date: 10/8/97 Page C-9 of C-10

# QUANTITATION REPORT

Data File : C:\HPCHEM\1\DATA\VS0709B.D Acq Time : 10 Jul 97 9:04 am Sample : CON CAL Misc : Quant Time: Jul 10 14:48 1997

Method : C:\HPCHEM\1\METHODS\8260S.M Title: 8260 VOLATILES Last Update : Thu Jul 10 09:25:12 1997 Response via : Multiple Level Calibration

| Response via : Multiple Level Calibration |                           |       |      |          |       |           |            |
|-------------------------------------------|---------------------------|-------|------|----------|-------|-----------|------------|
| Interr                                    | al Standards              | R.T.  | Qlon | Response | Conc  | Units     | Dev(Min)   |
| 1)                                        | Pentafluorobenzene        | 13.62 | 168  | 216659   | 30.00 | $\mu g/L$ | 0.00       |
| 26)                                       | 1,4-Difluorobenzene       | 14.84 | 114  | 366683   | 30.00 | $\mu g/L$ | 0.00       |
| 42)                                       | Chlorobenzene-d5          | 19.31 | 119  | 90940    | 30.00 | μg/L      | 0.01       |
| 55)                                       | 1,4-Dichlorobenzene-d4    | 23.00 | 152  | 128657   | 30.00 | μg/L      | 0.01       |
| Syste                                     | m Monitoring Compounds    |       |      |          |       |           | % Recovery |
| 21)                                       | 1,2-Dichloroethane-d4     | 13.71 | 65   | 109739   | 30.61 | μg/L      | 102.04%    |
| 22)                                       | Dibromofluoromethane      | 13.06 | 111  | 110063   | 30.19 | μg/L      | 100.64%    |
| 38)                                       | Toluene-d8                | 17.34 | 98   | 376667   | 30.06 | $\mu g/L$ | 100.19%    |
| 57)                                       | Bromofluorobenzene        | 20.98 | 95   | 127750   | 28.49 | $\mu g/L$ | 94.95%     |
| Targe                                     | et Compounds              |       |      |          |       |           |            |
| 2)                                        | Dichlorodifluoromethane   | 6.12  | 85   | 186330   | 59.23 | μg/L      | 82         |
| 3)                                        | Chloromethane             | 14.54 | 50   | 376323   | 59.97 | $\mu g/L$ | 95         |
| 4)                                        | Vinyl Chloride            | 6.94  | 62   | 253476   | 49.71 | μg/L #    | 1          |
| 5)                                        | Bromomethane              | 7.78  | 96   | 156688   | 51.68 | μg/L      | 97         |
| 6)                                        | Chloroethane              | 8.04  | 64   | 190451   | 48.63 | μg/L #    | 81         |
| 7)                                        | Trichlorofluoromethane    | 9.08  | 101  | 202234   | 40.88 | μg/L      | 96         |
| 8)                                        | Acetone                   | 9.24  | 43   | 31561    | 34.49 | μg/L      | 91         |
| 9)                                        | 1,1-Dichloroethene        | 10.01 | 96   | 187731   | 53.50 | μg/L #    | 75         |
| 10)                                       | Methylene Chloride        | 10.25 | 84   | 233754   | 56.48 | μg/L #    | 67         |
| 11)                                       | Carbon Disulfide          | 10.64 | 76   | 460524   | 52.03 | μg/L      | 100        |
| 12)                                       | trans-1,2-Dichloroethene  | 11.33 | 61   | 387291   | 57.15 | μg/L #    | 80         |
| 13)                                       | Methyl-t-butyl ether      | 11.50 | 73   | 498449   | 52.12 | μg/L      | 95         |
| 14)                                       | 1,1-Dichloroethane        | 11.71 | 63   | 430885   | 57.19 | μg/L #    | 98         |
| 15)                                       | 2-Butanone                | 12.38 | 43   | 426491   | 50.47 | μg/L #    | 75         |
| 16)                                       | Diisopropyl ether         | 12.38 | 45   | 854797   | 53.05 | μg/L #    | 85         |
| 17)                                       | cis-1,2-Dichloroethene    | 12.57 | 61   | 302936   | 56.80 | μg/L #    | 80         |
| 18)                                       | Bromochloromethane        | 12.82 | 130  | 125616   | 54.13 | μg/L      | 95         |
| 19)                                       | Chloroform                | 12.88 | 83   | 368126   | 57.28 | μg/L      | 99         |
| 20)                                       | 2,2-Dichloropropane       | 13.00 | 77   | 296867   | 54.47 | μg/L      | 93         |
| 23)                                       | 1,2-Dichloroethane        | 13.83 | 62   | 246605   | 52.87 | μg/L #    | 95         |
| 24)                                       | 1, 1,1-Trichloroethane    | 13.97 | 97   | 289060   | 55.23 | μg/L #    | 92         |
| 25)                                       | 1,1-Dichloropropene       | 14.22 | 75   | 318538   | 57.63 | μg/L      | 97         |
| 27)                                       | Carbon Tetrachloride      | 14.49 | 117  | 234181   | 52.39 | μg/L      | 97         |
| <b>2</b> 8)                               | Benzene                   | 14.55 | 78   | 870746   | 53.34 | μg/L      | 100        |
| 29)                                       | Dibromomethane            | 15.33 | 174  | 106441   | 50.78 | μg/L #    | 82         |
| 30)                                       | 1,2-Dichloropropane       | 15.37 | 63   | 233236   | 52.90 | μg/L #    | 87         |
| 31)                                       | Trichloroethene           | 15.43 | 130  | 226180   | 54.25 | μg/L      | 96         |
| 32)                                       | 2-Chloro vinyl ether      | 15.37 | 63   | 233236   | 49.65 | μg/L      | 89         |
| 33)                                       | Bromodichloromethane      | 15.50 | 129  | 24602    | 50.11 | $\mu g/L$ | 84         |
| 34)                                       | cis-1,3-Dichloropropene   | 16.36 | 75   | 289025   | 48.93 | $\mu g/L$ | 98         |
| 35)                                       | 4-Methyl-2-Pentanone      | 16.49 | 43   | 196686   | 49.46 | μg/L #    | 83         |
| 36)                                       | trans-1,3-Dichloropropene | 16.94 | 75   | 226488   | 46.36 | μg/L      | 97         |
| 50)                                       |                           | 10.21 |      | 220100   | .0.00 | ro        |            |

(#) = qualifier out of range (m) = manual integration

Operator: HP-1 Inst : 5971 - In Multiplr: 1.00

S.O.P No. 77 Rev Date: 10/8/97 Page C-10 of C-10

# **OUANTITATION REPORT**

Data File : C:\HPCHEM\1\DATA\VS0709B.D Inst : 5971 - In Acq Time : 10 Jul 97 9:04 am Multiplr: 1.00 Sample : CON CAL Misc : Quant Time: Jul 10 14:48 1997 ŧ Method : C:\HPCHEM\1\METHODS\8260S.M Title: 8260 VOLATILES Last Update : Thu Jul 10 09:25:12 1997 Response via : Multiple Level Calibration Units Dev(Min) Conc Compound R.T. Qion Response 98 97 50.70 37) 1, 1,2-Trichloroethane 139522  $\mu g/L$ 17.18 100 39) 17.44 91 834146 55.24 μg/L Toluene 72 76 267446 49.95 μg/L # 40) 1,3-Dichloropropane 17.49 82 2-Hexanone 17.67 43 116832 45.17 μg/L # 41) 97 129 49.87 Dibromochloromethane 17.89 152153 μg/L 43) 97 107 145042 50.82 1.2-Dibromoethane 18.23 μg/L 44) 91 Tetrachloroethene 18.44 166 197234 55.13 μg/L 45) 97 1, 1, 1,2-Tetrachloroethane 19.26 131 164922 53.47 μg/L 46) 99 Chlorobenzene 19.37 112 511402 54.28 μg/L 47) 98 48) Ethylbenzene 19.61 91 870818 54.35 μg/L 97 49) m,p-Xylene 19.86 91 1285446 110.39 μg/L 78002 99 50) Bromoform 20.07 173 45.02 μg/L 100 535099 51) Styrene 20.32 104 51.77 μg/L 96 20.42 52) o-Xylene 91 663923 56.39 μg/L 1, 1, 2,2-Tetrachloroethane 19.25 133 155921 52.91 μg/L 1 53) 45211 48.93 μg/L 41 54) 1,2,3-Trichloropropane 20.61 110 53.58 97 Isopropylbenzene 20.91 105 878370 . μg/L 56) 319968 52.14 μg/L # 82 Bromobenzene 21.30 77 58) 97 21.55 91 991631 52.99 μg/L # 59) Propylbenzene 91 96 2-Chlorotoluene 21.72 562722 54.05 μg/L # 60) 97 4-Chlorotoluene 21.82 91 536284 51.16 μg/L 61) 1, 3,5-Trimethylbenzene 21.96 105 652608 53.82 μg/L 98 62) 63) **T-Butylbenzene** 22.43 119 609721 55.11 μg/L 98 64) 1, 2,4-Trimethylbenzene 22.59 105 637973 51.86 μg/L 100 105 55.79 94 65) Sec-Butylbenzene 22.78 968017 μg/L 22.94 99 66) 1,3-Dichlorobenzene 146 343549 50.95 μg/L 100 67) 1,4-Dichlorobenzene 23.05 146 333969 49.49  $\mu g/L$ 100 68) 1,2-Dichlorobenzene 23.69 146 311233 50.69 μg/L μg/L # 60 69) p-Isopropyltoluene 22.43 119 609721 55.03 70) Butylbenzene 23.81 91 676473 51.85 92 μg/L 43.19 98 72) 1, 2,4-Trichlorobenzene 27.57 180 159775 μg/L 44.32 100 73) 28.16 359466 μg/L Naphthalene 128 51.70 96 74) Hexachlorobutadiene 28.27 225 125832 μg/L

(#) = qualifier out of range (m) = manual integration

28.63

180

139291

43.00

μg/L

1, 2,3-Trichlorobenzene

75)

Operator: HP-1

96

# APPENDIX D

# QUALITY ASSURANCE PROJECT PLAN

# APPENDIX D

# QUALITY ASSURANCE PROJECT PLAN

# D1 PROJECT DESCRIPTION AND QUALITY ASSURANCE OBJECTIVES

#### **D1.1 Introduction**

This Quality Assurance Project Plan (QAPP) has been prepared by Parsons Engineering Science, Inc. (Parsons ES) for the confirmation soil sampling, soil gas sampling, and *in situ* respiration testing at Sites SS-06 and ST-40, Wurtsmith AFB, Oscoda, Michigan. The QAPP will serve as a controlling mechanism during soil and soil gas sampling to ensure that all data collected are valid and reliable, and meet project data quality objectives (DQOs). The primary DQO is to ensure that data are of sufficient quality and quantity to allow an assessment of whether or not MDEQ cleanup criteria are met.

An effective QA program addresses quality objectives for both sampling and analytical methodologies. Field QA efforts are aimed primarily at ensuring that samples are representative of the conditions in the various environmental media at the rime of sampling. Analytical QA efforts are aimed primarily at ensuring that analytical procedures provide sufficient accuracy and precision for quantification of contaminant levels in environmental samples.

#### **D1.2 Project Description**

See Sections 1 and 2 of the Confirmation Sampling and Analysis Plan for POL Yard, Site SS-06 and ST-40, Wurtsmith AFB, Michigan.

#### **D1.3 Data Quality Objectives**

The primary objective of the quality assurance/quality control (QA/QC) program is to ensure that the procedures followed and data obtained during the course of sampling and testing activities are adequate to determine the degree of cleanup achieved and determine if remaining soil contamination meet MDEQ generic residential cleanup criteria. Specific objectives of the QA/QC program include the following:

- Ensure the use of proper investigative procedures and equipment in the field and the analytical laboratory;
- Specify the responsibilities of contractor personnel under the QA/QC program and specify how the program will be implemented; and

• Maintain a high level of quality during the field testing, data analysis, and report writing phases of the project.

# D2 LABORATORY TESTING QUALITY ASSURANCE OBJECTIVES FOR DATA MEASUREMENT

The QA objectives for all laboratory analyses include considerations of precision, accuracy, completeness, representativeness, and comparability.

#### **D2.1** Precision

The precision of a measurement is an expression of mutual agreement of multiple measurement values of the same parameter conducted under prescribed similar conditions. Precision is evaluated most directly by recording and comparing multiple measurements of the same parameter on the same sample under the same conditions.

For laboratory analyses precision is expressed in terms of relative percent difference (RPD). The RPD is calculated as follows:

RPD = 
$$(x_1 - x_2) 100$$
  
 $\overline{(x_1 + x_2)/2}$ 

where:

 $x_1$  = analyte concentration of primary sample; and  $x_2$  = analyte concentration of duplicate sample.

Acceptable levels of precision will vary according to the sample matrix, the specific analytical method, and the analytical concentration relative to the method detection limit. Replicate standards and/or spiked samples will be used to estimate the precision of 5 percent (1 in 20) of the analytical test procedures for a known matrix. Precision criteria for the laboratory QC samples are defined by limits listed in Table D.1. An RPD within the control limits indicates satisfactory precision in a measurement system.

#### **D2.2** Accuracy

The term accuracy refers to the correctness of the value obtained from analysis of a sample, and is determined by analyzing a sample and its corresponding matrix spike sample. Accuracy is expressed as percent recovery (PR) and is calculated using the following formula:

$$PR = \frac{(A-B)}{C} \times 100$$

where:

A = spiked sample result (SSR); B = sample result (SR); and C = spike added (SA).

# TABLE D.1

# QUALITY ASSURANCE OBJECTIVES PRECISION, ACCURACY AND QUANTITATION LIMITS FOR SOIL AND SOIL GAS ANALYSES QUALITY ASSURANCE PROJECT PLAN

# WURTSMITH AFB, MICHIGAN

| Parameter/      |                        | Reporting | Maximum | Accuracy | Precision |
|-----------------|------------------------|-----------|---------|----------|-----------|
| Method          | Analyte                | Units     | PRL     | (% R)    | (% RPD)   |
| Soil            | · · ·                  |           |         |          |           |
| VOCs            | 1,2,4-Trimethylbenzene | mg/kg     | 0.007   | 65-135   | < 30      |
| SW8260B         | 1,3,5-Trimethylbenzene | mg/kg     | 0.003   | 62-135   | < 30      |
|                 | Acetone                | mg/kg     | 0.0088  | 65-135   | < 30      |
|                 | Benzene                | mg/kg     | 0.002   | 65-135   | < 30      |
|                 | Carbon disulfide       | mg/kg     | 0.0007  | 65-135   | < 30      |
|                 | Ethylbenzene           | mg/kg     | 0.003   | 65-135   | < 30      |
|                 | Isopropylbenzene       | mg/kg     | 0.008   | 65-135   | < 30      |
|                 | m-Xylene               | mg/kg     | 0.003   | 65-135   | < 30      |
|                 | n-Butylbenzene         | mg/kg     | 0.005   | 65-135   | < 30      |
|                 | n-Propylbenzene        | mg/kg     | 0.002   | 65-135   | < 30      |
|                 | o-Xylene               | mg/kg     | 0.005   | 65-135   | < 30      |
|                 | p-Xylene               | mg/kg     | 0.007   | 65-135   | < 30      |
|                 | Sec-Butylbenzene       | mg/kg     | 0.007   | 65–135   | < 30      |
|                 | Tert-Butylbenzene      | mg/kg     | 0.007   | 65-135   | < 30      |
|                 | Tetrachloroethene      | mg/kg     | 0.007   | 61-135   | < 30      |
|                 | Toluene                | mg/kg     | 0.005   | 64-135   | < 30      |
| <u>Soil Gas</u> |                        |           |         |          |           |
| TO-3            | Benzene                | ppbv      | 0.50    | 75-125   | < 30      |
|                 | Toluene                | ppbv      | 0.50    | 75-125   | < 30      |
|                 | Ethylbenzene           | ppbv      | 0.50 🕞  | 75-125   | < 30      |
|                 | Total Xylenes          | ppbv      | 0.50    | 75-125   | < 30      |
|                 | TVH                    | ppbv      | 10.0    | 75-125   | < 30      |

D-3

The degree of accuracy and the recovery of analyte to be expected for the analysis of QA samples and spiked samples is dependent upon the matrix, method of analysis, and compound or element being determined. The concentration of the analyte relative to the detection limit is also a major factor in determining the accuracy of the measurement. The practical quantitation limit (PQL) for most analyses is generally stated in the analytical method. Certified standards and/or spiked samples will be used to estimate analyte recovery for each test procedure for a known matrix. The accuracy of gas chromatography (GC) analyses is compound- and matrix-dependent. Thus matrix spike recovery is used to determine the effect of the matrix, and a laboratory control sample is used to determine accuracy of the analyses. The recovery of analytes in a soil matrix is often lower than that obtainable for liquid matrices. As for precision, replicate standards and/or spiked samples will be used to estimate the accuracy of 5 percent (1 in 20) of analytical test procedures for a known matrix. Accuracy criteria for the laboratory QC samples are defined by control limits listed in Table D.1.

# **D2.3** Completeness

The completeness of the data is the amount of valid data obtained from the measurement system (field and laboratory) versus the amount of data expected from the system. At the end of each sampling event, an assessment of the completeness of data will be performed and, if any sample omissions are apparent, an attempt will be made to resample if feasible. Resampling for laboratory analyses is not feasible, therefore, it is critical that holding times are met and that the laboratory inform the deputy project manager if any containers were broken during shipping. In addition, data completeness will be assessed prior to the preparation of data reports.

#### **D2.4 Representativeness**

Samples taken must be representative of the population. A random sampling grid system will be employed for soil samples to ensure they represent site conditions. To assess the representativeness of the samples, some samples will be collected in replicate. Comparisons of the results from the original sample and its field replicate will allow for an evaluation of the representativeness of the samples.

#### **D2.5** Comparability

Where appropriate, the results of the analyses obtained during this effort may be compared with the results obtained in previous studies. Consistency in the acquisition, handling, and analysis of samples by US Environmental Protection Agency (USEPA) recommended procedures is necessary in order that the results may be compared. To this end, standard solutions and materials used in calibrating field and laboratory analytical instruments must be traceable to National Bureau of Standards (NBS) or USEPA standards, and published analytical methods will be followed. Any deviations from the specified analytical protocol will be documented by the laboratory.

# D3 SAMPLE HANDLING

# D3.1 Sample Handling, Packaging, and Shipment

# **D3.1.1** Sample Containers

Laboratory samples will be submitted in either  $EnCore^{TM}$  Samplers (soil) or SUMMA<sup>®</sup> canisters (soil gas) as listed on Table D.2. The samples will be carefully packed for shipment. The pre-cleaned SUMMA<sup>®</sup> canisters will be obtained from the analytical laboratory, and the  $EnCore^{TM}$  Samplers will be obtained from either the analytical laboratory or manufacturer. The soil samples will be placed into insulated shipping coolers with a plastic bag of ice. To prevent condensation, soil gas sample containers will not be packed with ice. A chain-of-custody record describing the contents of the cooler will be placed in a sealed plastic bag and taped to the upper lid of the cooler. When coolers are delivered to the shipping company, they will be taped shut with security labels taped over opposite ends of the lid.

## D3.1.2 Sample Sealing and Labeling

Laboratory sample containers will be labeled and sealed with a clear adhesive tape. The label will include the sample numbers assigned according to the sample numbering system.

# D3.1.3 Sample Numbering System

Each laboratory sample will be assigned a unique sample identification number that describes where the sample was collected. Each number will consist of a group of letters and numbers, separated by hyphens.

# **D3.1.4** Preservatives and Holding Times

After samples have been taken, they will be delivered to the laboratory for analysis as soon as possible after collection in order to ensure that the most reliable and accurate answers will be obtained as a result of the analysis. Holding times and preservation methods are specified in Table D.2. The holding time begins at the date and time of collection in the field.

# **D3.2** Shipping Requirements

Shipping containers will be secured by using nylon strapping tape and custody seals to ensure that the samples are not disturbed during transport. The custody seals will be placed such that the containers cannot be opened without breaking the seal.

Soil samples which must be kept cool will be shipped in insulated containers with either freezer forms or ice. If ice is used, it will be placed in a container so that the water will TABLE D.2 SAMPLE CONTAINERS, SAMPLE PRESERVATION METHODS, AND HOLDING TIMES FOR SOIL AND SOIL GAS SAMPLES WURTSMITH AFB, MICHIGAN

|                                         |                      | Sample   | ample Containers                       |                             |                                                                               |
|-----------------------------------------|----------------------|----------|----------------------------------------|-----------------------------|-------------------------------------------------------------------------------|
| Analytical<br>Parameter                 | Analytical<br>Method | Quantity | Type                                   | Preservation<br>Method      | Holding Time                                                                  |
| Volatile Organic<br>Compounds (VOCs)    | SW5035/SW8260B       | ŝ        | EnCore <sup>®</sup> Sampler            | 4°C/<br>methanol extraction | 48 hours from collection to extraction<br>14 days from collection to analysis |
| Total Volatile<br>Hydrocarbons and BTEX | T0-3                 | 1        | 1-liter Summa <sup>®</sup><br>canister | None                        | 14 days                                                                       |

022/726876/WURTS/11.DOC

÷.,

not fill the cooler as the ice melts. The samples will be delivered as soon as possible after collection to allow the laboratory to meet holding times.

Copies of the signed chain-of-custody forms will be delivered to Parsons ES with the data packages. The originals will remain on file with the laboratory.

#### **D3.3** Laboratories

All soil and soil vapor samples will be shipped to an approved laboratory. Soil samples will be analyzed by Specialized Assays, Inc. of Nashville, Tennessee, which is an AFCEE- and State of Michigan-approved laboratory. Soil gas samples will be analyzed by Air Toxics, Ltd. of Folsom, California; an AFCEE-approved laboratory.

# **D3.4** Sample Receipt

The laboratory will sign the chain-of-custody upon receipt, keep the original, and immediately send a signed copy, which describes sample conditions upon receipt, back to the Parsons ES site manager. The condition of the samples and temperature of the cooler will be documented in a signed, dated, and bound log book and on the chain-ofcustody form with signature and date of person checking samples. If any breakage occurs or discrepancy arises between chain-of-custody, sample labels, and requested analysis, the sample custodian will notify the Parsons ES site manager immediately. Any breakage, discrepancy, or improper preservation will be noted by the laboratory on an out-of-control form with the corrective action taken. The out-of-control form will be signed and dated by the custodian and any other person responsible for corrective action.

# **D4 SAMPLE CUSTODY**

All samples will be accompanied by a chain-of-custody record. A chain-of-custody record will accompany the sample during shipment to the laboratory and through the laboratory. The Parsons ES field sampler will deliver a copy of each chain-of-custody record to the study manager for tracking purposes.

The information provided on the chain-of-custody record will include:

- The project name and the site name;
- The signature of the samplers;
- The sampling station number or sample number;
- Date and time of collection;
- Grab or sample designation;
- A brief description of the type of sample and sampling location;
- Signature of individuals involved in the sample transfer;

- The time and date they received the sample;
- The type of matrix;
- The preservatives used; and
- The analytical methods required; and
- The number of containers of each sample.

Chain-of-custody records initiated in the field will be placed in a plastic cover and taped to the inside of the shipping containers used for sample transport from the field to the laboratory. This record will be used to document sample custody transfer from the field sampler to the laboratory or to a Parsons ES office.

# D4.1 Sample Custody

A sample is under custody if:

- It is in an individual's actual possession; or
- It is in an individual's view, after being in your physical possession; or
- It was in physical possession and then locked up by the individual to prevent tampering; or
- It is in a designated and identified secure area.

# D4.2 Transfer of Custody and Shipment

The following procedures will be used in transferring and shipping samples:

- Samples are accompanied by a chain-of-custody record. When transferring the possession of samples, the individuals relinquishing and receiving will sign, date, and note the time on the record. This record documents transfer of custody of samples from the field sampler to another person, or to the laboratory.
- Samples will be properly packaged for shipment and dispatched to the appropriate laboratory for analysis with a separate signed chain-of-custody record enclosed in each sample box or cooler. The chain-of-custody records will be numbered 1 of N, 2 of N, ..., where N is equal to the number of coolers shipped that day.
- Whenever samples are split with a facility or government agency, a separate chain-of-custody record will be prepared for those samples and marked to indicate with whom the samples are being split.
- All packages will be accompanied by the chain-of-custody record showing identification of the contents. The original record will accompany the shipment and copies will be retained by the field sampler and in the Parsons ES Denver office.

# D4.3 Laboratory Custody Procedures

The analytical laboratory will, as a minimum, record the temperature of the shipping container, check all incoming samples for integrity, and note any observations on the original chain-of-custody record. Each sample will be logged into the laboratory system by assigning it a unique sample number. This number and the field sample identification number will be recorded on the laboratory report. Samples will be stored and analyzed according to specific USEPA methods. After the project is completed, the original chain-of-custody record will be returned to the project manager for permanent storage.

The following procedure will be used by the laboratory sample custodian in maintaining the chain-of-custody once the samples have arrived at the laboratory:

- The samples received by the laboratory will be cross-checked to verify that the information on the sample labels matches that on the chain-of-custody record included with the shipment;
- If all data and samples are correct, and there has been no tampering with the eustody seals, the "received by laboratory" box is signed and dated; and
- The samples will be distributed to the appropriate analysts, with names of individuals who receive samples to be recorded in internal laboratory records.

For data that are input by an analyst and processed using a computer, a copy of the input will be kept and identified with the project number and other information, as necessary.

If the data are directly acquired from instrumentation and processed, the analyst will verify that the following are correct:

- Project and sample numbers;
- Calibration constants and response factors;
- Output parameters such as units of measurement; and
- Numerical values used for detection limits if a value is reported as "less than".

# **D5** ANALYTICAL PROCEDURES

Specific chemical parameters for the sampling program were selected based on chemicals of potential concern (COPCs) at Sites SS-06 and ST-40. The analytical program was designed to qualify and quantify the effect of bioventing on soil contaminants and levels of any contaminants remaining in site soils.

# **D5.1** Analyses for Organic Compounds

All analyses will be performed within the holding times recommended for the specific test procedure and sample matrix. Samples will be collected and shipped in USEPA recommended sample containers and preserved as required for specific tests as specified on Table D.2.

# **D5.2** Detection Limits

The project reporting limits (PRLs) for the soil and soil vapor analyses are listed on Table D.1.

# D6 DATA REDUCTION, VALIDATION AND REPORTING

# **D6.1** Field Measurement Data

Field measurements will be made by the technician or the test engineer. The following standard reporting units will be used during all phases of the project:

- Soil sampling depths will be reported to the nearest 0.5 foot.
- TVH concentrations will be reported to the nearest 1.0 ppmv.
- Oxygen and carbon dioxide will be reported to the nearest 0.1 percent.

Field data will be validated using three different procedures:

- Routine checks will be made during the processing of data. An example is looking for errors in identification codes.
- Internal consistency of a data set will be evaluated. This step may involve plotting the data and testing for outliers.
- Checks may be made for consistency with parallel data sets, that is, data sets obtained presumably from the same population (for example, from the same volume of soil).

The purpose of these validation checks and tests is to identify outliers (i.e., an observation that does not conform to the pattern established by other observations). Outliers may be the result of transcription errors or instrumental breakdowns. Outliers may also be manifestations of a greater degree of spatial or temporal variability than expected.

After an outlier has been identified, a decision concerning its fate must be rendered. Obvious mistakes in data will be corrected when possible, and the correct value will be inserted. If the correct value cannot be obtained, the data may be excluded. An attempt will be made to explain the existence of the outlier. If no plausible explanation can be found for the outlier, it may be excluded, but a note to that effect will be included in the report.

# D6.2 Data Analysis and Reporting

During data analysis and report preparation, the accuracy of numbers, calculations, tables, and figures will be reviewed and confirmed. In addition, the technical content of the report will be reviewed by the study manager and technical director, and the report will be edited for syntax, grammar, composition, and printed quality.

Data will be reported in AFCEE level 1 format. Data analysis reports will be issued to Parsons ES Denver within 30 days of receipt of samples. All data packages will be submitted to the deputy project manager and will include soil and soil gas analysis results. A copy of the chain-of-custody record will be submitted with the analysis results.

# D7 FIELD AND LABORATORY CONTROL CHECKS

# **D7.1** Field Quality Control Samples

During each sampling effort, a number of QC samples must be collected and submitted for laboratory analysis. The number and frequency of the QC sample collection will be 5 percent (or 1 for every 20 samples). A list of the types of QC samples that will be collected along with a brief description of each sample type are outlined in the following sections.

#### **D7.1.1.** Field Replicates

Ten percent of all soil samples will be collected in replicate and submitted for laboratory analysis. For example, if 23 samples are collected, then 3 field replicates will be collected. Field replicates will be labeled in such a manner so that persons performing laboratory analyses are not able to distinguish replicates from other collected samples.

# **D7.2** Laboratory Quality Control Data

Laboratory QC data are necessary to determine the precision and accuracy of the analyses, confirm matrix interferences, and demonstrate target compound contamination of sample results. QC samples will be analyzed routinely by the analytical laboratory as part of the laboratory QC procedures. Contract laboratories performing definitive data quality analyses require a more stringent QC program than those performing screening-level data quality analyses. Definitions for QC samples are presented below. Frequency and acceptance requirements are defined in Table D.3.

# TABLE D.3 SUMMARY OF CALIBRATION AND QC PROCEDURES QUALITY ASSURANCE PROJECT PLAN WURTSMITH AFB, MICHIGAN

| Method  | Applicable           | QC Check                                                                                                                                        | Minimum                                                                    | Acceptance                                                                                                                                                                                                                                 | Corrective                                                                                                                                  |
|---------|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|
|         | Parameter            |                                                                                                                                                 | Frequency                                                                  | Criteria                                                                                                                                                                                                                                   | Action <sup>®</sup>                                                                                                                         |
| SW8260B | Volatile<br>Organics | Five-point<br>initial<br>calibration for<br>all analytes                                                                                        | Initial calibration<br>prior to sample<br>analysis                         | SPCCs average $RF \ge 0.30^{b/}$<br>and %RSD for RFs for CCCs<br>$\le 30\%$ and one option below                                                                                                                                           | Correct problem then repeat initial calibration                                                                                             |
|         |                      |                                                                                                                                                 |                                                                            | option 1 linear-<br>mean RSD for all analytes $\leq$<br>15% with no individual<br>analyte RSD > 30%<br>option 2 linear - least squares<br>regression r > 0.995<br>option 3 non-linear - COD $\geq$<br>0.990<br>(6 points shall be used for |                                                                                                                                             |
|         |                      |                                                                                                                                                 |                                                                            | second order, 7 points shall<br>be used for third order)                                                                                                                                                                                   |                                                                                                                                             |
|         |                      | Second-source<br>calibration<br>verification                                                                                                    | Once per five-point<br>initial calibration                                 | All analytes within ±25% of expected value                                                                                                                                                                                                 | Correct problem then repeat initial calibration                                                                                             |
|         | •                    | Retention time<br>window<br>calculated for<br>each analyte                                                                                      | Each sample                                                                | Relative retention time (RRT)<br>of the analyte within ± 0.06<br>RRT units of the RRT                                                                                                                                                      | Correct problem then reanalyze all<br>samples analyzed since the last<br>retention time check                                               |
|         |                      | Calibration<br>verification                                                                                                                     | Daily, before sample<br>analysis and every 12<br>hours of analysis<br>time | SPCCs average RF $\ge 0.30^{\circ}$ ;<br>and CCCs $\le 20\%$ difference<br>(when using RFs)or drift<br>(when using least squares<br>regression or non-linear<br>calibration)<br>All calibration analytes within                            | Correct problem then repeat initial calibration                                                                                             |
|         |                      | Demonstrate<br>ability to<br>generate<br>acceptable<br>accuracy and<br>precision using<br>four replicate<br>analyzes of a<br>QC check<br>sample | Once per analyte                                                           | ±20% of expected value<br>QC acceptance criteria,<br>Table B.1                                                                                                                                                                             | Recalculate results; locate and fix<br>problem with system and then rerun<br>demonstration for those analytes that<br>did not meet criteria |
|         |                      | ISs                                                                                                                                             | Immediately after or<br>during data<br>acquisition for each<br>sample      | Retention time $\pm 30$ seconds<br>from retention time of the<br>mid-point std. in the ICAL.<br>EICP area within -50% to<br>$\pm 100\%$ of ICAL mid-point<br>std.                                                                          | Inspect mass spectrometer and GC<br>for malfunctions; mandatory<br>reanalysis of samples analyzed while<br>system was malfunctioning        |

# TABLE D.3 (Continued) SUMMARY OF CALIBRATION AND QC PROCEDURES QUALITY ASSURANCE PROJECT PLAN WURTSMITH AFB, MICHIGAN

| Method             | Applicable           | QC Check                                                                                                                  | RTSMITH AFB, M<br>Minimum                                             | Acceptance                                                                                                                            | Corrective                                                                                                                                  |
|--------------------|----------------------|---------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|
| method             | Parameter            | <b>Q</b> O 0                                                                                                              | Frequency                                                             | Criteria                                                                                                                              | Action <sup>*</sup>                                                                                                                         |
| SW8260B<br>(Cont.) | Volatile<br>Organics | Method blank                                                                                                              | One per analytical<br>batch                                           | No analytes detected ≥<br>PRL                                                                                                         | Correct problem then reprep and<br>analyze method blank and all<br>samples processed with the<br>contaminated blank                         |
|                    |                      | LCS for all<br>analytes                                                                                                   | One LCS per<br>analytical batch                                       | QC acceptance<br>criteria, Table D.1                                                                                                  | Correct problem then reprep and<br>analyze the LCS and all samples in<br>the affected AFCEE analytical batch                                |
|                    |                      | MS/MSD                                                                                                                    | One MS/MSD per<br>every 20 Air Force<br>project samples per<br>matrix | QC acceptance<br>criteria, Table D.1                                                                                                  | none                                                                                                                                        |
|                    |                      | Check of mass<br>spectral ion<br>intensities using<br>BFB                                                                 | Prior to initial<br>calibration and<br>calibration verification       | Refer to criteria listed<br>in the method<br>description                                                                              | Retune instrument and verify                                                                                                                |
|                    |                      | Surrogate spike                                                                                                           | Every sample, spiked<br>sample, standard, and<br>method blank         | QC acceptance<br>criteria, Table D.1                                                                                                  | Correct problem then reextract and analyze sample                                                                                           |
|                    |                      | MDL study                                                                                                                 | Once per 12 month<br>period                                           | Detection limits<br>established shall be $\leq$<br>$\frac{1}{2}$ the PRLs in<br>Table D.1                                             | none                                                                                                                                        |
|                    |                      | Results reported<br>between MDL and<br>PRL                                                                                | none                                                                  | none                                                                                                                                  | none                                                                                                                                        |
| TO-3               | BTEX, TVH            | Five-point initial<br>calibration for all<br>analytes                                                                     | Initial calibration prior<br>to sample analysis                       | $RSD^{e\prime} < 20\%$ for<br>$CFs^{d\prime}$ or $RFs^{e\prime}$ or<br>>/= 0.995 correlation<br>coefficient (RSD<br>< 10% for E502.2) | Correct problem then repeat initial calibration                                                                                             |
|                    |                      | Second-source<br>calibration<br>verification                                                                              | Once per five-point initial calibration                               | All analytes within<br>±25% of expected<br>value                                                                                      | Correct problem then repeat initial calibration                                                                                             |
|                    |                      | Retention time<br>window<br>calculation for<br>each analyte                                                               | Each initial calibration<br>and calibration<br>verifications          | ±3 times standard<br>deviation for each<br>analyte retention time<br>from 72-hour study                                               | Correct problem the reanalyze all<br>samples analyzed since the last<br>successful retention time check                                     |
|                    |                      | Calibration<br>verification                                                                                               | Daily, before sample<br>analysis, every 12<br>hours of analysis time  | All analytes within ± 25% of expected value                                                                                           | Correct problem then repeat initial calibration                                                                                             |
|                    |                      | Demonstrate<br>ability to generate<br>acceptable<br>accuracy and<br>precision using<br>four replicate<br>analyses of a QC | Once per analyst                                                      | QC acceptance<br>criteria, Table D.1                                                                                                  | Recalculate results; locate and fix<br>problem with system and then rerun<br>demonstration for those analytes that<br>did not meet criteria |
|                    |                      | check sample                                                                                                              |                                                                       |                                                                                                                                       |                                                                                                                                             |

022/726876/WURTS/11.DOC

#### TABLE D.3(Concluded) SUMMARY OF CALIBRATION AND QC PROCEDURES FOR METHOD SW8260B QUALITY ASSURANCE PROJECT PLAN WURTSMITH AFB, MICHIGAN

| Method          | Applicable<br>Parameter | QC Check                                                                | Minimum<br>Frequency                                          | Acceptance<br>Criteria                                                                                                                  | Corrective<br>Action <sup>®</sup>                                                                                                                 |
|-----------------|-------------------------|-------------------------------------------------------------------------|---------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|
| TO-3<br>(Cont.) |                         | Check of mass<br>spectral ion<br>intensities using<br>BFB <sup>n/</sup> | Prior to initial and<br>calibration verification              | Refer to criteria listed<br>in the method<br>description                                                                                | Retune instrument and verify                                                                                                                      |
|                 | BTEX, TVH               | IS∾                                                                     | Every sample, spiked<br>sample, standard, and<br>method blank | Retention time $\pm 30$<br>seconds: IS area within<br>-50% to $\pm 100\%$ of<br>last calibration<br>verification (12 hours)<br>for each | Inspect mass spectrometer or GC <sup>p/</sup><br>for malfunctions; mandatory<br>reanalysis of samples analyzed<br>while system was malfunctioning |
|                 |                         | Method blank                                                            | One per analytical<br>batch                                   | No analytes detected > reporting limit                                                                                                  | Correct problem then reprep and<br>analyze method blank and all<br>samples processed with the<br>contaminated blank                               |
|                 |                         | LCS for all<br>analytes                                                 | One LCS per<br>analytical batch                               | QC acceptance<br>criteria, Table D.1                                                                                                    | Correct problem then reprep and<br>analyze the LCS and all samples in<br>the affected analytical batch                                            |
|                 |                         | Surrogate spike                                                         | Every sample, spiked<br>sample, standard, and<br>method blank | QC acceptance<br>criteria, Table D.1                                                                                                    | Correct problem then re-extract and analyze sample                                                                                                |
|                 |                         | MDL study                                                               | Once per 12 months                                            | Detection limits<br>established shall meet<br>reporting limit<br>requirements                                                           | Re-establish MDL                                                                                                                                  |

a/ All corrective actions associated with AFCEE project work shall be documented, and all records shall be maintained by the laboratory.

.

b/ Except > 0.10 for bromoform, and > 0.10 for chloromethane and 1,1-dichloroethane

#### D7.2.1 Holding Time

Holding times for sample extraction and/or analysis as required by the methods will be met for all samples. The holding time is calculated from the date and time of sample collection to the time of sample preparation and/or analysis. All sample analyses, including extractions, dilutions, and second-column confirmation, will meet the required holding times.

#### D7.2.2 Method Blanks

Method blanks are designed to detect contamination of the field samples in the laboratory environment. Method blanks verify that interferences caused by contaminants in solvents, reagents, glassware, or in other sample processing hardware are known and minimized. The method blank will be ASTM Type II water (or equivalent) for water samples, and a purified solid matrix (Ottawa sand or equivalent) for soil samples. The concentration of target compounds in the blanks must be less than or equal to one half the PRL. Exceptions are not made for common laboratory contaminants. If the blank contaminant concentration is not less than the specified limit, then the source of contamination will be identified, and corrective action will be taken. Sample quantitation limits (SQLs) and detection limits will not be raised because of blank contamination. Analytical data will not be corrected for presence of analytes in blanks.

#### **D7.2.3** Laboratory Control Samples

Laboratory control samples (LCSs) are blank spikes made from clean laboratorysimulated matrices (reference method blank matrices) spiked with known concentrations of all target analytes of interest at levels approximately 10 times the method detection limits (MDLs). The LCS is carried through the complete sample preparation and analysis procedures. LCSs are designed to check the instrument and method accuracy. An LCS will be analyzed with every analytical batch. Failure of the LCS to meet PR criteria requires corrective action before any further analyses can continue. All sample results associated with the out-of-control LCS must be reanalyzed after control has been reestablished.

#### **D7.2.4** Surrogate Spike Analyses

Surrogate spike analyses are used to determine the efficiency of analyte recovery in sample preparation and analysis in relation to sample matrix. Calculated PR of the spike is used to measure the accuracy of the analytical method for an individual sample. A surrogate spike is prepared by adding to an environmental sample (before extraction) a known concentration of a compound similar in type to the target analytes (i.e., a surrogate compound) to be analyzed for organic target compounds. Surrogate compounds as specified in the methods will be added to all samples analyzed, including method blanks, MS/MSDs, LCSs, field samples, and replicate samples. Failure of the surrogate to meet PR criteria requires corrective action.

#### D7.2.5 Matrix Spike/Duplicate Spike Analyses

This technique is used to determine the effect of matrix interference on the results for the GC/MS methods. Aliquots of the same sample are prepared in the laboratory and each aliquot is treated exactly the same throughout the analytical method. Spikes are added at concentrations specified in the method. The percent difference between the values of the duplicates is taken as a measure of the precision of the analytical method.

Selected samples will be spiked to determine accuracy as a percentage recovery of the analyte from the sample matrix. These matrix spikes will be prepared using reagent grade salts, pure compounds, or certified stock solutions whenever possible. Concentrated solutions will be used to minimize differences in the sample matrix resulting from dilution. Samples will be randomly selected and split into identical duplicates, one of which will then be spiked with a known mass of the analyte to be determined. The final concentration after spiking should be within the same range as the samples being analyzed to avoid the need for dilution, attenuation of instrument outputs, or other required alterations in the procedure which might affect the instrument response and determination of accuracy. A matrix spike duplicate sample is prepared in the same manner as the matrix spike sample.

#### **D7.2.6** Analytical Batches

Analytical batches will be designated in the laboratory at a minimum of one batch per sample delivery group (SDG). Each SDG will be comprised of a maximum of 20 project samples of similar matrix collected within a 7-day period. Included in each SDG of 20 (or fewer) samples per analytical method will be an analytical batch identification number. This identification number will clearly allow a reviewer to determine the association between field samples and QC samples. Analytical batches also will be inclusive of preparation lots and calibration periods.

#### **D7.2.7** Retention Times

Retention time (RT) is the amount of time required for a target compound to elute from the chromatographic column, and the instrument detector to record a signal response. The RT window is the allowable deviation from the true expected RT for any one compound. A peak response within this RT window will constitute a positive detection for that compound. RT windows are QC criteria for all GC and highperformance liquid chromatography (HPLC) methods. RT windows are determined through replicate analyses of a standard over multiple days. The calculation of RT windows is described in USEPA (1996) Method SW8000B. Corrective action is required when the RT windows are out of control.

#### **D7.2.8 Internal Standards**

Internal standards (ISs) are compounds of known concentrations used to quantitate the concentrations of target detections in field and QC samples. ISs are added to all samples after sample extraction or preparation. Because of this, ISs provide for the accurate quantitation of target detections by allowing for the effects of sample loss through extraction, purging, and/or matrix effects. ISs are used for any method requiring an IS calibration. Corrective action is required when ISs are out of control.

#### D7.2.9 Second-Column Confirmation

Quantitative confirmation of results at or above the MDL for samples analyzed by GC or HPLC will be required and will be completed within the method-required holding times. For GC methods, a second column is used for confirmation. For HPLC methods, a second column or a different detector is used. The result of the first column/detector will be the result reported.

#### **D7.2.10** Calibration Requirements

Analytical instruments will be calibrated in accordance with the analytical methods. All analytes reported will be present in the initial and continuing calibrations, and these calibrations must meet the acceptance criteria specified in Table D.1. Records of standard preparation and instrument calibration will be maintained by the contract laboratory. Records will unambiguously trace the preparation of standards and their use in calibration and quantitation of sample results. Calibration standards will be traceable to standard materials.

Analyte concentrations are determined with either calibration curves or response factors (RFs). For GC and GC/mass spectroscopy MS methods, when using RFs to determine analyte concentrations, the average RF from the initial five-point calibration will be used. The continuing calibration will not be used to update the RFs from the initial five-point calibration.

#### **D7.2.11** Standard Materials

Standard materials used in calibration and to prepare samples will be traceable to National Institute of Standards and Technology, USEPA, American Association of Laboratory Accreditation, or other equivalent approved source, if available. The standard materials will be current, in accordance with the following expiration policy: The expiration dates for ampulated solutions will not exceed the manufacturer's expiration date or 1 year from the date of receipt, whichever occurs first. Expiration dates for laboratory-prepared stock and diluted standards will be no later than the expiration date of the stock solution or material, or the date calculated from the holding time allowed by the applicable analytical method, whichever occurs first. The laboratory will label standard and QC materials with expiration dates.

#### **D8 PREVENTIVE MAINTENANCE**

All field equipment, instruments, tools, gauges, and other items requiring preventive maintenance will be serviced in accordance with the manufacturer's specified recommendations. Maintenance records will be documented and traceable to specific equipment.

All laboratory instruments will be maintained in accordance with the standard operating procedures for each instrument. All maintenance will be documented for each analytical instrument.

#### **D9 CORRECTIVE ACTION**

The following procedures have been established to assure that conditions adverse to quality, including malfunctions, deficiencies, deviations, and errors, are promptly investigated, documented, evaluated, and corrected.

When a significant condition adverse to quality is noted at the project site, laboratory, or subcontractor locations, the cause of the condition will be determined, and corrective action will be taken to preclude repetition. Condition identification, cause, reference documents, and corrective action planned to be taken will be documented and reported to the study manager, QA manager, site investigation geologist, test engineer, and involved subcontractor management, as a minimum. Implementation of corrective action will be verified by documented follow-up action. All project personnel have the responsibility, as part of the normal work duties, to promptly identify, solicit approved correction, and report conditions adverse to quality.

Corrective actions may be initiated as a minimum:

- When predetermined acceptance standards are not attained (objectives for precision, accuracy, and completeness);
- When procedures or data compiled are determined to be faulty;
- When equipment or instrumentation is found faulty;
- When samples and test results cannot be traced with certainty;
- When QA requirements have been violated;
- When designated approvals have been circumvented;
- As a result of system and performance audits;
- As a result of a management assessment; or
- As a result of QA audits.

### **APPENDIX B**

### FIELD BOREHOLE LOGS

S:\ES\WP\projects\726876\819.doc

Sheet 1 of (

### GEOLOGIC BORING LOG

| BORING NO. | 581 -        | CONTRACTOR:  |          | DATE SPUD: 10/13/98  | 142e |
|------------|--------------|--------------|----------|----------------------|------|
| CLIENT:    | Wurtsmith    | RIG TYPE:    | Geopride | DATE CMPL: 10/13 148 |      |
| JOB NO.:   | 726876.69120 | DRLG METHOD: |          | ELEVATION:           |      |
| LOCATION:  | ST 40        | BORING DIA.: | 2.5"     | TEMP.:               |      |
| GEOLOGIST  | JFH          | DRLG FLUID   |          | WEATHER:             |      |
| COMMENTS   |              |              |          |                      |      |

| Elev. | Depth      | Pro-              | US | Ī                                     |                                       |          | Samples | Sample | Penet.  | Remarks                    |
|-------|------------|-------------------|----|---------------------------------------|---------------------------------------|----------|---------|--------|---------|----------------------------|
| (ft.) | (ft.)      | file              | cs | Geo                                   | logic Description                     | No       |         |        |         | TIP = Bkgrnd/Reading (ppm) |
|       | 1          |                   | KD | Sarl - m                              | gr Itbra Huist                        |          |         |        |         |                            |
|       |            |                   | 21 |                                       | <u></u>                               |          | 1       |        |         |                            |
|       |            |                   |    |                                       |                                       |          | 0-4     |        |         |                            |
| İ     |            |                   |    |                                       |                                       |          |         |        |         |                            |
|       |            |                   |    |                                       |                                       |          |         |        |         | 0.0/0.0                    |
|       | 5          |                   |    | SAA                                   |                                       |          |         |        |         |                            |
|       |            |                   |    |                                       |                                       |          | 4-8     |        |         |                            |
|       |            |                   |    |                                       |                                       |          | 9-0     |        |         |                            |
|       |            |                   |    |                                       |                                       |          |         |        |         |                            |
|       |            |                   |    |                                       |                                       |          |         |        |         | 0.0/0.0                    |
|       |            |                   |    | SAA                                   |                                       |          |         |        |         |                            |
|       | 10         |                   |    |                                       |                                       |          |         |        |         |                            |
|       | 10         |                   |    |                                       |                                       |          | 8.12    |        |         |                            |
|       |            |                   |    |                                       |                                       |          |         |        |         |                            |
| }     |            |                   |    |                                       |                                       |          |         |        |         | 0.0/60                     |
|       |            |                   |    | SAA Sloo                              | br                                    |          |         |        |         | Ť                          |
|       |            | 1                 |    |                                       |                                       |          |         |        |         |                            |
|       |            | ł                 |    |                                       |                                       |          | 12-16   |        |         |                            |
|       | 15         | {                 |    | · · · · · · · · · · · · · · · · · · · |                                       | ·        |         |        |         | 4.1.1.                     |
|       |            |                   |    |                                       |                                       |          |         |        |         | 40/120                     |
|       |            |                   |    | SAA sloo                              | lur                                   |          |         |        |         | + ·                        |
|       |            | 1                 |    |                                       | · · · · · · · · · · · · · · · · · · · |          | 16-18   |        |         | 40/60                      |
|       |            | -                 |    | SAA CL                                | lar, y maiste 19'                     |          |         | L      |         | 40/60                      |
|       |            | $\left\{ \right.$ |    | 51.00                                 | ar, U 140.5+017                       |          | 18-14   | ļ      | ļ       |                            |
| ļ     | 20         | 1                 |    |                                       |                                       |          | -       |        |         |                            |
|       |            | ]                 |    |                                       |                                       |          |         |        |         |                            |
|       |            | 1                 |    |                                       |                                       |          |         |        |         |                            |
| İ     |            | 1                 |    |                                       |                                       |          |         |        |         | ·                          |
|       |            | 1                 |    |                                       |                                       |          |         |        |         |                            |
|       |            | -                 |    |                                       |                                       |          |         |        | ļ       |                            |
|       | 25         |                   |    |                                       | · · · · · · · · · · · · · · · · · · · |          | 1.      | 1      |         |                            |
|       |            |                   | 1  |                                       |                                       |          |         |        |         |                            |
|       |            | 1                 |    |                                       |                                       |          |         |        |         |                            |
|       |            | -                 | 1  |                                       |                                       |          |         |        |         |                            |
|       |            | 4                 |    |                                       |                                       | <u> </u> |         |        |         |                            |
|       |            |                   |    |                                       |                                       |          |         |        |         |                            |
|       | 30         | 1                 |    |                                       |                                       |          |         |        | 1       |                            |
|       |            |                   |    | •                                     |                                       |          |         |        |         |                            |
|       | sl –       | slight            |    | v - very                              | f - finc                              |          |         | LE TYP | E       |                            |
|       | tr -       | trace             | ,  | lt – light                            | m – medium                            |          | D - D   |        | с –     | Core recovery              |
|       | sm -       | - some            |    | dk - dark                             | c - coarse                            |          | C – C   |        |         |                            |
|       | & -        | - and             |    | bf -buff                              | BH - Bore Hole                        |          | G - C   | RAB    |         | Core lost                  |
|       | <i>@</i> · |                   |    | brn - brown                           | SAA - Same As Above                   |          |         |        |         |                            |
|       | w -        | - with            |    | blk – black                           |                                       |          |         | Water  | level d | rilled                     |

|       | ۲ |   |    |   |
|-------|---|---|----|---|
| Sheet |   | 1 | of | ( |

v

### GEOLOGIC BORING LOG

.

--

| BORING NO. | 582          | CONTRACTOR:  |          | DATE SPUD: 10/13/55 | 1630 |
|------------|--------------|--------------|----------|---------------------|------|
|            | Wurtsmith    | RIG TYPE:    | Geoprobe | DATE CMPL: 10/13    |      |
| JOB NO.:   | 726876.69120 | DRLG METHOD: |          | ELEVATION:          |      |
| LOCATION:  | ST-40        | BORING DIA.: | 2.5"     |                     |      |
| GEOLOGIST: | JFH          | DRLG FLUID   |          | WEATHER:            |      |
| COMMENTS:  |              |              |          |                     |      |

|          | Depth            |       | US |                                       |                                        |     | Samples                | Sample  |          |                            | ٦   |
|----------|------------------|-------|----|---------------------------------------|----------------------------------------|-----|------------------------|---------|----------|----------------------------|-----|
| (ft.)    | (ft.)            | file  | CS | Geol                                  | ogic Description                       | No. | Depth (ft)             | Туре    | Res.     | TIP = Bkgrnd/Reading (ppm) |     |
|          |                  |       | SP | Sand inc                              | (, 1+ brn, Meist                       | د   |                        |         |          |                            |     |
|          |                  |       |    |                                       | _/                                     |     | 0-4                    |         |          |                            | -   |
|          |                  |       |    |                                       |                                        |     |                        |         |          |                            | 4   |
| :        |                  |       |    |                                       |                                        |     |                        |         |          |                            |     |
|          |                  |       |    |                                       |                                        | 1   |                        |         |          | 40/ 40                     |     |
|          |                  |       | 1  | SAR                                   |                                        |     | 1                      |         |          |                            | 4   |
| <u> </u> |                  |       |    | <u> </u>                              | · ·                                    |     | 4.8                    |         |          |                            | -   |
|          |                  |       |    | · · · · · · · · · · · · · · · · · · · | ·                                      |     |                        |         |          |                            | 4   |
|          |                  |       |    |                                       |                                        |     |                        |         |          |                            |     |
|          |                  |       |    |                                       |                                        |     |                        |         |          | 40/40                      |     |
|          |                  |       |    | 5.4.19.                               |                                        |     |                        |         |          |                            | 1   |
|          |                  | _     |    | <u> </u>                              |                                        |     |                        |         |          |                            | -   |
| <b> </b> | ┝                |       |    |                                       | ••                                     |     | 5-12                   |         |          |                            | 4   |
|          |                  |       |    |                                       |                                        |     |                        |         |          |                            |     |
|          |                  |       |    |                                       |                                        |     |                        |         |          | 40/40                      | ]4  |
|          |                  |       |    | 3 - + h4                              |                                        |     |                        |         |          |                            | - " |
|          |                  |       |    |                                       | ······································ |     |                        |         |          |                            | 4   |
|          |                  |       |    |                                       |                                        |     | 12-16                  |         |          |                            |     |
| ļ        | · ·              |       |    |                                       |                                        |     |                        |         |          |                            |     |
|          |                  |       | 1  |                                       |                                        |     |                        |         |          | 20/40                      | 7   |
|          |                  |       |    |                                       |                                        |     |                        |         |          |                            | 1   |
|          |                  |       |    |                                       |                                        |     |                        |         |          |                            | 4   |
|          | $\left  \right $ |       |    |                                       |                                        |     |                        |         |          |                            | 4   |
|          |                  |       |    | SAA                                   |                                        |     | 18-20                  |         |          |                            |     |
|          |                  |       |    | 224014                                | -ful oder                              |     | 10 20                  |         |          | 20/40                      | 7   |
| 1        |                  |       |    | ,                                     |                                        |     | 1                      | · · ·   |          |                            | 1   |
|          |                  |       |    |                                       |                                        |     |                        |         |          |                            | -   |
|          |                  |       |    |                                       |                                        |     |                        |         |          |                            | -   |
| Į        |                  |       |    |                                       |                                        |     |                        |         |          |                            |     |
|          |                  |       |    |                                       |                                        |     |                        |         |          |                            | ] 、 |
|          |                  |       |    |                                       | •                                      |     |                        |         |          |                            | 1   |
|          |                  |       |    |                                       |                                        |     | •                      |         |          |                            | 4   |
|          |                  |       |    |                                       | ·                                      |     |                        |         |          |                            |     |
| 1        |                  |       |    |                                       |                                        |     |                        |         |          |                            |     |
|          |                  |       |    |                                       | ·                                      |     |                        |         |          |                            |     |
|          |                  |       |    |                                       |                                        |     |                        |         |          |                            | 1   |
|          | • .              |       |    |                                       |                                        |     |                        |         |          |                            | -   |
|          | <u> </u>         |       | L  | L                                     |                                        |     |                        |         |          | · · ·                      | 4   |
|          | sl – sl          | light | •  | v – very                              | f - fine                               |     | 9 A 1 101 1            | ה האשר  |          |                            |     |
|          | tr – ti          |       | ٠  | lt – light                            | m – medium                             |     | <u>SAMPL</u><br>D – DI |         |          | Core recovery              |     |
|          | sm -             |       |    | dk – dark                             | m = meanum<br>c $- coarse$             |     | $D = D_{1}$<br>C = CC  |         | C        | Core recovery              |     |
| 1        | & -              |       |    | bf - buff                             | BH - Bore Hole                         |     | G – GI                 |         |          | Core lost                  |     |
|          | @ -              |       |    | brn - brown                           | SAA - Same As Above                    |     | 0-01                   | ŝ       |          | COLE JUST                  |     |
|          | w                |       |    | blk - black                           |                                        |     |                        | Water l | evel dri | lled                       |     |
|          |                  |       |    |                                       |                                        |     |                        |         |          |                            | 1   |
|          |                  |       |    |                                       |                                        |     |                        |         |          |                            | 1   |

Sheet ( of /

\_.

### GEOLOGIC BORING LOG

.

| BORING NO. | 583          | CONTRACTOR:  |          | DATE SPUD: 10/14/48 0845 |
|------------|--------------|--------------|----------|--------------------------|
| CLIENT:    | Wurtsmith    | RIG TYPE:    | Geoprobe | DATE CMPL: 10/14         |
| JOB NO.:   | 726876.69120 | DRLG METHOD: |          | ELEVATION:               |
| LOCATION:  | 5506         | BORING DIA.: | 1.5"     | TEMP.:                   |
| GEOLOGIST: | JFH          | DRLG FLUID   |          | WEATHER:                 |
| COMMENTS:  |              |              |          |                          |

-- ·

| Elev. | Depth    |      | US       |             |                                        |      |     |            | Sample   |          | Remarks                    |
|-------|----------|------|----------|-------------|----------------------------------------|------|-----|------------|----------|----------|----------------------------|
| (ft.) | (ft.)    | filc | CS       | Ge          | ologic Description                     |      | No. | Depth (ft) | Type     | Res.     | TIP = Bkgrnd/Reading (ppm) |
|       |          |      | SP       | Sand m      | d-groined, 14 b                        | )inn |     |            |          |          |                            |
|       |          |      | اد ا     |             |                                        |      |     |            |          |          |                            |
|       |          |      |          | maist       |                                        |      |     |            |          |          |                            |
|       |          |      |          |             |                                        |      |     |            |          |          |                            |
| :     |          |      |          |             |                                        |      |     |            |          |          |                            |
|       | 5        |      |          |             |                                        |      |     |            |          |          |                            |
|       |          |      |          |             |                                        |      |     |            |          |          |                            |
|       |          |      |          |             | · · · · · · · · · · · · · · · · · · ·  |      |     |            |          |          |                            |
| {     |          |      |          |             |                                        |      |     |            |          |          |                            |
| }     |          |      |          |             |                                        |      |     |            |          |          |                            |
|       |          |      |          |             |                                        |      |     |            |          |          |                            |
|       |          |      |          |             |                                        |      |     |            |          |          |                            |
|       | io       |      |          |             |                                        |      |     |            |          |          |                            |
|       |          |      |          |             | ar                                     |      |     |            |          |          |                            |
|       | $\vdash$ |      |          |             |                                        |      |     |            |          |          |                            |
|       |          |      |          |             |                                        |      |     |            |          |          |                            |
|       |          |      |          |             |                                        |      |     |            |          |          |                            |
|       |          |      |          |             |                                        |      |     |            |          |          |                            |
|       | 15       |      |          |             |                                        |      |     |            |          |          |                            |
|       |          |      |          |             | ······································ |      |     |            |          |          |                            |
|       |          |      | ļ        |             |                                        |      |     |            |          |          |                            |
|       |          |      |          |             |                                        |      |     |            |          |          |                            |
|       |          |      |          |             |                                        |      |     |            |          |          |                            |
|       |          |      |          | 5.4.4       |                                        |      |     |            |          |          |                            |
|       |          |      | 1        | SAA         |                                        |      |     | 18-20      |          |          |                            |
|       | 20       |      |          |             |                                        |      |     | <u> </u>   |          |          |                            |
|       |          |      |          | SAA, fuel   | ocher                                  |      |     |            |          |          | · · ·                      |
|       |          |      |          | wetp 2      |                                        |      | 146 | 20-22      |          |          | 80/80                      |
|       |          |      |          | War D Z     | 10 00                                  |      |     |            |          |          | F0180                      |
|       | ·        |      |          |             |                                        |      |     |            |          | ļ        |                            |
|       |          |      |          |             |                                        |      |     |            |          |          |                            |
|       |          |      |          |             | •                                      |      |     |            |          |          |                            |
|       |          | i    |          |             |                                        |      |     | •          |          |          |                            |
| 1     |          |      |          |             |                                        |      |     |            |          |          |                            |
|       |          |      |          |             |                                        |      |     |            |          |          |                            |
| · ·   |          |      |          |             |                                        |      |     |            |          |          | ·····                      |
|       |          |      | · ·      |             | · · · · · · · · · · · · · · · · · · ·  |      |     |            | •        |          |                            |
|       |          |      |          |             |                                        |      |     |            |          |          |                            |
|       |          |      | <u> </u> |             |                                        |      |     |            |          |          |                            |
| Į     |          |      | •        |             |                                        |      |     |            |          |          |                            |
|       | sl – s   | -    |          | v - very    | f - fine                               |      |     | SAMPL      |          |          |                            |
|       | tr - ti  |      |          | lt – light  | m – medium                             |      |     | D – DI     |          | C        | Core recovery              |
|       | sm -     |      |          | dk - dark   | c - coarse                             |      |     | C – CC     |          |          |                            |
|       | & -      |      |          | bf - buff   | BH - Bore Hole                         |      |     | G – GI     | RAB      |          | Core lost                  |
|       | @ -      |      |          | brn – brown | SAA - Same As Abov                     | /c   |     |            |          |          |                            |
| 1     | w -      | with |          | blk - black |                                        |      |     |            | Water le | evel dri | lled                       |
| 1     |          |      |          |             |                                        |      |     |            |          |          |                            |

ENGINEERING-SCIENCE

|       | 1 |    |  |
|-------|---|----|--|
| Sheet | 1 | of |  |

---

(

### GEOLOGIC BORING LOG

.

----

| BORING NO. | SB4          | CONTRACTOR:  |          | DATE SPUD: 10/14/48 69 | 45       |
|------------|--------------|--------------|----------|------------------------|----------|
| CLIENT:    | Durtsmith    | RIG TYPE:    | Geopithe | DATE CMPL: 10/14       | <u> </u> |
| JOB NO.:   | 726876.64120 | DRLG METHOD: |          | ELEVATION:             |          |
| LOCATION:  | 5506         | BORING DIA.: | 11/2"    | TEMP.:                 |          |
| GEOLOGIST: | JFH          | DRLG FLUID   |          | WEATHER:               |          |
| COMMENTS   |              |              |          |                        |          |

|         | Depth    |        | US  |                                       |          |            | Sample    |          | Remarks                    |
|---------|----------|--------|-----|---------------------------------------|----------|------------|-----------|----------|----------------------------|
| (ft.)   | (ft.)    | file   | CS  | Geologic Description                  | No.      | Depth (ft) | Type      | Res.     | TIP = Bkgrnd/Reading (ppm) |
|         |          |        |     |                                       |          |            |           |          |                            |
|         |          |        |     |                                       |          |            |           |          |                            |
|         | ┝───     |        |     |                                       | ļ        |            |           |          | }<br>                      |
|         |          |        |     |                                       |          |            |           |          |                            |
| :       |          |        |     |                                       |          |            |           |          |                            |
|         | 5        |        |     |                                       |          |            |           |          |                            |
|         | 2-       |        |     | ······                                |          |            |           |          |                            |
|         |          | Į      |     |                                       |          |            |           |          |                            |
|         |          |        |     |                                       |          |            |           |          |                            |
|         |          |        |     | 1.                                    |          |            |           |          |                            |
| •       | <b> </b> |        |     |                                       |          |            |           |          |                            |
|         |          |        |     | ·                                     |          |            |           |          |                            |
|         | /c       |        |     |                                       |          |            |           |          |                            |
|         |          |        |     | ••                                    |          |            |           |          |                            |
|         |          |        |     |                                       | ,        |            |           |          | <u> </u>                   |
|         |          |        |     |                                       |          |            |           |          |                            |
|         |          |        |     |                                       |          |            |           |          |                            |
|         |          |        |     |                                       |          |            |           |          |                            |
|         | 1.5      | 1      |     |                                       |          | ł          |           |          |                            |
| <u></u> | 1.5      | 1      |     | · · · · · · · · · · · · · · · · · · · | 1        |            |           |          |                            |
|         | L        |        |     |                                       | ļ        |            |           |          |                            |
|         |          |        |     |                                       |          | <b>.</b> . |           |          |                            |
|         |          | 1      |     |                                       | 1        |            |           |          |                            |
|         | <u> </u> | 1      |     |                                       | {        |            |           |          |                            |
|         | <u> </u> | ļ      |     |                                       |          |            |           | •        |                            |
|         | 20       | ]      |     |                                       |          |            |           |          |                            |
|         |          |        | SÞ  | SAND p.d., It bra, V. MU. 34          |          |            |           |          |                            |
|         |          | 1      |     |                                       |          | 20-22      |           |          | 0/0 000                    |
|         |          | 4      |     | grey stain fuel oler                  | <b> </b> | ļ          |           |          | 0/2,900                    |
|         | ·        | 1      |     |                                       | ]        |            |           |          |                            |
|         |          |        |     | •                                     |          |            |           |          |                            |
|         |          | 1      |     | •                                     | 1        | ļ          | Į         |          |                            |
|         | <u> </u> | {      |     |                                       | -        |            |           |          |                            |
|         | <u> </u> | 4      |     |                                       | 1        |            |           |          |                            |
|         |          | 1      |     | · ·                                   |          |            |           |          | 1                          |
|         | · ·      | ]      |     | · ·                                   | · ·      |            |           |          |                            |
|         |          | 1      | · · |                                       | -        |            | · ·       |          |                            |
|         |          | -      | ·   |                                       | 1        |            |           |          |                            |
|         | <u> </u> |        |     |                                       |          |            |           |          |                            |
|         |          |        |     |                                       |          |            |           |          |                            |
|         | sl —     | slight |     | v = very $f = fine$                   |          | SAMPL      | E TYPE    | Ξ        |                            |
|         | tr - 1   | trace  |     | lt - light m - medium                 |          | D – D      | RIVE      | c        | Core recovery              |
|         | sm -     | some   |     | dk - dark c - coarse                  |          | C - C      | ORE       |          |                            |
|         | & -      | and    |     | bf - buff BH - Bore Hole              |          | G – G      |           |          | Core lost                  |
|         | @ -      | • at   |     | brn - brown SAA - Same As Above       |          |            |           |          | .•                         |
|         | w -      | with   |     | blk – black                           |          |            | Water     | level dr | illed                      |
|         |          |        |     |                                       |          |            |           |          |                            |
|         |          |        |     | ENGINEERING-SCI                       | ENCE     |            | · · · · · |          |                            |

|       | 1 |    |
|-------|---|----|
| Sheet | ( | of |

-.

1

#### GEOLOGIC BORING LOG

.

-- :

|        |          |      |      |       | <u>ULULU</u>                          |                                       | 101  |            |          |        |                                       |
|--------|----------|------|------|-------|---------------------------------------|---------------------------------------|------|------------|----------|--------|---------------------------------------|
| BORIN  | G NO.    | SI   | 85   |       | CONTRACTOR:                           |                                       |      |            | DATE     | SPUD:  | 10/14/48                              |
| CLIEN' | т: Т     | Wur  | +smi | th    | RIG TYPE:                             | Geoprobe                              |      |            | DATE     | CMPL   | 10/14                                 |
| JOB NO |          |      |      | 64120 | DRLG METHOD:                          |                                       |      |            | ELEV     | ATION  |                                       |
| LOCAT  | TION:    | SJC  |      |       | BORING DIA.:                          | 11/2 "                                |      |            | TEMP.:   |        |                                       |
| GEOLO  | OGIST:   | JF   | FH   |       | DRLG FLUID                            | ·                                     |      |            | WEATHER: |        |                                       |
| СОММ   | ENTS:    |      |      |       |                                       |                                       |      |            |          |        | ·····                                 |
| Elev.  | Depth    | Pro- | US   |       |                                       |                                       | Se   | mples      | Sample   | Penet. | Remarks                               |
| (ft.)  | (ft.)    | file | CS   |       | Geologic Descriptio                   | n                                     | No.  | Depth (ft) |          | Res.   | TIP = Bkgrnd/Reading (ppm)            |
|        |          |      |      |       |                                       |                                       | 1    |            |          |        |                                       |
|        |          |      | }    |       |                                       | <u></u>                               | 1    |            |          |        |                                       |
|        |          |      |      |       | · · · · · · · · · · · · · · · · · · · | ·····                                 | 4    |            |          |        | · · · · · · · · · · · · · · · · · · · |
|        |          |      |      |       |                                       |                                       |      |            |          |        |                                       |
| :      |          |      |      |       |                                       |                                       |      |            |          |        |                                       |
|        | 5        |      |      |       |                                       |                                       | 1    |            |          |        | · · · · · · · · · · · · · · · · · · · |
|        |          |      |      |       | ·····                                 |                                       | $\{$ |            |          |        |                                       |
|        | <b> </b> |      |      |       |                                       | · · · · · · · · · · · · · · · · · · · | 4    |            |          |        |                                       |
|        |          |      |      |       |                                       |                                       |      |            |          |        |                                       |
|        |          |      |      |       |                                       |                                       | 1    |            |          |        |                                       |
| ĺ      |          |      |      | •     |                                       | · · · · · · · · · · · · · · · · · · · | 1    |            |          |        |                                       |
|        |          |      |      |       | · · · · · · · · · · · · · · · · · · · |                                       | 4    |            |          |        |                                       |
| 1      | 116      |      | h    |       |                                       |                                       |      |            |          |        |                                       |

| 10<br>SP SAND md. It.brn, mo:st<br>15<br>20<br>SP SAN, fuel odor                      | 10-12  |                  |           | <del>0/¥</del> 0 6/40                 |
|---------------------------------------------------------------------------------------|--------|------------------|-----------|---------------------------------------|
| SP SAN, fuel oder                                                                     | 16-12  |                  |           | <del>0/¥</del> 0 0/40                 |
| 15<br>15<br>20<br>SP SAA, fuel odor                                                   | 10-12  |                  |           | <del>0/¥</del> 0 0/40                 |
| 15<br>15<br>20<br>SP SAA, fuel odor                                                   |        |                  |           | <del>0/¥</del> 0 0/40                 |
| 20<br>SP SAA fuel odor                                                                |        |                  |           |                                       |
| 20<br>SP SAA fuel odor                                                                |        |                  |           |                                       |
| 20<br>SP SAA fuel odor                                                                |        |                  |           |                                       |
| SP SAA fiel odor                                                                      |        |                  |           |                                       |
| SP SAA fuel odor                                                                      |        |                  |           |                                       |
| SP SAA fuel odor                                                                      |        |                  |           | •                                     |
| SP SAA fuel odor                                                                      |        |                  |           |                                       |
| SP SAA fuel odor                                                                      |        |                  |           | ,,,,,,, _                             |
| SP SAA fiel odor                                                                      | -      | <del>~_/</del> _ |           |                                       |
|                                                                                       |        | +                |           |                                       |
|                                                                                       |        | $\Delta$         |           |                                       |
|                                                                                       | 21-23  |                  |           |                                       |
| wete 23' greystain                                                                    |        |                  | C         | 0/1860                                |
|                                                                                       |        |                  |           |                                       |
|                                                                                       |        |                  |           |                                       |
|                                                                                       |        |                  |           |                                       |
|                                                                                       |        |                  |           |                                       |
|                                                                                       |        |                  |           | <u> </u>                              |
|                                                                                       |        |                  | -         |                                       |
|                                                                                       |        |                  |           | · · · · · · · · · · · · · · · · · · · |
|                                                                                       |        |                  |           |                                       |
| sl - slight $v - very$ $f - fine$                                                     | SAMPL  | E TYPE           |           |                                       |
| tr - trace lt - light m - medium                                                      |        | UVE              | c ca      | ore recovery                          |
| sm – some dk – dark c – coarse                                                        | C – CC | DRE              |           | · •                                   |
| & - and bf - buff BH - Bore Hole                                                      | G – GF | RAB              | Co        | ore lost                              |
| Q     - at     brn - brown     SAA - Same As Above       w     - with     blk - black |        |                  |           |                                       |
| w - with blk - black                                                                  |        | Water lev        | ci drille | 4                                     |

Shee: ( of /

----

### GEOLOGIC BORING LOG

lj

| BORING NO. | 586          | CONTRACTOR:  |           | DATE SPUD: 10/15/48 0830 |  |
|------------|--------------|--------------|-----------|--------------------------|--|
| CLIENT:    | Wurtsmith    | RIG TYPE:    | Creoprobe | DATE CMPL: 10/15         |  |
| JOB NO.:   | 726876.69120 | DRLG METHOD: |           | ELEVATION:               |  |
| LOCATION:  | 5.506        | BORING DIA.: | 1.5"      | TEMP.:                   |  |
| GEOLOGIST: | JEH          | DRLG FLUID   |           | WEATHER:                 |  |
| COMMENTS:  |              | _            |           |                          |  |

|          | Depth  |       | US  |                                       |                                |         |            | Sample                                        |          | Remarks                               |
|----------|--------|-------|-----|---------------------------------------|--------------------------------|---------|------------|-----------------------------------------------|----------|---------------------------------------|
| (ft.)    | (ft.)  | file  | CS  | Ge                                    | ologic Description             | No.     | Depth (ft) | Туре                                          | Res.     | TIP = Ekgrnd/Reading (ppm)            |
|          |        |       |     |                                       |                                |         |            |                                               |          |                                       |
|          |        |       |     |                                       |                                |         |            |                                               |          |                                       |
|          |        |       |     | •                                     |                                |         |            |                                               |          |                                       |
|          |        |       |     | •                                     |                                |         |            |                                               |          |                                       |
| :        |        |       |     | · · · ·                               |                                |         |            |                                               |          |                                       |
| -        |        |       |     |                                       |                                |         |            |                                               |          |                                       |
|          | 5      |       |     |                                       |                                |         |            |                                               |          |                                       |
|          |        |       |     | ·····                                 |                                |         |            |                                               |          |                                       |
|          |        |       |     |                                       | •                              |         |            |                                               |          |                                       |
|          |        |       |     |                                       |                                |         |            |                                               |          |                                       |
|          |        |       |     |                                       | · · · · ·                      |         |            |                                               |          |                                       |
|          |        |       |     |                                       | · ;                            |         |            |                                               |          |                                       |
|          |        |       |     | •                                     | •                              |         |            |                                               |          |                                       |
|          | 10     |       |     | · · · · · · · · · · · · · · · · · · · |                                |         |            |                                               |          |                                       |
|          | +      |       |     |                                       |                                |         |            |                                               |          |                                       |
|          |        |       |     |                                       |                                |         |            |                                               |          |                                       |
|          |        |       |     |                                       |                                |         |            |                                               |          |                                       |
|          |        |       |     |                                       | ······                         |         | 1          |                                               |          |                                       |
|          |        |       |     |                                       |                                |         |            |                                               |          |                                       |
|          |        |       |     |                                       |                                |         |            |                                               | :        |                                       |
|          | 1-     |       |     |                                       |                                | ·       |            |                                               |          | · · · · · · · · · · · · · · · · · · · |
| <u> </u> | 15     |       |     |                                       |                                |         |            |                                               |          |                                       |
|          | 1      |       |     |                                       |                                |         |            | · .                                           |          |                                       |
|          |        |       |     |                                       |                                |         | }          |                                               |          |                                       |
|          | ļ      |       |     |                                       |                                |         |            |                                               |          |                                       |
|          |        |       |     |                                       |                                |         |            |                                               |          |                                       |
|          |        |       |     |                                       |                                |         |            |                                               |          |                                       |
| 1        |        |       |     |                                       |                                |         |            |                                               |          |                                       |
|          | 20     |       |     |                                       |                                |         |            |                                               |          |                                       |
|          | Τ-     |       | ·   |                                       |                                | · · · · |            |                                               |          |                                       |
|          |        | {     | 00  | CA IA A                               | A                              |         |            | <u>                                      </u> |          |                                       |
|          | L      | ļ     | 25  | SHAU put.                             | grainel, It.brn,<br>oder, wete |         | 21-23      |                                               |          |                                       |
|          |        |       |     | Moist fuel                            | acter into                     |         | dra)       |                                               |          | 0/1100 x2                             |
|          |        | 1     | 1   | 02 5                                  | <u> </u>                       |         | +          |                                               |          |                                       |
|          | ļ      | 4     | 1   | 22.5                                  |                                |         |            |                                               |          | •                                     |
|          | 1      |       |     |                                       | •                              |         |            |                                               |          |                                       |
|          |        | ]     | 1   |                                       |                                |         | ·          | 1                                             | 1        |                                       |
|          |        | 1     |     |                                       |                                |         | 1          |                                               |          |                                       |
| 1        | L      | 1     |     |                                       |                                |         | 1          | 1                                             |          |                                       |
|          |        |       | ŀ   |                                       |                                |         | ·          |                                               |          | <u> </u>                              |
|          |        | · /   | ·   |                                       |                                |         |            | · ·                                           |          |                                       |
| l        | ·      | 1     | ·   |                                       |                                |         |            |                                               | 1        | · ·                                   |
|          |        | 1     | · · |                                       |                                |         | 1          |                                               | 1        |                                       |
| <b></b>  | *      |       | 1   | L,                                    |                                | l       |            | L                                             | L        | L                                     |
|          | sl — s | light | •   | V - ver-                              | £ 6                            |         | o          | -                                             | -        |                                       |
|          |        |       |     | v - very                              | f - fine                       |         | SAMPI      |                                               | •        | _                                     |
| 1        | tr - t |       |     | lt – light                            | m – medium                     |         | D – D      |                                               | С        | Core recovery                         |
|          |        | some  |     | dk – dark                             | c - coarse                     |         | C – C      |                                               |          |                                       |
|          | & -    | and   |     | bf - buff                             | BH - Bore Hole                 |         | G – G      | RAB                                           |          | Core lost                             |
|          | @ -    | at    |     | brn – brown                           | SAA – Same As Above            |         |            |                                               |          |                                       |
| 1        | w -    | with  |     | blk - black                           |                                |         |            | Water                                         | level dr | illed                                 |
| 1        |        |       |     |                                       |                                |         |            |                                               |          |                                       |
|          |        |       |     | · · · · · · · · · · · · · · · · · · · | ENGINEERINC                    | SOFENCE |            |                                               | ·····    | · · · · · · · · · · · · · · · · · · · |

| Sheet | l of |
|-------|------|
|-------|------|

----

### GEOLOGIC BORING LOG

.

