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Preface 

At the request of the Defense Atomic Support 
Agency, Oak Ridge National Laboratory has under- 
taken the preparation of a handbook to aid engi- 
neers charged with the responsibility of designing 
shields to protect military equipment and personnel 
in the vicinity of a nuclear weapons burst. This 
document constitutes the third chapter of the 
Handbook issued thus far, the first one being 
Chapter 5, entitled "Methods for Calculating Ef- 
fects of Ducts, Access Ways, and Holes in 
Shields," and the second one being Chapter 4, 
entitled "Neutron and Gamma-Ray Albedos." 
These three chapters, together with an introductory 
first chapter, will eventually be combined with 
Chapter 2, which will define the radiation sources 
insofar as is possible and practicable, to form 
Volume I of the Handbook. Volume II will consist 
of two or more additional chapters presenting 
engineering design methods that are based on the 
more sophisticated techniques described in Volume 
I. The intent is that the shield designer will use 
Volume I as a textbook and ready reference and 
Volume II as a guide for handling most of the 
problems with which he will be confronted. 

In order to prepare this Handbook, it has been 
necessary for Oak Ridge National Laboratory to 
obtain the assistance of several consultants and 
subcontractors. For this chapter on attenuation, 
for example, Paul N. Stevens, a consultant from 
the University of Tennessee, together with David 
K. Trubey of the Laboratory prepared the first 
draft with which the editors worked. Other chapters 
will similarly represent a cooperative effort of 
ORNL staff members and those of other organiza- 
tions. 

As is always the case for handbooks, the authors 
and editors rely heavily on the reviews of others 
as   an   aid   in   the   development   of   the   various 

chapters. The list of individuals who have con- 
tributed in this manner has already grown very 
large, and it would be almost impossible to 
acknowledge each person here. However, there 
are always reviewers who we feel have made such 
significant contributions as to warrant individual 
acknowledgment. With respect to this chapter, we 
particularly wish to acknowledge the help given 
by F. R. Mynatt of the Oak Ridge Computing 
Technology Center, who is largely responsible 
for the final version of Section 3.3. In addition, 
several persons at the Laboratory familiar with the 
various methods for calculating radiation transport 
through shields were able to serve as on-the-spot 
authorities to help resolve problem areas as they 
arose. For this type of help we are especially 
grateful to F. H. Clark and P. H. Pitkanen, who 
reviewed the section on the moments method 
(Section 3.4), to Clark and V. R. Cain, who con- 
tributed to the section on the Monte Carlo method 
(Section 3.5), and to R. R. Coveyou, who reviewed 
the section on the invariant imbedding technique 
(Section 3.7). We also wish to thank Mrs. Betty 
F. Maskewitz for providing the information on the 
computer code abstracts used in Appendix A. 

Appreciation is also expressed to Lt. Cols. 
Charles D. Daniel and William A. Alfonte, who as 
past DASA Shielding Project Officers handled the 
early administration of the contract and assisted 
in establishing the scope of the Handbook. The 
work they began is currently being ably performed 
by Captain R. W. Enz. 

Finally, we wish to thank Mrs. Virginia M. 
Hamrick, who by carefully reading each draft of 
this chapter, including galley and page proofs, has 
both improved the rhetoric and helped eliminate 
some of the usual errors that are inevitably found 
in formal publications. 

December 1967 
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3.0   Introduction 
The design of shields for protection against the 

neutrons and gamma rays given off by a weapons 
burst or an operating reactor usually requires the 
appropriate interpretation and use of computer 
programs that implement mathematical models 
representing the transport of radiation through 
attenuating media. Numerical, and in some cases 
analytical, solutions of these models can be ob- 
tained by one of several calculational techniques. 
Selection of the proper technique for a specific 
shield design problem is usually governed by the 
type of problem to be solved and the degree of 
accuracy required, the best technique being, of 
course, the most economical one that will show 
beyond a reasonable doubt that the design criteria 
have been met. The purpose of this chapter of the 
Handbook is to help the shield designer choose 
the best method by providing him with reasonably 
simplified and generalized descriptions of the more 
commonly used techniques. As a further aid, 
summaries of digital computer programs which 
solve the models by the various techniques are 
presented in an appendix, and other appendixes 
include basic data and functions of general 
utility. 

The calculational methods covered here are 
those of spherical harmonics, discrete ordinates, 
moments, Monte Carlo, diffusion theory, invariant 
imbedding, and kernels, plus a method which 
combines a removal kernel with diffusion theory. 
Except for the invariant imbedding method, all 
these techniques are either approximate solutions 
to the well-known Boltzmann equation or are 
based on kernels obtained from solutions to the 
equation.* The Boltzmann equation, which is 
discussed in Section 3.1, is a precise mathematical 
description of neutron or gamma-ray behavior in 
terms of position, energy, direction and time. 