| BORING NO. | 567          | CONTRACTOR:  |          | DATE SPUD: 10/14/98 | 1650 |
|------------|--------------|--------------|----------|---------------------|------|
| CLIENT:    | Wurtsmith    | RIG TYPE:    | Geoprobe | DATE CMPL: 10/14    | · ·  |
| JOB NO.:   | 726876.64120 | DRLG METHOD: |          | ELEVATION:          |      |
| LOCATION:  | 5.506        | BORING DIA.: | 1.5"     | TEMP.:              |      |
| GEOLOGIST: | JFH          | DRLG FLUID   |          | WEATHER:            |      |
| COMMENTS:  |              | —            |          |                     |      |

|       | Depth         |      | US  |                                       |    |       | Sample   |          |                                       |
|-------|---------------|------|-----|---------------------------------------|----|-------|----------|----------|---------------------------------------|
| (ft.) | (ft.)         | file | CS  | Geologic Description                  |    |       |          |          | TIP = Bkgrnd/Reading (ppm)            |
|       |               |      |     | Ž                                     |    |       | <u> </u> |          |                                       |
|       |               |      |     |                                       | 1  | ł     |          |          |                                       |
|       | 1             |      |     |                                       |    |       | 1        |          |                                       |
|       |               |      |     |                                       | -  |       |          |          |                                       |
|       |               |      |     |                                       |    |       |          |          |                                       |
| :     |               |      |     |                                       | 7  |       |          |          |                                       |
|       |               |      |     |                                       | -  |       |          |          |                                       |
| L     | 5             |      |     |                                       | }  |       | :        |          |                                       |
|       |               |      |     |                                       | 7  | · ·   |          |          |                                       |
|       | <u>├</u>      |      |     |                                       | -  |       | 1        |          |                                       |
| 1     |               |      |     | · · · · · · · · · · · · · · · · · · · |    |       |          |          |                                       |
| ļ     |               |      |     | · /                                   | 1  | ł     |          |          |                                       |
| · ·   |               |      |     |                                       | -  |       |          |          |                                       |
|       |               |      |     |                                       |    | 1     | 1        |          | 1                                     |
| ł     | 10            |      |     | · · · · · · · · · · · · · · · · · · · | 7  | 1     |          | l        |                                       |
|       | +· <u> </u>   |      |     | ÷.                                    | -  | 1     |          |          |                                       |
|       |               |      |     |                                       |    | [     |          |          |                                       |
| ļ     |               |      |     |                                       | 7  |       |          |          |                                       |
|       |               |      |     |                                       | -  |       |          |          |                                       |
|       |               |      |     |                                       |    |       | 1        |          |                                       |
|       |               |      |     |                                       | 7  |       | ]        |          | · · · · · · · · · · · · · · · · · · · |
|       |               |      |     |                                       | -1 | 1     |          |          |                                       |
|       | 15            |      | l   |                                       |    | 1     | 1        |          |                                       |
|       |               |      |     |                                       | ٦  | 1     |          |          |                                       |
|       |               |      |     |                                       | -1 |       |          | 1        |                                       |
| 1     |               |      |     |                                       |    |       |          |          | 1                                     |
|       |               |      |     |                                       | ٦  | 1     |          |          |                                       |
|       | }             |      |     |                                       |    | ₋     |          |          | · · ·                                 |
| 1     |               |      | SP  | SAA                                   |    | 18-20 |          |          |                                       |
|       | 20            |      |     | Gray Stoin @ 19.9', U. moist          | 7  | 1000  | 1        | ļ        | 0/640                                 |
|       | +             | ł    | · · |                                       |    | +     |          | <u> </u> |                                       |
| 1     |               |      | l   |                                       |    |       | ·        | 1        |                                       |
|       |               | 1    | 1   |                                       | 7  |       | 1        | 1        |                                       |
| 1     |               | 1    |     |                                       |    |       |          | ļ        |                                       |
| 1     | ļ             | Į    |     |                                       |    |       |          |          | ·                                     |
|       |               |      |     |                                       |    |       | 1        |          |                                       |
| 1     | <u> </u>      | 1    | 1   |                                       |    |       |          |          |                                       |
| L     | <u>  · ·</u>  | ]    |     | · · · · · · · · · · · · · · · · · · · |    |       |          |          |                                       |
|       |               |      | 1   |                                       | 7  | 1     | i        |          |                                       |
|       |               | 1    |     |                                       |    |       |          |          |                                       |
| 1     |               | ]    |     |                                       |    |       |          |          |                                       |
| ļ     | 1             | ł    | ł   |                                       |    | 1     |          |          |                                       |
| 1     |               | 1    | · · |                                       |    | 1     | · ·      |          |                                       |
|       | · ·           | ]    | ŀ   |                                       |    |       | 1        |          |                                       |
|       |               |      | 1   |                                       | 7  |       |          | 1        |                                       |
|       | · ·           | 1    | 1   |                                       |    | _l    | 1        | 1        |                                       |
|       |               |      | •   |                                       |    |       |          |          |                                       |
|       | sl – s        |      |     | v - vcry $f - fine$                   |    | SAMPI |          | E        |                                       |
|       | tr - t        | race |     | lt – light m – medium                 |    | D - D | RIVE     | - c      | Core recovery                         |
| 1     | sm –          | some |     | dk - dark c - coarse                  |    | C – C |          |          | -                                     |
|       | & -           | and  |     | bf - buff BH - Bore Hole              |    | G - G |          |          | Core lost                             |
|       |               | • at |     | brn - brown SAA - Same As Above       |    | 0.00  |          |          |                                       |
| 1     | w –           |      |     |                                       |    |       |          |          |                                       |
|       | <b>~</b> -    | with |     | blk – black                           |    |       | Water    | level dr |                                       |
| L     | · · · · · · · |      |     |                                       |    |       |          |          |                                       |

|       | , |    | 1 |
|-------|---|----|---|
| Sheet | ( | of | ( |

**--**·

### GEOLOGIC BORING LOG

٠

| BORING NO. | 588          | CONTRACTOR:  |          | DATE SPUD: | 10/10/98 | 1710 |
|------------|--------------|--------------|----------|------------|----------|------|
| CLIENT:    | Wuitsmith    | RIG TYPE:    | Ceoprobe | DATE CMPL: | 10/14    |      |
| JOB NO.:   | 726876.69120 | DRLG METHOD: |          | ELEVATION: |          |      |
| LOCATION:  | 5506         | BORING DIA.: | 1.5      | TEMP.:     |          |      |
| GEOLOGIST: | JFH          | DRLG FLUID   |          | WEATHER:   |          |      |
| COMMENTS:  |              | _            |          |            |          |      |

| Elev.      | Depth      | Pro-     | US   |             |                                        | Sa  | mples      | Sample | Penet.   | Remarks                    |
|------------|------------|----------|------|-------------|----------------------------------------|-----|------------|--------|----------|----------------------------|
| (ft.)      | (ft.)      | file     | CS   | Geo         | logic Description                      | No. | Depth (ft) | Type   | Res.     | TIP = Bkgrad/Reading (ppm) |
| <u> </u>   | +          |          |      |             |                                        |     |            |        |          |                            |
|            |            |          |      |             |                                        |     |            |        |          |                            |
|            |            |          |      |             |                                        |     |            |        |          |                            |
|            |            |          |      |             | ۲                                      |     |            |        |          |                            |
|            |            |          |      | •           |                                        |     |            |        |          |                            |
| :          |            |          |      |             |                                        |     |            |        |          | i                          |
| -          |            |          |      |             |                                        |     |            | l      |          |                            |
|            |            |          |      |             |                                        |     |            |        |          |                            |
|            | 5          |          |      |             |                                        |     |            |        |          |                            |
|            |            |          |      |             |                                        |     |            |        |          |                            |
|            |            |          |      |             | ·                                      |     |            |        |          |                            |
|            |            |          |      |             |                                        |     |            |        |          |                            |
|            |            |          |      |             |                                        |     |            |        |          |                            |
| Į          |            |          |      |             | 1. <b>2</b> 1                          |     |            |        |          |                            |
| · ·        |            |          |      |             | ······································ |     |            |        |          |                            |
|            |            |          |      |             |                                        |     |            |        |          |                            |
|            |            |          |      |             |                                        | {   |            |        |          |                            |
|            | 16         |          |      |             |                                        |     |            |        |          |                            |
|            |            |          |      |             | <i>.</i>                               |     |            |        |          |                            |
| 1          | L          |          |      |             |                                        |     |            |        |          | -                          |
|            |            |          | 1    |             |                                        |     |            |        |          |                            |
| 1          |            |          |      | ļ           |                                        |     |            |        |          |                            |
| <b>I</b> . |            |          | 1    |             |                                        |     | 1          |        |          |                            |
|            |            |          |      |             |                                        |     |            |        |          |                            |
|            |            |          |      |             |                                        |     | 1          |        |          |                            |
|            |            |          | 1    |             | · · · · · · · · · · · · · · · · · · ·  |     |            | · .    |          | ·                          |
| ł          | 15         |          |      |             |                                        |     |            |        |          |                            |
|            |            |          |      |             |                                        |     |            |        |          |                            |
|            |            |          |      |             |                                        | }   |            |        |          |                            |
|            |            | ĺ        | Į    |             |                                        |     |            |        |          |                            |
|            |            | 1        |      |             |                                        |     |            |        |          |                            |
|            |            |          |      |             |                                        |     |            |        |          |                            |
|            |            | -        |      |             |                                        |     |            |        |          |                            |
| 1          |            |          |      |             |                                        |     | 1          |        |          | 1                          |
| {          | 20         | 1        | 00   | CA. 10      |                                        |     |            |        |          |                            |
|            | 20         | ]        | ISP. | SAND Md.    | it. brn, moist -                       |     | 14-21      |        |          |                            |
|            |            |          |      |             |                                        |     | 1          |        |          | 0125110                    |
|            | . <u> </u> | 1        |      | V. res. sr  | , grey stain                           |     |            |        |          | 0/3540                     |
| 1          | 4          |          |      | fuelod      |                                        |     | 1          |        |          |                            |
|            |            | {        |      | The Oct     |                                        |     |            | 1      |          |                            |
|            |            |          |      |             |                                        |     | 1          |        |          | 1.                         |
|            |            | 1        |      | ····        |                                        |     |            |        |          |                            |
|            |            |          | }    |             |                                        |     |            |        |          |                            |
|            |            | 1        |      |             |                                        |     |            |        |          | ······                     |
|            | <u>.</u>   | 1        |      |             | •                                      |     |            | 1      |          |                            |
|            |            |          | 1    |             |                                        |     | 1.         |        |          |                            |
|            | <b></b>    | 4        | 1    |             |                                        |     |            | ]      |          |                            |
|            | 1          | 1        | 1    |             | · · · · ·                              |     |            | 1      |          |                            |
|            | }          | -        | 1    |             |                                        |     |            | 1      |          |                            |
|            |            |          | 1    |             | · .                                    |     |            | }      | [        |                            |
|            |            | 1        | 1 ·  |             |                                        |     |            | 1 .    | [        |                            |
|            | · ·        | 1        | ·    |             |                                        |     |            | 1      |          |                            |
| 1          | · · .      | 1        | 1    |             | · · · · · · · · · · · · · · · · · · ·  |     |            | 1      |          |                            |
| Ļ          | <u></u>    | <u> </u> |      | <u> </u>    |                                        | 1   | 1          | 1      | ł        |                            |
| 1          |            |          |      |             |                                        |     |            |        |          |                            |
|            | sl — s     | dight    |      | v - very    | f - fine                               |     | 0 A 1 007  | -      | -        |                            |
|            |            |          | •    |             |                                        |     | SAMPI      |        | -        |                            |
|            | tr – t     | trace    |      | lt – light  | m – medium                             |     | D – D      | RIVE   | C        | Core recovery              |
|            | sm -       | some     |      | dk - dark   | c - coarse                             |     | c – c      |        |          | -                          |
|            |            |          |      |             |                                        |     |            |        |          |                            |
| 1          | & -        |          |      | bf - buff   | BH - Bore Hole                         |     | G – G      | RAB    |          | Core lost                  |
|            | @ -        | - at     |      | brn – brown | SAA - Same As Above                    |     |            |        |          |                            |
| 1          | w -        |          |      | blk - black |                                        |     |            | M7 ·   | 1        | -11 . J                    |
| 1          |            | ** IL II |      | OIK - DIACK |                                        |     |            | water  | level dr |                            |
| L          |            |          |      |             |                                        |     |            |        |          |                            |

Sheet ( of (

.

| BORING NO. | SB 9         | CONTRACTOR:  |          | DATE SPUD: 1415/48 093. |
|------------|--------------|--------------|----------|-------------------------|
| CLIENT:    | Wurtsmith    | RIG TYPE:    | Geoprobe | DATE CMPL: 10/15        |
| JOB NO.:   | 726876.64120 | DRLG METHOD: |          | ELEVATION:              |
| LOCATION:  | 5506         | BORING DIA.: | 2.5      | TEMP.:                  |
| GEOLOGIST: | JEH          | DRLG FLUID   |          | WEATHER:                |
| COMMENTS:  |              |              |          |                         |
| Flay Death |              |              |          |                         |

|          | Перш     |      | 05  |                                       |                                        |          |            | Sample  |            |                            |
|----------|----------|------|-----|---------------------------------------|----------------------------------------|----------|------------|---------|------------|----------------------------|
| (ft.)    | (ft.)    | filc | CS  | Ge                                    | ologic Description                     | No.      | Depth (ft) | Type    | Res.       | TIP = Ekgrad/Reading (ppm) |
|          |          |      | SP  | SAND nd                               | , It. brn, meist                       |          |            |         |            |                            |
|          |          |      |     |                                       |                                        |          |            |         |            |                            |
|          |          |      |     |                                       | · · · · · · · · · · · · · · · · · · ·  |          | 04         |         |            |                            |
|          |          |      |     |                                       |                                        |          |            |         |            |                            |
| .=       |          |      |     |                                       |                                        |          |            |         |            | 1) (25 (1)(1)              |
|          |          |      |     |                                       |                                        |          |            |         |            | 0/20 010                   |
|          | 5        |      |     | SAA                                   |                                        |          |            |         |            |                            |
|          | 1        |      | 1   |                                       | ······································ |          | 1. 6       |         |            |                            |
|          |          |      |     |                                       | · · · · · · · · · · · · · · · · · · ·  |          | 4-8        |         |            |                            |
|          |          |      |     |                                       |                                        |          |            |         |            |                            |
|          |          |      |     |                                       | <i></i>                                |          |            |         |            | 010                        |
|          |          |      |     |                                       | ·                                      |          |            |         |            | 010                        |
|          |          |      |     | SAA                                   | •                                      |          |            |         |            |                            |
|          | 10       |      |     |                                       |                                        |          |            |         |            |                            |
|          | +'       |      |     |                                       |                                        |          | 8-12       |         |            |                            |
|          |          |      |     |                                       |                                        |          |            |         |            |                            |
|          |          |      |     |                                       |                                        |          |            |         |            | 0/0                        |
|          |          |      |     | 200                                   |                                        |          |            |         |            |                            |
|          |          |      |     | SAA                                   |                                        |          | 12-14      |         |            |                            |
|          |          |      |     |                                       |                                        | ]        | 10         |         |            | 0/20×2                     |
|          | 1        |      |     |                                       |                                        |          |            |         |            | 10                         |
| <b> </b> | 15       |      |     |                                       |                                        |          |            |         |            |                            |
|          |          |      |     |                                       |                                        |          |            |         |            | :                          |
|          |          |      |     |                                       |                                        |          |            |         |            |                            |
|          |          |      |     |                                       | ·····                                  |          |            |         |            |                            |
|          |          |      |     |                                       |                                        |          |            |         |            |                            |
|          |          |      |     |                                       |                                        |          |            |         |            |                            |
|          |          |      |     |                                       |                                        |          |            |         |            |                            |
|          | 30       |      | ł . |                                       |                                        |          |            |         |            |                            |
|          |          |      |     | SAA Am                                | e-21' wet a-1                          |          |            |         |            |                            |
|          |          |      | 1   | Sir gray                              |                                        |          | 20-22      | •       |            | ·                          |
|          |          |      |     | ~21.5                                 |                                        |          |            |         |            | 0/3200×2                   |
|          |          |      |     |                                       |                                        |          | <u> </u>   |         |            | -                          |
|          |          |      |     |                                       |                                        |          |            |         |            | ·                          |
|          |          |      | ŀ   |                                       | ·····                                  |          |            |         |            | •                          |
|          |          |      | 1   | 1                                     |                                        |          |            |         |            | · ·                        |
|          |          |      |     | · · · · · · · · · · · · · · · · · · · |                                        |          | ·          |         |            |                            |
|          |          |      |     |                                       | · · · · · · · · · · · · · · · · · · ·  |          |            |         |            |                            |
| 1        |          |      |     |                                       |                                        |          |            |         |            |                            |
|          | ·        |      | ł   | ······                                |                                        |          |            |         |            |                            |
|          |          |      | · · |                                       |                                        |          |            |         |            |                            |
|          |          |      | ļ . |                                       |                                        |          |            |         |            |                            |
|          |          |      |     |                                       |                                        |          |            |         |            |                            |
|          | <u>1</u> | L    | L   | l                                     |                                        |          |            |         |            | l                          |
|          |          |      |     |                                       |                                        |          |            |         |            | ···                        |
|          | sl — s   |      |     | v 👌 – very                            | f - fine                               |          | SAMPL      | E TYPE  |            |                            |
|          | tr - t   | race |     | lt – light                            | m – medium                             |          | D - DI     | RIVE    | С          | Core recovery              |
|          | sm -     | some |     | dk – dark                             | c - coarse                             |          | c - co     |         |            | -                          |
|          | & -      | and  |     | bf - buff                             | BH - Bore Hole                         |          | G – GI     |         |            | Core lost                  |
|          | @ -      | at   |     | brn – brown                           | SAA - Same As Above                    |          | 0.01       |         |            |                            |
|          | w -      |      |     | blk - black                           | CAR DALLO AS ADOVC                     |          |            |         | <b>.</b> . |                            |
|          |          |      |     | OLA UIACA                             |                                        |          |            | Water 1 | evel dri   | lled                       |
| L        |          |      |     |                                       |                                        |          |            |         |            |                            |
|          |          |      |     |                                       | ENGINEERING                            | -SCIENCE |            |         |            |                            |

| Sheet | $l_{of}$ | / |
|-------|----------|---|

.

.

--

| BORING NO. | SBIO         | CONTRACTOR:   |          | DATE SPUD: 6/15/88 1240 |
|------------|--------------|---------------|----------|-------------------------|
| CLIENT:    | Wurtsmith    | RIG TYPE:     | Geoprobe | DATE CMPL: 10/15        |
| JOB NO.:   | 726876.69120 | DRLG METHOD:  |          | ELEVATION:              |
| LOCATION:  | 5.506        | BORING DIA .: | 1.5"     | TEMP.:                  |
| GEOLOGIST: | JFH          | DRLG FLUID    |          | WEATHER:                |
| COMMENTS:  |              | _             |          |                         |

| $SP = SAUD, and, growin al, y Mu; 3+  SP = SAUD, and, growin al, y Mu; 3+  gra \gamma = fica (order)  SAUD = SAUD = SAUD = TYPE  gra \gamma = fica (order)  SAUD = SAUD = TYPE  SAUD = SAUD = SAUD = TYPE  SAUD = SAUD = SAUD = TYPE  SAUD = SAUD = SAUD = TYPE  SAUD = SAUD = SAUD = TYPE  SAUD = SAUD = SAUD = TYPE  SAUD = SAUD = SAUD = TYPE  SAUD = SAUD = SAUD = TYPE  SAUD = SAUD = SAUD = TYPE  SAUD = SAUD = SAUD = SAUD = TYPE  SAUD = SAUD = SAUD = SAUD = TYPE  SAUD = SAUD = SAUD = SAUD = SAUD = SAUD = SAUD = SAUD = SAUD = SAUD = SAUD = SAUD = SAUD = SAUD = SAUD = SAUD = SAUD = SAUD = SAUD = SAUD = SAUD = SAUD = SAUD = SAUD = SAUD = SAUD = SAUD = SAUD = SAUD = SAUD = SAUD = SAUD = SAUD = SAUD = SAUD = SAUD = SAUD = SAUD = SAUD = SAUD = SAUD = SAUD = SAUD = SAUD = SAUD = SAUD = SAUD = SAUD = SAUD = SAUD = SAUD = SAUD = SAUD = SAUD = SAUD = SAUD = SAUD = SAUD = SAUD = SAUD = SAUD = SAUD = SAUD = SAUD = SAUD = SAUD = SAUD = SAUD = SAUD = SAUD = SAUD = SAUD = SAUD = SAUD = SAUD = SAUD = SAUD = SAUD = SAUD = SAUD = SAUD = SAUD = SAUD = SAUD = SAUD = SAUD = SAUD = SAUD = SAUD = SAUD = SAUD = SAUD = SAUD = SAUD = SAUD = SAUD = SAUD = SAUD = SAUD = SAUD = SAUD = SAUD = SAUD = SAUD = SAUD = SAUD = SAUD = SAUD = SAUD = SAUD = SAUD = SAUD = SAUD = SAUD = SAUD = SAUD = SAUD = SAUD = SAUD = SAUD = SAUD = SAUD = SAUD = SAUD = SAUD = SAUD = SAUD = SAUD = SAUD = SAUD = SAUD = SAUD = SAUD = SAUD = SAUD = SAUD = SAUD = SAUD = SAUD = SAUD = SAUD = SAUD = SAUD = SAUD = SAUD = SAUD = SAUD = SAUD = SAUD = SAUD = SAUD = SAUD = SAUD = SAUD = SAUD = SAUD = SAUD = SAUD = SAUD = SAUD = SAUD = SAUD = SAUD = SAUD = SAUD = SAUD = SAUD = SAUD = SAUD = SAUD = SAUD = SAUD = SAUD = SAUD = SAUD = SAUD = SAUD = SAUD = SAUD = SAUD = SAUD = SAUD = SAUD = SAUD = SAUD = SAUD = SAUD = SAUD = SAUD = SAUD = SAUD = SAUD = SAUD = SAUD = SAUD = SAUD = SAUD = SAUD = SAUD = SAUD = SAUD = SAUD = SAUD = SAUD = SAUD = SAUD = SAUD = SAUD = SAUD = SAUD = SAUD = SAUD = SAUD = SAUD = SAUD = SAUD = SAUD = SAUD = SAUD = SAUD = SAUD = SAUD = SAUD $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       | Depth      |        | US  |                                        |                                       |        |            | Sample   |                | Remarks                    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|------------|--------|-----|----------------------------------------|---------------------------------------|--------|------------|----------|----------------|----------------------------|
| $\frac{1}{6}$ $\frac{1}{6}$ $\frac{1}{6}$ $\frac{1}{6}$ $\frac{1}{6}$ $\frac{1}{6}$ $\frac{1}{6}$ $\frac{1}{6}$ $\frac{1}{6}$ $\frac{1}{6}$ $\frac{1}{6}$ $\frac{1}{6}$ $\frac{1}{6}$ $\frac{1}{6}$ $\frac{1}{6}$ $\frac{1}{6}$ $\frac{1}{6}$ $\frac{1}{6}$ $\frac{1}{6}$ $\frac{1}{6}$ $\frac{1}{6}$ $\frac{1}{6}$ $\frac{1}{6}$ $\frac{1}{6}$ $\frac{1}{6}$ $\frac{1}{6}$ $\frac{1}{6}$ $\frac{1}{6}$ $\frac{1}{6}$ $\frac{1}{6}$ $\frac{1}{6}$ $\frac{1}{6}$ $\frac{1}{6}$ $\frac{1}{6}$ $\frac{1}{6}$ $\frac{1}{6}$ $\frac{1}{6}$ $\frac{1}{6}$ $\frac{1}{6}$ $\frac{1}{6}$ $\frac{1}{6}$ $\frac{1}{6}$ $\frac{1}{6}$ $\frac{1}{6}$ $\frac{1}{6}$ $\frac{1}{6}$ $\frac{1}{6}$ $\frac{1}{6}$ $\frac{1}{6}$ $\frac{1}{6}$ $\frac{1}{6}$ $\frac{1}{6}$ $\frac{1}{6}$ $\frac{1}{6}$ $\frac{1}{6}$ $\frac{1}{6}$ $\frac{1}{6}$ $\frac{1}{6}$ $\frac{1}{6}$ $\frac{1}{6}$ $\frac{1}{6}$ $\frac{1}{6}$ $\frac{1}{6}$ $\frac{1}{6}$ $\frac{1}{6}$ $\frac{1}{6}$ $\frac{1}{6}$ $\frac{1}{6}$ $\frac{1}{6}$ $\frac{1}{6}$ $\frac{1}{6}$ $\frac{1}{6}$ $\frac{1}{6}$ $\frac{1}{6}$ $\frac{1}{6}$ $\frac{1}{6}$ $\frac{1}{6}$ $\frac{1}{6}$ $\frac{1}{6}$ $\frac{1}{6}$ $\frac{1}{6}$ $\frac{1}{6}$ $\frac{1}{6}$ $\frac{1}{6}$ $\frac{1}{6}$ $\frac{1}{6}$ $\frac{1}{6}$ $\frac{1}{6}$ $\frac{1}{6}$ $\frac{1}{6}$ $\frac{1}{6}$ $\frac{1}{6}$ $\frac{1}{6}$ $\frac{1}{6}$ $\frac{1}{6}$ $\frac{1}{6}$ $\frac{1}{6}$ $\frac{1}{6}$ $\frac{1}{6}$ $\frac{1}{6}$ $\frac{1}{6}$ $\frac{1}{6}$ $\frac{1}{6}$ $\frac{1}{6}$ $\frac{1}{6}$ $\frac{1}{6}$ $\frac{1}{6}$ $\frac{1}{6}$ $\frac{1}{6}$ $\frac{1}{6}$ $\frac{1}{6}$ $\frac{1}{6}$ $\frac{1}{6}$ $\frac{1}{6}$ $\frac{1}{6}$ $\frac{1}{6}$ $\frac{1}{6}$ $\frac{1}{6}$ $\frac{1}{6}$ $\frac{1}{6}$ $\frac{1}{6}$ $\frac{1}{6}$ $\frac{1}{6}$ $\frac{1}{6}$ $\frac{1}{6}$ $\frac{1}{6}$ $\frac{1}{6}$ $\frac{1}{6}$ $\frac{1}{6}$ $\frac{1}{6}$ $\frac{1}{6}$ $\frac{1}{6}$ $\frac{1}{6}$ $\frac{1}{6}$ $\frac{1}{6}$ $\frac{1}{6}$ $\frac{1}{6}$ $\frac{1}{6}$ $\frac{1}{6}$ $\frac{1}{6}$ $\frac{1}{6}$ $\frac{1}{6}$ $\frac{1}{6}$ $\frac{1}{6}$ $\frac{1}{6}$ $\frac{1}{6}$ $\frac{1}{6}$ $\frac{1}{6}$ $\frac{1}{6}$ $\frac{1}{6}$ $\frac{1}{6}$ $\frac{1}{6}$ $\frac{1}{6}$ $\frac{1}{6}$ $\frac{1}{6}$ $\frac{1}{6}$ $\frac{1}{6}$ $\frac{1}{6}$ $\frac{1}{6}$ $\frac{1}{6}$ $\frac{1}{6}$ $\frac{1}{6}$ $\frac{1}{6}$ $\frac{1}{6}$ $\frac{1}{6}$ $\frac{1}{6}$ $\frac{1}{6}$ $\frac{1}{6}$ $\frac{1}{6}$ $\frac{1}{6}$ $\frac{1}{6}$ $\frac{1}{6}$ $\frac{1}{6}$ $\frac{1}{6}$ $\frac{1}{6}$ $\frac{1}{6}$ $\frac{1}{6}$ $\frac{1}{6}$ $\frac{1}{6}$ $\frac{1}{6}$ $\frac{1}{6}$ $\frac{1}{6}$ $\frac{1}{6}$ $\frac{1}{6}$ $\frac{1}{6}$ $\frac{1}{6}$ $\frac{1}{6}$ $\frac{1}{6}$ $\frac{1}{6}$ $\frac{1}{6}$ $\frac{1}{6}$ $\frac{1}{6}$ $\frac{1}{6}$ $\frac{1}{6}$ $\frac{1}{6}$ $\frac{1}{6}$ $\frac{1}{6}$ $\frac{1}{6}$ $\frac{1}{6}$ $\frac{1}{6}$ $\frac{1}{6}$ $\frac{1}{6}$ $\frac{1}{6}$ $\frac{1}{6}$ $\frac{1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (ft.) | (ft.)      | filc   | CS  | Geol                                   | logic Description                     | No.    | Depth (ft) | Type     | Res.           | TTP = Bkgrnd/Reading (ppm) |
| $SP = SAW0, md, gm; n=l = yw; T = fine = \frac{SAWP E TYPE}{g^{re} Y = 4r + 10} = \frac{0}{2r^{2}} = $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       |            |        |     |                                        |                                       |        |            |          |                |                            |
| S P = SAWD, md, gravin = l, y Mr; T = 2i-33 $S P = SAWD, md, gravin = l, y Mr; T = 2i-33$ $S P = SAWD, md, gravin = l, y Mr; T = 2i-33$ $S P = SAWD, md, gravin = l, y Mr; T = 2i-33$ $S P = SAWD, md, gravin = l, y Mr; T = 2i-33$ $S P = SAWD, md, gravin = l, y Mr; T = 2i-33$ $S P = SAWD, md, gravin = l, y Mr; T = 2i-33$ $S P = SAWD, md, gravin = l, y Mr; T = 2i-33$ $S P = SAWD, md, gravin = l, y Mr; T = 2i-33$ $S P = SAWD, md, gravin = l, y Mr; T = 2i-33$ $S P = SAWD, md, gravin = l, y Mr; T = 2i-33$ $S P = SAWD, md, gravin = l, y Mr; T = 2i-33$ $S P = SAWD, md, gravin = l, y Mr; T = 2i-33$ $S P = SAWD, md, gravin = l, y Mr; T = 2i-33$ $S P = SAWD, md, gravin = l, y Mr; T = 2i-33$ $S P = SAWD, md, gravin = l, y Mr; T = 2i-33$ $S P = SAWD, md, gravin = l, y Mr; T = 2i-33$ $S P = SAWD, md, gravin = l, y Mr; T = 2i-33$ $S P = SAWD, md, gravin = l, y Mr; T = 2i-33$ $S P = SAWD, md, gravin = l, y Mr; T = 2i-33$ $S P = SAWD, md, gravin = l, y Mr; T = 2i-33$ $S P = SAWD, md, gravin = l, y Mr; T = 2i-33$ $S P = SAWD, md, gravin = l, y Mr; T = 2i-33$ $S P = SAWD, md, gravin = l, y Mr; T = 2i-33$ $S P = SAWD, md, gravin = l, y Mr; T = 2i-33$ $S P = SAWD, md, gravin = l, y Mr; T = 2i-33$ $S P = SAWD, md, gravin = l, y Mr; T = 2i-33$ $S P = SAWD, md, gravin = l, y Mr; T = 2i-33$ $S P = SAWD, md, gravin = l, y Mr; T = 2i-33$ $S P = SAWD, md, gravin = l, y Mr; T = 2i-33$ $S P = SAWD, md, gravin = l, y Mr; T = 2i-33$ $S P = SAWD, md, gravin = l, y Mr; T = 2i-33$ $S P = SAWD, md, gravin = l, y Mr; T = 2i-33$ $S P = SAWD, md, gravin = l, y Mr; T = low H, low H, low H, low H, low H, low H, low H, low H, low H, low H, low H, low H, low H, low H, low H, low H, low H, low H, low H, low H, low H, low H, low H, low H, low H, low H, low H, low H, low H, low H, low H, low H, low H, low H, low H, low H, low H, low H, low H, low H, low H, low H, low H, low H, low H, low H, low H, low H, low H, low H, low H, low H, low H, low H, low H, low H, low H, low H, low H, low H, low H, low H, low H, low H, low H, low H, low H, low H, low H, low H$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       |            |        |     |                                        | ·····                                 |        | i          |          |                |                            |
| S P = SAWD, md, gravin = l, y Mr; T = 2i-33 $S P = SAWD, md, gravin = l, y Mr; T = 2i-33$ $S P = SAWD, md, gravin = l, y Mr; T = 2i-33$ $S P = SAWD, md, gravin = l, y Mr; T = 2i-33$ $S P = SAWD, md, gravin = l, y Mr; T = 2i-33$ $S P = SAWD, md, gravin = l, y Mr; T = 2i-33$ $S P = SAWD, md, gravin = l, y Mr; T = 2i-33$ $S P = SAWD, md, gravin = l, y Mr; T = 2i-33$ $S P = SAWD, md, gravin = l, y Mr; T = 2i-33$ $S P = SAWD, md, gravin = l, y Mr; T = 2i-33$ $S P = SAWD, md, gravin = l, y Mr; T = 2i-33$ $S P = SAWD, md, gravin = l, y Mr; T = 2i-33$ $S P = SAWD, md, gravin = l, y Mr; T = 2i-33$ $S P = SAWD, md, gravin = l, y Mr; T = 2i-33$ $S P = SAWD, md, gravin = l, y Mr; T = 2i-33$ $S P = SAWD, md, gravin = l, y Mr; T = 2i-33$ $S P = SAWD, md, gravin = l, y Mr; T = 2i-33$ $S P = SAWD, md, gravin = l, y Mr; T = 2i-33$ $S P = SAWD, md, gravin = l, y Mr; T = 2i-33$ $S P = SAWD, md, gravin = l, y Mr; T = 2i-33$ $S P = SAWD, md, gravin = l, y Mr; T = 2i-33$ $S P = SAWD, md, gravin = l, y Mr; T = 2i-33$ $S P = SAWD, md, gravin = l, y Mr; T = 2i-33$ $S P = SAWD, md, gravin = l, y Mr; T = 2i-33$ $S P = SAWD, md, gravin = l, y Mr; T = 2i-33$ $S P = SAWD, md, gravin = l, y Mr; T = 2i-33$ $S P = SAWD, md, gravin = l, y Mr; T = 2i-33$ $S P = SAWD, md, gravin = l, y Mr; T = 2i-33$ $S P = SAWD, md, gravin = l, y Mr; T = 2i-33$ $S P = SAWD, md, gravin = l, y Mr; T = 2i-33$ $S P = SAWD, md, gravin = l, y Mr; T = 2i-33$ $S P = SAWD, md, gravin = l, y Mr; T = 2i-33$ $S P = SAWD, md, gravin = l, y Mr; T = 2i-33$ $S P = SAWD, md, gravin = l, y Mr; T = low H, low H, low H, low H, low H, low H, low H, low H, low H, low H, low H, low H, low H, low H, low H, low H, low H, low H, low H, low H, low H, low H, low H, low H, low H, low H, low H, low H, low H, low H, low H, low H, low H, low H, low H, low H, low H, low H, low H, low H, low H, low H, low H, low H, low H, low H, low H, low H, low H, low H, low H, low H, low H, low H, low H, low H, low H, low H, low H, low H, low H, low H, low H, low H, low H, low H, low H, low H, low H, low H$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       |            |        |     |                                        |                                       |        |            |          |                |                            |
| S P = SAWD, md, gravin = l, y Mr; T = 2i-33 $S P = SAWD, md, gravin = l, y Mr; T = 2i-33$ $S P = SAWD, md, gravin = l, y Mr; T = 2i-33$ $S P = SAWD, md, gravin = l, y Mr; T = 2i-33$ $S P = SAWD, md, gravin = l, y Mr; T = 2i-33$ $S P = SAWD, md, gravin = l, y Mr; T = 2i-33$ $S P = SAWD, md, gravin = l, y Mr; T = 2i-33$ $S P = SAWD, md, gravin = l, y Mr; T = 2i-33$ $S P = SAWD, md, gravin = l, y Mr; T = 2i-33$ $S P = SAWD, md, gravin = l, y Mr; T = 2i-33$ $S P = SAWD, md, gravin = l, y Mr; T = 2i-33$ $S P = SAWD, md, gravin = l, y Mr; T = 2i-33$ $S P = SAWD, md, gravin = l, y Mr; T = 2i-33$ $S P = SAWD, md, gravin = l, y Mr; T = 2i-33$ $S P = SAWD, md, gravin = l, y Mr; T = 2i-33$ $S P = SAWD, md, gravin = l, y Mr; T = 2i-33$ $S P = SAWD, md, gravin = l, y Mr; T = 2i-33$ $S P = SAWD, md, gravin = l, y Mr; T = 2i-33$ $S P = SAWD, md, gravin = l, y Mr; T = 2i-33$ $S P = SAWD, md, gravin = l, y Mr; T = 2i-33$ $S P = SAWD, md, gravin = l, y Mr; T = 2i-33$ $S P = SAWD, md, gravin = l, y Mr; T = 2i-33$ $S P = SAWD, md, gravin = l, y Mr; T = 2i-33$ $S P = SAWD, md, gravin = l, y Mr; T = 2i-33$ $S P = SAWD, md, gravin = l, y Mr; T = 2i-33$ $S P = SAWD, md, gravin = l, y Mr; T = 2i-33$ $S P = SAWD, md, gravin = l, y Mr; T = 2i-33$ $S P = SAWD, md, gravin = l, y Mr; T = 2i-33$ $S P = SAWD, md, gravin = l, y Mr; T = 2i-33$ $S P = SAWD, md, gravin = l, y Mr; T = 2i-33$ $S P = SAWD, md, gravin = l, y Mr; T = 2i-33$ $S P = SAWD, md, gravin = l, y Mr; T = 2i-33$ $S P = SAWD, md, gravin = l, y Mr; T = 2i-33$ $S P = SAWD, md, gravin = l, y Mr; T = low H, low H, low H, low H, low H, low H, low H, low H, low H, low H, low H, low H, low H, low H, low H, low H, low H, low H, low H, low H, low H, low H, low H, low H, low H, low H, low H, low H, low H, low H, low H, low H, low H, low H, low H, low H, low H, low H, low H, low H, low H, low H, low H, low H, low H, low H, low H, low H, low H, low H, low H, low H, low H, low H, low H, low H, low H, low H, low H, low H, low H, low H, low H, low H, low H, low H, low H, low H, low H, low H$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       |            |        |     | · ·                                    |                                       |        |            |          |                |                            |
| $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       | $\vdash$   |        |     |                                        |                                       |        |            |          |                |                            |
| $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       |            |        |     |                                        |                                       |        |            |          |                |                            |
| $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       | 5          |        |     |                                        |                                       |        |            |          |                |                            |
| $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       |            |        |     |                                        |                                       | $\neg$ |            |          |                |                            |
| $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       |            |        |     | Marine                                 | ·                                     |        |            |          |                |                            |
| $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       | 1          |        |     |                                        |                                       |        |            |          |                |                            |
| $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       |            |        |     |                                        | · · · · · · · · · · · · · · · · · · · |        |            |          |                |                            |
| S P = SAMD, Md. gravin al. UMA: 3d = 21-33 = 0/960                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       |            |        |     |                                        | <i>1</i>                              |        |            |          |                |                            |
| $SP = SAND, md. grown = l y Mr. 3^{+}$ $SP = SAND, md. grown = l y Mr. 3^{+}$ $gray = fic. ( o, ler = 0)/9(co)$ $SP = SAND, md. grown = l y Mr. 3^{+}$ $gray = fic. ( o, ler = 0)/9(co)$ $SP = SAND, md. grown = l y Mr. 3^{+}$ $SP = SAND, md. grown = l y Mr. 3^{+}$ $SP = SAND, md. grown = l y Mr. 3^{+}$ $SI = Sand = l y Mr. 3^{+}$ $SI = Sand = l y Mr. 3^{+}$ $SAMPLE TYPE$ $D = DRIVE = C Core recovery$ $SI = Sand = l y Mr. 3^{+}$ $D = DRIVE = C Core recovery$ $SI = Sand = l y Mr. 3^{+}$ $D = DRIVE = C Core recovery$ $SI = Sand = l y Mr. 3^{+}$ $C = Core lost$ $Q = st$ $D = DRIVE = C Core lost$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       |            |        |     | •                                      |                                       |        |            |          |                |                            |
| $SP = SAND, md. grown = l y Mr. 3^{+}$ $SP = SAND, md. grown = l y Mr. 3^{+}$ $gray = fic. ( o, ler = 0)/9(co)$ $SP = SAND, md. grown = l y Mr. 3^{+}$ $gray = fic. ( o, ler = 0)/9(co)$ $SP = SAND, md. grown = l y Mr. 3^{+}$ $SP = SAND, md. grown = l y Mr. 3^{+}$ $SP = SAND, md. grown = l y Mr. 3^{+}$ $SI = Sand = l y Mr. 3^{+}$ $SI = Sand = l y Mr. 3^{+}$ $SAMPLE TYPE$ $D = DRIVE = C Core recovery$ $SI = Sand = l y Mr. 3^{+}$ $D = DRIVE = C Core recovery$ $SI = Sand = l y Mr. 3^{+}$ $D = DRIVE = C Core recovery$ $SI = Sand = l y Mr. 3^{+}$ $C = Core lost$ $Q = st$ $D = DRIVE = C Core lost$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       | 10         |        |     | • •••••••••••••••••••••••••••••••••••• |                                       |        |            |          |                |                            |
| $\frac{\partial C}{\partial r} = \frac{1}{2} \int \frac{\partial F}{\partial r} \int \partial $ |       | - <u> </u> |        | -   |                                        |                                       | _      |            |          |                |                            |
| $\frac{\partial C}{\partial r} = \frac{1}{2} \int \frac{\partial F}{\partial r} \int \partial $ |       |            |        |     |                                        |                                       |        |            |          |                |                            |
| $\frac{1}{2^{C}}$ $S P = \frac{SAWD}{Md}, \frac{growin al}{growin al}, \frac{yW}{W}, \frac{3^{+}}{2^{+}}, \frac{2^{+}-3^{3}}{2^{+}}, \frac{0/963}{2^{-}}$ $\frac{1}{2^{+}}$ $\frac{1}{2^{+}}$ $\frac{1}{2^{+}}, \frac{1}{2^{+}}, \frac{1}{$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       |            |        |     |                                        |                                       |        |            |          |                |                            |
| $\frac{1}{2^{C}}$ $S P = \frac{SAWD}{Md}, \frac{growin al}{growin al}, \frac{yW}{W}, \frac{3^{+}}{2^{+}}, \frac{2^{+}-3^{3}}{2^{+}}, \frac{0/963}{2^{-}}$ $\frac{1}{2^{+}}$ $\frac{1}{2^{+}}$ $\frac{1}{2^{+}}, \frac{1}{2^{+}}, \frac{1}{$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       | <u> </u>   |        |     |                                        |                                       |        |            |          |                |                            |
| $\frac{\partial C}{\partial r} = \frac{1}{2} \int \frac{\partial F}{\partial r} \int \partial $ |       |            |        |     |                                        |                                       |        |            |          |                |                            |
| $\frac{\partial C}{\partial r} = \frac{1}{2} \int \frac{\partial F}{\partial r} \int \partial $ |       |            |        |     |                                        |                                       |        |            |          |                |                            |
| $\frac{\partial C}{\partial r} = \frac{1}{2} \int \frac{\partial F}{\partial r} \int \partial $ |       |            |        |     |                                        |                                       |        |            |          |                |                            |
| SP = SAND, md, grown all units t = 21-23 = 0/960 $SP = SAND, md, grown all units t = 21-23 = 0/960$ $SP = SAND, md, grown all units t = 21-23 = 0/960$ $SP = SAND, md, grown all units t = 21-23 = 0/960$ $SP = SAND, md, grown all units t = 21-23 = 0/960$ $SP = SAND, md, grown all units t = 21-23 = 0/960$ $SP = SAND, md, grown all units t = 21-23 = 0/960$ $SP = SAND, md, grown all units t = 21-23 = 0/960$ $SP = SAND, md, grown all units t = 21-23 = 0/960$ $SP = SAND, md, grown all units t = 21-23 = 0/960$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       | 12         |        |     | •                                      |                                       |        |            |          |                |                            |
| SP = SAND, md, grown all units t = 21-23 = 0/960 $SP = SAND, md, grown all units t = 21-23 = 0/960$ $SP = SAND, md, grown all units t = 21-23 = 0/960$ $SP = SAND, md, grown all units t = 21-23 = 0/960$ $SP = SAND, md, grown all units t = 21-23 = 0/960$ $SP = SAND, md, grown all units t = 21-23 = 0/960$ $SP = SAND, md, grown all units t = 21-23 = 0/960$ $SP = SAND, md, grown all units t = 21-23 = 0/960$ $SP = SAND, md, grown all units t = 21-23 = 0/960$ $SP = SAND, md, grown all units t = 21-23 = 0/960$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       |            |        |     |                                        |                                       |        |            |          |                |                            |
| SP = SAND, md, grown all units t = 21-23 = 0/960 $SP = SAND, md, grown all units t = 21-23 = 0/960$ $SP = SAND, md, grown all units t = 21-23 = 0/960$ $SP = SAND, md, grown all units t = 21-23 = 0/960$ $SP = SAND, md, grown all units t = 21-23 = 0/960$ $SP = SAND, md, grown all units t = 21-23 = 0/960$ $SP = SAND, md, grown all units t = 21-23 = 0/960$ $SP = SAND, md, grown all units t = 21-23 = 0/960$ $SP = SAND, md, grown all units t = 21-23 = 0/960$ $SP = SAND, md, grown all units t = 21-23 = 0/960$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       |            |        |     |                                        |                                       |        |            |          |                |                            |
| SP = SAND, md, grown all units t = 21-23 = 0/960 $SP = SAND, md, grown all units t = 21-23 = 0/960$ $SP = SAND, md, grown all units t = 21-23 = 0/960$ $SP = SAND, md, grown all units t = 21-23 = 0/960$ $SP = SAND, md, grown all units t = 21-23 = 0/960$ $SP = SAND, md, grown all units t = 21-23 = 0/960$ $SP = SAND, md, grown all units t = 21-23 = 0/960$ $SP = SAND, md, grown all units t = 21-23 = 0/960$ $SP = SAND, md, grown all units t = 21-23 = 0/960$ $SP = SAND, md, grown all units t = 21-23 = 0/960$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       |            |        |     |                                        |                                       |        |            |          |                |                            |
| SP = SAND, md, grown all units t = 21-23 = 0/960 $SP = SAND, md, grown all units t = 21-23 = 0/960$ $SP = SAND, md, grown all units t = 21-23 = 0/960$ $SP = SAND, md, grown all units t = 21-23 = 0/960$ $SP = SAND, md, grown all units t = 21-23 = 0/960$ $SP = SAND, md, grown all units t = 21-23 = 0/960$ $SP = SAND, md, grown all units t = 21-23 = 0/960$ $SP = SAND, md, grown all units t = 21-23 = 0/960$ $SP = SAND, md, grown all units t = 21-23 = 0/960$ $SP = SAND, md, grown all units t = 21-23 = 0/960$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       |            |        |     |                                        |                                       |        |            |          |                |                            |
| SP = SAND, md, grown all units t = 21-23 = 0/960 $SP = SAND, md, grown all units t = 21-23 = 0/960$ $SP = SAND, md, grown all units t = 21-23 = 0/960$ $SP = SAND, md, grown all units t = 21-23 = 0/960$ $SP = SAND, md, grown all units t = 21-23 = 0/960$ $SP = SAND, md, grown all units t = 21-23 = 0/960$ $SP = SAND, md, grown all units t = 21-23 = 0/960$ $SP = SAND, md, grown all units t = 21-23 = 0/960$ $SP = SAND, md, grown all units t = 21-23 = 0/960$ $SP = SAND, md, grown all units t = 21-23 = 0/960$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       |            |        |     |                                        |                                       |        |            |          |                |                            |
| SP = SAND, md, grown all units t = 21-23 = 0/960 $SP = SAND, md, grown all units t = 21-23 = 0/960$ $SP = SAND, md, grown all units t = 21-23 = 0/960$ $SP = SAND, md, grown all units t = 21-23 = 0/960$ $SP = SAND, md, grown all units t = 21-23 = 0/960$ $SP = SAND, md, grown all units t = 21-23 = 0/960$ $SP = SAND, md, grown all units t = 21-23 = 0/960$ $SP = SAND, md, grown all units t = 21-23 = 0/960$ $SP = SAND, md, grown all units t = 21-23 = 0/960$ $SP = SAND, md, grown all units t = 21-23 = 0/960$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       |            |        |     |                                        |                                       |        |            |          |                |                            |
| SP = SAND, md, grown all units t = 21-23 = 0/960 $SP = SAND, md, grown all units t = 21-23 = 0/960$ $SP = SAND, md, grown all units t = 21-23 = 0/960$ $SP = SAND, md, grown all units t = 21-23 = 0/960$ $SP = SAND, md, grown all units t = 21-23 = 0/960$ $SP = SAND, md, grown all units t = 21-23 = 0/960$ $SP = SAND, md, grown all units t = 21-23 = 0/960$ $SP = SAND, md, grown all units t = 21-23 = 0/960$ $SP = SAND, md, grown all units t = 21-23 = 0/960$ $SP = SAND, md, grown all units t = 21-23 = 0/960$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       | 20         |        |     |                                        |                                       |        | 1          |          |                |                            |
| sl - slight     v - very     f - fine       tr - trace     lt - light     m - medium       sm - some     dk - dark     c - coarse       & - and     bf - buff       BH - Bore Hole     G - GRAB       Core lost                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       | +          | {      | •   |                                        |                                       |        |            |          |                |                            |
| sl - slight     v - very     f - fine       tr - trace     lt - light     m - medium       sm - some     dk - dark     c - coarse       & - and     bf - buff       BH - Bore Hole     G - GRAB       Core lost                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |            | ]      |     |                                        |                                       |        |            | <u> </u> |                |                            |
| sl - slight     v - very     f - fine       tr - trace     lt - light     m - medium       sm - some     dk - dark     c - coarse       & - and     bf - buff       BH - Bore Hole     G - GRAB       Core lost                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1     |            |        | SP  | SAND md. c                             | minal 11, maist                       |        |            |          |                |                            |
| sl - slight     v - very     f - fine       tr - trace     lt - light     m - medium       sm - some     dk - dark     c - coarse       & - and     bf - buff       BH - Bore Hole     G - GRAB       Core lost                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |            |        | J   |                                        | / 1                                   |        | 21-23      |          | 1              |                            |
| sl - slight     v - very     f - fine       tr - trace     lt - light     m - medium       sm - some     dk - dark     c - coarse       & - and     bf - buff       BH - Bore Hole     G - GRAB       Core lost                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       | ·          |        | Ì   | grey, +                                | ul ofter                              |        |            | <u> </u> |                | 0/960                      |
| sl - slight       v - very       f - fine       SAMPLE TYPE         tr - trace       lt - light       m - medium       D - DRIVE       C Core recovery         sm - some       dk - dark       c - coarse       C - CORE         & - and       bf - buff       BH - Bore Hole       G - GRAB       Core lost         Ø - at       brn - brown       SAA - Same As Above       SAMPLE TYPE       SAMPLE TYPE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       |            | 1      |     | ľ                                      |                                       |        |            | 1        |                |                            |
| sl - slight       v - very       f - fine       SAMPLE TYPE         tr - trace       lt - light       m - medium       D - DRIVE       C Core recovery         sm - some       dk - dark       c - coarse       C - CORE         & - and       bf - buff       BH - Bore Hole       G - GRAB       Core lost         Ø - at       brn - brown       SAA - Same As Above       SAMPLE TYPE       SAMPLE TYPE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       |            | 1      | 1   |                                        | ·                                     | {      |            |          |                |                            |
| sl - slight     v - very     f - fine     SAMPLE TYPE       tr - trace     lt - light     m - medium     D - DRIVE     C Core recovery       sm - some     dk - dark     c - coarse     C - CORE       & - and     bf - buff     BH - Bore Hole     G - GRAB     Core lost       @ - at     bm - brown     SAA - Same As Above     SAA - Same As Above                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       | - <u> </u> | 4      | ļ   |                                        | · · · · · · · · · · · · · · · · · · · |        |            |          |                | ·····                      |
| sl - slight     v - very     f - fine       tr - trace     lt - light     m - medium       sm - some     dk - dark     c - coarse       & - and     bf - buff       BH - Bore Hole     G - GRAB       Q - at     brn - brown                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       |            |        |     |                                        |                                       |        |            |          |                |                            |
| tr - tracelt - lightm - mediumD - DRIVEC Core recoverysm - somedk - darkc - coarseC - CORE& - andbf - buffBH - Bore HoleG - GRABCore lost $@$ - atbrn - brownSAA - Same As AboveSAA - Same As Above                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1     |            | 1      |     |                                        | · · · · · · · · · · · · · · · · · · · |        |            |          |                |                            |
| tr - tracelt - lightm - mediumD - DRIVEC Core recoverysm - somedk - darkc - coarseC - CORE& - andbf - buffBH - Bore HoleG - GRABCore lost $@$ - atbrn - brownSAA - Same As AboveSAA - Same As Above                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       | <u> </u>   | -      |     |                                        |                                       |        |            |          |                | ļ                          |
| tr - tracelt - lightm - mediumD - DRIVEC Core recoverysm - somedk - darkc - coarseC - CORE& - andbf - buffBH - Bore HoleG - GRABCore lost $@$ - atbrn - brownSAA - Same As AboveSAA - Same As Above                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |            | 1      | ł   |                                        |                                       | 1      |            |          |                |                            |
| tr - tracelt - lightm - mediumD - DRIVEC Core recoverysm - somedk - darkc - coarseC - CORE& - andbf - buffBH - Bore HoleG - GRABCore lost@ - atbrn - brownSAA - Same As Above                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |            | 1      | · · |                                        |                                       |        |            |          |                |                            |
| tr - tracelt - lightm - mediumD - DRIVEC Core recoverysm - somedk - darkc - coarseC - CORE& - andbf - buffBH - Bore HoleG - GRABCore lost $@$ - atbrn - brownSAA - Same As AboveSAA - Same As Above                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |            | 4      | 1   |                                        |                                       |        |            |          |                |                            |
| tr - tracelt - lightm - mediumD - DRIVEC Core recoverysm - somedk - darkc - coarseC - CORE& - andbf - buffBH - Bore HoleG - GRABCore lost $@$ - atbrn - brownSAA - Same As AboveSAA - Same As Above                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |            |        |     |                                        |                                       |        | 1          |          | 1              |                            |
| tr - tracelt - lightm - mediumD - DRIVEC Core recoverysm - somedk - darkc - coarseC - CORE& - andbf - buffBH - Bore HoleG - GRABCore lost $@$ - atbrn - brownSAA - Same As AboveSAA - Same As Above                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |            |        |     |                                        |                                       |        |            | <u> </u> | ۰ <u>ـــــ</u> | *                          |
| tr - tracelt - lightm - mediumD - DRIVEC Core recoverysm - somedk - darkc - coarseC - CORE& - andbf - buffBH - Bore HoleG - GRABCore lost $@$ - atbrn - brownSAA - Same As AboveSAA - Same As Above                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       | sl – s     | slight |     |                                        | f - fine                              |        | SAMPI      | FTYP     | F              |                            |
| sm - somedk - darkc - coarseC - CORE& - andbf - buffBH - Bore HoleG - GRABCore lost@ - atbrn - brownSAA - Same As AboveCore lost                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1     |            |        |     |                                        |                                       |        |            |          | -              |                            |
| & - and     bf - buff     BH - Bore Hole     G - GRAB     Core lost       @ - at     brn - brown     SAA - Same As Above                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       |            |        |     |                                        |                                       |        |            |          | C              | Core recovery              |
| @ - at brn - brown SAA - Same As Above                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       |            |        |     |                                        |                                       |        |            |          |                |                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |            |        |     |                                        |                                       |        | G - G      | RAB      |                | Core lost                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       | -          |        |     | brn – brown                            | SAA – Same As Above                   |        |            |          |                |                            |
| w - with blk - black Water level drilled                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       | w -        | with   |     | blk – black                            |                                       |        |            | Water    | level dr       | rilled                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1     |            |        |     |                                        |                                       |        |            | -        |                |                            |
| ENGINEERING-SCIENCE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | •     |            |        |     |                                        | ENGINEERING-9                         | CIENCE |            |          |                |                            |

| Sheet | ( of 1 |
|-------|--------|
| JULLE | . 01 . |

| BORING NO. | SBII         | CONTRACTOR:  |          | DATE SPUD: 10/16/98 |
|------------|--------------|--------------|----------|---------------------|
| CLIENT:    | Wurtsmith    | RIG TYPE:    | Geoprebe | DATE CMPL: 10/16/98 |
| JOB NO.:   | 776876.69120 | DRLG METHOD: |          | ELEVATION:          |
| LOCATION:  | 5306         | BORING DIA.: | 1.5      | TEMP.:              |
| GEOLOGIST: |              | DRLG FLUID   |          | WEATHER:            |
| COMMENTS:  |              |              |          |                     |

--

| Elev. | Depth      | Pro-   | US   |             |                                        | Sa       | nples      | Sample   | Penet.     | Remarks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|-------|------------|--------|------|-------------|----------------------------------------|----------|------------|----------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (ît.) | (ft.)      | file   | CS   | Ge          | ologic Description                     | No.      | Depth (ft) | Type     | Res.       | TIP = Ekgrad/Reading (ppm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|       |            |        |      | ······      |                                        |          |            |          |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|       |            |        |      |             |                                        |          |            |          |            | · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|       |            |        |      | <u></u>     |                                        |          |            |          |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|       |            |        |      |             |                                        |          |            |          |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| •     |            |        |      |             |                                        | ]        |            |          |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|       |            |        |      |             |                                        |          |            |          |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|       | 5          |        |      |             | · · · · · · · · · · · · · · · · · · ·  |          | 1          |          |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|       | 1 1        |        |      |             |                                        |          |            | 1        |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|       |            |        |      |             |                                        |          | [          |          |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|       |            |        |      |             |                                        |          |            | 1        |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|       |            |        |      |             |                                        |          | 1          |          |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|       |            |        |      |             |                                        |          |            | ł        |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|       | 10         | ]      |      |             |                                        | 1        |            |          | 1          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|       | +          | ļ      |      |             | <b>.</b>                               |          |            | Į        |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|       |            | 4      | ł    |             | ************************************** |          |            |          |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|       |            |        | 1    |             |                                        |          |            |          |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|       |            |        | 1    |             |                                        |          |            |          | 1          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|       |            | 1      |      |             |                                        |          | ļ          |          |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|       | 1          | {      |      |             |                                        |          |            |          |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| ·     | 15         | 1      |      |             |                                        |          |            |          |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|       |            |        | 1    |             |                                        |          |            | 2        |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|       |            | 1      |      |             |                                        |          |            |          |            | h <del>an an ing panguan an ing pang</del> |
|       |            | ┥      |      |             |                                        | ·        |            |          | 1          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|       |            | 4      |      |             |                                        |          |            |          |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|       |            |        | 1    |             |                                        |          |            |          |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|       | 20         |        | SP   | SAND 1+     | bin, groy stain                        |          | 19-21-     |          |            | 0/1180                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|       | 1          | 1      | <br> | wet o       | 24                                     |          | 111        |          | l          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|       |            | 1      |      | We lo       | 21                                     |          |            | <u> </u> | <u> </u>   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|       |            | -{     | {    |             |                                        |          |            |          |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|       |            | 1      |      |             |                                        |          |            |          |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|       |            |        |      |             |                                        |          |            |          |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|       |            | 1      | ļ    |             | · · · ·                                |          |            |          |            | ······································                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|       | +          | -      |      |             |                                        | ·        | 1.         |          |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|       |            | 4      |      |             |                                        |          |            |          |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|       |            |        |      |             |                                        |          |            |          |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|       |            | 1      |      |             |                                        |          |            | 1        |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|       |            | -      | · ·  |             |                                        |          |            |          |            | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|       | <br>       | 4      |      |             |                                        |          | 1          |          |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|       |            |        |      |             |                                        |          |            |          |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|       |            |        |      |             |                                        | ······   |            | •        | <u> </u>   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|       | si –       | slight |      | v - very    | f - fine                               |          | SAMPI      | LE TYP   | <b>E</b> . |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|       | tr -       | trace  |      | lt - light  | m – medium                             |          | D - D      | RIVE     | с          | Core recovery                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|       | sm -       | - some |      | dk - dark   | c - coarse                             |          | c - c      | ORE      |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|       | & -        | - and  |      | bf -buff    | BH - Bore Hole                         |          | G - G      | RAB      |            | Core lost                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|       | <i>Q</i> - | - at   |      | brn – brown | SAA - Same As Above                    |          |            |          |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|       | w -        | with   |      | blk – black |                                        |          |            | Water    | level dr   | illed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| -     |            |        |      |             |                                        |          |            | -        |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|       |            |        |      |             | ENGINEERING                            | -SCIENCE |            |          |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

| Sheet | $l_{of}$ | 1 |
|-------|----------|---|

| BORING NO. | SB12         | CONTRACTOR:   |          | DATE SPUD: 10/15-198 | 1410 |
|------------|--------------|---------------|----------|----------------------|------|
| CLIENT:    | Wurtsmith    | RIG TYPE:     | Leopishe | DATE CMPL: 10/15     |      |
| JOB NO.:   | 726876.64120 | DRLG METHOD:  |          | ELEVATION:           |      |
| LOCATION:  | 5506         | BORING DIA .: | _1.5     | TEMP.:               |      |
| GEOLOGIST: |              | DRLG FLUID    |          | WEATHER:             |      |
| COMMENTS:  |              |               |          |                      |      |

•

|          | Depth      |      | US       |                                       | Sa                                    | mples      | Sample   | Penet.    | Remarks                               |
|----------|------------|------|----------|---------------------------------------|---------------------------------------|------------|----------|-----------|---------------------------------------|
| (ft.)    | (ft.)      | file | CS       | Geologic Description                  | No.                                   | Depth (ft) | Type     | Res.      | TIP = Bkgrnd/Reading (ppm)            |
|          |            |      |          |                                       |                                       |            |          |           |                                       |
|          |            |      |          |                                       |                                       |            |          |           |                                       |
|          |            |      | 1        |                                       | 4                                     | · ·        |          |           |                                       |
|          |            |      |          |                                       |                                       |            |          |           |                                       |
|          |            |      |          |                                       | 1                                     |            |          |           |                                       |
|          | 5          |      |          |                                       | {                                     |            |          |           |                                       |
| <u> </u> | <u>├-}</u> |      |          |                                       | ł                                     |            |          |           |                                       |
|          |            |      |          |                                       |                                       |            |          |           |                                       |
|          |            |      |          |                                       |                                       |            |          |           |                                       |
|          |            |      |          |                                       | 1                                     |            |          |           |                                       |
|          | ┝───┤      |      |          |                                       |                                       |            |          |           |                                       |
|          |            |      |          | ·                                     |                                       |            |          |           |                                       |
|          | 10         |      |          |                                       |                                       |            |          |           |                                       |
|          |            |      |          | •                                     | 1                                     |            |          |           |                                       |
| 1        |            |      |          |                                       |                                       | 1          |          |           |                                       |
|          |            |      |          |                                       |                                       |            |          | (         |                                       |
|          |            |      |          |                                       |                                       |            |          |           |                                       |
|          |            |      |          |                                       |                                       |            |          |           |                                       |
|          | 15         |      |          |                                       |                                       |            |          |           |                                       |
|          |            |      |          |                                       |                                       |            | Ē        |           |                                       |
|          |            |      |          |                                       |                                       |            |          |           |                                       |
|          |            |      |          |                                       |                                       |            |          | ł         |                                       |
|          |            |      |          |                                       |                                       |            |          |           |                                       |
|          |            |      |          |                                       |                                       |            |          |           |                                       |
|          | 2.1        |      |          |                                       |                                       |            |          |           |                                       |
|          | 20         |      |          |                                       |                                       | -          |          | Ì         |                                       |
|          |            |      | SP       | SAND, md grainel. V. mo.st<br>It bra, |                                       |            |          |           |                                       |
|          |            |      | <u> </u> | It has                                |                                       | 20-22      |          | }         |                                       |
|          | <u> </u>   |      |          | 1 Orn,                                | _                                     |            |          |           | 0/320                                 |
|          |            |      |          |                                       |                                       |            |          |           |                                       |
|          |            |      |          |                                       |                                       |            |          | ľ         |                                       |
|          |            |      |          |                                       |                                       |            |          | ŀ         | · · · · · · · · · · · · · · · · · · · |
|          |            |      |          |                                       |                                       |            |          | ļ         | ·                                     |
|          |            |      |          |                                       |                                       |            |          |           |                                       |
|          |            |      |          |                                       |                                       |            |          | Ì         |                                       |
|          | ·          |      |          |                                       |                                       |            | 1        | ŀ         |                                       |
|          |            |      |          |                                       |                                       |            | ·        | Ļ         |                                       |
|          |            |      |          |                                       |                                       | ·          | ·        |           |                                       |
|          |            |      |          |                                       |                                       |            |          | · F       |                                       |
|          |            |      |          |                                       | · · · · · · · · · · · · · · · · · · · | I          | L        | 1         |                                       |
|          | sl – sli   |      |          | v = very $f = fine$                   |                                       | SAMPLE     | TYPE     |           |                                       |
|          | tr - tr    | ace  |          | lt - light m - medium                 |                                       | D - DR     |          | С         | Core recovery                         |
|          | sm - s     |      |          | dk - dark c - coarse                  |                                       | C - CO     |          |           | Cold recovery                         |
|          | & - a      | nd   |          | bf - buff BH - Bore Hole              |                                       | G - GR     |          |           | Caralant                              |
|          | @ - #      | ıt   |          | brn - brown SAA - Same As Above       |                                       | 0 - UK     | лD       | I         | Core lost                             |
|          | w - w      | vith |          | blk - black                           |                                       |            | Water le |           | ار                                    |
|          |            |      |          |                                       |                                       |            | water le | ivei aril | ICO                                   |

| Sheet | 1 | of | ( |
|-------|---|----|---|
|       |   | 01 |   |

|                        | 1Fi-     | GEOLO        | GIC BORING LOG |            |          |  |
|------------------------|----------|--------------|----------------|------------|----------|--|
| BORING NO. <u>SB</u> I | ¥3       | CONTRACTOR:  |                | DATE SPUD: | 10/16/48 |  |
| CLIENT: Wurts.         |          | RIG TYPE:    | Geoprobe       | DATE CMPL: | 0/16/98  |  |
| JUB NO .: 7268         | 76.69120 | DRLG METHOD: |                | ELEVATION: |          |  |
| LOCATION: 5506         |          | BORING DIA.: | 2,5            | TEMP.:     |          |  |
| GEOLOGIST: JFH         |          | DRLG FLUID   |                | WEATHER:   |          |  |
| COMMENTS:              |          | -            |                |            | •        |  |

| Elev.    | Depth    | Pro-   | US  |                                         |     |            | Sample |          | Remarks                               |
|----------|----------|--------|-----|-----------------------------------------|-----|------------|--------|----------|---------------------------------------|
| (ft.)    | (ft.)    | filc   | CS  | Geologic Description                    | No. | Depth (ft) | Type   | Res.     | TIP = Bkgrod/Reading (ppm)            |
|          |          |        | SP  | SAND, H. brn, weist                     |     |            |        |          | 0120                                  |
|          |          |        | 25  | SHICO, TI. DAN, Meist                   |     | 0-4        |        |          | 0720                                  |
|          |          |        | 1   |                                         |     | - '        |        |          |                                       |
|          |          |        |     |                                         |     |            | [ .    |          |                                       |
| •        |          |        |     |                                         |     | ł          |        |          |                                       |
|          |          |        |     | ·                                       | L   |            |        |          |                                       |
| ļ        | 5        |        |     | SAA                                     |     |            | ļ      | ļ        | 0/40                                  |
|          |          |        |     |                                         | 1   | 4-8        |        |          |                                       |
|          |          |        |     |                                         |     |            |        | ĺ        |                                       |
|          |          |        |     |                                         | j   |            |        |          |                                       |
|          |          |        |     | · ·                                     |     |            |        |          |                                       |
|          |          |        |     | 201                                     |     | <u> </u>   |        |          |                                       |
|          |          |        |     | SAA                                     |     | 8-12       |        | 1        | 0/40                                  |
|          | 10       |        |     |                                         |     | 0-12       |        |          |                                       |
| <u>}</u> | †        |        |     | · · · · · · · · · · · · · · · · · · ·   | 1   |            |        |          |                                       |
|          |          |        |     |                                         | 4   |            | 1      |          |                                       |
| 1        |          |        | 1   |                                         |     |            | L      | ļ        |                                       |
|          |          |        | ł   | SAA                                     |     |            | T      | {        | 0/40                                  |
|          |          |        |     |                                         | {   | 12-16      | 1      |          | 0140                                  |
|          | ļ        | l      |     |                                         | Į   |            |        |          |                                       |
|          | 15       |        | 1   |                                         |     | {          |        | 1        |                                       |
| <u> </u> |          | 1      |     |                                         | 1   | 1          |        | 1        | · · · · · · · · · · · · · · · · · · · |
|          | <u> </u> |        |     |                                         |     |            |        |          | ······                                |
|          |          |        | 1   |                                         |     |            |        | · ·      |                                       |
|          |          |        | 1   |                                         |     |            | · ·    |          |                                       |
|          |          | {      |     |                                         | 1   |            |        |          |                                       |
|          |          |        |     |                                         | l   |            | L      |          |                                       |
|          | 20       |        |     | SAA, gray stain, fuel oler<br>wet @ 21' |     | 14-21      |        |          | 0/6,200                               |
|          | T -      | 1      |     |                                         | 1   |            |        |          |                                       |
|          |          | {      |     |                                         |     | +          |        |          |                                       |
|          | ļ        | 1      |     |                                         | 1   |            |        | 1        |                                       |
|          |          | ł      |     |                                         | 1   | 1          | }      | 1        |                                       |
|          |          | 1      |     |                                         | 1   |            |        | 1        |                                       |
|          |          | -      |     | ·                                       | ł   |            |        |          |                                       |
|          |          | ]      | 1   |                                         | }   |            |        |          |                                       |
|          |          | ] .    |     |                                         | ]   | · ·        |        |          |                                       |
|          |          | 1      | 1   |                                         | -   |            |        |          |                                       |
|          |          | 1      |     |                                         | 1   |            | 1      | 1        |                                       |
|          |          |        | ł   |                                         |     |            |        |          |                                       |
|          |          | 1      | ļ · |                                         | 1   |            |        |          | <u></u>                               |
|          |          | -      | 1   |                                         | 4   |            |        | 1        |                                       |
|          | <u> </u> |        |     |                                         |     |            |        | 1        |                                       |
|          |          |        |     |                                         |     |            |        |          |                                       |
|          | sl – :   | slight |     | v - very $f - fine$                     |     | SAMPI      | LE TYP | E        |                                       |
|          | tr - 1   |        |     | lt – light m – medium                   |     |            | RIVE   | с<br>с   | Core recovery                         |
| 1        |          | some   |     | dk - dark c - coarse                    |     | c - c      |        | -        | · · · · · · · · · · · · · · · · · · · |
|          | & -      |        |     | bf - buff BH - Bore Hole                |     | G - G      |        |          | Core lost                             |
|          |          | - at   |     | brn - brown SAA - Same As Above         |     | 0-0        |        |          |                                       |
|          |          | with   |     |                                         |     |            | M/ ·   | 11.2     |                                       |
|          | w -      | with   |     | blk - black                             |     |            | water  | level dr | шea                                   |
| L        |          |        |     |                                         |     |            |        |          |                                       |

| Sheet | 1 | of | ( |
|-------|---|----|---|
|-------|---|----|---|

,

•--

|            |              |              |                |            | 01000    |
|------------|--------------|--------------|----------------|------------|----------|
|            | <u>G</u> F1+ | <u>GEOLO</u> | GIC BORING LOG |            |          |
| BORING NO. | SBIZ4        | CONTRACTOR:  |                |            | 10/15/98 |
| CLIENT:    | Wurtsmith    | RIG TYPE:    | Leoprobe       | DATE CMPL: | 10115198 |
| JOB NO.:   | 726876.69120 | DRLG METHOD: |                | ELEVATION: |          |
| LOCATION:  | 5506         | BORING DIA : | 2.5'           | TEMP.:     |          |
| GEOLOGIST: | JFH          | DRLG FLUID   |                | WEATHER:   |          |
| COMMENTS:  |              | _            |                | _          |          |

|       | Depth                    |              | US |                                                                            | Se  |                         | Sample         |          |                           |
|-------|--------------------------|--------------|----|----------------------------------------------------------------------------|-----|-------------------------|----------------|----------|---------------------------|
| (ft.) | (ft.)                    | file         | CS | Geologic Description                                                       | No. | Depth (ft)              | Type           | Res.     | TIP = Bkgmd/Reading (ppm) |
|       |                          |              | SP | SAND, Ithra, moist                                                         |     | 0-4                     |                |          | 0/40                      |
| ;     | 15                       |              |    | SAA st fiel wher                                                           |     |                         |                |          |                           |
|       |                          |              |    |                                                                            |     | 4-8                     |                |          | 0/320                     |
|       | 10                       |              |    | SAA si fuel ador                                                           |     | 8-12                    |                |          | 0/540                     |
|       | 1.5                      |              |    | SAA 51. fuel oder                                                          |     | 17-<br>14.5             |                |          | 0/380                     |
|       |                          |              |    |                                                                            |     |                         |                |          |                           |
|       | 20                       |              |    | SAA, gray stain, fuel over                                                 |     | 14-21                   |                |          | 0/5,100                   |
|       |                          |              |    |                                                                            |     |                         |                |          |                           |
|       |                          |              |    |                                                                            |     |                         |                |          |                           |
|       |                          |              |    |                                                                            |     |                         |                |          |                           |
|       | sl — s<br>tr — t<br>sm — | race<br>some |    | v -very f -fine<br>lt -light m - medium<br>dk - dark c - coarse            |     | SAMPL<br>D - D<br>C - C | RIVE<br>DRE    | с        | Core recovery             |
|       | & -<br>@ -<br>w -        | at           |    | bf - buff BH - Bore Hole<br>brn - brown SAA - Same As Above<br>blk - black |     | G – G)                  | RAB<br>Water 1 | evel dri | Core lost<br>Iled         |

Sheet 1 of 1

1

**\_**.

### GEOLOGIC BORING LOG

.

| BORING NO. | SBIS         | CONTRACTOR:  |           |             | 10/15/98 |
|------------|--------------|--------------|-----------|-------------|----------|
|            | Wurtsmith    | RIG TYPE:    | Geopreibe | DATE CMPL:  |          |
| JOB NO.:   | 726876.69120 | DRLG METHOD: |           | _ELEVATION: | •        |
| LOCATION:  | 5506         | BORING DIA.: | 2.5"      | TEMP.:      |          |
| GEOLOGIST: | JFH          | DRLG FLUID   |           | _WEATHER:   |          |
| COMENTS    |              |              |           |             | •        |

--

| Elev. | Depth      | Pro-           | US  |                                                          |   |               | Sample   |          | Remarks                               |
|-------|------------|----------------|-----|----------------------------------------------------------|---|---------------|----------|----------|---------------------------------------|
| (ft.) | (ft.)      | file           | CS  | Geologic Description                                     | N | 0. Depth (ft) | Type     | Res.     | TIP = Bkgrnd/Reading (ppm)            |
|       |            |                | CP  | SAND, and. It bra, moist                                 |   |               |          |          | 1                                     |
|       |            |                | 121 |                                                          |   | 0.4           |          |          |                                       |
|       |            |                |     |                                                          |   | 04            |          |          |                                       |
|       |            |                |     |                                                          |   |               |          |          |                                       |
| :     |            |                |     |                                                          |   |               |          |          | 0140                                  |
|       |            |                |     |                                                          |   |               |          |          |                                       |
|       | 5          |                |     | SAA                                                      |   |               |          |          |                                       |
|       |            |                |     |                                                          |   | 4-8           |          |          |                                       |
|       |            |                |     |                                                          |   |               |          |          |                                       |
|       |            |                | 1   |                                                          |   |               |          |          | 0/80                                  |
|       |            |                |     |                                                          |   |               | <u> </u> |          | 07 00                                 |
|       |            |                |     | SAA                                                      |   |               |          | ļ        |                                       |
|       | ίŰ         |                |     |                                                          |   | 812           |          |          |                                       |
|       |            |                |     | e.                                                       |   | Ŭ             |          |          |                                       |
|       |            | ļ              |     |                                                          |   |               |          |          |                                       |
| 1     |            |                |     |                                                          |   |               |          |          | 0/100                                 |
| ļ     |            |                | ļ   | SAA                                                      |   |               | T        |          |                                       |
|       |            | ł              |     | 2411                                                     |   | 12-15         | 1        | [        |                                       |
|       |            |                |     |                                                          |   | 12.2          |          |          |                                       |
|       | 15         |                |     |                                                          |   |               |          |          | 0180                                  |
|       |            | 1              | Į   | · · · · · · · · · · · · · · · · · · ·                    |   |               |          |          |                                       |
|       |            | -              |     |                                                          |   |               |          |          |                                       |
|       |            |                |     |                                                          |   |               |          |          |                                       |
|       |            | ]              |     |                                                          | 1 |               |          |          |                                       |
|       |            |                |     |                                                          |   |               |          |          |                                       |
|       | }          | {              | 1   |                                                          |   |               | 1        |          |                                       |
|       | 20         | ]              |     |                                                          |   |               |          |          |                                       |
| 1     |            |                | 1   | SAND and around It bra                                   | 1 | נג- ניב       |          |          |                                       |
|       |            | 1              |     | SAND, md. grained It bra<br>Sl. grey stain, Sl. fueloder |   | 10-           |          |          | 0/480                                 |
| ļ     | <u> </u>   | -{             |     | SI-grey Stain, SI- + we loder                            |   |               | +        |          |                                       |
|       |            | 1 ·            | 1   |                                                          |   |               | 1        |          |                                       |
|       |            |                |     |                                                          |   |               |          |          | · · ·                                 |
|       |            | 1              |     | · · · · · · · · · · · · · · · · · · ·                    |   |               |          | 1        | · ·                                   |
|       | <u> ··</u> | -              |     |                                                          |   |               |          |          |                                       |
|       |            |                | 1   |                                                          |   |               |          |          | ·                                     |
| 1     |            |                |     |                                                          |   |               |          |          |                                       |
|       |            | 1              |     |                                                          |   | •             | 1        |          |                                       |
| 1     |            | -              |     |                                                          |   |               | · ·      |          |                                       |
|       |            | <u>·</u>       | •   |                                                          |   |               |          |          |                                       |
| 1     |            | 1              |     |                                                          |   |               |          |          |                                       |
|       |            |                |     |                                                          |   |               |          |          | · · · · · · · · · · · · · · · · · · · |
|       | sl —       | slight         |     | v - very $f - fine$                                      |   | SAMP          | LE TYP   | E        | •                                     |
|       |            | trace          |     | lt - light m - medium                                    |   |               | DRIVE    | - c      | Core recovery                         |
|       |            | - some         |     | dk - dark $c - coarse$                                   |   | c-c           |          | -        |                                       |
|       |            | - and          |     | bf - buff BH - Bore Hole                                 |   |               | GRAB     |          | Core lost                             |
| 1     |            | - at           |     | brn - brown SAA - Same As Above                          |   |               |          |          |                                       |
| ľ     | -          | - at<br>- with |     | blk – black                                              |   |               | Water    | level d  | rilled                                |
|       | w -        | with           |     | UIN - UIACK                                              |   |               | marci    | JUTUL U. |                                       |

ENGINEERING-SCIENCE

.

|       | 1 |    |
|-------|---|----|
| Sheet | I | of |

----

1

### GEOLOGIC BORING LOG

.

--

|                        |              |          |         |                | ,                                     |
|------------------------|--------------|----------|---------|----------------|---------------------------------------|
| BORING NO. SBIG        | CONTRACTOR:  |          |         | DATE SPUD: 10  | 1/15/48                               |
| CLIENT: Wurtsmith      | RIG TYPE:    | Geoprobe |         | DATE CMPL: / a | 115                                   |
| JOB NO .: 726876,69120 | DRLG METHOD: |          |         | ELEVATION:     | · · · · · · · · · · · · · · · · · · · |
| LOCATION: SSOG         | BORING DIA.: | 2.5"     |         | TEMP.:         |                                       |
| GEOLOGIST: JFH         | DRLG FLUID   |          |         | WEATHER:       |                                       |
| COMMENTS:              |              |          |         |                |                                       |
| Fley Depth Pro- US     |              |          | Samples | Sample Penet.  | Remarks                               |

| (ft.) | (ft.)    | file            | CS       | Geol                   | logic Description                      | No.         | Depth (ft) | Туре  | Res.    | TIP = Bkgmd/Reading (ppm) |
|-------|----------|-----------------|----------|------------------------|----------------------------------------|-------------|------------|-------|---------|---------------------------|
|       |          |                 | SP       | SAND                   |                                        |             |            |       |         |                           |
|       |          |                 | _        |                        |                                        |             | 0_4        |       |         |                           |
|       |          |                 |          |                        |                                        |             |            |       |         |                           |
| :     |          |                 |          |                        |                                        |             |            |       |         | 0/140                     |
|       | ØS       |                 | SP       | SAA                    |                                        | ]           |            |       |         |                           |
|       | ~ /      |                 |          |                        |                                        | {           | 4-8        | ł     |         |                           |
|       |          |                 |          |                        |                                        |             |            |       |         |                           |
|       | i        |                 | nai      | SH T                   |                                        | Lab         |            |       |         | 0/520                     |
| •     |          |                 | IVIL     | SILT, U.A.             | 413t-wet                               |             |            |       |         | 1360                      |
|       | 5.1      |                 |          | + val octo             | <u>r</u>                               |             | 8-12       |       |         |                           |
|       | 10       |                 |          |                        | <b>4</b> ·                             |             | 5 /2       |       |         |                           |
|       | ļ        |                 |          |                        |                                        | i           |            |       | ļ       | alica                     |
|       |          |                 |          |                        |                                        |             |            | ļ     | ļ       | 0/180                     |
|       |          |                 | SP       | SAND, md. y            | rained It.brn                          |             |            |       | Į       |                           |
|       |          |                 |          | mo.3+                  |                                        |             | 12-15      |       | 1       |                           |
|       | 15       |                 |          |                        |                                        |             |            | ļ     |         | 0/220                     |
|       |          | ]               |          |                        |                                        |             | 1          |       |         |                           |
|       |          | ]               |          |                        |                                        |             |            |       |         |                           |
| ļ     |          | 1               |          |                        |                                        |             |            |       |         |                           |
|       |          |                 |          |                        |                                        |             |            |       |         |                           |
|       | 20       | 1               | SP       | SAA                    |                                        |             |            |       |         |                           |
|       | 100      | 1               | <u> </u> |                        |                                        | <i>la</i> 6 | (9-3)      | .     |         | 0/580                     |
|       |          | 1               |          |                        |                                        |             |            | †     | ┼───    |                           |
|       |          | 1               |          |                        |                                        |             |            |       |         |                           |
|       | ·        | -               |          |                        |                                        |             |            |       | 1       |                           |
|       |          | -               |          |                        |                                        | · ·         |            |       |         |                           |
|       | <u> </u> | 4               |          |                        | · · · · · · · · · · · · · · · · · · ·  |             |            |       | 1       |                           |
|       | <b></b>  | _               |          |                        | ······································ |             |            |       |         |                           |
|       |          | _               |          |                        | · · ·                                  |             |            |       |         |                           |
|       |          |                 |          |                        | ·                                      |             |            |       |         |                           |
|       |          | ·               |          |                        |                                        |             |            |       |         |                           |
|       |          |                 |          |                        |                                        |             |            |       |         |                           |
|       |          |                 |          |                        |                                        |             |            |       | -       |                           |
|       |          | slight<br>trace |          | v – very<br>lt – light | f – fine<br>m – medium                 |             | SAMP       | DRIVE | с<br>с  | Core recovery             |
| 1     |          | - some          |          | dk – dark              | $c \sim coarse$                        |             | C - C      |       | Ŭ       |                           |
|       |          | - and           |          | bf - buff              | BH - Bore Hole                         |             | G - C      |       |         | Core lost                 |
|       | 0        | - at            |          | brn – brown            | SAA – Same As Above                    |             |            |       |         |                           |
|       | w ·      | - with          |          | blk – black            |                                        |             |            | Water | level d | rilled                    |
|       |          |                 |          |                        |                                        |             |            |       |         |                           |

. • •

| Shee: | 1 | of | 1 |
|-------|---|----|---|
| Sucer | • | 01 |   |

<u>.</u>..

### GEOLOGIC BORING LOG

| BORING NO.  | 5817         | CONTRACTOR:  |          |         | DATE SPUD: 10/15/97 1330 |
|-------------|--------------|--------------|----------|---------|--------------------------|
| CLIENT:     | Wurtsmith    | RIG TYPE:    | Georribe |         | DATE CMPL: 10/15         |
| JOB NO.:    | 726876.69120 | DRLG METHOD: |          |         | ELEVATION:               |
| LOCATION:   | 5506         | BORING DIA.: | 1.5"     |         | TEMP.:                   |
| GEOLOGIST:  | JFH          | DRLG FLUID   |          |         | WEATHER:                 |
| COMMENTS    | S. of berm   |              |          |         |                          |
| Elev. Depth | Pro- US      |              |          | Samples | Sample Penet, Remarks    |

| (ft.)    | (ft.)               | filc         | CS  | Geol                                  | ogic Description                       | F       | No. | Depth (ft) | Туре  | Res.      | TIP = Ekgrad/Reading (ppm)             |
|----------|---------------------|--------------|-----|---------------------------------------|----------------------------------------|---------|-----|------------|-------|-----------|----------------------------------------|
|          |                     |              |     |                                       |                                        |         |     |            |       |           |                                        |
|          |                     |              |     |                                       | ······                                 |         |     |            |       |           |                                        |
|          |                     |              |     | · · · · ·                             | <u> </u>                               |         |     |            | 1     |           |                                        |
| :        |                     |              |     |                                       |                                        |         |     |            |       |           |                                        |
|          | _                   |              |     |                                       | <u> </u>                               |         |     |            |       |           |                                        |
|          | 5                   |              |     | · · · · · · · · · · · · · · · · · · · | ······································ |         |     |            |       |           |                                        |
|          |                     |              |     |                                       | ·                                      |         |     |            |       |           |                                        |
|          |                     |              |     |                                       |                                        | <u></u> |     |            |       |           |                                        |
|          |                     |              |     |                                       | i i                                    |         |     |            |       |           |                                        |
|          |                     |              |     | •                                     | •                                      |         |     |            |       |           |                                        |
|          | 10                  |              |     |                                       |                                        |         |     |            |       |           |                                        |
|          |                     |              |     |                                       | ֥                                      |         |     |            |       |           |                                        |
|          |                     |              |     |                                       |                                        |         |     |            |       |           |                                        |
|          |                     |              |     |                                       |                                        |         |     |            |       |           | ······································ |
|          |                     |              |     |                                       |                                        |         |     |            |       |           |                                        |
|          | 15                  |              |     |                                       |                                        |         |     |            |       |           |                                        |
|          | (.)                 |              |     |                                       |                                        |         |     |            |       |           |                                        |
|          |                     |              |     |                                       |                                        |         |     |            |       |           |                                        |
|          |                     |              |     |                                       | · ·····                                |         |     |            |       |           |                                        |
| ÷        |                     |              |     |                                       |                                        |         |     |            |       |           |                                        |
|          |                     |              |     |                                       | ······································ |         |     |            |       |           |                                        |
|          | 20                  |              |     |                                       |                                        |         |     |            |       | 1         |                                        |
|          |                     |              |     |                                       |                                        |         |     |            | •     |           |                                        |
|          | <u> </u>            | ļ            |     |                                       |                                        |         |     |            |       |           |                                        |
|          |                     | Į            |     |                                       |                                        |         |     | ł          |       |           |                                        |
|          |                     |              |     |                                       |                                        |         |     |            |       |           |                                        |
|          | 25                  |              | SP  | SAND, md.                             | It bra. , mois                         | 34      |     |            |       |           | · · ·                                  |
|          | 1                   | 1            |     |                                       | ······································ |         |     | 2:4-26     | ĺ     |           | 0/140                                  |
|          |                     | 1            |     |                                       | <u></u>                                |         |     |            |       |           |                                        |
|          | <u> </u>            |              |     |                                       | ······································ |         |     |            |       |           |                                        |
|          |                     | 1            | · · |                                       |                                        |         |     |            |       |           |                                        |
|          |                     | 1            |     |                                       | · · · · · · · · · · · · · · · · · · ·  |         |     | 1          | ļ     |           | · · · · · · · · · · · · · · · · · · ·  |
|          | <u> </u>            | 1            | I   | 1                                     |                                        |         | L   |            |       | <u> </u>  | l                                      |
|          | sl — :              | slight       |     | v – very                              | f – fine                               |         |     | SAMPL      | E TYP | E.        |                                        |
|          | tr - 1              |              |     | lt – light                            | m – medium                             |         |     | D - D      |       | с<br>с    | Core recovery                          |
|          |                     | some         |     | dk – dark                             | c - coarse                             |         |     | C - C      | ORE   |           |                                        |
|          | & -                 |              |     | bf - buff                             | BH - Bore Hole                         |         |     | G – G      | RAB   |           | Core lost                              |
|          | @ -<br>w -          | • at<br>with |     | brn – brown<br>blk – black            | SAA - Same As Above                    | •       |     |            | W/-+  | اميدا ما- | -11- <i>-</i> 1                        |
|          |                     | 4 mil        |     | OIK - UIBCE                           |                                        |         |     |            | water | level dr  | шеа                                    |
| <b>L</b> | ENGINEEDING SCIENCE |              |     |                                       |                                        |         |     |            |       |           |                                        |

|                 |                |              |            |                                                  |              |                |                |          | Sheet             | l of              | (               |
|-----------------|----------------|--------------|------------|--------------------------------------------------|--------------|----------------|----------------|----------|-------------------|-------------------|-----------------|
|                 |                |              |            | GEOLOGIC BOR                                     | <u>UNG L</u> | <u>OG</u>      |                |          |                   |                   |                 |
| BORING          | Лои            | 58-1         | F) S       | BISA CONTRACTOR:                                 |              |                | DATE           | SPUD:    | 10/14/9           | ŕ                 | 1602            |
| CLIENT          | :              | Wur          | + sm       | ith RIGTYPE: Geopre                              | be           |                | DATE           | CMPL:    | 10/14             |                   |                 |
| JOB NO          | .: -           | 720          | 876        | .64120 DRLG METHOD:                              |              |                | ELEVA          |          |                   |                   |                 |
| LOCATI<br>GEOLO |                | 550          | <u>ى</u> ر | BORING DIA: 1.5"                                 |              |                | TEMP.          |          |                   |                   |                 |
| COMME           | -              | 11.          | ~ £        | Bide 361 - former UST loc                        | L .+ c       |                | WEAT           |          | SRIV              |                   |                 |
|                 |                |              |            | blog Juli griner ust her                         |              |                |                |          |                   |                   |                 |
| Elev.<br>(ft.)  | Depth<br>(ft.) | Pro-<br>file | US<br>CS   | Geologic Description                             | 1            |                | Sample<br>Type |          | R<br>TIP = Bkgrod | emark:<br>Reading |                 |
|                 | <u>`</u>       |              |            |                                                  |              |                | -71            |          |                   |                   | 41-7            |
|                 |                |              |            |                                                  |              |                |                |          |                   |                   |                 |
|                 | {              |              |            |                                                  |              |                |                |          |                   | ·                 | <u> </u>        |
|                 |                | 1            |            |                                                  |              |                |                |          |                   |                   |                 |
|                 |                |              |            |                                                  |              |                |                |          | }                 |                   |                 |
|                 | 5              |              |            |                                                  |              |                |                |          |                   |                   |                 |
|                 |                |              |            |                                                  |              |                |                |          |                   |                   | <u> </u>        |
|                 |                |              |            |                                                  |              |                |                |          |                   |                   |                 |
|                 |                |              |            | ÷ ŕ                                              |              |                |                |          |                   |                   |                 |
|                 |                |              |            |                                                  |              |                |                |          |                   |                   |                 |
|                 | 10             |              |            |                                                  |              |                |                |          |                   | <u>_</u> _        |                 |
|                 |                |              | SP         | SAND, Md. grain, It. brn, mest                   |              |                |                |          | <b> </b>          |                   |                 |
|                 |                |              | 21         | String, morgrain, it orn, mest                   |              | 10-12          |                |          | 0/12              |                   |                 |
|                 |                |              |            |                                                  |              |                |                |          | 0/1               | <u> </u>          | a               |
|                 |                |              |            |                                                  |              |                |                |          | }                 |                   |                 |
|                 |                |              |            |                                                  |              |                |                |          |                   |                   |                 |
|                 | 15             |              |            |                                                  |              |                |                |          |                   |                   |                 |
|                 |                |              |            |                                                  |              |                |                |          |                   |                   |                 |
|                 |                |              |            |                                                  |              |                |                |          |                   |                   | _               |
|                 |                |              |            |                                                  |              |                |                |          |                   |                   |                 |
|                 |                |              |            |                                                  |              |                |                |          |                   |                   | <u></u>         |
|                 | 20             |              |            |                                                  |              | -              |                |          |                   |                   |                 |
|                 |                |              | SP         | SAA                                              |              |                |                |          | <u></u>           | ~~~~ <u>~</u>     | · · · · ·       |
|                 |                |              | <u> </u>   | Blk stain @ 21.9, weet                           |              | 20.22          |                |          | 0/2               | 40                | · · · · · · · · |
|                 |                |              |            | SS Starte Frity, Leel                            |              | +              |                |          | 0/ 5              | 40                |                 |
|                 |                |              |            |                                                  | {            |                |                |          | · .               |                   |                 |
|                 |                |              |            |                                                  |              |                |                |          | ·                 | •                 | <u> </u>        |
|                 | <u>· ·</u>     |              |            | · · · · · · · · · · · · · · · · · · ·            |              | ].             |                |          |                   |                   |                 |
| 1               |                |              |            |                                                  |              |                |                |          |                   |                   |                 |
|                 | <u> </u>       |              |            |                                                  | ]            |                |                |          |                   |                   |                 |
|                 |                |              |            |                                                  |              |                |                | 1        |                   |                   |                 |
|                 | <u> </u>       |              | <b>.</b>   | SBIS refusale 9'                                 |              | 1              |                |          |                   |                   |                 |
|                 | · ·            |              |            |                                                  |              |                |                |          |                   |                   |                 |
|                 |                |              |            |                                                  |              |                | 1              | I        | · · · · · · ·     |                   | ·               |
|                 | sl — s         | -            |            | v -very f - fine                                 |              | SAMPL          |                | -        |                   |                   |                 |
|                 | tr - t         |              |            | lt – light m – medium                            |              | D - D          |                | С        | Core recov        | ery               |                 |
|                 | sm -<br>& -    |              |            | dk - dark c - coarse<br>bf - buff BH - Bore Hole |              | C – C<br>G – G |                |          | Core lost         |                   |                 |
|                 |                | at           |            | brn - brown SAA - Same As Above                  |              | 0-0            | ллв            |          | COLE 102          |                   |                 |
|                 | w -            |              |            | blk - black                                      |              |                | Water          | level dr | rilled            |                   |                 |

---

**--** ·

### **APPENDIX C**

### LABORATORY ANALYTICAL RESULTS AND COC FORMS



SPECIALIZED ASSAYS INC. • 2960 Foster Creighton Dr. • P.O. Box 40566 • Nashville, Tennessee 37204-0566

615-726-0177 • 1-800-765-0980 • Fax 615-726-3404

#### CASE NARRATIVE

Client: Parsons Engineering Science Attn: Lynnea Peterson 1700 Broadway, Suite 900 Denver, CO 80290

Client Project: WURTSMITH BIOVENTING

Matrix: SOIL

Laboratory Project: 117018

Number samples: 6

Date Received: 10/15/98

Date Collected: 10/13/98

Sample Receipt Notes: All samples were received in good condition, properly preserved. All analyses were performed within method specified holding times.

QA/QC Summary:

Volatile Organic Method 8260B - Soil:

 All surrogate, matrix spikes, matrix spike duplicate, and laboratory control sample recoveries were within acceptable quality control limits. The relative percent difference for Chlorobenzene on the MS/MSD pair was above QC limits at 16 % (upper limit = 14 %). The sample used for MS/MSD analysis for this analytical batch was not part of this sample delivery group. Samples SB1-19, SB2-20, and SB4-22 required dilution in order to bring all analytes into the calibration range of the instrument. Quantitation on unknown concentrations were determined from the initial calibration curve using the average response factor when the % RSD was less than or equal to 15%. All other analytes were calculated using linear regression.

Johnny Q. Mitchell

Johnny A. Mitchell Director of Technical Services Specialized Assays, Inc.

Enclosures

|                        | ECIALIZE<br>NVIRONI      |                  |                                              |               |              |      |           | 1         | 7A-059006                                                                                            |
|------------------------|--------------------------|------------------|----------------------------------------------|---------------|--------------|------|-----------|-----------|------------------------------------------------------------------------------------------------------|
| Parso                  | REFERRING<br>ມ <b>\$</b> | G CLIEN          | 8071<br>8050-                                | et 13st       |              |      |           |           | 2960 Foster Creighton Drive<br>Nashville, TN 37204<br>615-726-0177, 800-765-0980<br>FAX 615/726-3404 |
| CONTROL NUMBER         | FOR LAB USI              | ONLY)            | 1701                                         | <u>.</u><br>8 | PROJEC       |      | 76.       | 69        | P.O. #                                                                                               |
| CS (Signature-Please F | Juhn Ha                  | . 11             | <u>    (    (                           </u> | <u> </u>      |              |      | me<br>4si | 417       | the Biuventing                                                                                       |
| AB USE ONLY<br>ACC#    | SAME                     | LE DESCRI        | PTION                                        | DATE          | TIME         | COMP | GRAB      | # 0F CONT | ANALYSIS REQUESTED                                                                                   |
| 26223                  | SB1 -                    | -16              |                                              | 10/13/48      | <i>161</i> 6 |      | x         | 3         | 8260 + Acetone<br>Corbon Disulfide                                                                   |
| 124224                 | 581-                     | 19               |                                              | ,,            | 1505         |      | *         | 3         | (1                                                                                                   |
| :24225                 | 582                      | -16              |                                              |               | 1700         |      | *         | 3         |                                                                                                      |
| 124224                 | 582-                     | 20               |                                              | 11            | 1730         |      | ×         | 3         | }                                                                                                    |
| 126227                 | 583                      | -22              |                                              | 10/14/98      | 0430         |      | x         | 3         | 8260 -                                                                                               |
| -136228                | SB4-                     | 22               |                                              | 10/14/48      | 1130         |      | ×         | 3         |                                                                                                      |
|                        |                          |                  |                                              |               |              |      |           |           | -                                                                                                    |
|                        |                          |                  |                                              |               |              |      |           |           |                                                                                                      |
|                        |                          |                  | *                                            |               |              |      |           |           |                                                                                                      |
| -                      |                          |                  |                                              |               |              |      |           |           |                                                                                                      |
| ished by: (Signature)  |                          | : / Time<br>1300 | Received by: (                               |               | <u> </u>     |      |           | R         | for Laboratory by:                                                                                   |
| nished by: (Signature) | Dati                     | e / Time         | Received by: (                               | Signature)    |              |      | Rem       | larks     |                                                                                                      |
| shed by: (Signature)   | Dat                      | e / Tune         | Received by: (                               | Signature)    |              |      |           |           |                                                                                                      |
| shed by: (Signature)   | Dat                      | e / Time         | Received by: (                               | (Signature)   |              |      | s         | AI Pro    | bject #: 000001                                                                                      |

or further assistance in completing the chain of custody form please refer to the instructions found on the opposite

\_

## Cooler Receipt Form

ł.

| Client: Parsons :                                                                  | - , T      |
|------------------------------------------------------------------------------------|------------|
| Cooler Received On: 10/15/58 And Opened On: 10/15/58 By: VAL RI                    | Buckinghan |
| (Signature)                                                                        |            |
| · · · ·                                                                            |            |
| 1. Temperature of Cooler when opened 72                                            | <u> </u>   |
| 2. Were custody seals on outside of cooler and intact?                             | Yes No     |
| a. If yes, what kind and where: 2 front / back                                     | · · ·      |
| b. Were the signature and date correct?                                            | Yes) No    |
| 3. Were custody papers inside cooler?                                              | Yes No     |
| : 4. Were custody papers properly filled out (ink, signed, etc)?                   | YES NO     |
| 5. Did you sign the custody papers in the appropriate place?                       | Yes No     |
| 6. What kind of packing material was used? kubble unp                              |            |
| 7. Was sufficient ice used (if appropriate)?                                       | Yes No     |
| 8. Did all bottles arrive in good condition (unbroken)?                            | Yes No     |
| 9. Were all bottle labels complete (#, date, signed, pres, etc)?                   |            |
| 10. Did all bottle labels and tags agree with custody papers?                      | $\sim$     |
| 11.Were correct bottles used for the analysis requested?                           |            |
| 12. If present, were VOA vials checked for absence of air bubbles and noted if for | · ·        |
| 13. Was sufficient amount of sample sent in each bottle?                           | Tes No     |
| 14. Were correct preservatives used?                                               |            |
| 15. Corrective action taken, if necessary:                                         | · .        |
| a. Name of person contacted:                                                       |            |
| b. Date                                                                            |            |
| 0. Date                                                                            | 000002     |
| -                                                                                  |            |

e en le sale de la complete de la c

SENT BY:

4-16-99 ; 8:06 ; SPECIALIZED ASSAYS→ 8-13038318208;# 4/ 4

| т <u>е:</u> /О | .15.98 |
|----------------|--------|
| E:             | 112018 |

SPECIALIZED ASSAYS, INC.

BTX SOIL PREP LOG

| PAGE NO: |         |  |
|----------|---------|--|
| MATRIX:  | SOLL    |  |
| ANALYST: | JASE H. |  |
|          |         |  |

|                      | SAMPLE ID                             | SAMPLE WEIGHT (2) | DILUTION | METHOD    | WORKLIST                              | REMARKS   |
|----------------------|---------------------------------------|-------------------|----------|-----------|---------------------------------------|-----------|
| Blank #              |                                       |                   |          |           |                                       |           |
|                      | 124223                                | 4.84              |          | 5035      | 3846                                  |           |
|                      | 126224                                | 4.84<br>4.85      |          |           |                                       |           |
|                      | 124225                                | 5.14              |          |           |                                       |           |
|                      | 1210220                               |                   |          |           |                                       | -         |
|                      | 126226                                | 4.78              |          | VI/       |                                       | •         |
|                      | -126228                               | 5.50 5.15         | f        |           | <b>V</b> -                            |           |
|                      |                                       |                   |          | 5035      | 4444                                  | project # |
|                      | 127015                                | 443               |          | 1         |                                       | 117194    |
|                      | 1270/6                                |                   |          |           |                                       |           |
|                      | 127017                                | 5.23              |          |           |                                       |           |
|                      | 127018                                | 5.09              |          |           |                                       |           |
|                      | 127019                                | 5.60              |          |           |                                       |           |
|                      | 127020                                | 4.98              |          | · · ·     |                                       |           |
|                      | 127021                                | 5.15              |          |           |                                       |           |
|                      | 127022                                |                   |          |           |                                       |           |
|                      |                                       |                   | ······   |           |                                       |           |
|                      |                                       |                   |          |           |                                       |           |
|                      |                                       |                   |          |           |                                       |           |
|                      |                                       |                   |          |           |                                       |           |
|                      | <b>`</b>                              |                   |          |           |                                       |           |
|                      |                                       |                   |          |           |                                       |           |
| ·                    | · · · · · · · · · · · · · · · · · · · |                   |          |           |                                       |           |
|                      |                                       |                   |          |           |                                       |           |
| Dupl.                | IONS:                                 |                   |          | REAGENTS: | · · · · · · · · · · · · · · · · · · · |           |
|                      |                                       |                   |          |           |                                       |           |
| E Dupl.<br>ING SOLUT |                                       |                   |          | REAGENTS: |                                       |           |

| Image: Standard Startice       Packages under 150 lbs       Device Packages under 150 lbs         Image: Standard Overnight       Device Packages under 150 lbs       Device Packages under 150 lbs         Image: Standard Overnight       Device Packages under 150 lbs       Device Packages under 150 lbs         Image: Standard Overnight       Device Packages under 150 lbs       Device Packages under 150 lbs         Image: Standard Overnight       Device Packages under 150 lbs       Device Packages under 150 lbs         Image: Standard Overnight       Device Packages under 150 lbs       Device Packages under 150 lbs         Image: Standard Overnight       Device Packages under 150 lbs       Device Packages under 150 lbs         Image: Standard Overnight       Device Packages under 150 lbs       Device Packages under 150 lbs         Image: Standard Overnight       Device Packages under 150 lbs       Device Packages under 150 lbs         Image: Standard Overnight       Device Packages under 150 lbs       Device Packages under 150 lbs         Image: Standard Overnight       Device Packages under 150 lbs       Device Packages under 150 lbs         Image: Standard Overnight       Device Packages under 150 lbs       Device Packages under 150 lbs         Image: Standard Overnight       Device Packages under 150 lbs       Device Packages under 150 lbs         Image: Standard Overnight       Device Packages under 150 lbs <th>You upnature anthourse frederal Luyrus in deliver that ship<br/>men wohlan obtaining a suprature and agrees to indemnet<br/>and hold harmitest frederal Express from any reaching claims.     WESS prime<br/>(2001)       Call 1:800·GoofFedEx* (800)     (800)       Call 1:800·GoofFedEx* (800)     (800)       Coll 1:800·GoofFedEx* (800)     (800)</th>                                                                                      | You upnature anthourse frederal Luyrus in deliver that ship<br>men wohlan obtaining a suprature and agrees to indemnet<br>and hold harmitest frederal Express from any reaching claims.     WESS prime<br>(2001)       Call 1:800·GoofFedEx* (800)     (800)       Call 1:800·GoofFedEx* (800)     (800)       Coll 1:800·GoofFedEx* (800)     (800) |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Free:     BOBZ19104049       None:     BOBZ19104049       None:     BODAZ19104049       None:     BODAZ19104049       None:     BODAFORMSuiteRoom       At F.C.E.     Priore       Dign     Dign       Dign     Dign </th <th></th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Forny of the second many of the |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

### SUMMARY DATA VOC



2960 Foster Creighton Dr. P.O. Box 40566 Nashville, TN 37204-0566 Phone 1-615-726-0177 Sample Identification

SB1-16

Matrix: Soil % Dry Weight: 96. Units: ug/kg dry weight Dilution Factor: 1. Analysis Method: SW8260B Delivery Group: 117018 Instrument: HP-2 Lab Sample ID: 98-A126223 Date Sampled: 10/13/98 Date Received: 10/15/98 Analysis Date: 10/22/98 Analysis Time: 18:35 Sample QC Group: 3395

#### FORM I

| CAS NUMBER | ANALYTE                    | CONCENTRATION | FLAG |      |
|------------|----------------------------|---------------|------|------|
| 144-10-5   | . 1-Chlorohexane           | 2.6           | υ    |      |
|            | . Acetone                  |               | υ    |      |
|            | . Benzene                  |               | U    |      |
|            | .Bromobenzene              |               | U    |      |
|            | . Bromochloromethane       |               | U    |      |
|            | . Bromoform                |               | υ    |      |
|            | .Bromomethane              |               | υ    |      |
|            | Butylbenzene               |               | U    |      |
|            | .sec-Butylbenzene          |               | υ    |      |
|            | . t-Butylbenzene           |               | υ    |      |
|            | . Carbon disulfide         |               | υ    |      |
|            |                            |               | υ    |      |
|            | . Chlorobenzene            |               | υ    |      |
|            | . Chloroethane             |               | υ    |      |
|            | . Chloroform               |               | U    |      |
|            | . Chloromethane            |               | U    |      |
|            |                            |               | U    |      |
|            |                            |               | U    |      |
|            | . 1,2-Dibromo-3-chloroprop |               | U    |      |
|            | . Dibromochloromethane     |               | Ū    |      |
|            | . 1,2-Dibromoethane        |               | υ    |      |
|            | . Dibromomethane           |               | U    |      |
|            | . 1,2-Dichlorobenzene      |               | Ū    |      |
|            | . 1,3-Dichlorobenzene      |               | Ū.   |      |
|            | . 1,4-Dichlorobenzene      |               | Ū    |      |
|            | . Dichlorodifluoromethane  |               | Ū    |      |
|            | . 1,1-Dichloroethane       |               | Ū    |      |
|            | . 1,2-Dichloroethane       |               | Ū    |      |
|            | . 1,1-Dichloroethene       | • • • • • •   |      |      |
|            |                            |               |      |      |
|            | . trans-1,2-Dichloroethen  |               | Ū    |      |
|            |                            |               | U    |      |
|            |                            |               | U    |      |
|            | 2,2-Dichloropropane        |               | U    |      |
|            | 2,2-Dichloropropane        |               | U    |      |
|            |                            |               | U    |      |
|            | cis-1, 3-Dichloropropene   | ne. 5.2       | U    |      |
|            | trans-1, 3-Dichloroproper  |               |      |      |
|            | Ethylbenzene               |               |      | 0000 |
| 87-68-3    | Hexachlorobutadiene        | 5.2           | U    | 0000 |



SPECIALIZED ASSAYS, INC.

2960 Foster Creighton Dr. P.O. Box 40566 Nashville, TN 37204-0566 Phone 1-615-726-0177

Sample Identification

SB1-16

Matrix: Soil % Dry Weight: 96. Units: ug/kg dry weight Lab Sample ID: 98-A126223 Date Sampled: 10/13/98 Date Received: 10/15/98

#### FORM I

| CAS NUMBER                              | ANALYTE                       | CONCENTRATIO | N FLAG   |
|-----------------------------------------|-------------------------------|--------------|----------|
| 78-82-8                                 | . Isopropylbenzene            | 8.3          | U        |
| 99-87-6                                 | .4-Isopropyltoluene           | 6.2          | U        |
| 75-09-2                                 | . Methylene chloride          | 2.1          | U        |
|                                         | .Naphthalene                  |              | U        |
|                                         | .n-Propylbenzene              |              | U        |
|                                         | . Styrene                     |              | U        |
| 630-20-6                                | . 1, 1, 1, 2-Tetrachloroethan | ie. 3.1      | U        |
|                                         | . 1, 1, 2, 2-Tetrachloroethan |              | U        |
|                                         | . Tetrachloroethene           |              | U        |
|                                         | . Toluene                     |              | U        |
|                                         | . 1, 2, 3-Trichlorobenzene .  |              | U        |
|                                         | . 1, 2, 4-Trichlorobenzene .  |              | U        |
|                                         | . 1, 1, 1-Trichloroethane     |              | U        |
|                                         | . 1, 1, 2-Trichloroethane     |              | U        |
|                                         | . Trichloroethene             |              | U        |
|                                         | . 1, 2, 3-Trichloropropane .  |              | <b>U</b> |
|                                         | . 1, 2, 4-Trimethylbenzene .  | • • • •      | U        |
|                                         | . 1, 3, 5-Trimethylbenzene .  |              | U        |
|                                         | . Vinyl chloride              |              | U        |
|                                         | .Bromodichloromethane         |              | υ        |
|                                         | . o-Xylene                    |              | U        |
|                                         | .m,p-Xylene                   | •••          | Ū        |
|                                         | . Trichlorofluoromethane .    |              | Ū        |
| / · · · · · · · · · · · · · · · · · · · | . II TCHTOLOI TOOLOHCAHOHC .  | · · · · –    |          |

SPECIALIZED ASSAYS, INC.



2960 Foster Creighton Dr. P.O. Box 40566 Nashville, TN 37204-0566 Phone 1-615-726-0177 Sample Identification

SB1-19

Matrix: Soil % Dry Weight: 96. Units: ug/kg dry weight Dilution Factor: 1. Analysis Method: SW8260B Delivery Group: 117018 Instrument: HP-2 Lab Sample ID: 98-A126224 Date Sampled: 10/13/98 Date Received: 10/15/98 Analysis Date: 10/22/98 Analysis Time: 19:12 Sample QC Group: 3395

#### FORM I

| CAS NUMBER | ANALYTE                      | CONCENTRATION | FLAG |
|------------|------------------------------|---------------|------|
| 144-10-5   | .1-Chlorohexane              | 2.6           | U    |
|            | .Acetone                     |               | U    |
|            | .Benzene                     |               | U    |
|            | .Bromobenzene                |               | U    |
|            | .Bromochloromethane          |               | U    |
|            | . Bromoform                  |               | U    |
|            | .Bromomethane                |               | U    |
|            | .n-Butylbenzene              |               | U    |
|            | .sec-Butylbenzene            |               | U    |
|            | .t-Butulbenzene              |               | U    |
|            | .Carbon disulfide            |               | U    |
| 56-23-5    | .Carbon tetrachloride        | 10.4          | U    |
|            | .Chlorobenzene               |               | U    |
| 75-00-3    | .Chloroethane                | 5.2           | U    |
| 67-66-3    | .Chloroform                  | 2. 1          | U    |
| 74-87-3    | .Chloromethane               | 7.3           | U    |
| 95-49-8    | .2-Chlorotoluene             | 2.1           | U    |
| 106-43-4   | .4-Chlorotoluene             | 3.1           | U    |
|            | . 1, 2-Dibromo-3-chloroprop. |               | U    |
| 124-48-1   | . Dibromochloromethane       | 3.1           | U    |
| 74-95-3    | .1,2-Dibromoethane           |               | U    |
| 74-95-3    | . Dibromomethane             |               | U    |
|            | .1,2-Dichlorobenzene         |               | U    |
| 541-73-1   | .1,3-Dichlorobenzene         |               | U    |
| 106-46-7   | .1,4-Dichlorobenzene         |               | U    |
|            | .Dichlorodifluoromethane     |               | U    |
|            | .1,1-Dichloroethane          |               | U    |
|            | .1,2-Dichloroethane          |               | U    |
|            | .1,1-Dichloroethene          |               | U    |
|            | .cis-1,2-Dichloroethene .    |               | U    |
|            | .trans-1,2-Dichloroethene    |               | U    |
|            | .1,2-Dichloropropane         |               | U    |
|            | .1,3-Dichloropropane         |               | U    |
|            | .2,2-Dichloropropane         |               | U    |
|            | .1,1-Dichloropropene         |               | U    |
|            | .cis-1,3-Dichloropropene     |               | U    |
|            | .trans-1,3-Dichloropropen    |               | U    |
|            | .Ethylbenzene                |               | U    |
| 87-68-3    | .Hexachlorobutadiene         | 5.2           | U    |





2960 Foster Creighton Dr. P.O. Box 40566 Nashville, TN 37204-0566 Phone 1-615-726-0177

Sample Identification

SB1-19

Matrix: Soil % Dry Weight: 96. Units: ug/kg dry weight Lab Sample ID: 98-A126224 Date Sampled: 10/13/98 Date Received: 10/15/98

| FORM | Ι |
|------|---|
|------|---|

| CAS NUMBER ANALYTE C                 | ONCENTRATION | FLAG |
|--------------------------------------|--------------|------|
| 98-82-8 Isopropylbenzene             | . 8.3        | . U  |
| 99-87-6                              |              | •    |
| 75-09-2 Methylene chloride           |              | . U  |
| 91-20-3 Naphthalene                  |              | . U  |
| 103-65-1 n-Propylbenzene             |              | . U  |
| 100-42-5 Styrene                     |              | . U  |
| 630-20-6                             |              | . U  |
| 79-34-5 1, 1, 2, 2-Tetrachloroethane |              | . U  |
| 127-18-4 Tetrachloroethene           |              | . U  |
| 108-88-3                             |              | . U  |
| 87-61-6 1, 2, 3-Trichlorobenzene     |              | . U  |
| 120-82-1 1, 2, 4-Trichlorobenzene    |              | . U  |
| 71-55-6 1, 1, 1-Trichloroethane      |              | . U  |
| 79-00-5 1, 1, 2-Trichloroethane      |              | . U  |
| 79-01-6 Trichloroethene              |              | . U  |
| 96-18-41,2,3-Trichloropropane        |              | . U  |
| 95-63-6 1, 2, 4-Trimethylbenzene     |              | . U  |
| 108-67-8 1, 3, 5-Trimethylbenzene    |              | . E  |
| 75-01-4                              |              | . U  |
| 75-27-4 Bromodichloromethane         |              | . U  |
| 6615                                 |              | . U  |
| 6616                                 |              | . U  |
| 75-69-4 Trichlorofluoromethane       |              | . U  |
|                                      |              |      |

#### SPECIALIZED ASSAYS, INC.



2960 Foster Creighton Dr. P.O. Box 40566 Nashville, TN 37204-0566 Phone 1-615-726-0177 Sample Identification

SB1-19

Matrix: Soil % Dry Weight: 96. Units: ug/kg dry weight Dilution Factor: 50. Analysis Method: SW8260B Delivery Group: 117018 Instrument: HP-2 Lab Sample ID: 98-A126224 Date Sampled: 10/13/98 Date Received: 10/15/98 Analysis Date: 10/21/98 Analysis Time: 14:55 Sample QC Group: 3395

#### FORM I

| CAS NUMBER | ANALYTE                   | CONCENTRATION | FLAG |
|------------|---------------------------|---------------|------|
| 144-10-5   | .1-Chlorohexane           | 130           | υ    |
|            | . Acetone                 |               | υ    |
|            | .Benzene                  |               | υ    |
|            | .Bromobenzene             |               | υ    |
|            | .Bromochloromethane       |               | υ    |
|            | . Bromoform               |               | υ    |
|            | .Bromomethane             |               | υ    |
| 104-51-8   | .n-Butylbenzene           | 260           | υ    |
| 135-98-8   | .sec-Butylbenzene         | 365           | υ    |
| 98-06-6    | .t-Butylbenzene           | 365           | υ    |
| 75-15-0    | .Carbon disulfide         | 72.9          | U    |
| 56-23-5    | .Carbon tetrachloride     | 521           | U    |
| 108-90-7   | .Chlorobenzene            | 104           | U    |
|            | . Chloroethane            |               | U    |
| 67-66-3    | . Chloroform              | 104           | U    |
| 74-87-3    | . Chloromethane           | 365           | U    |
| 95-49-8    | .2-Chlorotoluene          |               | U    |
|            | .4-Chlorotoluene          |               | U    |
| 96-12-8    | .1,2-Dibromo-3-chloroprop | ane 52.1      | U    |
|            | .Dibromochloromethane     |               | U    |
|            | .1,2-Dibromoethane        |               | U    |
|            | .Dibromomethane           |               | υ    |
|            | .1,2-Dichlorobenzene      |               | υ    |
|            | .1,3-Dichlorobenzene      |               | U    |
|            | . 1,4-Dichlorobenzene     |               | υ    |
|            | . Dichlorodifluoromethane |               | U '  |
|            | . 1, 1-Dichloroethane     |               | U    |
|            | .1,2-Dichloroethane       |               | U    |
|            | . 1, 1-Dichloroethene     |               | U    |
|            | .cis-1,2-Dichloroethene . |               | U    |
|            | .trans-1,2-Dichloroethene |               | υ    |
|            | .1,2-Dichloropropane      |               | U    |
|            | .1,3-Dichloropropane      |               | U    |
|            | .2,2-Dichloropropane      |               | υ    |
|            | . 1, 1-Dichloropropene    |               | υ    |
|            | .cis-1,3-Dichloropropene  |               | U    |
|            | .trans-1,3-Dichloropropen |               | U    |
|            | .Ethylbenzene             |               | U    |
| 87-68-3    | .Hexachlorobutadiene      | 260           | υ    |



2960 Foster Creighton Dr. P.O. Box 40566 Nashville, TN 37204-0566 Phone 1-615-726-0177 Sample Identification

SB1-19

Matrix: Soil % Dry Weight: 96. Units: ug/kg dry weight Lab Sample ID: 98-A126224 Date Sampled: 10/13/98 Date Received: 10/15/98

208.

υ

. . . .

#### CONCENTRATION FLAG ANALYTE CAS NUMBER 417. . . . . υ 98-82-8 ..... Isopropylbenzene ..... 260. . . . . J 104. U 75-09-2 ..... Methylene chloride ..... υ 104. 91-20-3 ..... Naphthalene ..... υ 104. . . . . 103-45-1 ..... n-Propulbenzene ..... 100-42-5 ..... Styrene ..... 104. υ . . . . υ 156. . . . . . **. .** . <sup>.</sup> υ 104. υ 127-18-4 ..... Tetrachloroethene ..... 365. . . . . 260. υ 87-61-6 ..... 1, 2, 3-Trichlorobenzene .... 104. υ υ 104. 120-82-1 ..... 1, 2, 4-Trichlorobenzene .... . . . . υ 208. υ 260. 79-01-6 ..... Trichloroethene ..... 521. υ 1040 υ . . . . υ 365. . . . . 95-63-6 ..... 1, 2, 4-Trimethylbenzene .... 2450 108-67-8 ..... 1, 3, 5-Trimethylbenzene .... υ 469. 208. U 75-27-4 ..... Bromodichloromethane ..... . . . . 260. υ 6615 ......o-Xylene ...... 125. J 6616 ......m, p-Xylene ...... . . . .

#### FORM I

75-69-4 ..... Trichlorofluoromethane ....



2960 Foster Creighton Dr. P.O. Box 40566 Nashville, TN 37204-0566 Phone 1-615-726-0177

Matrix: Soil % Dry Weight: 96. Units: ug/kg dry weight Dilution Factor: 1. Analysis Method: SW8260B Delivery Group: 117018 Instrument: HP-2 Sample Identification

SB2-16

Lab Sample ID: 98-A126225 Date Sampled: 10/13/98 Date Received: 10/15/98 Analysis Date: 10/22/98 Analysis Time: 19:48 Sample QC Group: 3395

### FORM I

| CAS NUMBER | ANALYTE                   | CONCENTRATION | FLAG |
|------------|---------------------------|---------------|------|
| 144-10-5   | .1-Chlorohexane           |               | U    |
| 67-64-1    | . Acetone                 | 9.2 .         | U    |
| 71-43-2    | .Benzene                  | 2.1 .         | U    |
| 108-86-1   | .Bromobenzene             | 2.1 .         | υ    |
|            | .Bromochloromethane       |               | U    |
| 75-25-2    | .Bromoform                | 6.2 .         | U    |
| 74-83-9    | .Bromomethane             | 5.2 .         | U    |
| 104-51-8   | .n-Butylbenzene           |               | U    |
| 135-98-8   | .sec-Butylbenzene         | 7.3 .         | U    |
| 98-06-6    | .t-Butylbenzene           | 7.3.          | U    |
|            | .Carbon disulfide         |               | υ    |
| 56-23-5    | .Carbon tetrachloride     | 10.4 .        | U    |
| 108-90-7   | . Chlorobenzene           | 2.1 .         | U    |
| 75-00-3    | . Chloroethane            |               | U    |
|            | . Chloroform              |               | υ    |
| 74-87-3    | . Chloromethane           | 7:3 .         | U    |
| 95-49-8    | .2-Chlorotoluene          | 2.1 .         | U    |
| 106-43-4   | .4-Chlorotoluene          | 3.1 .         | υ    |
|            | .1,2-Dibromo-3-chloroprop |               | υ    |
|            | .Dibromochloromethane     |               | U    |
|            | .1,2-Dibromoethane        |               | U    |
|            | .Dibromomethane           |               | υ    |
|            | . 1,2-Dichlorobenzene     |               | υ    |
| 541-73-1   | . 1,3-Dichlorobenzene     |               | U    |
|            | . 1,4-Dichlorobenzene     |               | υ    |
|            | . Dichlorodifluoromethane |               | υ    |
| 75-34-3    | . 1, 1-Dichloroethane     | 2.1           | U    |
|            | . 1,2-Dichloroethane      |               | U    |
|            | . 1, 1-Dichloroethene     |               | υ    |
| 156-59-2   | .cis-1,2-Dichloroethene . |               | U    |
|            | .trans-1,2-Dichloroethene |               | U    |
|            | .1,2-Dichloropropane      |               | U    |
|            | .1,3-Dichloropropane      |               | U    |
|            | .2,2-Dichloropropane      |               | U    |
|            | . 1, 1-Dichloropropene    |               | U    |
|            | .cis-1,3-Dichloropropene  |               | U    |
|            | .trans-1,3-Dichloropropen |               | U    |
|            | .Ethylbenzene             |               | U    |
| 87-68-3    | .Hexachlorobutadiene      | 5.2           | U    |

2960 Foster Creighton Dr. P.O. Box 40566 Nashville, TN 37204-0566 Phone 1-615-726-0177

Sample Identification

SB2-16

Matrix: Soil 96. % Dry Weight: Units: ug/kg dry weight Lab Sample ID: 98-A126225 10/13/98 Date Sampled: Date Received: 10/15/98

FLAG

υ

υ

#### CONCENTRATION ANALYTE CAS NUMBER .... U 8.3 98-82-8 ..... Isopropylbenzene ..... .... U 6.2 2.1 . . . . 75-09-2 ..... Methylene chloride ..... 2.1 91-20-3 ..... Naphthalene ..... . . . . 2.1 .... U n-Propulbenzene 103-65-1

FORM I

| TOO-OO-I                                | Anna - ••• | = |
|-----------------------------------------|------------|---|
| 100-42-5 Styrene                        | 2.1        | U |
| 630-20-6 1, 1, 1, 2-Tetrachloroethane . | 3.1        | U |
| 79-34-5 1, 1, 2, 2-Tetrachloroethane .  | 2.1        | U |
| 127-18-4                                | 7.3        | U |
| 108-88-3 <sup>,</sup>                   | 5.2        | U |
| 87-61-6 1, 2, 3-Trichlorobenzene        | 2.1        | U |
| 120-82-1 1, 2, 4-Trichlorobenzene       | 2.1        | U |
| 71-55-6 1, 1, 1-Trichloroethane         | 4. 2       | U |
| 79-00-5 1, 1, 2-Trichloroethane         | 5.2        | U |
| 79-01-6 Trichloroethene                 | 10.4       | U |
| 96-18-4                                 | 20. 8      | U |
| 95-63-6 1, 2, 4-Trimethylbenzene        | 7.3        | U |
| 108-67-8 1, 3, 5-Trimethylbenzene       | 3.1        | U |
| 75-01-4                                 | 9.4        | U |
| 75-27-4 Bromodichloromethane            | 4. 2       | U |
| 6615                                    | 5.2        | U |
| 6616 m, p-Xylene                        | 3.1        | U |
| 75-69-4 Trichlorofluoromethane          | 4.2        | U |



2960 Foster Creighton Dr. P.O. Box 40566 Nashville, TN 37204-0566 Phone 1-615-726-0177 Sample Identification

SB2-20

Matrix: Soil % Dry Weight: 92. Units: ug/kg dry weight Dilution Factor: 500. Analysis Method: SW8260B Delivery Group: 117018 Instrument: HP-2 Lab Sample ID: 98-A126226 Date Sampled: 10/13/98 Date Received: 10/15/98 Analysis Date: 10/21/98 Analysis Time: 16:08 Sample QC Group: 3395

#### FORM I

| CAS NUMBER ANALYTE                  | CONCENTRATION | I FLAG  | ,      |
|-------------------------------------|---------------|---------|--------|
| 144-10-5 1-Chlorohexane             | 1360          | υ       |        |
| 67-64-1 Acetone                     |               | U       |        |
| 71-43-2 Benzene                     | 1090          | U       |        |
| 108-86-1 Bromobenzene               | 1090          | U       |        |
| 124-48-1 Bromochloromethane         | 1090          | U       |        |
| 75-25-2Bromoform                    | 3260          | U       |        |
| 74-83-9 Bromomethane                | 2720          | U       |        |
| 104-51-8 n-Butylbenzene             |               | U       |        |
| 135-98-8 sec-Butylbenzene           |               | U       |        |
| 98-06-6 t-Butylbenzene              |               | U       |        |
| 75-15-0 Carbon disulfide            | 761.          | U       |        |
| 56-23-5Carbon tetrachloride         | 5430          | U       |        |
| 108-90-7 Chlorobenzene              |               | U       |        |
| 75-00-3 Chloroethane                |               | U       |        |
| 67-66-3 Chloroform                  |               | υ       |        |
| 74-87-3 Chloromethane               |               | U       |        |
| 95-49-8                             |               | U       |        |
| 106-43-4                            |               | υ       |        |
| 96-12-8                             | ane 543.      | U       |        |
| 124-48-1 Dibromochloromethane       |               | U       |        |
| 74-95-3 1,2-Dibromoethane           |               | U       |        |
| 74-95-3 Dibromomethane              |               | U       |        |
| 95-50-1 1, 2-Dichlorobenzene        |               | U       |        |
| 541-73-1 1,3-Dichlorobenzene        |               | U       |        |
| 106-46-7 1,4-Dichlorobenzene        |               | υ       |        |
| 75-71-8 Dichlorodifluoromethane     |               | υ       |        |
| 75-34-3 1, 1-Dichloroethane         |               | U       |        |
| 107-06-2 1, 2-Dichloroethane        |               | U       |        |
| 75-35-4 1, 1-Dichloroethene         |               | U       |        |
| 156-59-2cis-1,2-Dichloroethene .    |               | U       |        |
| 156-60-5 trans-1,2-Dichloroethene   |               | U       |        |
| 78-87-5                             |               | U       |        |
| 142-28-9 1, 3-Dichloropropane       |               | υ       |        |
| 594-20-72,2-Dichloropropane         |               | U       |        |
| 563-58-6 1, 1-Dichloropropene       |               | U       |        |
| 10061-01-5cis-1,3-Dichloropropene   |               | U       |        |
| 10061-02-6 trans-1,3-Dichloroproper |               | U       |        |
| 100-41-4 Ethylbenzene               |               | • • • • | 000013 |
| 87-68-3 Hexachlorobutadiene         | 2720          | U       | 000013 |



2960 Foster Creighton Dr. P.O. Box 40566 Nashville, TN 37204-0566 Phone 1-615-726-0177 Sample Identification

SB2-20

Matrix: Soil % Dry Weight: 92. Units: ug/kg dry weight Lab Sample ID: 98-A126226 Date Sampled: 10/13/98 Date Received: 10/15/98

| CAS NUMBER | ANALYTE                       | CONCENTRATIO | N FLAG  |
|------------|-------------------------------|--------------|---------|
| 98-82-8    | .Isopropylbenzene             | 4350         |         |
| 99-87-6    | .4-Isopropyltoluene           | 7610         | • • • • |
| 75-09-2    | .Methylene chloride           | 1090         | U       |
| 91-20-3    | .Naphthalene                  | 7070         |         |
|            | .n-Propylbenzene              |              |         |
|            | .Styrene                      |              | υ       |
|            | . 1, 1, 1, 2-Tetrachloroethan |              | U       |
|            | . 1, 1, 2, 2-Tetrachloroethan |              | U       |
| 127-18-4   | . Tetrachloroethene           | 3800         | U       |
| 108-88-3   | . Toluene                     | 2720         | U       |
| 87-61-6    | . 1, 2, 3-Trichlorobenzene    | 1090         | υ       |
| 120-82-1   | . 1, 2, 4-Trichlorobenzene    | 1090         | U       |
| 71-55-6    | . 1, 1, 1-Trichloroethane     | 2170         | U       |
| 79-00-5    | . 1, 1, 2-Trichloroethane     | . 2720       | U       |
| 79-01-6    | .Trichloroethene              | 5430         | U       |
| 96-18-4    | . 1, 2, 3-Trichloropropane    | 10900        | U       |
|            | . 1, 2, 4-Trimethylbenzene    |              | E       |
| 108-67-8   | . 1, 3, 5-Trimethylbenzene    | 43500        |         |
|            | .Vinyl chloride               |              | U       |
|            | .Bromodichloromethane         |              | υ       |
|            | .o-Xylene                     |              |         |
|            | .m,p-Xylene                   |              | E       |
|            | . Trichlorofluoromethane      |              | U       |



2960 Foster Creighton Dr. P.O. Box 40566 Nashville, TN 37204-0566 Phone 1-615-726-0177

Matrix: Soil % Dry Weight: 92. Units: ug/kg dry weight Dilution Factor: 1000 Analysis Method: SW8260B Delivery Group: 117018 Instrument: HP-2 Sample Identification

SB2-20

Lab Sample ID: 98-A126226 Date Sampled: 10/13/98 Date Received: 10/15/98 Analysis Date: 10/22/98 Analysis Time: 21:01 Sample QC Group: 3395

#### FORM I

| CAS NUMBER | ANALYTE                     | CONCENTRATION | FLAG             |
|------------|-----------------------------|---------------|------------------|
| 144-10-5   | .1-Chlorohexane             | 2720          | U                |
| 67-64-1    | .Acetone                    | 9570          | U                |
|            | .Benzene                    |               | U                |
| 108-86-1   | .Bromobenzene               | 2170          | U                |
| 124-48-1   | .Bromochloromethane         | 2170          | U                |
| 75-25-2    | .Bromoform                  | 6520          | U                |
|            | .Bromomethane               |               | U                |
| 104-51-8   | .n-Butylbenzene             | 5430          | U                |
| 135-98-8   | .sec-Butylbenzene           | 7610          | U                |
|            | .t-Butylbenzene             |               | U                |
| 75-15-0    | .Carbon disulfide           | 1520          | U                |
|            | .Carbon tetrachloride       |               | U                |
|            | .Chlorobenzene              |               | U                |
| 75-00-3    | .Chloroethane               | 5430          | U                |
| 67-66-3    | . Chloroform                | 2170          | U                |
|            | .Chloromethane              |               | U                |
|            | .2-Chlorotoluene            |               | U                |
|            | .4-Chlorotoluene            |               | U                |
|            | . 1, 2-Dibromo-3-chloroprop |               | U                |
|            | . Dibromochloromethane      |               | U                |
|            | . 1, 2-Dibromoethane        |               | U                |
|            | . Dibromomethane            |               | U                |
|            | .1,2-Dichlorobenzene        |               | U                |
|            | . 1, 3-Dichlorobenzene      | •             | U                |
| 106-46-7   | . 1, 4-Dichlorobenzene      | 2170          | U                |
|            | . Dichlorodifluoromethane   |               | U                |
|            | . 1, 1-Dichloroethane       |               | U                |
|            | . 1,2-Dichloroethane        |               | U                |
|            | . 1, 1-Dichloroethene       |               | U                |
| 156-59-2   | . cis-1, 2-Dichloroethene . | 6520          | <b>U</b>         |
|            | .trans-1,2-Dichloroethene   |               | U                |
|            | . 1,2-Dichloropropane       |               | U                |
|            | . 1,3-Dichloropropane       |               | U                |
|            |                             | • • •         | U                |
|            | . 1, 1-Dichloropropene      | •••           | Ū                |
|            |                             | • • • =       | Ū                |
|            | . trans-1,3-Dichloropropen  |               | Ū                |
|            | Ethylbenzene                |               | · · · · <b>-</b> |
|            | . Hexachlorobutadiene       |               | U                |
| u/~uu u    | exachitorooodautene         | 0700          | · · · · · · ·    |



2960 Foster Creighton Dr. P.O. Box 40566 Nashville, TN 37204-0566 Phone 1-615-726-0177 Sample Identification

SB2-20

Matrix: Soil % Dry Weight: 92. Units: ug/kg dry weight Lab Sample ID: 98-A126226 Date Sampled: 10/13/98 Date Received: 10/15/98

### FORM I

| <br>       | · · · · · · · · · · · · · · · · · · · |       |          |   |     |
|------------|---------------------------------------|-------|----------|---|-----|
| CAS NUMBER | ANALYTE                               | CONCE | NTRATION | F | LAG |
|            | Isopropylbenzene                      |       | 3260     |   | J   |
|            | 4-Isopropyltoluene                    |       | 7610     |   |     |
| 75-09-2    | Methylene chloride                    | ••    | 2170     |   | U   |
| 91-20-3    | Naphthalene                           |       | 8700     |   |     |
| 103-65-1   | n-Propylbenzene                       |       | 3260     |   |     |
| 100-42-5   | Styrene                               |       | 2170     |   | U   |
| 630-20-6   | 1,1,1,2-Tetrachloroethane             | • •   | 3260     |   | U   |
|            | 1,1,2,2-Tetrachloroethane             |       | 2170     |   | υ   |
| 127-18-4   | Tetrachloroethene                     |       | 7610     |   | υ   |
| 108-88-3   | Toluene                               |       | 5430     |   | U   |
|            | 1,2,3-Trichlorobenzene                |       | 2170     |   | U   |
|            | 1,2,4-Trichlorobenzene                |       | 2170     |   | U   |
| 71-55-6    | 1,1,1-Trichloroethane                 |       | 4350     |   | U   |
|            | 1,1,2-Trichloroethane                 |       | 5430     |   | U   |
| 79-01-6    | Trichloroethene                       |       | 10900    |   | U   |
|            | 1,2,3-Trichloropropane                |       | 21700    |   | U   |
|            | 1,2,4-Trimethylbenzene                |       | 117000   |   |     |
|            | 1,3,5-Trimethylbenzene                |       | 42400    |   |     |
|            | .Vinyl chloride                       |       | 9780     |   | U   |
|            | Bromodichloromethane                  |       | 4350     |   | U   |
|            | o-Xylene                              |       |          |   |     |
|            | m,p-Xylene                            |       | 175000   |   |     |
|            | Trichlorofluoromethane                |       |          |   | U   |
|            |                                       | ••    | •===     |   | _   |



2960 Foster Creighton Dr. P.O. Box 40566 Nashville, TN 37204-0566 Phone 1-615-726-0177

Matrix: Soil % Dry Weight: 97. Units: ug/kg dry weight Dilution Factor: 1. Analysis Method: SW8260B Delivery Group: 117018 Instrument: HP-2 Sample Identification

SB3-22

Lab Sample ID: 98-A126227 Date Sampled: 10/14/98 Date Received: 10/15/98 Analysis Date: 10/22/98 Analysis Time: 20:24 Sample GC Group: 3395

### FORM I

| CAS NUMBER | ANALYTE                      | CONCENTRATION | FLAG |    |
|------------|------------------------------|---------------|------|----|
| 144-10-5   | .1-Chlorohexane              | 2.6 .         | υ    |    |
|            | . Acetone                    |               | U    |    |
| 71-43-2    | . Benzene                    | 2.1 .         | U    |    |
| 108-86-1   | .Bromobenzene                | 2.1 .         | U    |    |
| 124-48-1   | .Bromochloromethane          | 2.1 .         | υ    |    |
| 75-25-2    | .Bromoform                   | 6.2 .         | υ    |    |
| 74-83-9    | .Bromomethane                | 5.2 .         | υ    |    |
|            | .n-Butylbenzene              |               | υ    |    |
| 135-98-8   | .sec-Butylbenzene            | 7.2 .         | υ    |    |
|            | .t-Butylbenzene              |               | U    |    |
|            | .Carbon disulfide            |               | U    |    |
| 56-23-5    | .Carbon tetrachloride        | 10.3 .        | U    |    |
| 108-90-7   | . Chlorobenzene              | 2.1 .         | U    |    |
| 75-00-3    | . Chloroethane               | 5.2 .         | U    |    |
| 67-66-3    | . Chloroform                 | 2.1 .         | U    |    |
| 74-87-3    | . Chloromethane              | 72 .          | υ    |    |
|            | .2-Chlorotoluene             |               | υ    |    |
| 106-43-4   | .4-Chlorotoluene             | 3.1 .         | U    |    |
|            | . 1, 2-Dibromo-3-chloroprop  |               | U    |    |
|            | . Dibromochloromethane       |               | υ    |    |
|            | . 1, 2-Dibromoethane         |               | υ    |    |
|            | . Dibromomethane             |               | υ    |    |
|            | . 1,2-Dichlorobenzene        |               | υ    |    |
|            | .1,3-Dichlorobenzene         |               | U    |    |
|            | . 1, 4-Dichlorobenzene       |               | υ    |    |
|            | . Dichlorodifluoromethane    |               | Ū    |    |
|            | . 1, 1-Dichloroethane        |               | Ū    |    |
|            | . 1,2-Dichloroethane         |               | Ū    |    |
|            | . 1, 1-Dichloroethene        |               | Ū    |    |
|            | .cis-1,2-Dichloroethene .    |               | Ū    |    |
|            | . trans-1, 2-Dichloroethene  |               | U    |    |
|            | . 1,2-Dichloropropane        |               | U    |    |
|            | . 1,3-Dichloropropane        |               | U    |    |
|            | . 2, 2-Dichloropropane       |               | U    |    |
| 543-58-4   | . 1, 1-Dichloropropene       | 5.2           | U    |    |
| 10041-01-5 | . cis-1, 3-Dichloropropene   | 5.2           | U    |    |
| 10061-01-0 | . trans-1, 3-Dichloropropene | e. 5.2        | U    |    |
|            |                              |               | U    |    |
|            | .Ethylbenzene                |               | υ    | 00 |
| 87-88-3    | . Hexachioroputaciene        | J. 🛋          |      |    |



2960 Foster Creighton Dr. P.O. Box 40566 Nashville, TN 37204-0566 Phone 1-615-726-0177

Sample Identification

SB3-22

Matrix: Soil % Dry Weight: 97. Units: ug/kg dry weight Lab Sample ID: 98-A126227 Date Sampled: 10/14/98 Date Received: 10/15/98

| FORM | I |
|------|---|
|------|---|

| CAS NUMBER ANALYTE                   | CONCENTRATION FLAG |
|--------------------------------------|--------------------|
| 98-82-8 Isopropylbenzene             |                    |
| 99-87-6 4-Isopropyltoluene           | 6.2V               |
| 75-09-2 Methylene chloride           | 2.1 U              |
| 91-20-3 Naphthalene                  | 2.1 U              |
| 103-65-1n-Propylbenzene              | 2.1 U              |
| 100-42-5 Styrene                     |                    |
| 630-20-6 1, 1, 1, 2-Tetrachloroethan | e. 3.1 U           |
| 79-34-5                              | e. 2.1             |
| 127-18-4 Tetrachloroethene           | 7.2 U              |
| 108-88-3                             | 5.2 U              |
| 87-61-6                              | 2.1 U              |
| 120-82-1 1, 2, 4-Trichlorobenzene    | 2.1 U              |
| 71-55-6 1, 1, 1-Trichloroethane      | 4.1 U              |
| 79-00-5                              | 5.2 U              |
| 79-01-6 Trichloroethene              | 10.3 U             |
| 96-18-4                              | 20.6 U             |
| 95-63-6 1, 2, 4-Trimethylbenzene     | 7.2 U              |
| 108-67-8 1, 3, 5-Trimethylbenzene    | 3.1 U              |
| 75-01-4                              |                    |
| 75-27-4Bromodichloromethane          | 4.°1 U             |
| 6615                                 | 5.2 · U            |
| 6616m,p-Xylene                       | 3.1 U              |
| 75-69-4 Trichlorofluoromethane .     |                    |



2960 Foster Creighton Dr. P.O. Box 40566 Nashville, TN 37204-0566 Phone 1-615-726-0177

Matrix: Soil % Dry Weight: 90. Units: ug/kg dry weight Dilution Factor: 100. Analysis Method: SW8260B Delivery Group: 117018 Instrument: HP-2 Sample Identification

SB4-22

Lab Sample ID: 98-A126228 Date Sampled: 10/14/98 Date Received: 10/15/98 Analysis Date: 10/22/98 Analysis Time: 21:37 Sample QC Group: 3395

#### FORM I

| CAS NUMBER | ANALYTE                   | CONCE | NTRATION | F       | LAG |   |
|------------|---------------------------|-------|----------|---------|-----|---|
| 144-10-5   | 1-Chlorohexane            |       | 278.     |         | υ   |   |
| 67-64-1    | Acetone                   |       | 978.     |         | υ   |   |
| 71-43-2    | Benzene                   |       | 222.     |         | υ   |   |
| 108-86-1   | Bromobenzene              |       | 222.     |         | υ   |   |
| 124-48-1   | Bromochloromethane        |       | 222.     |         | υ   |   |
| 75-25-2    | Bromoform                 | • •   | 667.     |         | υ   |   |
| 74-83-9    | Bromomethane              |       | 556.     |         | υ   |   |
| 104-51-8   | n-Butylbenzene            |       | 556.     |         | υ   |   |
| 135-98-8   | sec-Butylbenzene          |       | 778.     |         | υ   |   |
| 98-06-6    | t-Butylbenzene            |       | 778.     |         | υ   |   |
| 75-15-0    | Carbon disulfide          |       | 156.     |         | υ.  |   |
| 56-23-5    | Carbon tetrachloride      |       | 1110     |         | υ   |   |
|            | Chlorobenzene             |       | 222.     |         | υ   |   |
| 75-00-3    | Chloroethane              |       | 556.     |         | υ   |   |
|            | Chloroform                |       | 222.     |         | υ   |   |
|            | Chloromethane             |       | 778.     |         | υ   |   |
|            | 2-Chlorotoluene           |       |          |         | υ   |   |
|            | 4-Chlorotoluene           |       | 333.     |         | υ   |   |
|            | 1,2-Dibromo-3-chloropropa |       | 111.     |         | υ   |   |
|            | Dibromochloromethane      |       |          |         | υ   |   |
|            | 1,2-Dibromoethane         |       | 333.     |         | υ   |   |
|            | Dibromomethane            |       | 1110     |         | υ   |   |
|            | 1,2-Dichlorobenzene       |       | 222.     |         | υ   |   |
|            | 1,3-Dichlorobenzene       |       | 667.     | • • • • | υ   |   |
|            | 1,4-Dichlorobenzene       |       | 222.     |         | υ   |   |
|            | Dichlorodifluoromethane . |       |          |         | υ   |   |
|            | 1,1-Dichloroethane        |       |          |         | υ   |   |
|            | 1,2-Dichloroethane        |       | 333.     |         | υ   |   |
|            | 1.1-Dichloroethene        |       |          |         | υ   |   |
|            | cis-1,2-Dichloroethene    |       |          |         | υ   |   |
|            | trans-1,2-Dichloroethene  |       |          |         | υ   |   |
|            | 1,2-Dichloropropane       |       |          |         | U   |   |
|            | 1,3-Dichloropropane       |       |          |         | υ   |   |
|            | 2,2-Dichloropropane       |       |          |         | υ   |   |
|            | 1,1-Dichloropropene       |       | 556.     | • • • • | U   |   |
| 10061-01-5 | cis-1,3-Dichloropropene . | • •   | 556.     |         | υ   |   |
| 10061-02-6 | trans-1,3-Dichloropropene | ₽.    | 556.     |         | υ   |   |
| 100-41-4   | Ethylbenzene              | · · . | 21000    | · · · · |     | ſ |
| 87-68-3    | .Hexachlorobutadiene      | ••    | 556.     | ••••    | υ   | Ľ |
|            |                           |       |          |         |     |   |



2960 Foster Creighton Dr. P.O. Box 40566 Nashville, TN 37204-0566 Phone 1-615-726-0177 Sample Identification

SB4-22

Matrix: Soil % Dry Weight: 90. Units: ug/kg dry weight Lab Sample ID: 98-A126228 Date Sampled: 10/14/98 Date Received: 10/15/98

| CAS NUMBER | ANALYTE                        | CONCENTRATIO | N FLAG  |
|------------|--------------------------------|--------------|---------|
| 98-82-8    | .Isopropylbenzene              | 6110         | · · · · |
| 99-87-6    | .4-Isopropyltoluene            | 8780         |         |
| 75-09-2    | .Methylene chloride            | 222.         | U       |
| 91-20-3    | Naphthalene                    | 5560         |         |
| 103-65-1   | .n-Propylbenzene               | 6110         |         |
| 100-42-5   | . Styrene                      | 222.         | U       |
| 630-20-6   | .1,1,1,2-Tetrachloroethane     | e. 333.      | U       |
|            | . 1, 1, 2, 2-Tetrachloroethane |              | U       |
| 127-18-4   | .Tetrachloroethene             | 778.         | U       |
| 108-88-3   | .Toluene                       | 222.         | J       |
| 87-61-6    | . 1, 2, 3-Trichlorobenzene     | 222.         | U       |
| 120-82-1   | . 1, 2, 4-Trichlorobenzene     | 222.         | U       |
| 71-55-6    | 1,1,1-Trichloroethane          | 444.         | U       |
|            | . 1, 1, 2-Trichloroethane      |              | U       |
| 79-01-6    | .Trichloroethene               | 1110         | U       |
| 96-18-4    | . 1, 2, 3-Trichloropropane     | 2220         | U       |
| 95-63-6    | . 1, 2, 4-Trimethylbenzene     | 7890         |         |
| 108-67-8   | . 1, 3, 5-Trimethylbenzene     | 36700        | E       |
| 75-01-4    | .Vinyl chloride                | 1000         | U       |
|            | .Bromodichloromethane          |              | U       |
|            | .o-Xylene                      |              |         |
|            | .m,p-Xylene                    |              | E       |
|            | .Trichlorofluoromethane        |              | U       |



2960 Foster Creighton Dr. P. O. Box 40566 Nashville, TN 37204-0566 Phone 1-615-726-0177

Matrix: Soil % Dry Weight: 90. Units: ug/kg dry weight Dilution Factor: 1000 Analysis Method: SW8260B Delivery Group: 117018 Instrument: HP-2 Sample Identification

SB4-22

Lab Sample ID: 98-A126228 Date Sampled: 10/14/98 Date Received: 10/15/98 Analysis Date: 10/25/98 Analysis Time: 5:01 Sample QC Group: 3395

#### FORM I

| 44-10-5       1-Chlorohexane         57-64-1       Acetone         71-43-2       Benzene         08-86-1       Bromobenzene         24-48-1       Bromochloromethane         75-25-2       Bromoform         74-83-9       Bromomethane         04-51-8       n-Butylbenzene         35-98-8       sec-Butylbenzene | 9780         2220         2220         2220         2220         2220         220         220         220         220         220         220         220         220         220         220         220         220         220         220         220         220         220         220         220         220         220         220         220         220         220         220         220         220         220         220         220         220         220         220         220         220         220         220         220         220         220         220         220         220         220         220         220 | · · · · · · · · · · · · · · · · · · · | Ū           |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|-------------|
| 71-43-2       Benzene         108-86-1       Bromobenzene         124-48-1       Bromochloromethane         75-25-2       Bromoform         74-83-9       Bromomethane         104-51-8       n-Butylbenzene         105-98-8       sec-Butylbenzene                                                                | 2220<br>2220<br>2220<br>2220<br>2220<br>2220<br>2220<br>222                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | · · · · · · · · · · · · · · · · · · · |             |
| .08-86-1                                                                                                                                                                                                                                                                                                            | 2220<br>2220<br>6670<br>5560<br>5560<br>5560<br>7780<br>7780<br>7780<br>1560<br>11100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | · · · · · · · · · · · · · · · · · · · |             |
| 24-48-1 Bromochloromethane<br>75-25-2 Bromoform                                                                                                                                                                                                                                                                     | 2220<br>6670<br>5560<br>5560<br>7780<br>7780<br>1560<br>11100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                       |             |
| 75-25-2Bromoform                                                                                                                                                                                                                                                                                                    | 6670            5560            5560            7780            7780            1560            11100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | · · · · · · · · · · · · · · · · · · · |             |
| 74-83-9Bromomethane<br>04-51-8n-Butylbenzene<br>35-98-8sec-Butylbenzene                                                                                                                                                                                                                                             | 5560           5560           5560           7780           7780           1560           11100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | · · · · ·                             |             |
| .04-51-8n-Butylbenzene<br>.35-98-8sec-Butylbenzene                                                                                                                                                                                                                                                                  | 5560<br>7780<br>7780<br>7780<br>560<br>1560<br>11100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | · · · · ·                             | U<br>U<br>U |
| .35-98-8sec-Butylbenzene                                                                                                                                                                                                                                                                                            | 7780<br>7780<br>1560<br>11100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | • • • •                               | Ū<br>U      |
| .35-98-8sec-Butylbenzene                                                                                                                                                                                                                                                                                            | 7780<br>7780<br>1560<br>11100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                       | Ū           |
|                                                                                                                                                                                                                                                                                                                     | 7780<br>1560<br>11100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                       | -           |
| /                                                                                                                                                                                                                                                                                                                   | 1560<br>11100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                       |             |
| 75-15-0                                                                                                                                                                                                                                                                                                             | 11100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                       | <u> </u>    |
| 6-23-5 Carbon tetrachloride                                                                                                                                                                                                                                                                                         | 2220                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                       | υ           |
| .08-90-7                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                       | U           |
| 75-00-3                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                       | U           |
| 57-66-3Chloroform                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                       | U           |
| 74-87-3Chloromethane                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                       | Ū           |
| 75-49-8                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                       | Ū           |
| 06-43-4                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                       | Ū           |
| 76-12-8                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                       | Ū           |
| 24-48-1 Dibromochloromethane                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                       | Ū           |
| 74-95-3                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                       | Ū           |
| 74-95-3Dibromomethane                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                       | Ū           |
| 75-50-1                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                       | ū           |
| 541-73-1                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                       | Ū           |
| 106-46-7                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                       | Ū           |
| 75-71-8Dichlorodifluoromethane .                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                       | ŭ           |
| 75-34-3                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                       | Ŭ           |
| 107-06-2                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                       | ŭ           |
| 75-35-4                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                       | ŭ           |
| 156-59-2                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | • • • •                               | ŭ           |
| 156-60-5trans-1,2-Dichloroethene                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                       | ŭ           |
| 78-87-5                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                       | ŭ           |
| 142-28-9                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ••••                                  | ŭ           |
|                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                       | Ŭ           |
| 594-20-7                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                       | -           |
| 563-58-6                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                       | -           |
| 10061-01-5cis-1,3-Dichloropropene .                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <i>.</i> .                            | U           |
| 10061-02-6 trans-1,3-Dichloropropen                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | • • • •                               | U           |
| LOO-41-4Ethylbenzene                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | • • • •                               |             |
| 37-68-3Hexachlorobutadiene                                                                                                                                                                                                                                                                                          | 5560                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                       | U           |



2960 Foster Creighton Dr. P.O. Box 40566 Nashville, TN 37204-0566 Phone 1-615-726-0177 Sample Identification

SB4-22

Matrix: Soil % Dry Weight: 90. Units: ug/kg dry weight Lab Sample ID: 98-A126228 Date Sampled: 10/14/98 Date Received: 10/15/98

### FORM I

| CAS NUMBER                                                                                                                                                                                                                                    | ANALYTE                                                                                                                                                                                                                                                                                                                                                             | CONCENTRATIC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | IN FLAG                                                                                                                                                                                                                                                                                                                                                                       |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 98-82-8         99-87-6         75-09-2         91-20-3         103-65-1         100-42-5         630-20-6         79-34-5         127-18-4         108-88-3         87-61-6         120-82-1         71-55-6         79-01-6         96-18-4 | . Isopropylbenzene<br>4-Isopropyltoluene<br>Methylene chloride<br>Naphthalene<br>n-Propylbenzene<br>Styrene<br>1, 1, 1, 2-Tetrachloroethan<br>1, 1, 2, 2-Tetrachloroethan<br>Tetrachloroethene<br>1, 2, 3-Trichlorobenzene .<br>1, 1, 2-Trichloroethane<br>1, 1, 2-Trichloroethane<br>1, 1, 2-Trichloroethane<br>1, 1, 2-Trichloroethane<br>1, 1, 2-Trichloroethane | 5560         7780         2220         7780         2220         7780         2220         2220         2220         2220         2220         2220         2220         2220         2220         2220         2220         2220         2220         2220         2220         2220         2220         2220         2220         2220         2220         2220         2220         2220         2220         2220         2220         2220         2220         2220         2220         2220         2220         2220         11100         22200 | IN       FLAG          J          U          U          U          U          U          U          U          U          U          U          U          U          U          U          U          U          U          U          U          U          U          U          U          U          U          U          U          U          U          U          U |
| 108-67-8                                                                                                                                                                                                                                      | . 1, 2, 4-Trimethylbenzene .<br>. 1, 3, 5-Trimethylbenzene .                                                                                                                                                                                                                                                                                                        | 34400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | U                                                                                                                                                                                                                                                                                                                                                                             |
| 75-27-4<br>6615<br>6616                                                                                                                                                                                                                       | . Vinyl chloride<br>. Bromodichloromethane<br>. o-Xylene<br>. m, p-Xylene<br>. Trichlorofluoromethane .                                                                                                                                                                                                                                                             | 4440<br>10000<br>109000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | U                                                                                                                                                                                                                                                                                                                                                                             |
| / · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                       | . IT TCHIGI OI TOOLOHEUNGHE .                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                               |



2960 Foster Creighton Dr. P.O. Box 40566 Nashville, TN 37204-0566 Phone 1-615-726-0177

Matrix: Soil % Dry Weight: 100 Units: UG/KG Dilution Factor: 1 Analysis Method: SW8260B Delivery Group: 117018 Instrument: HP-2 Sample Identification

BLANK

Lab Sample ID: BLANK Date Sampled: 10/13/98 Date Received: 10/15/98 Analysis Date: 10/21/98 Analysis Time: 6:26 Sample QC Group: 3395

### FORM I

| CAS NUMBER | ANALYTE                               | CONCENTRATION   | FLAG |
|------------|---------------------------------------|-----------------|------|
| 71-43-2    | .Benzene                              | 2.0             | υ    |
|            | . Acetone                             |                 | υ    |
| 108-86-1   | .Bromobenzene                         | 2.0             | υ    |
|            | .Bromochloromethane                   |                 | υ    |
|            | . Bromoform                           |                 | U    |
| 74-83-9    | .Bromomethane                         | 5.0             | U    |
|            | .n-Butylbenzene                       |                 | υ    |
|            | .sec-Butylbenzene                     |                 | υ    |
| 98-06-6    | .t-Butylbenzene                       | 7.0             | υ    |
| 75-15-0    | .Carbon disulfide                     | 1.4             | υ    |
| 56-23-5    | .Carbon tetrachloride                 | 10.0            | υ.   |
| 108-90-7   | .Chlorobenzene                        | 2.0             |      |
| 75-00-3    | .Chloroethane                         | 5.0             | υ    |
| 67-66-3    | . Chloroform                          | 2.0             | υ    |
| 74-87-3    | . Chloromethane                       | 7.0             | υ    |
| 95-49-8    | .2-Chlorotoluene                      | 2:0             | υ    |
| 106-43-4   | .4-Chlorotoluene                      | 3.0             | U    |
| 96-12-8    | . 1, 2-Dibromo-3-chloroprop           | ane 1.0         | υ    |
| 124-48-1   | . Dibromochloromethane                | 3.0             | U    |
| 74-95-3    | . 1, 2-Dibromoethane                  | 3.0             | υ    |
| 74-95-3    | .Dibromomethane                       | 10.0            | U    |
| 95-50-1    | .1,2-Dichlorobenzene                  | 2.0             | υ    |
| 541-73-1   | . 1, 3-Dichlorobenzene                | 6.0             | U    |
| 106-46-7   | . 1, 4-Dichlorobenzene                | 2.0             | U    |
| 75-71-8    | .Dichlorodifluoromethane              | 5.0             | U    |
| 75-34-3    | . 1, 1-Dichloroethane                 | 2.0             | U    |
|            | . 1, 2-Dichloroethane                 |                 | U    |
| 75-35-4    | . 1, 1-Dichloroethene                 | 6.0             | υ    |
| 156-59-2   | .cis-1,2-Dichloroethene .             | 6.0             | U    |
| 156-60-5   | .trans-1,2-Dichloroethene             | · . · · · · · · | U    |
| 78-87-5    | . 1, 2-Dichloropropane                | 2.0             | U    |
| 142-28-9   | . 1, 3-Dichloropropane                | 2.0             | U    |
|            | . 2, 2-Dichloropropane                |                 | U    |
|            | . 1, 1-Dichloropropene                |                 | U    |
|            | .cis-1,3-Dichloropropene              |                 | U    |
|            | .trans-1,3-Dichloropropen             |                 | υ    |
|            | .Ethylbenzene                         |                 | υ    |
|            | .Hexachlorobutadiene                  |                 | U    |
|            | . Isopropylbenzene                    |                 | U    |
|            | · · · · · · · · · · · · · · · · · · · |                 |      |



2960 Foster Creighton Dr. P.O. Box 40566 Nashville, TN 37204-0566 Phone 1-615-726-0177

Matrix: Soil % Dry Weight: 100 Units: UG/KG Sample Identification

BLANK

Lab Sample ID: BLANK Date Sampled: 10/13/98 Date Received: 10/15/98

#### FORM I

| CAS NUMBER ANALYTE                | CONCENTRATION FLAG |
|-----------------------------------|--------------------|
| 99-87-6                           |                    |
| 91-20-3 Naphthalene               |                    |
| 103-65-1n-Propylbenzene           |                    |
| 100-42-5 Styrene                  |                    |
| 630-20-6 1, 1, 1, 2-Tetrachloroet |                    |
| 79-34-5                           |                    |
| 127-18-4 Tetrachloroethene        |                    |
| 108-88-3 Tolvene                  |                    |
| 87-61-6 1, 2, 3-Trichlorobenzen   |                    |
| 120-82-1 1, 2, 4-Trichlorobenzen  |                    |
| 71-55-6                           |                    |
| 79-00-51,1,2-Trichloroethane      |                    |
| 79-01-6 Trichloroethene           |                    |
| 96-18-41,2,3-Trichloropropan      |                    |
| 95-63-61,2,4-Trimethylbenzen      |                    |
| 108-67-81,3,5-Trimethylbenzen     |                    |
| 75-01-4Vinyl chloride             |                    |
| 75-27-4Bromodichloromethane .     |                    |
| 6615                              |                    |
| 6616m,p-Xylene                    |                    |
| 75-69-4 Trichlorofluoromethan     | e 4.0 U            |

### 2B

## SOIL VOLATILE SYSTEM MONITORING COMPOUND RECOVERY

| Lab Name:     | SPECIALIZED | ASSAYS    | Contract: |                 |
|---------------|-------------|-----------|-----------|-----------------|
| Lab Code:     | SASSAYS     | Case No.: | SAS No.:  | SDG No.: 117018 |
| Level: (low/n | ned) LOW    |           |           |                 |

| ſ  | EPA        | SMC1 | SMC2 | SMC3 | тот |
|----|------------|------|------|------|-----|
|    | SAMPLE NO. | #    | #    | #    | OUT |
| 01 | VBLK04     | 112  | 98   | 105  | 0   |
| 02 | 127173     | 102  | 102  | 100  | 0   |
| 03 | VBLK02     | 105  | 101  | 106  | 0   |
| 04 | 127173MS   | 82   | 97   | 91   | 0   |
| 05 | 127173MSD  | 83   | 96   | 90   | 0   |
| 06 | CONTROL    | 82   | 98   | 92   | 0   |
| 07 | SB1-19     | 83   | 97   | 89   | 0   |
| 08 | SB2-20     | 83   | 95   | 79   | 0   |
| 09 | SB4-22     | 83   | 96   | 85   | 0   |
| 10 | VBLK03     | 113  | 100  | 102  | 0   |
| 11 | SB1-16     | 101  | 104  | 101  | 0   |
| 12 | SB1-19     | 93   | 99   | 90   | 0   |
| 13 |            | 101  | 92   | 103  | 0   |
| 14 | SB3-22     | 95   | 101  | 105  | 0   |
| 15 | SB2-20DL   | 87   | 104  | 96   | 0   |
| 16 |            | 85   | 97   | 100  | 0   |
| 17 |            | 98   | 106  | 101  | 0   |

|      |   |                       | QC LIMITS |
|------|---|-----------------------|-----------|
| SMC1 | = | 1,2-Dichloroethane-d4 | (62-147)  |
| SMC2 | = | Toluene-d8            | (84-117)  |
| SMC3 | = | Bromofluorobenzene    | (64-126)  |
|      |   |                       |           |

# Column to be used to flag recovery values

\* Values outside of contract required QC limits

D System Monitoring Compound diluted out

3/90

### FORM 3B

#### VOLATILE MATRIX SPIKE/MATRIX SPIKE DUPLICATE RECOVERY

Lap: Specialized Assays, Inc. Project: WURTSMITH BIOVENTING

Matrix Spike Sample:

SDG: 117018

QC Group: 3395

| Compound<br>       | Spike<br>Adced | Sample<br>Conc<br> | Spike<br>Conc<br> | % Rec<br> | QC<br>Limits<br> |
|--------------------|----------------|--------------------|-------------------|-----------|------------------|
| Benzene            | 50.0           | 0.0                | 58.0              | 116       | 58 - 135         |
| Chlorobenzene      | 50.0           | 0.0                | 58.0              | 116       | 54 - 136         |
| 1,1-Dichloroethene | 50.0           | 0.0                | 63.0              | 126       | 58 - 138         |
| Toluene            | 50.0           | 0.0                | 55.0              | 110       | 56 - 135         |
| Trichloroethene    | 50.0           | 0.0                | 54.0              | 108       | 52 - 143         |

| Compound                                                                     | Spike<br>Added           | MSD<br>Conc                     | % Rec<br>                       | RPD                        | RPD<br>Limit               | Recovery<br>Limits<br>                                   |
|------------------------------------------------------------------------------|--------------------------|---------------------------------|---------------------------------|----------------------------|----------------------------|----------------------------------------------------------|
| Benzene<br>Chlorobenzene<br>1,1-Dichloroethene<br>Toluene<br>Trichloroethene | 0.0<br>0.0<br>0.0<br>0.0 | 0.0<br>0.0<br>0.0<br>0.0<br>0.0 | 134<br>136<br>136<br>126<br>125 | 14<br>16#<br>8<br>14<br>15 | 17<br>14<br>19<br>18<br>18 | 58 - 135<br>54 - 136<br>58 - 138<br>56 - 135<br>52 - 143 |

Concentration Units: ug/kg

RPD: 1 out of 5 outside QC limits. Spike Recoveries: 0 out of 10 outside QC limits.