Both neutrons and gamma rays are considered to 
be particles which move unchanged in straight 
lines until they collide with an atom. These 
collisions result in the fission of the atomic 
nucleus (primarily by neutron collisions), the 
scattering of the incident particle, or the ab- 
sorption of the incident particle. Fission re- 
actions are not normally of interest in shield 
design except when the sources of radiation need 

Kernels may also be obtained from experiments. 

to be considered. Thus the interactions treated in 
calculating neutron or gamma-ray attenuation in 
shields are either scattering, in which case the 
particle emerges from the interaction deflected in 
direction and degraded in energy, or absorption, in 
which case the particle effectively disappears. 
When the absorbed particle is a neutron, either a 
charged particle or a gamma ray is emitted by the 
absorbing nucleus. The charged particle is of 
interest in shielding calculations only in certain 
special cases, but the gamma rays resulting from 
neutron absorption (called "radiative capture") 
are important secondary sources and must be taken 
into account. Inelastic scattering by neutrons 
results in the emission of gamma rays, which can 
be important secondary sources in some cases. 
Secondary particles emitted as a result of gamma- 
ray interactions (electrons, positrons, and low- 
energy gamma rays) do not normally create a 
shielding problem. 

The relative importance of the different inter- 
actions is described by basic nuclear parameters 
called "cross sections." The cross section of 
greatest importance in shielding is the macroscopic 
total cross section (called the linear absorption 
coefficient for gamma rays). The total cross 
section is the probability per unit length of 
particle travel that an interaction will occur. It is 
usually given in units of cm-1, and its reciprocal 
is the mean free path between interactions for the 
neutron or gamma ray of a particular energy in a 
particular material. The total cross section can 
be divided into partial cross sections representing 
each nuclide in the shield and each interaction 
contributing to the total attenuation. These in- 
clude cross sections that describe the energy and 
angular distributions of the resulting particles, 
which are required for a detailed treatment of the 
transport process. 

Most of the calculational methods that have been 
proposed would in principle apply equally well to 
both gamma rays and neutrons. However, the 
differences in their interaction mechanisms as 
exemplified by their cross sections lead to many 
real differences in the implemented solutions. 
For example, gamma-ray cross sections are smooth 
functions of both energy and atomic number. In 
contrast, neutron cross sections usually exhibit 
complex resonance structure, with the total and 
differential    scattering    cross    sections   varying 



irregularly with respect to energy and having little 
similarity for nuclides of nearly the same atomic 
number or atomic mass. Also, gamma-ray cross 
sections are relatively well known, whereas the 
neutron cross-section data are not complete in 
many regions of special interest to shield design. 
Most neutron cross-section work to date has been 
performed in support of reactor design, and be- 
cause of this the work in the resonance energy 
regions has concentrated on the peaks rather than 
the valleys in the cross-section curve as a 
function of energy. In shield design the valleys 
are of more interest since neutrons with energies 

corresponding to these  valleys  tend  to dominate 
the penetration process. 

Finally, it is becoming increasingly clear that 
the limiting factor in calculating the attenuation of 
neutrons and gamma rays in bulk media is the 
availability and accuracy of the basic data - the 
cross sections and the source distributions. In 
other words, the more sophisticated methods 
described in this chapter have been developed to 
the point that, with proper care and accurate 
basic data, radiation transport can be calculated 
for deep penetration with considerable reliability. 

3.1    The General Boltzmann Transport Equation 

The Boltzmann transport equation describes the 
general behavior of uncharged radiation particles 
(e.g., neutrons) or quanta of electromagnetic radia- 
tion (e.g., gamma rays) in terms of the seven- 
dimensional phase space (r,E,ti, t). This phase 
space consists of three spatial coordinates, two 
direction-defining angles, the particle energy, and 
time. Knowledge of the radiation particle density 
over all phase space for some prescribed physical 
situation is in fact the complete solution to the 
transport problem. However, experience has shown 
that the particle flux, which is simply related to 
the particle density (particle flux = particle den- 
sity x particle speed), is a more convenient vari- 
able for analysis. Accordingly, particle flux, 
rather than current, is used as the dependent vari- 

able in the Boltzmann equation. 
The flux quantity used is the angular flux, de- 

noted by $(7,E,fl,r) and defined as the number of 
particles that cross a unit area normal to the fl 
direction per unit time with energies in dE_about E 
and in a direction that lies in dQ. about Q. This 
function is more properly called the differential 

energy and angle spectrum of the number flux 
density, but the simple expression angular flux 
has become standard terminology. Integrating the 
angular flutf over all directions yields the scalar 

flux, given by 

<Hr,E,t)=   f   <S>(7,E,Q,i) dQ (3.1) 

and having the units neutrons cm-2 sec-1 MeV-1. 
This scalar flux is sometimes referred to as a total 
flux, although it is differential with respect to 
energy. A second integration over some specified 
energy range will produce O(r), which is truly a 
total flux (neutrons cm-2 sec-1). 