## FORM SBA

### VOLATILE LABORATORY CONTROL RECOVERY

Lap: Specialized Assays, Inc. Project: WURTSMITH BIOVENTING

SDG: 117018

20 Group: 3375

|                            | Кломп       |      |       | 0C      |
|----------------------------|-------------|------|-------|---------|
| Compound                   | Value       | Conc | % Rec | Limits  |
|                            |             |      |       |         |
|                            |             |      |       |         |
| Acetone                    | 50          | 55   | 110   | 47-150  |
| Benzene                    | 50          | 61   | 122   | 37-151  |
| Bromopenzene               | 50          | 54   | 108   | 74-122  |
| Bromochloromesnane         | 50          | 47   | 94    | 68-134  |
| Bromoform                  | 50          | 54   | 108   | 31-144  |
| Bromomethane               | 50          | 42   | 84    | 51-135  |
| n-Butylbenzene             | 50          | 47   | 94    | 65-127  |
| sec-Butylbenzene           | 50          | 56   | 116   | 68-129  |
| t-Butyloenzene             | 50          | 55   | 110   | 68-128  |
| Carbon disulfice           | 50          | 61   | 122   | 61-128  |
| Carbon tetrachloride       | 50          | 56   | 112   | 53-144  |
| Chlorobenzene              | 50          | 64   | 128   | 62-130  |
| Chloroethane               | 50          | 55   | 110   | 56-138  |
| Chloroform                 | 50          | 65   | 130   | 71-132  |
| Chloromethane              | 50          | 54   | 108   | 65-134  |
| 2-Chlorotoluene            | 50          | 55   | 110   | 72-123  |
| 4-Chlorotoluene            | 50          | 52   | 104   | 70-123  |
| 1,2-Dibromo-Stchloropropan | e 50        | 37   | 73    | 70-130  |
| Dibromochloromethane       | 50          | 59   | 118   | 41-133  |
| 1,3-Dibromoethane          | 50          | 54   | 108   | 47-136  |
| Dibromomethane             | 50          | 49   | 78    | 60-141  |
| 1.2-Dichlorosanzene        | 50          | 47   | 94    | 66-123  |
| 1,3-Dichloropenzene        | 50          | 46   | 92    | 65-128  |
| 1,4-Dichloropenzene        | 30 <b>*</b> | 45   | 90    | 66-129  |
| Dichlorodifluoromethane    | 50          | 54   | 128   | 50-140  |
| 1,l-Dichloroethane         | 50          | 64   | 123   | 70-1327 |
| 1,2-Dichloroethane         | 50          | 55   | 110   | 58-135  |
| 1,l-Dichlorosthene         | 50          | 64   | 128   | 69-130  |
| cis-1,2-Dichloroethene     | 50          | 64   | 128   | 59-140  |
| trans-1,2-Dichloroethene   | 50          | 56   | 112   | 72-126  |
| 1,2-Dichloropropane        | 50          | 63   | 126   | 45-149  |
| 1,3-Dichloropropane        | 50          | 52   | 104   | 58-138  |
| 2,2-Dichloropropane        | 50          | 46   | 52    | 43-146  |
| 1,l-Dichloropropene        | 50          | 58   | 116   | 56-132  |
| cis-1,3-Dichloropropene    | 50          | 54   | 108   | 69-130  |
| trans-1,S-Dichloropropene  | 50          | 51   | 102   | 56-126  |
| Ethylbenzene               | 50          | 64   | 128   | 61-129  |
| Hewachloroputaciene        | 50          | 60   | 120   | 59-138  |
| Isopropyipenzene           | 50          | 51   | 102   | 70-127  |
| 4-lsopropyltoluene         | 50          | 39   | 78    | 70-127  |
| Methylene chlorice         | 50          | 50   | 100   | 68-142  |
| -                          |             |      |       |         |

· · ·

### FORM SBA

### VOLATILE LABORATORY CONTROL RECOVERY

Lap: Specialized Assays, Inc. Project: WURTSMITH BIOVENTING

| Naphthalene                       | 50       | 45   | 90  | 54-146 |
|-----------------------------------|----------|------|-----|--------|
| n-Propyloenzene                   | 50       | 58   | 116 | 67-128 |
| Styrene                           | 50       | 60   | 120 | 65-128 |
| 1,1,1,2-Tetrachloroethane         | 50       | 58   | 116 | 53-130 |
| 1,1,2,2-Tetrachloroethane         | 50       | 54   | 108 | 37-149 |
| Tetrachloroethene                 | 50       | 62   | 124 | 55-128 |
|                                   | 50       | 63   | 126 | 65-131 |
| Toluene<br>1,8,3-Trichlorobenzene | 50       | 35   | 70  | 55-137 |
| 1,2,4-Trichlorobenzene            | 50       | 52   | 104 | 48-141 |
| 1,1,1-Trichloroetnane             | 50       | 46 · | 92  | 60-136 |
| 1,1,2-Trichloroethane             | 50       | 53   | 106 | 56-137 |
| Trichloroethene                   | 50       | 62   | 124 | 61-141 |
| 1,2,3-Trichloropropane            | 50       | 50   | 100 | 37-146 |
| 1,2,4-Trimethylbenzene            | 50       | 55   | 110 | 72-126 |
| 1,3,5-Trimethylbenzene            | 50       | 58   | 116 | 22-125 |
| Visyl chloride                    | 50       | 58   | 116 | 57-138 |
|                                   | 50       | 63   | 126 | 60-133 |
| Bromodicnioromethane<br>o-Xylene  | 50<br>50 | 59   | 118 | 64-126 |
| m,p-Xylene                        | 100      | 129  | 129 | 59-131 |
| Trichlorofluoromethane            | 50       | 53   | 106 | 56-142 |

Concentration Units: ug/kg

.

Recoveries: 0 out of 61 outside GC limits.

000028



SPECIALIZED ASSAYS INC. • 2960 Foster Creighton Dr. • P.O. Box 40566 • Nashville, Tennessee 37204-0566

615-726-0177 • 1-800-765-0980 • Fax 615-726-3404

#### CASE NARRATIVE

Client: Parsons Engineering Science Attn: Lynnea Peterson 1700 Broadway, Suite 900 Denver, CO 80290

Client Project: WURTSMITH BIOVENTING

Matrix: SOIL/WATER

Laboratory Project: 117229

Number samples: 10/3

Date Received: 10/16/98

Date Collected: 10/15/98 - 10/15/98

Sample Receipt Notes: All samples were received in good condition, properly preserved. All analyses were performed within method specified holding times.

QA/QC Summary:

Volatile Organic Method 8260B - Water:

1. All surrogate, matrix spikes, matrix spike duplicate, and laboratory control sample recoveries for this analytical batch (#4751) were within acceptable quality control limits. The sample used for MS/MSD analysis for this analytical batch was not part of this sample delivery group. All water samples in this delivery group are reported as not detected for all analytes. Quantitation on unknown concentrations were determined from the initial calibration curve using the average response factor when the % RSD was less than or equal to 15%. All other analytes were calculated using linear regression.

Volatile Organic Method 8260B - Soil:

All surrogate and laboratory control sample recoveries were within acceptable quality control limits. The relative percent difference for Benzene and Chlorobenzene on the MS/MSD pair was above QC limits, as was the recovery for benzene on the MSD sample. The sample used for MS/MSD analysis for this analytical batch was SB9-14. Due to sample matrix issues, all soil samples in this batch (#4754) required dilution for analysis. Quantitation on unknown concentrations were determined from the initial calibration curve using the average response factor when the % RSD was less than or equal to 15%. All other analytes were calculated using linear regression.

ohnny a. Mi

Johnny A. Mitchell Director of Technical Services Specialized Assays, Inc.

### SPECIALIZED ASSAYS ENVIRONMENTAL

**REFERRING CLIENT** 

Parsons Engineering/AFCEE Exte

. .

Account: 8185

Doug Scott

Pagel of 2

## 7A-059007

| Langer and |  |
|------------|--|
|            |  |

2960 Foster Creighton Drive Nashville, TN 37204 615-726-0177, 800-765-0980 FAX 615/726-3404

| 1700 Broadway Ste 900                     |                       |                                  |                           |                    |           |                |                   |
|-------------------------------------------|-----------------------|----------------------------------|---------------------------|--------------------|-----------|----------------|-------------------|
| Denver, CO 80290<br>Ph: 303-831-8100 Fax: | 303-831-8208          |                                  | s                         | ре                 | cia       | lized Assa     | ys: (800) 765-098 |
| CONTROL NUMBER (FOR LAB USE ONLY)         | 17229                 | PROJECT * P.O. *<br>726876.69120 |                           |                    |           |                |                   |
| S (Signature-Please Print)                |                       |                                  | t nan<br><sub>l</sub> r49 | ME<br>S <i>M</i> i | th        | Bisventin      | ש                 |
| AB USE ONLY<br>ACC# SAMPLE DESCRIPTION    | N DATE                | TIME                             | сомр                      | GRAB               | # OF CONT | A              | NALYSIS REQUESTED |
| 3127165 SB25-23                           | 10/14/48              | 1430                             |                           | ×                  | 3         | 8260           |                   |
| SB5-23                                    | 11                    | 15ce                             |                           | +                  | 3         | -              |                   |
| A127167 585-12                            | 11                    | 1520                             |                           | Ł                  | 3         | (7             | -                 |
| A127168 SBI8A-20                          |                       | 1620                             | ,                         | Ł                  | 3         | "              |                   |
| 127169 SB7-20                             | . (                   | 1700                             |                           | ł                  | 3         | V              |                   |
| A127170 SB28-21                           |                       | 1770                             |                           | -                  | 3         | 17             |                   |
| NIE7171 588-21                            |                       | 1745                             |                           | <b>-</b>           | 3         | 11             |                   |
| -127172<br>_SB6-22                        | 10/15/98              | 0900                             |                           | *                  | 3         | 17             |                   |
| S127173 589-14 +                          | , (                   | 1015                             |                           | *                  | 3         | ( <u>/</u>     |                   |
| SB9-14 MS                                 | 11                    | "                                |                           | بد                 | 3         | "              |                   |
| - //all Whites 1300                       | ived by: (Signature)  | - <b>4</b> -                     | L                         |                    | Ŵ         | Laboratory by: | Date / Time       |
| shed by: (Signature) Date / Time Recu     | rived by: (Signature) |                                  |                           | Rema               | 113       | V              |                   |
| shed by: (Signature) Date / Time Rec      | ived by: (Signature)  | <u></u>                          |                           |                    |           |                |                   |
| ished by: (Signature) Date / Time Rec     | rived by: (Signature) |                                  |                           | SAI                | Ртоје     | ct #:          | 000001            |

or further assistance in completing the chain of custody form please refer to the instructions found on the opposite s ,**.**. , 

| SP                                                                                                                                                                   | ECIALIZED ASSAY<br>ENVIRONMENTAL  | S               |            | P.     | ge   | 2.        | , f            | 2                 | 7A-059008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|-----------------|------------|--------|------|-----------|----------------|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| REFERRING CLIENT<br>Account: 8185<br>Parsons Engineering/AFCEE Exte<br>Doug Scott<br>1700 Broadway Ste 900<br>Denver, CO 80290<br>Ph: 303-831-8100 Fax: 303-831-8208 |                                   |                 |            | B      |      | Spec      | Decialized Ass |                   | 2960 Foster Creighton Drive<br>Nashville, TN 37204<br>615-726-0177, 800-765-0980<br>FAX 615/726-3404<br>ays: (800) 765-098                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                      | R (FOR LAB USE ONLY)              | 1722            |            | PROTEC | īj.  | 68        | 76             | .69120            | P.O. #                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 3 (Signature-Please                                                                                                                                                  | Print)                            | ( (-            |            |        | T NA | ME<br>SMI | <i>th</i>      | Bioventin         | S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| AB USE ONLY<br>ACC#                                                                                                                                                  | SAMPLE DESCRIPTION                | ON              | DATE       | TIME   | COMP | GRAB      | • OF COM       |                   | NALYSIS REQUESTED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 1173                                                                                                                                                                 | 589-14 MSD                        | H               | 11/48      | 1015   |      | *         | 3              | 8260              | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 127174                                                                                                                                                               | 589-22                            |                 | 11         | 1020   |      | *         | 3              | -                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 427175                                                                                                                                                               | EB-1                              |                 | r*         | 1050   |      | ×         | 2              | 8260              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 127176                                                                                                                                                               | EB-2                              |                 | • 1        | 1100   |      | ×         | 2              | ( )               | -<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| <br>A127177                                                                                                                                                          | TB-1                              | <u></u>         | /          | -      |      |           | 1              | 8260              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                      |                                   |                 |            |        |      |           |                |                   | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                      |                                   |                 |            |        |      |           |                | -                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                      |                                   |                 | •          |        |      |           |                |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| •                                                                                                                                                                    | 3                                 | ,               |            |        |      |           |                | -                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                      |                                   |                 |            |        | 1    |           |                | ·.                | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| dshed by: (Signature)                                                                                                                                                | Date / Time R<br>9/1-7/48   13:00 | leceived by: (S | Signature) |        |      |           | Ve             | of Laboratory by: | $\frac{10}{10} \frac{10}{10} 10$ |
| uished by: (Signature)                                                                                                                                               | Date / Time R                     | leceived by: (  | Signature) |        |      | Ren       | arks           | /                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| ished by: (Signature)                                                                                                                                                | Date / Time F                     | leceived by: () | Signature) |        |      |           |                | •                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| ished by: (Signature)                                                                                                                                                | Date / Time F                     | Received by: (  | Signature) |        |      |           | AI Pro         | ject #:           | 000002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

, or further assistance in completing the chain of custody form please refer to the instructions found on the opposite

# Cooler Receipt Form

•

| b. Date                                                                          | 000003           |
|----------------------------------------------------------------------------------|------------------|
| a. Name of person contacted:                                                     |                  |
| 15. Corrective action taken, if necessary:                                       |                  |
| 14. Were correct preservatives used?                                             |                  |
| 13. Was sufficient amount of sample sent in each bottle?                         |                  |
| 2. If present, were VOA vials checked for absence of air bubbles and noted if fo | Yes) No          |
| 1. Were correct bottles used for the analysis requested?                         |                  |
| 0. Did all bottle labels and tags agree with custody papers?                     | (Yes) No         |
| 9. Were all bottle labels complete (#, date, signed, pres, etc)?                 |                  |
| 3. Did all bottles arrive in good condition (unbroken)?                          |                  |
| . Was sufficient ice used (if appropriate)?                                      |                  |
| What kind of packing material was used:                                          | Yes No           |
| . Did you sign the custody papers in the appropriate place?                      |                  |
| . Were custody papers properly filled out (ink, signed, etc)?                    |                  |
| Were custody papers inside cooler?                                               | Yes No           |
| b. Were the signature and date correct?                                          | Yes No           |
| a. If yes, what kind and where: 2 front [] buck                                  |                  |
| Were custody seals on outside of cooler and intact?                              | `                |
| Temperature of Cooler when opened                                                | (Yes) No         |
| Цо/                                                                              |                  |
| (Signature)                                                                      |                  |
| bler Received On: $10/16/48$ And Opened On: $10/16/48$ By: $PAn RV$              | <u>actington</u> |
| $\operatorname{int:}_{\operatorname{AVLSOV}}$                                    |                  |

SENT BY:

### 4-16-99 ; 8:05 ; SPECIALIZED ASSAYS→ 8-13038318208;# 2/ 4

10/16/98 TE: AE:

SPECIALIZED ASSAYS, INC.

BTX SOIL PREP LOG

PAGE NO: Soil MATRIX: ANALYST: CL

ATCH NO .: 177229

|           | SAMPLEID | SAMPLE WEIGHT (g) | DILUTION                                                                                                       | METHOD    | WORKUST | REMARKS    |
|-----------|----------|-------------------|----------------------------------------------------------------------------------------------------------------|-----------|---------|------------|
|           | SAMPLEIN |                   |                                                                                                                |           |         | - Constant |
| p Blank # | 12745    |                   |                                                                                                                | 5035      | 4564    | PTDJect #  |
|           | 127165   | 4.32              |                                                                                                                |           |         |            |
|           | 127166   | 4.97              |                                                                                                                | + /       |         |            |
|           | 127167   | 5.02              |                                                                                                                | + + +     |         | •          |
|           | 127168   | 5.42              |                                                                                                                |           |         | · · ·      |
|           | 127169   | 5.15              | 5                                                                                                              |           |         |            |
|           | -127170  | 5.25              | •                                                                                                              |           |         |            |
|           | 127171   | 4.85              |                                                                                                                |           |         | +          |
|           | 127172   | 472               |                                                                                                                |           |         |            |
| :         | 127173   | 5.35              |                                                                                                                |           |         |            |
|           | 127174   | 5.6               |                                                                                                                |           |         |            |
|           |          |                   |                                                                                                                | 5035      | 4510    | 117221     |
|           | 127148   | 4.95              |                                                                                                                |           |         |            |
|           | 127149   | 4.42              |                                                                                                                |           |         |            |
|           | 127150   | 4.89              |                                                                                                                |           |         |            |
|           | 127151   | 5.33              |                                                                                                                |           |         | +          |
|           | 127152   | 5.41              |                                                                                                                |           |         |            |
|           | 17028    | 5.26              |                                                                                                                | 5-35      | 4446    | 17197      |
|           | 127024   | 5.09              |                                                                                                                |           | ļ       |            |
| <u> </u>  | 127030   | 5.37              |                                                                                                                |           | ·       | -k         |
|           |          |                   |                                                                                                                |           |         |            |
|           |          |                   |                                                                                                                |           |         |            |
| KE        |          |                   |                                                                                                                |           |         |            |
| KE Dup!.  |          |                   | and a second star to the second star second star second star second star second star second star second star s | REAGENTS: |         |            |
| KING SOLL | JTIONS:  |                   |                                                                                                                |           |         |            |

v00000

ų,

| - |                                    | nature Manuma chure: Con prover 150 lbs. Davin<br>19 ht Service Packages over 150 lbs. Davin<br>18 cilopht [15 cecked burnets and<br>19 celedule. See beck for detailed descriptions of fraight serv<br>19 celedule. See beck for detailed descriptions of fraight service<br>10 celedule. See beck for detailed descriptions of fraight service<br>10 celedule. See beck for detailed descriptions of fraight service<br>10 celedule. See beck for detailed descriptions of traight service<br>10 celedule. See beck for detailed descriptions of traight service<br>10 celedule. See beck for detailed descriptions of traight service<br>10 celedule. See beck for detailed descriptions of traight service<br>10 celedule. See beck for detailed descriptions of traight service<br>10 celedule. See beck for detailed descriptions of traight service<br>10 celedule. See beck for detailed descriptions of traight service<br>10 celedule. See beck for detailed descriptions of traight service<br>10 celedule. See beck for detailed descriptions of traight service<br>10 celedule. See beck for detailed descriptions of traight service<br>10 celedule. See beck for detailed descriptions of traight service<br>10 celedule. See beck for detailed descriptions of traight service<br>10 celedule. See beck for detailed service<br>10 celedule. See beck for detailed for detailed service<br>10 celedule. See beck for detailed for detailed service<br>10 celedule. See beck for detailed service<br>10 celedule. See beck for detailed service<br>10 celedule. See beck for detailed service<br>10 celedule. See beck for detailed service<br>10 celedule. See beck for detailed service<br>10 celedule. See beck for detailed service<br>10 celedule. See beck for detailed service<br>10 celedule. See beck for detailed service<br>10 celedule. See beck for detailed service<br>10 celedule. See beck for detailed service<br>10 celedule. See beck for detailed service<br>10 celedule. See beck for detailed service<br>10 celedule. See beck for detailed service<br>10 celedule. See beck for detailed service<br>10 celedule. See beck for detailed service<br>10 celedule. See | Special rationing     No     Ves Since       Down is shipment contain dangerous goods1*     No     Cargo Airthett Only       Doyles     Cargo Airthett Only     Cargo Airthett Only       Doyles     Down and the shipment on the special dangerous goods1*     No       Doyles     Instruct and the shipment on the special dangerous of the shifted Only     No       Doyles     Doyles     Down and the shifted Only       Doyles     Down and the shifted Only     Down and the shifted Only       Down and the shifted Only     Down and the shifted Only     Down and the shifted Only       Bill     Sender     Nied Check     Check |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
|---|------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|   | edex. USA Airbill and BDB219104027 | ders<br>1700 Broadway Ste 900<br>180/767 30090<br>des 195 518 30090<br>state 2P 500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | LA ING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | mark     SPECIALIZED ASSAYS ENVIRON     Check here       itessidence     itessidence     Itessidence       itess     2960 FOSTER CREIGHTON DR     Dept/floor/Sutra/Noon       itesidence     itesidence     Itesidence       itesidence     State IN     ZP04-3719       NASHVILLE     State IN     Dept/floor/Sutra/Noon       For HOLD at Fedex Location check here     State IN     Dept/floor/Sutra/Noon       Hold Weekdey     Hold Secret of your on the state sta |  |

· ·

# **VOLATILE ORGANICS - WATER**

## SUMMARY





2960 Foster Creighton Dr. P.O. Box 40566 Nashville, TN 37204-0566 Phone 1-615-726-0177

Matrix: Water pH: Units: ug/l Dilution Factor: 1. Analysis Method: SW8260B Delivery Group: 117229 Instrument: HP-8 Sample Identification

EB-1

Lab Sample ID: 98-A127175 Date Sampled:: 10/15/98 Date Received: 10/16/98 Analysis Date: 10/20/98 Analysis Time: 22:33 Sample QC Group: 4751

#### FORM I

| CAS NUMBER | ANALYTE                     | CONCENTRATION | FLAG |
|------------|-----------------------------|---------------|------|
| 144-10-5   | .i-Chlorohexane             | 2.5           | U    |
|            | . Benzene                   |               | υ    |
|            | .Bromobenzene               |               | U    |
|            | .Bromochloromethane         |               | U    |
|            | Bromoform                   |               | U    |
|            | . Bromomethane              |               | U    |
|            | .n-Butylbenzene             |               | U    |
|            | .sec-Butylbenzene           |               | U    |
|            | .t-Butylbenzene             |               | υ    |
|            | . Carbon tetrachloride      |               | Ū    |
| 108-90-7   | . Chlorobenzene             |               | Ū    |
|            | . Chloroethane              |               | Ū    |
|            | . Chloroform                |               | U    |
|            | . Chloromethane             |               | U    |
|            | .2-Chlorotoluene            |               | U    |
|            | . 4-Chlorotoluene           |               | U    |
|            | . 1, 2-Dibromo-3-chloroprop |               | U    |
|            | . Dibromochloromethane      |               | U    |
|            | . 1,2-Dibromoethane         |               | U    |
|            | . Dibromomethane            |               | U    |
|            | . 1,2-Dichlorobenzene       |               | U    |
|            | . 1, 3-Dichlorobenzene      |               | U    |
|            | . 1, 4-Dichlorobenzene      |               | U    |
|            | . Dichlorodifluoromethane   |               | U    |
|            | . 1, 1-Dichloroethane       |               | U    |
|            | . 1, 1-Dichloroethane       |               | U    |
|            | . 1, 1-Dichloroethene       |               | U    |
|            | . cis-1,2-Dichloroethene .  |               | U    |
|            | . trans-1, 2-Dichloroethene |               | U    |
|            | . 1,2-Dichloropropane       |               | U    |
|            |                             |               | U    |
|            | .1,3-Dichloropropane        |               | U    |
|            |                             |               | U    |
|            | . 1, 1-Dichloropropene      |               | U    |
|            | . cis-1, 3-Dichloropropene  |               | U    |
|            | . trans-1, 3-Dichloropropen |               | U    |
|            | . Ethylbenzene              |               | U    |
|            | .Hexachlorobutadiene        |               |      |
|            | . Isopropylbenzene          |               | U U  |
| 99-87-6    | .4-Isopropyltoluene         | 1.2           | 00   |



2960 Foster Creighton Dr. P.O. Box 40566 Nashville, TN 37204-0566 Phone 1-615-726-0177

Matrix: Water pH: Units: ug/l Sample Identification

EB-1

Lab Sample ID: 98-A127175 Date Sampled:: 10/15/98 Date Received: 10/16/98

### FORM I

| • | CAS NUMBER          | ANALYTE                      | CONCENTRATION | N FLAG          |
|---|---------------------|------------------------------|---------------|-----------------|
| - | 75-09-2             | Methylene chloride           | 0.3           | U               |
|   |                     | Naphthalene                  |               | U               |
|   |                     | n-Propylbenzene              |               | υ               |
|   |                     | Styrene                      |               | U               |
|   | 430-20-A            | 1, 1, 1, 2-Tetrachloroethane | e. 0.5        | υ               |
|   |                     | 1, 1, 2, 2-Tetrachloroethane |               | U               |
|   |                     | . Tetrachloroethene          |               | U               |
|   |                     | . Toluene                    |               | U               |
|   |                     | 1,2,3-Trichlorobenzene       |               | U               |
|   |                     | 1,2,4-Trichlorobenzene       |               | U               |
|   |                     | 1,1,1-Trichloroethane        |               | U               |
|   |                     | 1,1,2-Trichloroethane        |               | U               |
|   |                     | Trichloroethene              |               | U               |
|   |                     | 1,2,3-Trichloropropane       |               | Ū               |
|   |                     | . 1, 2, 4-Trimethylbenzene   | ••            | Ū               |
|   | 100-47-0            | 1,3,5-Trimethylbenzene       | 0.5           | Ū               |
|   | 75-01-0             | . Vinyl chloride             | 1.1           | U               |
|   |                     | . Bromodichloromethane       |               | Ū               |
|   |                     | .o-Xylene                    | •••           | U               |
|   |                     |                              |               | U               |
|   | 100-30-3<br>75 /0 / | .m,p-Xylene                  | 0.8           | U               |
|   | /3-07-4             | · ILTERTOLOTIOOLONGCOGUE ··· | v.u           | · · · · · · · · |



2960 Foster Creighton Dr. P.O. Box 40566 Nashville, TN 37204-0566 Phone 1-615-726-0177

Matrix: Water pH: Units: ug/1 Dilution Factor: 1. Analysis Method: SW8260B Delivery Group: 117229 Instrument: HP-8 Sample Identification

EB-2

Lab Sample ID: 98-A127176 Date Sampled:: 10/15/98 Date Received: 10/16/98 Analysis Date: 10/20/98 Analysis Time: 23:10 Sample QC Group: 4751

FORM I

| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <br>CAS NUMBER | ANALYTE                     | CONCENTRATION | FL    | AG  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-----------------------------|---------------|-------|-----|
| 71-43-2Benzene0.4U $108-86-1 \cdot \dots$ Bromochloromethane0.3U $74-97-5$ Bromochloromethane0.4U $7-25-2$ Bromochloromethane1.2U $7-4-97-5$ Bromomethane1.1U $104-51-8$ n-Butylbenzene1.3U $135-98-8$ sec-Butylbenzene1.3U $56-23-5$ Carbon tetrachloride2.1U $56-23-5$ Carbon tetrachloride2.1U $75-00-3$ Chloroethane0.4U $76-64-3$ Chloroethane1.3U $74-87-3$ Chloromethane1.3U $95-47-8$ 2-Chlorotoluene0.4U $106-43-4$ 4-Chlorotoluene0.4U $106-43-4$ 1.2-Dibromo-3-chloropropane2.6U $124-48-1$ Dibromoethane0.6U $74-95-3$ 1.2-Dichlorobenzene0.3U $74-75-3$ 1.2-Dichlorobenzene0.3U $74-75-3$ 1.2-Dichlorobenzene0.3U $74-75-3$ 1.2-Dichlorobenzene0.3U $75-71-8$ Dichlorobenzene1.2U $156-59-2$ 1.3-Dichloroethane0.6U $122-97$ 1.3-Dichloroethene1.2U $156-60-5$ trans-1.2-Dichloroethene1.2U $156-60-5$ trans-1.2-Dichloroethene1.2U $156-60-5$ trans-1.2-Dichloroethene0.4U $142-28-9$ 1.3-Dichloropropane0.4U<                                                                                                                                                                                                                                                            | 144-10-5       | 1-Chlorobeyane              | 2.5           |       | υ   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                |                             |               |       | Ū   |
| 74-97-5Bromochloromethane0.4U74-97-5Bromoform1.2U74-83-9Bromoform1.1U135-98-8sec-Butylbenzene1.1U135-98-8sec-Butylbenzene1.3U $96-04-6$ t-Butylbenzene1.4U $56-23-5$ Carbon tetrachloride2.1U $108-90-7$ Chlorobenzene0.4U $7-64-3$ Chloroform0.3U $74-87-3$ Chloroform0.3U $95-49-8$ 2-Chlorotoluene0.4U $106-43-4$ 4-Chlorotoluene0.4U $106-43-4$ 1.2-Dibromo-3-chloropropane2.6U $124-48-1$ Dibromoethane0.5U $74-97-3$ 1.2-Dibromoethane0.3U $74-97-3$ 1.2-Dibromoethane0.3U $74-97-3$ 1.2-Dibromoethane0.4U $106-44-7$ 1.4-Diblorobenzene0.3U $74-97-3$ 1.2-Dibrloropene0.4U $107-04-2$ 1.2-Dichlorobenzene0.3U $104-44-7$ 1.4-Dichlorobenzene0.3U $104-44-7$ 1.4-Dichloroethane0.4U $107-04-2$ 1.2-Dichloroethane0.4U $107-04-2$ 1.2-Dichloroethane0.4U $107-04-2$ 1.2-Dichloroethane0.4U $107-04-2$ 1.2-Dichloroethane0.4U $107-04-2$ 1.2-Dichloroethane0.4U $107-04-2$ 1.2-                                                                                                                                                                                                                                                                                                     |                |                             |               |       | Ū   |
| 75-25-2       Bromoform       1.2       U         74-83-9       Bromomethane       1.1       U         104-51-8       n-Butylbenzene       1.1       U         135-98-8       sec-Butylbenzene       1.3       U         98-06-6       t-Butylbenzene       1.4       U         56-23-5       Carbon tetrachloride       2.1       U         108-90-7       Chlorobenzene       0.4       U         75-00-3       Chlorobenzene       0.4       U         75-02-3       Chlorobenzene       0.4       U         95-49-8       2-Chlorotoluene       0.4       U         95-49-8       2-Chlorotoluene       0.4       U         95-49-8       2-Chlorotoluene       0.4       U         96-12-8       1.2-Dibromo-3-chloropropane       2.6       U         124-48-1       Dibromochloromethane       0.5       U         94-12-8       1.2-Dibromoethane       0.5       U         74-95-3       1.2-Dibromoethane       0.5       U         94-12-8       1.2-Dichlorobenzene       0.3       U         74-95-3       1.2-Dichlorobenzene       0.3       U         94-48-7       1.4-Dich                                                                                            |                |                             | ••            |       | -   |
| 74-83-9Bromomethane1.1U $104-51-8$ $n-Butylbenzene$ 1.1U $135-98-8$ $sec-Butylbenzene$ 1.3U $98-06-6$ $t-Butylbenzene$ 1.4U $56-23-5$ Carbon tetrachloride2.1U $108-90-7$ Chlorobenzene0.4U $75-00-3$ Chlorobtane1.3U $67-66-3$ Chlorobtane0.3U $74-87-3$ Chlorobtane0.3U $74-87-3$ Chlorobtane0.4U $106-43-4$ 4-Chlorotoluene0.4U $96-49-8$ 2-Chlorotoluene0.4U $96-49-8$ 1.2-Dibromo-3-chloropropane2.6U $96-12-8$ 1.2-Dibromo-3-chloropropane2.6U $74-95-3$ 1.2-Dibromoethane0.5U $74-95-3$ 1.2-Dibromoethane0.4U $95-50-1$ 1.2-Dichlorobenzene0.3U $75-71-8$ Dichlorobtanzene0.3U $75-71-8$ Dichlorodifluoromethane0.4U $107-04-2$ 1.2-Dichloroethane0.4U $156-50-2$ cis-1,2-Dichloroethene1.2U $156-50-2$ 1.2-Dichloroethane0.4U $107-04-2$ 1.2-Dichloroethane0.4U $156-50-2$ 1.2-Dichloroethene1.2U $156-50-2$ 1.2-Dichloropropane0.4U $106-101-5$ cis-1,2-Dichloroethene1.2U $105-50-2$ 1.2-Dichloropropane0.4                                                                                                                                                                                                                                                                   |                |                             |               | • • • | -   |
| 104-51-8       n-Butylbenzene       1.1       U         135-98-8       sec-Butylbenzene       1.3       U         98-04-4       t-Butylbenzene       1.4       U         56-23-5       Carbon tetrachloride       2.1       U         108-90-7       Chlorobenzene       0.4       U         75-00-3       Chloroethane       1.0       U         67-64-3       Chloroethane       0.3       U         74-87-3       Chloroethane       0.4       U         106-43-4       4-Chlorotoluene       0.4       U         95-47-8       2-Chlorotoluene       0.4       U         106-43-4       4-Chlorotoluene       0.4       U         96-12-8       1, 2-Dibromo-3-chloropropane       2.6       U         124-48-1       Dibromochloromethane       0.5       U         74-95-3       Dibromomethane       0.4       U         95-50-1       1, 2-Dichlorobenzene       0.3       U         95-1-1       1, 3-Dichlorobenzene       0.3       U         104-46-7       1, 4-Dichlorobenzene       0.3       U         105-59-2       1, 2-Dichloroethane       0.6       U         107-06-2                                                                                            |                |                             |               |       | -   |
| 135-98-8       sec-Butylbenzene       1.3          98-06-6       t-Butylbenzene       1.4          108-90-7       Chlorobenzene       0.4          108-90-7       Chlorobenzene       0.3          108-90-7       Chlorobenzene       0.4          104-43-4       4-Chlorobluene       0.4          106-43-4       4-Chlorobluene       0.4          104-48-1       Dibromochloromethane       0.5          124-48-1       Dibromochlorobenzene       0.5          14-95-3       Dibromochlorobenzene       0.3          174-95-3       Dibromochlorobenzene       0.3          105                                                                                                                                                                                                                                                     |                |                             |               |       | -   |
| 98-06-6       t-Butylbenzene       1.4       U         56-23-5       Carbon tetrachloride       2.1       U         108-90-7       Chlorobenzene       0.4       U         75-00-3       Chloroethane       1.0       U         67-66-3       Chloroethane       0.3       U         74-87-3       Chloroethane       0.3       U         74-87-3       Chlorotoluene       0.4       U         106-43-4       4-Chlorotoluene       0.4       U         106-43-4       4-Chlorotoluene       0.4       U         106-43-4       4-Chlorotoluene       0.4       U         104-48-1       Dibromo-3-chloropropane       2.6       U         124-48-1       Dibromochloromethane       0.5       U         74-95-3       1.2-Dithorobenzene       0.5       U         74-95-3       Dibromomethane       0.4       U         75-71-8       Dichlorobenzene       0.3       U         75-34-3       1.1-Dichloroethane       0.4       U         107-06-2       1.2-Dichloroethane       0.4       U         156-59-2       cis-1.2-Dichloroethene       1.2       U         156-59-2       ci                                                                                            |                |                             |               |       |     |
| 56-23-5       Carbon tetrachloride       2.1       U         108-90-7       Chlorobenzene       0.4       U         75-00-3       Chlorothane       1.0       U         67-66-3       Chloroform       0.3       U         74-87-3       Chloroform       0.3       U         95-49-8       2-Chlorotoluene       0.4       U         106-43-4       4-Chlorotoluene       0.4       U         96-12-8       1.2-Dibromo-3-chloropropane       2.6       U         74-95-3       1.2-Dibromo-3-chloropropane       2.6       U         74-95-3       Dibromochloromethane       0.5       U         74-95-3       Dibromochlorobenzene       0.3       U         74-95-3       1.2-Dichlorobenzene       0.3       U         75-71-8       Dichlorodifluoromethane       0.4       U         105-60-5       trans-1, 2-Dichloroethene       1.2       U                                                                             |                |                             |               |       |     |
| 108-90-7       Chlorobenzene       0.4       U         75-00-3       Chloroethane       1.0       U         67-66-3       Chloroform       0.3       U         74-87-3       Chloromethane       1.3       U         95-49-8       2-Chlorotoluene       0.4       U         106-43-4       4-Chlorotoluene       0.4       U         96-12-8       1,2-Dibromo-3-chloropropane       2.6       U         124-48-1       Dibromochloromethane       0.5       U         74-95-3       1,2-Dibromoethane       0.3       U         74-95-3       Dibromochloromethane       0.4       U         74-95-3       Dibromoethane       0.3       U         74-95-3       Dibromoethane       0.3       U         74-95-3       Dibromoethane       0.3       U         75-71-8       Dichlorobenzene       0.3       U         106-46-7       1,4-Dichlorobenzene       0.4       U         107-06-2       1,2-Dichloroethane       0.4       U         107-06-2       1,2-Dichloroethane       0.4       U         156-59-2       cis-1,2-Dichloropropane       0.4       U         156-60-5 <t< td=""><td></td><td></td><td></td><td></td><td>-</td></t<>                                   |                |                             |               |       | -   |
| 75-00-3       Chloroethane       1.0       U         67-66-3       Chloroform       0.3       U         74-87-3       Chloromethane       1.3       U         95-49-8       2-Chlorotoluene       0.4       U         106-43-4       4-Chlorotoluene       0.4       U         96-12-8       1,2-Dibromo-3-chloropropane       2.6       U         124-48-1       Dibromochloromethane       0.5       U         74-95-3       1,2-Dibromoethane       0.3       U         75-50-1       1,2-Dichlorobenzene       0.3       U         95-50-1       1,2-Dichlorobenzene       0.3       U         95-10       1,2-Dichlorobenzene       0.3       U         95-50-1       1,3-Dichlorobenzene       0.3       U         95-71-8       Dichlorodifluoromethane       0.3       U         106-46-7       1,4-Dichloroethane       0.4       U         107-06-2       1,2-Dichloroethane       0.4       U         107-06-2       1,2-Dichloroethane       0.4       U         156-59-2       cis-1,2-Dichloroethene       1.2       U         156-60-5       trans-1,2-Dichloropropane       0.4       U                                                                                 |                |                             |               |       | -   |
| 67-66-3       Chloroform       0.3       U         74-87-3       Chloromethane       1.3       U         95-49-8       2-Chlorotoluene       0.4       U         106-43-4       4-Chlorotoluene       0.6       U         96-12-8       1,2-Dibromo-3-chloropropane       2.6       U         124-48-1       Dibromochloromethane       0.5       U         74-95-3       1,2-Dibromoethane       0.6       U         74-95-3       Dibromomethane       0.3       U         74-95-3       Dibrohotobenzene       0.3       U         74-95-3       Ubichlorobenzene       0.3       U         75-71-8       Dichlorodifluoromethane       0.4       U         107-06-2       1,2-Dichloroethane       0.4       U         75-35-4       1,1-Dichl                                                                                            |                |                             |               |       | -   |
| 74-87-3       Chloromethane       1.3       U         95-49-8       2-Chlorotoluene       0.4       U         106-43-4       4-Chlorotoluene       0.4       U         96-12-8       1,2-Dibromo-3-chloropropane       2.6       U         124-48-1       Dibromochloromethane       0.5       U         74-95-3       1,2-Dibromoethane       0.6       U         74-95-3       Dibromochloromethane       0.5       U         74-95-3       Dibromochloromethane       0.5       U         74-95-3       Dibromochloromethane       0.6       U         74-95-3       Dibromochloromethane       0.5       U         74-95-3       Dibromomethane       0.6       U         74-95-3       Dibromomethane       0.6       U         74-95-3       Dibromomethane       0.3       U         95-50-1       1,2-Dichlorobenzene       0.3       U         95-10       1,4-Dichlorobenzene       0.3       U         106-46-7       1,4-Dichlorobenzene       0.3       U         107-04-2       1,2-Dichloroethane       0.4       U         107-05-2       cis-1,2-Dichloroethene       1.2       U                                                                                      |                |                             |               |       | _   |
| 95-49-8       2-Chlorotoluene       0.4       U         106-43-4       4-Chlorotoluene       0.6       U         96-12-8       1,2-Dibromo-3-chloropropane       2.6       U         124-48-1       Dibromochloromethane       0.5       U         74-95-3       1,2-Dibromoethane       0.6       U         74-95-3       Dibromomethane       2.4       U         95-50-1       1,2-Dichlorobenzene       0.3       U         9541-73-1       1,3-Dichlorobenzene       0.3       U         95-71-8       Dichlorobenzene       0.3       U         106-46-7       1,4-Dichlorobenzene       0.3       U         75-71-8       Dichlorodifluoromethane       0.4       U         107-06-2       1,2-Dichloroethane       0.4       U         107-06-2       1,2-Dichloroethane       0.4       U         156-59-2       cis-1,2-Dichloroethene       1.2       U         156-59-2       cis-1,2-Dichloroptopane       0.4       U         142-28-9       1,3-Dichloropropane       0.4       U         142-28-9       1,3-Dichloropropane       0.4       U         142-28-9       1,3-Dichloropropane       0.4       U                                                              |                |                             |               |       | -   |
| 106-43-4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                             |               |       | -   |
| 96-12-8       1, 2-Dibromo-3-chloropropane       2.6       U         124-48-1       Dibromochloromethane       0.5       U         74-95-3       1, 2-Dibromoethane       0.6       U         74-95-3       Dibromomethane       2.4       U         95-50-1       1, 2-Dichlorobenzene       0.3       U         941-73-1       1, 3-Dichlorobenzene       0.3       U         106-46-7       1, 4-Dichlorobenzene       0.3       U         75-71-8       Dichlorodifluoromethane       0.4       U         75-34-3       1, 1-Dichloroethane       0.4       U         107-06-2       1, 2-Dichloroethane       0.4       U         107-06-2       1, 2-Dichloroethane       0.4       U         107-06-2       1, 2-Dichloroethane       0.4       U         156-59-2       cis-1, 2-Dichloroethene       1.2       U         156-60-5       trans-1, 2-Dichloroethene       0.4       U         142-28-9       1, 3-Dichloropropane       0.4       U         142-28-9       1, 3-Dichloropropane       0.4       U         142-28-9       1, 3-Dichloropropane       0.4       U         10061-01-5       cis-1, 3-Dichloropropene                                                |                |                             |               |       |     |
| 124-48-1       Dibromochloromethane       0.5       U         74-95-3       1,2-Dibromoethane       0.4       U         74-95-3       Dibromomethane       2.4       U         95-50-1       1,2-Dichlorobenzene       0.3       U         541-73-1       1,3-Dichlorobenzene       0.3       U         106-46-7       1,4-Dichlorobenzene       0.3       U         75-71-8       Dichlorodifluoromethane       0.4       U         107-06-2       1,2-Dichloroethane       0.4       U         107-06-2       1,2-Dichloroethane       0.4       U         107-06-2       1,2-Dichloroethane       0.4       U         107-06-2       1,2-Dichloroethene       1.2       U         156-59-2       cis-1,2-Dichloroethene       1.2       U         156-60-5       trans-1,2-Dichloroethene       0.4       U         78-87-5       1,2-Dichloropropane       0.4       U         142-28-9       1,3-Dichloropropane       0.4       U         142-28-9       1,3-Dichloropropane       0.4       U         10041-01-5       cis-1,3-Dichloropropane       0.4       U         10061-02-6       trans-1,3-Dichloropropene       1.0 <td></td> <td></td> <td></td> <td></td> <td>-</td> |                |                             |               |       | -   |
| 74-95-3       1, 2-Dibromoethane       0.6       U         74-95-3       Dibromomethane       2.4       U         95-50-1       1, 2-Dichlorobenzene       0.3       U         541-73-1       1, 3-Dichlorobenzene       0.3       U         106-46-7       1, 4-Dichlorobenzene       0.3       U         75-71-8       Dichlorodifluoromethane       0.4       U         107-06-2       1, 2-Dichloroethane       0.4       U         107-06-2       1, 2-Dichloroethene       1.2       U         156-59-2       cis-1, 2-Dichloroethene       1.2       U         156-60-5       trans-1, 2-Dichloroethene       0.4       U         178-87-5       1, 3-Dichloropropane       0.4       U         142-28-9       1, 3-Dichloropropane       0.4       U         142-28-9       1, 1-Dichloropropane       0.4       U         10041-01-5       cis-1, 3-Dichloropropane       0.4       U         10061-02-6       trans-1, 3-Dichloropropene                                               |                |                             |               |       | -   |
| 74-95-3       Dibromomethane       2.4       U         95-50-1       1,2-Dichlorobenzene       0.3       U         541-73-1       1,3-Dichlorobenzene       1.2       U         106-46-7       1,4-Dichlorobenzene       0.3       U         75-71-8       Dichlorodifluoromethane       1.0       U         75-34-3       1,1-Dichloroethane       0.4       U         107-06-2       1,2-Dichloroethane       0.4       U         107-06-2       1,2-Dichloroethane       0.4       U         107-06-2       1,2-Dichloroethene       1.2       U         156-59-2       cis-1,2-Dichloroethene       1.2       U         156-60-5       trans-1,2-Dichloroethene       0.4       U         142-28-9       1,3-Dichloropropane       0.4       U         142-28-9       1,3-Dichloropropane       0.4       U         142-28-9       1,3-Dichloropropane       0.4       U         142-28-9       1,3-Dichloropropane       0.4       U         10641-01-5       cis-1,3-Dichloropropene       1.0       U         10061-02-6       trans-1,3-Dichloropropene       1.0       U         100-41-4       Ethylbenzene       0.6                                                         |                |                             |               |       | -   |
| 95-50-1       1, 2-Dichlorobenzene       0.3       U         541-73-1       1, 3-Dichlorobenzene       1.2       U         106-46-7       1, 4-Dichlorobenzene       0.3       U         75-71-8       Dichlorodifluoromethane       1.0       U         75-34-3       1, 1-Dichloroethane       0.4       U         107-06-2       1, 2-Dichloroethane       0.4       U         107-06-2       1, 1-Dichloroethane       0.4       U         156-59-2       cis-1, 2-Dichloroethene       1.2       U         156-60-5       trans-1, 2-Dichloroethene       0.4       U         142-28-9       1, 3-Dichloropropane       0.4       U         10641-01-5       cis-1, 3-Dichloropropane       0.4       U         10061-02-6       trans-1, 3-Dichloropropene       1.0       U         100-41-4       Ethylbenzene       0.6       U         100-41-4       Ethylbenzene       <                                            |                |                             |               |       |     |
| 541-73-1       1, 3-Dichlorobenzene       1.2       U         106-46-7       1, 4-Dichlorobenzene       0.3       U         75-71-8       Dichlorodifluoromethane       1.0       U         75-34-3       1, 1-Dichloroethane       0.4       U         107-06-2       1, 2-Dichloroethane       0.6       U         75-35-4       1, 1-Dichloroethane       0.6       U         75-35-4       1, 1-Dichloroethane       0.6       U         156-59-2       cis-1, 2-Dichloroethene       1.2       U         156-60-5       trans-1, 2-Dichloroethene       0.4       U         142-28-9       1, 3-Dichloropropane       0.4       U         142-28-9       1, 1-Dichloropropane       0.4       U         1061-01-5       cis-1, 3-Dichloropropane       0.4       U         10061-02-6       trans-1, 3-Dichloropropene       1.0       U         100-41-4       Ethylbenzene       0.6       U       U         100-41-4       Ethylbenzen                                                |                |                             |               |       | _   |
| 106-46-7       1,4-Dichlorobenzene       0.3       U         75-71-8       Dichlorodifluoromethane       1.0       U         75-34-3       1,1-Dichloroethane       0.4       U         107-06-2       1,2-Dichloroethane       0.6       U         75-35-4       1,1-Dichloroethane       0.6       U         75-35-4       1,1-Dichloroethene       1.2       U         156-59-2       cis-1,2-Dichloroethene       1.2       U         156-40-5       trans-1,2-Dichloroethene       0.4       U         178-87-5       1,2-Dichloropropane       0.4       U         142-28-9       1,3-Dichloropropane       0.4       U         142-28-9       1,3-Dichloropropane       0.4       U         142-28-9       1,3-Dichloropropane       0.4       U         142-28-9       1,3-Dichloropropane       0.4       U         1061-01-5       cis-1,3-Dichloropropane       0.4       U         10061-01-5       cis-1,3-Dichloropropene       1.0       U         100-41-4       Ethylbenzene       0.6       U         100-41-4       Ethylbenzene       0.5       U         100-41-4       Isopropylbenzene       0.5       U                                                         |                |                             |               | •     | -   |
| 75-71-8       Dichlorodifluoromethane       1.0       U         75-34-3       1,1-Dichloroethane       0.4       U         107-06-2       1,2-Dichloroethane       0.6       U         75-35-4       1,1-Dichloroethane       0.6       U         156-59-2       cis-1,2-Dichloroethene       1.2       U         156-60-5       trans-1,2-Dichloroethene       0.4       U         142-28-9       1,3-Dichloropropane       0.4       U         142-28-9       1,3-Dichloropropane       0.4       U         563-58-6       1,1-Dichloropropane       0.4       U         10061-01-5       cis-1,3-Dichloropropene       1.0       U         10061-02-6       trans-1,3-Dichloropropene       0.6       U         100-41-4       Ethylbenzene       0.6       U         100-41-4       Isopropulbenzene       0.5       U                                                                                                                                                                                                                                                                                                                                                              |                |                             |               |       |     |
| 75-34-3       1, 1-Dichloroethane       0.4       0         107-06-2       1, 2-Dichloroethane       0.6       0         75-35-4       1, 1-Dichloroethane       0.6       0         156-59-2       0.5-1, 2-Dichloroethene       1.2       0         156-60-5       0.4       0.6       0         156-60-5       0.5       0.6       0         142-28-9       1, 2-Dichloroethene       0.4       0         142-28-9       1, 3-Dichloropropane       0.4       0         142-28-9       1, 3-Dichloropropane       0.4       0         142-28-9       1, 3-Dichloropropane       0.4       0         10061-01-5       2, 2-Dichloropropane       0.4       0         10061-02-6       1, 1-Dichloropropene       1.0       0         10061-02-6       1, 1-Dichloropropene       0.6       0         100-41-4       Ethylbenzene       0.6       0       0         100-41-4       Hexachlorobutadiene       1.1       0       0         98-82-8       1.50propulbenzene       0.5       0.5       0                                                                                                                                                                                   |                |                             |               |       |     |
| 107-06-2       1, 2-Dichloroethane       0.6       U         75-35-4       1, 1-Dichloroethene       1.2       U         156-59-2       cis-1, 2-Dichloroethene       1.2       U         156-60-5       trans-1, 2-Dichloroethene       0.6       U         78-87-5       1, 2-Dichloropropane       0.4       U         142-28-9       1, 3-Dichloropropane       0.4       U         594-20-7       2, 2-Dichloropropane       1.0       U         563-58-6       1, 1-Dichloropropane       1.0       U         10061-01-5       cis-1, 3-Dichloropropene       1.0       U         10061-02-6       trans-1, 3-Dichloropropene       0.6       U         100-41-4       Ethylbenzene       0.6       U         87-68-3       Hexachlorobutadiene       1.1       U         98-82-8       Isopropulbenzene       0.5       U                                                                                                                                                                                                                                                                                                                                                        |                |                             |               |       | -   |
| 75-35-4       1,1-Dichloroethene       1.2       U         156-59-2       cis-1,2-Dichloroethene       1.2       U         156-60-5       trans-1,2-Dichloroethene       0.6       U         78-87-5       1,2-Dichloropropane       0.4       U         142-28-9       1,3-Dichloropropane       0.4       U         594-20-7       2,2-Dichloropropane       1.0       U         563-58-6       1,1-Dichloropropane       1.0       U         10061-01-5       cis-1,3-Dichloropropane       0.6       U         10061-02-6       trans-1,3-Dichloropropene       1.0       U         100-41-4       Ethylbenzene       0.6       U         87-68-3       Hexachlorobutadiene       1.1       U         98-82-8       Isopropulbenzene       0.5       U                                                                                                                                                                                                                                                                                                                                                                                                                              |                |                             |               |       | -   |
| 156-59-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                             |               |       | -   |
| 156-60-5       trans-1, 2-Dichloroethene       0.6       U         78-87-5       1, 2-Dichloropropane       0.4       U         142-28-9       1, 3-Dichloropropane       0.4       U         594-20-7       2, 2-Dichloropropane       3.5       U         563-58-6       1, 1-Dichloropropene       1.0       U         10061-01-5       cis-1, 3-Dichloropropene       1.0       U         10061-02-6       trans-1, 3-Dichloropropene       0.6       U         100-41-4       Ethylbenzene       0.6       U         87-68-3       Hexachlorobutadiene       1.1       U         98-82-8       Isopropulbenzene       0.5       U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                |                             |               |       | -   |
| 78-87-5       1,2-Dichloropropane       0.4       U         142-28-9       1,3-Dichloropropane       0.4       U         594-20-7       2,2-Dichloropropane       3.5       U         563-58-6       1,1-Dichloropropene       1.0       U         10061-01-5       cis+1,3-Dichloropropene       1.0       U         10061-02-6       trans-1,3-Dichloropropene       0.6       U         100-41-4       Ethylbenzene       0.6       U         87-68-3       Hexachlorobutadiene       1.1       U         98-82-8       Isopropulbenzene       0.5       U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                |                             |               |       | υ   |
| 142-28-9       0.4       U         594-20-7       2,2-Dichloropropane       3.5       U         563-58-6       1,1-Dichloropropene       1.0       U         10061-01-5       cis-1,3-Dichloropropene       1.0       U         10061-02-6       trans-1,3-Dichloropropene       0.6       U         100-41-4       Ethylbenzene       0.6       U         87-68-3       Hexachlorobutadiene       1.1       U         98-82-8       Isopropulbenzene       0.5       U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 156-60-5       | . trans-1, 2-Dichloroethene | 0.6 .         |       | υ   |
| 594-20-7       2,2-Dichloropropane       3.5       U         563-58-6       1,1-Dichloropropene       1.0       U         10061-01-5       cis-1,3-Dichloropropene       1.0       U         10061-02-6       trans-1,3-Dichloropropene       1.0       U         100-41-4       Ethylbenzene       0.6       U         87-68-3       Hexachlorobutadiene       1.1       U         98-82-8       Isopropulbenzene       0.5       U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 78-87-5        | .1,2-Dichloropropane        | 0.4 .         |       | υ   |
| 563-58-6       1,1-Dichloropropene       1.0       U         10061-01-5       cis-1,3-Dichloropropene       1.0       U         10061-02-6       trans-1,3-Dichloropropene       1.0       U         100-41-4       Ethylbenzene       0.6       U         87-68-3       Hexachlorobutadiene       1.1       U         98-82-8       Isopropulbenzene       0.5       U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 142-28-9       | .1,3-Dichloropropane        | 0.4 .         |       | υ   |
| 10061-01-5      cis-1,3-Dichloropropene       1.0      U         10061-02-6      trans-1,3-Dichloropropene       1.0      U         100-41-4      Ethylbenzene       0.6      U         87-68-3      Hexachlorobutadiene       1.1      U         98-82-8      Isopropulbenzene       0.5      U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 594-20-7       | .2,2-Dichloropropane        | 3.5           |       | υ   |
| 10061-01-5      cis-1,3-Dichloropropene       1.0      U         10061-02-6      trans-1,3-Dichloropropene       1.0      U         100-41-4      Ethylbenzene       0.6      U         87-68-3      Hexachlorobutadiene       1.1      U         98-82-8      Isopropulbenzene       0.5      U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 543-58-6       | . 1, 1-Dichloropropene      | 1.0 .         |       | υ   |
| 10061-02-6        trans-1,3-Dichloropropene       1.0        U         100-41-4        Ethylbenzene       0.6        U         87-68-3        Hexachlorobutadiene       1.1        U         98-82-8        Isopropulbenzene       0.5        U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                |                             |               |       | υ   |
| 100-41-4       Ethylbenzene       0.6       U         87-68-3       Hexachlorobutadiene       1.1       U         98-82-8       Isopropulbenzene       0.5       U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                |                             |               |       | υ   |
| 87-68-3 Hexachlorobutadiene 1.1 U<br>98-82-8 Isopropulbenzene 0.5 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                |                             |               |       | υ   |
| 98-82-8 Isopropulbenzene 0.5 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                |                             |               |       | _   |
| 99-87-6 4-Isopropyltoluene 1.2 U(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                |                             |               |       |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                |                             |               |       |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                | sopropgiooidene             |               |       | - 0 |



2960 Foster Creighton Dr. P.O. Box 40566 Nashville, TN 37204-0566 Phone 1-615-726-0177

Matrix: Water pH: Units: ug/l Sample Identification

EB-2

Lab Sample ID: 98-A127176 Date Sampled:: 10/15/98 Date Received: 10/16/98

### FORM I

| CAS NUMBER           | ANALYTE                                                                                | CONCENTRATION | FLAG        |
|----------------------|----------------------------------------------------------------------------------------|---------------|-------------|
| 91-20-3              | .Methylene chloride<br>Naphthalene                                                     | 0.4           | υ<br>υ      |
| 100-42-5<br>630-20-6 | .n-Propylbenzene<br>.Styrene<br>.1,1,1,2-Tetrachlorgethan                              | 0.4<br>e. 0.5 | υ<br>υ      |
| 127-18-4             | . 1, 1, 2, 2-Tetrachloroethan<br>. Tetrachloroethene<br>. Toluene                      | 1.4           | υ<br>υ<br>υ |
| 87-61-6              | . 1, 2, 3-Trichlorobenzene<br>. 1, 2, 4-Trichlorobenzene                               | 0.3<br>0.4    | U<br>U<br>U |
| 79-00-5<br>79-01-6   | . 1, 1, 1-Trichloroethane<br>. 1, 1, 2-Trichloroethane<br>. Trichloroethene            | 1.0<br>1.0    | U<br>U      |
| 95-63-6<br>108-67-8  | . 1, 2, 3-Trichloropropane<br>. 1, 2, 4-Trimethylbenzene<br>. 1, 3, 5-Trimethylbenzene | 1.3<br>0.5    | υ<br>υ      |
| 75-01-4<br>75-27-4   | .Vinyl chloride<br>.Bromodichloromethane<br>.o-Xylene                                  | 1.1<br>0.8    | U<br>U<br>U |
| 108-38-3             | .m,p-Xylene                                                                            | 0.5           | U           |



2960 Foster Creighton Dr. P.O. Box 40566 Nashville, TN 37204-0566 Phone 1-615-726-0177

Matrix: Water pH: Units: ug/l Dilution Factor: 1. Analysis Method: SW8260B Delivery Group: 117229 Instrument: HP-8 Sample Identification

TB-1

Lab Sample ID: 98-A127177 Date Sampled:: Date Received: 10/16/98 Analysis Date: 10/20/98 Analysis Time: 23:47 Sample QC Group: 4751

FORM I

| 144-10-5 $1-Chlorohexane$ $2.5$ $U$ $71-43-2$ Benzene $0.4$ $U$ $10B-86-1$ Bromobenzene $0.4$ $U$ $74-97-5$ Bromochloromethane $0.4$ $U$ $75-25-2$ Bromoform $1.2$ $U$ $74-97-5$ Bromomethane $1.1$ $U$ $104-51-8$ $n-Butylbenzene$ $1.1$ $U$ $104-51-8$ $n-Butylbenzene$ $1.3$ $U$ $97-8-8$ sec-Butylbenzene $1.3$ $U$ $56-23-5$ Carbon tetrachloride $2.1$ $U$ $56-23-5$ Carbon tetrachloride $2.1$ $U$ $56-23-5$ Chlorobenzene $0.4$ $U$ $74-87-3$ Chloroform $0.3$ $U$ $74-87-3$ Chloroform $0.3$ $U$ $74-87-3$ Chloroform $0.3$ $U$ $95-49-8$ $2-Chlorotoluene0.4U96-48-3Chlorobenzene0.4U106-43-44-Chlorotoluene0.6U96-49-3Dibromochloromethane0.6U106-43-44-Chlorotoluene0.6U106-43-41.2-Dibrlorobenzene0.3U104-45-31.2-Dibrlorobenzene0.3U104-45-31.2-Dibrlorobenzene0.6U104-45-31.2-Dibrlorobenzene0.6U106-43-44-Chlorobenzene0.6U106-46-71.2-Dichlorobenzene0.3U105$                                                                                                                                                                                                                                                                                                                | CAS NUMBER | ANALYTE                | CONCENTRATION | FLAG |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|------------------------|---------------|------|
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            |                        |               | U    |
| 74-97-5       Bromochloromethane       0.4       0         74-83-9       Bromoform       1.2       0         104-51-8       n-Butylbenzene       1.1       0         135-98-8       sec-Butylbenzene       1.3       0         98-06-6       t-Butylbenzene       1.3       0         98-06-6       t-Butylbenzene       1.4       0         56-23-5       Carbon tetrachloride       2.1       0         108-90-7       Chlorobenzene       0.4       0         75-00-3       Chlorobethane       1.0       0         07-66-3       Chlorobethane       1.3       0         95-47-8       2-Chlorotoluene       0.4       0         96-12-8       1.2-Dibromo-3-chloropropane       2.6       0         124-48-1       Dibromochloromethane       0.6       0         74-95-3       Dibromochlorobenzene       0.3       0         74-95-3                                                                                               | 71-43-2    | .Benzene               | 0.4           | U    |
| 75-25-2Bromoform1.2U $74-83-9$ Bromomethane1.1U $104-51-8$ $n-Butylbenzene$ 1.1U $135-78-8$ sec-Butylbenzene1.3U $98-06-6$ $t-Butylbenzene$ 1.4U $56-23-5$ Carbon tetrachloride2.1U $108-90-7$ Chlorobenzene0.4U $57-68-3$ Chloroftane1.0U $75-00-3$ Chloroftane0.3U $75-47-8$ 2-Chlorotoluene0.4U $95-47-8$ 2-Chlorotoluene0.4U $106-43-4$ 4-Chlorotoluene0.4U $106-43-4$ 4-Chlorotoluene0.5U $74-95-3$ 1.2-Dibromo-3-chloropropane2.6U $124-48-1$ Dibromomethane0.5U $74-95-3$ 1.2-Dichlorobenzene0.3U $74-95-3$ 1.2-Dichlorobenzene0.4U $74-95-3$ 1.2-Dichlorobenzene0.4U $74-95-3$ 1.2-Dichlorobenzene0.4U $74-95-3$ 1.2-Dichlorobenzene0.3U $106-46-7$ 1.4-Dichlorobenzene1.2U $10$                                                                                                                                                                                                                                                                                          | 108-86-1   | .Bromobenzene          | 0.3           | U    |
| 74-83-9       Bromomethane       1.1       U         104-51-8       n-Butylbenzene       1.1       U         135-98-8       sec-Butylbenzene       1.3       U         98-06-6       t-Butylbenzene       1.4       U         56-23-5       Carbon tetrachloride       2.1       U         108-90-7       Chlorobenzene       0.4       U         75-00-3       Chloroform       0.3       U         74-87-3       Chloroform       0.3       U         74-87-3       Chloroform       0.3       U         95-49-8       2-Chlorotoluene       0.4       U         106-43-4       4-Chlorotoluene       0.4       U         96-12-8       1, 2-Dibromo-3-chloropropane       2.6       U         124-48-1       Dibromochloromethane       0.5       U         124-48-1       Dibromochloromethane       0.6       U         74-95-3       1, 2-Dichlorobenzene       0.3       U         74-95-3       1, 2-Dichlorobenzene       0.3       U         74-95-3       1, 1-Dichlorobenzene       0.3       U         74-95-3       1, 1-Dichlorobenzene       0.3       U         75-71-8       <                                                                                              | 74-97-5    | .Bromochloromethane    | 0.4           | υ    |
| 104-51-8       n-Butylbenzene       1.1       U         135-78-8       sec-Butylbenzene       1.3       U         98-06-6       t-Butylbenzene       1.4       U         056-23-5       Carbon tetrachloride       2.1       U         108-90-7       Chlorobenzene       0.4       U         75-00-3       Chlorothane       1.0       U         67-66-3       Chlorothane       0.3       U         74-87-3       Chlorotoluene       0.4       U         106-43-4       4-Chlorotoluene       0.4       U         106-43-4       4-Chlorotoluene       0.4       U         106-43-4       4-Chlorotoluene       0.4       U         106-43-3       1.2-Dibromo-3-chloropropane       2.6       U         124-48-1       Dibromochloromethane       0.5       U         74-95-3       1.2-Dibromoethane       0.6       U         74-95-3       1.2-Dichlorobenzene       0.3       U         74-95-3       1.2-Dichlorobenzene       0.3       U         74-95-3       1.2-Dichlorobenzene       0.4       U         106-46-7       1.4-Dichlorobenzene       0.2       U         106-46-7                                                                                                 | 75-25-2    | . Bromoform            | 1.2           | U    |
| 135-78-8       sec-Butylbenzene       1.3       U         98-04-6       t-Butylbenzene       1.4       U         54-23-5       Carbon tetrachloride       2.1       U         108-70-7       Chlorobenzene       0.4       U         75-00-3       Chlorobenzene       0.4       U         75-00-3       Chlorobenzene       0.3       U         74-87-3       Chlorobenzene       0.4       U         95-49-8       2-Chlorotoluene       0.4       U         106-43-4       4-Chlorotoluene       0.4       U         95-49-8       1.2-Dibromo-3-chloropropane       2.6       U         94-12-8       1.2-Dibromoedhane       0.5       U         94-12-8       1.2-Dibromoedhane       0.5       U         74-95-3       Dibromoethane       0.5       U         74-95-3       Dibromoethane       0.3       U         74-95-3       Dibronodifluoromethane       0.3       U         74-95-3       Dibrlorobenzene       0.3       U         74-95-3       Dibrlorobenzene       0.3       U         74-95-3       Dibrlorobenzene       0.3       U         74-95-3       Dichloroben                                                                                                  | 74-83-9    | .Bromomethane          | 1.1           | U    |
| 135-78-8       sec-Butylbenzene       1.3       U         98-04-6       t-Butylbenzene       1.4       U         54-23-5       Carbon tetrachloride       2.1       U         108-70-7       Chlorobenzene       0.4       U         75-00-3       Chlorobenzene       0.4       U         75-00-3       Chlorobenzene       0.3       U         74-87-3       Chlorobenzene       0.4       U         95-49-8       2-Chlorotoluene       0.4       U         106-43-4       4-Chlorotoluene       0.4       U         95-49-8       1.2-Dibromo-3-chloropropane       2.6       U         94-12-8       1.2-Dibromoedhane       0.5       U         94-12-8       1.2-Dibromoedhane       0.5       U         74-95-3       Dibromoethane       0.5       U         74-95-3       Dibromoethane       0.3       U         74-95-3       Dibronodifluoromethane       0.3       U         74-95-3       Dibrlorobenzene       0.3       U         74-95-3       Dibrlorobenzene       0.3       U         74-95-3       Dibrlorobenzene       0.3       U         74-95-3       Dichloroben                                                                                                  | 104-51-8   | .n-Butylbenzene        | 1.1           | U    |
| 98-06-6       t-Butylbenzene       1.4       U         55-23-5       Carbon tetrachloride       2.1       U         108-90-7       Chlorobenzene       0.4       U         75-00-3       Chlorobethane       1.0       U         67-46-3       Chloroform       0.3       U         74-87-3       Chloroform       0.3       U         74-87-3       Chlorotoluene       0.4       U         106-43-4       4-Chlorotoluene       0.4       U         106-43-4       4-Chlorotoluene       0.4       U         106-43-4       4-Chlorotoluene       0.6       U         74-95-3       1.2-Dibromo-3-chloropropane       2.6       U         124-48-1       Dibromochloromethane       0.5       U         74-95-3       Dibromochloromethane       0.6       U         74-95-3       Dibromochlorobenzene       0.3       U         541-73-1       1.3-Dichlorobenzene       0.3       U         541-73-1       1.3-Dichlorobenzene       0.3       U         75-71-8       Dichlorodifluoromethane       0.4       U         107-06-2       1.2-Dichloroethane       0.4       U         156-59-2 <td></td> <td></td> <td></td> <td>U</td>                                                   |            |                        |               | U    |
| 5&-23-5       Carbon tetrachloride       2.1       U         108-90-7       Chlorobenzene       0.4       U         75-00-3       Chlorobethane       1.0       U         67-66-3       Chloroform       0.3       U         74-87-3       Chlorotoluene       0.4       U         95-49-8       2-Chlorotoluene       0.4       U         106-43-4       4-Chlorotoluene       0.4       U         96-12-8       1,2-Dibromo-3-chloropropane       2.6       U         124-48-1       Dibromochloromethane       0.5       U         74-95-3       1,2-Dibromoethane       0.6       U         74-95-3       1,2-Dichlorobenzene       0.3       U         74-95-3       Dibromomethane       0.6       U         74-95-3       Dibromomethane       0.6       U         74-95-3       Dichlorobenzene       0.3       U         541-73-1       1,3-Dichlorobenzene       0.3       U         541-73-1       1,2-Dichlorobenzene       0.3       U         75-71-8       Dichlorodifluoromethane       1.0       U         75-35-4       1,1-Dichloropthane       0.4       U         107-06-2                                                                                               |            |                        |               | U    |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            |                        |               | υ    |
| 75-00-3Chloroethane1.0U $67-46-3$ Chloroform0.3U $74-87-3$ Chloromethane1.3U $95-49-8$ 2-Chlorotoluene0.4U $106-43-4$ 4-Chlorotoluene0.6U $96-12-8$ 1.2-Dibromo-3-chloropropane2.6U $124-48-1$ Dibromochloromethane0.5U $74-95-3$ 1.2-Dibromoethane0.6U $74-95-3$ 1.2-Dibromoethane0.3U $95-50-1$ 1.2-Dichlorobenzene0.3U $95-50-1$ 1.3-Dichlorobenzene0.3U $95-71-8$ Dichlorodifluoromethane0.4U $106-44-7$ 1.4-Dichlorobenzene0.4U $107-06-2$ 1.2-Dichloroethane0.4U $107-06-2$ 1.2-Dichloroethane0.4U $156-59-2$ cis-1.2-Dichloroethane0.4U $156-59-2$ cis-1.2-Dichloroethene1.2U $156-59-2$ cis-1.2-Dichloroethene0.4U $142-28-9$ 1.3-Dichloropropane0.4U $142-28-9$ 1.3-Dichloropropane0.4U $164-50-5$ trans-1.2-Dichloroethene1.0U $1004-10-5$ cis-1.3-Dichloropropane0.4U $100-41-4$ Ethylbenzene3.5UU $100-41-4$ Ethylbenzene0.6UU $100-41-4$ Ethylbenzene0.6UU $100-41-4$ Ethylbenzene0.6U <t< td=""><td></td><td></td><td></td><td>U</td></t<>                                                                                                                                                                                                                                      |            |                        |               | U    |
| 67-66-3       Chloroform       0.3       U         74-87-3       Chloromethane       1.3       U         95-49-8       2-Chlorotoluene       0.4       U         106-43-4       4-Chlorotoluene       0.4       U         96-12-8       1,2-Dibromo-3-chloropropane       2.6       U         124-48-1       Dibromochloromethane       0.5       U         74-95-3       1,2-Dibromoethane       0.6       U         74-95-3       Dibromomethane       2.4       U         95-50-1       1,2-Dichlorobenzene       0.3       U         106-44-7       1,4-Dichlorobenzene       0.3       U         106-44-7       1,4-Dichlorobenzene       0.3       U         106-44-7       1,4-Dichlorobenzene       0.3       U         106-44-7       1,4-Dichlorobenzene       0.3       U         107-06-2       1,2-Dichloroethane       0.4       U         107-06-2       1,2-Dichloroethane       0.4       U         107-06-2       1,2-Dichloroethene       1.2       U         156-59-2       cis-1,2-Dichloroethene       1.2       U         156-60-5       trans-1,2-Dichloropropane       0.4       U                                                                                   |            |                        |               | U    |
| 74-87-3       Chloromethane       1.3       U         95-47-8       2-Chlorotoluene       0.4       U         106-43-4       4-Chlorotoluene       0.6       U         96-12-8       1.2-Dibromo-3-chloropropane       2.6       U         124-48-1       Dibromochloromethane       0.5       U         124-48-1       Dibromochloromethane       0.5       U         74-95-3       1.2-Dibromoethane       0.6       U         74-95-3       Dibromomethane       2.4       U         95-50-1       1.2-Dichlorobenzene       0.3       U         106-46-7       1.4-Dichlorobenzene       0.3       U         106-46-7       1.4-Dichlorobenzene       0.3       U         106-46-7       1.4-Dichlorobenzene       0.3       U         106-46-7       1.4-Dichlorobenzene       0.3       U         107-06-2       1.2-Dichlorobethane       1.0       U         107-06-2       1.2-Dichloroethane       0.4       U         107-06-2       1.2-Dichloroptopane       0.4       U         156-60-5       trans-1.2-Dichloroptopane       0.4       U         164-28-9       1.3-Dichloropropane       0.4       U                                                                         |            |                        |               | υ    |
| 95-49-8       2-Chlorotoluene       0.4       U         106-43-4       4-Chlorotoluene       0.6       U         96-12-8       1,2-Dibromo-3-chloropropane       2.6       U         124-48-1       Dibromochloromethane       0.5       U         74-95-3       1,2-Dibromoethane       0.6       U         74-95-3       Dibromomethane       2.4       U         95-50-1       1,2-Dichlorobenzene       0.3       U         541-73-1       1,3-Dichlorobenzene       0.3       U         106-46-7       1,4-Dichlorobenzene       0.3       U         75-71-8       Dichlorodifluoromethane       0.4       U         107-06-2       1,2-Dichloroethane       0.4       U         107-06-2       1,2-Dichloroethane       0.4       U         107-06-2       1,2-Dichloroethane       0.4       U         105-59-2       cis-1,2-Dichloroethene       1.2       U         156-50-5       trans-1,2-Dichloroethene       0.4       U         156-50-5       trans-1,2-Dichloroptopane       0.4       U         156-50-2       trans-1,2-Dichloroptopane       0.4       U         156-50-5       trans-1,3-Dichloroptopane       0.4                                                      |            |                        |               | U    |
| 106-43-4       4-Chlorotoluene       0.6       0         96-12-8       1,2-Dibromo-3-chloropropane       2.6       0         124-48-1       Dibromochloromethane       0.5       0         74-95-3       1,2-Dibromoethane       0.6       0         74-95-3       Dibromomethane       0.6       0         74-95-3       Dibromomethane       0.6       0         74-95-3       Dibromomethane       0.3       0         95-50-1       1,2-Dichlorobenzene       0.3       0         95-71-8       Dichlorodifluoromethane       1.0       0         106-46-7       1,4-Dichloroethane       0.4       0         107-06-2       1,2-Dichloroethane       0.4       0         107-06-2       1,2-Dichloroethene       1.2       0         156-59-2       cis-1,2-Dichloroptoethene       0.4       0         156-59-2       cis-1,2-Dichloroptoethene       0.4       0                                                                       |            |                        |               | U    |
| 96-12-8       1, 2-Dibromo-3-chloropropane       2.6        U         124-48-1       Dibromochloromethane       0.5        U         74-95-3       1, 2-Dibromoethane       0.6        U         74-95-3       Dibromomethane       2.4        U         95-50-1       1, 2-Dichlorobenzene       0.3        U         95-50-1       1, 3-Dichlorobenzene       0.3        U         941-73-1       1, 3-Dichlorobenzene       0.3        U         106-46-7       1, 4-Dichlorobenzene       0.3        U         75-71-8       Dichlorodifluoromethane       0.4        U         75-34-3       1, 1-Dichloroethane       0.4        U         107-06-2       1, 2-Dichloroethane       0.4        U         156-59-2       cis-1, 2-Dichloroethene       1.2       U       U         156-59-2       cis-1, 2-Dichloropropane       0.4       U       U         142-28-9       1, 3-Dichloropropane       0.4       U       U         94-20-7       2, 2-Dichloropropane       0.4       U       U         94-20-7                                                                                                                                                                          |            |                        |               | U    |
| 124-48-1       Dibromochloromethane       0.5       U         74-95-3       1,2-Dibromoethane       0.6       U         74-95-3       Dibromomethane       2.4       U         95-50-1       1,2-Dichlorobenzene       0.3       U         541-73-1       1,3-Dichlorobenzene       0.3       U         106-46-7       1,4-Dichlorobenzene       0.3       U         75-71-8       Dichlorodifluoromethane       0.4       U         107-06-2       1,2-Dichloroethane       0.4       U         107-06-2       1,2-Dichloroethane       0.4       U         107-06-2       1,2-Dichloroethane       0.4       U         107-06-2       1,2-Dichloroethene       1.2       U         156-59-2       cis-1,2-Dichloroethene       1.2       U         156-59-2       cis-1,2-Dichloroethene       0.4       U         156-59-2       cis-1,2-Dichloropropane       0.4       U         164-59-5       1,2-Dichloropropane       0.4       U         164-59-5       1,2-Dichloropropane       0.4       U         164-59-5       1,2-Dichloropropane       0.4       U         164-59-5       1.2       U       U                                                                               |            |                        |               | Ū    |
| 74-95-3       1, 2-Dibromoethane       0.6       U         74-95-3       Dibromomethane       2.4       U         95-50-1       1, 2-Dichlorobenzene       0.3       U         541-73-1       1, 3-Dichlorobenzene       1.2       U         106-46-7       1, 4-Dichlorobenzene       0.3       U         75-71-8       Dichlorodifluoromethane       1.0       U         75-34-3       1, 1-Dichloroethane       0.4       U         107-06-2       1, 2-Dichloroethane       0.4       U         107-06-2       1, 2-Dichloroethane       0.4       U         156-59-2       cis-1, 2-Dichloroethene       1.2       U         156-60-5       trans-1, 2-Dichloroethene       0.4       U         156-40-5       trans-1, 2-Dichloroethene       0.4       U         156-59-2       cis-1, 2-Dichloropropane       0.4       U         154-59-3       1, 2-Dichloropropane       0.4       U         154-59-2       cis-1, 3-Dichloropropane       0.4       U         154-20-7       2, 2-Dichloropropane       0.4       U         142-28-9       1, 3-Dichloropropane       0.4       U         10061-01-5       cis-1, 3-Dichloropropene </td <td></td> <td></td> <td></td> <td>U</td> |            |                        |               | U    |
| 74-95-3       Dibromomethane       2.4       U         95-50-1       1,2-Dichlorobenzene       0.3       U         541-73-1       1,3-Dichlorobenzene       1.2       U         106-46-7       1,4-Dichlorobenzene       0.3       U         75-71-8       Dichlorodifluoromethane       1.0       U         75-34-3       1,1-Dichloroethane       0.4       U         107-06-2       1,2-Dichloroethane       0.4       U         107-06-2       1,2-Dichloroethane       0.4       U         156-59-2       cis-1,2-Dichloroethene       1.2       U         156-59-2       cis-1,2-Dichloroethene       0.4       U         156-60-5       trans-1,2-Dichloroethene       0.4       U         156-60-5       trans-1,2-Dichloroethene       0.4       U         156-59-2       cis-1,2-Dichloropropane       0.4       U         154-60-5       trans-1,2-Dichloropropane       0.4       U         154-20-7       2,2-Dichloropropane       0.4       U         142-28-9       1,3-Dichloropropane       1.0       U         10041-01-5       cis-1,3-Dichloropropene       1.0       U         10041-01-5       cis-1,3-Dichloropropene <td></td> <td></td> <td></td> <td>Ū</td>        |            |                        |               | Ū    |
| 95-50-1       1, 2-Dichlorobenzene       0.3       U         541-73-1       1, 3-Dichlorobenzene       1.2       U         106-46-7       1, 4-Dichlorobenzene       0.3       U         75-71-8       Dichlorodifluoromethane       1.0       U         75-34-3       1, 1-Dichloroethane       0.4       U         107-06-2       1, 2-Dichloroethane       0.4       U         156-59-2       1, 1-Dichloroethene       1.2       U         156-59-2       cis-1, 2-Dichloroethene       1.2       U         156-60-5       trans-1, 2-Dichloroethene       0.4       U         142-28-9       1, 3-Dichloropropane       0.4       U         142-28-9       1, 3-Dichloropropane       0.4       U         594-20-7       2, 2-Dichloropropane       0.4       U         563-58-6       1, 1-Dichloropropane       1.0       U         10061-01-5       cis-1, 3-Dichloropropene       1.0       U         10061-02-6       trans-1, 3-Dichloropropene       1.0       U         100-41-4       Ethylbenzene       0.6       U         87-68-3       Hexachlorobutadiene       1.1       U         98-82-8       Isopropylbenzene                                                         |            |                        |               |      |
| 541-73-1       1, 3-Dichlorobenzene       1.2       U         106-46-7       1, 4-Dichlorobenzene       0.3       U         75-71-8       Dichlorodifluoromethane       1.0       U         75-34-3       1, 1-Dichloroethane       0.4       U         107-06-2       1, 2-Dichloroethane       0.4       U         75-35-4       1, 1-Dichloroethane       0.6       U         75-35-4       1, 1-Dichloroethene       1.2       U         156-59-2       cis-1, 2-Dichloroethene       1.2       U         156-60-5       trans-1, 2-Dichloroethene       0.4       U         142-28-9       1, 3-Dichloropropane       0.4       U         543-58-6       1, 1-Dichloropropane       0.4       U         563-58-6       1, 1-Dichloropropane       1.0       U         10061-01-5       cis-1, 3-Dichloropropene       1.0       U         10061-02-6       trans-1, 3-Dichloropropene       1.0       U         10041-02-6       trans-1, 3-Dichloropropene       1.0       U         100-41-4       Ethylbenzene       0.6       U       U         87-68-3       Hexachlorobutadiene       1.1       U       U                                                                          |            |                        |               |      |
| 106-46-7       1,4-Dichlorobenzene       0.3       U         75-71-8       Dichlorodifluoromethane       1.0       U         75-34-3       1,1-Dichloroethane       0.4       U         107-06-2       1,2-Dichloroethane       0.4       U         75-35-4       1,1-Dichloroethane       0.4       U         156-59-2       1,2-Dichloroethene       1.2       U         156-60-5       trans-1,2-Dichloroethene       0.4       U         142-28-9       1,3-Dichloropropane       0.4       U         142-28-9       1,3-Dichloropropane       0.4       U         563-58-6       1,1-Dichloropropane       0.4       U         10061-01-5       cis-1,3-Dichloropropene       1.0       U         10061-02-6       trans-1,3-Dichloropropene       0.6       U         10061-02-6       trans-1,3-Dichloropropene       0.6       U         100-41-4       Ethylbenzene       0.6       U         100-41-4       Hexachlorobutadiene       1.1       U         98-82-8       Isopropylbenzene       0.5       U                                                                                                                                                                          |            |                        |               |      |
| 75-71-8       Dichlorodifluoromethane       1.0       U         75-34-3       1,1-Dichloroethane       0.4       U         107-06-2       1,2-Dichloroethane       0.6       U         75-35-4       1,1-Dichloroethane       0.6       U         156-59-2       cis-1,2-Dichloroethene       1.2       U         156-60-5       trans-1,2-Dichloroethene       0.6       U         156-60-5       trans-1,2-Dichloroethene       0.4       U         142-28-9       1,3-Dichloropropane       0.4       U         142-28-9       1,3-Dichloropropane       0.4       U         1663-58-6       1,1-Dichloropropane       0.4       U         10061-01-5       cis-1,3-Dichloropropane       0.4       U         10061-02-6       trans-1,3-Dichloropropene       1.0       U         100-41-4       Ethylbenzene       0.6       U         100-41-4       Hexachlorobutadiene       1.1       U         98-82-8       Isopropylbenzene       0.5       U                                                                                                                                                                                                                                     |            |                        |               |      |
| 75-34-3       1, 1-Dichloroethane       0.4       0         107-06-2       1, 2-Dichloroethane       0.6       0         75-35-4       1, 1-Dichloroethene       1.2       0         156-59-2       cis-1, 2-Dichloroethene       1.2       0         156-60-5       trans-1, 2-Dichloroethene       0.6       0         78-87-5       1, 2-Dichloroethene       0.4       0         142-28-9       1, 3-Dichloropropane       0.4       0         142-28-9       1, 3-Dichloropropane       0.4       0         594-20-7       2, 2-Dichloropropane       0.4       0         10061-01-5       cis-1, 3-Dichloropropane       1.0       0         10061-02-6       trans-1, 3-Dichloropropene       0.6       0         100-41-4       Ethylbenzene       0.6       0       0         87-68-3       Hexachlorobutadiene       1.1       0       0         98-82-8       Isopropylbenzene       0.5       0       0                                                                                                                                                                                                                                                                           |            |                        |               |      |
| 107-06-2       1, 2-Dichloroethane       0.6       0         75-35-4       1, 1-Dichloroethene       1.2       0         156-59-2       cis-1, 2-Dichloroethene       1.2       0         156-60-5       trans-1, 2-Dichloroethene       0.6       0         78-87-5       1, 2-Dichloropropane       0.4       0         142-28-9       1, 3-Dichloropropane       0.4       0         594-20-7       2, 2-Dichloropropane       0.4       0         563-58-6       1, 1-Dichloropropane       1.0       0         10061-01-5       cis-1, 3-Dichloropropene       1.0       0         10051-02-6       trans-1, 3-Dichloropropene       0.6       0         87-68-3       Hexachlorobutadiene       1.1       0         98-82-8       Isopropylbenzene       0.5       0                                                                                                                                                                                                                                                                                                                                                                                                                    |            |                        |               |      |
| 75-35-4       1, 1-Dichloroethene       1.2       U         156-59-2       cis-1, 2-Dichloroethene       1.2       U         156-60-5       trans-1, 2-Dichloroethene       0.6       U         78-87-5       1, 2-Dichloropropane       0.4       U         142-28-9       1, 3-Dichloropropane       0.4       U         594-20-7       2, 2-Dichloropropane       3.5       U         563-58-6       1, 1-Dichloropropane       1.0       U         10061-01-5       cis-1, 3-Dichloropropane       0.6       U         100-41-4       Ethylbenzene       0.6       U         87-68-3       Hexachlorobutadiene       1.1       U         98-82-8       Isopropylbenzene       0.5       U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            |                        |               |      |
| 156-59-2       cis-1,2-Dichloroethene       1.2       U         156-60-5       trans-1,2-Dichloroethene       0.6       U         78-87-5       1,2-Dichloropropane       0.4       U         142-28-9       1,3-Dichloropropane       0.4       U         594-20-7       2,2-Dichloropropane       3.5       U         563-58-6       1,1-Dichloropropane       1.0       U         10061-01-5       cis-1,3-Dichloropropene       1.0       U         100-41-4       Ethylbenzene       0.6       U         87-68-3       Hexachlorobutadiene       1.1       U         98-82-8       Isopropylbenzene       0.5       U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            |                        |               |      |
| 156-60-5       trans-1, 2-Dichloroethene       0.6       U         78-87-5       1, 2-Dichloropropane       0.4       U         142-28-9       1, 3-Dichloropropane       0.4       U         594-20-7       2, 2-Dichloropropane       3.5       U         563-58-6       1, 1-Dichloropropene       1.0       U         10061-01-5       cis-1, 3-Dichloropropene       1.0       U         10061-02-6       trans-1, 3-Dichloropropene       0.6       U         100-41-4       Ethylbenzene       0.6       U         87-68-3       Hexachlorobutadiene       1.1       U         98-82-8       Isopropylbenzene       0.5       U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |            |                        |               | •••• |
| 78-87-5       1, 2-Dichloropropane       0.4       U         142-28-9       1, 3-Dichloropropane       0.4       U         594-20-7       2, 2-Dichloropropane       3.5       U         563-58-6       1, 1-Dichloropropane       1.0       U         10061-01-5       cis-1, 3-Dichloropropene       1.0       U         10061-02-6       trans-1, 3-Dichloropropene       0.6       U         100-41-4       Ethylbenzene       0.6       U         87-68-3       Hexachlorobutadiene       1.1       U         98-82-8       Isopropylbenzene       0.5       U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            |                        |               |      |
| 142-28-9       1, 3-Dichloropropane       0.4       U         594-20-7       2, 2-Dichloropropane       3.5       U         563-58-6       1, 1-Dichloropropane       1.0       U         10061-01-5       cis-1, 3-Dichloropropene       1.0       U         10061-02-6       trans-1, 3-Dichloropropene       1.0       U         100-41-4       Ethylbenzene       0.6       U         87-68-3       Hexachlorobutadiene       1.1       U         98-82-8       Isopropylbenzene       0.5       U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |            |                        |               |      |
| 594-20-7       2,2-Dichloropropane       3.5       U         563-58-6       1,1-Dichloropropene       1.0       U         10061-01-5       cis-1,3-Dichloropropene       1.0       U         10061-02-6       trans-1,3-Dichloropropene       1.0       U         100-41-4       Ethylbenzene       0.6       U         87-68-3       Hexachlorobutadiene       1.1       U         98-82-8       Isopropylbenzene       0.5       U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            |                        |               |      |
| 563-58-6       1,1-Dichloropropene       1.0       U         10061-01-5       cis-1,3-Dichloropropene       1.0       U         10061-02-6       trans-1,3-Dichloropropene       1.0       U         100-41-4       Ethylbenzene       0.6       U         87-68-3       Hexachlorobutadiene       1.1       U         98-82-8       Isopropylbenzene       0.5       U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            |                        |               |      |
| 10061-01-5       cis-1,3-Dichloropropene       1.0       U         10061-02-6       trans-1,3-Dichloropropene       1.0       U         100-41-4       Ethylbenzene       0.6       U         87-68-3       Hexachlorobutadiene       1.1       U         98-82-8       Isopropylbenzene       0.5       U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            |                        |               |      |
| 10061-02-6       trans-1,3-Dichloropropene       1.0       U         100-41-4       Ethylbenzene       0.6       U         87-68-3       Hexachlorobutadiene       1.1       U         98-82-8       Isopropylbenzene       0.5       U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 563-58-6   | . 1, 1-Dichloropropene | 1.0           |      |
| 100-41-4       Ethylbenzene       0.6       U         87-68-3       Hexachlorobutadiene       1.1       U         98-82-8       Isopropylbenzene       0.5       U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            |                        |               |      |
| 87-68-3 Hexachlorobutadiene 1.1 U<br>98-82-8 Isopropylbenzene 0.5 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            |                        |               |      |
| 98-82-8 Isopropylbenzene 0.5 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                        |               |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |                        |               |      |
| 97-87-6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            |                        |               | U    |
| 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 99-87-6    | .4-Isopropyltoluene    | 1.2           |      |



2960 Foster Creighton Dr. P.O. Box 40566 . Nashville, TN 37204-0566 Phone 1-615-726-0177

Matrix: Water pH: Units: ug/l Sample Identification

TB-1

Lab Sample ID: 98-A127177 Date Sampled:: Date Received: 10/16/98

### FORM I

| CAS NUMBER ANA                                                                                                                                                                                                                                                                                                                                                                                           | ALYTE                                                                                                                                                                                                                                                                                                          | CONCENTRATION                                                                                                                                                                                                                                                                                                                                                    | FLAG        |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| $75-09-2 \qquad Me^{-1}$ $91-20-3 \qquad Nat 103-65-1 \qquad Nat 100-42-5 \qquad Stat 630-20-6 \qquad 1, \\ 79-34-5 \qquad 1, \\ 127-18-4 \qquad Te^{-1} 127-18-4 \qquad Te^{-1} 108-88-3 \qquad To^{-1} 87-61-6 \qquad 1, \\ 120-82-1 \qquad 1, \\ 71-55-6 \qquad 1, \\ 79-00-5 \qquad 1, \\ 79-01-6 \qquad Tr^{-1} 96-18-4 \qquad 1, \\ 95-63-6 \qquad 1, \\ 108-67-8 \qquad 1, \\ 75-01-4 \qquad Vin$ | thylene chloride<br>phthalene<br>Propylbenzene<br>yrene<br>1, 1, 2-Tetrachloroethane<br>trachloroethene<br>luene<br>2, 3-Trichlorobenzene<br>2, 4-Trichlorobenzene<br>1, 1-Trichloroethane<br>1, 2-Trichloroethane<br>2, 3-Trichloropethane<br>2, 3-Trichloropethane<br>3, 5-Trimethylbenzene<br>anyl chloride | 0.3         0.4         0.4         0.4         0.5         0.4         0.4         0.4         0.5         0.4         0.5         0.4         0.5         0.4         0.5         0.4         1.4         0.3         0.4         1.1         0.3         0.4         1.0         1.0         1.0         1.0         1.0         1.3         0.5         1.13 |             |
| 95-47-6                                                                                                                                                                                                                                                                                                                                                                                                  | xylene                                                                                                                                                                                                                                                                                                         | 0. 5<br>0. 5                                                                                                                                                                                                                                                                                                                                                     | U<br>U<br>U |



2960 Foster Creighton Dr. P.O. Box 40566 Nashville, TN 37204-0566 Phone 1-615-726-0177

Matrix: Water % Dry Weight: Units: UG/L Dilution Factor: 1 Analysis Method: SW8260B Delivery Group: 117229 Instrument: HP-8 Sample Identification

BLANK

Lab Sample ID: BLANK Date Sampled: Date Received: 10/16/98 Analysis Date: 10/20/98 Analysis Time: 15:36 Sample QC Group: 4751

### FORM I

| CAS NUMBER | ANALYTE                     | CONC  | ENTRAT | ION        | FLAG |
|------------|-----------------------------|-------|--------|------------|------|
|            | .Benzene                    |       | 0.4    |            |      |
|            | .Bromobenzene               |       | 0. З   |            | U    |
|            | .Bromochloromethane         |       | 0.4    |            | U    |
| 75-25-2    | . Bromoform                 |       | 1.2    |            | U    |
|            | .Bromomethane               |       | 1.1    |            | U    |
| 104-51-8   | .n-Butylbenzene             |       | 1.1    |            | U    |
| 135-98-8   | .sec-Butylbenzene           |       | 1.3    |            | U    |
| 98-06-6    | .t-Butylbenzene             |       | 1.4    |            | U    |
| 56-23-5    | .Carbon tetrachloride       |       | 2.1    |            | U    |
| 108-90-7   | . Chlorobenzene             |       | 0.4    |            | U    |
| 75-00-3    | .Chloroethane               |       | 1. Q   |            | U    |
| 67-66-3    | . Chloroform                |       | 0. З   |            | U    |
| 74-87-3    | .Chloromethane              |       | 1.3    |            | U    |
| 95-49-8    | .2-Chlorotoluene            |       | 0.4    |            | U    |
| 106-43-4   | .4-Chlorotoluene            |       | Q. 6   |            | V    |
| 96-12-8    | .1,2-Dibromo-3-chloroprop   | ane   | 2.6    |            | U    |
| 124-48-1   | .Dibromochloromethane       |       | 0.5    |            | U    |
| 74-95-3    | .1,2-Dibromoethane          |       | 0.6    |            | -    |
| 74-95-3    | . Dibromomethane            |       | 2.4    |            | U    |
| 95-50-1    | .1,2-Dichlorobenzene        |       | О. З   | <i></i>    | U    |
| 541-73-1   | .1,3-Dichlorobenzene        |       | 1.2    |            | U    |
| 106-46-7   | .1,4-Dichlorobenzene        |       | 0. З   | <b>.</b> . | U    |
| 75-71-8    | .Dichlorodifluoromethane    |       | 1.0    |            | U    |
| 75-34-3    | .1,1-Dichloroethane         |       | 0.4    |            | U    |
| 107-06-2   | .1,2-Dichloroethane         |       | 0.6    |            | U    |
| 75-35-4    | .1,1-Dichloroethene         | • • • | 1.2    |            | υ    |
| 156-59-2   | .cis-1,2-Dichloroethene .   |       | 1.2    |            | U    |
| 156-60-5   | .trans-1,2-Dichloroethene   |       | 0.6    |            | U    |
| 78-87-5    | .1,2-Dichloropropane        |       | 0.4    |            | U    |
| 142-28-9   | .1,3-Dichloropropane        |       | 0.4    |            | U    |
|            | .2,2-Dichloropropane        |       | 3.5    |            | U    |
|            | .1,1-Dichloropropene        |       | 1.0    |            | U    |
| 10061-01-5 | .cis-1,3-Dichloropropene    |       | 1.0    |            | U    |
|            | . trans-1, 3-Dichloropropen |       | 1.0    |            | U    |
| 100-41-4   | .Ethylbenzene               |       | 0.6    |            | U    |
| 87-68-3    | .Hexachlorobutadiene        |       | 1.1    |            | U -  |
| 98-82-8    | . Isopropylbenzene          |       | 0.5    |            | U    |
|            | .4-Isopropyltoluene         |       | 1.2    |            | U    |
| 75-09-2    | .Methylene chloride         |       | 0. З   |            | U    |

2960 Foster Creighton Dr. P.O. Box 40566 Nashville, TN 37204-0566 Phone 1-615-726-0177

Matrix: Water % Dry Weight: Units: UG/L Sample Identification

BLANK

Lab Sample ID: BLANK Date Sampled: Date Received: 10/16/98

### FORM I

| CAS NUMBER | ANALYTE                        | CONCENTRAT | ION F   | FLAG |
|------------|--------------------------------|------------|---------|------|
| 91-20-3    | .Naphthalene                   | 0.4        |         | U    |
|            | .n-Propylbenzene               | ~ -        |         | U    |
|            | .Styrene                       |            |         | U    |
|            | . 1, 1, 1, 2-Tetrachloroethans |            |         | U    |
|            | . 1, 1, 2, 2-Tetrachloroethane |            |         | U    |
|            | . Tetrachloroethene            |            |         | U    |
|            | . Toluene                      |            |         | U    |
|            | . 1, 2, 3-Trichlorobenzene     |            |         | υ    |
|            | . 1, 2, 4-Trichlorobenzene     | •••        |         | Ū    |
|            | . 1, 1, 1-Trichloroethane      |            |         | Ū    |
|            | . 1, 1, 2-Trichloroethane      |            |         | ū    |
|            | . Trichloroethene              |            |         | ũ    |
|            |                                | • •        |         | Ū    |
|            | . 1, 2, 3-Trichloropropane     |            |         | ŭ    |
|            | .1,2,4-Trimethylbenzene        |            |         | Ŭ    |
|            | . 1, 3, 5-Trimethylbenzene     |            |         | Ŭ    |
|            | .Vinyl chloride                |            | • • • • | -    |
|            | .Bromodichloromethane          |            |         | U    |
|            | .o-Xylene                      |            | • • • • | U    |
|            | .m,p-Xylene                    |            | • • • • | U    |
| 75-69-4    | . Trichlorofluoromethane       | 0.8        |         | U    |

2A

## WATER VOLATILE SYSTEM MONITORING COMPOUND RECOVERY

Lab Name: Lab Code:

SPECIALIZED ASSAYS SASSAYS

Contract: Case No.: \_\_\_\_\_ SAS No.: \_\_\_\_\_ SDG No.: \_117229W

| [  | EPA        | SMC1 | SMC2 | SMC3 | тот |
|----|------------|------|------|------|-----|
|    | SAMPLE NO. | #    | #    | #    | OUT |
| 01 | VBLK02     | 109  | 97   | 95   | 0   |
| 02 | EB-1       | 114  | 97   | 96   | 0   |
| 03 | EB-2       | 117  | 97   | 97   | 0   |
| 04 | TB-1       | 119  | 98   | 97   | 0   |
| 05 |            | 125  | 100  | 100  | 0   |
| 06 |            | 114  | 98   | 97   | 0   |
| 07 |            | 115  | 98   | 97   | 0   |

|      |   |                       | QC LIMITS |
|------|---|-----------------------|-----------|
| SMC1 | = | 1,2-Dichloroethane-d4 | (70-131)  |
| SMC2 | = | Toluene-d8            | (83-115)  |
| SMC3 | = | Bromofluorobenzene    | (73-119)  |

# Column to be used to flag recovery values

\* Values outside of contract required QC limits

D System Monitoring Compound diluted out

FORM II VOA-1

3/90

### FORM 3A

### VOLATILE MATRIX SPIKE/MATRIX SPIKE DUPLICATE RECOVERY

Lap: Specialized Assays, Inc. Project: WURTSMITH BIOVENTING

Matrix Spike Sample:

SDG: 117229

00 Grous: 4751

| Compound                                                                     | Spike<br>Addes                       | Sample<br>Conc           | Spike<br>Conc                        | % Rec                        | QC<br>Limits                                             |
|------------------------------------------------------------------------------|--------------------------------------|--------------------------|--------------------------------------|------------------------------|----------------------------------------------------------|
|                                                                              |                                      |                          |                                      |                              |                                                          |
| Benzene<br>Chlorobenzene<br>1,1-Dichloroetnene<br>Toluene<br>Trichloroetnene | 50.0<br>50.0<br>50.0<br>50.0<br>50.0 | 0.0<br>0.0<br>0.0<br>0.0 | 50.0<br>46.0<br>48.0<br>54.0<br>47.0 | 100<br>92<br>96<br>108<br>94 | 58 - 135<br>56 - 126<br>58 - 138<br>56 - 135<br>52 - 143 |

| Compound                                                  | Spike<br>Adoed               | r:SD<br>Conc                 | % Rec                    | RPD               | RPD<br>Limit         | Recovery<br>Limits                           |
|-----------------------------------------------------------|------------------------------|------------------------------|--------------------------|-------------------|----------------------|----------------------------------------------|
| Benzene<br>Chlorobenzene<br>1,1-Dichloroethene<br>Toluene | 50.0<br>50.0<br>50.0<br>50.0 | 53.0<br>52.0<br>51.0<br>59.0 | 105<br>104<br>102<br>118 | 6<br>:2<br>6<br>9 | 15<br>19<br>16<br>20 | 56 - 135<br>56 - 126<br>58 - 138<br>56 - 135 |
| Trichloroethene                                           | 50.0                         | 54.0                         | 108                      | 14                | 22                   | 52 - 143                                     |

Concentration Units: ug/1

RPD: 0 out of 5 outside QC limits. Spike Recoveries: 0 out of 10 outside QC limits. .

## FORM BAa

# VOLATILE LABORATORY CONTROL RECOVERY

Lap: Specialized Assays, Inc. Project: WURTSMITH BIOVENTING

SDG: 117229

QC Group: 4751

| Cempouna                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Xnown<br>Value                                                                  | Conc                                                                                                                                                 | % Rec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | QC<br>Limits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Compound<br>Benzene<br>Bromobenzene<br>Bromotorm<br>Bromomethane<br>n-Butyleenzene<br>sec-Butyleenzene<br>t-Butyleenzene<br>Carbon tetrachloride<br>Chlorobenzene<br>Chlorotoluene<br>1.2-Dibromo-S-chloropropane<br>Dibromoethane<br>1.2-Dibromoethane<br>1.2-Dibromoethane<br>1.2-Dichlorobenzene<br>1.3-Dichlorobenzene<br>1.3-Dichlorobenzene<br>1.4-Dichlorobenzene<br>1.4-Dichlorobenzene<br>1.2-Dichlorobenzene<br>1.2-Dichlorobenzene<br>1.3-Dichlorobenzene<br>1.3-Dichlorobenzene<br>1.3-Dichlorobenzene<br>1.3-Dichlorobenzene<br>1.2-Dichlorobenzene<br>1.3-Dichlorobenzene<br>1.3-Dichlorobenzene<br>1.3-Dichlorobenzene<br>1.3-Dichlorobenzene<br>1.3-Dichlorobenzene<br>1.3-Dichlorobenzene<br>1.3-Dichloroprobane<br>1.3-Dichloroprobane<br>1.3-Dichloroprobane<br>1.3-Dichloroprobene<br>trans=1.3-Dichloroprobene<br>trans=1.3-Dichloroprobene<br>Ethylbenzene<br>hexachlorobutadiene<br>Isopropyloenzene<br>4-Isoprobyltoluene | 50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>5 | Conc<br>56<br>61<br>57<br>64<br>53<br>52<br>64<br>53<br>52<br>54<br>64<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55 | <pre>% Rec<br/>112<br/>122<br/>114<br/>124<br/>92<br/>112<br/>106<br/>102<br/>104<br/>104<br/>66<br/>124<br/>84<br/>116<br/>102<br/>104<br/>102<br/>104<br/>102<br/>104<br/>102<br/>104<br/>102<br/>106<br/>102<br/>104<br/>112<br/>100<br/>106<br/>102<br/>104<br/>122<br/>100<br/>106<br/>102<br/>104<br/>102<br/>104<br/>104<br/>84<br/>114<br/>120<br/>106<br/>102<br/>104<br/>104<br/>84<br/>116<br/>112<br/>106<br/>102<br/>104<br/>104<br/>104<br/>104<br/>104<br/>104<br/>104<br/>104<br/>104<br/>104</pre> | $\begin{array}{c} 1 1 1 1 5 \\ \hline 73 - 136 \\ 76 - 138 \\ 65 - 145 \\ 50 - 146 \\ 47 - 145 \\ 72 - 142 \\ 65 - 148 \\ 74 - 132 \\ 65 - 134 \\ 72 - 133 \\ 60 - 152 \\ 75 - 138 \\ 58 - 152 \\ 75 - 138 \\ 58 - 152 \\ 75 - 137 \\ 70 - 130 \\ 60 - 141 \\ 66 - 142 \\ 70 - 139 \\ 72 - 139 \\ 72 - 139 \\ 72 - 139 \\ 72 - 139 \\ 72 - 139 \\ 72 - 139 \\ 72 - 139 \\ 72 - 134 \\ 74 - 128 \\ 52 - 150 \\ 70 - 142 \\ 73 - 144 \\ 68 - 141 \\ 70 - 144 \\ 68 - 141 \\ 70 - 144 \\ 68 - 131 \\ 74 - 140 \\ 75 - 137 \\ 58 - 133 \\ 70 - 140 \\ 69 - 130 \\ 69 - 130 \\ 64 - 133 \\ 71 - 141 \\ 58 - 140 \\ 70 - 147 \\ 68 - 138 \\ \end{array}$ |
| Methylene chlorice                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 50                                                                              | 60                                                                                                                                                   | 150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 64-154                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

# FORM 3Aa

# VOLATILE LABORATORY CONTROL RECOVERY

| Lab: Specialized Assays, I | nc. | Project: | WURTSMITH | BIOVENTING |
|----------------------------|-----|----------|-----------|------------|
| Nachthalene.               | 50  | 61       | 122       | 42-158     |
| n-Propyloenzene            | 50  | 57       | 114       | 52-168     |
| Styrene                    | 50  | 54       | 108       | 68-137     |
| 1,1,1,2-Tetrachloroethane  | 50  | 54       | 108       | 67-135     |
| 1,1,2,2-Tetrachloroethane  | 50  | 63       | 126       | 64-155     |
| Tetrachloroethene          | 50  | 50       | 100       | 69-132     |
| Toluene                    | 50  | 57       | 114       | 75-136     |
| 1,2,3-Trichloropenzene     | 50  | 55       | 110       | 48-152     |
| 1,2,4-Trichlorobenzene     | 50  | 52       | 104       | 55-142     |
| 1,1,1-Tricnloroetname      | 50  | 55       | 110       | 73-136     |
| 1,1,2-Trichloroethane      | 50  | 60       | 120       | 72-138     |
| . Trichloroethene          | 50  | 50       | 100       | 73-136     |
| 1,2,3-Trichloropropane     | 50  | 64<br>   | 128       | 53-147     |
| 1,2,4-Trimetaylbenzene     | 50  | 53       | 105       | 73-138     |
| 1,3,5-Trimetnylbenzene     | 50  | 54       | 108       | 74-137     |
| Vinyl chloride             | 50  | 44       | 88        | 54-154     |
| Bromogichloromethane       | 50  | 62       | 124       | 69-136     |
|                            | 50  | 56       | 112       | 70-145     |
| o-Xylene                   | 50  | 55       | 110       | 63-156     |
| m,p-Xylene                 | 50  | 48       | 96        | 66-142     |
| Trichlorofluoromethane     | 00  | 70       | 10        |            |

Concentration Units: ug/1

Recoveries: 0 out of 59 outside QC limits.



2960 Foster Creighton Dr. P.O. Box 40566 Nashville, TN 37204-0566 Phone 1-615-726-0177

Sample Identification

SB25-23

Matrix: Soil % Dry Weight: 90. Units: ug/kg dry weight Dilution Factor: 125. Analysis Method: SW8260B Delivery Group: 117229 Instrument: HP-2 Lab Sample ID: 98-A127165 Date Sampled: 10/14/98 Date Received: 10/16/98 Analysis Date: 10/19/98 Analysis Time: 11:14 Sample GC Group: 4754

| CAS NUMBER | ANALYTE                     | CONCENTRATION | FLAG   |
|------------|-----------------------------|---------------|--------|
| 144-10-5   | .1-Chlorohexane             | 347.          | υ      |
| 71-43-2    | .Benzene                    | 278.          | U      |
| 108-86-1   | .Bromobenzene               | 278.          | U      |
| 124-48-1   | .Bromochloromethane         | 278.          | U      |
| 75-25-2    | . Bromoform                 | 833.          | U      |
| 74-83-9    | .Bromomethane               | 694.          | U      |
| 104-51-8   | .n-Butylbenzene             | 694.          | U      |
| 135-78-8   | .sec-Butylbenzene           | 972.          | U      |
| 98-06-6    | .t-Butylbenzene             | 972.          | U      |
|            | .Carbon tetrachloride       |               | U      |
| 108-90-7   | .Chlorobenzene              | 278.          | U      |
| 75-00-3    | . Chloroethane              | 694.          | U      |
| 67-66-3    | . Chloroform                | 278.          | U      |
| 74-87-3    | . Chloromethane             | 972.          | U      |
| 95-49-8    | .2-Chlorotoluene            | 278.          | U      |
| 106-43-4   | .4-Chlorotoluene            |               | U      |
| 96-12-8    | . 1, 2-Dibromo-3-chloroprop | ane 139.      | U      |
| 124-48-1   | . Dibromochloromethane      | 417.          | U      |
| 74-95-3    | . 1, 2-Dibromoethane        | 417.          | U      |
|            | .Dibromomethane             |               | U      |
|            | .1,2-Dichlorobenzene        |               | U      |
|            | . 1,3-Dichlorobenzene       |               | ., U   |
|            | . 1,4-Dichlorobenzene       |               | U      |
|            | .Dichlorodifluoromethane    |               | U      |
| 75-34-3    | . 1, 1-Dichloroethane       | 278.          | U      |
| 107-06-2   | . 1, 2-Dichloroethane       | 417.          | U      |
| 75-35-4    | . 1, 1-Dichloroethene       | 833.          | U      |
| 156-59-2   | .cis-1,2-Dichloroethene .   | 833.          | U      |
|            | . trans-1, 2-Dichloroethene |               | U      |
| 78-87-5    | .1,2-Dichloropropane        | 278.          | U      |
| 142-28-9   | . 1, 3-Dichloropropane      | 278.          | U      |
| 594-20-7   | .2,2-Dichloropropane        | 2780          | U      |
| 563-58-6   | . 1, 1-Dichloropropene      | 694.          | U      |
| 10061-01-5 | .cis-1,3-Dichloropropene    | 694.          | U      |
|            | . trans-1, 3-Dichloropropen |               | U      |
|            | .Ethylbenzene               |               |        |
| 87-68-3    | .Hexachlorobutadiene        | 694.          | U      |
|            | . Isopropylbenzene          |               | U      |
|            | .4-Isopropyltoluene         |               | 00012  |
|            |                             |               | 000140 |



2960 Foster Creighton Dr. P.O. Box 40566 Nashville, TN 37204-0566 Phone 1-615-726-0177

Sample Identification

SB25-23

Matrix: Soil % Dry Weight: 90. Units: ug/kg dry weight Lab Sample ID: 98-A127165 Date Sampled: 10/14/98 Date Received: 10/16/98

| CAS NUMBER                                                                                                                                                                                     | ANALYTE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CONCENTRATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | FLAG   |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| 75-09-2<br>91-20-3<br>103-45-1<br>100-42-5<br>430-20-6<br>79-34-5<br>127-18-4<br>108-88-3<br>87-61-6<br>120-82-1<br>71-55-6<br>79-00-5<br>79-01-6<br>96-18-4<br>95-63-6<br>108-67-8<br>75-01-4 | ANALYTE<br>Methylene chloride<br>Naphthalene<br>n-Propylbenzene<br>Styrene<br>1, 1, 1, 2-Tetrachloroethane<br>1, 1, 2, 2-Tetrachloroethane<br>Tetrachloroethene<br>1, 2, 3-Trichlorobenzene<br>1, 2, 4-Trichlorobenzene<br>1, 1, 1-Trichloroethane<br>1, 1, 2-Trichloroethane<br>1, 2, 3-Trichloroethane<br>1, 2, 3-Trichloropethane<br>1, 2, 3-Trichloropethane<br>1, 2, 3-Trichloropethane<br>1, 2, 3-Trichloropethane<br>1, 2, 4-Trimethylbenzene<br>1, 3, 5-Trimethylbenzene<br>Vinyl chloride | 278.<br>1250<br>278.<br>278.<br>278.<br>278.<br>278.<br>278.<br>372.<br>417.<br>278.<br>278.<br>278.<br>278.<br>278.<br>356.<br>3556.<br>3556.<br>3556.<br>3556.<br>3720<br>3720<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>3780<br>37 | FLAG   |
| 6615                                                                                                                                                                                           | . Bromodicniorometnane<br>. o-Xylene<br>. m,p-Xylene<br>. Trichlorofluoromethane                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | υ<br>υ |



2960 Foster Creighton Dr. P.O. Box 40566 Nashville, TN 37204-0566 Phone 1-615-726-0177

Matrix: Soil % Dry Weight: 90. Units: ug/kg dry weight Dilution Factor: 125. Analysis Method: SW8260B Delivery Group: 117229 Instrument: HP-2 Sample Identification

SB5-23

Lab Sample ID: 98-A127166 Date Sampled: 10/14/98 Date Received: 10/16/98 Analysis Date: 10/19/98 Analysis Time: 11:50 Sample QC Group: 4754

#### FORM I

| CAS NUMBER | ANALYTE                                        | CONCENTRATION | FLAG        |
|------------|------------------------------------------------|---------------|-------------|
| 71-43-2    | . 1-Chlorohexane                               | 278.          | U           |
| 108-86-1   | . Bromobenzene                                 | 278.          | U           |
| 124-48-1   | .Bromochloromethane                            |               |             |
|            | . Bromomethane                                 | 694.          | U           |
| 104-51-8   | . n-Butylbenzene                               | 694.          | U           |
| 135-98-8   | .sec-Butylbenzene                              | 556.          | J           |
| 98-06-6    | .t-Butylbenzene                                | 972.          | U           |
| 56-23-5    | .Carbon tetrachloride                          | 1390          | U           |
|            | . Chlorobenzene                                |               | U           |
|            | . Chloroethane                                 |               | U           |
| 67-66-3    | Chloroform                                     | • • • •       | U           |
| 74-8/-3    | . Chloromethane                                | 278.          | U           |
|            | . 4-Chlorotoluene                              |               | U           |
| 96-12-8    | . 1, 2-Dibromo-3-chloroprop                    | ane 137.      | U           |
| 124-48-1   | . Dibromochloromethane                         | 417.          | υ           |
|            | . 1, 2-Dibromoethane                           | 417.          | U           |
| 74-95-3    | .Dibromomethane                                | 1370          | U           |
|            | . 1, 2-Dichlorobenzene                         |               | U           |
|            | .1,3-Dichlorobenzene                           |               | U           |
|            | . 1, 4-Dichlorobenzene                         |               | U           |
| 75-71-8    | . Dichlorodifluoromethane                      | 694.<br>278.  | U           |
| 75-34-3    | . 1, 1-Dichloroethane<br>. 1, 2-Dichloroethane | 417.          | U           |
|            | . 1, 2-Dichloroethene                          |               | U           |
|            | . cis-1,2-Dichloroethene .                     |               | U           |
|            | trans-1, 2-Dichloroethene                      |               | U           |
|            | . 1, 2-Dichloropropane                         |               | U           |
|            | .1,3-Dichloropropane                           |               | U           |
| 574-20-7   | . 2, 2-Dichloropropane                         | 2780          | U           |
| 563-58-6   | . 1, 1-Dichloropropene                         | 694.          | U           |
| 10051-01-5 | cis-1,3-Dichloropropene                        | 694.          | U           |
| 10061-02-6 | . trans-1,3-Dichloroproper                     | ne. 694.      | U           |
| 100-41-4   | . Ethylbenzene                                 | 2360          | U           |
|            | Hexachlorobutadiene                            |               | U           |
|            | Isopropylbenzene<br>4-Isopropyltoluene         | 833.          | U           |
| 77-3/-8    |                                                | uuu.          | · · · · · • |



2960 Foster Creighton Dr. P.O. Box 40566 Nashville, TN 37204-0566 Phone 1-615-726-0177

Sample Identification

SB5-23

Matrix: Soil % Dry Weight: 90. Units: ug/kg dry weight Lab Sample ID: 98-A127166 Date Sampled: 10/14/98 Date Received: 10/16/98

#### FORM I

| CAS NUMBER                                                                                                                                                               | ANALYTE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CONCENTRATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | FLAG                                                        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|
| 75-09-2<br>91-20-3<br>103-65-1<br>100-42-5<br>630-20-6<br>79-34-5<br>127-18-4<br>108-88-3<br>87-61-6<br>120-82-1<br>71-55-6<br>79-00-5<br>79-01-6<br>96-18-4<br>108-67-8 | Methylene chloride<br>Naphthalene<br>n-Propylbenzene<br>1, 1, 1, 2-Tetrachloroethane<br>1, 1, 2, 2-Tetrachloroethane<br>Tetrachloroethene<br>1, 2, 3-Trichlorobenzene<br>1, 2, 4-Trichlorobenzene<br>1, 1, 1-Trichloroethane<br>1, 1, 2-Trichloroethane<br>1, 1, 2-Trichloroethane<br>1, 2, 3-Trichloroethane<br>1, 1, 2-Trichloroethane<br>1, 2, 3-Trichloroethane<br>1, 2, 3-Trichloropethane<br>1, 2, 3-Trichloropethane<br>1, 2, 3-Trichloropethane<br>1, 2, 3-Trichloropethane<br>1, 2, 4-Trimethylbenzene | 278.         972.         278.         278.         278.         278.         278.         278.         278.         278.         278.         278.         278.         278.         278.         278.         278.         278.         278.         278.         278.         278.         278.         278.         278.         278.         278.         278.         278.         278.         278.         278.         278.         278.         278.         278.         278.         278.         278.         278.         278.         278.         278.         278.         278.         278.         278.         278.         278.         278.         278.         2780.      < | · · · · U<br>· · · · U<br>· · · · U<br>· · · · U<br>· · · · |
| 75-01-4<br>75-27-4<br>6615<br>6616                                                                                                                                       | Vinyl chloride<br>Bromodichloromethane<br>o-Xylene<br>m,p-Xylene<br>Trichlorofluoromethane                                                                                                                                                                                                                                                                                                                                                                                                                      | 1250             556.             694.             10800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | U<br>U<br>U<br>U                                            |



2960 Foster Creighton Dr. P.O. Box 40566 Nashville, TN 37204-0566 Phone 1-615-726-0177 Sample Identification

SB5-12

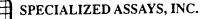
Matrix: Soil % Dry Weight: 95. Units: ug/kg dry weight Dilution Factor: 5. Analysis Method: SW8260B Delivery Group: 117229 Instrument: HP-2 Lab Sample ID: 98-A127167 Date Sampled: 10/14/98 Date Received: 10/16/98 Analysis Date: 10/23/98 Analysis Time: 0:39 Sample QC Group: 4754

#### FORM I

| CAS NUMBER | ANALYTE                     | CONCENTRATION | FLAG             |
|------------|-----------------------------|---------------|------------------|
| 144-10-5   | .1-Chlorohexane             | 13.2          | υ                |
| 71-43-2    | .Benzene                    | 10.5          | U                |
| 108-86-1   | . Bromobenzene              | 10.5          | υ                |
| 124-48-1   | .Bromochloromethane         | 10.5          | υ                |
| 75-25-2    | . Bromoform                 | 31.6          | U                |
| 74-83-9    | . Bromomethane              | 26.3          | U                |
| 104-51-8   | .n-Butylbenzene             |               | υ                |
| 135-98-8   | .sec-Butylbenzene           | 36.8          | U                |
| 98-06-6    | .t-Butylbenzene             | 36. 8         | U                |
|            | . Carbon tetrachloride      |               | U                |
| 108-90-7   | . Chlorobenzene             | 10.5          | U                |
| 75-00-3    | . Chloroethane              |               | υ                |
| 67-66-3    | . Chloroform                | 10.5          | U                |
| 74-87-3    | . Chloromethane             | 36.8          | U                |
| 95-49-8    | .2-Chlorotoluene            | 10.5          | U                |
| 106-43-4   | .4-Chlorotoluene            | 15.8          | U                |
| 96-12-8    | . 1, 2-Dibromo-3-chloroprop | ane 5.3       | U                |
| 124-48-1   | . Dibromochloromethane      | 15.8          | U                |
| 74-95-3    | . 1, 2-Dibromoethane        | 15.8          | U                |
| 74-95-3    | . Dibromomethane            | 52.6          | <sup>.</sup> . U |
| 95-50-1    | . 1, 2-Dichlorobenzene      | 10.5          | U                |
| 541-73-1   | . 1, 3-Dichlorobenzene      | 31.6          | U                |
| 106-46-7   | . 1, 4-Dichlorobenzene      | 10.5          | U                |
| 75-71-8    | . Dichlorodifluoromethane   | 25. 3         | U                |
| 75-34-3    | . 1, 1-Dichloroethane       | 10.5          | U                |
| 107-06-2   | . 1, 2-Dichloroethane       | 15.8          | U                |
| 75-35-4    | .1,1-Dichloroethene         | 31.6          | U                |
| 156-59-2   | .cis-1,2-Dichloroethene     | 31.6          | υ                |
| 156-60-5   | .trans-1,2-Dichloroethene   | 15.8          | U                |
| 78-87-5    | .1,2-Dichloropropane        | 10.5          | U                |
| 142-28-9   | . 1, 3-Dichloropropane      | 10.5          | U                |
| 594-20-7   | .2,2-Dichloropropane        | 105.          | <b>U</b>         |
| 563-58-6   | . 1, 1-Dichloropropene      | 26.3          | U                |
|            | .cis-1,3-Dichloropropene    |               | U                |
|            | . trans-1, 3-Dichloropropen |               | U                |
|            | .Ethylbenzene               |               | U                |
|            | .Hexachlorobutadiene        |               | υ                |
|            | . Isopropulbenzene          |               | U                |
|            | .4-Isopropyltoluene         |               | U                |
|            |                             |               |                  |



2960 Foster Creighton Dr. P.O. Box 40566 Nashville, TN 37204-0566 Phone 1-615-726-0177


Matrix: Soil % Dry Weight: 95. Units: ug/kg dry weight Sample Identification

SB5-12

Lab Sample ID: 98-A127167 Date Sampled: 10/14/98 Date Received: 10/16/98

#### FORM I

| CAS NUMBER                                                                                                                                                              | ANALYTE                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CONCENTRATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | FLAG |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 75-09-2<br>91-20-3<br>103-45-1<br>100-42-5<br>630-20-4<br>79-34-5<br>127-18-4<br>108-88-3<br>87-61-6<br>120-82-1<br>71-55-6<br>79-00-5<br>79-01-5<br>96-18-4<br>95-63-6 | ANALYTE<br>Methylene chloride<br>Naphthalene<br>n-Propylbenzene<br>Styrene<br>1, 1, 1, 2-Tetrachloroethan<br>1, 1, 2, 2-Tetrachloroethan<br>Tetrachloroethene<br>1, 2, 3-Trichlorobenzene .<br>1, 2, 4-Trichlorobenzene .<br>1, 1, 2-Trichloroethane<br>1, 2, 3-Trichloroethane<br>1, 1, 2-Trichloroethane<br>1, 2, 3-Trichloroethane<br>1, 2, 3-Trichloroethane<br>1, 2, 3-Trichloroethane<br>1, 2, 3-Trichloroethane<br>1, 2, 3-Trichloroethane<br>1, 2, 4-Trimethylbenzene | 10.5         10.5         10.5         10.5         10.5         10.5         10.5         10.5         10.5         10.5         10.5         10.5         10.5         24.3         10.5         10.5         10.5         10.5         10.5         10.5         10.5         10.5         10.5         10.5         10.5         10.5         10.5         10.5         10.5         10.5         10.5         10.5         10.5         10.5         10.5         10.5         10.5         10.5         10.5         10.5         10.5         10.5         10.5         10.5         10.5         10.5         10.5         10.5         10.5         10.5         10.5         10.5 <t< td=""><td>FLAG</td></t<> | FLAG |
|                                                                                                                                                                         | . Vinyl chloride                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | υ    |
| 75-27-4                                                                                                                                                                 | .Bromodichloromethane                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 21.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | V    |
|                                                                                                                                                                         | . o-Xylene                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | U    |
| 75-69-4                                                                                                                                                                 | .m,p-Xylene                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | U    |





2960 Foster Creighton Dr. P.O. Box 40566 Nashville, TN 37204-0566 Phone 1-615-726-0177

Sample Identification

SB18A-20

Matrix: Soil % Dry Weight: 92. Units: ug/kg dry weight Dilution Factor: 125. Analysis Method: SW8260B Delivery Group: 117229 Instrument: HP-2 Lab Sample ID: 98-A127168 Date Sampled: 10/14/98 Date Received: 10/16/98 Analysis Date: 10/19/98 Analysis Time: 13:03 Sample QC Group: 4754

#### FORM I

| 144-10-5 $1-Chlorohexane$ $340.$ $U$ $71-43-2$ Benzene $272.$ $U$ $108-86-1$ Bromobenzene $272.$ $U$ $124-48-1$ Bromochloromethane $272.$ $U$ $75-25-2$ Bromomethane $272.$ $U$ $75-25-2$ Bromomethane $679.$ $U$ $104-51-8$ $n-Butylbenzene679.U104-51-8n-Butylbenzene951U95-23-5Carbon tetrachloride1360U56-23-5Carbon tetrachloride1360U56-23-5Carbon tetrachloride1360U75-00-3Chlorothane677U67-64-3Chlorothane751U74-87-3Chlorotoluene272U96-44-31.2-Dibromo-3-chloropropane136U96-44-31.2-Dibromo-3-chloropropane136U96-45-31.2-Dibromo-3-chloropropane136U106-43-44-Chlorotoluene408U96-12-81.2-Dibromo-3-chloropropane136U124-48-1Dibromochloromethane408U124-48-1Dibromochloromethane408U106-46-71.2-Dichlorobenzene272$                                                                                                                                                                                                                                                                                                                                                                                                                                                | CAS NUMBER | ANALYTE                   | CONCENTRATION | FLAG |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|---------------------------|---------------|------|
| 108-86-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            |                           |               | υ    |
| 124-48-1Bromochloromethane272U75-25-2Bromoform815U74-83-9Bromomethane679U104-51-8n-Butylbenzene679U135-98-8sec-Butylbenzene951U98-06-6t-Butylbenzene951U56-23-5Carbon tetrachloride1360U108-90-7Chlorobenzene272U75-00-3Chloroform272U74-87-3Chloroform272U75-49-82-Chlorotoluene951U95-49-82-Chlorotoluene272U106-43-44-Chlorotoluene408U96-1281, 2-Dibromo-3-chloropropane136.U124-48-1Dibromoethane408U124-48-1Jibromomethane1360U95-50-11, 2-Dibromoethane272U541-73-11, 3-Dichlorobenzene272U541-73-11, 3-Dichlorobenzene272U55-50-11, 2-Dichlorobenzene272U75-71-8Dichlorodifluoromethane679U106-46-71, 1-Dichlorobenzene815U156-59-2cis-1, 2-Dichloroethane815U156-59-2cis-1, 2-Dichloroethane272U156-59-2cis-1, 2-Dichloroethene815U156-59-2cis-1, 2-Dichloropene272U164-60-5trans-1, 2-Dichloropethene272U156-59-2cis-1, 3-D                                                                                                                                                                                                                                                                                                                                            | 71-43-2    | Benzene                   |               | υ    |
| 12-70-1       Dromoform       11         175-25-2       Bromomethane       677       U         104-51-8       n-Butylbenzene       679       U         135-98-8       sec-Butylbenzene       951       U         98-06-6       t-Butylbenzene       951       U         98-06-7       Chlorobenzene       272       U         74-87-3       Chlorobenzene       272       U         95-49-8       2-Chlorotoluene       272       U         95-49-8       2-Chlorotoluene       272       U         96-12-8       1, 2-Dibromo-3-chloropropane       136       U         94-12-8       1, 2-Dibromo-3-chloropropane       1360       U         74-95-3       Dibromomethane       408       U         74-95-3       Dibromomethane       272       U         95-50-1       1, 2-Dichlorobenzene       272       U         94-73-1       1, 3-Dichlorobenzene       <                                                                                 | 108-86-1   | Bromobenzene              | 272           | U    |
| 74-83-9       Bromomethane       679       U         104-51-8       n-Butylbenzene       679       U         135-98-8       sec-Butylbenzene       951       U         98-06-6       t-Butylbenzene       951       U         56-23-5       Carbon tetrachloride       1360       U         108-90-7       Chlorobenzene       272       U         75-00-3       Chlorobenzene       272       U         74-87-3       Chlorobenzene       272       U         74-87-3       Chlorobenzene       408       U         95-49-8       2-Chlorotoluene       408       U         96-12-8       1, 2-Dibromo-3-chloropropane       136       U         124-48-1       Dibromochloromethane       408       U         74-95-3       Dibromochloromethane       408       U         74-95-3       Dibromochlorobenzene       272       U         541-73-1       1, 2-Dichlorobenzene       272       U         550-1       1, 2-Dichlorobenzene       272       U         553-4       1, 1-Dichlorobenzene       272       U         75-34-3       1, 1-Dichlorobenzene       272       U         107-06-2 </td <td>124-48-1</td> <td>Bromochloromethane</td> <td> 272</td> <td> U</td> | 124-48-1   | Bromochloromethane        | 272           | U    |
| 104-51-8 $n-Butylbenzene$ $679$ $U$ $135-98-8$ $sec-Butylbenzene$ $951$ $U$ $98-04-6$ $t-Butylbenzene$ $951$ $U$ $98-04-6$ $t-Butylbenzene$ $951$ $U$ $96-04-6$ $t-Butylbenzene$ $951$ $U$ $108-90-7$ $Chlorobenzene$ $272$ $U$ $75-00-3$ $Chloroethane$ $272$ $U$ $07-64-3$ $Chloroethane$ $272$ $U$ $07-487-3$ $Chloromethane$ $951$ $U$ $95-49-8$ $2-Chlorotoluene$ $272$ $U$ $106-43-4$ $4-Chlorotoluene$ $408$ $U$ $95-49-8$ $2-Chlorotoluene$ $408$ $U$ $95-49-8$ $2-Chlorotoluene$ $408$ $U$ $95-49-8$ $2-Chlorotoluene$ $408$ $U$ $95-49-8$ $1, 2-Dibromo-3-chloropropane136U95-49-81, 2-Dibromo-3-chloropropane136U95-49-81, 2-Dibromo-3-chloropropane136U96-12-81, 2-Dichlorobenzene272U124-48-1Dibromoethane408U74-95-31, 2-Dichlorobenzene272U95-50-11, 2-Dichlorobenzene272U106-46-71, 4-Dichlorobenzene272U106-46-71, 2-Dichlorobenzene272U107-04-21, 2-Dichloroethane408U75-35-41, 1-Dichloroethane408U$                                                                                                                                                                                                                                                          | 75-25-2    | Bromoform                 | 815           | U    |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 74-83-9    | Bromomethane              | 679           | U    |
| 98-04-6       t-Butylbenzene       951.       U         54-23-5       Carbon tetrachloride       1360       U         108-90-7       Chlorobenzene       272.       U         75-00-3       Chloroethane       679.       U         67-64-3       Chloroform       272.       U         74-87-3       Chlorotoluene       272.       U         74-87-3       Chlorotoluene       272.       U         106-43-4       4-Chlorotoluene       272.       U         106-43-4       4-Chlorotoluene       408.       U         94-12-8       1, 2-Dibromo-3-chloropropane       1360.       U         124-48-1       Dibromochloromethane       408.       U         74-95-3       Dibromochlorobenzene       272.       U         95-10-1       1, 2-Dichlorobenzene       272.       U         94-173-1       1, 3-Dichlorobenzene       272.       U         94-173-1       1, 3-Dichlorobenzene       272.       U         95-34-3       1, 1-Dichlorobenzene       272.       U         106-44-7       1, 4-Dichlorobenzene       272.       U         107-06-2       1, 2-Dichlorobenzene       272.       U                                                                    | 104-51-8   | Butylbenzene              |               | υ    |
| 54-23-5       Carbon tetrachloride       1360       U         108-90-7       Chlorobenzene       272       U         75-00-3       Chlorobenzene       272       U         67-66-3       Chloroform       272       U         67-66-3       Chloroform       272       U         74-87-3       Chloroform       272       U         95-49-8       2-Chlorotoluene       272       U         106-43-4       4-Chlorotoluene       272       U         106-43-4       4-Chlorotoluene       408       U         94-12-8       1, 2-Dibromo-3-chloropropane       136       U         124-48-1       Dibromochloromethane       408       U         74-95-3       1, 2-Dibromoethane       408       U         74-95-3       1, 2-Dichlorobenzene       272       U         54-173-1       1, 3-Dichlorobenzene       272       U         54-50-1       1, 2-Dichlorobenzene       272       U         75-71-8       Dichlorodifluoromethane       272       U         75-71-8       Dichlorodifluoromethane       408       U         75-35-4       1, 1-Dichloroethene       815       U         156-5                                                                            | 135-98-8   | sec-Butylbenzene          | 951           | υ    |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            |                           |               | υ    |
| 75-00-3Chloroethane $679$ U $67-66-3$ Chloroform $272$ U $74-87-3$ Chloromethane $951$ U $95-49-8$ 2-Chlorotoluene $722$ U $106-43-4$ $4-Chlorotoluene$ $408$ U $96-12-8$ $1, 2-Dibromo-3-chloropropane$ $136$ U $124-48-1$ Dibromochloromethane $408$ U $74-95-3$ $1, 2-Dibromoethane$ $408$ U $74-95-3$ $1, 2-Dichloroberzene$ $272$ U $95-50-1$ $1, 2-Dichloroberzene$ $272$ U $106-46-7$ $1, 4-Dichloroberzene$ $272$ U $107-06-2$ $1, 2-Dichloroberzene$ $272$ U $107-06-2$ $1, 2-Dichloroethane$ $408$ U $107-06-2$ $1, 2-Dichloroethane$ $272$ U $107-06-2$ $1, 2-Dichloroethane$ $272$ U $156-50-5$ trans- $1, 2-Dichloroethene$ $815$ U $156-60-5$ trans- $1, 2-Dichloroethene$ $272$ U $142-28-9$ $1, 3-Dichloropropane$ $272$ U $142-28-9$ $1, 3-Dichloropropane$ $272$ U $142-28-9$ $1, 3-Dichloropropane$ $272$ U $100-41-4$ $1, 1-Dichloropropane$ $272$ U <t< td=""><td>56-23-5</td><td> Carbon tetrachloride</td><td> 1360</td><td>υ</td></t<>                                               | 56-23-5    | Carbon tetrachloride      | 1360          | υ    |
| 67-66-3       Chloroform       272.       U         74-87-3       Chloromethane       951.       U         95-49-8       2-Chlorotoluene       272.       U         106-43-4       4-Chlorotoluene       272.       U         106-43-4       4-Chlorotoluene       272.       U         106-43-4       4-Chlorotoluene       408.       U         96-12-8       1, 2-Dibromo-3-chloropropane       136.       U         124-48-1       Dibromochloromethane       408.       U         74-95-3       1, 2-Dibromoethane       408.       U         74-95-3       Dibromoethane       408.       U         74-95-3       Dibromoethane       408.       U         74-95-3       Dibromoethane       408.       U         74-95-3       Dibromoethane       272.       U         95-50-1       1, 2-Dichlorobenzene       272.       U         106-46-7       1, 4-Dichlorobenzene       272.       U         75-34-3       1, 1-Dichloroethane       679.       U         107-06-2       1, 2-Dichloroethane       215.       U         107-06-5       trans-1, 2-Dichloroethene       815.       U                                                                               | 108-90-7   | Chlorobenzene             | 272           | υ    |
| 74-87-3       Chloromethane       951.       U         95-49-8       2-Chlorotoluene       272.       U         106-43-4       4-Chlorotoluene       408.       U         96-12-8       1, 2-Dibromo-3-Chloropropane       136.       U         124-48-1       Dibromochloromethane       408.       U         74-95-3       1, 2-Dibromoethane       408.       U         74-95-3       Dibromoethane       408.       U         74-95-3       Dibromoethane       272.       U         541-73-1       1, 2-Dichlorobenzene       272.       U         541-73-1       1, 3-Dichlorobenzene       272.       U         106-46-7       1, 4-Dichlorobenzene       272.       U         106-46-7       1, 4-Dichlorobenzene       272.       U         107-06-2       1, 2-Dichloroethane       272.       U         107-06-2       1, 2-Dichloroethane       272.       U         107-06-2       1, 2-Dichloroethane       272.       U         107-06-2       1, 2-Dichloropethene       815.       U         156-60-5       trans-1, 2-Dichloropethene       815.       U         156-60-5       trans-1, 2-Dichloropethene       272.<                                         | 75-00-3    | Chloroethane              | 679           | υ    |
| 95-49-8       2-Chlorotoluene       272       U         106-43-4       4-Chlorotoluene       408       U         96-12-8       1,2-Dibromo-3-chloropropane       136       U         124-48-1       Dibromochloromethane       408       U         74-95-3       1,2-Dibromoethane       408       U         74-95-3       1,2-Dibromoethane       408       U         74-95-3       Dibromomethane       408       U         74-95-3       Dibromomethane       272       U         95-50-1       1,2-Dichlorobenzene       272       U         95-50-1       1,2-Dichlorobenzene       272       U         106-46-7       1,4-Dichlorobenzene       272       U         106-46-7       1,4-Dichlorobenzene       272       U         75-71-8       Dichlorodifluoromethane       679       U         75-34-3       1,1-Dichloroethane       408       U         75-35-4       1,2-Dichloroethane       815       U         156-50-2       cis-1,2-Dichloropethene       815       U         156-50-3       trans-1,2-Dichloropethene       272       U         142-28-9       1,3-Dichloropropane       272       U                                                            | 67-66-3    | Chloroform                | 272           | υ    |
| 106-43-4       4-Chlorotoluene       408.       U         96-12-8       1,2-Dibromo-3-chloropropane       136.       U         124-48-1       Dibromochloromethane       408.       U         74-95-3       1,2-Dibromoethane       408.       U         74-95-3       Dibromomethane       1360       U         95-50-1       J.2-Dichlorobenzene       272.       U         06-46-7       J.4-Dichlorobenzene       272.       U         106-46-7       J.4-Dichlorobethane       272.       U         107-06-2       J.2-Dichloroethane       272.       U         107-06-2       J.2-Dichloroethene       815.       U         156-50-2       cis-1, 2-Dichloroethene       815.       U         156-50-2       cis-1, 2-Dichloropropane       272.       U                                                                  | 74-87-3    | Chloromethane             | 951           | υ    |
| 96-12-8       1, 2-Dibromo-3-chloropropane       136.       U         124-48-1       Dibromochloromethane       408.       U         74-95-3       1, 2-Dibromoethane       408.       U         74-95-3       Dibromomethane       408.       U         95-50-1       1, 2-Dichlorobenzene       272.       U         541-73-1       1, 3-Dichlorobenzene       272.       U         106-46-7       1, 4-Dichlorobenzene       272.       U         75-71-8       Dichlorodifluoromethane       679.       U         75-34-3       1, 1-Dichloroethane       272.       U         107-06-2       1, 2-Dichloroethane       272.       U         107-06-2       1, 2-Dichloroethane       408.       U         75-35-4       1, 1-Dichloroethane       408.       U         156-59-2       cis-1, 2-Dichloroethene       815.       U         156-60-5       trans-1, 2-Dichloropropane       272.       U         142-28-9       1, 3-Dichloropropane       272.       U         142-28-9       1, 3-Dichloropropane       272.       U         53-58-6       1, 1-Dichloropropane       272.       U         0061-01-5       cis-1, 3-Dichlorop                                | 95-49-8    | 2-Chlorotoluene           | 272           | υ    |
| 124-48-1       Dibromochloromethane       408.       U         74-95-3       1, 2-Dibromoethane       408.       U         74-95-3       Dibromomethane       1360       U         95-50-1       1, 2-Dichlorobenzene       272.       U         541-73-1       1, 3-Dichlorobenzene       272.       U         106-46-7       1, 4-Dichlorobenzene       272.       U         75-71-8       Dichlorodifluoromethane       679.       U         75-34-3       1, 1-Dichloroethane       272.       U         107-06-2       1, 2-Dichloroethane       272.       U         107-06-2       1, 2-Dichloroethane       408.       U         75-35-4       1, 1-Dichloroethene       815.       U         156-50-2       cis-1, 2-Dichloroethene       815.       U         156-60-5       trans-1, 2-Dichloroethene       408.       U         78-87-5       1, 2-Dichloropropane       272.       U         142-28-9       1, 3-Dichloropropane       272.       U         563-58-6       1, 1-Dichloropropane       272.       U         10051-01-5       cis-1, 3-Dichloropropene       679.       U         10061-02-6       trans-1, 3-Dichloro                                | 106-43-4   |                           | 408           | υ    |
| 74-95-3       1, 2-Dibromoethane       408.       U         74-95-3       Dibromomethane       1360       U         95-50-1       1, 2-Dichlorobenzene       272.       U         541-73-1       1, 3-Dichlorobenzene       815.       U         106-46-7       1, 4-Dichlorobenzene       272.       U         75-71-8       Dichlorodifluoromethane       679.       U         75-34-3       1, 1-Dichloroethane       272.       U         107-06-2       1, 2-Dichloroethane       272.       U         107-06-2       1, 2-Dichloroethane       408.       U         75-35-4       1, 1-Dichloroethane       408.       U         156-59-2       cis-1, 2-Dichloroethene       815.       U         156-60-5       trans-1, 2-Dichloroethene       815.       U         156-40-5       1, 3-Dichloropropane       272.       U         178-87-5       1, 2-Dichloropropane       272.       U         174-28-9       1, 3-Dichloropropane       272.       U         563-58-6       1, 1-Dichloropropane       679.       U         10061-01-5       cis-1, 3-Dichloropropene       679.       U         10061-02-6       trans-1, 3-Dichlor                                | 96-12-8    | 1, 2-Dibromo-3-chloroprop | oane 136      | υ    |
| 74-95-3       Dibromomethane       1360       U         95-50-1       1, 2-Dichlorobenzene       272.       U         541-73-1       1, 3-Dichlorobenzene       815.       U         106-46-7       1, 4-Dichlorobenzene       272.       U         75-71-8       Dichlorodifluoromethane       679.       U         75-34-3       1, 1-Dichloroethane       272.       U         107-06-2       1, 2-Dichloroethane       408.       U         75-35-4       1, 1-Dichloroethane       815.       U         156-59-2       cis-1, 2-Dichloroethene       815.       U         156-60-5       trans-1, 2-Dichloroethene       815.       U         156-40-5       trans-1, 2-Dichloroethene       408.       U         78-87-5       1, 2-Dichloropropane       272.       U         142-28-9       1, 3-Dichloropropane       272.       U         543-58-6       1, 1-Dichloropropane       272.       U         563-58-6       1, 1-Dichloropropane       679.       U         10061-01-5       cis-1, 3-Dichloropropene       679.       U         10061-02-6       trans-1, 3-Dichloropropene       679.       U         100-41-4       Ethy                                | 124-48-1   | Dibromochloromethane      | 408           | υ    |
| 95-50-1       1, 2-Dichlorobenzene       272.       U         541-73-1       1, 3-Dichlorobenzene       815.       U         106-46-7       1, 4-Dichlorobenzene       272.       U         75-71-8       Dichlorodifluoromethane       679.       U         75-34-3       1, 1-Dichloroethane       272.       U         107-06-2       1, 2-Dichloroethane       272.       U         107-05-2       1, 2-Dichloroethane       408.       U         75-35-4       1, 1-Dichloroethene       815.       U         156-59-2       cis-1, 2-Dichloroethene       815.       U         156-60-5       trans-1, 2-Dichloroethene       408.       U         78-87-5       1, 3-Dichloropropane       272.       U         142-28-9       1, 3-Dichloropropane       272.       U         594-20-7       2, 2-Dichloropropane       272.       U         563-58-6       1, 1-Dichloropropane       679.       U         10051-01-5       cis-1, 3-Dichloropropene       679.       U         10051-02-6       trans-1, 3-Dichloropropene       679.       U         100-41-4       Ethylbenzene       815.       U         87-48-3       Hexachlorobu                                |            |                           |               | υ    |
| 541-73-1       1, 3-Dichlorobenzene       815.       U         106-46-7       1, 4-Dichlorobenzene       272.       U         75-71-8       Dichlorodifluoromethane       679.       U         75-34-3       1, 1-Dichloroethane       272.       U         107-06-2       1, 2-Dichloroethane       408.       U         75-35-4       1, 1-Dichloroethane       815.       U         154-59-2       cis-1, 2-Dichloroethene       815.       U         154-59-2       cis-1, 2-Dichloroethene       815.       U         154-59-2       cis-1, 2-Dichloroethene       815.       U         154-60-5       trans-1, 2-Dichloroethene       815.       U         154-20-7       1, 2-Dichloropropane       272.       U         142-28-9       1, 3-Dichloropropane       272.       U         543-58-6       1, 1-Dichloropropane       272.       U         563-58-6       1, 1-Dichloropropane       679.       U         10061-01-5       cis-1, 3-Dichloropropene       679.       U         10061-02-6       trans-1, 3-Dichloropropene       679.       U         100-41-4       Ethylbenzene       815.       U         87-48-3       Hex                                | 74-95-3    | Dibromomethane            | 1360          | υ    |
| 106-46-7       1,4-Dichlorobenzene       272.       U         75-71-8       Dichlorodifluoromethane       679.       U         75-34-3       1,1-Dichloroethane       272.       U         107-06-2       1,2-Dichloroethane       408.       U         75-35-4       1,1-Dichloroethane       408.       U         156-59-2       cis-1,2-Dichloroethene       815.       U         156-60-5       trans-1,2-Dichloroethene       408.       U         78-87-5       1,2-Dichloropropane       272.       U         142-28-9       1,3-Dichloropropane       272.       U         594-20-7       2,2-Dichloropropane       272.       U         563-58-6       1,1-Dichloropropane       679.       U         10061-01-5       cis-1,3-Dichloropropene       679.       U         10061-02-6       trans-1,3-Dichloropropene       679.       U         100-41-4       Ethylbenzene       815.       U         87-68-3       Hexachlorobutadiene       679.       U         98-82-8       Isopropylbenzene       1090       U                                                                                                                                                   | 95-50-1    |                           | 272           | υ    |
| 75-71-8       Dichlorodifluoromethane       679.       U         75-34-3       1,1-Dichloroethane       272.       U         107-06-2       1,2-Dichloroethane       408.       U         75-35-4       1,1-Dichloroethane       815.       U         156-59-2       cis-1,2-Dichloroethene       815.       U         156-60-5       trans-1,2-Dichloroethene       408.       U         78-87-5       1,2-Dichloropropane       272.       U         142-28-9       1,3-Dichloropropane       272.       U         594-20-7       2,2-Dichloropropane       272.       U         503-58-6       1,1-Dichloropropane       679.       U         10061-01-5       cis-1,3-Dichloropropene       679.       U         10061-02-6       trans-1,3-Dichloropropene       679.       U         100-41-4       Ethylbenzene       815.       U         87-68-3       Hexachlorobutadiene       679.       U         98-82-8       Isopropylbenzene       1090       U                                                                                                                                                                                                                 | 541-73-1   |                           | 815           | υ    |
| 75-34-3       1, 1-Dichloroethane       272.       U         107-06-2       1, 2-Dichloroethane       408.       U         75-35-4       1, 1-Dichloroethane       815.       U         156-59-2       cis-1, 2-Dichloroethene       815.       U         156-60-5       trans-1, 2-Dichloroethene       408.       U         78-87-5       1, 2-Dichloropropane       272.       U         142-28-9       1, 3-Dichloropropane       272.       U         594-20-7       2, 2-Dichloropropane       272.       U         563-58-6       1, 1-Dichloropropane       679.       U         10061-01-5       cis-1, 3-Dichloropropene       679.       U         10061-02-6       trans-1, 3-Dichloropropene       679.       U         100-41-4       Ethylbenzene       815.       U         87-68-3       Hexachlorobutadiene       679.       U         98-82-8       Isopropylbenzene       1090       U                                                                                                                                                                                                                                                                       | 106-46-7   |                           | 272           | υ    |
| 107-06-2       1, 2-Dichloroethane       408.       U         75-35-4       1, 1-Dichloroethene       815.       U         156-59-2       cis-1, 2-Dichloroethene       815.       U         156-60-5       trans-1, 2-Dichloroethene       408.       U         78-87-5       1, 2-Dichloropropane       272.       U         142-28-9       1, 3-Dichloropropane       272.       U         594-20-7       2, 2-Dichloropropane       272.       U         563-58-6       1, 1-Dichloropropane       679.       U         10061-01-5       cis-1, 3-Dichloropropene       679.       U         100-41-4       Ethylbenzene       815.       U         87-68-3       Hexachlorobutadiene       679.       U         1090       U       1090       U                                                                                                                                                                                                                                                                                                                                                                                                                             | 75-71-8    | Dichlorodifluoromethane   | 679           | U    |
| 75-35-4       1, 1-Dichloroethene       815.       U         156-59-2       cis-1, 2-Dichloroethene       815.       U         156-60-5       trans-1, 2-Dichloroethene       408.       U         78-87-5       1, 2-Dichloropropane       272.       U         142-28-9       1, 3-Dichloropropane       272.       U         594-20-7       2, 2-Dichloropropane       272.       U         563-58-6       1, 1-Dichloropropane       679.       U         10061-01-5       cis-1, 3-Dichloropropane       679.       U         100-41-4       Ethylbenzene       815.       U         87-68-3       Hexachlorobutadiene       679.       U         98-82-8       Isopropylbenzene       1090       U                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 75-34-3    |                           | 272           | υ    |
| 156-59-2       cis-1,2-Dichloroethene       815.       U         156-60-5       trans-1,2-Dichloroethene       408.       U         78-87-5       1,2-Dichloropropane       272.       U         142-28-9       1,3-Dichloropropane       272.       U         594-20-7       2,2-Dichloropropane       2720       U         563-58-6       1,1-Dichloropropane       679.       U         10061-01-5       cis-1,3-Dichloropropene       679.       U         100-41-4       Ethylbenzene       815.       U         87-68-3       Hexachlorobutadiene       679.       U         98-82-8       Isopropylbenzene       1090       U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 107-06-2   |                           | 408           | υ    |
| 156-60-5       trans-1, 2-Dichloroethene       408.       U         78-87-5       1, 2-Dichloropropane       272.       U         142-28-9       1, 3-Dichloropropane       272.       U         594-20-7       2, 2-Dichloropropane       2720       U         563-58-6       1, 1-Dichloropropane       679.       U         10061-01-5       cis-1, 3-Dichloropropene       679.       U         10061-02-6       trans-1, 3-Dichloropropene       815.       U         100-41-4       Ethylbenzene       815.       U         87-68-3       Hexachlorobutadiene       679.       U         98-82-8       Isopropylbenzene       1090       U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 75-35-4    |                           | 815           | U    |
| 78-87-5       1, 2-Dichloropropane       272.       U         142-28-9       1, 3-Dichloropropane       272.       U         594-20-7       2, 2-Dichloropropane       2720       U         563-53-6       1, 1-Dichloropropane       679.       U         10061-01-5       cis-1, 3-Dichloropropene       679.       U         10061-02-6       trans-1, 3-Dichloropropene       679.       U         100-41-4       Ethylbenzene       815.       U         87-68-3       Hexachlorobutadiene       679.       U         98-82-8       Isopropylbenzene       1090       U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 156-59-2   | cis-1, 2-Dichloroethene . | 815           | υ    |
| 142-28-9       1,3-Dichloropropane       272.       U         594-20-7       2,2-Dichloropropane       2720       U         563-58-6       1,1-Dichloropropene       679.       U         10051-01-5       cis-1,3-Dichloropropene       679.       U         10061-02-6       trans-1,3-Dichloropropene       679.       U         100-41-4       Ethylbenzene       815.       U         87-68-3       Hexachlorobutadiene       679.       U         98-82-8       Isopropylbenzene       1090       U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 156-60-5   | trans-1, 2-Dichloroethene | e 408         | υ    |
| 574-20-7       2,2-Dichloropropane       2720       U         563-58-6       1,1-Dichloropropene       679.       U         10051-01-5       cis-1,3-Dichloropropene       679.       U         10061-02-6       trans-1,3-Dichloropropene       679.       U         100-41-4       Ethylbenzene       815.       U         87-68-3       Hexachlorobutadiene       679.       U         98-82-8       Isopropylbenzene       1090       U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 78-87-5    |                           | 272           | υ    |
| 594-20-7       2,2-Dichloropropane       2720       U         563-58-6       1,1-Dichloropropene       679.       U         10061-01-5       cis-1,3-Dichloropropene       679.       U         10061-02-6       trans-1,3-Dichloropropene       679.       U         100-41-4       Ethylbenzene       815.       U         87-68-3       Hexachlorobutadiene       679.       U         98-82-8       Isopropylbenzene       1090       U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            | · · ·                     |               | υ    |
| 563-58-6       1,1-Dichloropropene       679.       U         10061-01-5       cis-1,3-Dichloropropene       679.       U         10061-02-6       trans-1,3-Dichloropropene       679.       U         100-41-4       Ethylbenzene       815.       U         87-68-3       Hexachlorobutadiene       679.       U         98-82-8       Isopropylbenzene       1090       U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            |                           |               | υ    |
| 10061-01-5       cis-1,3-Dichloropropene       679.       U         10061-02-6       trans-1,3-Dichloropropene       679.       U         100-41-4       Ethylbenzene       815.       U         87-68-3       Hexachlorobutadiene       679.       U         98-82-8       Isopropylbenzene       1090       U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 563-58-6   |                           | 679           | υ    |
| 10061-02-6       trans-1,3-Dichloropropene       679.       U         100-41-4       Ethylbenzene       815.       U         87-68-3       Hexachlorobutadiene       679.       U         98-82-8       Isopropylbenzene       1090       U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            |                           |               | υ    |
| 100-41-4       Ethylbenzene       815.         87-48-3       Hexachlorobutadiene       679.         98-82-8       Isopropylbenzene       1090                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            |                           |               |      |
| 87-68-3 Hexachlorobutadiene 679 U<br>98-82-8 Isopropylbenzene 1090 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            |                           |               |      |
| 98-82-8 Isopropylbenzene 1090 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            |                           |               |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            |                           |               | •••• |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            |                           |               |      |



2960 Foster Creighton Dr. P.O. Box 40566 Nashville, TN 37204-0566 Phone 1-615-726-0177

Sample Identification

SB18A-20

Matrix: Soil % Dry Weight: 92. Units: ug/kg dry weight Lab Sample ID: 98-A127168 Date Sampled: 10/14/98 Date Received: 10/16/98

| CAS NUMBER | ANALYTE                       | CONCE | ENTRATION | FLAG | 3 |
|------------|-------------------------------|-------|-----------|------|---|
| 75-09-2    | .Methylene chloride           |       | 272       | υ    |   |
| 91-20-3    | .Naphthalene                  |       | 543       |      |   |
| 103-65-1   | .n-Propylbenzene              |       | 272.      | U    |   |
|            | .Styrene                      |       | 272       | υ    |   |
|            | . i, i, i, 2-Tetrachloroethan |       | 408       | υ    |   |
|            | . 1, 1, 2, 2-Tetrachloroethan |       | 272       | υ    |   |
| 127-18-4   | . Tetrachloroethene           |       | 951       | υ    |   |
| 108-88-3   | . Toluene                     |       | 679       | υ    |   |
| 87-61-6    | . 1, 2, 3-Trichlorobenzene .  |       | 272       | υ    |   |
| 120-82-1   | . 1, 2, 4-Trichlorobenzene .  |       | 272       | U    |   |
|            | 1, 1, 1-Trichloroethane       |       | 543       | υ    |   |
| 79-00-5    | . 1, 1, 2-Trichloroethane     |       | 679       | U    |   |
| 79-01-6    | . Trichloroethene             |       | 1360 .    | υ    |   |
| 96-18-4    | . 1, 2, 3-Trichloropropane .  |       | 2720 .    | υ    |   |
| 95-63-6    | . 1, 2, 4-Trimethylbenzene .  |       | 9380 .    |      |   |
|            | . 1, 3, 5-Trimethylbenzene .  |       | 5840 .    |      |   |
|            | .Vinyl chloride               |       | 1220 .    | υ    |   |
|            | .Bromodichloromethane         |       | 543       | υ    |   |
|            | .o-Xylene                     |       | 679       | υ    |   |
|            | .m,p-Xylene                   |       | 6520 .    |      |   |
|            | . Trichlorofluoromethane .    |       | 543       | U    |   |



2960 Foster Creighton Dr. P.O. Box 40566 Nashville, TN 37204-0566 Phone 1-615-726-0177

Matrix: Soil % Dry Weight: 95. Units: ug/kg dry weight Dilution Factor: 125. Analysis Method: SW8260B Delivery Group: 117229 Instrument: HP-2 Sample Identification

SB7-20

Lab Sample ID: 98-A127169 Date Sampled: 10/14/98 Date Received: 10/16/98 Analysis Date: 10/19/98 Analysis Time: 13:39 Sample QC Group: 4754

#### FORM I

| <br>CAS NUMBER | ANALYTE                     | CONCE | NTRATION | FL | AG |
|----------------|-----------------------------|-------|----------|----|----|
| 144-10-5       | 1-Chlorohexane              |       | 327.     |    | υ  |
|                | Benzene                     |       | 263.     |    | υ  |
|                | Bromobenzene                |       | 263.     |    | υ  |
|                | Bromochloromethane          |       | 263.     |    | υ  |
| 75-25-2        | Bromoform                   |       | 789.     |    | υ  |
|                | Bromomethane                |       | 658.     |    | υ  |
|                | n-Butylbenzene              |       |          |    | υ  |
|                | sec-Butylbenzene            |       | 921.     |    | υ  |
|                | t-Butylbenzene              |       | 921.     |    | υ  |
| 54-00-5        | Carbon tetrachloride        |       | 1320     |    | υ  |
| 108-90-7       | Chlorobenzene               |       | 263.     |    | υ  |
|                | Chloroethane                |       | 658.     |    | υ  |
| 47-44-3        | Chloroform                  |       | 263.     |    | υ  |
| 74-87-3        | Chloromethane               |       | 921.     |    | υ  |
| 95-49-8        | 2-Chlorotoluene             |       | 263.     |    | υ  |
|                | 4-Chlorotoluene             |       | 395.     |    | υ  |
| 74-12-8        | 1,2-Dibromo-3-chloropropa   | ne    | 132.     |    | υ  |
| 124-48-1       | Dibromochloromethane        |       | 395.     |    | υ  |
|                | 1,2-Dibromoethane           |       | 395.     |    | υ  |
|                | Dibromomethane              |       | 1320     |    | υ  |
|                | 1,2-Dichlorobenzene         |       | 263.     |    | υ  |
|                | 1,3-Dichlorobenzene         |       | 789.     |    | υ  |
|                | 1,4-Dichlorobenzene         |       | 263.     |    | υ  |
|                | .Dichlorodifluoromethane .  |       | 658.     |    | υ  |
|                | . 1, 1-Dichloroethane       |       | 263.     |    | υ  |
|                | . 1, 2-Dichloroethane       |       | 395.     |    | υ  |
|                | . 1, 1-Dichloroethene       |       | 789.     |    | υ  |
|                | . cis-1, 2-Dichloroethene   |       | 789.     |    | υ  |
| 156-60-5       | . trans-1, 2-Dichloroethene |       | 395.     |    | υ  |
| 78-87-5        | . 1, 2-Dichloropropane      | • •   | 263.     |    | υ  |
| 142-28-9       | . 1, 3-Dichloropropane      |       | 263.     |    | υ  |
|                | .2,2-Dichloropropane        |       | 2630     |    | υ  |
| 563-58-6       | . 1, 1-Dichloropropene      |       | 658.     |    | υ  |
| 10061-01-5     | .cis-1,3-Dichloropropene    | •••   | 658.     |    | υ  |
| 10061-02-6     | . trans-1, 3-Dichloropropen | е.    | 658.     |    | υ  |
| 100-41-4       | .Ethylbenzene               |       | 395.     |    | υ  |
| 87-68-3        | .Hexachlorobutadiene        |       | 658.     |    | υ  |
|                | . Isopropylbenzene          |       | 1050     |    | υ  |
|                | .4-Isopropyltoluene         |       | 1970     |    |    |
|                |                             |       |          |    |    |



2960 Foster Creighton Dr. P.O. Box 40566 Nashville, TN 37204-0566 Phone 1-615-726-0177

Sample Identification

SB7-20

Matrix: Soil % Dry Weight: 95. Units: ug/kg dry weight Lab Sample ID: 98-A127169 Date Sampled: 10/14/98 Date Received: 10/16/98