Derivation of the Boltzmann transport equation 
can be regarded as a bookkeeping process that 
sets particle losses equal to particle gains within 
a differential element of phase space (drdEdß). 
One of its more familiar and useful forms is for 
the time-independent problem, given by 

V.fl 0(F,E,0) + 2((7,£) <f>(7,E,n) = S(r~,E,Q) 

>SI*.ü E,Q' ^>Q)<b(r,E',Q')dE'dQ', 

(3.2) 

where 

V.fl 0(r,E,0) dE dQ = net convective loss at r of 
particles with energies in dE about E and with 
directions which lie in dQ about Q per unit 

volume per unit time, 

2 (r,£) <t>(F,E,Q) dE dQ. = collision loss at r of 
particles with energies in_dE about_£ and di- 
rections which lie in du about fi per unit 

volume per unit time, 



S(r,E,0) dE dfl = source particles emitted at r 
with energies hi dE about E and directions 
which lie in du, about fl per unit volume per 
unit time, 

[//'2s(7,E'- E,.Q'- Ö) tyrjE'.O'; dE'diÖ'] 

x dE du, = inscattering gain at r of particles with 
energies in dE about E and directions which lie 
in du, about 0 per unit volume per unit time, 

£/7,E) = total macroscopic cross section at r 
evaluated at the energy of the incident particle, 

1 (7,E ' - E,fl' - 5) d£ dÖ = differential scatter- 
ing cross section which describes the proba- 
bility that a particle with an_ initial energy 
E' and an initial direction fl' undergoes a 
scattering collision at r_which places it into 
a direction that lies in dß about Ü with a new 
energy in dE about E. 

The solution of the transport equation represents 
the  average value of the particle flux or particle 

density. In real systems, there will be fluctuations 
from the average; in some cases these fluctuations 
will be important, but, in general, they will not 
have a bearing on the validity of the equation pre- 
dicting the expected value. 

Solutions of the transport equation are inherently 
complex due to its integrodifferential form, and 
exact solutions are limited to a few highly special- 
ized problems. The most practical techniques are 
approximate and essentially numerical in nature, 
the more familiar ones being the spherical har- 
monics method, the discrete ordinates (S ) tech- 
nique, and the moments method. It is interesting 
to note that diffusion theory actually corresponds 
to a low-order approximation of the transport equa- 
tion. Also, integral forms of the transport equation 
are generally regarded as the formal basis for the 
Monte Carlo method, the results of which can in 
principle be made to approach the exact solution. 
More complete descriptions of these and other 
approximate methods are presented in the following 
sections of this chapter. 

3.2   Spherical Harmonics Method 

The method of "spherical harmonics" as applied 
to the solution of the Boltzmann transport equation 
(Eq. 3.2) consists of representing the various 
angle-dependent terms as expansions in the spher- 
ical harmonics polynomials. These polynomials, 
commonly called associated spherical harmonics, 
are described by Weinberg and Wigner1 and are 
given by the following expressions: 

where fl is the unit vector specifying the direction 
of the particle motion, and 6 and <£ are the polar 
and azimuthal angles respectively. 

Applying the spherical harmonics technique to 
the transport problem is inherently complex and 
involves mathematical procedures and concepts 
beyond the scope of this handbook. However, a 
simplified and lucid illustration of the method can 

Pim(P)-£(-!> 
k—m 

v  2j-m-2k  / x 2/c+m 

wHcos-m (sin —( 
(; _ m - k)\ (m + *)! k\ (; - k)\ \      2 / V      2 

;[(; + m)!(;-n0!]1/2 

, (-sin 6f 

,!2> 

■<j - a»)!' 

.(j + m)\. 