#### FORM I

| CAS NUMBER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ANALYTE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CONCENTRAT                                                                                                                                                                                                  | ION FLAG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 75-07-2<br>91-20-3<br>103-65-1<br>100-42-5<br>630-20-6<br>79-34-5<br>127-18-4<br>108-88-3<br>87-61-6<br>120-82-1<br>71-55-6<br>79-00-5<br>79-01-6<br>79-01-6<br>79-01-6<br>79-01-6<br>79-01-6<br>79-01-6<br>79-01-6<br>79-01-6<br>79-01-6<br>79-01-6<br>79-01-6<br>79-01-6<br>79-01-6<br>79-01-6<br>79-01-6<br>79-01-6<br>79-01-6<br>79-01-6<br>79-01-6<br>79-01-6<br>79-01-6<br>79-01-6<br>79-01-6<br>79-01-6<br>79-01-6<br>79-01-6<br>79-01-6<br>79-01-6<br>79-01-6<br>79-01-6<br>79-01-6<br>79-01-6<br>79-01-6<br>79-01-6<br>79-01-6<br>79-01-6<br>79-01-6<br>79-01-6<br>79-01-6<br>79-01-6<br>79-01-6<br>79-01-6<br>79-01-6<br>79-01-6<br>79-01-6<br>79-01-6<br>79-01-6<br>79-01-6<br>79-01-6<br>79-01-6<br>79-01-6<br>79-01-6<br>79-01-6<br>79-01-6<br>79-01-6<br>79-01-6<br>79-01-6<br>79-01-6<br>79-01-6<br>79-01-6<br>79-01-6<br>79-01-6<br>79-01-6<br>79-01-6<br>79-01-6<br>79-01-6<br>79-01-6<br>79-01-6<br>79-01-6<br>79-01-6<br>79-01-6<br>79-01-6<br>79-01-6<br>79-01-6<br>79-01-6<br>79-01-6<br>79-01-6<br>79-01-6<br>79-01-6<br>79-01-6<br>79-01-6<br>79-01-6<br>79-01-6<br>79-01-6<br>79-01-6<br>79-01-6<br>79-01-6<br>79-01-6<br>79-01-6<br>79-01-6<br>79-01-6<br>79-01-6<br>79-01-6<br>79-01-6<br>79-01-6<br>79-01-6<br>79-01-6<br>79-01-6<br>79-01-6<br>79-01-6<br>79-01-6<br>79-01-6<br>79-01-6<br>79-01-6<br>79-01-6<br>79-01-6<br>79-01-6<br>79-01-6<br>79-01-6<br>79-01-6<br>79-01-6<br>79-01-6<br>79-01-6<br>79-01-6<br>79-01-6<br>79-01-6<br>79-01-6<br>79-01-6<br>79-01-6<br>79-01-6<br>79-01-6<br>79-01-6<br>79-01-6<br>79-01-6<br>79-01-6<br>79-01-6<br>79-01-6<br>79-01-6<br>79-01-6<br>79-01-6<br>79-01-6<br>79-01-6<br>79-01-6<br>79-01-6<br>79-01-6<br>79-01-6<br>79-01-6<br>79-01-6<br>79-01-6<br>79-01-6<br>79-01-6<br>79-01-6<br>79-01-6<br>79-01-6<br>79-01-6<br>79-01-6<br>79-01-6<br>79-01-6<br>79-01-6<br>79-01-6<br>79-01-6<br>79-01-6<br>79-01-6<br>79-01-6<br>79-01-6<br>79-01-6<br>79-01-6<br>79-01-6<br>79-01-6<br>79-01-6<br>79-01-6<br>79-01-6<br>79-01-6<br>79-01-6<br>79-01-6<br>79-01-6<br>79-01-6<br>79-01-6<br>79-01-6<br>79-01-6<br>79-01-6<br>79-01-6<br>79-01-6<br>79- | ANALYIE<br>Methylene chloride<br>Naphthalene<br>n-Propylbenzene<br>Styrene<br>1, 1, 1, 2-Tetrachloroethan<br>1, 1, 2, 2-Tetrachloroethan<br>Tetrachloroethene<br>1, 2, 3-Trichlorobenzene .<br>1, 2, 4-Trichlorobenzene .<br>1, 1, 1-Trichloroethane<br>1, 2, 3-Trichloroethane<br>1, 2, 3-Trichloroethane<br>1, 2, 3-Trichloropthane<br>1, 2, 3-Trichloropthane<br>1, 2, 3-Trichloropthane<br>1, 2, 4-Trimethylbenzene .<br>1, 3, 5-Trimethylbenzene .<br>Vinyl chloride<br>Bromodichloromethane | 263.            3030            263.           e            e             263.           e             263.            263.            263.            263.            263.            263.            263. | ····· U<br>····· <br>···· U<br>···· U<br>···· U<br>··· U<br>··· U<br>··· U<br>··· U<br>··· U<br>··· U<br>··· U<br>···· U<br>··· U<br>··· U<br>··· U<br>··· U<br>··· U |
| 6616                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | .m,p-Xylene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 26200                                                                                                                                                                                                       | )U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |



2960 Foster Creighton Dr. P.O. Box 40566 Nashville, TN 37204-0566 Phone 1-615-726-0177

Matrix: Soil % Dry Weight: 88. Units: ug/kg dry weight Dilution Factor: 5. Analysis Method: SW8260B Delivery Group: 117229 Instrument: HP-2 Sample Identification

SB28-21

Lab Sample ID: 98-A127170 Date Sampled: 10/14/98 Date Received: 10/16/98 Analysis Date: 10/23/98 Analysis Time: 1:15 Sample GC Group: 4754

| CAS NUMBER              | ANALYTE                     | CONCENTRATION | FLAG            |
|-------------------------|-----------------------------|---------------|-----------------|
| + <b>3</b> 4 <b>5 ±</b> | . 1-Chlorohexane            | 14.2          | U               |
|                         |                             |               |                 |
|                         |                             |               |                 |
|                         | . Bromobenzene              |               | U               |
|                         | . Bromocniorometnane        |               | U               |
|                         |                             |               | U               |
|                         | . Bromomethane              |               | U               |
|                         | Butylbenzene                | •••           | U               |
|                         |                             |               | U               |
|                         |                             |               | U               |
|                         | .Carbon tetrachloride       |               |                 |
|                         |                             |               | U               |
|                         |                             |               |                 |
|                         | Chloroform                  | •••           | U               |
|                         | Chloromethane               |               |                 |
|                         |                             |               | U               |
|                         |                             |               | ••• =           |
|                         | . 1, 2-Dibromo-3-chloroprop |               |                 |
|                         | Dibromochloromethane        |               |                 |
|                         | . 1,2-Dibromoethane         |               | U               |
|                         |                             |               | U               |
|                         | . 1, 2-Dichlorobenzene      |               | U               |
|                         |                             |               | U               |
|                         | . 1, 4-Dichlorobenzene      |               | U               |
|                         | . Dichlorodifluoromethane   |               | U               |
|                         |                             |               | U               |
|                         | 1,2-Dichloroethane          |               | U               |
|                         |                             |               | U               |
|                         | cis-1,2-Dichloroethene .    |               | U               |
|                         | trans-1,2-Dichloroethene    |               | U               |
|                         | 1,2-Dichloropropane         |               | U               |
|                         | 1,3-Dichloropropane         |               | U               |
|                         | 2,2-Dichloropropane         |               | U               |
| 563-58-6                |                             | 28.4          | U               |
| 10061-01-5              | cis-1,3-Dichloropropene     | 28.4          | U               |
|                         | trans-1, 3-Dichloropropen   |               | U               |
| 100-41-4                | Ethylbenzene                | 17.0          | U               |
|                         | Hexachlorobutadiene         |               | U               |
|                         | Isopropylbenzene            |               | AUU1            |
|                         |                             |               | : <b>0</b> 001: |
|                         | · · ·F, _FJ_v · · · · · ·   |               | ·· <b>-</b>     |



2960 Foster Creighton Dr. P.O. Box 40566 Nashville, TN 37204-0566 Phone 1-615-726-0177

Sample Identification

SB28-21

Matrix: Soil % Dry Weight: 88. Units: ug/kg dry weight Lab Sample ID: 98-A127170 Date Sampled: 10/14/98 Date Received: 10/16/98

#### FORM I

| CAS NUMBER                                                                                                                                                   | ANALYTE                                                                                                                                                                                                                                                                                                                                                    | CONCENTRATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | FLAG                                                                            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|
| 75-09-2<br>91-20-3<br>103-65-1<br>100-42-5<br>630-20-6<br>79-34-5<br>127-18-4<br>108-88-3<br>87-61-6<br>120-82-1<br>71-55-6<br>79-00-5<br>79-01-6<br>96-18-4 | ANALYTE<br>Methylene chloride<br>Naphthalene<br>n-Propylbenzene<br>Styrene<br>1, 1, 1, 2-Tetrachloroethane<br>1, 1, 2, 2-Tetrachloroethane<br>Tetrachloroethene<br>Toluene<br>1, 2, 3-Trichlorobenzene<br>1, 2, 4-Trichloroethane<br>1, 1, 2-Trichloroethane<br>Trichloroethene<br>1, 2, 3-Trichloropena<br>1, 2, 3-Trichloropena<br>1, 2, 4-Trichloropena | 11.4         11.4         11.4         11.4         11.4         11.4         11.4         28.4         11.4         28.4         28.4         28.4         11.4         11.4         11.4         11.4         11.4         11.4         28.4         11.4         11.4         11.4         11.4         11.4         11.4         11.4         11.4         11.4         11.4         11.4         11.4         11.4         11.4         11.4         11.4         11.4         11.4         11.4         11.4         11.4         11.4         11.4         11.4         11.4         11.4         11.4         11.4         11.4         11.4         11.4         11.4         11.4 </td <td>FLAG<br/>U<br/>U<br/>U<br/>U<br/>U<br/>U<br/>U<br/>U<br/>U<br/>U<br/>U<br/>U<br/>U<br/>U<br/>U</td> | FLAG<br>U<br>U<br>U<br>U<br>U<br>U<br>U<br>U<br>U<br>U<br>U<br>U<br>U<br>U<br>U |
| 108-67-8                                                                                                                                                     | . 1, 2, 4-frimethylbenzene .<br>. 1, 3, 5-Trimethylbenzene .<br>. Vinyl chloride                                                                                                                                                                                                                                                                           | 17.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | υ                                                                               |
| 75-27-4<br>6615                                                                                                                                              | . Bromodichloromethane<br>. o-Xylene                                                                                                                                                                                                                                                                                                                       | 22.7<br>28.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | U<br>U                                                                          |
| 75-69-4                                                                                                                                                      | . Trichlorofluoromethane .                                                                                                                                                                                                                                                                                                                                 | 22.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | U                                                                               |



2960 Foster Creighton Dr. P.O. Box 40566 Nashville, TN 37204-0566 Phone 1-615-726-0177

Matrix: Soil % Dry Weight: 85. Units: ug/kg dry weight Dilution Factor: 125. Analysis Method: SW8260B Delivery Group: 117229 Instrument: HP-2 Sample Identification

SB8-21

Lab Sample ID: 98-A127171 Date Sampled: 10/14/98 Date Received: 10/16/98 Analysis Date: 10/19/98 Analysis Time: 14:52 Sample QC Group: 4754

#### FORM I

| CAS NUMBER | ANALYTE                                | CONCE   | NTRATION | FL     | AG |
|------------|----------------------------------------|---------|----------|--------|----|
| 144-10-5   | .1-Chlorohexane                        |         | 368      |        | υ  |
| 71-43-2    | .Benzene                               | i       | 294      |        | υ  |
| 108-86-1   | .Bromobenzene                          |         | 294      |        | υ  |
| 124-48-1   | .Bromochloromethane                    |         | 294      |        | υ  |
| 75-25-2    | .Bromoform                             | {       | 382      |        | υ  |
| 74-83-9    | .Bromomethane                          |         | 735      |        | υ  |
| 104-51-8   | .n-Butylbenzene                        | • • • • | 735      |        | υ  |
|            | .sec-Butylbenzene                      |         | 1030 .   |        | υ  |
| 98-06-6    | .t-Butylbenzene                        |         | 1030     |        | υ  |
| 56-23-5    | .Carbon tetrachloride                  |         | 1470 .   |        | υ  |
| 108-90-7   | . Chlorobenzene                        |         | 294      |        | υ  |
| 75-00-3    | .Chloroethane                          |         | 735      |        | υ  |
| 67-66-3    | .Chloroform                            |         | 294      |        | υ  |
| 74-87-3    | . Chloromethane                        |         | 1030 .   |        | υ  |
| 95-49-8    | .2-Chlorotoluene                       |         |          |        | υ  |
| 106-43-4   | .4-Chlorotoluene                       |         | 441.     |        | υ  |
| 96-12-8    | . 1, 2-Dibromo-3-chloroprop            | ane .   | 147      |        | υ  |
| 124-48-1   | . Dibromochloromethane                 |         | 441      |        | υ  |
| 74-95-3    | . 1, 2-Dibromoethane                   |         | 441      |        | υ  |
| 74-95-3    | .Dibromomethane                        |         | 1470 .   |        | υ  |
| 95-50-1    | . 1, 2-Dichlorobenzene                 | 1       | 294      | • • •  | υ  |
| 541-73-1   | .1,3-Dichlorobenzene                   | {       | 382      |        | υ  |
| 106-46-7   | . 1, 4-Dichlorobenzene                 | 1       | 294      |        | υ  |
| 75-71-8    | .Dichlorodifluoromethane               | • • • • | 735      |        | U  |
| 75-34-3    | .1,1-Dichloroethane                    | :       | 294      |        | υ  |
| 107-06-2   | .1,2-Dichloroethane                    |         | 441      |        | υ  |
| 75-35-4    | . 1, 1-Dichloroethene                  | (       | 382      |        | υ  |
| 156-59-2   | .cis-1,2-Dichloroethene .              | (       | 382      |        | υ  |
| 156-60-5   | .trans-1,2-Dichloroethene              | ••      | 441      |        | υ  |
| 78-87-5    | . 1, 2-Dichloropropane                 |         | 294      |        | υ  |
| 142-28-9   | .1,3-Dichloropropane                   | • • •   | 294      |        | υ  |
| 594-20-7   | .2,2-Dichloropropane                   |         | 2940 .   |        | υ  |
| 563-58-6   | . 1, 1-Dichloropropene                 |         | 735      |        | υ  |
| 10061-01-5 | .cis-1,3-Dichloropropene               |         | 735      |        | υ  |
|            | .trans-1,3-Dichloropropen              |         | 735      |        | υ  |
|            | .Ethylbenzene                          |         |          | • .• • |    |
| 87-68-3    | .Hexachlorobutadiene                   |         | 735      |        | υ  |
|            | . Isopropylbenzene                     |         | 1180 .   |        | υ  |
|            | .4-Isopropyltoluene                    |         | 882      |        | υ  |
|            | · ···································· |         |          |        |    |



2960 Foster Creighton Dr. P.O. Box 40566 Nashville, TN 37204-0566 Phone 1-615-726-0177

Sample Identification

SB8-21

Matrix: Soil % Dry Weight: 85. Units: ug/kg dry weight Lab Sample ID: 98-A127171 Date Sampled: 10/14/98 Date Received: 10/16/98

#### FORM I

| CAS NUMBER                                                                                                                                                                                                           | ANALYTE                                                                                                                                                                                                                                                                                                                                                                                                                           | CONCENTRATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | FLAG |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 75-09-2<br>91-20-3<br>103-65-1<br>100-42-5<br>630-20-6<br>79-34-5<br>127-18-4<br>108-88-3<br>87-61-6<br>120-82-1<br>71-55-6<br>79-00-5<br>79-00-5<br>79-01-6<br>96-18-4<br>95-63-6<br>108-67-8<br>75-01-4<br>75-27-4 | Methylene chloride<br>Naphthalene<br>n-Propylbenzene<br>Styrene<br>1, 1, 1, 2-Tetrachloroethane<br>1, 1, 2, 2-Tetrachloroethane<br>Tetrachloroethene<br>Toluene<br>1, 2, 3-Trichlorobenzene<br>1, 2, 4-Trichloroethane<br>1, 1, 2-Trichloroethane<br>1, 1, 2-Trichloroethane<br>Trichloroethene<br>1, 2, 3-Trichloropropane<br>1, 2, 3-Trichloropropane<br>1, 2, 4-Trimethylbenzene<br>1, 3, 5-Trimethylbenzene<br>Vinyl chloride | 294.<br>294.<br>294.<br>294.<br>294.<br>294.<br>294.<br>294.<br>294.<br>294.<br>294.<br>294.<br>294.<br>294.<br>294.<br>294.<br>294.<br>294.<br>294.<br>294.<br>294.<br>294.<br>294.<br>294.<br>294.<br>294.<br>294.<br>294.<br>294.<br>294.<br>294.<br>294.<br>294.<br>294.<br>294.<br>294.<br>294.<br>294.<br>294.<br>294.<br>294.<br>294.<br>294.<br>294.<br>294.<br>294.<br>294.<br>294.<br>294.<br>294.<br>294.<br>294.<br>294.<br>294.<br>294.<br>294.<br>294.<br>294.<br>294.<br>294.<br>294.<br>294.<br>294.<br>294.<br>294.<br>294.<br>294.<br>294.<br>294.<br>294.<br>294.<br>294.<br>294.<br>294.<br>294.<br>294.<br>294.<br>294.<br>294.<br>294.<br>294.<br>294.<br>294.<br>294.<br>294.<br>2940.<br>1030.<br>441.<br>1320.<br>588. | FLAG |
| 6616                                                                                                                                                                                                                 | .o-Xylene                                                                                                                                                                                                                                                                                                                                                                                                                         | 1760                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | U    |



2960 Foster Creighton Dr. P.O. Box 40566 Nashville, TN 37204-0566 Phone 1-615-726-0177

Matrix: Soil % Dry Weight: 89. Units: ug/kg dry weight Dilution Factor: 125. Analysis Method: SW8260B Delivery Group: 117229 Instrument: HP-2 Sample Identification

SB6-22

Lab Sample ID: 98-A127172 Date Sampled: 10/15/98 Date Received: 10/16/98 Analysis Date: 10/20/98 Analysis Time: 20:08 Sample QC Group: 4754

#### FORM I

| CAS NUMBER | ANALYTE                     | CONCENTRATION | FI    | _AG |
|------------|-----------------------------|---------------|-------|-----|
| 144-10-5   | .1-Chlorohexane             | 351           |       | ບ   |
| 71-43-2    | .Benzene                    | 281           |       | υ   |
| 108-86-1   | .Bromobenzene               | 281           |       | υ   |
| 124-48-1   | .Bromochloromethane         | 281           |       | υ   |
| 75-25-2    | . Bromoform                 | 843           |       | υ   |
| 74-83-9    | .Bromomethane               | 702           |       | υ   |
|            | .n-Butylbenzene             |               |       | υ   |
|            | .sec-Butylbenzene           |               |       | υ   |
|            | .t-Butulbenzene             |               |       | υ   |
|            | .Carbon tetrachloride       |               |       | υ   |
|            | . Chlorobenzene             |               |       | υ   |
|            | . Chloroethane              |               |       | υ   |
|            | . Chloroform                |               |       | υ   |
| 74-87-3    | . Chloromethane             | 983           |       | υ   |
|            | .2-Chlorotoluene            |               |       | υ   |
| 106-43-4   | .4-Chlorotoluene            | 421           |       | υ   |
|            | . 1, 2-Dibromo-3-chloroprop |               |       | υ   |
|            | . Dibromochloromethane      |               |       | υ   |
| 74-95-3    | . 1, 2-Dibromoethane        | 421           |       | υ   |
|            | . Dibromomethane            |               |       | υ   |
| 95-50-1    | . 1, 2-Dichlorobenzene      | 281           |       | υ   |
| 541-73-1   | . 1,3-Dichlorobenzene       | 843           |       | υ   |
| 106-46-7   | . 1, 4-Dichlorobenzene      | 281           |       | υ   |
| 75-71-8    | . Dichlorodifluoromethane   | 702           |       | υ   |
| 75-34-3    | . 1, 1-Dichloroethane       | 281           |       | υ   |
| 107-06-2   | . 1, 2-Dichloroethane       | 421           |       | υ   |
| 75-35-4    | . 1, 1-Dichloroethene       | 843           |       | U   |
| 156-59-2   | .cis-1,2-Dichloroethene .   | 843           |       | υ.  |
| 156-60-5   | . trans-1, 2-Dichloroethene | e 421         |       | υ   |
| 78-87-5    | . 1, 2-Dichloropropane      | 281           | · • · | υ   |
| 142-28-7   | . 1.3-Dichloropropane       | 281           |       | υ   |
| 594-20-7   | . 2, 2-Dichloropropane      | 2810 .        |       | υ   |
| 563-58-6   | . 1, 1-Dichloropropene      | 702           |       | υ   |
|            | .cis-1.3-Dichloropropene    |               |       | υ   |
|            | . trans-1, 3-Dichloroproper |               |       | υ   |
|            | .Ethylbenzene               |               |       |     |
|            | .Hexachlorobutadiene        |               |       | υ   |
|            | . Isopropylbenzene          |               |       | υ   |
|            | .4-Isopropyltoluene         |               |       | ł   |
|            |                             | •             |       |     |



2960 Foster Creighton Dr. P.O. Box 40566 Nashville, TN 37204-0566 Phone 1-615-726-0177

Sample Identification

SB6-22

Matrix: Soil % Dry Weight: 89. Units: ug/kg dry weight Lab Sample ID: 98-A127172 Date Sampled: 10/15/98 Date Received: 10/16/98

| 75-09-2       Methylene chloride       281.       U         91-20-3       Naphthalene       3370       103-45-1       U         103-45-1       n-Propylbenzene       281.       U         100-42-5       Styrene       281.       U         630-20-6       1,1,1,2-Tetrachloroethane       421.       U         79-34-5       1,1,2,2-Tetrachloroethane       281.       U         108-88-3       Tetrachloroethene       983.       U         108-88-3       Toluene       702.       U         87-41-6       1,2,3-Trichlorobenzene       281.       U         120-82-1       1,2,4-Trichlorobenzene       281.       U         120-82-1       1,2,4-Trichloroethane       702.       U         79-00-5       1,1,1-Trichloroethane       702.       U         79-01-6       Trichloroethene       1400       U         96-18-4       1,2,3-Trichloropropane       2810       U         97-63-6       1,3,5-Trimethylbenzene       9410       10         95-63-6       1,3,5-Trimethylbenzene       7410       10         95-27-4       Bromodichloromethane       562.       U         6415       0-Xylene       702. | CAS NUMBER                                                                                                                                                                                     | ANALYTE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | CONCENTRATIO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | N FLAG                                                     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|
| 6615 o-Xylene 702 U<br>6616 m, p-Xylene 51100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 75-09-2<br>91-20-3<br>103-65-1<br>100-42-5<br>630-20-6<br>79-34-5<br>127-18-4<br>108-88-3<br>87-61-6<br>120-82-1<br>71-55-6<br>79-00-5<br>79-01-6<br>79-01-6<br>96-18-4<br>108-67-8<br>75-01-4 | . Methylene chloride<br>Naphthalene<br>n-Propylbenzene<br>Styrene<br>1, 1, 1, 2-Tetrachloroethan<br>1, 1, 2, 2-Tetrachloroethan<br>Tetrachloroethene<br>Toluene<br>1, 2, 3-Trichlorobenzene .<br>1, 2, 4-Trichlorobenzene .<br>1, 1, 1-Trichloroethane<br>Trichloroethene<br>1, 2, 3-Trichloroethane<br>1, 2, 4-Trimethylbenzene<br>1, 3, 5-Trimethylbenzene | 281.         3370         281.         281.         281.         281.         281.         281.         281.         281.         281.         281.         281.         281.         281.         281.         281.         281.         281.         281.         281.         281.         281.         281.         281.         281.         281.         281.         281.         281.         281.         281.         281.         281.         281.         281.         281.         2810         2810         2810         2810         2810         2810         2810         2810         2810         2810         2810         2810         2810         2810         2810 <t< td=""><td>·····<br/>·····<br/>·····<br/>·····<br/>·····<br/>·····<br/>····</td></t<> | ·····<br>·····<br>·····<br>·····<br>·····<br>·····<br>···· |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6615<br>6616                                                                                                                                                                                   | .o-Xylene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 702.<br>51100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | U                                                          |



2960 Foster Creighton Dr. P.O. Box 40566 Nashville, TN 37204-0566 Phone 1-615-726-0177

Matrix: Soil % Dry Weight: 97. Units: ug/kg dry weight Dilution Factor: 5. Analysis Method: SW8260B Delivery Group: 117229 Instrument: HP-2 Sample Identification

#### SB9-14

Lab Sample ID: 98-A127173 Date Sampled: 10/15/98 Date Received: 10/16/98 Analysis Date: 10/23/98 Analysis Time: 0:03 Sample QC Group: 4754

#### FORM I

| CAS NUMBER | ANALYTE                     | CONCENTRATION                          | FLAG      |
|------------|-----------------------------|----------------------------------------|-----------|
|            | .1-Chlorohexane             |                                        | υ         |
|            | .Benzene                    |                                        | U         |
| 108-86-1   | .Bromobenzene               |                                        | U         |
| 124-48-1   | .Bromochloromethane         |                                        | U         |
|            | .Bromoform                  |                                        | U         |
| 74-83-9    | .Bromomethane               |                                        | U         |
| 104-51-8   | .n-Butylbenzene             |                                        | U         |
| 135-98-8   | .sec-Butylbenzene           | 36.1 .                                 | U         |
| 98-06-6    | .t-Butylbenzene             | 36.1 .                                 | U         |
| 56-23-5    | .Carbon tetrachloride       | 51.5 .                                 | U         |
| 108-90-7   | . Chlorobenzene             | 10.3 .                                 | U         |
| 75-00-3    | . Chloroethane              | 25.8 .                                 | U         |
|            | . Chloroform                |                                        | U         |
|            | . Chloromethane             |                                        | U         |
| 95-49-8    | .2-Chlorotoluene            | 10.3 .                                 | U         |
| 106-43-4   | .4-Chlorotoluene            | 15.5 .                                 | U         |
| 96-12-8    | . 1,2-Dibromo-3-chloroprop  | ane 5.2 .                              | U         |
|            | . Dibromochloromethane      |                                        | U         |
| 74-95-3    | . 1, 2-Dibromoethane        | 15.5 .                                 | U         |
| 74-95-3    | . Dibromomethane            | 51.5 .                                 | U         |
| 95-50-1    | . 1, 2-Dichlorobenzene      | 10.3 .                                 | U         |
|            | . 1.3-Dichlorobenzene       |                                        | U         |
|            | . 1,4-Dichlorobenzene       |                                        | U         |
|            | . Dichlorodifluoromethane   |                                        | U         |
|            | . 1, 1-Dichloroethane       |                                        | U         |
|            | . 1, 2-Dichloroethane       |                                        | U         |
|            | . 1, 1-Dichloroethene       |                                        | U         |
|            | . cis-1, 2-Dichloroethene . |                                        | U         |
|            | . trans-1, 2-Dichloroethene |                                        | U         |
|            | . 1, 2-Dichloropropane      |                                        | υ         |
|            | . 1,3-Dichloropropane       |                                        | U         |
|            |                             |                                        | U         |
|            | . 1, 1-Dichloropropene      |                                        | Ŭ         |
|            |                             |                                        | U         |
|            | . trans-1,3-Dichloroproper  |                                        | Ū         |
|            | . Ethulbenzene              |                                        | U         |
|            | . Hexachlorobutadiene       |                                        | U         |
|            | . Isopropylbenzene          |                                        | U         |
|            |                             |                                        | U         |
| 77-0/-0    | ····                        | ··· ···· ··· ··· ··· ··· ··· ··· ··· · | · · · · V |



2960 Foster Creighton Dr. P.O. Box 40566 Nashville, TN 37204-0566 Phone 1-615-726-0177 Sample Identification

SE9-14

Matrix: Soil % Dry Weight: 97. Units: ug/kg dry weight Lab Sample ID: 98-A127173 Date Sampled: 10/15/98 Date Received: 10/16/98

| CAS NUMBER                                                                                                                                                               | ANALYTE                                                                                                                                                                                                                                                                                                                                                                                                                      | CONCENTRATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | FLAG |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 75-09-2<br>91-20-3<br>103-45-1<br>100-42-5<br>430-20-6<br>79-34-5<br>127-18-4<br>108-88-3<br>87-61-6<br>120-82-1<br>71-55-6<br>79-00-5<br>79-01-6<br>96-18-4<br>108-67-8 | ANALYTE<br>Methylene chloride<br>Naphthalene<br>n-Propylbenzene<br>Styrene<br>1, 1, 1, 2-Tetrachloroethan<br>1, 1, 2, 2-Tetrachloroethan<br>Tetrachloroethene<br>Toluene<br>1, 2, 3-Trichlorobenzene .<br>1, 2, 4-Trichloroethane<br>1, 1, 2-Trichloroethane<br>1, 1, 2-Trichloroethane<br>1, 2, 3-Trichloroethane<br>1, 2, 3-Trichloropena<br>1, 2, 4-Trichloropena<br>1, 2, 4-Trimethylbenzene<br>1, 3, 5-Trimethylbenzene | 10.3         10.3         10.3         10.3         10.3         10.3         10.3         10.3         10.3         10.3         10.3         10.3         10.3         10.3         10.3         10.3         10.3         10.3         10.3         10.3         10.3         10.3         10.3         10.3         10.3         10.3         10.3         10.3         10.3         10.3         10.3         10.3         10.3         10.3         10.3         10.3         10.5 | FLAG |
| 75-27-4                                                                                                                                                                  | .Bromodichloromethane                                                                                                                                                                                                                                                                                                                                                                                                        | 20.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | U    |
| 6616                                                                                                                                                                     | .o-Xylene                                                                                                                                                                                                                                                                                                                                                                                                                    | 15.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | U    |



2960 Foster Creighton Dr. P. O. Box 40566 Nashville, TN 37204-0566 Phone 1-615-726-0177 Sample Identification

SB9-22

Matrix: Soil % Dry Weight: 86. Units: ug/kg dry weight Dilution Factor: 100. Analysis Method: SW8260B Delivery Group: 117229 Instrument: HP-2 Lab Sample ID: 98-A127174 Date Sampled: 10/15/98 Date Received: 10/16/98 Analysis Date: 10/20/98 Analysis Time: 21:20 Sample QC Group: 4754

#### FORM I

| CAS NUMBER | ANALYTE                     | CONC  | ENTRATION | F       | LAG |
|------------|-----------------------------|-------|-----------|---------|-----|
|            | .1-Chlorohexane             |       | 291.      | • • • • | υ   |
| 71-43-2    | .Benzene                    | · · · | 5700      |         |     |
| 108-86-1   | .Bromobenzene               |       | 233.      |         | υ   |
| 124-48-1   | .Bromochloromethane         |       | 233.      |         | υ   |
| 75-25-2    | .Bromoform                  |       | 698.      |         | υ   |
| 74-83-9    | .Bromomethane               |       | 581.      |         | υ   |
| 104-51-8   | .n-Butylbenzene             |       | 581.      |         | υ   |
| 135-98-8   | .sec-Butylbenzene           |       | 814.      |         | υ   |
| 98-06-6    | .t-Butylbenzene             |       | 814.      |         | υ   |
| 56-23-5    | .Carbon tetrachloride       |       | 1160      |         | υ   |
|            | .Chlorobenzene              |       | 233.      |         | υ   |
| 75-00-3    | .Chloroethane               |       | 581.      |         | υ   |
|            | . Chloroform                |       | 233.      |         | υ   |
|            | . Chloromethane             |       | 814.      |         | υ   |
|            | .2-Chlorotoluene            |       | 233.      |         | υ   |
|            | .4-Chlorotoluene            |       | 347.      |         | υ   |
|            | . 1, 2-Dibromo-3-chloroprop |       | 116.      |         |     |
|            | .Dibromochloromethane       |       | 349.      |         | υ   |
|            | .1,2-Dibromoethane          |       | 349.      |         | υ   |
|            | .Dibromomethane             |       | 1160      |         | υ   |
|            | .1,2-Dichlorobenzene        |       | 233.      |         |     |
|            | .1,3-Dichlorobenzene        |       | 698.      |         | υ   |
|            | . 1, 4-Dichlorobenzene      |       | 233.      |         | _   |
|            | . Dichlorodifluoromethane   |       | 581.      |         | -   |
|            | .1,1-Dichloroethane         |       | 233.      |         |     |
|            | .1,2-Dichloroethane         |       | 349.      |         |     |
|            | . 1, 1-Dichloroethene       |       | 698.      |         |     |
|            | .cis-1,2-Dichloroethene .   |       | 698.      | • • • • |     |
|            | .trans-1,2-Dichloroethene   |       | 349.      |         | -   |
|            | .1,2-Dichloropropane        |       | 233.      | • • • • |     |
|            | .1,3-Dichloropropane        |       | 233.      | • • • • |     |
|            | .2,2-Dichloropropane        |       | 2330      |         |     |
|            | . 1, 1-Dichloropropene      |       | 581.      | • • • • | _   |
|            | .cis-1,3-Dichloropropene    |       | 581.      |         |     |
|            | .trans-1,3-Dichloropropen   |       | 581.      |         |     |
|            | . Ethylbenzene              |       | 56400     |         |     |
|            | .Hexachlorobutadiene        |       | 581.      |         |     |
|            | . Isopropylbenzene          |       | 930.      |         | υ   |
| 99-87-6    | .4-Isopropyltoluene         |       | 11500     | · · · · |     |



2960 Foster Creighton Dr. P.O. Box 40566 Nashville, TN 37204-0566 Phone 1-615-726-0177

Sample Identification

SB9-22

Matrix: Soil % Dry Weight: 86. Units: ug/kg dry weight Lab Sample ID: 98-A127174 Date Sampled: 10/15/98 Date Received: 10/16/98

| CAS NUMBER        | ANALYTE                                                                                                                                                                                                                                                                                                                                                                                                                         | CONCENTRATION                                                                                                                                                                                                                                                                                                                                             | FLAG                                 |
|-------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|
| 75-07-2           | Methylene chloride<br>Naphthalene<br>n-Propylbenzene<br>Styrene<br>1, 1, 1, 2-Tetrachloroethane<br>1, 1, 2, 2-Tetrachloroethane<br>Tetrachloroethene<br>1, 2, 3-Trichlorobenzene<br>1, 2, 4-Trichlorobenzene<br>1, 1, 1-Trichloroethane<br>1, 1, 2-Trichloroethane<br>1, 2, 3-Trichloroethane<br>1, 2, 3-Trichloroptopane<br>1, 2, 3-Trichloroptopane<br>1, 2, 4-Trimethylbenzene<br>1, 3, 5-Trimethylbenzene<br>Vinyl chloride | 28100         233.         233.         347.         233.         347.         233.         233.         233.         233.         233.         233.         233.         233.         233.         233.         233.         233.         233.         233.         233.         233.         233.         1140         2330         84300         55600 | <br><br><br><br><br><br><br><br><br> |
| 75-27-4 I<br>6615 | Bromodichloromethane<br>o-Xylene<br>m,p-Xylene<br>Trichlorofluoromethane                                                                                                                                                                                                                                                                                                                                                        | 465<br>1050<br>120000                                                                                                                                                                                                                                                                                                                                     | υ                                    |



2960 Foster Creighton Dr. P.O. Box 40566 Nashville, TN 37204-0566 Phone 1-615-726-0177

Matrix: Soil % Dry Weight: 86. Units: ug/kg dry weight Dilution Factor: 500. Analysis Method: SW8260B Delivery Group: 117229 Instrument: HP-2 Sample Identification

SB9-22

Lab Sample ID: 98-A127174 Date Sampled: 10/15/98 Date Received: 10/16/98 Analysis Date: 10/23/98 Analysis Time: 22:50 Sample GC Group: 4754

#### FORM I

| CAS NUMBER | ANALYTE                     | CONCENTRATIO | IN FLAG |
|------------|-----------------------------|--------------|---------|
| 144-10-5   | .1-Chlorohexane             | 1450         | U       |
|            | .Benzene                    |              |         |
|            | .Bromobenzene               |              | U       |
|            | .Bromochloromethane         |              | U       |
|            | . Bromoform                 |              | U       |
|            | .Bromomethane               |              | U       |
|            | .n-Butylbenzene             |              | U       |
|            | .sec-Butylbenzene           |              | U       |
|            | .t-Butylbenzene             |              | U       |
|            | .Carbon tetrachloride       |              | U       |
|            | . Chlorobenzene             |              | U       |
|            | . Chloroethane              |              | U       |
|            | . Chloroform                |              | U       |
|            | . Chloromethane             |              | U       |
|            | .2-Chlorotoluene            |              | U       |
|            | .4-Chlorotoluene            |              | U       |
|            | .1,2-Dibromo-3-chloroprop   |              | U       |
|            | . Dibromochloromethane      |              | U       |
| 74-95-3    | . 1, 2-Dibromoethane        | 1740         | U       |
| 74-95-3    | .Dibromomethane             | 5810         | U       |
| 95-50-1    | . 1, 2-Dichlorobenzene      | 1160         | U       |
|            | . 1,3-Dichlorobenzene       |              | U       |
| 106-46-7   | .1,4-Dichlorobenzene        | 1160         | U       |
| 75-71-8    | .Dichlorodifluoromethane    | 2910         | U       |
| 75-34-3    | . 1, 1-Dichloroethane       | 1160         | U       |
| 107-06-2   | . 1, 2-Dichloroethane       | 1740         | U       |
| 75-35-4    | . 1, 1-Dichloroethene       | 3490         | U       |
| 156-57-2   | .cis-1,2-Dichloroethene .   | 3490         | U       |
| 156-60-5   | . trans-1, 2-Dichloroethene | 1740         | U       |
| 78-87-5    | . 1, 2-Dichloropropane      | 1160         | U       |
| 142-28-9   | .1,3-Dichloropropane        | 1160         | U       |
| 594-20-7   | .2,2-Dichloropropane        |              | U       |
| 563-58-6   | . 1, 1-Dichloropropene      |              | U       |
| 10061-01-5 | .cis-1,3-Dichloropropene    |              | U       |
| 10061-02-6 | . trans-1, 3-Dichloropropen | ne. 2910     | U       |
| 100-41-4   | Ethylbenzene                |              |         |
| 87-68-3    | .Hexachlorobutadiene        | 2910         | U       |
|            | . Isopropylbenzene          |              | U       |
|            | .4-Isopropyltoluene         |              |         |

00014:



2960 Foster Creighton Dr. P.O. Box 40566 Nashville, TN 37204-0566 Phone 1-615-726-0177

Sample Identification

SB9-22

Matrix: Soil % Dry Weight: 86. Units: ug/kg dry weight Lab Sample ID: 98-A127174 Date Sampled: 10/15/98 Date Received: 10/16/98

| CAS NUMBER | ANALYTE                       | CONCI | ENTRATIO | A F | LAG |
|------------|-------------------------------|-------|----------|-----|-----|
| 75-09-2    | .Methylene chloride           | • •   | 1160     |     | υ   |
|            | .Naphthalene                  |       | 23300    |     |     |
|            | .n-Propylbenzene              |       | 1160     |     | υ   |
| 100-42-5   | .Styrene                      | ••    | 1160     |     | υ   |
| 630-20-6   | . 1, 1, 1, 2-Tetrachloroethan | e.    | 1740     |     | υ   |
| 79-34-5    | . 1, 1, 2, 2-Tetrachloroethan | e .   | 1160     |     | υ   |
|            | . Tetrachloroethene           |       | 4070     |     | υ   |
|            | . Toluene                     |       | 2910     |     | υ   |
|            | . 1, 2, 3-Trichlorobenzene    |       | 1160     |     | υ   |
|            | . 1, 2, 4-Trichlorobenzene    |       | 1160     |     | υ   |
|            | . 1, 1, 1-Trichloroethane     |       | 2330     |     | υ   |
|            | . 1, 1, 2-Trichloroethane     |       | 2910     |     | υ   |
|            | . Trichloroethene             |       | 5810     |     | υ   |
|            | . 1, 2, 3-Trichloropropane    |       | 11600    |     | υ   |
|            | . 1, 2, 4-Trimethylbenzene    |       | 160000   |     | E   |
| 108-67-8   | . 1, 3, 5-Trimethylbenzene    | ••    | 61600    |     |     |
| 75-01-4    | .Vinyl chloride               |       | 5230     |     | υ   |
| 75-27-4    | .Bromodichloromethane         |       | 2330     |     | υ   |
|            | . o-Xylene                    |       | 2910     |     | υ   |
|            | .m,p-Xylene                   |       | 262000   |     | E   |
| 75-69-4    | . Trichlorofluoromethane      |       | 2330     |     | υ   |
|            |                               |       |          |     |     |



2960 Foster Creighton Dr. P.O. Box 40566 Nashville, TN 37204-0566 Phone 1-615-726-0177

Matrix: Soil % Dry Weight: 86. Units: ug/kg dry weight Dilution Factor: 1000 Analysis Method: SW8260B Delivery Group: 117229 Instrument: HP-2 Sample Identification

SB9-22

Lab Sample ID: 98-A127174 Date Sampled: 10/15/98 Date Received: 10/16/98 Analysis Date: 10/22/98 Analysis Time: 23:26 Sample QC Group: 4754

#### FORM I

| CAS NUMBER | ANALYTE                     | CONCE | NTRATION | FL      | AG |
|------------|-----------------------------|-------|----------|---------|----|
| 144-10-5   | .1-Chlorohexame             |       | 2910     |         | υ  |
|            | .Benzene                    |       | 5810     |         |    |
|            | .Bromobenzene               |       |          |         | υ  |
|            | .Bromochloromethane         |       |          |         | υ  |
| 75-25-2    | . Bromoform                 |       | 6980     |         | υ  |
| 74-83-9    | .Bromomethane               |       |          |         | υ  |
|            | .n-Butylbenzene             |       | 5810     |         | υ  |
| 135-98-8   | .sec-Butylbenzene           | •••   |          |         | υ  |
| 98-06-6    | .t-Butylbenzene             | •••   | 8140     |         | υ  |
| 56-23-5    | .Carbon tetrachloride       | ••    | 11600    |         | υ  |
| 108-90-7   | .Chlorobenzene              | •••   | 2330     |         | υ  |
|            | .Chloroethane               |       |          |         | υ  |
| 67-66-3    | . Chloroform                |       |          |         | υ  |
| 74-87-3    | .Chloromethane              |       | 8140     |         | υ  |
|            | .2-Chlorotoluene            |       |          |         | υ  |
|            | .4-Chlorotoluene            |       | 3490     |         | υ  |
|            | . 1,2-Dibromo-3-chloroprop  |       |          |         | υ  |
|            | . Dibromochloromethane      |       | 3490     |         | υ  |
|            | . 1, 2-Dibromoethane        |       | 3490     | • • • • | υ  |
|            | .Dibromomethane             |       |          |         | υ  |
|            | .1,2-Dichlorobenzene        |       | 2330     |         | υ  |
|            | . 1,3-Dichlorobenzene       |       |          |         | υ  |
|            | . 1,4-Dichlorobenzene       |       | 2330     |         | υ  |
| 75-71-8    | .Dichlorodifluoromethane    |       | 5810     |         | υ  |
| 75-34-3    | .1,1-Dichloroethane         | • • • | 2330     |         | υ  |
|            | . 1, 2-Dichloroethane       |       | 3490     |         | υ  |
|            | . 1, 1-Dichloroethene       |       | 6980     |         | υ  |
|            | .cis-1,2-Dichloroethene .   |       | 6980     |         | υ  |
|            | . trans-1, 2-Dichloroethene |       | 3490     | • • • • | υ  |
|            | .1,2-Dichloropropane        |       | 2330     |         | υ  |
|            | .1,3-Dichloropropane        |       | 2330     |         | υ  |
|            | . 2, 2-Dichloropropane      |       | 23300    | · · · · | υ  |
|            | . 1, 1-Dichloropropene      |       | 5810     |         | υ  |
|            | .cis-1,3-Dichloropropene    |       | 5810     |         | υ  |
| 10061-02-6 | . trans-1, 3-Dichloropropen | e.    | 5810     |         | υ  |
| 100-41-4   | .Ethylbenzene               |       | 75600    |         |    |
|            | .Hexachlorobutadiene        |       | 5810     |         | υ  |
|            | . Isopropylbenzene          |       | 9300     |         | υ  |
| 99-87-6    | .4-Isopropyltoluene         |       | 14000    | • • • • |    |



2960 Foster Creighton Dr. P.O. Box 40566 Nashville, TN 37204-0566 Phone 1-615-726-0177 Sample Identification

SE9-22

Matrix: Soil % Dry Weight: 86. Units: ug/kg dry weight Lab Sample ID: 98-A127174 Date Sampled: 10/15/98 Date Received: 10/16/98

| • | CAS NUMBER                                                                                                                                                                                     | ANALYTE                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CONCENTRATIO                                                                                                                                                                                                                                                                                                                                                 | N                                                                                                      | FL                                    | .AG |
|---|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|---------------------------------------|-----|
| • | 75-09-2<br>91-20-3<br>103-65-1<br>100-42-5<br>630-20-6<br>79-34-5<br>127-18-4<br>108-88-3<br>87-61-6<br>120-82-1<br>71-55-6<br>79-00-5<br>79-01-6<br>79-01-6<br>96-18-4<br>108-67-8<br>75-01-4 | ANALYTE<br>Methylene chloride<br>Naphthalene<br>n-Propylbenzene<br>Styrene<br>1, 1, 1, 2-Tetrachloroethane<br>1, 1, 2, 2-Tetrachloroethane<br>Tetrachloroethene<br>Toluene<br>1, 2, 3-Trichlorobenzene<br>1, 2, 4-Trichlorobenzene<br>1, 1, 1-Trichloroethane<br>1, 1, 2-Trichloroethane<br>1, 2, 3-Trichloropethane<br>1, 2, 3-Trichloropethane<br>1, 2, 3-Trichloropethane<br>1, 2, 3-Trichloropethane<br>1, 2, 4-Trimethylbenzene<br>1, 3, 5-Trimethylbenzene<br>Vinyl chloride | 2330          27900          2330          2330          2330          2330          8140          5810          2330          2330          2330          2330          2330          2330          5810          5810          5810          23300          4650          5810          11600          23300          193000          74400          10500 | N<br>· · · ·<br>· · · | · · · · · · · · · · · · · · · · · · · |     |
|   | 6616                                                                                                                                                                                           | .o-Xylene                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                              | ••••                                                                                                   | •                                     | _   |
|   |                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                              |                                                                                                        |                                       |     |



2960 Foster Creighton Dr. P.O. Box 40566 Nashville, TN 37204-0566 Phone 1-615-726-0177

Matrix: Soil % Dry Weight: 100 Units: UG/KG Dilution Factor: 1 Analysis Method: SW8260B Delivery Group: 117229 Instrument: HP-2 Sample Identification

BLANK

Lab Sample ID: BLANK Date Sampled: 10/14/98 Date Received: 10/16/98 Analysis Date: 10/19/98 Analysis Time: 9:24 Sample QC Group: 4754

#### FORM I

| CAS NUMBER | ANALYTE                     | CONC | ENTRAT | ION     | FLAG |
|------------|-----------------------------|------|--------|---------|------|
| 71-43-2    | .Benzene                    |      | 2.0    |         | U    |
|            | .Bromobenzene               |      | 2.0    |         | U    |
| 124-48-1   | .Bromochloromethane         |      | 2.0    |         | U    |
|            | . Bromoform                 |      | 6.0    |         | U    |
|            | .Bromomethane               |      | 5.0    |         | U    |
|            | .n-Butylbenzene             |      | 5.0    |         | U    |
|            | .sec-Butylbenzene           |      | 7.0    |         | U    |
|            | .t-Butylbenzene             |      | 7. O   |         | U    |
|            | .Carbon tetrachloride       |      | 10.0   |         | U    |
|            | . Chlorobenzene             |      | 2.0    |         | U    |
|            | .Chloroethane               |      | 5. O   |         | U    |
|            | .Chloroform                 |      | 2.0    |         | U    |
|            | . Chloromethane             |      | 7.0    |         | U    |
|            | .2-Chlorotoluene            |      | 2.0    |         | U    |
|            | .4-Chlorotoluene            |      | З. О   |         | U    |
|            | . 1, 2-Dibromo-3-chloroprop |      | 1.10   |         | U    |
|            | .Dibromochloromethane       |      | З. О   |         | U    |
| 74-95-3    | .1,2-Dibromoethane          |      | З. О   |         | U    |
| 74-95-3    | . Dibromomethane            |      | 10.0   |         | U    |
| 95-50-1    | .1,2-Dichlorobenzene        |      | 2.0    |         | U    |
| 541-73-1   | .1,3-Dichlorobenzene        |      | 6.0    |         | U    |
| 106-46-7   | .1,4-Dichlorobenzene        |      | 2.0    |         | U    |
| 75-71-8    | .Dichlorodifluoromethane    |      | 5. O   |         | U    |
| 75-34-3    | .1,1-Dichloroethane         |      | 2.0    |         | U    |
|            | .1,2-Dichloroethane         |      | Э. О   |         | U    |
| 75-35-4    | .1,1-Dichloroethene         |      | 6.0    |         | υ    |
|            | .cis-1,2-Dichloroethene .   |      | 6.0    |         | U    |
|            | .trans-1,2-Dichloroethene   |      | З. О   |         | U    |
| 78-87-5    | .1,2-Dichloropropane        |      | 2.0    |         | U    |
| 142-28-9   | .1,3-Dichloropropane        |      | 2.0    |         | U    |
|            | .2,2-Dichloropropane        |      | 20.0   |         | U    |
|            | .1,1-Dichloropropene        |      | 5.0    |         | U    |
|            | .cis-1,3-Dichloropropene    |      | 5.0    |         | U    |
| 10061-02-6 | .trans-1,3-Dichloropropen   | ie.  | 5.0    |         | U    |
|            | .Ethylbenzene               |      | З. О   |         | U    |
|            | .Hexachlorobutadiene        |      | 5.0    | • • • • | U    |
|            | . Isopropylbenzene          |      | 8. O   |         | U    |
| 99-87-6    | .4-Isopropyltoluene         |      | 6.0    |         | U    |
| 75-09-2    | .Methylene chloride         |      | 21.0   |         |      |



2960 Foster Creighton Dr. P.O. Box 40566 Nashville, TN 37204-0566 Phone 1-615-726-0177

Matrix: Soil % Dry Weight: 100 Units: UG/KG Sample Identification

BLANK

Lab Sample ID: BLANK Date Sampled: 10/14/98 Date Received: 10/16/98

| CAS NUMBER | ANALYTE                       | CONCENTRA | TION       | FLAG |
|------------|-------------------------------|-----------|------------|------|
|            | .Naphthalene                  |           |            |      |
|            | .n-Propylbenzene              |           |            |      |
|            | .Styrene                      |           |            |      |
|            | .1,1,1,2-Tetrachloroethan     |           |            |      |
| 79-34-5    | . 1, 1, 2, 2-Tetrachloroethan | e. 2.0    |            | U    |
| 127-18-4   | .Tetrachloroethene            | 7.0       |            | U    |
| 108-88-3   | . Toluene                     | 5.0       |            | U    |
| 87-61-6    | .1,2,3-Trichlorobenzene .     | 2.0       | <b>.</b> . | U    |
|            | .1,2,4-Trichlorobenzene .     |           |            | U    |
|            | .1,1,1-Trichloroethane        |           |            | U    |
|            | .1,1,2-Trichloroethane        |           |            | U    |
|            | . Trichloroethene             |           | ·          | U    |
|            | .1,2,3-Trichloropropane .     |           |            | U    |
|            | .1,2,4-Trimethylbenzene .     |           |            | U    |
|            | . 1, 3, 5-Trimethylbenzene .  |           |            | U    |
|            | .Vinyl chloride               |           |            | U    |
|            | .Bromodichloromethane         |           |            | U    |
|            | .o-Xylene                     |           |            | U    |
|            | .m,p-Xylene                   | •••       |            |      |
|            | . Trichlorofluoromethane .    | •••       |            |      |
|            |                               |           |            | -    |

#### 2B

# SOIL VOLATILE SYSTEM MONITORING COMPOUND RECOVERY

| Lab Name:     | SPECIALIZED | ASSAYS    | Contract: |          |        |
|---------------|-------------|-----------|-----------|----------|--------|
| •             |             | Case No.: | SAS No.:  | SDG No.: | 117229 |
| Level: (low/r | med) LOW    |           |           |          |        |

| Γ  | EPA                                                                                                            | SMC1 | SMC2 | SMC3 | тот |
|----|----------------------------------------------------------------------------------------------------------------|------|------|------|-----|
|    | SAMPLE NO.                                                                                                     | #    | #    | #    | OUT |
| 01 | VBLK02                                                                                                         | 112  | 107  | 104  | 0   |
| 02 | SB25-23                                                                                                        | 98   | 101  | 69   | 0   |
| 02 | SB5-23                                                                                                         | 96   | 100  | 69   | 0   |
| 03 | SB18A-20                                                                                                       | 96   | 102  | 92   | 0   |
| 05 | SB7-20                                                                                                         | 97   | 99   | 77   | 0   |
| 06 | SB8-21                                                                                                         | 98   | 103  | 96   | 0   |
| 07 | VBLK03                                                                                                         | 112  | 98   | 105  | 0   |
| 08 | SB6-22                                                                                                         | 107  | 104  | 86   | 0   |
| 09 | SB9-14                                                                                                         | 102  | 102  | 100  | 0   |
| 10 | SB9-22                                                                                                         | 96   | 99   | 111  | 0   |
| 11 | VBLK04                                                                                                         | 105  | 101  | 106  | 0   |
| 12 |                                                                                                                | 82   | 97   | 91   | 0   |
| 13 |                                                                                                                | 83   | 96   | 90   | 0   |
| 14 | the second second second second second second second second second second second second second second second s | 82   | 98   | 92   | 0   |
| 15 |                                                                                                                | 113  | 100  | 102  | 0   |
| 16 |                                                                                                                | 98   | 101  | 97   | 0   |
| 17 |                                                                                                                | 100  | 102  | 98   | 0   |
| 18 |                                                                                                                | 105  | 104  | 105  | 0   |
| 19 |                                                                                                                | 103  | 101  | 104  | 0   |
| 20 |                                                                                                                | 107  | 102  | 105  | 0   |
|    |                                                                                                                |      |      |      |     |

|      |       |                     | QC LIMITS |
|------|-------|---------------------|-----------|
| SMC1 | = 1,2 | 2-Dichloroethane-d4 | (62-147)  |
| SMC2 | = To  | luene-d8            | (84-117)  |
| SMC3 | = Br  | omofluorobenzene    | (64-126)  |
|      |       |                     |           |

# Column to be used to flag recovery values

\* Values outside of contract required QC limits

D System Monitoring Compound diluted out

#### FORM 3B

# · VOLATILE MATRIX SPIKE/MATRIX SPIKE DUPLICATE RECOVERY

Lao: Specialized Assays, Inc.

Project: WURTSMITH BIOVENTING

Matrix Spike Sample: SB9-14

SDG: 117229

QC Group: 4754

| Сотроила                   | Spike<br>Added<br> | Sample<br>Conc | Spike<br>Conc<br> | % Rec | QC<br>Limits<br> |
|----------------------------|--------------------|----------------|-------------------|-------|------------------|
| Benzene                    | 2580               | 0.0            | 2940              | 114   | 58 - 135         |
| Ch <del>lor</del> obenzene | 2580               | 0.0            | 2940              | 114   | 54 - 136         |
| 1,1-Dichloroëthene         | 2580               | 0.0            | 3200              | 124   | 58 - 138         |
| Toluene                    | 2580               | 0.0            | 2780              | 108   | 56 - 135         |
| Tricnloroetnene            | 2580               | 0.0            | 2780              | 103   | 52 - 143         |

| Compound<br>       | Spike<br>Adcea | MSD<br>Conc<br> | % Rec - | RPD | RPD<br>Limit | Recovery<br>Limits |
|--------------------|----------------|-----------------|---------|-----|--------------|--------------------|
| Benzene            | 2580           | 3510            | 136∓    |     | 17           | 58 - 135           |
| Chloropenzene      | 2580           | 3400            | 132     |     | 14           | 54 - 136           |
| 1,1-Dichloroetnene | 2580           | 3510            | 136     |     | 19           | 58 - 138           |
| Toluene            | 2580           | 3200            | 124     |     | 18           | 56 - 135           |
| Trichloroethene    | 2580           | 3200            | 124     |     | 15           | 52 - 143           |

Concentration Units: ug/kg

RPD: 2 out of 5 outside QC limits. Spike Recoveries: 1 out of 10 outside QC limits.

# FORM 3Ba

# VOLATILE LABORATORY CONTROL RECOVERY

Lab: Specialized Assays, Inc.

Project: WURTSMITH BIOVENTING

SDG: 117229

QC Group: 4754

| Сотроила                                                                                                                                                                                                                                                                                                                                           | Known<br>Value                                                                      | Conc                                                                                         | % Rec                                                                                             | QC<br>Limits                                                                                                                                                           |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Benzene<br>Bromobenzene<br>Bromochlorometnane<br>Bromoform<br>Bromometnane<br>n-Butylbenzene<br>sec-Butylbenzene<br>t-Butylbenzene<br>Carbon tetrachloride<br>Chlorobenzene<br>Chlorobenzene<br>Chlorotonm<br>Chloroform<br>Chlorotoluene<br>4-Chlorotoluene                                                                                       | Value<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50 | 61<br>54<br>47<br>54<br>42<br>47<br>55<br>59<br>44<br>55<br>59<br>45<br>54<br>95<br>52<br>52 | 122<br>108<br>74<br>108<br>84<br>74<br>116<br>110<br>118<br>125<br>110<br>128<br>78<br>110<br>104 | Limits<br>39-151<br>74-122<br>68-134<br>31-144<br>51-135<br>65-127<br>68-129<br>68-129<br>68-128<br>53-144<br>62-130<br>56-138<br>71-132<br>65-134<br>72-123<br>70-123 |
| 1,2-Dibromo-3-chloropropane<br>Dibromochloromethane<br>1,2-Dibromoethane<br>1,2-Dichlorobenzene<br>1,3-Dichlorobenzene<br>1,4-Dichlorobenzene<br>Dichlorgdifluoromethane<br>1,1-Dichloroethane<br>1,2-Dichloroethane<br>1,2-Dichloroethane<br>1,1-Dichloroethane<br>1,1-Dichloroethane                                                             | = 50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50              | 39<br>58<br>54<br>46<br>45<br>45<br>45<br>45<br>44<br>54<br>54<br>54                         | 78<br>116<br>108<br>98<br>92<br>90<br>90<br>128<br>128<br>110<br>125<br>128                       | 70-130<br>41-133<br>47-136<br>60-141<br>65-128<br>65-128<br>66-129<br>50-140<br>70-132<br>58-135<br>69-130<br>59-140                                                   |
| trans-1,2-Dichloroethene<br>1,2-Dichloropropane<br>2,2-Dichloropropane<br>2,2-Dichloropropane<br>1,1-Dichloropropene<br>cis-1,3-Dichloropropene<br>trans-1,3-Dichloropropene<br>trans-1,3-Dichloropropene<br>Ethylpenzene<br>Hexachlorobutadiene<br>Isopropylbenzene<br>4-Isopropylbenzene<br>Methylene chlorice<br>Naphthalene<br>n-Propylbenzene | 50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50                | 57<br>63<br>52<br>46<br>53<br>54<br>51<br>64<br>60<br>51<br>39<br>50<br>45<br>58             | 114<br>126<br>104<br>92<br>106<br>108<br>102<br>128<br>120<br>102<br>78<br>100<br>90<br>116       | 72-128<br>45-149<br>58-138<br>43-146<br>56-132<br>69-130<br>56-126<br>61-129<br>59-138<br>70-127<br>70-127<br>68-142<br>54-146<br>67-128                               |

\_

#### FORM 3Ba

# VOLATILE LABORATORY CONTROL RECOVERY

Project: WURTSMITH BIOVENTING Lab: Specialized Assays, Inc. 65-128 120 60 50 Styrene 53-130 106 50 53 1,1,1,2-Tetracoloroethane 37-149 54 108 50 1,1,2,2-Tetrachloroetmane 124 55-128 62 50 Tetrachloroethene 65-131 63 126 50 Toiuene 55-137 70 35 50 1,2,3-Tricnlorobenzene 48-141 52 104 1,2,4-Tricniorobenzene 50 60-136 112 1,1,1-Trichloroethane 56 50 56-137 53 106 501,1,2-Trichloroethane 61-141 124 62 50 Trichloroetnene 39-146 100 50 501,2,3-Trichloropropane 72-126 1,2,4-Trimethylbenzene 50 55 110 22-125 58 116 50 1,3,5-Trimethyloenzene 57-138 116 58 Vinyl chloride 50 60-133 125 50 63 Bromodichloromethane 64-126 59 118 50 o-Xylene 59-131 129 100 129 m,o-Xylene 56-142 50 53 106 Trichlorofluoromethane

Concentration Units: ug/kg

Recoveries: 0 out of 59 outside QC limits.



SPECIALIZED ASSAYS INC. • 2960 Foster Creighton Dr. • P.O. Box 40566 • Nashville, Tennessee 37204-0566

615-726-0177 • 1-800-765-0980 • Fax 615-726-3404

#### CASE NARRATIVE

Client: Parsons Engineering Science Attn: Lynnea Peterson 1700 Broadway, Suite 900 Denver, CO 80290

Client Project: WURTSMITH BIOVENTING

Matrix: SOIL/WATER

Number samples: 12/1

Laboratory Project: 117250

Date Received: 10/17/98

Date Collected: 10/15/98

Sample Receipt Notes: All samples were received in good condition, properly preserved. All analyses were performed within method specified holding times.

QA/QC Summary:

Volatile Organic Method 8260B – Water:

All surrogate, matrix spikes, matrix spike duplicate, and laboratory control sample recoveries for this analytical batch (#4751) were within acceptable quality control limits. The sample used for MS/MSD analysis for this analytical batch was not part of this sample delivery group. The single water sample in this batch is a trip blank, and is reported as not detected for all analytes. Quantitation on unknown concentrations were determined from the initial calibration curve using the average response factor when the % RSD was less than or equal to 15%. All other analytes were calculated using linear regression.

Volatile Organic Method 8260B - Soil:

All surrogate, matrix spike, spike duplicate, and laboratory control sample recoveries were within acceptable quality control limits. The sample used for MS/MSD analysis for this analytical batch was SB9-15-10-12. Due to sample matrix issues, several soil samples in this batch (#4761) required dilution for analysis. Quantitation on unknown concentrations were determined from the initial calibration curve using the average response factor when the % RSD was less than or equal to 15%. All other analytes were calculated using linear regression.

rnny

Johnny A. Mitchell Director of Technical Services Specialized Assays, Inc.

# SPECIALIZED ASSAYS ENVIRONMENTAL

REFERRING CLIENT

Page 10f2

# 7A-059011

2960 Foster Creighton Drive Nashville, TN 37204 615-726-0177, 800-765-0980 FAX 615/726-3404

| Account: 8185<br>Parsons Engineering/AFCEE Exte<br>Doug Scott<br>1700 Broadway Ste 900 |          |               |                |                                |             |         |      |              |         |                    | FAX 615/726-340 | 14             |
|----------------------------------------------------------------------------------------|----------|---------------|----------------|--------------------------------|-------------|---------|------|--------------|---------|--------------------|-----------------|----------------|
| 1700 Br<br>Denver,<br>Ph: 303                                                          |          |               |                |                                | 31-8208     |         | S    | рес          | ial     | ized Assa          | ays: (800       | ) 765-098      |
| Ph: 303<br>CONTROL NUMBER (                                                            | FOR LA   | B USE ON      | ily)           | 1172                           |             | PROJECT | 8    | 7 <b>(</b> . | 69      | 120                | P.O. #          |                |
| ERS (Signature-Please Pri                                                              | -        |               |                |                                |             | PROJECT | n H  | ME<br>SMI    | Н       | Bidvent            | -ing            |                |
| LAB USE ONLY                                                                           |          |               | DESCRIPTI      |                                | DATE        | TIME    | COMP | GRAB         | OF CONT |                    | ANALYSIS REQUE  | ŚTĖD           |
| A127305                                                                                | SBI      | SAMPLE<br>3-2 |                |                                | 0/16/98     | 0915    |      | ×            | 3       | 8260               | )               |                |
| -<br>3 <u>; 27306</u> -                                                                | SB       | 11-7          | 1              |                                | 10/16/98    | 0432    |      | ×            | 3       | . (1               |                 |                |
| P4127807                                                                               | <u> </u> | 16-8          | 3              |                                | 10/15/98    | 1620    |      | ×            | 3       | 11                 |                 |                |
| -0127308                                                                               | SB       | 16-2          | 71             |                                | 10/15/98    | 1630    |      | ×            | 3       |                    |                 |                |
| -4127209                                                                               | SE       | 314-          | -21            |                                | 10/15/98    | 1750    |      | ~            | 3       | 1                  |                 |                |
| 3-A127310                                                                              | St       | 326           | ,-21           |                                | 10/15/98    | - 1640  | /    | +            | - 3     | (                  | (               |                |
| 3- A127311                                                                             | S        | B 14          | -12            |                                | 10/15/98    | 1740    | 5    | *            | - 3     | (                  |                 |                |
| L-A127312                                                                              | 5        | BIZ           | -22            |                                | 10/15/8     | 8 144   | 0    | *            | - 3     | . (                | 1               |                |
| -<br>2-4127313                                                                         | '<br>ک   | B17           | -26            | *                              | 10/15/98    | 140     | ,    | د            | < 3     | 3 - (              |                 |                |
| <br>3-A1273)4                                                                          | S        | BIS           | 5-22           |                                | 10/15/98    | 8 153   | 0    |              |         | for Laboratory by: | (               | Date / Tin     |
| Tuished 19: (Signature)                                                                |          | 14/16/98      | / Time<br>13CD | Received by: (<br>Received by: |             |         |      |              | emarks  | IRK.fre            | →               | 10/17/18 9     |
| 1 by: (Signature)                                                                      |          | Date          | / Time         |                                |             |         |      |              |         | ·                  | 42              |                |
| 'Signature)                                                                            |          | Date          | / Time         | Received by:                   | (Signature) |         |      |              |         |                    | 70              |                |
| (אני)                                                                                  |          | Date          | : / Time       | Received by:                   | (Signature) |         |      |              | SAI I   | Project #:         | 0099            | 01             |
| -<br>                                                                                  |          | e in co       | mpleting       | , the chain                    | ı of custod | y form  | ple  | ase          | refei   | to the instru      | ctions found    | on the opposit |

| -<br>SPE<br>E                            | SPECIALIZED ASSAYS<br>ENVIRONMENTAL                |                   |                                        |                  |           | e    | 2    | ø       | + 2                | 7A- 0                                                                    | 59012                                 |
|------------------------------------------|----------------------------------------------------|-------------------|----------------------------------------|------------------|-----------|------|------|---------|--------------------|--------------------------------------------------------------------------|---------------------------------------|
| - Áccoun<br>Parson<br>Doug S<br>- 1700 B | EFERRING<br>t: 8185<br>s Engine<br>cott<br>roadway | ering/<br>Ste 90  | AFCEE                                  | Exte<br>831-8208 |           |      |      | ia      | lized Ass          | 2960 Foster Crei<br>Nashville, TN 3<br>615-726-0177, 8<br>FAX 615/726-3- | 7204<br>00-765-0980                   |
| CONTROL NUMBER                           |                                                    |                   |                                        | 7250             | I PROJECT |      |      |         | 69120              | P.O. #                                                                   |                                       |
| S (Signature-Please I                    | 2<br>Print)                                        |                   | ((                                     |                  |           | _    | _    | _       | 4 Bisver           |                                                                          | · · · · · · · · · · · · · · · · · · · |
| AB USE ONLY<br>ACC#                      |                                                    | LE DESCRIPT       |                                        | DATE             | TIME      | COMP | GRAB | OF CONT |                    | ANALYSIS REQUI                                                           |                                       |
| ACC#                                     | SB15                                               |                   | ······································ | 10/15/48         | 1520      |      |      | 3       | 8260               | 7                                                                        |                                       |
| -                                        | 5815-                                              | -10-12            | MS                                     | 10/15/98         | 1520      |      | *    | 3       | <u>ر</u> د<br>     | MS                                                                       |                                       |
|                                          | SB15-                                              | 10-12             | HSD                                    | 10/15/98         | 1520      |      | ×    | 3       | u                  | MSD                                                                      |                                       |
| <u>187815</u>                            | 5810-                                              | -23               |                                        | 10/15/98         | 1310      |      | *    | 3       | 876                |                                                                          |                                       |
| 1127304<br>                              | TB-3                                               | 3                 |                                        |                  |           |      |      | 1       | 8260               | C Troy                                                                   | , Blank                               |
|                                          |                                                    |                   |                                        |                  |           |      |      |         |                    |                                                                          |                                       |
|                                          |                                                    |                   |                                        |                  |           |      |      |         |                    |                                                                          |                                       |
|                                          |                                                    |                   | 3                                      |                  |           |      |      |         | -                  |                                                                          |                                       |
| isbed by (Signature)                     | Dat                                                | e / Time          | Received by:                           | (Signature)      |           |      | Rec  | :eived  | for Laboratory by: | 1 &                                                                      | Collare / Time                        |
| ished by: (Signature)                    | D/16/198                                           | 1300<br>le / Time | Received by                            |                  |           |      | Rei  | marks   | en up              |                                                                          | 1/1/00                                |
| shed by: (Signature)                     |                                                    | te / Time         | Received by                            |                  |           |      |      |         |                    | 72                                                                       | • T                                   |
| shed by: (Signature)                     | De                                                 | te / Time         | Received by                            | : (Signature)    |           |      | s    | AI Pro  | oject #:           | 000                                                                      | 002                                   |
|                                          |                                                    |                   |                                        |                  |           |      | 、    |         | •                  | 000                                                                      |                                       |

or further assistance in completing the chain of custody form please refer to the instructions found on the opposite s

# Cooler Receipt Form

| Client: Parsons                                                                                                                                                     | leinghan .   |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| Client: <u>PARESON</u><br>Cooler Received On: <u>10/17/98</u> And Opened On: <u>10/17/98</u> By: <u>PAN KBu</u><br>                                                 |              |
| (Signature) 400                                                                                                                                                     |              |
| 1. Temperature of Cooler when opened                                                                                                                                | Yes No       |
| <ol> <li>Temperature of Cooler</li> <li>Temperature of Cooler and intact?</li></ol>                                                                                 | - ` · ·      |
| Ware the signature and date correct?                                                                                                                                | Yes No       |
| Le saners inside cooler?                                                                                                                                            | Yes No       |
| <ul> <li>5. Were custody papers properly filled out (ink, signed, etc)?</li> <li>5. Did you sign the custody papers in the appropriate place?</li></ul>             |              |
| bird of packing material was used? 00000000                                                                                                                         | Yes No       |
| <ul> <li>6. What kind of publicly</li> <li>7. Was sufficient ice used (if appropriate)?</li> <li>8. Did all bottles arrive in good condition (unbroken)?</li> </ul> | Yes No       |
|                                                                                                                                                                     |              |
| to Did all bottle labels and tags agree with custody papers?                                                                                                        | Yes No       |
| 11. Were correct bottles used for the analysis requested?<br>12. If present, were VOA vials checked for absence of air bubbles and noted if fo                      | und?(Yes) No |
| The set of sample sent in each bottle?                                                                                                                              |              |
| 14. Were correct preservatives used?                                                                                                                                | Yes) No      |
| <ul><li>15. Corrective action taken, if necessary:</li><li>a. Name of person contacted:</li></ul>                                                                   |              |
| a. Name of person confacted                                                                                                                                         | 600003       |
|                                                                                                                                                                     |              |

SENT BY:

4-16-99 ; 8:06 ; SPECIALIZED ASSAYS→

8-13038318208;# 3/ 4

٦

SPECIALIZED ASSAYS, INC.

BTX SOIL PREP LOG

PAGE NO: 501 MATRIX: la ANALYST:

TCH NO .:

|        | SAMPLEID | SAMPLE WEIGHT (g) | DILUTION   | METHOD    | WORKLIST | REMARKS |
|--------|----------|-------------------|------------|-----------|----------|---------|
| lank # |          |                   |            |           |          |         |
|        | 127305   | 5.23              |            | 5035      | 4778     |         |
|        | 127306   | 5.04              |            |           | +        |         |
|        | 12.7307  | 5.49              |            |           |          | -       |
|        | 127308   | 5,30              |            |           |          |         |
|        | 127309   | 4.86              |            |           |          |         |
|        | 127310   | 4.79              |            |           |          |         |
|        | 127311   | 5.41              |            |           |          | · · · · |
|        | 127312   | 5.20              |            |           |          |         |
|        | 1273/3   | 5.13              | : <u> </u> |           | +        |         |
|        | 127344   | 4.45              |            |           |          |         |
|        | 12735    | 4.97              |            |           |          |         |
|        | 127316   | 5.51              |            |           |          |         |
|        |          |                   |            |           | <u>د</u> |         |
|        |          |                   |            |           |          |         |
|        | -        |                   |            |           |          |         |
|        |          |                   |            |           |          |         |
|        |          |                   |            |           |          |         |
|        |          |                   |            |           |          |         |
| _      |          |                   | <u></u>    |           | ·<br>  · |         |
|        |          |                   |            |           |          |         |
|        |          |                   |            |           |          |         |
|        |          |                   |            |           |          |         |
| F Dual |          |                   |            | REAGENTS: |          |         |
| NG SOL | UTIONS:  |                   |            |           |          |         |

.

## ent by: PARSONS ES 9702448829

## 04/09/99 18:44

|  | • | - |   |   |   |  |  |
|--|---|---|---|---|---|--|--|
|  |   | _ | - | _ | _ |  |  |
|  | _ |   |   |   |   |  |  |
|  |   |   |   |   |   |  |  |
|  |   |   |   |   |   |  |  |
|  |   |   |   |   |   |  |  |
|  |   |   |   |   |   |  |  |
|  |   |   |   |   |   |  |  |

Job 320

Page 1/1

| Post-it Fax Note 7671 | Date 4/6/ mages 1 |
|-----------------------|-------------------|
| To John Ratz          | From Juhn Hall    |
| Cn./Dept.             | Co.               |
| Phone #               | Phone #           |
| Fux #                 | Гах #             |

| 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 808219104060                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| From press price of a dress nerdi-<br>cue 10/16/98 Servers fectivation than the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contracti | 303-831-8100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 44 Express Package Service reduges ander 19.05 June ander 19.05<br>Estimmenter Denney Denney [] Saffestandere 0.ersgift<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| ander                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Perkte.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | La farmet en annum mer va kan van anna merer oger og en en en<br>lætte 20ar – for en anna mer en anna merer og en anna merer en anna merer en anna merer en anna merer en anna m<br>Letterbærdette orsante offerenorsep for sommer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| <sup>EMEN</sup> 1700.Broadway Ste 900                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4b Express Freight Service Packages over 150 ths 114-3225 and 144 and 144 and 144 and 144 and 144 and 144 and 144 and 144 and 144 and 144 and 144 and 144 and 144 and 144 and 144 and 144 and 144 and 144 and 144 and 144 and 144 and 144 and 144 and 144 and 144 and 144 and 144 and 144 and 144 and 144 and 144 and 144 and 144 and 144 and 144 and 144 and 144 and 144 and 144 and 144 and 144 and 144 and 144 and 144 and 144 and 144 and 144 and 144 and 144 and 144 and 144 and 144 and 144 and 144 and 144 and 144 and 144 and 144 and 144 and 144 and 144 and 144 and 144 and 144 and 144 and 144 and 144 and 144 and 144 and 144 and 144 and 144 and 144 and 144 and 144 and 144 and 144 and 144 and 144 and 144 and 144 and 144 and 144 and 144 and 144 and 144 and 144 and 144 and 144 and 144 and 144 and 144 and 144 and 144 and 144 and 144 and 144 and 144 and 144 and 144 and 144 and 144 and 144 and 144 and 144 and 144 and 144 and 144 and 144 and 144 and 144 and 144 and 144 and 144 and 144 and 144 and 144 and 144 and 144 and 144 and 144 and 144 and 144 and 144 and 144 and 144 and 144 and 144 and 144 and 144 and 144 and 144 and 144 and 144 and 144 and 144 and 144 and 144 and 144 and 144 and 144 and 144 and 144 and 144 and 144 and 144 and 144 and 144 and 144 and 144 and 144 and 144 and 144 and 144 and 144 and 144 and 144 and 144 and 144 and 144 and 144 and 144 and 144 and 144 and 144 and 144 and 144 and 144 and 144 and 144 and 144 and 144 and 144 and 144 and 144 and 144 and 144 and 144 and 144 and 144 and 144 and 144 and 144 and 144 and 144 and 144 and 144 and 144 and 144 and 144 and 144 and 144 and 144 and 144 and 144 and 144 and 144 and 144 and 144 and 144 and 144 and 144 and 144 and 144 and 144 and 144 and 144 and 144 and 144 and 144 and 144 and 144 and 144 and 144 and 144 and 144 and 144 and 144 and 144 and 144 and 144 and 144 and 144 and 144 and 144 and 144 and 144 and 144 and 144 and 144 and 144 and 144 and 144 and 144 and 144 and 144 and 144 and 144 and 144 and 144 and 144 and 144 and 144 and 144 and 144 and 144 and 144 and 144 and      |
| tut≭a DenverC0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 80293                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 8185<br>25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | e.<br>K.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5 Packagingfadts [_fadts [_fadtsfadtsfat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 2 Sou trans Billing Ankenne transpin<br>A dorad toris charte extransion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -Obtervalte Hedr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 4 To glease print and press terdi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | aithin dangerous poets?" 🔀 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| WW SAMPLE RECEIVING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Powled 22 4:01.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | und im at 3.57.28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| WW SPECIAL LEE ASSAYS, ENVIRON                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Bill Service<br>Kernelet Marken Receiper: Third Park Creations Cont<br>to Arrestories and Contents are and Contents and Contents and Contents and Contents and Contents and Contents and Contents and Contents and Contents and Contents and Contents and Contents and Contents and Contents and Contents and Contents and Contents and Contents and Contents and Contents and Contents and Contents and Contents and Contents and Contents and Contents and Contents and Contents and Contents and Contents and Contents and Contents and Contents and Contents and Contents and Contents and Contents and Contents and Contents and Contents and Contents and Contents and Contents and Contents and Contents and Contents and Contents and Contents and Contents and Contents and Contents and Contents and Contents and Contents and Contents and Contents and Contents and Contents and Contents and Contents and Contents and Contents and Contents and Contents and Contents and Contents and Contents and Contents and Contents and Contents and Contents and Contents and Contents and Contents and Contents and Contents and Contents and Contents and Contents and Contents and Contents and Contents and Contents and Contents and Contents and Contents and Contents and Contents and Contents and Contents and Contents and Contents and Contents and Contents and Contents and Contents and Contents and Contents and Contents and Contents and Contents and Contents and Contents and Contents and Contents and Contents and Contents and Contents and Contents and Contents and Contents and Contents and Contents and Contents and Contents and Contents and Contents and Contents and Contents and Contents and Contents and Contents and Contents and Contents and Contents and Contents and Contents and Contents and Contents and Contents and Contents and Contents and Contents and Contents and Contents and Contents and Contents and Contents and Contents and Contents and Contents and Contents and Contents and Contents and Contents and Contents and Contents and Contents and Contents and Conten |
| NAMES 2960 FOSTER CRETCHTON DR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | DistfischSchwiftorm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | anter 1499-6491-6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| A NASHVILLE<br>For Structure Contion check here<br>Maid West device Location check here<br>Maid West device Jacoption Structure and Autor<br>Understorment and Autor and Autor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | An T.M. 216. 37/2016-37/15<br>Anticology of the chart here (27.21/27.24)<br>Example of the chart of the chart of the chart of the chart of the chart of the chart of the chart of the chart of the chart of the chart of the chart of the chart of the chart of the chart of the chart of the chart of the chart of the chart of the chart of the chart of the chart of the chart of the chart of the chart of the chart of the chart of the chart of the chart of the chart of the chart of the chart of the chart of the chart of the chart of the chart of the chart of the chart of the chart of the chart of the chart of the chart of the chart of the chart of the chart of the chart of the chart of the chart of the chart of the chart of the chart of the chart of the chart of the chart of the chart of the chart of the chart of the chart of the chart of the chart of the chart of the chart of the chart of the chart of the chart of the chart of the chart of the chart of the chart of the chart of the chart of the chart of the chart of the chart of the chart of the chart of the chart of the chart of the chart of the chart of the chart of the chart of the chart of the chart of the chart of the chart of the chart of the chart of the chart of the chart of the chart of the chart of the chart of the chart of the chart of the chart of the chart of the chart of the chart of the chart of the chart of the chart of the chart of the chart of the chart of the chart of the chart of the chart of the chart of the chart of the chart of the chart of the chart of the chart of the chart of the chart of the chart of the chart of the chart of the chart of the chart of the chart of the chart of the chart of the chart of the chart of the chart of the chart of the chart of the chart of the chart of the chart of the chart of the chart of the chart of the chart of the chart of the chart of the chart of the chart of the chart of the chart of the chart of the chart of the chart of the chart of the chart of the chart of the chart of the chart of the chart of the chart of | Trail Packages Forai Weight Total Declared Value Total Charges<br>Forai Packages Forai Weight & Total Declared Value (C. 1)<br>Constitution and with the constraint of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the |
| For a factor for the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second    | Instruction of the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second seco    | 8 Release Signature de service de la contra de la contra de la contra de la contra de la contra de la contra de<br>Recepción Actor de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | លាក គេលេខាន់ លោក លោក លោក ហេតុ អាយុ មាន អាយុ អាន អាយុ អាយុ អាយុ អាយុ អាយុ អាយុ អាយុ អាយុ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Questions?<br>Cell 1-800-Go-FedEx' Sticats/2029                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | WONK ON FINE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

# **VOLATILE ORGANICS - WATER**

## SUMMARY



2960 Foster Creighton Dr. P.O. Box 40566 Nashville, TN 37204-0566 Phone 1-615-726-0177

Matrix: Water pH: Units: ug/l Dilution Factor: 1. Analysis Method: SW8260B Delivery Group: 117250 Instrument: HP-8

Sample Identification

TE-3

Lab Sample ID: 98-A127304 Date Sampled:: Date Received: 10/17/98 Analysis Date: 10/21/98 Analysis Time: 1:38 Sample QC Group: 4751

### FORM I

| CAS NUMBER | ANALYTE                   | CONCENTRATION | FLAG |
|------------|---------------------------|---------------|------|
| 144-10-5   | 1-Chlorohexane            | 2.5 .         | υ    |
|            | . Benzene                 |               | U    |
|            | Bromobenzene              |               | U    |
|            | Bromochloromethane        |               | U    |
|            | Bromoform                 |               | U    |
|            | Bromomethane              |               | U    |
|            | n-Butylbenzene            |               | U    |
|            | .sec-Butylbenzene         |               | U    |
|            |                           |               |      |
|            | t-Butylbenzene            |               |      |
|            | Carbon tetrachloride      |               | U    |
|            | Chlorobenzene             |               | U    |
|            | Chloroethane              |               | U    |
|            | Chloroform                |               | U    |
|            | Chloromethane             |               | U    |
|            | 2-Chlorotoluene           |               | U    |
|            | 4-Chlorotoluene           |               | U    |
|            | 1,2-Dibromo-3-chloropropa |               | U    |
| 124-48-1   | Dibromochloromethane      | 0.5 .         | υ    |
| 74-95-3    | 1,2-Dibromoethane         | 0.6 .         | U    |
| 74-95-3    | . Dibromomethane          | 2.4 .         | υ    |
| 95-50-1    | 1,2-Dichlorobenzene       | 0.3 .         | U    |
|            | 1,3-Dichlorobenzene       |               | U    |
|            | 1,4-Dichlorobenzene       |               | U    |
|            | Dichlorodifluoromethane . |               | U    |
|            | . 1, 1-Dichloroethane     |               | U    |
|            | 1,2-Dichloroethane        |               | U    |
|            | 1,1-Dichloroethene        |               | U    |
|            | cis-1,2-Dichloroethene    |               | υ    |
|            | trans-1,2-Dichloroethene  |               | U    |
|            |                           |               |      |
|            | 1,2-Dichloropropane       | 0.4 .         | •••• |
|            | 1,3-Dichloropropane       | 0.4 .         | U    |
|            | 2,2-Dichloropropane       |               | U'   |
|            | 1,1-Dichloropropene       |               | U    |
|            | cis-1,3-Dichloropropene . |               | U    |
|            | trans-1,3-Dichloropropene |               | U    |
| 100-41-4   | Ethylbenzene              | 0.6 .         | U    |
| 87-68-3    | Hexachlorobutadiene       | 1.1 .         | U    |
| 98-82-8    | . Isopropylbenzene        | 0.5 .         |      |
|            | . 4-Isopropyltoluene      |               | U'   |
|            |                           |               | _    |

· · ·



2960 Foster Creighton Dr. P.O. Box 40566 Nashville, TN 37204-0566 Phone 1-615-726-0177

Matrix: Water pH: Units: ug/l Sample Identification

TB-3

Lab Sample ID: 98-A127304 Date Sampled:: Date Received: 10/17/98

FORM I

| CAS NUMBER | ANALYTE                        | CONCENTRA | TION FLA | ٩G |
|------------|--------------------------------|-----------|----------|----|
| 75-09-2    | .Methylene chloride            | 0.3       | L        | J  |
|            | Naphthalene                    |           | L        | J  |
|            | .n-Propylbenzene               |           | L        | J  |
|            | .Styrene                       |           | t        | j  |
| 630-20-6   | . i, Í, i, 2-Tetrachloroethane | e. 0.5    |          | J  |
|            | 1, 1, 2, 2-Tetrachloroethane   |           | 1        | J  |
|            | .Tetrachloroethene             |           | L        | J  |
|            | . Toluene                      |           | i        | J  |
|            | 1, 2, 3-Trichlorobenzene       |           | t        | J  |
|            | . 1, 2, 4-Trichlorobenzene     |           |          | J  |
|            | 1,1,1-Trichloroethane          |           | 1        | J  |
|            | . 1, 1, 2-Trichloroethane      |           | <b>L</b> | J  |
|            | . Trichloroethene              |           | t        | J  |
|            | . 1,2,3-Trichloropropane       |           | l        | J  |
|            | . 1, 2, 4-Trimethylbenzene     |           | l        | 3  |
|            | . 1, 3, 5-Trimethylbenzene     |           | <b>l</b> | J  |
|            | .Vinyl chloride                |           | 1        | 3  |
|            | .Bromodichloromethane          |           | ۱        | J  |
|            | .o-Xylene                      |           |          | J  |
|            | .m,p-Xylene                    |           | l        | J  |
|            | . Trichlorofluoromethane       |           |          | υ  |
|            |                                |           |          |    |

000007

· • • • • • • • •

2960 Foster Creighton Dr. P.O. Box 40566 Nashville, TN 37204-0566 Phone 1-615-726-0177

Matrix: Water % Dry Weight: Units: UG/L Dilution Factor: 1 Analysis Method: SW8260B Delivery Group: 117250 Instrument: HP-8 Sample Identification

BLANK

Lab Sample ID: BLANK Date Sampled: Date Received: 10/17/98 Analysis Date: 10/20/98 Analysis Time: 15:36 gmm Sample QC Group: 4751

#### FORM I

| CAS NUMBER                            | ANALYTE                     | CONCENTRATIO | N F          | LAG        |
|---------------------------------------|-----------------------------|--------------|--------------|------------|
|                                       | .Benzene                    |              |              | υ          |
|                                       | .Bromobenzene               |              | • • •        | <b>U</b> 1 |
|                                       | .Bromochloromethane         |              | • • •        | U          |
|                                       | .Bromoform                  |              | • • •        | U          |
|                                       | .Bromomethane               |              |              | υ          |
|                                       | .n-Butylbenzene             |              |              | υ          |
|                                       | .sec-Butylbenzene           |              |              | υ          |
|                                       | .t-Butylbenzene             |              | •••          | U          |
|                                       | .Carbon tetrachloride       |              |              | υ          |
|                                       | .Chlorobenzene              |              | •••          | υ          |
|                                       | .Chloroethane               |              | • • •        | υ          |
|                                       | .Chloroform                 |              |              | υ          |
|                                       | .Chloromethane              |              |              | U          |
|                                       | .2-Chlorotoluene            |              |              | υ          |
|                                       | .4-Chlorotoluene            | ·            | • • •        | υ          |
|                                       | . 1,2-Dibromo-3-chloroprop  |              |              | υ          |
|                                       | .Dibromochloromethane       |              |              | υ          |
|                                       | . 1,2-Dibromoethane         |              |              | U          |
|                                       | .Dibromomethane             |              |              | U          |
|                                       | . 1,2-Dichlorobenzene       |              |              | U          |
|                                       | . 1,3-Dichlorobenzene       |              | • • •        | U          |
|                                       | . 1,4-Dichlorobenzene       |              |              | υ          |
|                                       | . Dichlorodifluoromethane   |              |              | U          |
|                                       | . 1, 1-Dichloroethane       |              | • • •        | U          |
| · · · · · · · · · · · · · · · · · · · | .1,2-Dichloroethane         |              |              | U          |
|                                       | . 1, 1-Dichloroethene       |              |              | U          |
|                                       | .cis-1,2-Dichloroethene .   |              |              | υ          |
|                                       | . trans-1, 2-Dichloroethene |              |              | υ          |
|                                       | .1,2-Dichloropropane        |              |              | υ          |
|                                       | .1,3-Dichloropropane        |              |              | υ          |
|                                       | .2,2-Dichloropropane        |              |              | υ          |
|                                       | . 1, 1-Dichloropropene      |              |              | U          |
|                                       | .cis-1.3-Dichloropropene    |              |              | υ          |
|                                       | . trans-1,3-Dichloropropen  |              | . <b>.</b> . | U          |
|                                       | .Ethylbenzene               |              |              | υ          |
|                                       | .Hexachlorobutadiene        |              |              | U          |
|                                       | . Isopropylbenzene          |              |              | υ          |
|                                       | .4-Isopropyltoluene         |              |              | υ          |
| 75-09-2                               | .Methylene chloride         | 0.3 .        | • • •        | υ          |

2960 P.O. Nas Pho

000008

· . ·



2960 Foster Creighton Dr. P.O. Box 40566 Nashville, TN 37204-0566 Phone 1-615-726-0177

Matrix: Water % Dry Weight: Units: UG/L Sample Identification

BLANK

Lab Sample ID: BLANK Date Sampled: Date Received: 10/17/98

### FORM I

| CAS NUMBER | ANALYTE                       | CONCENTRA | TION    | FLAG |
|------------|-------------------------------|-----------|---------|------|
| 91-20-3    | .Naphthalene                  | 0.4       |         | υ    |
|            | .n-Propylbenzene              |           |         |      |
|            | .Styrene                      |           |         |      |
|            | . 1, 1, 1, 2-Tetrachloroethan |           |         | -    |
|            | . 1, 1, 2, 2-Tetrachloroethan |           |         | -    |
|            | . Tetrachloroethene           |           |         |      |
|            | . Toluene                     |           |         |      |
|            |                               |           |         | -    |
|            | . 1, 2, 3-Trichlorobenzene .  |           | • • • • | -    |
|            | . 1, 2, 4-Trichlorobenzene .  |           |         |      |
|            | . 1, 1, 1-Trichloroethane     |           |         |      |
| 79-00-5    | . 1, 1, 2-Trichloroethane     | 1.0       |         | υ    |
| 79-01-6    | .Trichloroethene              | 1.0       |         | υ    |
| 96-18-4    | . 1, 2, 3-Trichloropropane .  | 3.2       |         | U    |
| 95-63-6    | . 1, 2, 4-Trimethylbenzene .  | 1.3       |         | U    |
|            | . 1, 3, 5-Trimethylbenzene .  |           |         | υ    |
|            | .Vinyl chloride               |           |         | U    |
|            | .Bromodichloromethane         |           |         | υ    |
|            | .o-Xylene                     |           |         |      |
|            | .m,p-Xylene                   |           |         |      |
|            | . Trichlorofluoromethane .    | •         |         | Ŭ    |
| / J=07=4   | . LETCHIOLOLOLOHECUSUS .      | 0.0       |         | v    |



• •

2A

# WATER VOLATILE SYSTEM MONITORING COMPOUND RECOVERY

 Lab Name:
 SPECIALIZED ASSAYS
 Contract:

 Lab Code:
 SASSAYS
 Case No.:
 SAS No.:
 SDG No.:
 117520W

| [                    | EPA        | SMC1 | SMC2 | SMC3 | TOT |
|----------------------|------------|------|------|------|-----|
| 01<br>02<br>03<br>04 | SAMPLE NO. | #    | #    | #    | OUT |
|                      | VBLK02     | 109  | 97   | 95   | 0   |
|                      | TB-3       | 123  | 98   | 99   | 0   |
|                      | 127137MS   | 125  | 100  | 100  | 0   |
|                      | 127137MSD  | 114  | 98   | 97   | 0   |
| 05                   | CONTROL    | 115  | 98   | 97   | 0   |

|      |                         | QC LIMITS |
|------|-------------------------|-----------|
| SMC1 | = 1,2-Dichloroethane-d4 | (70-131)  |
| SMC2 | = Toluene-d8            | (83-115)  |
| SMC3 | = Bromofluorobenzene    | (73-119)  |
|      |                         |           |

# Column to be used to flag recovery values

- \* Values outside of contract required QC limits
- D System Monitoring Compound diluted out

FORM II VOA-1

FORM 3A

VOLATILE MATRIX SPIKE/MATRIX SPIKE DUPLICATE RECOVERY

Lap: Specialized Assays, Inc. Project: WURTSMITH BIDVENTING

Matrix Spike Sample:

SDG: 117250

QC Group: 4751

| Сомроилс<br>           | Spike<br>Acdec<br> | Sample<br>Conc<br> | Spike<br>Conc<br> | % Rec<br> | QC<br>Limits<br> |
|------------------------|--------------------|--------------------|-------------------|-----------|------------------|
| Benzene                | 50.0               | 0.0                | 50.0              | 100       | 58 - 135         |
| Cn <u>lo</u> robenzene | 50.0               | 0.0                | 46.0              | 92        | 56 - 126         |
| 1,1-Dicaloroethene     | 50.0               | 0.0                | 48.0              | 96        | 58 - 138         |
| Toluene                | 50.0               | 0.0                | 54.0              | 108       | 56 - 135         |
| Tricoloroetaene        | 50.0               | 0.0                | 47.0              | 94        | 52 - 143         |

| Compound           | Spike<br>Addeo | MSD<br>Conc | % Rec | RPD | RPD<br>Limit | Recovery<br>Limits |
|--------------------|----------------|-------------|-------|-----|--------------|--------------------|
|                    |                |             |       |     |              |                    |
| Benzene .          | 50.0           | 53.0        | 106   | 6   | :5           | 58 - 135           |
| Chlorocenzene      | 50.0           | 52.0        | 104   | 12  | 19           | 56 - 126           |
| 1,1-Dicaloroethene | 50.0           | 51.0        | 102   | 6   | 16           | 58 - 138           |
| Toluene            | 50.0           | 59.0        | 118   | 7   | 20           | 56 - 135           |
| Tricaloroetaeae    | 50.0           | 54.0        | 108   | 14  | 22           | 52 - 143           |

Concentration Units: ug/1

(

RPD: O out of 5 outside QC limits. Spike Recoveries: O out of 10 outside QC limits.

000011

 $\sim 10^{-1}$ 

## FORM SAa

VOLATILE LABORATORY CONTROL RECOVERY

Lap: Specialized Assays, Inc. SDS: 117250

QC Group: 4751

96

108

100

120

58-140

70 - 147

68-138

64-154

Project: WURTSMITH BIOVENTING

|                                       | Known   |      |            | QC     |
|---------------------------------------|---------|------|------------|--------|
| Compound                              | Value   | Conc | % Rec      | Limits |
|                                       |         |      |            |        |
| Benzene                               | 50      | 56   | 112        | 73-136 |
| Bromopenzene                          | 50      | 61   | 122        | 76-138 |
| Bromochloromethane                    | 50      | 57   | 114        | 65-145 |
| Биолотора                             | 50      | 65   | 124        | 50-146 |
| Bromomethane                          | 50      | 46   | 92         | 47-143 |
| n-Butylsenzene                        | 50      | 56   | 112        | 72-142 |
| sec-Butylpenzene                      | 50      | 53   | 106        | 65-148 |
| t-Butylbenzene                        | 50      | 51   | 102        | 74-132 |
| Carbon tetrachlorice                  | 50      | 52   | 104        | 65-134 |
| Chloropenzene                         | 50      | 52   | 104        | 72-133 |
| Chloroetnane                          | 50      | 43   | 86         | 60-152 |
| Chloroform                            | 30      | 62   | 124        | 75-138 |
| Chloromethane                         | 50      | 42   | 84         | 58-152 |
| 2-Chlorotoluene                       | 50      | 58   | 116        | 75-137 |
| 4-Chlorotoluene                       | 50      | 57   | 114        | 73-137 |
| 1,2-Dipromo-3-chloropropane           | 50      | 56   | 112        | 70-130 |
| Dipromochloromethane                  | 50      | 57   | 114        | 60-141 |
| 1.2-Dioromoetaane                     | 50      | 58   | 116        | 66-142 |
| Dipromometnane                        | 50      | 60   | 120        | 70-139 |
| 1,2-Dichloropenzene                   | 50      | 53   | 106        | 72-139 |
| 1,3-Dichlorobenzene                   | 50 ,    | 53   | 106        | 72-134 |
| 1,4-Dicóloropenzene                   | 50      | 51   | 102        | 74-128 |
| Dichlorosifluoromethane               | 50      | 52   | 104        | 52-150 |
| 1,1-Dichloroethane                    | 50      | 55   | 112        | 70-142 |
| 1,2-Dichloroethane                    | 50      | 61   | 155        | 73-144 |
| 1,1-Dichloroethene                    | 50      | 50   | 100        | 68-141 |
| cis-1,2-Dichloroetnene                | 50      | 58   | 116        | 70-144 |
| trans-1,2-Dicaloroetaene              | 50      | 56   | 112        | 68-131 |
| 1,2-Dichloropropane                   | 50      | 57   | 114        | 74-140 |
| 1,3-Dichloropropane                   | 50      | 52   | 124        | 75-137 |
| 2,2-Dichloropropane                   | 50      | 53   | 106        | 58-133 |
| 1,1-Dicnloropropene                   | 50      | 56   | 112        | 70-140 |
| cis-1,3-Dichloropropene               | 50      | 58   | 116        | 69-130 |
| trans-1,3-Dicoloropropene             | 50      | 39   | 118        | 64-133 |
| Ethylpenzene                          | 50      | 56   | 112        | 71-141 |
| • • • • • • • • • • • • • • • • • • • | · · · · | A 17 | <b>D</b> / |        |

50

50

50

50

Hexachloroputaciene Isopropylpenzene

4-Isopropyltoluene

Methylene chloride

48

54

50

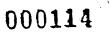
6Ŭ

## FORM 3Aa

## VOLATILE LABORATORY CONTROL RECOVERY

| Lap: Specialized Assays, Ind | =. | Project | : WURTSMI | ITH BIOVENTING |
|------------------------------|----|---------|-----------|----------------|
| Nachthalene                  | 50 | 61      | 122       | 42-158         |
| n-Propylaenzene              | 50 | 57      | 114       | 52-168         |
| Styrene                      | 50 | 54      | 108       | 68-137         |
| 1,1,1,2-Tetrachloroetname    | 50 | 54      | 108       | 67-135         |
| 1,1,2,2-Tetrachloroethane    | 50 | 63      | 126       | 64-155         |
| Tetrachloroethene            | 50 | 50      | 100       | 69-132         |
| Toiuene                      | 50 | 57      | 114       | 75-136         |
| 1.2.3-Tricnloropenzene       | 50 | 55      | 110       | 48-152         |
| 1.2.4-Trichloropenzene       | 50 | 52      | 104       | 55-142         |
| 1.1.1-Tricnloroethane        | 50 | 33      | 110       | 73-136         |
| 1,1,2-Trichloroethane        | 50 | 60      | 120       | 72-138         |
| Tri <u>ch</u> loroethene     | 50 | 50      | 100       | 73-136         |
| 1,2,3-Trichloropropane       | 50 | 64      | 128       | 53-147         |
| 1,2,4-Trimethylbenzene       | 50 | 53      | 106       | 73-138         |
| 1,3.5-Trimethylbenzene       | 50 | 54      | 108       | 74-137         |
| Vinyl coloride               | 50 | 44      | 88        | 54-154         |
| Bromogicaloromethane         | 50 | 62      | 124       | 69-136         |
| o-Xylene                     | 50 | 56      | 112       | 70-145         |
| m.o-Xylene                   | 50 | 55      | 110       | 63-156         |
| Trichlarofluoromethane       | 50 | 48      | 96        | 66-142         |

Concentration Units: ug/1


Recoveries: 0 out of 39 outside QC limits.

-

# **VOLATILE ORGANICS - SOIL**

## SUMMARY

· · · · ·





2960 Foster Creighton Dr. P.O. Box 40566 Nashville, TN 37204-0566 Phone 1-615-726-0177

Matrix: Soil % Dry Weight: 86. Units: ug/kg dry weight Dilution Factor: 100. Analysis Method: SW8260B Delivery Group: 117250 Instrument: HP-2 Sample Identification

SB13-21

Lab Sample ID: 98-A127305 Date Sampled: 10/16/98 Date Received: 10/17/98 Analysis Date: 10/18/98 Analysis Time: 11:47 Sample GC Group: 4761

### FORM I

| CAS NUMBER | ANALYTE                      | CONCENTRATION | FLAG  |
|------------|------------------------------|---------------|-------|
| 144-10-5   | .1-Chlorohexáne              | 291           | U     |
| 71-43-2    | .Benzene                     | 465           | •••   |
| 108-86-1   | .Bromobenzene                | 233           | U     |
| 124-48-1   | .Bromochloromethane          |               | U     |
| 75-25-2    | . Bromoform                  | 678           | U     |
| 74-63-9    | .Bromomethane                | 930           |       |
| 104-51-8   | .n-Butylbenzene              | 581           | U     |
| 135-98-8   | .sec-Butylbenzene            | 814           | U     |
| 98-06-6    | .t-Butylbenzene              | 814           | U     |
| 56-23-5    | .Carbon tetrachloride        | 1160 .        | U     |
| 108-90-7   | .Chlorobenzene               | 233           | U     |
| 75-00-3    | .Chloroethane                | 581           | U     |
|            | . Chloroform                 |               | U     |
|            | .Chloromethane               |               | U     |
|            | .2-Chlorotoluene             | -             | U     |
|            | .4-Chlorotoluene             |               | U     |
|            | . 1, 2-Dibromo-3-chloroprop. |               | U     |
|            | .Bibromochloromethane        |               | U     |
|            | .1,2-Dibromoethane           |               | U     |
|            | .Dibromomethane              |               | U     |
|            | .1,2-Dichlorobenzene         |               | U     |
|            | .1,3-Dichlorobenzene         |               | U     |
|            | .1,4-Dichlorobenzene         |               | U     |
|            | . Dichlorodifluoromethane    |               | U     |
|            | .1,1-Dichloroethane          |               | U     |
|            | .1,2-Dichloroethane          |               | U     |
|            | .1,1-Dichloroethene          |               | U     |
|            | .cis-1,2-Dichloroethene .    |               | U     |
|            | .trans-1,2-Dichloroethene    |               | U     |
|            | .1,2-Dichloropropane         |               | U     |
|            | .1,3-Dichloropropane         |               | U     |
|            | .2,2-Dichloropropane         |               | U     |
|            | .1,1-Dichloropropene         |               | U     |
|            | .cis-1,3-Dichloropropene     |               | U     |
|            | .trans-1,3-Dichloropropen    |               | U     |
|            | .Ethylbenzene                |               |       |
|            | .Hexachlorobutadiene         |               | U     |
|            | . Isopropylbenzene           |               | • • • |
| 99-67-6    | .4-Isopropyltoluene          | 1740 .        |       |



2960 Foster Creighton Dr. P.O. Box 40566 Nashville, TN 37204-0566 Phone 1-615-726-0177

Sample Identification

SB13-21

Matrix: Soil % Dry Weight: 86. Units: ug/kg dry weight Lab Sample ID: 98-A127305 Date Sampled: 10/16/98 Date Received: 10/17/98

| CAS NUMBER                                                                                                                                                                                                | ANALYTE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CONCENTRATION                                                                                                                                                  | FLAG |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 75-09-2<br>91-20-3<br>103-65-1<br>100-42-5<br>430-20-6<br>79-34-5<br>127-18-4<br>108-88-3<br>87-61-6<br>120-82-1<br>71-55-6<br>79-00-5<br>79-01-6<br>96-18-4<br>95-63-6<br>108-67-8<br>75-01-4<br>75-27-4 | ANALYTE<br>Methylene chloride<br>Naphthalene<br>n-Propylbenzene<br>Styrene<br>1, 1, 1, 2-Tetrachloroethane<br>1, 1, 2, 2-Tetrachloroethane<br>Tetrachloroethene<br>Toluene<br>1, 2, 3-Trichlorobenzene<br>1, 2, 4-Trichlorobenzene<br>1, 1, 1-Trichloroethane<br>Trichloroethene<br>1, 2, 3-Trichloropethane<br>1, 2, 3-Trichloropethane<br>1, 2, 3-Trichloropethane<br>1, 2, 3-Trichloropethane<br>1, 2, 3-Trichloropethane<br>1, 3, 5-Trimethylbenzene<br>Vinyl chloride<br>0-Xylene | 233.<br>3370<br>3600<br>233.<br>2. 349.<br>2. 349.<br>2. 233.<br>814.<br>581.<br>233.<br>465.<br>581.<br>1160<br>2330<br>21900<br>7790<br>1050<br>465.<br>581. | FLAG |
|                                                                                                                                                                                                           | .m,p-Xylene                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                | U    |



2960 Foster Creighton Dr. P.O. Box 40566 Nashville, TN 37204-0566 Phone 1-615-726-0177

Matrix: Soil % Dry Weight: 96. Units: ug/kg dry weight Dilution Factor: 1. Analysis Method: SW8260B Delivery Group: 117250 Instrument: HP-2 Sample Identification

SB11-21

Lab Sample ID: 98-A127306 Date Sampled: 10/16/98 Date Received: 10/17/98 Analysis Date: 10/20/98 Analysis Time: 23:46 Sample QC Group: 4761

### FORM I

| CAS NUMBER | ANALYTE                    | CONCENTRATION | FLAG     |
|------------|----------------------------|---------------|----------|
| 144-10-5   | .1-Chlorohexane            | 2.6           | U        |
| 71-43-2    | .Benzene                   | 2.1           | U        |
| 108-86-1   | .Bromobenzene              | 2.1           | U        |
| 124-48-1   | .Bromochloromethane        | 2.1           | U        |
| 75-25-2    | . Bromoform                | 6.2           | U        |
| 74-83-9    | .Bromomethane              | 5.2           | U        |
| 104-51-8   | .n-Butylbenzene            | 5.2           | U        |
| 135-98-8   | .sec-Butylbenzene          | 7.3           | U        |
| 98-06-6    | .t-Butylbenzene            | 7.3           | U        |
| 56-23-5    | .Carbon tetrachloride      | 10.4          | U        |
| 108-90-7   | .Chlorobenzene             | 2.1           | U        |
| 75-00-3    | .Chloroethane              | 5.2           | U        |
| 67-66-3    | . Chloroform               | 2.1           | U        |
| 74-87-3    | .Chloromethane             | 7.3           | U        |
| 95-49-8    | .2-Chlorotoluene           | 2.1           | U        |
| 106-43-4   | .4-Chlorotoluene           | 3.1           | U        |
| 96-12-8    | . 1,2-Dibromo-3-chloroprop | ane 1.0       | U        |
| 124-48-1   | .Dibromochloromethane      | 3.1           | U        |
| 74-95-3    | .1,2-Dibromoethane         | 3.1           | U        |
| 74-95-3    | .Dibromomethane            | 10.4          | U        |
| 95-50-1    | .1,2-Dichlorobenzene       | 2.1           | U        |
| 541-73-1   | .1,3-Dichlorobenzene       | 6.2           | <b>U</b> |
| 106-46-7   | . 1,4-Dichlorobenzene      | 2.1           | U        |
| 75-71-8    | . Dichlorodifluoromethane  | 5.2           | U        |
|            | . 1,1-Dichloroethane       |               | U        |
| 107-06-2   | . 1,2-Dichloroethane       | 3.1           | U        |
|            | .1,1-Dichloroethene        |               | U        |
|            |                            |               | U        |
|            | .trans-1,2-Dichloroethene  |               | U        |
|            | .1,2-Dichloropropane       |               | U        |
|            | .1,3-Dichloropropane       |               | <b>U</b> |
| 594-20-7   | .2,2-Dichloropropane       | 20.8          | U        |
|            | . 1,1-Dichloropropene      |               | U        |
| 10061-01-5 | .cis-1,3-Dichloropropene   | 5.2           | U        |
|            | . trans-1,3-Dichloropropen |               | U        |
|            | .Ethylbenzene              |               | U        |
|            | Hexachlorobutadiene        |               | <b>U</b> |
|            | Isopropylbenzene           |               | U        |
| 99-87-6    | . 4-Isopropyltoluene       | 47.9          |          |



2960 Foster Creighton Dr. P.O. Box 40566 Nashville, TN 37204-0566 Phone 1-615-726-0177

Sample Identification

SB11-21

Matrix: Soil % Dry Weight: 96. Units: ug/kg dry weight Lab Sample ID: 98-A127306 Date Sampled: 10/16/98 Date Received: 10/17/98

### FORM I



2960 Foster Creighton Dr. P.O. Box 40566 Nashville, TN 37204-0566 Phone 1-615-726-0177

Matrix: Soil % Dry Weight: 96. Units: ug/kg dry weight Dilution Factor: 100. Analysis Method: SW8260B Delivery Group: 117250 Instrument: HP-2 Sample Identification

SE11-21

Lab Sample ID: 98-A127306 Date Sampled: 10/16/98 Date Received: 10/17/98 Analysis Date: 10/18/98 Analysis Time: 12:24 Sample QC Group: 4761

### FORM I

| CAS NUMBER | ANALYTE                      | CONCI | ENTRATION | FLAG |
|------------|------------------------------|-------|-----------|------|
| 144-10-5   | .1-Chlorohexane              |       | 260.      | U    |
| 71-43-2    | .Benzene                     |       | 208.      | U    |
| 108-86-1   | .Bromobenzene                |       | 208.      | U    |
| 124-48-1   | .Bromochloromethane          |       | 208.      | υ    |
| 75-25-2    | . Bromoform                  |       | 625.      | U    |
| 74-83-9    | .Bromomethane                |       | 521.      | U    |
| 104-51-8   | .n-Butylbenzene              |       | 521.      | U    |
| 135-98-8   | .sec-Butylbenzene            |       | 729.      | U    |
| 98-06-6    | .t-Butylbenzene              |       | 729.      | υ    |
| 56-23-5    | .Carbon tetrachloride        |       | 1040      | U    |
| 108-90-7   | . Chlorobenzene              |       | 208.      | U    |
| 75-00-3    | . Chloroethane               |       | 521.      | U    |
| 67-66-3    | . Chloroform                 |       | 208.      | U    |
| 74-87-3    | . Chloromethane              |       | 729.      | U    |
| 95-49-8    | .2-Chlorotoluene             |       | 208.      | U    |
| 106-43-4   | .4-Chlorotoluene             |       | 312.      | U    |
| 96-12-8    | . 1, 2-Dibromo-3-chloroprop. | ane   | 104.      | U    |
| 124-48-1   | . Dibromochloromethane       |       | 312.      | U    |
| 74-95-3    | . 1, 2-Dibromoethane         |       | 312.      | U    |
| 74-95-3    | . Dibromomethane             |       | 1040      | U    |
| 95-50-1    | . 1, 2-Dichlorobenzene       |       | 208.      | U    |
|            | . 1,3-Dichlorobenzene        |       | 625.      | U    |
| 106-46-7   | . 1,4-Dichlorobenzene        |       | 208.      | U    |
| 75-71-8    | . Dichlorodifluoromethane    |       | 521.      | U    |
| 75-34-3    | . 1, 1-Dichloroethane        |       | 208.      | U    |
| 107-06-2   | . 1, 2-Dichloroethane        |       | 312.      | U    |
| 75-35-4    | . 1, 1-Dichloroethene        |       | 625.      | U    |
|            | .cis-1,2-Dichloroethene      |       | 625.      | U    |
|            | .trans-1,2-Dichloroethene    |       | 312.      | U    |
| 78-87-5    | . 1, 2-Dichloropropane       |       | 208.      | U    |
|            | .1,3-Dichloropropane         |       | 208.      | U    |
|            | . 2, 2-Dichloropropane       |       | 2080      | U    |
| 563-58-6   | . 1, 1-Dichloropropene       |       | 521.      | U    |
|            | .cis-1,3-Dichloropropene     |       | 521.      | U    |
|            | . trans-1, 3-Dichloropropen  |       | 521.      | U    |
|            | .Ethylbenzene                |       | 312.      | U    |
|            | .Hexachlorobutadiene         |       | 521.      | U    |
|            | . Isopropylbenzene           |       | 833.      | U    |
| 99-87-6    | .4-Isopropyltoluene          |       | 625.      | U    |



2960 Foster Creighton Dr. P.O. Box 40566 Nashville, TN 37204-0566 Phone 1-615-726-0177

Sample Identification

SB11-21

Matrix: Soil % Dry Weight: 96. Units: ug/kg dry weight Lab Sample ID: 98-A127306 Date Sampled: 10/16/98 Date Received: 10/17/98

### FORM I

| CAS NUMBER                                                                    | ANALYTE                                                                                                                                                                                              | CONCENTRATION                                                         | FLAG   |
|-------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|--------|
| 75-09-2<br>91-20-3<br>103-65-1<br>100-42-5<br>630-20-6<br>79-34-5<br>127-18-4 | ANALYTE<br>Methylene chloride<br>Naphthalene<br>n-Propylbenzene<br>Styrene<br>1, 1, 1, 2-Tetrachloroethan<br>1, 1, 2, 2-Tetrachloroethan<br>Tetrachloroethene<br>Toluene<br>1, 2, 3-Trichlorobenzene | 208.<br>208.<br>208.<br>e. 208.<br>e. 312.<br>e. 208.<br>729.<br>521. | FLAG   |
|                                                                               | . 1, 2, 4-Trichlorobenzene                                                                                                                                                                           |                                                                       | U      |
|                                                                               | <pre>.1,1,1-Trichloroethane1,1,2-Trichloroethane</pre>                                                                                                                                               |                                                                       | U      |
|                                                                               | . Trichloroethene                                                                                                                                                                                    |                                                                       | U      |
| 95-63-6                                                                       | . 1, 2, 4-Trimethylbenzene .                                                                                                                                                                         | 521.                                                                  | J      |
|                                                                               | .1,3,5-Trimethylbenzene<br>.Vinyl chloride                                                                                                                                                           |                                                                       | J<br>U |
|                                                                               | .Bromodichloromethane                                                                                                                                                                                | 417.                                                                  | U      |
|                                                                               | .o-Xylene                                                                                                                                                                                            | -                                                                     | U      |
|                                                                               | . Trichlorofluoromethane .                                                                                                                                                                           |                                                                       | U      |



2960 Foster Creighton Dr. P.O. Box 40566 Nashville, TN 37204-0566 Phone 1-615-726-0177

Matrix: Soil % Dry Weight: 94. Units: ug/kg dry weight Dilution Factor: 50. Analysis Method: SW8260B Delivery Group: 117250 Instrument: HP-2 Sample Identification

SB16-8

Lab Sample ID: 98-A127307 Date Sampled: 10/15/98 Date Received: 10/17/98 Analysis Date: 10/22/98 Analysis Time: 22:13 Sample QC Group: 4761

| 144-10-5 $1-Chlorohexane$ $133.$ $U$ $71-43-2$ Benzene $106.$ $U$ $108-86-1$ Bromochloromethane $106.$ $U$ $124-48-1$ Bromochloromethane $106.$ $U$ $74-83-7$ Bromomethane $266.$ $U$ $104-51-8$ $n-Butylbenzene$ $266.$ $U$ $104-51-8$ $n-Butylbenzene$ $372.$ $U$ $98-06-6.$ $t-Butylbenzene$ $372.$ $U$ $56-23-5.$ Carbon tetrachloride $532.$ $U$ $56-23-5.$ Carbon tetrachloride $532.$ $U$ $56-23-5.$ Carbon tetrachloride $532.$ $U$ $78-00-3.$ Chloroethane $266.$ $U$ $67-64-3.$ Chloroform $106.$ $U$ $74-87-3.$ Chloromethane $372.$ $U$ $95-49-8.$ $2-Chlorotoluene106.U96-49-7.Chloromethane106.U74-87-3.Chloromethane372.U96-49-8.2-Chlorotoluene106.U96-49-8.1.2-Dibromo-3-chloropropane372.U96-49-8.1.2-Dibromo-3-chloropropane160.U106-43-4.4-Chlorotoluene160.U106-44-7.1.2-Dibromo-3-chloropropane160.U124-48-1.Dibromochloromethane160.U106-46-7.1.2-Dichlorobenzene106.U106-46-7.1.2-Dichlorobenzene106.U$                                                                                                                                                                                                                   | CAS NUMBER | ANALYTE                   | CONCENTRATION | FLAG |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|---------------------------|---------------|------|
| 108-86-1       Bromobenzene       106.       U         124-48-1       Bromochloromethane       106.       U         75-25-2       Bromochloromethane       106.       U         104-51-8       n-Butylbenzene       266.       U         104-51-8       n-Butylbenzene       266.       U         135-98-8       sec-Butylbenzene       372.       U         98-06-6       t-Butylbenzene       372.       U         56-23-5       Carbon tetrachloride       532.       U         108-90-7       Chlorobenzene       106.       U         75-00-3       Chlorobenzene       106.       U         75-49-8       2-Chlorotoluene       106.       U         74-87-3       Chlorobenzene       106.       U         74-87-3       Chlorobenzene       160.       U         74-87-3       Dibromochloromethane       372.       U         92-49-8       .2-Chlorotoluene       160.       U         106-43-4       4-Chlorotoluene       160.       U         74-95-3       Dibromochloromethane       160.       U         74-95-3       Dibromochlorobenzene       160.       U         74-95-3                                                    | 144-10-5   | 1-Chlorohexane            | 133           | U    |
| 124-48-1       Bromochloromethane       106.       U         75-25-2       Bromoform       317.       U         74-83-9       Bromomethane       266.       U         104-51-8       n-Butylbenzene       266.       U         135-98-8       sec-Butylbenzene       266.       U         98-06-6       t-Butylbenzene       372.       U         95-23-5       Carbon tetrachloride       532.       U         108-90-7       Chlorobenzene       106.       U         74-66-3       Chlorobethane       266.       U         07-66-3       Chlorobethane       372.       U         97-46-8       2-Chlorotoluene       106.       U         97-47-8       2-Chlorotoluene       106.       U         96-49-8       1.2-Dibromo-3-chloropropane       53.2       U         106-43-4       4-Chlorotoluene       160.       U         97-49-8       1.2-Dibromo-3-chloropropane       53.2       U         124-48-1       Dibromochloromethane       160.       U         74-95-3       Dibromochlorobenzene       160.       U         74-95-3       Dichlorobenzene       160.       U         74-                                             | 71-43-2    | Benzene                   | 106           | U    |
| 75-25-2Bromoform $319$ U $74-83-7$ Bromomethane $266$ U $104-51-8$ $n-Butylbenzene$ $266$ U $135-98-8$ sec-Butylbenzene $372$ U $98-06-6$ $t-Butylbenzene$ $372$ U $56-23-5$ Carbon tetrachloride $532$ U $108-90-7$ Chlorobenzene $106$ U $75-00-3$ Chloroform $106$ U $75-00-3$ Chloroform $106$ U $75-47-8$ 2-Chlorotoluene $106$ U $76-43-3$ Chloroform $106$ U $76-43-4$ 4-Chlorotoluene $160$ U $95-47-8$ 2-Chlorotoluene $160$ U $95-47-8$ 2-Chlorotoluene $160$ U $74-95-3$ $1, 2-Dibromo-3-chloropropane53, 2U124-48-1Dibromochloromethane160U74-95-31, 2-Dichlorobenzene106U74-95-31, 2-Dichlorobenzene106U74-95-31, 2-Dichlorobenzene106U75-50-11, 2-Dichlorobenzene106U75-34-31, 1-Dichlorobenzene106U75-35-41, 1-Dichlorobethane319U106-6-5trans-1, 2-Dichloropthene160U75-35-41, 1-Dichloroptopane160U10-22-91, 3-Dichloroptopane160U142-28-91, 3-Dichloroptopane106U142-2$                                                                                                                                                                                                                                                         | 108-86-1   | Bromobenzene              | 106           | U    |
| 74-83-9       Bromomethane       266.       U         104-51-8       n-Butylbenzene       266.       U         135-98-8       sec-Butylbenzene       372.       U         98-06-6       t-Butylbenzene       372.       U         56-23-5       Carbon tetrachloride       532.       U         108-90-7       Chlorobenzene       106.       U         75-00-3       Chloroberm       106.       U         74-87-3       Chloroborm       106.       U         74-87-3       Chloroborm       106.       U         74-87-3       Chloroborm       106.       U         74-87-3       Chloroboluene       106.       U         96-42-4       4-Chlorobluene       106.       U         96-43-4       4-Chlorobluene       106.       U         96-47-8       1.2-Dibromoc-3-Chloropropane       53.2       U         124-48-1       Dibromochloromethane       160.       U         74-95-3       1.2-Dichlorobenzene       106.       U         74-95-3       Dibromoethane       160.       U         74-95-3       Dibromoethane       106.       U         75-71-8       Dichlorobenzene                                                      | 124-48-1   | Bromochloromethane        | 106           | U    |
| 104-51-8       n-Butylbenzene       266.       U         135-98-8       sec-Butylbenzene       372.       U         98-06-6       t-Butylbenzene       372.       U         98-06-6       t-Butylbenzene       372.       U         98-06-6       t-Butylbenzene       372.       U         98-06-6       t-Butylbenzene       372.       U         95-23-5       Carbon tetrachloride       532.       U         108-90-7       Chlorobenzene       106.       U         67-66-3       Chloropethane       266.       U         67-66-3       Chloropethane       266.       U         74-87-3       Chloropethane       372.       U         95-49-8       2-Chlorotoluene       106.       U         96-43-4       4-Chlorotoluene       106.       U         96-12-8       1,2-Dibromo-3-chloropropane       160.       U         124-48-1       Dibromochloromethane       160.       U         74-95-3       Dibromochloroberzene       106.       U         95-50-1       1,2-Dichlorobenzene       106.       U         95-71-8       Dichlorodifluoromethane       266.       U         106-                                             | 75-25-2    | . Bromoform               | 319           | U    |
| 135-78-8       sec-Butylbenzene       372       U         98-06-6       t-Butylbenzene       372       U         56-23-5       Carbon tetrachloride       532       U         108-90-7       Chlorobenzene       106       U         75-00-3       Chlorobethane       266       U         67-66-3       Chlorobethane       372       U         95-47-8       2-Chlorotoluene       106       U         95-47-8       2-Chlorotoluene       106       U         96-12-8       1,2-Dibromo-3-chloropropane       53.2       U         124-48-1       Dibromochloromethane       160       U         74-95-3       Dibromomethane       160       U         74-95-3       Dibromomethane       106       U         95-50-1       1,2-Dichlorobenzene       106       U         95-30-1       1,2-Dichlorobenzene       106       U         95-31       1,2-Dichlorobenzene       106       U         95-34-3       1,1-Dichlorobenzene       106       U         95-34-3       1,1-Dichlorobenzene       106       U         95-35-4       1,1-Dichloroethane       160       U         95-59-2                                                    | 74-83-9    | Bromomethane              | 266           | U    |
| 78-06-6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 104-51-8   | Butylbenzene              | 266           | U    |
| 54-23-5       Carbon tetrachloride       532.       U         108-90-7       Chlorobenzene       106.       U         75-00-3       Chlorobenzene       106.       U         67-66-3       Chloroform       106.       U         67-67       Chlorobenzene       106.       U         74-87-3       Chlorobenzene       372.       U         95-49-8       2-Chlorotoluene       106.       U         106-43-4       4-Chlorotoluene       160.       U         95-49-8       1.2-Dibromo-3-chloropropane       53.2       U         124-48-1       Dibromochloromethane       160.       U         74-95-3       1.2-Dibromo-3-chloropropane       53.2       U         95-50-1       1.2-Dichlorobenzene       106.       U         74-95-3       Dibromomethane       532.       U         95-50-1       1.2-Dichlorobenzene       106.       U         95-50-1       1.2-Dichlorobenzene       106.       U         95-50-1       1.2-Dichlorobenzene       106.       U         96-64-7       1.4-Dichlorobenzene       106.       U         97-71-8       Dichlorodifluoromethane       106.       U      <                                 | 135-98-8   |                           | 372           | U    |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 98-06-6    | t-Butylbenzene            | 372           | U    |
| 75-00-3Chloroethane266.U $67-66-3$ Chloroform106.U $74-87-3$ Chloromethane372.U $95-49-8$ 2-Chlorotoluene106.U $106-43-4$ 4-Chlorotoluene160.U $96-12-8$ 1, 2-Dibromo-3-chloropropane53. 2U $124-48-1$ Dibromochloromethane160.U $74-95-3$ 1, 2-Dibromoethane160.U $74-95-3$ 1, 2-Dichlorobenzene106.U $95-50-1$ 1, 2-Dichlorobenzene106.U $95-50-1$ 1, 2-Dichlorobenzene319.U $106-46-7$ 1, 4-Dichlorobenzene106.U $75-71-8$ Dichlorodifluoromethane266.U $75-35-4$ 1, 1-Dichloroethane319.U $156-59-2$ cis-1, 2-Dichloroethane319.U $156-60-5$ trans-1, 2-Dichloroethene319.U $142-28-9$ 1, 3-Dichloropropane106.U $78-87-5$ 1, 2-Dichloropropane106.U $142-28-9$ 1, 3-Dichloropropane106.U $142-28-9$ 1, 3-Dichloropropane106.U $142-28-9$ 1, 3-Dichloropropane106.U $1064-01-5$ cis-1, 3-Dichloropropane106.U $10041-01-5$ cis-1, 3-Dichloropropene266.U $10061-02-6$ trans-1, 3-Dichloropropene266.U $10064-02-6$ trans-1, 3-Dichloropropene266.U $10061-02-6$ trans-1, 3-                                                                                                                                                                   | 56-23-5    | Carbon tetrachloride      | 532           | U    |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 108-90-7   | Chlorobenzene             | 106           | U    |
| 74-87-3Chloromethane $372$ U $95-49-8$ $2-$ Chlorotoluene $106$ U $106-43-4$ $4-$ Chlorotoluene $160$ U $96-12-8$ $1, 2-$ Dibromo- $3-$ chloropropane $53.2$ U $124-48-1$ Dibromochloromethane $160$ U $74-95-3$ $1, 2-$ Dibromoethane $160$ U $74-95-3$ Dibromomethane $532$ U $95-50-1$ $1, 2-$ Dichlorobenzene $106$ U $541-73-1$ $1, 3-$ Dichlorobenzene $106$ U $541-73-1$ $1, 3-$ Dichlorobenzene $106$ U $75-71-8$ Dichlorodifluoromethane $266$ U $107-06-2$ $1, 2-$ Dichloroethane $106$ U $107-06-2$ $1, 2-$ Dichloroethane $160$ U $156-59-2$ cis-1, 2-Dichloroethene $319$ U $156-60-5$ trans-1, 2-Dichloroethene $106$ U $142-28-9$ $1, 3-$ Dichloropropane $106$ U $142-28-9$ $1, 3-$ Dichloropropane $106$ U $543-58-6$ $1, 1-$ Dichloropropane $106$ U $10061-01-5$ cis-1, 3-Dichloropropane $266$ U $10061-02-6$ trans-1, 3-Dichloropropane $266$ U $10061-02-6$ trans-1, 3-Dichloropropane $266$ U $100-41-4$ Ethylbenzene $160$                                                                        | 75-00-3    |                           | 266           | U    |
| 95-49-8       2-Chlorotoluene       106.       U         106-43-4       4-Chlorotoluene       160.       U         96-12-8       1,2-Dibromo-3-chloropropane       53.2       U         124-48-1       Dibromochloromethane       160.       U         74-95-3       1,2-Dibromoethane       160.       U         74-95-3       Dibromoethane       160.       U         74-95-3       Dibromoethane       532.       U         95-50-1       1,2-Dichlorobenzene       106.       U         95-50-1       1,2-Dichlorobenzene       319.       U         106-46-7       1,4-Dichlorobenzene       106.       U         75-71-8       Dichlorodifluoromethane       266.       U         75-34-3       1,1-Dichloroethane       160.       U         107-06-2       1,2-Dichloroethane       160.       U         156-50-2       cis-1,2-Dichloroethane       160.       U         156-50-2       cis-1,2-Dichloroethene       319.       U         156-50-3       trans-1,2-Dichloroethene       160.       U         142-28-9       1,3-Dichloropropane       106.       U         142-28-9       1,3-Dichloropropane       106.                | 67-66-3    | Chloroform                | 106           | U    |
| 106-43-4       4-Chlorotoluene       160.       U         96-12-8       1,2-Dibromo-3-chloropropane       53.2       U         124-48-1       Dibromochloromethane       160.       U         74-95-3       1,2-Dibromoethane       160.       U         74-95-3       Dibromomethane       160.       U         74-95-3       Dibromomethane       532.       U         95-50-1       1,2-Dichlorobenzene       106.       U         95-50-1       1,2-Dichlorobenzene       106.       U         95-50-1       1,3-Dichlorobenzene       106.       U         95-50-1       1,2-Dichlorobenzene       106.       U         95-50-1       1,2-Dichlorobenzene       106.       U         95-50-1       1,2-Dichlorobenzene       106.       U         95-51       1,2-Dichlorobenzene       106.       U         95-71-8       Dichlorodifluoromethane       106.       U         95-71-8       Dichlorodifluoromethane       106.       U         95-74       1,1-Dichloroethane       106.       U         107-06-2       1,2-Dichloroptopane       160.       U         156-59-2       cis-1,2-Dichloroptopane       106.                     | 74-87-3    | Chloromethane             | 372           | U    |
| 96-12-8       1,2-Dibromo-3-chloropropane       53.2       U         124-48-1       Dibromochloromethane       160.       U         74-95-3       1,2-Dibromoethane       160.       U         74-95-3       Dibromomethane       532.       U         95-50-1       1,2-Dichlorobenzene       106.       U         541-73-1       1,3-Dichlorobenzene       106.       U         106-46-7       1,4-Dichlorobenzene       106.       U         75-71-8       Dichlorodifluoromethane       266.       U         75-34-3       1,1-Dichloroethane       106.       U         075-35-4       1,2-Dichloroethane       160.       U         107-06-2       1,2-Dichloroethane       160.       U         107-06-3       1,2-Dichloroethane       160.       U         156-59-2       cis-1,2-Dichloroethene       319.       U         156-60-5       trans-1,2-Dichloroethene       160.       U         142-28-9       1,3-Dichloropropane       106.       U         142-28-7       2,2-Dichloropropane       106.       U         142-28-7       1,3-Dichloropropane       106.       U         10061-01-5       cis-1,3-Dichloropropene        | 95-49-8    |                           | 106           | U    |
| 124-48-1       Dibromochloromethane       160.       U         74-95-3       1,2-Dibromoethane       160.       U         74-95-3       Dibromomethane       532.       U         95-50-1       1,2-Dichlorobenzene       106.       U         541-73-1       1,3-Dichlorobenzene       319.       U         106-46-7       1,4-Dichlorobenzene       106.       U         75-71-8       Dichlorodifluoromethane       266.       U         75-34-3       1,1-Dichloroethane       160.       U         107-06-2       1,2-Dichloroethane       160.       U         107-06-2       1,2-Dichloroethane       160.       U         107-06-2       1,2-Dichloroethene       319.       U         156-59-2       cis-1,2-Dichloroethene       319.       U         156-60-5       trans-1,2-Dichloroethene       160.       U         186-60-5       trans-1,2-Dichloropropane       106.       U         186-79-2       cis-1,2-Dichloropropane       160.       U         186-80-5       trans-1,2-Dichloropropane       106.       U         186-80-5       trans-1,2-Dichloropropane       106.       U         186-80-6       1,1-Dichloropropa | 106-43-4   |                           | 160           | U    |
| 74-75-3       1, 2-Dibromoethane       160.       U         74-75-3       Dibromomethane       532.       U         95-50-1       1, 2-Dichlorobenzene       106.       U         541-73-1       1, 3-Dichlorobenzene       317.       U         106-46-7       1, 4-Dichlorobenzene       106.       U         75-71-8       Dichlorodifluoromethane       266.       U         75-34-3       1, 1-Dichloroethane       160.       U         107-06-2       1, 2-Dichloroethane       160.       U         107-06-2       1, 2-Dichloroethane       160.       U         105-57-2       cis-1, 2-Dichloroethene       317.       U         156-60-5       trans-1, 2-Dichloroethene       317.       U         156-60-5       trans-1, 2-Dichloroethene       160.       U         78-87-5       1, 2-Dichloropropane       106.       U         142-28-9       1, 3-Dichloropropane       106.       U         142-28-9       1, 3-Dichloropropane       106.       U         154-58-6       1, 1-Dichloropropane       266.       U         10061-01-5       cis-1, 3-Dichloropropene       266.       U         10061-02-6       trans-1, 3-D | 96-12-8    | 1,2-Dibromo-3-chloroprop  | ane 53.2 .    | U    |
| 74-95-3       Dibromomethane       532       U         95-50-1       1,2-Dichlorobenzene       106.       U         541-73-1       1,3-Dichlorobenzene       319.       U         106-46-7       1,4-Dichlorobenzene       106.       U         75-71-8       Dichlorodifluoromethane       266.       U         75-34-3       1,1-Dichloroethane       106.       U         107-06-2       1,2-Dichloroethane       160.       U         75-35-4       1,1-Dichloroethane       319.       U         156-59-2       cis-1,2-Dichloroethene       319.       U         156-60-5       trans-1,2-Dichloroethene       319.       U         156-60-5       trans-1,2-Dichloroethene       160.       U         78-87-5       1,2-Dichloropropane       106.       U         142-28-9       1,3-Dichloropropane       106.       U         543-58-6       1,1-Dichloropropane       266.       U         10061-01-5       cis-1,3-Dichloropropene       266.       U         10061-02-6       trans-1,3-Dichloropropene       266.       U         100-41-4       Ethylbenzene       160.       U         87-68-3       Hexachlorobutadiene          | 124-48-1   | Dibromochloromethane      | 160           | U    |
| 95-50-1       1,2-Dichlorobenzene       106.       U         541-73-1       1,3-Dichlorobenzene       319.       U         106-46-7       1,4-Dichlorobenzene       106.       U         75-71-8       Dichlorodifluoromethane       266.       U         75-34-3       1,1-Dichloroethane       106.       U         107-06-2       1,2-Dichloroethane       160.       U         75-35-4       1,1-Dichloroethane       319.       U         156-59-2       cis-1,2-Dichloroethene       319.       U         156-60-5       trans-1,2-Dichloroethene       160.       U         78-87-5       1,3-Dichloropropane       106.       U         142-28-9       1,3-Dichloropropane       106.       U         142-28-9       1,3-Dichloropropane       106.       U         563-58-6       1,1-Dichloropropane       266.       U         10061-01-5       cis-1,3-Dichloropropene       266.       U         10061-02-6       trans-1,3-Dichloropropene       266.       U         100-41-4       Ethylbenzene       160.       U         87-68-3       Hexachlorobutadiene       266.       U         98-82-8       Isopropylbenzene            | 74-95-3    | . 1,2-Dibromoethane       | 160           | U    |
| 541-73-1       1, 3-Dichlorobenzene       317.       U         106-46-7       1, 4-Dichlorobenzene       106.       U         75-71-8       Dichlorodifluoromethane       266.       U         75-34-3       1, 1-Dichloroethane       106.       U         107-06-2       1, 2-Dichloroethane       160.       U         75-35-4       1, 1-Dichloroethane       319.       U         156-59-2       cis-1, 2-Dichloroethene       319.       U         156-60-5       trans-1, 2-Dichloroethene       160.       U         78-87-5       1, 2-Dichloropropane       106.       U         142-28-9       1, 3-Dichloropropane       106.       U         594-20-7       2, 2-Dichloropropane       106.       U         563-58-6       1, 1-Dichloropropane       266.       U         10061-01-5       cis-1, 3-Dichloropropene       266.       U         10061-02-6       trans-1, 3-Dichloropropene       266.       U         100-41-4       Ethylbenzene       160.       U         87-68-3       Hexachlorobutadiene       266.       U         98-82-8       Isopropylbenzene       426.       U                                         | 74-95-3    | Dibromomethane            | 532           | U    |
| 106-46-7       1,4-Dichlorobenzene       106.       U         75-71-8       Dichlorodifluoromethane       266.       U         75-34-3       1,1-Dichloroethane       106.       U         107-06-2       1,2-Dichloroethane       160.       U         75-35-4       1,1-Dichloroethane       319.       U         156-59-2       cis-1,2-Dichloroethene       319.       U         156-60-5       trans-1,2-Dichloroethene       160.       U         78-87-5       1,2-Dichloropropane       106.       U         142-28-9       1,3-Dichloropropane       106.       U         563-58-6       1,1-Dichloropropane       266.       U         10061-01-5       cis-1,3-Dichloropropane       266.       U         10061-02-6       trans-1,3-Dichloropropane       266.       U         100-41-4       Ethylbenzene       160.       U         87-68-3       Hexachlorobutadiene       266.       U                                                                                                                                                                                                                                            |            |                           |               | U    |
| 75-71-8       Dichlorodifluoromethane       266.       U         75-34-3       1,1-Dichloroethane       106.       U         107-06-2       1,2-Dichloroethane       160.       U         75-35-4       1,1-Dichloroethane       319.       U         156-59-2       cis-1,2-Dichloroethene       319.       U         156-60-5       trans-1,2-Dichloroethene       160.       U         78-87-5       1,2-Dichloropropane       106.       U         78-87-5       1,2-Dichloropropane       106.       U         78-87-5       1,2-Dichloropropane       106.       U         142-28-9       1,3-Dichloropropane       106.       U         594-20-7       2,2-Dichloropropane       1060       U         563-58-6       1,1-Dichloropropane       266.       U         10061-01-5       cis-1,3-Dichloropropene       266.       U         10061-02-6       trans-1,3-Dichloropropene       266.       U         100-41-4       Ethylbenzene       160.       U         87-68-3       Hexachlorobutadiene       266.       U         98-82-8       Isopropylbenzene       426.       U                                                        | 541-73-1   |                           | 317           | U    |
| 75-34-3       1,1-Dichloroethane       106.       U         107-06-2       1,2-Dichloroethane       160.       U         75-35-4       1,1-Dichloroethene       319.       U         156-59-2       cis-1,2-Dichloroethene       319.       U         156-60-5       trans-1,2-Dichloroethene       160.       U         78-87-5       1,2-Dichloropropane       106.       U         142-28-9       1,3-Dichloropropane       106.       U         594-20-7       2,2-Dichloropropane       106.       U         563-58-6       1,1-Dichloropropane       266.       U         10061-01-5       cis-1,3-Dichloropropane       266.       U         10061-02-6       trans-1,3-Dichloropropene       266.       U         100-41-4       Ethylbenzene       160.       U         87-68-3       Hexachlorobutadiene       266.       U         98-82-8       Isopropylbenzene       426.       U                                                                                                                                                                                                                                                   |            |                           |               | U    |
| 107-06-2       1,2-Dichloroethane       160.       U         75-35-4       1,1-Dichloroethene       319.       U         156-59-2       cis-1,2-Dichloroethene       319.       U         156-60-5       trans-1,2-Dichloroethene       160.       U         78-87-5       1,2-Dichloropropane       106.       U         142-28-9       1,3-Dichloropropane       106.       U         594-20-7       2,2-Dichloropropane       106.       U         563-58-6       1,1-Dichloropropene       266.       U         10061-01-5       cis-1,3-Dichloropropene       266.       U         10061-02-6       trans-1,3-Dichloropropene       266.       U         100-41-4       Ethylbenzene       160.       U         87-68-3       Hexachlorobutadiene       266.       U         98-82-8       Isopropylbenzene       426.       U                                                           | 75-71-8    | . Dichlorodifluoromethane | 266           | U    |
| 75-35-4       1, 1-Dichloroethene       317.       U         156-59-2       cis-1, 2-Dichloroethene       319.       U         156-60-5       trans-1, 2-Dichloroethene       160.       U         78-87-5       1, 2-Dichloropropane       106.       U         142-28-9       1, 3-Dichloropropane       106.       U         594-20-7       2, 2-Dichloropropane       106.       U         563-58-6       1, 1-Dichloropropane       266.       U         10061-01-5       cis-1, 3-Dichloropropane       266.       U         10061-02-6       trans-1, 3-Dichloropropane       266.       U         100-41-4       Ethylbenzene       160.       U         87-68-3       Hexachlorobutadiene       266.       U         98-82-8       Isopropylbenzene       426.       U                                                                                                                                                                                                                                                                                                                                                                   | 75-34-3    |                           | 106           | U    |
| 156-59-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 107-06-2   |                           | 160           | U    |
| 156-60-5       trans-1, 2-Dichloroethene       160.       U         78-87-5       1, 2-Dichloropropane       106.       U         142-28-9       1, 3-Dichloropropane       106.       U         594-20-7       2, 2-Dichloropropane       1060.       U         563-58-6       1, 1-Dichloropropane       266.       U         10061-01-5       cis-1, 3-Dichloropropene       266.       U         10061-02-6       trans-1, 3-Dichloropropene       266.       U         100-41-4       Ethylbenzene       160.       U         87-68-3       Hexachlorobutadiene       266.       U         98-82-8       Isopropylbenzene       426.       U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 75-35-4    |                           | 319           | U    |
| 78-87-5       1,2-Dichloropropane       106.       U         142-28-9       1,3-Dichloropropane       106.       U         594-20-7       2,2-Dichloropropane       1060       U         563-58-6       1,1-Dichloropropane       266.       U         10061-01-5       cis-1,3-Dichloropropene       266.       U         10061-02-6       trans-1,3-Dichloropropene       266.       U         100-41-4       Ethylbenzene       160.       U         87-68-3       Hexachlorobutadiene       266.       U         98-82-8       Isopropylbenzene       426.       U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 156-59-2   | cis-1,2-Dichloroethene .  | 319           | U    |
| 78-87-5       1,2-Dichloropropane       106.       U         142-28-9       1,3-Dichloropropane       106.       U         594-20-7       2,2-Dichloropropane       1060       U         563-58-6       1,1-Dichloropropane       266.       U         10061-01-5       cis-1,3-Dichloropropene       266.       U         10061-02-6       trans-1,3-Dichloropropene       266.       U         100-41-4       Ethylbenzene       160.       U         87-68-3       Hexachlorobutadiene       266.       U         98-82-8       Isopropylbenzene       426.       U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 156-60-5   | trans-1,2-Dichloroethene  | 160           | U    |
| 142-28-9       1,3-Dichloropropane       106.       U         594-20-7       2,2-Dichloropropane       1060       U         563-58-6       1,1-Dichloropropane       266.       U         10061-01-5       cis-1,3-Dichloropropane       266.       U         10061-02-6       trans-1,3-Dichloropropane       266.       U         100-41-4       Ethylbenzene       160.       U         87-68-3       Hexachlorobutadiene       266.       U         98-82-8       Isopropylbenzene       426.       U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 78-87-5    |                           | 106           | U    |
| 594-20-7       2,2-Dichloropropane       1060       U         563-58-6       1,1-Dichloropropene       266.       U         10061-01-5       cis-1,3-Dichloropropene       266.       U         10061-02-6       trans-1,3-Dichloropropene       266.       U         100-41-4       Ethylbenzene       160.       U         87-68-3       Hexachlorobutadiene       266.       U         98-82-8       Isopropylbenzene       426.       U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            |                           |               | U    |
| 563-58-6       1,1-Dichloropropene       266.       U         10061-01-5       cis-1,3-Dichloropropene       266.       U         10061-02-6       trans-1,3-Dichloropropene       266.       U         100-41-4       Ethylbenzene       160.       U         87-68-3       Hexachlorobutadiene       266.       U         98-82-8       Isopropylbenzene       426.       U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            | 1 1                       |               | U    |
| 10061-01-5       cis-1,3-Dichloropropene       266.       U         10061-02-6       trans-1,3-Dichloropropene       266.       U         100-41-4       Ethylbenzene       160.       U         87-68-3       Hexachlorobutadiene       266.       U         98-82-8       Isopropylbenzene       426.       U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            | • •                       |               | U    |
| 10061-02-6       trans-1,3-Dichloropropene       266.       U         100-41-4       Ethylbenzene       160.       U         87-68-3       Hexachlorobutadiene       266.       U         98-82-8       Isopropylbenzene       426.       U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            |                           |               | U    |
| 100-41-4       Ethylbenzene       160.       U         87-68-3       Hexachlorobutadiene       266.       U         98-82-8       Isopropylbenzene       426.       U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            |                           |               |      |
| 87-68-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            |                           |               | U    |
| 98-82-8 Isopropylbenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            |                           |               | U    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            |                           |               |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            |                           |               |      |

2960 Foster Creighton Dr. P.O. Box 40566 Nashville, TN 37204-0566 Phone 1-615-726-0177

Sample Identification

SB16-8

Matrix: Soil % Dry Weight: 94. Units: ug/kg dry weight Lab Sample ID: 98-A127307 Date Sampled: 10/15/98 Date Received: 10/17/98

| <br>CAS NUMBER | ANALYTE                        | CONCE | INTRATION | FL | AG |
|----------------|--------------------------------|-------|-----------|----|----|
| 75-09-2        | .Methylene chloride            |       | 106.      |    | υ  |
|                | .Naphthalene                   |       | 106.      |    |    |
|                | .n-Propylbenzene               |       | 106.      |    | U  |
|                | .Styrene                       |       | 106.      |    | U  |
|                | . 1, 1, 1, 2-Tetrachloroethane |       | 160.      |    | U  |
|                | . 1, 1, 2, 2-Tetrachloroethane |       | 106.      |    | U  |
| 127-18-4       | . Tetrachloroethene            |       | 372.      |    | U  |
| 108-88-3       | . Toluene                      |       | 266.      |    | U  |
| 87-61-6        | . 1, 2, 3-Trichlorobenzene     |       | 106.      |    | υ  |
|                | . 1, 2, 4-Trichlorobenzene     |       | 106.      |    | U  |
| 71-55-6        | . 1, 1, 1-Trichloroethane      |       | 213.      |    | U  |
| 79-00-5        | . 1, 1, 2-Trichloroethane      |       | 266.      |    | U  |
| 79-01-6        | . Trichloroethene              |       | 532.      |    | U  |
| 96-18-4        | . 1, 2, 3-Trichloropropane     |       | 1060      |    | U  |
|                | . 1, 2, 4-Trimethylbenzene     |       | 2230      |    |    |
| 108-67-8       | . 1, 3, 5-Trimethylbenzene     |       | 2020      |    |    |
|                | .Vinyl chloride                |       | 479.      |    | U  |
|                | .Bromodichloromethane          |       | 213.      |    | U  |
| 6615           | .o-Xylene                      |       | 585.      |    |    |
|                | .m,p-Xylene                    |       | 904.      |    |    |
|                | . Trichlorofluoromethane       |       | 213.      |    | U  |
|                |                                |       |           |    |    |



2960 Foster Creighton Dr. P.O. Box 40566 Nashville, TN 37204-0566 Phone 1-615-726-0177

Matrix: Soil % Dry Weight: 87. Units: ug/kg dry weight Dilution Factor: 1000 Analysis Method: SW8260B Delivery Group: 117250 Instrument: HP-2 Sample Identification

SB16-21

Lab Sample ID: 98-A127308 Date Sampled: 10/15/98 Date Received: 10/17/98 Analysis Date: 10/18/98 Analysis Time: 13:36 Sample QC Group: 4761

| CAS NUMBER | ANALYTE                      | CONCENTRATIO | N FLAG            |
|------------|------------------------------|--------------|-------------------|
|            | .1-Chlorohexane              |              | U                 |
|            | .Benzene                     |              | U                 |
|            | .Bromobenzene                |              | U                 |
| 124-48-1   | .Bromochloromethane          | 2300         | U                 |
| 75-25-2    | . Bromoform                  | 6900         | U                 |
| 74-83-9    | .Bromomethane                | 5750         | U                 |
|            | .n-Butylbenzene              |              | U                 |
| 135-98-8   | .sec-Butylbenzene            | 8050         | U                 |
| 98-06-6    | .t-Butylbenzene              | 8050         | Ū                 |
| 56-23-5    | .Carbon tetrachloride        | 11500        | U                 |
|            | .Chlorobenzene               |              | U                 |
|            | .Chloroethane                |              | U                 |
|            | .Chloroform                  |              | U                 |
|            | .Chloromethane               |              | U                 |
|            | .2-Chlorotoluene             |              | U                 |
|            | .4-Chlorotoluene             |              | U                 |
|            | . 1, 2-Dibromo-3-chloroprop. |              | U                 |
|            | . Dibromochloromethane       |              | U                 |
|            | . 1, 2-Dibromoethane         |              | U                 |
| 74-95-3    | . Dibromomethane             | 11500        | U                 |
|            | . 1,2-Dichlorobenzene        |              |                   |
|            | . 1.3-Dichlorobenzene        |              |                   |
|            | . 1,4-Dichlorobenzene        |              | · · · · · •       |
| 75-71-0    | . Dichlorodifluoromethane .  | 2300         | U                 |
| 75-34-3    | . 1, 1-Dichloroethane        |              | U                 |
|            |                              |              | U                 |
|            | .1,2-Dichloroethane          |              | U                 |
|            | . 1, 1-Dichloroethene        | 6900         | U                 |
|            | .cis-1,2-Dichloroethene      | 6900         | U                 |
|            | . trans-1,2-Dichloroethene   | 3450         | U                 |
| /8-87-5    | .1,2-Dichloropropane         | 2300         | U                 |
| 142-28-9   | .1,3-Dichloropropane         | 2300         | U                 |
| 594-20-7   | .2,2-Dichloropropane         | 23000        | U                 |
| 563-58-6   | . 1, 1-Dichloropropene       | 5750         | U                 |
| 10061-01-5 | .cis-1,3-Dichloropropene .   | 5750         | U                 |
| 10061-02-6 | .trans-1,3-Dichloropropens   | e. 5750      | U                 |
| 100-41-4   | .Ethylbenzene                | 116000       | • • •             |
| 87-68-3    | .Hexachlorobutadiene         | 5750         | U                 |
| 78-82-8    | . Isopropylbenzene           | 25300        | ••••              |
| 99-87-6    | .4-Isopropyltoluene          | 18400        |                   |
|            |                              |              | ···· 000 <b>1</b> |





2960 Foster Creighton Dr. P.O. Box 40566 Nashville, TN 37204-0566 Phone 1-615-726-0177 Sample Identification

SB16-21

Matrix: Soil % Dry Weight: 87. Units: ug/kg dry weight Lab Sample ID: 98-A127308 Date Sampled: 10/15/98 Date Received: 10/17/98

|   | CAS NUMBER | ANALYTE                        | CONCE | INTRATION | LAG   |
|---|------------|--------------------------------|-------|-----------|-------|
|   | 75-09-2    | .Methylene chloride            |       | 2300      | <br>U |
|   | 91-20-3    | Naphthalene                    |       | 41400     |       |
|   | 103-65-1   | n-Propylbenzene                |       | 46000     |       |
| • | 100-42-5   | Styrene                        |       | 2300      | <br>U |
|   |            | . i, İ, i, 2-Tetrachloroethane |       | 3450      | <br>U |
|   |            | 1, 1, 2, 2-Tetrachloroethane   |       | 2300      | <br>U |
|   | 127-18-4   | . Tetrachloroethene            |       | 8050      | <br>U |
|   |            | . Toluene                      |       | 5750      | <br>U |
|   | 87-61-6    | 1,2,3-Trichlorobenzene         |       | 2300      | <br>U |
|   |            | . 1, 2, 4-Trichlorobenzene     |       | 2300      | <br>U |
|   |            | .1,1,1-Trichloroethane         |       | 4600      | <br>U |
|   |            | . 1, 1, 2-Trichloroethane      |       | 5750      | <br>U |
|   |            | . Trichloroethene              |       | 11500     | <br>U |
|   |            | 1,2,3-Trichloropropane         |       | 23000     | <br>U |
|   |            | . 1, 2, 4-Trimethylbenzene     |       | 275000    | <br>Ε |
|   |            | . 1, 3, 5-Trimethylbenzene     |       | 94300     |       |
|   |            | .Vinyl chloride                |       | 10300     | <br>U |
|   |            | .Bromodichloromethane          |       | 4600      | <br>U |
|   | 6615       | .o-Xylene                      |       | 131000    |       |
|   |            | .m,p-Xylene                    |       | 444000    |       |
|   |            | . Trichlorofluoromethane       |       | 4600      | <br>U |
|   |            |                                |       |           |       |



2960 Foster Creighton Dr. P.O. Box 40566 Nashville, TN 37204-0566 Phone 1-615-726-0177

Matrix: Soil % Dry Weight: 87. Units: ug/kg dry weight Dilution Factor: 5000 Analysis Method: SW8260B Delivery Group: 117250 Instrument: HP-2 Sample Identification

SB16-21

Lab Sample ID: 98-A127308 Date Sampled: 10/15/98 Date Received: 10/17/98 Analysis Date: 10/21/98 Analysis Time: 0:22 Sample QC Group: 4761

| CAS NUMBER | ANALYTE                     | CONCE | NTRATION | FI      | _AG |
|------------|-----------------------------|-------|----------|---------|-----|
| 144-10-5   | . 1-Chlorohexane            |       | 14400    |         | υ   |
|            | .Benzene                    |       | 11500    |         | U   |
|            | .Bromobenzene               |       | 11500    |         | U   |
|            | .Bromochloromethane         |       | 11500    |         | U   |
|            | .Bromoform                  |       | 34500    |         | U   |
|            | .Bromomethane               |       | 28700    |         | U   |
|            | .n-Butylbenzene             |       | 28700    |         | U   |
|            | .sec-Butylbenzene           |       | 40200    |         | U   |
|            | .t-Butylbenzene             |       | 40200    |         | U   |
|            | .Carbon tetrachloride       |       | 57500    |         | U   |
|            | . Chlorobenzene             |       | 11500    |         | U   |
|            | .Chloroethane               |       | 28700    |         | U   |
|            | . Chloroform                |       | 11500    |         | U   |
|            | .Chloromethane              |       | 40200    |         | U   |
| 95-49-8    | .2-Chlorotoluene            |       | 11500    |         | U   |
| 106-43-4   | .4-Chlorotoluene            |       | 17200    |         | U   |
|            | . 1, 2-Dibromo-3-chloroprop |       | 5750     |         | U   |
| 124-48-1   | . Dibromochloromethane      |       | 17200    |         | U   |
|            | .1,2-Dibromoethane          |       | 17200    |         | υ   |
| 74-95-3    | . Dibromomethane            |       | 57500    |         | U   |
| 95-50-1    | .1,2-Dichlorobenzene        |       | 11500    |         | υ   |
|            | .1,3-Dichlorobenzene        |       | 34500    |         | υ   |
| 106-46-7   | .1,4-Dichlorobenzene        |       | 11500    |         | U   |
| 75-71-8    | . Dichlorodifluoromethane   |       | 28700    |         | U   |
|            | .1,1-Dichloroethane         |       | 11500    |         | U   |
| 107-06-2   | .1,2-Dichloroethane         |       | 17200    |         | U   |
|            | .1,1-Dichloroethene         |       | 34500    |         | U   |
|            | .cis-1,2-Dichloroethene .   |       | 34500    |         | U   |
|            | .trans-1,2-Dichloroethene   |       | 17200    |         | U   |
| 78-87-5    | .1,2-Dichloropropane        |       | 11500    |         | U   |
| 142-28-9   | .1,3-Dichloropropane        |       | 11500    |         | U   |
| 594-20-7   | .2,2-Dichloropropane        |       | 115000   |         | U   |
|            | .1,1-Dichloropropene        |       | 28700    |         | U   |
| 10061-01-5 | .cis-1,3-Dichloropropene    |       | 28700    |         |     |
| 10061-02-6 | . trans-1,3-Dichloropropen  | е.    | 28700    |         | U   |
| 100-41-4   | .Ethylbenzene               |       | 121000   |         |     |
| 87-48-3    | .Hexachlorobutadiene        |       | 28700    |         | _   |
| 98-82-8    | . Isopropylbenzene          | • • • | 28700    |         | _   |
| 99-87-6    | .4-Isopropyltoluene         |       | 23000    | · · · · | J   |



2960 Foster Creighton Dr. P.O. Box 40566 Nashville, TN 37204-0566 Phone 1-615-726-0177

Sample Identification

SB16-21

Matrix: Soil % Dry Weight: 87. Units: ug/kg dry weight Lab Sample ID: 98-A127308 Date Sampled: 10/15/98 Date Received: 10/17/98



2960 Foster Creighton Dr. P.O. Box 40566 Nashville, TN 37204-0566 Phone 1-615-726-0177

Matrix: Soil % Dry Weight: 87. Units: ug/kg dry weight Dilution Factor: 1000 Analysis Method: SW8260B Delivery Group: 117250 Instrument: HP-2 Sample Identification

SB14-21

Lab Sample ID: 98-A127309 Date Sampled: 10/15/98 Date Received: 10/17/98 Analysis Date: 10/18/98 Analysis Time: 14:13 Sample QC Group: 4761

#### FORM I

| CAS NUMBER                            | ANALYTE                   | CONCENTRATION | FLAG  |
|---------------------------------------|---------------------------|---------------|-------|
|                                       | 1-Chlorohexane            |               | U     |
|                                       | Benzene                   |               |       |
|                                       | Bromobenzene              |               | U     |
|                                       | Bromochloromethane        |               | U     |
|                                       | Bromoform                 |               | υ     |
| 74-83-9                               | Bromomethane              |               | υ     |
| 104-51-8                              | n-Butylbenzene            |               | υ     |
| 135-98-8                              | sec-Butylbenzene          | 8050          | U     |
| 98-04-6                               | t-Butylbenzene            | 8050          | υ     |
| 56-23-5                               | Carbon tetrachloride      | 11500         | υ     |
| 108-90-7                              | Chlorobenzene             | 2300          | υ     |
|                                       | Chloroethane              |               | υ     |
| 67-66-3                               | Chloroform                | 2300          | U     |
| 74-87-3                               | Chloromethane             | 8050          | υ     |
| 95-49-8                               | 2-Chlorotoluene           | 2300          | U     |
| 106-43-4                              | 4-Chlorotoluene           | 3450          | υ     |
| 96-12-8                               | 1,2-Dibromo-3-chloropropa | ane 1150      | υ     |
| 124-48-1                              | Dibromochloromethane      | 3450          | υ     |
| 74-95-3                               | 1,2-Dibromoethane         | 3450          | υ     |
| 74-95-3                               | Dibromomethane            | 11500         | υ     |
| 95-50-1                               | 1,2-Dichlorobenzene       | 2300          | U     |
| 541-73-1                              | 1, 3-Dichlorobenzene      | 6900          | υ     |
| 106-46-7                              | 1, 4-Dichlorobenzene      | 2300          | U     |
| 75-71-8                               | Dichlorodifluoromethane . | 5750          | υ     |
| 75-34-3                               | 1, 1-Dichloroethane       | 2300          | U     |
| 107-06-2                              | 1, 2-Dichloroethane       | 3450          | υ     |
|                                       | 1, 1-Dichloroethene       |               | U     |
| 156-59-2                              | cis-1, 2-Dichloroethene   | 6900          | υ     |
|                                       | trans-1, 2-Dichloroethene |               | υ     |
| 78-87-5                               | 1, 2-Dichloropropane      | 2300          | U     |
|                                       | 1,3-Dichloropropane       |               | υ     |
|                                       | 2, 2-Dichloropropane      |               | U     |
|                                       | 1, 1-Dichloropropene      |               | U     |
|                                       | cis-1,3-Dichloropropene . |               | Ū     |
|                                       | trans-1,3-Dichloropropene |               |       |
|                                       | Ethulbenzene              |               |       |
|                                       | Hexachlorobutadiene       |               | .υ    |
|                                       | Isopropylbenzene          |               |       |
|                                       |                           |               |       |
| · · · · · · · · · · · · · · · · · · · | rechterdagene             | 10000         | ·· 0( |

2960 Foster Creighton Dr. P.O. Box 40566 Nashville, TN 37204-0566 Phone 1-615-726-0177 Sample Identification

SB14-21

Matrix: Soil % Dry Weight: 87. Units: ug/kg dry weight Lab Sample ID: 98-A127309 Date Sampled: 10/15/98 Date Received: 10/17/98

### FORM I

| CAS NUMBER                                                                                                                                        | ANALYTE                                                                                                                                                                                                                                                                               | CONCENTRATION                                                                                | FLAG                                  |
|---------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|---------------------------------------|
| 75-09-2<br>91-20-3<br>103-65-1<br>100-42-5<br>630-20-6<br>79-34-5<br>127-18-4<br>108-88-3<br>87-61-6<br>120-82-1<br>71-55-6<br>79-00-5<br>79-01-6 | Methylene chloride<br>Naphthalene<br>n-Propylbenzene<br>Styrene<br>1, 1, 1, 2-Tetrachloroethane<br>1, 1, 2, 2-Tetrachloroethane<br>Tetrachloroethene<br>1, 2, 3-Trichlorobenzene<br>1, 2, 4-Trichlorobenzene<br>1, 1, 1-Trichloroethane<br>1, 1, 2-Trichloroethane<br>Trichloroethene | 2300<br>27600<br>28700<br>28700<br>2300<br>2300<br>2300<br>2300<br>2300<br>2300<br>2300<br>2 | · · · · · · · · · · · · · · · · · · · |
| 95-63-6<br>108-67-8<br>75-01-4<br>75-27-4<br>6615<br>6616                                                                                         | . 1, 2, 3-Trichloropropane                                                                                                                                                                                                                                                            | 198000<br>69000<br>10300<br>4600<br>5750<br>282000                                           | U<br>U<br>U<br>U<br>U                 |



2960 Foster Creighton Dr. P.O. Box 40566 Nashville, TN 37204-0566 Phone 1-615-726-0177

Matrix: Soil % Dry Weight: 87. Units: ug/kg dry weight Dilution Factor: 1000 Analysis Method: SW8260B Delivery Group: 117250 Instrument: HP-2 Sample Identification

SB26-21

Lab Sample ID: 98-A127310 Date Sampled: 10/15/98 Date Received: 10/17/98 Analysis Date: 10/18/98 Analysis Time: 15:51 Sample QC Group: 4761

#### FORM I

| <br>CAS NUMBER | ANALYTE                               | CONCI | ENTRATION | FI | _AG |   |
|----------------|---------------------------------------|-------|-----------|----|-----|---|
|                | .1-Chlorohexane                       |       |           |    | υ   |   |
| 71-43-2        | .Benzene                              |       | 2300      |    | U   |   |
|                | . Eromobenzene                        |       | 2300      |    | U   |   |
|                | .Bromochloromethane                   |       | 2300      |    | U   |   |
|                | .Bromoform                            |       | 6900      |    | U   |   |
|                | .Bromomethane                         |       | 5750      |    | U   |   |
| 104-51-8       | .n-Butylbenzene                       |       | 5750      |    | U   |   |
|                | .sec-Butylbenzene                     |       | 8050      |    | U   |   |
|                | .t-Butylbenzene                       |       | 8050      |    | U   |   |
|                | .Carbon tetrachloride                 |       | 11500     |    | U   |   |
|                | .Chlorobenzene                        |       | 2300      |    | U   |   |
|                | .Chloroethane                         |       | 5750      |    | U   |   |
|                | .Chloroform                           |       | 2300      |    | U   |   |
|                | .Chloromethane                        |       | 8050      |    | U   |   |
|                | .2-Chlorotoluene                      |       | 2300      |    | U   |   |
|                | .4-Chlorotoluene                      |       | 3450      |    | U   |   |
|                | . 1, 2-Dibromo-3-chloroprop           |       | 1150      |    | U   |   |
| 124-48-1       | . Dibromochloromethane                |       | 3450      |    | U   |   |
|                | .1,2-Dibromoethane                    |       | 3450      |    | U   |   |
| 74-95-3        | .Dibromomethane                       |       | 11500     |    | U   |   |
| 95-50-1        | .1,2-Dichlorobenzene                  |       | 2300      |    | U   |   |
| 541-73-1       | .1,3-Dichlorobenzene                  |       | 6900      |    | U   |   |
| 106-46-7       | .1,4-Dichlorobenzene                  |       | 2300      |    | U   |   |
| 75-71-8        | .Dichlorodifluoromethane              |       | 5750      |    | U   |   |
| 75-34-3        | .1,1-Dichloroethane                   |       | 2300      |    | U   |   |
| 107-06-2       | .1,2-Dichloroethane                   |       | 3450      |    | U   |   |
|                | . 1, 1-Dichloroethene                 |       | 6700      |    | U   |   |
| 156-59-2       | .cis-1,2-Dichloroethene .             |       | 6900      |    | U   |   |
| 156-60-5       | .trans-1,2-Dichloroethene             |       | 3450      |    | U   |   |
| 78-87-5        | .1,2-Dichloropropane                  |       | 2300      |    | U   |   |
|                | .1,3-Dichloropropane                  |       | 2300      |    | U   |   |
| 594-20-7       | .2,2-Dichloropropane                  |       | 23000     |    | U   |   |
|                | . 1, 1-Dichloropropene                |       | 5750      |    | U   |   |
|                | .cis-1,3-Dichloropropene              |       | 5750      |    | U   |   |
|                | .trans-1,3-Dichloropropen             |       | 5750      |    | U   |   |
|                | .Ethylbenzene                         |       | 140000    |    |     |   |
|                | .Hexachlorobutadiene                  |       | 5750      |    | U   |   |
|                | . Isopropylbenzene                    |       | 9200      |    | U   | ſ |
|                | .4-Isopropultaluene                   |       | 14900     |    |     | U |
|                | · · · · · · · · · · · · · · · · · · · | -     |           |    |     |   |

2960 Foster Creighton Dr. P. O. Box 40566 Nashville, TN 37204-0566 Phone 1-615-726-0177

Sample Identification

SB26-21

- Matrix: Soil % Dry Weight: 87. Units: ug/kg dry weight
- Lab Sample ID: 98-A127310 Date Sampled: 10/15/98 Date Received: 10/17/98

| CAS NUMBER                                  | ANALYTE                                                                                                                                         | CONCENTRATION                     | I FLAG                                |
|---------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|---------------------------------------|
| 91-20-3<br>103-65-1<br>100-42-5<br>630-20-6 | . Methylene chloride<br>. Naphthalene<br>. n-Propylbenzene<br>. Styrene<br>. 1, 1, 1, 2-Tetrachloroethan                                        | 34500<br>37900<br>2300<br>e. 3450 | U<br>U<br>U<br>U                      |
| 127-18-4<br>108-88-3<br>87-61-6             | . 1, 1, 2, 2-Tetrachloroethan<br>. Tetrachloroethene<br>. Toluene                                                                               | 8050<br>5750<br>2300              | U<br>U<br>U<br>U                      |
| 71-55-6<br>79-00-5<br>79-01-6               | . 1, 2, 4-Trichlorobenzene .<br>. 1, 1, 1-Trichloroethane .<br>. 1, 1, 2-Trichloroethane .<br>. Trichloroethene<br>. 1, 2, 3-Trichloropropane . | 4600<br>5750<br>11500             |                                       |
| 95-63-6<br>108-67-8<br>75-01-4              | . 1, 2, 3-Trimethylbenzene .<br>. 1, 3, 5-Trimethylbenzene .<br>. Vinyl chloride<br>. Bromodichloromethane                                      | 218000<br>77000<br>10300          | · · · · · · · · · · · · · · · · · · · |
| 6615                                        | . o-Xylene                                                                                                                                      | 159000<br>533000                  | E                                     |





2960 Foster Creighton Dr. P.O. Box 40566 Nashville, TN 37204-0566 Phone 1-615-726-0177

Matrix: Soil % Dry Weight: 87. Units: ug/kg dry weight Dilution Factor: 2500 Analysis Method: SW8260B Delivery Group: 117250 Instrument: HP-2 Sample Identification

SB26-21

Lab Sample ID: 98-A127310 Date Sampled: 10/15/98 Date Received: 10/17/98 Analysis Date: 10/21/98 Analysis Time: 0:58 Sample QC Group: 4761

### FORM I

| CAS NUMBER | ANALYTE                     | CONCENTRATION | FLAG      |
|------------|-----------------------------|---------------|-----------|
| 144-10-5   | .1-Chlorohexane             | 7180          | υ         |
|            | .Benzene                    |               | U         |
|            | . Bromobenzene              |               | U         |
|            | . Bromochloromethane        |               | U         |
|            | . Bromoform                 |               | U         |
|            | .Bromomethane               |               | U         |
|            | .n-Butylbenzene             |               | U         |
|            | .sec-Butylbenzene           |               | U         |
|            | .t-Butylbenzene             |               | U         |
|            | .Carbon tetrachloride       |               | υ         |
|            | . Chlorobenzene             |               | υ         |
|            | . Chloroethane              |               | U         |
|            | . Chloroform                |               | υ         |
|            | . Chloromethane             |               | U         |
|            | .2-Chlorotoluene            |               | υ         |
|            | .4-Chlorotoluene            |               | U         |
|            | . 1, 2-Dibrome-3-chloroprop |               | . U       |
|            | . Dibromochloromethane      |               | . U       |
|            | . 1,2-Dibromoethane         |               | U         |
|            | . Dibromomethane            |               | U         |
|            | . 1, 2-Dichlorobenzene      |               | . U       |
|            | . 1,3-Dichlorobenzene       |               | υ         |
|            | . 1,4-Dichlorobenzene       |               | U         |
|            | . Dichlorodifluoromethane   |               | U         |
|            | . 1, 1-Dichloroethane       |               | . U       |
|            | . 1,2-Dichloroethane        |               | U         |
|            | . 1, 1-Dichloroethene       |               | U         |
|            |                             |               | υ         |
|            | trans-1,2-Dichloroethene    |               | Ū         |
|            | . 1,2-Dichloropropane       |               | . U       |
|            | . 1,3-Dichloropropane       |               | U         |
|            |                             |               | Ü         |
|            | . 1,1-Dichloropropene       |               | Ū         |
|            |                             |               | . U       |
|            | . trans-1,3-Dichloroproper  |               |           |
|            | . Ethylbenzene              |               |           |
|            | . Hexachlorobutadiene       |               | U         |
|            | . Isopropylbenzene          |               | υ         |
|            | 4-Isopropyltoluene          |               |           |
|            | isopropyroordene            |               | °° °00013 |
|            |                             |               |           |

COPY 1



2960 Foster Creighton Dr. P.O. Box 40566 Nashville, TN 37204-0566 Phone 1-615-726-0177

Sample Identification

SB26-21

Matrix: Soil % Dry Weight: 87. Units: ug/kg dry weight Lab Sample ID: 98-A127310 Date Sampled: 10/15/98 Date Received: 10/17/98

| CAS NUMBER                                                                                                                                                                                                | ANALYTE                                                                                                                                                                                                                                                                                                                                                                                                                                                   | CONCENTRATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | FLAG |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 75-09-2<br>91-20-3<br>103-65-1<br>100-42-5<br>630-20-6<br>79-34-5<br>127-18-4<br>108-88-3<br>87-61-6<br>120-82-1<br>71-55-6<br>79-00-5<br>79-01-6<br>96-18-4<br>95-63-6<br>108-67-8<br>75-01-4<br>75-27-4 | ANALYTE<br>Methylene chloride<br>Naphthalene<br>n-Propylbenzene<br>Styrene<br>i, i, i, 2-Tetrachloroethane<br>1, 1, 2, 2-Tetrachloroethane<br>Tetrachloroethene<br>Toluene<br>1, 2, 3-Trichlorobenzene<br>1, 2, 3-Trichlorobenzene<br>1, 1, 1-Trichloroethane<br>1, 1, 2-Trichloroethane<br>Trichloroethene<br>1, 2, 3-Trichloropropane<br>1, 2, 3-Trichloropropane<br>1, 2, 4-Trimethylbenzene<br>1, 3, 5-Trimethylbenzene<br>Vinyl chloride<br>0-Xylene | 5750         23000         23000         5750         8620         5750         20100         14400         5750         14400         5750         20100         14400         5750         11500         14400         28700         57500         147000         51700         11500         11500         11500         11500         51700         51700         51700         51700         51700         51700         51700         51700         51700         51700         51700         51700         51700         51700         51700         51700         51700         51700         51700         51700         51700         51700         51700         51700         51700         51700         51700 | FLAG |
|                                                                                                                                                                                                           | m,p-Xylene                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | U    |



2960 Foster Creighton Dr. P.O. Box 40566 Nashville, TN 37204-0566 Phone 1-615-726-0177

Matrix: Soil % Dry Weight: 86. Units: ug/kg dry weight Dilution Factor: 100. Analysis Method: SW8260B Delivery Group: 117250 Instrument: HF-2 Sample Identification

SB14-12

Lab Sample ID: 98-A127311 Date Sampled: 10/15/98 Date Received: 10/17/98 Analysis Date: 10/21/98 Analysis Time: 1:34 Sample QC Group: 4761

### FORM I

| CAS NUMBER | ANALYTE                      | CONCENTRATION        | FL    | AG |
|------------|------------------------------|----------------------|-------|----|
|            | .1-Chlorohexane              |                      |       | υ  |
|            | .Benzene                     |                      |       | υ  |
| 108-86-1   | .Bromobenzene                |                      |       | υ  |
| 124-48-1   | .Bromochloromethane          | 233                  |       | U  |
| 75-25-2    | . Bromoform                  | 678                  |       | υ  |
| 74-83-9    | .Bromomethane                | 581                  |       | υ  |
| 104-51-8   | .n-Butylbenzene              | 581                  | • •   | υ  |
| 135-98-8   | .sec-Butylbenzene            | 814                  |       | U  |
| 98-04-6    | .t-Butylbenzene              | 814                  |       | υ  |
|            | .Carbon tetrachloride        |                      |       | υ  |
|            | . Chlorobenzene              |                      |       | υ  |
|            | . Chloroethane               |                      |       | υ  |
|            | . Chloroform                 |                      |       | υ  |
| 74-87-3    | . Chloromethane              | 814                  |       | υ  |
| 95-49-8    | .2-Chlorotoluene             | 233                  |       | υ  |
|            | .4-Chlorotoluene             |                      |       | υ  |
|            | . 1, 2-Dibromo-3-chloroprop  |                      | • •   | υ  |
|            | . Dibromochloromethane       |                      | •     | υ  |
| 74-95-3    | . 1, 2-Dibromoethane         | 347                  |       | υ  |
|            | . Dibromomethane             |                      |       | υ  |
|            | . 1,2-Dichlorobenzene        |                      |       | υ  |
|            | . 1, 3-Dichlorobenzene       |                      |       | υ  |
| 106-46-7   | . 1, 4-Dichlorobenzene       | 233                  |       | υ  |
|            | .Dichlorodifluoromethane     |                      |       | υ  |
| 75-34-3    | . 1, 1-Dichloroethane        | 233                  |       | υ  |
|            | . 1, 2-Dichloroethane        |                      |       | υ  |
|            | . 1, 1-Dichloroethene        |                      |       | υ  |
|            | . cis-1, 2-Dichloroethene .  |                      |       | υ  |
|            | .trans-1,2-Dichloroethene    |                      |       | υ  |
|            | .1,2-Dichloropropane         |                      |       | υ  |
|            | .1,3-Dichloropropane         |                      |       | Ū  |
|            | .2,2-Dichloropropane         |                      |       | Ū  |
|            | . 1, 1-Dichloropropene       |                      |       | Ū  |
|            | .cis-1,3-Dichloropropene     |                      |       | Ū  |
|            | . trans-1, 3-Dichloroproper  |                      |       | Ŭ  |
|            | . Ethylbenzene               |                      |       | -  |
|            | .Hexachlorobutadiene         |                      |       | υ  |
|            | . Isopropylbenzene           |                      |       | J  |
|            | . 4-Isopropultoluene         |                      | · • · | J  |
| 77-3/-0    | · 4-rephrohårrorneus · · · · | ··· <del>·</del> ··· | •••   | J  |



2960 Foster Creighton Dr. P.O. Box 40566 Nashville, TN 37204-0566 Phone 1-615-726-0177

Sample Identification

SB14-12

Matrix: Soil % Dry Weight: 86. Units: ug/kg dry weight Lab Sample ID: 98-A127311 Date Sampled: 10/15/98 Date Received: 10/17/98



2960 Foster Creighton Dr. P.O. Box 40566 Nashville, TN 37204-0566 Phone 1-615-726-0177

Sample Identification

SB12-22

Matrix: Soil % Dry Weight: 86. Units: ug/kg dry weight Dilution Factor: 1. Analysis Method: SW8260B Delivery Group: 117250 Instrument: HP-2 Lab Sample ID: 98-A127312 Date Sampled: 10/15/98 Date Received: 10/17/98 Analysis Date: 10/18/98 Analysis Time: 17:04 Sample QC Group: 4761

#### FORM I

| 144-10-5 $1-Chlorohexane$ $2.9$ $71-43-2$ Benzene $2.3$ $108-86-1$ Bromobenzene $2.3$ $124-48-1$ Bromochloromethane $2.3$ $124-48-1$ Bromochloromethane $2.3$ $75-25-2$ Bromonethane $2.3$ $74-83-9$ Bromomethane $5.8$ $104-51-8$ $n-Butylbenzene$ $8.1$ $155-98-8$ sec-Butylbenzene $8.1$ $56-23-5$ Carbon tetrachloride $11.6$ $56-23-5$ Carbon tetrachloride $11.6$ $56-23-5$ Chlorobenzene $2.3$ $75-00-3$ Chloroform $2.3$ $75-00-3$ Chloroform $2.3$ $74-87-3$ Chlorotoluene $3.5$ $74-87-3$ Chlorotoluene $3.5$ $74-87-3$ $1.2-Dibromo-3-chloropropane1.2106-43-44-Chlorotoluene3.574-95-31.2-Dibromo-3-chloropropane1.2124-48-1Dibromoethane3.574-95-31.2-Dibromo-3-chloropropane1.2124-48-1Dibromoethane3.574-95-31.2-Dichlorobenzene2.375-71-8Dichlorodifluoromethane3.575-35-41.1-Dichlorobenzene2.375-35-41.1-Dichloroethane3.575-35-41.2-Dichloroethane3.575-35-41.2-Dichloroethane3.575-35-41.2-Dichloroethane3.575-35-41.2-Dichloroethane3.575-35-4$                                                                                                                                                                                                                                                                                      | LAG |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 108-86-1       Eromobenzene       2.3         124-48-1       Bromochloromethane       2.3         75-25-2       Bromoform       7.0         74-83-7       Bromomethane       5.8         104-51-8       n-Butylbenzene       8.1         135-98-8       sec-Butylbenzene       8.1         75-25-2       Carbon tetrachloride       11.6         104-51-8      Butylbenzene       8.1         135-98-8       sec-Butylbenzene       8.1         78-00-4      Butylbenzene       8.1         54-23-5      Carbon tetrachloride       11.6         108-90-7      Chlorobenzene       2.3         75-00-3      Chloroform       2.3         74-87-3      Chloroform       2.3         74-87-3      Chlorotoluene       3.5         74-487-3      Chlorotoluene       3.5         106-43-4       4-Chlorotoluene       3.5         124-48-1      Dibromochloromethane       3.5         124-48-1      Dibromochloromethane       3.5         74-95-3                                                                                                                                                                                                                                                                                                          | υ   |
| 124-48-1       Bromochloromethane       2.3         75-25-2       Bromoform       7.0         74-83-9       Bromomethane       5.8         104-51-8       n-Butylbenzene       5.8         135-98-8       sec-Butylbenzene       8.1         98-06-6       t-Butylbenzene       8.1         56-23-5       Carbon tetrachloride       11.6         108-90-7       Chlorothane       5.8         67-66-3       Chlorothane       8.1         75-00-3       Chlorothane       8.1         67-46-3       Chlorothane       8.1         75-49-8       2-Chlorotoluene       2.3         106-43-4       4-Chlorotoluene       3.5         95-49-8       2-Chlorotoluene       3.5         106-43-4       4-Chlorotoluene       3.5         104-43-4       1.2-Dibromo-3-chloropropane       1.2         124-48-1       Dibromochloromethane       3.5         74-95-3       1.2-Dibromosthane       3.5         74-95-3       1.2-Dichlorobenzene       2.3         74-95-3       1.2-Dichlorobenzene       2.3         74-95-3       1.2-Dichlorobenzene       2.3         74-95-3       1.2-Dichlorobenzene       2.3                                                                                                                                         | U   |
| 75-25-2       Bromoform       7.0         74-83-9       Bromomethane       5.8         104-51-8       n-Butylbenzene       5.8         135-98-8       sec-Butylbenzene       8.1         56-23-5       Carbon tetrachloride       11.6         56-23-5       Carbon tetrachloride       11.6         108-90-7       Chlorobenzene       2.3         75-00-3       Chloroform       2.3         75-00-3       Chloroform       2.3         74-87-3       Chlorotoluene       2.3         74-87-3       Chlorotoluene       3.5         94-12-8       1.2-Dibromo-3-chloropropane       1.2         124-48-1       Dibromochloromethane       3.5         74-95-3       1.2-Dibromo-3-chloropropane       1.2         124-48-1       Dibromochloromethane       3.5         74-95-3       1.2-Dichlorobenzene       2.3         75-50-1       1.2-Dichlorobenzene       2.3         75-35-4       1.1-Dichlo                                                                                                                                | U   |
| 74-83-9       Bromomethane       5.8         104-51-8       n-Butylbenzene       5.8         135-98-8       sec-Butylbenzene       8.1         98-06-6       t-Butylbenzene       8.1         76-078-8       carbon tetrachloride       11.6         108-90-7       Chlorobenzene       2.3         75-00-3       Chlorobenzene       2.3         67-66-3       Chlorobenzene       2.3         74-87-3       Dibromochloromethane       3.5         74-97-8       1,2-Dibromo-3-chloropropane       1.2         124-48-1       Dibromochloromethane       3.5         74-95-3       Dibromomethane       3.5         74-95-3       Dibromochlorobenzene       2.3         74-95-3       Dibromochlorobenzene       2.3         74-95-3       Dibromochlorobenzene       2.3 <td>U</td>                                                                                                                                 | U   |
| 104-51-8       n-Butylbenzene       5.8         135-98-8       sec-Butylbenzene       8.1         98-06-6       t-Butylbenzene       8.1         56-23-5       Carbon tetrachloride       11.6         108-90-7       Chlorobenzene       2.3         75-00-3       Chloroform       2.3         67-66-3       Chlorobenzene       2.3         74-87-3       Chlorobethane       8.1         95-49-8       2-Chlorotoluene       2.3         106-43-4       4-Chlorotoluene       3.5         96-12-8       1,2-Dibromo-3-chloropropane       1.2         124-48-1       Dibromochloromethane       3.5         74-95-3       1,2-Dibromoethane       3.5         74-95-3       Dibromomethane       11.6         95-50-1       1,2-Dichlorobenzene       2.3         74-95-3       Dibromoethane       3.5         74-95-3       Dibromoethane       3.5         74-95-3       Dibromoethane       3.5         74-95-3       Dibromoethane       3.5         74-95-3       Dichlorobenzene       2.3         75-12-8       Dichlorobenzene       7.0         106-46-7       1,4-Dichlorobenzene       7.0                                                                                                                                                | U   |
| 135-98-8       sec-Butylbenzene       8.1         98-06-6       t-Butylbenzene       8.1         56-23-5       Carbon tetrachloride       11.6         108-90-7       Chlorobenzene       2.3         75-00-3       Chlorothane       5.8         67-66-3       Chlorothane       2.3         74-87-3       Chlorothane       8.1         95-49-8       2-Chlorotoluene       2.3         106-43-4       4-Chlorotoluene       3.5         96-12-8       1,2-Dibromo-3-chloropropane       1.2         124-48-1       Dibromochloromethane       3.5         74-95-3       1,2-Dibromo-3-chloropropane       1.2         14-48-1       Dibromochloromethane       3.5         74-95-3       1,2-Dibromo-3-chloropropane       1.2         124-48-1       Dibromochloromethane       3.5         74-95-3       1,2-Dichlorobenzene       2.3         74-95-3       Dibromomethane       3.5         74-95-3       Dibrohotobenzene       2.3         74-95-3       Dibrohotobenzene       2.3         74-95-3       Dichlorobenzene       2.3         74-95-3       Dichlorobenzene       2.3         75-71-8       Dichlor                                                                                                                                | U   |
| 78-06-6       t-Butylbenzene       8. 1         54-23-5       Carbon tetrachloride       11. 6         108-90-7       Chlorobenzene       2.3         75-00-3       Chlorothane       5.8         67-66-3       Chlorothane       2.3         74-87-3       Chlorotoluene       2.3         74-87-3       Chlorotoluene       2.3         74-87-3       Chlorotoluene       2.3         106-43-4       4-Chlorotoluene       3.5         96-12-8       1.2-Dibromo-3-chloropropane       1.2         124-48-1       Dibromochloromethane       3.5          74-95-3       1.2-Dibromoethane       3.5          74-95-3       1.2-Dibromoethane       3.5          74-95-3       Dibromomethane       3.5          74-95-3       Dibromomethane       2.3          74-95-3       Dibromomethane       3.5          74-95-3       Dibromochlorobenzene       2.3          74-95-3       Dibrohotobenzene       2.3          74-95-3       Dibrohotobenzene       2.3          75-50-1       1.2-Dichlorobenzene       2.3                                                                                                                                                                                                                                   | U   |
| 54-23-5       Carbon tetrachloride       11.6         108-90-7       Chlorobenzene       2.3         75-00-3       Chloroethane       5.8         67-66-3       Chloroform       2.3         74-87-3       Chloromethane       8.1         95-49-8       2-Chlorotoluene       2.3         106-43-4       4-Chlorotoluene       3.5         96-12-8       1,2-Dibromo-3-chloropropane       1.2         124-48-1       Dibromochloromethane       3.5         74-95-3       1,2-Dibromo-3-chloropropane       1.2         124-48-1       Dibromochloromethane       3.5         74-95-3       1,2-Dichlorobenzene       2.3         74-95-3       Dibromomethane       11.6         95-50-1       1,2-Dichlorobenzene       2.3         541-73-1       1,3-Dichlorobenzene       2.3         541-73-1       1,4-Dichlorobenzene       2.3         75-71-8       Dichlorodifluoromethane       5.8         75-34-3       1,1-Dichloroethane       3.5         107-06-2       1,2-Dichloroethane       3.5         107-06-2       1,2-Dichloroethane       7.0         156-59-2       cis-1,2-Dichloroethene       7.0         156-60                                                                                                                       | U   |
| 108-90-7       Chlorobenzene       2.3         75-00-3       Chloroethane       5.8         67-66-3       Chloroform       2.3         74-87-3       Chloromethane       8.1         95-49-8       2-Chlorotoluene       2.3         106-43-4       4-Chlorotoluene       3.5         96-12-8       1,2-Dibromo-3-chloropropane       1.2         124-48-1       Dibromochloromethane       3.5         74-95-3       1,2-Dibromo-3-chloropropane       1.2         124-48-1       Dibromochloromethane       3.5         74-95-3       1,2-Dibromo-3-chloropropane       1.2         124-48-1       Dibromochloromethane       3.5         74-95-3       1,2-Dichlorobenzene       2.3         74-95-3       Dibromomethane       3.5         74-95-3       Dibromoethane       3.5         74-95-3       Dibromoethane       3.5         74-95-3       Dibromoethane       3.5         74-95-3       Dibromoethane       3.5         74-95-3       Dichlorobenzene       2.3         541-73-1       1,3-Dichlorobenzene       2.3         75-71-8       Dichlorodifluoromethane       3.5         75-35-4       1,1-Dich                                                                                                                                | U   |
| 75-00-3       Chloroethane       5.8         67-66-3       Chloroform       2.3         74-87-3       Chlorotoluene       8.1         75-49-8       2-Chlorotoluene       3.5         106-43-4       4-Chlorotoluene       3.5         106-43-4       4-Chlorotoluene       3.5         104-43-4       1.2-Dibromo-3-chloropropane       1.2         124-48-1       Dibromochloromethane       3.5         74-95-3       1.2-Dibromoethane       3.5         74-95-3       Dibromomethane       11.6         75-50-1       1.2-Dichlorobenzene       2.3         541-73-1       1.3-Dichlorobenzene       2.3         106-46-7       1.4-Dichlorobenzene       2.3         75-71-8       Dichlorodifluoromethane       5.8         75-34-3       1.1-Dichloroethane       3.5         107-06-2       1.2-Dichloroethane       3.5         75-35-4       1.1-Dichloroethane       3.5         75-35-4       1.2-Dichloroethane       3.5         156-59-2       cis-1.2-Dichloroethene       7.0         156-60-5       trans-1.2-Dichloroethene       3.5         78-87-5       1.2-Dichloropropane       2.3                                                                                                                                             | U   |
| 67-66-3       Chloroform       2.3         74-87-3       Chloromethane       8.1         95-49-8       2-Chlorotoluene       2.3         106-43-4       4-Chlorotoluene       3.5         96-12-8       1,2-Dibromo-3-chloropropane       1.2         124-48-1       Dibromochloromethane       3.5         74-95-3       1,2-Dibromoethane       3.5         74-95-3       Dibromoethane       3.5         74-95-3       Dichlorobenzene       2.3         541-73-1       J.4-Dichlorobenzene       7.0         106-46-7       J.4-Dichloroethane       3.5         75-31-8       Dichloroethane       3.5                                                                                                                                                                   | U   |
| 74-87-3       Chloromethane       8.1         95-49-8       2-Chlorotoluene       2.3         106-43-4       4-Chlorotoluene       3.5         96-12-8       1,2-Dibromo-3-chloropropane       1.2         124-48-1       Dibromochloromethane       3.5         74-95-3       1,2-Dibromoethane       3.5         74-95-3       Dibromoethane       11.6         95-50-1       1,2-Dichlorobenzene       2.3         541-73-1       1,3-Dichlorobenzene       2.3         75-71-8       Dichlorodifluoromethane       5.8         75-34-3       1,1-Dichlorobenzene       3.5         107-06-2       1,2-Dichloroethane       3.5         75-35-4       1,1-Dichloroethane       7.0         156-59-2       cis-1,2-Dichloroethane       7.0         156-60-5       trans-1,2-Dichloroethene       7.0         156-60-5       trans-1,2-Dichloroethene       3.5         78-87-5       1,2-Dichloropropane       2.3                                                                                                                                                                                                                                                                                                                                     | U   |
| 95-49-8       2-Chlorotoluene       2.3         106-43-4       4-Chlorotoluene       3.5         96-12-8       1,2-Dibromo-3-chloropropane       1.2         124-48-1       Dibromochloromethane       3.5         74-95-3       1,2-Dibromoethane       3.5         74-95-3       Dibromomethane       11.6         95-50-1       1,2-Dichlorobenzene       2.3         541-73-1       1,3-Dichlorobenzene       2.3         541-73-1       1,4-Dichlorobenzene       2.3         75-71-8       Dichlorodifluoromethane       5.8         75-34-3       1,1-Dichlorobethane       3.5         107-06-2       1,2-Dichlorobethane       3.5         75-35-4       1,1-Dichloroethane       3.5         75-35-4       1,2-Dichloroethane       3.5         156-59-2       cis-1,2-Dichloroethane       7.0         156-60-5       trans-1,2-Dichloroethene       3.5         78-87-5       1,2-Dichloropropane       2.3                                                                                                                                                                                                                                                                                                                                   | U   |
| 106-43-4       .4-Chlorotoluene       3.5         96-12-8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | U   |
| 96-12-8       1,2-Dibromo-3-chloropropane       1.2         124-48-1       Dibromochloromethane       3.5         74-95-3       1,2-Dibromoethane       3.5         74-95-3       Dibromomethane       11.6         95-50-1       1,2-Dichlorobenzene       2.3         541-73-1       1,3-Dichlorobenzene       2.3         541-73-1       1,4-Dichlorobenzene       2.3         106-46-7       1,4-Dichlorobenzene       2.3         75-71-8       Dichlorodifluoromethane       5.8         75-34-3       1,1-Dichloroethane       3.5         107-06-2       1,2-Dichloroethane       3.5         75-35-4       1,1-Dichloroethane       3.5         156-59-2       cis-1,2-Dichloroethene       7.0         156-60-5       trans-1,2-Dichloroethene       3.5         78-87-5       1,2-Dichloropropane       2.3                                                                                                                                                                                                                                                                                                                                                                                                                                    | U   |
| 124-48-1       Dibromochloromethane       3.5         74-95-3       1,2-Dibromoethane       3.5         74-95-3       Dibromomethane       11.6         95-50-1       1,2-Dichlorobenzene       2.3         541-73-1       1,3-Dichlorobenzene       7.0         106-46-7       1,4-Dichlorobenzene       2.3         75-71-8       Dichlorodifluoromethane       5.8         75-34-3       1,1-Dichloroethane       3.5         107-06-2       1,2-Dichloroethane       3.5         75-35-4       1,1-Dichloroethane       3.5         156-59-2       cis-1,2-Dichloroethene       7.0         156-60-5       trans-1,2-Dichloroethene       3.5         78-87-5       1,2-Dichloropropane       2.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | U   |
| 74-95-3       1, 2-Dibromoethane       3.5         74-95-3       Dibromomethane       11.6         95-50-1       1, 2-Dichlorobenzene       2.3         541-73-1       1, 3-Dichlorobenzene       7.0         106-46-7       1, 4-Dichlorobenzene       2.3         75-71-8       Dichlorodifluoromethane       5.8         75-34-3       1, 1-Dichloroethane       3.5         107-06-2       1, 2-Dichloroethane       3.5         75-35-4       1, 1-Dichloroethane       7.0         156-59-2       cis-1, 2-Dichloroethene       7.0         156-60-5       trans-1, 2-Dichloroethene       3.5         78-87-5       1, 2-Dichloropropane       2.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | U   |
| 74-95-3       Dibromomethane       11.6         95-50-1       1,2-Dichlorobenzene       2.3         541-73-1       1,3-Dichlorobenzene       7.0         106-46-7       1,4-Dichlorobenzene       2.3         75-71-8       Dichlorodifluoromethane       5.8         75-34-3       1,1-Dichloroethane       2.3         107-06-2       1,2-Dichloroethane       3.5         75-35-4       1,1-Dichloroethane       7.0         156-59-2       cis-1,2-Dichloroethene       7.0         156-60-5       trans-1,2-Dichloroethene       3.5         78-87-5       1,2-Dichloropropane       2.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | U   |
| 95-50-1       1,2-Dichlorobenzene       2.3         541-73-1       1,3-Dichlorobenzene       7.0         106-46-7       1,4-Dichlorobenzene       2.3         75-71-8       Dichlorodifluoromethane       5.8         75-34-3       1,1-Dichloroethane       2.3         107-06-2       1,2-Dichloroethane       3.5         75-35-4       1,1-Dichloroethane       7.0         156-59-2       cis-1,2-Dichloroethene       7.0         156-60-5       trans-1,2-Dichloroethene       3.5         78-87-5       1,2-Dichloropropane       2.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | U   |
| 541-73-1       1,3-Dichlorobenzene       7.0         106-46-7       1,4-Dichlorobenzene       2.3         75-71-8       Dichlorodifluoromethane       5.8         75-34-3       1,1-Dichloroethane       2.3         107-06-2       1,2-Dichloroethane       3.5         75-35-4       1,1-Dichloroethane       7.0         156-59-2       cis-1,2-Dichloroethene       7.0         156-60-5       trans-1,2-Dichloroethene       3.5         78-87-5       1,2-Dichloropropane       2.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | U   |
| 106-46-7       1,4-Dichlorobenzene       2.3         75-71-8       Dichlorodifluoromethane       5.8         75-34-3       1,1-Dichloroethane       2.3         107-06-2       1,2-Dichloroethane       3.5         75-35-4       1,1-Dichloroethene       7.0         156-59-2       cis-1,2-Dichloroethene       7.0         156-60-5       trans-1,2-Dichloroethene       3.5         78-87-5       1,2-Dichloropropane       2.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | U   |
| 75-71-8       Dichlorodifluoromethane       5.8         75-34-3       1,1-Dichloroethane       2.3         107-06-2       1,2-Dichloroethane       3.5         75-35-4       1,1-Dichloroethene       7.0         156-59-2       cis-1,2-Dichloroethene       7.0         156-60-5       trans-1,2-Dichloroethene       3.5         78-87-5       1,2-Dichloropropane       2.3         142-28-9       1,3-Dichloropropane       2.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | U   |
| 75-34-3       1,1-Dichloroethane       2.3          107-06-2       1,2-Dichloroethane       3.5          75-35-4       1,1-Dichloroethane       7.0          156-59-2      cis-1,2-Dichloroethene       7.0          156-60-5      trans-1,2-Dichloroethene       3.5          78-87-5      1,2-Dichloropropane       2.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | U   |
| 107-06-2       1,2-Dichloroethane       3.5         75-35-4       1,1-Dichloroethene       7.0         156-59-2       cis-1,2-Dichloroethene       7.0         156-60-5       trans-1,2-Dichloroethene       3.5         78-87-5       1,2-Dichloropropane       2.3         142-28-9       1,3-Dichloropropane       2.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | U   |
| 75-35-4       1,1-Dichloroethene       7.0          156-59-2       cis-1,2-Dichloroethene       7.0          156-60-5       trans-1,2-Dichloroethene       3.5          78-87-5       1,2-Dichloropropane       2.3          142-28-9       1,3-Dichloropropane       2.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | U   |
| 156-59-2cis-1,2-Dichloroethene7.0156-60-5trans-1,2-Dichloroethene3.578-87-51,2-Dichloropropane2.3142-28-91,3-Dichloropropane2.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | U   |
| 156-60-5        trans-1,2-Dichloroethene       3.5          78-87-5        1,2-Dichloropropane       2.3          142-28-9        1,3-Dichloropropane       2.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | U   |
| 78-87-5       1,2-Dichloropropane       2.3          142-28-9       1,3-Dichloropropane       2.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | U   |
| 142-28-9 1, 3-Dichloropropane 2.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | U   |
| 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | U   |
| 594-20-7 2,2-Dichlorononane 23.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | U   |
| a a construction a construction a construction a construction a construction a construction a construction a construction a construction a construction a construction a construction a construction a construction a construction a construction a construction a construction a construction a construction a construction a construction a construction a construction a construction a construction a construction a construction a construction a construction a construction a construction a construction a construction a construction a construction a construction a construction a construction a construction a construction a construction a construction a construction a construction a construction a construction a construction a construction a construction a construction a construction a construction a construction a construction a construction a construction a construction a construction a construction a construction a construction a construction a construction a construction a construction a construction a construction a construction a construction a construction a construction a construction a construction a construction a construction a construction a construction a construction a construction a const | U   |
| 563-58-6 1, 1-Dichloropropene 5.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | U   |
| 10061-01-5 cis-1,3-Dichloropropene 5.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | U   |
| 10061-02-6 trans-1,3-Dichloropropene . 5.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | U   |
| 100-41-4 Ethylbenzene 105                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     |
| 87-68-3 Hexachlorobutadiene 5.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | U   |
| 78-82-8 Isopropylbenzene 15.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     |
| 99-87-6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     |

2960 Foster Creighton Dr. P.O. Box 40566 Nashville, TN 37204-0566 Phone 1-615-726-0177

Sample Identification

SB12-22

Matrix: Soil % Dry Weight: 86. Units: ug/kg dry weight Lab Sample ID: 98-A127312 Date Sampled: 10/15/98 Date Received: 10/17/98

| CAS NUMBER | ANALYTE                       | CONCENTRATI | ON FLAG |
|------------|-------------------------------|-------------|---------|
| 75-09-2    | .Methylene chloride           | 2.3         | U       |
| 91-20-3    | .Naphthalene                  | 30.2        |         |
|            | .n-Propylbenzene              |             |         |
|            | .Styrene                      |             | U       |
| 630-20-6   | . 1, 1, 1, 2-Tetrachloroethan | e. 3.5      | U       |
|            | . 1, 1, 2, 2-Tetrachloroethan |             | U       |
|            | . Tetrachloroethene           |             | U       |
|            | . Toluene                     |             | U       |
|            | . 1, 2, 3-Trichlorobenzene .  |             | U       |
|            | . 1, 2, 4-Trichlorobenzene .  |             | U       |
|            | . 1, 1, 1-Trichloroethane     |             | U       |
|            | . 1, 1, 2-Trichloroethane     |             | U       |
|            | . Trichloroethene             |             | U       |
|            | . 1, 2, 3-Trichloropropane    |             | U       |
|            | . 1, 2, 4-Trimethylbenzene .  |             |         |
|            | 1,3,5-Trimethylbenzene        |             |         |
|            |                               |             | U       |
|            | .Vinyl chloride               |             |         |
|            | .Bromodichloromethane         |             | U       |
|            | .o-Xylene                     |             | J       |
|            | .m,p-Xylene                   |             | • • • • |
| 75-69-4    | Trichlorofluoromethane .      | 4.7         | U       |



2960 Foster Creighton Dr. P.O. Box 40566 Nashville, TN 37204-0566 Phone 1-615-726-0177

Matrix: Soil % Dry Weight: 96. Units: ug/kg dry weight Dilution Factor: 1. Analysis Method: SW8260B Delivery Group: 117250 Instrument: HP-2 Sample Identification

SB17-26

Lab Sample ID: 98-A127313 Date Sampled: 10/15/98 Date Received: 10/17/98 Analysis Date: 10/21/98 Analysis Time: 2:47 Sample QC Group: 4761

#### FORM I

| CAS NUMBER | ANALYTE                               | CONC, | ENTRATION         | FI | _AG |
|------------|---------------------------------------|-------|-------------------|----|-----|
| 144-10-5   | .1-Chlorohexane                       |       |                   |    | υ   |
| 71-43-2    | .Benzene                              |       | 2. 1              |    | υ   |
| 108-86-1   | .Bromobenzene                         |       | 2.1               |    | υ   |
| 124-48-1   | .Bromochloromethane                   |       | 2.1               |    | υ   |
| 75-25-2    | . Bromoform                           |       | 6.2               |    | υ   |
| 74-83-9    | .Bromomethane                         |       | 5. 2              |    | υ   |
| 104-51-8   | .n-Butulbenzene                       |       | 5.2               |    | υ   |
|            | .sec-Butylbenzene                     |       | 7.3               |    | υ   |
|            | .t-Butulbenzene                       |       | 7.3               |    | υ   |
|            | .Carbon tetrachloride                 |       | 10.4              |    | υ   |
|            | . Chlorobenzene                       |       | 2.1               |    | υ   |
|            | . Chloroethane                        |       | 5.2               |    | υ   |
|            | . Chloroform                          |       | 2.1               |    | υ   |
|            | . Chloromethane                       |       |                   |    | υ   |
|            | .2-Chlorotoluene                      |       | 2.1               |    | υ   |
|            | .4-Chlorotoluene                      |       | 3. 1 <sup>°</sup> |    | υ   |
|            | . 1, 2-Dibromo-3-chloroprop           |       | 1.0               |    | υ   |
|            | . Dibromochloromethane                |       | 3.1               |    | υ   |
|            | . 1, 2-Dibromoethane                  |       | 3.1               |    | υ   |
|            | . Dibromomethane                      |       | 10.4              |    | υ   |
| 95-50-1    | . 1, 2-Dichlorobenzene                |       | 2.1               |    | υ   |
|            | . 1, 3-Dichlorobenzene                |       | 6.2               |    | υ   |
| 106-46-7   | . 1,4-Dichlorobenzene                 |       | 2.1               |    | υ   |
| 75-71-8    | . Dichlorodifluoromethane             |       | 5.2               |    | υ   |
| 75-34-3    | . 1, 1-Dichloroethane                 |       | 2.1               |    | υ   |
| 107-06-2   | . 1, 2-Dichloroethane                 |       | 3.1               |    | υ   |
| 75-35-4    | . 1, 1-Dichloroethene                 |       | 6.2               |    | υ   |
|            | .cis-1,2-Dichloroethene .             |       | 5.2               |    | υ   |
|            | .trans-1,2-Dichloroethene             |       |                   |    | υ   |
|            | . 1, 2-Dichloropropane                |       | 2.1               |    | υ   |
|            | . 1, 3-Dichloropropane                |       | 2.1               |    | υ   |
|            | . 2, 2-Dichloropropane                |       | 20.8              |    | υ   |
|            | . 1, 1-Dichloropropene                |       | 5.2               |    | υ   |
|            | . cis-1, 3-Dichloropropene            |       |                   |    | υ   |
|            | .trans-1,3-Dichloropropen             |       |                   |    | υ   |
|            | .Ethylbenzene                         |       | З. 1              |    | υ   |
|            | .Hexachlorobutadiene                  |       | 5.2               |    | υ   |
|            | . Isopropylbenzene                    |       | - · ·             |    | Ū   |
|            | .4-Isopropyltoluene                   |       |                   |    | Ū   |
|            | · · · · · · · · · · · · · · · · · · · |       |                   |    | -   |

00013(



2960 Foster Creighton Dr. P.O. Box 40566 Nashville, TN 37204-0566 Phone 1-615-726-0177

Sample Identification

SB17-26

Matrix: Soil % Dry Weight: 96. Units: ug/kg dry weight Lab Sample ID: 98-A127313 Date Sampled: 10/15/98 Date Received: 10/17/98

| CAS NUMBER                                                                                                                                                                                                        | ANALYTE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | CONCENTRATION                                        | FLAG |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|------|
| 75-09-2<br>91-20-3<br>103-65-1<br>100-42-5<br>630-20-6<br>79-34-5<br>127-18-4<br>108-88-3<br>87-61-6<br>120-82-1<br>71-55-6<br>79-00-5<br>79-01-6<br>96-18-4<br>95-63-6<br>108-67-8<br>75-01-4<br>75-27-4<br>6615 | Methylene chloride<br>Naphthalene<br>n-Propylbenzene<br>Styrene<br>1, 1, 1, 2-Tetrachloroethane<br>1, 1, 2, 2-Tetrachloroethane<br>Tetrachloroethene<br>Toluene<br>1, 2, 3-Trichlorobenzene<br>1, 2, 3-Trichlorobenzene<br>1, 1, 1-Trichloroethane<br>1, 1, 2-Trichloroethane<br>1, 2, 3-Trichloroethane<br>1, 2, 3-Trichloropethane<br>1, 2, 3-Trichloropethane<br>1, 2, 3-Trichloropethane<br>1, 2, 3-Trichloropethane<br>1, 2, 3-Trichloropethane<br>1, 2, 4-Trimethylbenzene<br>1, 3, 5-Trimethylbenzene<br>Vinyl chloride<br>0-Xylene | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ |      |
|                                                                                                                                                                                                                   | m,p-Xylene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                      | υυ   |



2960 Foster Creighton Dr. P.O. Box 40566 Nashville, TN 37204-0566 Phone 1-615-726-0177

Matrix: Soil % Dry Weight: 90. Units: ug/kg dry weight Dilution Factor: 5. Analysis Method: SW8260B Delivery Group: 117250 Instrument: HP-2 Sample Identification

SB15-22

Lab Sample ID: 98-A127314 Date Sampled: 10/15/98 Date Received: 10/17/98 Analysis Date: 10/21/98 Analysis Time: 3:24 Sample QC Group: 4761

#### FORM I

| CAS NUMBER | ANALYTE                      | CONCENTRATION | FLAG     |
|------------|------------------------------|---------------|----------|
|            | .1-Chlorohexane              |               | U        |
|            | .Benzene                     |               | U        |
|            | .Bromobenzene                |               | U        |
|            | .Bromochloromethane          |               | U        |
|            | .Bromoform                   |               | U        |
| 74-83-9    | .Bromomethane                | 27.8          | U        |
|            | .n-Butylbenzene              |               | U        |
|            | .sec-Butylbenzene            |               | U        |
|            | .t-Butylbenzene              |               | U        |
| 56-23-5    | .Carbon tetrachloride        | 55.6          | U        |
| 108-90-7   | .Chlorobenzene               | 11.1          | U        |
|            | .Chloroethane                |               | U        |
| 67-66-3    | .Chloroform                  | 11.1          | U        |
| 74-87-3    | .Chloromethane               | 38.9          | U        |
| 95-49-8    | .2-Chlorotoluene             | 11.1          | <b>U</b> |
| 106-43-4   | .4-Chlorotoluene             | 16.7          | U        |
| 96-12-8    | . 1, 2-Dibromo-3-chloroprop. | ane 5.6       | U        |
|            | . Dibromochloromethane       |               | U        |
| 74-95-3    | .1,2-Dibromoethane           | 16.7          | U        |
| 74-95-3    | . Dibromomethane             | 55.6          | U        |
| 95-50-1    | .1,2-Dichlorobenzene         | 11.1          | U        |
| 541-73-1   | .1,3-Dichlorobenzene         | 33.3          | U        |
| 106-46-7   | .1,4-Dichlorobenzene         | 11.1          | U        |
| 75-71-8    | .Dichlorodifluoromethane     | 27.8          | U        |
| 75-34-3    | .1,1-Dichloroethane          | 11.1          | U        |
| 107-06-2   | .1,2-Dichloroethane          | 16.7          | U        |
| 75-35-4    | .1,1-Dichloroethene          | 33.3          | U        |
| 156-59-2   | .cis-1,2-Dichloroethene .    | 33.3          | U        |
| 156-60-5   | .trans-1,2-Dichloroethene    | 16.7          | U        |
| 78-87-5    | .1,2-Dichloropropane         | 11.1          | U        |
| 142-28-9   | .1,3-Dichloropropane         | 11.1          | U        |
| 594-20-7   | .2,2-Dichloropropane         | 111.          | U        |
| 563-58-6   | . 1, 1-Dichloropropene       | 27.8          | U        |
|            | .cis-1,3-Dichloropropene     |               | U        |
|            | .trans-1,3-Dichloropropen    |               | U        |
|            | .Ethylbenzene                |               |          |
|            | .Hexachlorobutadiene         |               | Ú        |
|            | . Isopropylbenzene           |               |          |
|            | .4-Isopropyltoluene          |               |          |



2960 Foster Creighton Dr. P. O. Box 40566 Nashville, TN 37204-0566 Phone 1-615-726-0177

Sample Identification

SB15-22

Matrix: Soil % Dry Weight: 90. Units: ug/kg dry weight Lab Sample ID: 98-A127314 Date Sampled: 10/15/98 Date Received: 10/17/98

| CAS NUMBER                                                                                                                                                               | ANALYTE                                                                                                                                                                                                                                                                                                                                                                                                                                             | CONCENTRATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | FLAG   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| 75-09-2<br>91-20-3<br>103-65-1<br>100-42-5<br>630-20-6<br>79-34-5<br>127-18-4<br>108-88-3<br>87-61-6<br>120-82-1<br>71-55-6<br>79-00-5<br>79-01-6<br>96-18-4<br>108-67-8 | Methylene chloride<br>Naphthalene<br>n-Propylbenzene<br>5tyrene<br>1, 1, 1, 2-Tetrachloroethane<br>1, 1, 2, 2-Tetrachloroethane<br>Tetrachloroethene<br>Toluene<br>1, 2, 3-Trichlorobenzene<br>1, 2, 4-Trichlorobenzene<br>1, 1, 1-Trichloroethane<br>1, 1, 2-Trichloroethane<br>1, 1, 2-Trichloroethane<br>1, 2, 3-Trichloroethane<br>1, 2, 3-Trichloropethane<br>1, 2, 3-Trichloropethane<br>1, 2, 4-Trimethylbenzene<br>1, 3, 5-Trimethylbenzene | 11.1         55.6         172.         11.1         14.7         11.1         14.7         11.1         14.7         11.1         11.1         11.1         11.1         11.1         11.1         12.22         11.1         11.1         11.1         11.1         11.1         11.1         11.1         11.1         11.1         11.1         11.1         11.1         12.22.2         13.22.2         14.11.1         15.6         111.1         12.22.2         12.22.2         12.22.2         12.22.2         12.22.2         12.22.2         12.22.2         12.22.2         12.22.2         12.22.2         12.22.2         12.22.2         12.22.2         12.22.2         12.22.2         12.22.2 <tr td="">         12.22.2</tr> | FLAG   |
|                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |        |
| 75-01-4                                                                                                                                                                  | Vinyl chloride<br>Bromodichloromethane                                                                                                                                                                                                                                                                                                                                                                                                              | 50.0 .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | U      |
| 108-67-8                                                                                                                                                                 | 1,3,5-Trimethylbenzene                                                                                                                                                                                                                                                                                                                                                                                                                              | 422                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |        |
| 6616                                                                                                                                                                     | o-Xylene                                                                                                                                                                                                                                                                                                                                                                                                                                            | 133                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | U<br>U |
| /                                                                                                                                                                        | nitentororioonomeenane                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |        |



2960 Foster Creighton Dr. P.O. Box 40566 Nashville, TN 37204-0566 Phone 1-615-726-0177

Matrix: Soil % Dry Weight: 97. Units: ug/kg dry weight Dilution Factor: 5. Analysis Method: SW8260B Delivery Group: 117250 Instrument: HP-2 Sample Identification

SE15-10-12

Lab Sample ID: 98-A127315 Date Sampled: 10/15/98 Date Received: 10/17/98 Analysis Date: 10/21/98 Analysis Time: 4:00 Sample QC Group: 4761

#### FORM I

|   | CAS NUMBER | ANALYTE                      | CONCENTRATION | ۴L        | _AG    |
|---|------------|------------------------------|---------------|-----------|--------|
|   | 144-10-5   | .1-Chlorohexane              | 12.9          |           | υ      |
|   |            | . Benzene                    |               |           | υ      |
|   |            | Bromobenzene                 |               | • • • •   | υ      |
|   |            | Bromochloromethane           |               |           | υ      |
|   |            | .Bromoform                   |               |           | υ      |
|   |            | Bromomethane                 |               |           | υ      |
|   |            | n-Butylbenzene               |               |           | υ      |
|   |            | sec-Butylbenzene             |               |           | Ū      |
|   |            | t-Butylbenzene               |               |           | υ      |
|   |            | . Carbon tetrachloride       |               |           | Ū      |
|   |            | Chlorobenzene                |               |           | Ũ      |
|   |            | . Chloroethane               |               |           | Ū      |
|   |            | Chloroform                   |               |           | υ      |
|   |            | . Chloromethane              |               |           | Ū      |
|   |            | .2-Chlorotoluene             |               |           | ΰ      |
| • |            | 4-Chlorotoluene              |               |           | Ū      |
|   |            | 1,2-Dibromo-3-chloropropa    |               |           | υ      |
|   |            | . Dibromochloromethane       |               |           | Ū      |
|   |            | 1,2-Dibromoethane            |               |           | บั     |
|   |            | . Dibromomethane             |               |           | Ŭ      |
|   |            | . 1,2-Dichlorobenzene        |               |           | Ũ      |
|   |            | . 1,3-Dichlorobenzene        |               | · · · ·   | Ŭ      |
|   |            | . 1,4-Dichlorobenzene        |               | ••••      | Ŭ      |
|   |            | . Dichlorodifluoromethane .  |               | · · · ·   | Ū      |
|   |            | . 1, 1-Dichloroethane        |               | <br>      | υ      |
|   |            | . 1,2-Dichloroethane         |               | · · · · · | ŭ      |
|   |            | . 1, 1-Dichloroethene        |               |           | ŭ      |
|   |            | . cis-1,2-Dichloroethene     |               | · · · · · | ŭ      |
|   |            | trans-1,2-Dichloroethene     |               |           | ŭ      |
|   |            | . 1,2-Dichloropropane        |               | <br>      | U<br>U |
|   |            | . 1,3-Dichloropropane        |               | ••••      | υ      |
|   |            | . 2,2-Dichloropropane        |               | · · · ·   | Ŭ      |
|   |            |                              |               | · · · ·   | υ      |
|   |            | . 1, 1-Dichloropropene       |               |           | -      |
|   |            | . cis-1, 3-Dichloropropene . |               | ••••      | U<br>U |
|   |            | . trans-1, 3-Dichloropropene |               | • • • •   | -      |
|   |            | Ethylbenzene                 |               | ••••      | U      |
|   |            | .Hexachlorobutadiene         |               |           | υ      |
|   |            | . Isopropylbenzene           |               | • • • •   | U      |
|   | 44-81-6    | .4-Isopropyltoluene          | 30.9          |           | υ      |
|   |            |                              |               |           |        |



2960 Foster Creighton Dr. P.O. Box 40566 Nashville, TN 37204-0566 Phone 1-615-726-0177

Sample Identification

SB15-10-12

Matrix: Soil % Dry Weight: 97. Units: ug/kg dry weight Lab Sample ID: 98-A127315 Date Sampled: 10/15/98 Date Received: 10/17/98

| CAS NUMBER                                                                                                                                                                                                | ANALYTE                                                                                                                                                                                                                                                                                                                                                                                                                                          | CONCENTRATION                                         | FLAG |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|------|
| 75-09-2<br>91-20-3<br>103-65-1<br>100-42-5<br>630-20-6<br>79-34-5<br>127-18-4<br>108-88-3<br>87-61-6<br>120-82-1<br>71-55-6<br>79-00-5<br>79-01-6<br>96-18-4<br>95-63-6<br>108-67-8<br>75-01-4<br>75-27-4 | Methylene chloride<br>Naphthalene<br>n-Propylbenzene<br>Styrene<br>1, 1, 1, 2-Tetrachloroethane<br>1, 1, 2, 2-Tetrachloroethane<br>Tetrachloroethene<br>1, 2, 3-Trichlorobenzene<br>1, 2, 4-Trichlorobenzene<br>1, 1, 1-Trichloroethane<br>Trichloroethene<br>1, 2, 3-Trichloropthane<br>1, 2, 3-Trichloropthane<br>1, 2, 3-Trichloropthane<br>1, 2, 3-Trichloropthane<br>1, 2, 5-Trimethylbenzene<br>1, 3, 5-Trimethylbenzene<br>Vinyl chloride | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ |      |
|                                                                                                                                                                                                           | .m,p-Xylene                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                       | υ    |



2960 Foster Creighton Dr. P.O. Box 40566 Nashville, TN 37204-0566 Phone 1-615-726-0177

Matrix: Soil % Dry Weight: 89. Units: ug/kg dry weight Dilution Factor: 100. Analysis Method: SW8260B Delivery Group: 117250 Instrument: HP-2 Sample Identification

SB10-23

Lab Sample ID: 98-A127316 Date Sampled: 10/15/98 Date Received: 10/17/98 Analysis Date: 10/18/98 Analysis Time: 19:28 Sample QC Group: 4761

#### FORM I

| CAS NUMBER ANALYTE                    | CONCENTRATION | וד  | LAG |
|---------------------------------------|---------------|-----|-----|
| 144-10-5                              |               |     | U   |
| 71-43-2Benzene                        |               |     | U   |
| 108-86-1Bromobenzene                  | 225           |     | U   |
| 124-48-1 Bromochloromethane           | 225           |     | U   |
| 75-25-2 Bromoform                     |               |     | U   |
| 74-83-9Bromomethane                   |               |     | U   |
| 104-51-8n-Butylbenzene                |               |     | U   |
| 135-98-8sec-Butylbenzene              |               |     | U   |
| 98-06-6t-Butylbenzene                 | 787           |     | U   |
| 56-23-5Carbon tetrachloride           | 1120 .        |     | U   |
| 108-90-7 Chlorobenzene                | 225           |     | υ   |
| 75-00-3 Chloroethane                  | 562           |     | U   |
| 67-66-3 Chloroform                    | 225           |     | U   |
| 74-87-3 Chloromethane                 |               |     | υ   |
| 95-49-8                               | 225           |     | U   |
| 106-43-4                              | 337           |     | U   |
| 96-12-8 1,2-Dibromo-3-chloropropa     | ane 112       |     | U   |
| 124-48-1 Dibromochloromethane         | 337           |     | U   |
| 74-95-3 1,2-Dibromoethane             | 337           |     | U   |
| 74-95-3 Dibromomethane                |               |     | υ   |
| 95-50-1                               | 225           |     | υ   |
| 541-73-1                              | 674           |     | υ   |
| 106-46-7 1, 4-Dichlorobenzene         |               |     | U   |
| 75-71-8 Dichlorodifluoromethane .     |               |     | U   |
| 75-34-3                               | 225           |     | υ   |
| 107-06-2                              | 337           |     | U   |
| 75-35-4                               |               |     | Ú   |
| 156-59-2cis-1,2-Dichloroethene        |               |     | Ū   |
| 156-60-5 trans-1, 2-Dichloroethene    |               |     | Ū   |
| 78-87-5 1,2-Dichloropropane           |               |     | Ū   |
| 142-28-9                              |               |     | Ū   |
| 594-20-7                              |               |     | Ū   |
| 563-58-6 1, 1-Dichloropropene         |               |     | Ū   |
| 10061-01-5 cis-1,3-Dichloropropene .  |               |     | บั  |
| 10061-02-6 trans-1, 3-Dichloropropens |               |     | Ū   |
| 100-41-4 Ethylbenzene                 |               |     | -   |
| 87-68-3                               |               | ••• | U   |
| 98-82-8 Isopropylbenzene              |               |     | J   |
| 99-87-6                               |               | ••• | ~   |
|                                       |               | ••• | - 0 |



2960 Foster Creighton Dr. P.O. Box 40566 Nashville, TN 37204-0566 Phone 1-615-726-0177

Sample Identification

SB10-23

Matrix: Soil % Dry Weight: 89. Units: ug/kg dry weight Lab Sample ID: 98-A127316 Date Sampled: 10/15/98 Date Received: 10/17/98

| CAS NUMBER                                                                                                                                                   | ANALYTE                                                                                                                                                                                                                                                                                                                                             | CONCENTRATION                                                               | FLAG                                                                                                                           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|
| 75-09-2<br>91-20-3<br>103-65-1<br>100-42-5<br>630-20-6<br>79-34-5<br>127-18-4<br>108-88-3<br>87-61-6<br>120-82-1<br>71-55-6<br>79-00-5<br>79-01-6<br>96-18-4 | Methylene chloride<br>Naphthalene<br>n-Propylbenzene<br>1, 1, 1, 2-Tetrachloroethane<br>1, 1, 2, 2-Tetrachloroethane<br>Tetrachloroethene<br>Toluene<br>1, 2, 3-Trichlorobenzene<br>1, 2, 4-Trichlorobenzene<br>1, 1, 1-Trichloroethane<br>1, 1, 2-Trichloroethane<br>1, 1, 2-Trichloroethane<br>1, 2, 3-Trichloroethane<br>1, 2, 3-Trichloroethane | 225.<br>5390<br>225.<br>225.<br>225.<br>225.<br>225.<br>225.<br>225.<br>225 | ···· U<br>···· U |
|                                                                                                                                                              | 1,2,4-Trimethylbenzene<br>1,3,5-Trimethylbenzene                                                                                                                                                                                                                                                                                                    |                                                                             | E                                                                                                                              |
|                                                                                                                                                              | Vinyl chloride                                                                                                                                                                                                                                                                                                                                      |                                                                             | U                                                                                                                              |
| 6616                                                                                                                                                         | o-Xylene                                                                                                                                                                                                                                                                                                                                            |                                                                             | U                                                                                                                              |



**2960** Foster Creighton Dr. P.O. Box 40566 Nashville, TN 37204-0566 Phone 1-615-726-0177

Matrix: Soil % Dry Weight: 87. Units: ug/kg dry weight Dilution Factor: 1000 Analysis Method: SW8260B Delivery Group: 117250 Instrument: HP-2 Sample Identification

SB10-23

Lab Sample ID: 98-A127316 Date Sampled: 10/15/98 Date Received: 10/17/98 Analysis Date: 10/21/98 Analysis Time: 4:37 Sample QC Group: 4761

| CAS NUMBER | ANALYTE                     | CONCENTRATION | FLAG      |
|------------|-----------------------------|---------------|-----------|
| 144-10-5   | .1-Chlorohexane             |               | U         |
|            | .Benzene                    |               | U         |
| 108-86-1   | .Bromobenzene               | 2250 .        | U         |
| 124-48-1   | .Bromochloromethane         | 2250 .        | U         |
| 75-25-2    | . Bromoform                 | 6740 .        | U         |
|            | . Bromomethane              |               | U         |
|            | .n-Butylbenzene             |               | U         |
| 135-98-8   | .sec-Butylbenzene           | 7870          | U         |
|            | .t-Butylbenzene             |               | U         |
|            | .Carbon tetrachloride       |               | U         |
|            | .Chlorobenzene              |               | U         |
|            | .Chloroethane               |               | U         |
| 67-66-3    | . Chloroform                | 2250          | U         |
|            | . Chloromethane             |               | U         |
|            | .2-Chlorotoluene            |               | U         |
| 106-43-4   | .4-Chlorotoluene            | 3370          | U         |
|            | . 1, 2-Dibromo-3-chloroprop |               | U         |
| 124-48-1   | . Dibromochloromethane      | 3370          | U         |
| 74-95-3    | . 1, 2-Dibromoethane        | 3370          | U         |
| 74-95-3    | .Dibromomethane             | 11200         | U         |
| 95-50÷1    | . 1, 2-Dichlorobenzene      | 2250          | U         |
|            | . 1, 3-Dichlorobenzene      |               | U         |
| 106-46-7   | . 1, 4-Dichlorobenzene      |               | U         |
|            | .Dichlorodifluoromethane    |               | U         |
| 75-34-3    | . 1, 1-Dichloroethane       |               | U         |
|            | .1,2-Dichloroethane         |               | U         |
| 75-35-4    | . 1, 1-Dichloroethene       | 6740          | U         |
|            | .cis-1,2-Dichloroethene .   |               | U         |
| 156-60-5   | .trans-1,2-Dichloroethene   | 3370          | U         |
| 78-87-5    | .1,2-Dichloropropane        | 2250          | U         |
| 142-28-9   | .1,3-Dichloropropane        |               | U         |
|            | .2,2-Dichloropropane        |               | U         |
| 563-58-6   | . 1, 1-Dichloropropene      | 5620          | U         |
| 10061-01-5 | .cis-1,3-Dichloropropene    | 5620          | U         |
| 10061-02-6 | . trans-1, 3-Dichloropropen | e. 5620       | U         |
| 100-41-4   | .Ethylbenzene               | 5620          |           |
| 87-68-3    | .Hexachlorobutadiene        | 5620          | U         |
|            | . Isopropylbenzene          | 8990          | U         |
| 99-87-6    | .4-Isopropyltoluene         | 6740          | 000144    |
|            |                             |               | - ~ 7 7 4 |



2960 Foster Creighton Dr. P.O. Box 40566 Nashville, TN 37204-0566 Phone 1-615-726-0177

Sample Identification

SB10-23

Matrix: Soil % Dry Weight: 89. Units: ug/kg dry weight Lab Sample ID: 98-A127316 Date Sampled: 10/15/98 Date Received: 10/17/98

| CAS NUMBER                                                                                                                                                                                     | ANALYTE                                                                                                                                                                                                                                                                                                                                                                                                                            | CONCENTRATIO                                                               | N FLAG                                                             |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|--------------------------------------------------------------------|
| 75-09-2<br>91-20-3<br>103-65-1<br>100-42-5<br>630-20-6<br>79-34-5<br>127-18-4<br>108-88-3<br>87-61-6<br>120-82-1<br>71-55-6<br>79-00-5<br>79-01-6<br>96-18-4<br>108-67-8<br>75-01-4<br>75-27-4 | Methylene chloride<br>Naphthalene<br>n-Propylbenzene<br>Styrene<br>1, 1, 1, 2-Tetrachloroethane<br>1, 1, 2, 2-Tetrachloroethane<br>Tetrachloroethene<br>Toluene<br>1, 2, 3-Trichlorobenzene<br>1, 2, 4-Trichlorobenzene<br>1, 1, 1-Trichloroethane<br>1, 1, 2-Trichloroethane<br>Trichloroethene<br>1, 2, 3-Trichloropropane<br>1, 2, 3-Trichloropropane<br>1, 2, 4-Trimethylbenzene<br>1, 3, 5-Trimethylbenzene<br>Vinyl chloride | 2250<br>3370<br>2250<br>2250<br>2250<br>2250<br>2250<br>2250<br>2250<br>22 | U<br>U<br>U<br>U<br>U<br>U<br>U<br>U<br>U<br>U<br>U<br>U<br>U<br>U |
| 6616                                                                                                                                                                                           | .o-Xylene                                                                                                                                                                                                                                                                                                                                                                                                                          | 20200                                                                      | U<br>U                                                             |



2960 Foster Creighton Dr. P.O. Box 40566 Nashville, TN 37204-0566 Phone 1-615-726-0177

Matrix: Soil % Dry Weight: 100 Units: UG/KG Dilution Factor: 1 Analysis Method: SW8260B Delivery Group: 117250 Instrument: HP-2 Sample Identification

BLANK

Lab Sample ID: BLANK Date Sampled: 10/16/98 Date Received: 10/17/98 Analysis Date: 10/18/98 Analysis Time: 10:35 Sample QC Group: 4761

#### FORM I

| CAS NUMBER | ANALYTE                     | CONC         | ENTRAT | ION            | FLAG |
|------------|-----------------------------|--------------|--------|----------------|------|
| 71-43-2    | .Benzene                    |              | 2.0    |                | U    |
|            | .Bromobenzene               |              | 2.0    |                | U    |
|            | .Bromochloromethane         |              | 2.0    |                | U    |
|            | . Bromoform                 |              | 6.0    |                | U    |
|            | .Bromomethane               |              | 5.0    |                | U    |
|            | .n-Butylbenzene             |              | 5.0    |                | U    |
|            | .sec-Butylbenzene           |              | 7.0    |                | U    |
|            | t-Butylbenzene              |              | 7.0    |                | U    |
| 56-23-5    | .Carbon tetrachloride       |              | 10.0   |                | U    |
| 108-90-7   | .Chlorobenzene              |              | 2.0    |                | U    |
| 75-00-3    | .Chloroethane               |              | 5. O   |                | U    |
| 67-66-3    | . Chloroform                | · <b>· ·</b> | 2.0    |                | U    |
|            | .Chloromethane              |              | 7.0    |                | U    |
|            | .2-Chlorotoluene            |              | 2.0    |                |      |
|            | .4-Chlorotoluene            |              | З. О   |                |      |
|            | . 1, 2-Dibromo-3-chloroprop |              | 1.0    |                |      |
|            | .Dibromochloromethane       |              | З. О   |                |      |
|            | .1,2-Dibromoethane          |              | З. О   |                |      |
|            | . Dibromomethane            |              | 10.0   |                |      |
|            | .1,2-Dichlorobenzene        |              | 2.0    |                |      |
|            | .1,3-Dichlorobenzene        |              | 6.0    |                |      |
|            | .1,4-Dichlorobenzene        |              | 2.0    |                |      |
|            | .Dichlorodifluoromethane    |              | 5. O   |                |      |
|            | .1,1-Dichloroethane         |              | 2. 0   | · · · ·        |      |
|            | .1,2-Dichloroethane         | •            | З. О   |                |      |
|            | . 1, 1-Dichloroethene       |              | 6. O   |                |      |
|            | .cis-1,2-Dichloroethene .   |              | 6. O   |                |      |
|            | .trans-1,2-Dichloroethene   |              | З. Q   |                |      |
|            | .1,2-Dichloropropane        |              | 2.0    | • • • •        |      |
|            | .1,3-Dichloropropane        |              | 2.0    |                |      |
|            | .2,2-Dichloropropane        |              | 20.0   |                | -    |
|            | .1,1-Dichloropropene        |              | 5.0    |                |      |
|            | .cis-1,3-Dichloropropene    |              | 5.0    | · · · <i>·</i> |      |
|            | .trans-1,3-Dichloroproper   |              | 5.0    |                |      |
|            | .Ethylbenzene               |              | 3.0    |                |      |
|            | .Hexachlorobutadiene        |              | 5.0    |                |      |
|            | . Isopropylbenzene          |              | 8.0    |                |      |
|            | .4-Isopropyltoluene         |              | 6.0    |                |      |
| 75-09-2    | .Methylene chloride         | • • •        | 22.0   |                |      |



2960 Foster Creighton Dr. P. O. Box 40566 Nashville, TN 37204-0566 Phone 1-615-726-0177

Matrix: Soil % Dry Weight: 100 Units: UG/KG Sample Identification

BLANK

Lab Sample ID: BLANK Date Sampled: 10/16/98 Date Received: 10/17/98

| CAS NUMBER | ANALYTE                       | CONCENTRA | FION 1  | FLAG |
|------------|-------------------------------|-----------|---------|------|
| 91-20-3    | .Naphthalene                  | 2.0       |         | U    |
|            | .n-Propylbenzene              |           |         | U    |
| 100-40-5   | .Styrene                      |           |         | U    |
|            | . 1, 1, 1, 2-Tetrachloroethan |           |         | Ū    |
|            |                               |           |         | Ū    |
|            | . 1, 1, 2, 2-Tetrachloroethan |           |         | Ŭ    |
|            | . Tetrachloroethene           | •••       |         | Ŭ    |
|            | .Toluene                      |           | · · · · | -    |
|            | .1,2,3-Trichlorobenzene .     |           |         | U    |
|            | .1,2,4-Trichlorobenzene .     |           |         | U    |
| 71-55-6    | .1,1,1-Trichloroethane        | 4.0       |         | U    |
| 79-00-5    | .1,1,2-Trichloroethane        | 5.0       |         | U    |
|            | .Trichloroethene              |           |         | U    |
|            | . 1, 2, 3-Trichloropropane .  |           |         | U    |
| 95-63-6    | . 1, 2, 4-Trimethylbenzene .  | 7.0       |         | U    |
| 109-47-8   | . 1, 3, 5-Trimethylbenzene .  | 3.0       |         | U    |
|            | . Vinyl chloride              | 9.0       |         | Ū    |
|            |                               |           |         | Ŭ    |
|            | .Bromodichloromethane         | •••       |         | Ŭ    |
|            | .o-Xylene                     |           | • • • • | -    |
|            | .m,p-Xylene                   |           | · · · · | U    |
| 75-69-4    | . Trichlorofluoromethane .    | 4.0       |         | U    |

## 2B SOIL VOLATILE SYSTEM MONITORING COMPOUND RECOVERY

| Lab Name: | SPECIALIZED | DASSAYS   | Contract: | <u></u>  |        |
|-----------|-------------|-----------|-----------|----------|--------|
| Lab Code: | SASSAYS     | Case No.: | SAS No.:  | SDG No.: | 117250 |
|           |             |           |           |          |        |

. .

Level: (low/med) LOW

| [   | EPA         | SMC1 | SMC2 | SMC3 | тот |
|-----|-------------|------|------|------|-----|
|     | SAMPLE NO.  | #    | #    | #    | OUT |
| 01  | VBLK02      | 106  | 101  | 101  | 0   |
| 02  | SB13-21     | 99   | 101  | 113  | 0   |
| 03  | SB11-21     | 99   | 104  | 97   | 0   |
| 04  | SB16-21     | 102  | 101  | 96   | 0   |
| 05  | SB14-21     | 100  | 99   | 102  | 0   |
| 06  | SB26-21     | 97   | 98   | 66   | 0   |
| 07[ | SB12-22     | 107  | 100  | 98   | 0   |
| 08  | SB15-22     | 98   | 99   | 99   | 0   |
| 09  | SB10-23     | 96   | 103  | 97   | 0   |
| 10  | VBLK04      | 106  | 102  | 104  | 0   |
| 11  | SB15-10-12M | 99   | 102  | 100  | 0   |
| 12  | SB15-10-12M | 100  | 102  | 103  | 0   |
| 13  | CONTROL     | - 99 | 103  | 97   | 0   |
| 14  | VBLK03      | 112  | 98   | 105  | 0   |
| 15  | SB11-21B    | 101  | 98   | 101  | 0   |
| 16  | SB16-21DL   | 96   | 100  | 78   | 0   |
| 17  | SB26-21DL   | 100  | 103  | 73   | 0   |
| 18  | SB14-12     | 101  | 102  | 87   | 0   |
| 19  | SB17-26     | 100  | 105  | 121  | 0   |
| 20  | SB15-22B    | 105  | 102  | 101  | 0   |
| 21  | SB15-10-12  | 102  | 106  | 99   | 0   |
| 22  | SB10-23DL   | 99   | 102  | 96   | 0   |
| 23  | SB16-8      | 107  | 101  | 76   | 0   |

|      |   |                       | QCLIMITS |
|------|---|-----------------------|----------|
| SMC1 | = | 1,2-Dichloroethane-d4 | (62-147) |
| SMC2 | = | Toluene-d8            | (84-117) |
| SMC3 | = | Bromofluorobenzene    | (64-126) |
|      |   |                       |          |

# Column to be used to flag recovery values

\* Values outside of contract required QC limits

D System Monitoring Compound diluted out

\_

FORM II VOA-2

3/90

#### FORM 38

# VOLATILE MATRIX SPIKE/MATRIX SPIKE DUPLICATE RECOVERY

Lap: Specialized Assays, Inc. Project: WURTSMITH BIOVENTING

.

Matrix Spike Sample: SB15-10-12 SDG: 117250

0C Group: 4761

| Compound<br>                                                                 | Spike<br>Added                       | Sample<br>Conc<br>       | Spike<br>Conc<br>                    | % Rec<br>                       | QC<br>Limits<br>                                         |
|------------------------------------------------------------------------------|--------------------------------------|--------------------------|--------------------------------------|---------------------------------|----------------------------------------------------------|
| Benzene<br>Chlorobenzene<br>1,1-Dichloroethene<br>Toluene<br>Trichloroethene | 51.5<br>51.5<br>51.5<br>51.5<br>51.5 | 0.0<br>0.0<br>0.0<br>0.0 | 56.7<br>52.6<br>57.7<br>51.5<br>54.6 | 110<br>102<br>112<br>100<br>106 | 58 - 135<br>54 - 136<br>58 - 138<br>56 - 135<br>52 - 143 |

| Сотроила<br>                                                                 | Spike<br>Added<br>                           | MSD<br>Conc                          | % Rec                         | RPD              | RFD<br>Limit               | Recovery<br>Limits                                       |
|------------------------------------------------------------------------------|----------------------------------------------|--------------------------------------|-------------------------------|------------------|----------------------------|----------------------------------------------------------|
| Benzene<br>Chlorobenzene<br>1.1-Dichloroethene<br>Toluene<br>Trichloroethene | 51.5<br>51.5<br>51.5<br>51.5<br>51.5<br>51.5 | 53.6<br>50.5<br>55.7<br>50.5<br>52.6 | 104<br>98<br>108<br>98<br>102 | 6<br>4<br>2<br>4 | 17<br>14<br>19<br>18<br>18 | 58 - 135<br>54 - 136<br>58 - 138<br>56 - 135<br>52 - 143 |

Concentration Units: ug/kg

•

RPD: 0 out of 5 outside QC limits. Spike Recoveries: 0 out of 10 outside QC limits.

## FORM 3Ba

# VOLATILE LABORATORY CONTROL RECOVERY

Lab: Specialized Assays, Inc. Project: WURTSMITH BIOVENTING

SDG: 117250

QC Group: 4761

|                            | Known     | Conc     | % Rec | QC<br>Limits |
|----------------------------|-----------|----------|-------|--------------|
| Compound                   | Value     |          |       |              |
| <b></b>                    |           |          | :     | •            |
| Benzene                    | 50        | 56       | 112   | 39-151       |
| Bromobenzene               | 50        | 51       | 102   | 74-122       |
| Bromochloromethane         | 50        | 60       | 120   | 68-134       |
| Bromoform                  | 50        | 53       | 106   | 31-144       |
| Bromomethane               | 50        | 45       | 90    | 51-135       |
| n-Butylbenzene             | 50        | 47       | 54    | 65-127       |
| sec-Butylbenzene           | 50        | 51       | 102   | 68-129       |
| t-Butylbenzene             | 50        | 52       | 104   | 68-128       |
| Carbon tetrachloride       | 50        | 56       | 112   | 53-144       |
| Chlorobenzene              | 50        | 52       | 104   | 62-130       |
| Chloroethane               | 50        | 50       | 100   | 56-138       |
| Chloroform                 | 50        | 53       | 105   | 71-132       |
| Chloromethane              | 50        | 56       | 112   | 65-134       |
| 2-Chlorotoluene            | 50        | 48       | 96    | 72-123       |
| 4-Chlorotoluene            | 50        | 48       | 96    | 70-123       |
| 1,2-Dibromo-3-chloropropan | e 50      | 55       | 110   | 70-130       |
| Dibromochloromethane       | 50        | 53       | 106   | 41-133       |
| 1,2-Dibromoethane          | 50        | 57       | 114   | 47-136       |
| Dibromomethane             | 50        | 45       | 98    | 60-141       |
| 1,2-Dichlorobenzene        | 50        | 47       | 94    | 66-128       |
| 1,3-Dichlorobenzene        | 50        | 44       | 88    | 65-128       |
| 1,4-Dichlorobenzene        | 50        | 44       | 88    | 66-129       |
| Dichlorodifluoromethane    | 50        | 56       | 112   | 50-140       |
| 1,1-Dichloroethane         | 50        | 58 .     | 116   | 70-132       |
| 1,2-Dichloroethane         | 50        | 55       | 110   | 58-135       |
| 1,1-Dichloroethene         | 50        | 56       | 112   | 69-130       |
| cis-1,2-Dichloroethene     | 50        | 54       | 108   | 59-140       |
| trans-1,2-Dichloroethene   | 50        | 51       | 102   | 72-128       |
| 1,2-Dichloropropane        | 50        | 57       | 114   | 45-149       |
| 1,3-Dichloropropane        | 50        | 55       | 110   | 58-138       |
| 2,2-Dichloropropane        | 50        | 50       | 100   | 43-146       |
| 1,1-Dichloropropene        | 50        | 56       | 112   | 56-132       |
| cis-1,3-Dicnloropropene    | 50        | 52       | 104   | 69-130       |
| trans-1,3-Dichloropropene  | 50        | 50       | 100   | 56-126       |
| Ethylbenzene               | 50        | 51       | 102   | 61-129       |
| Hexachlorobutadiene        | 50        | 45       | 90    | 59-138       |
| Isopropylbenzene           | 50<br>50  | 50       | 100   | 70-127       |
| 4-Isopropyltoluene         | 50        | 47       | 94    | 70-127       |
| Methylene chlorice         | 50<br>= 0 | 54       | 108   | 69-142       |
| Naphthalene                | 50<br>50  | 58<br>49 | 116   | 54-146       |
| n-Propylbenzene            | 50        | 49       | 98    | 67-128       |



### FORM 3Ba

# VOLATILE LABORATORY CONTROL RECOVERY

Lab: Specialized Assays, Inc. Project: WURTSMITH BIOVENTING

| Styrene<br>1,1,1,2-Tetrachloroethane<br>1,1,2,2-Tetrachloroethane<br>Tetrachloroethene<br>Toluene<br>1,2,3-Trichloropenzene<br>1,2,4-Trichlorobenzene<br>1,1,1-Trichloroethane | 50<br>50<br>50<br>50<br>50<br>50<br>50<br>50 | 50<br>56<br>50<br>51<br>40<br>41<br>54 | 100<br>112<br>112<br>100<br>102<br>80<br>82<br>108 | 65-128<br>53-130<br>37-149<br>55-128<br>65-131<br>55-137<br>48-141<br>60-136 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|----------------------------------------|----------------------------------------------------|------------------------------------------------------------------------------|
| 1,1,2-Trichloroethane                                                                                                                                                          | 50                                           | 57                                     | 114                                                | 56-137                                                                       |
| Trichloroethene                                                                                                                                                                | 50                                           | 52                                     | 104                                                | 61-141                                                                       |
| 1,2,3-Trichloropropane                                                                                                                                                         | 50                                           | 56                                     | 112                                                | 39-146                                                                       |
| 1,2,4-Trimethylbenzene                                                                                                                                                         | 50                                           | 45                                     | <b>9</b> 0                                         | 72-126                                                                       |
| 1,3,5-Trimethylbenzene                                                                                                                                                         | 50                                           | 65                                     | 130#                                               | 22-125                                                                       |
| Vinyl chloride                                                                                                                                                                 | 50                                           | 49                                     | <b>7</b> 8                                         | 57-138                                                                       |
| Bromodichloromethane                                                                                                                                                           | 50                                           | 58                                     | 116                                                | 60-133                                                                       |
| o-Xylena                                                                                                                                                                       | 50                                           | 52                                     | 104                                                | 64-126                                                                       |
| m,p-Xylene                                                                                                                                                                     | 100                                          | 98                                     | 98                                                 | 59-131                                                                       |
| Trichlorofluoromethane                                                                                                                                                         | 50                                           | 58                                     | 116                                                | 56-142                                                                       |

Concentration Units: ug/kg

Recoveries: 1 out of 59 outside QC limits.