1/2 d''+m(cos2 0-iy 

(dcos 0)' i + m 
,   (3.3) 



be shown for the case of a steady-state (no time 
dependence), one-speed (no energy dependence), 
one-dimensional (slab geometry with azimuthal 
symmetry), homogeneous (constant system param- 
eters) neutron transport problem. Consistent with 
these simplifications, the general Boltzmann trans- 
port equation as given by Eq. 3.2 can be written 

as 

<9$(x,u) 

dx 

,2TT   r2H + 1 
+ (      f      f      2s(fi,n') $(x,fl') d\L'd$'d$, 

(3.4) 

where 

0(x,fi) = angular    flux    (neutron    flux   per 
unit /z), 

</> = azimuthal angle with respect to x 
axis, 

x = spatial variable in slab geometry, 
the direction of which is specified 
by the unit vector f, 

(i = direction  cosine  with  respect to 
the x axis 

= fl • i = cos 6, 

£, = total macroscopic cross section, 

2 (0,fl') du = differential scattering cross sec- 
tion, the macroscopic cross sec- 
tion for scattering through an 
angle cos-1 fl-fi'into the differ- 
ential solid angle dO about ti, 

S(x,fi) - source neutrons per unit /z,   vol- 
ume, and time. 

The angle-dependent terms in Eq. 3.4 can each 
be represented as a series of spherical harmonics 
of the first kind, the Legendre polynomials P.Qi). 

These polynomials are the degenerate form of the 
associated spherical harmonics and are given by 
Eq.  3.3 when the index  m is set equal to zero; 

that is, 

P>) = P.>). 

The first few Legendre polynomials are 

POV) = 1, 

P2W=-(3fi
2-l), 

(3.5) 

Expanding the angular neutron flux and source term 
in terms of these polynomials yields 

4>(x,,i)=  Z   V$iWPi(,l)'        (3-6) 

S(x,^)=   I  ——S.^P^) , (3.7) 
/=o 

where 

V.(x) = position-dependent Legendre coefficients 
corresponding to the neutron flux 

jn ^^PjQi) d/i , (3.8) 

S.(x) = position-dependent Legendre coefficients 
corresponding to the source term 

J +1 S(x,,x)P.(M) du , (3.9) 

; = o, 1,2, 

Since for most practical situations the differen- 
tial scattering cross section depends only on the 
change in direction as denoted by fi = 0-0', the 
series expansion for 2 (fl.fl') is made in terms of 
the Legendre polynomials P.(ft  ): 

sa(än-)= £ ^\.P.O*0),      (3.io) 
1=0 

where 

7]. = Legendre coefficients (j = 0, 1, 2, ... °°) 
corresponding to the differential scattering 
cross section 

f+1 2a(ß,Q')P^0)dßo (3.11) 

The spherical harmonics form of the Boltzmann 
equation is obtained by introducing the above 
series_ representations for $(x,/,i), S(x,/z), and 
2s(0,0') into Eq. 3.4, multiplying each term by 
the Legendre polynomial P_(^), and integrating 
over  all fi (—1 to +1).    When Eqs.  3.6, 3.7, and 



3.10  are substituted into Eq. 3.4 and the orthog- 
onality property of Legendre polynomials, 

, +i 

f_t    Pi(JiyPn(ji)d^ = 0  iijt.n 

2/ + 1 
ifj = n,      (3.12) 

is    used   along   with   the   addition   theorem   for 
Legendre polynomials,* 

P.0g = P.(M)P.0O 

+ 2 
j - m 

V  Pf<ji)P™(ii') cos ni<f> - <£')   , 
n = l   ' 

(3.13) 

the following set of coupled differential equations 
is obtained: 

n + 1     d n        d 
 $ .,(x) +   —$    ,00 
2n+-l   dx    n+lV '      2n + l   dx    n~lV 

+ 2$n(x)+r,n$n(x) + Sn(X)=0 

for n = 0, 1, 2, (3-14) 

This set of equations, which no longer involves 
the directional variables and therefore is more 
amenable to solution than Eq. 3.4, is called the 
second (or spherical harmonics component) form 
of the Boltzmann equation by Weinberg and Wigner1 

and others. Solution of this set of equations can 
be accomplished by rather straightforward although 
sometimes complex techniques. 

Practical methods of solution require that the 
series of representations of $(x,j!x) be limited to a 
finite number of terms, for example, to (n + 1) 
terms; n is commonly called the truncation number, 

*The use of the addition theorem makes possible.the 
evaluation  of the  inscattering-integral term containing 

2 (0,fl'),   which  is  necessarily  expanded  in  terms  of 

P](JJ-Ö) rather than Pfo). 

and the corresponding calculation is referred to 

as the Pn approximation. The P approximation 
is equivalent to diffusion theory (see Section 3.6) 
and involves only a linear representation, which 
restricts its application to situations wherein the 
neutron flux is nearly isotropic, a condition not 
characteristic of the penetrating components of 
neutrons that traverse a shield. 

In a similar fashion the accuracy of the spherical 
harmonics calculation is also influenced by the 
number of terms used to represent the differential 
scattering cross section. Only a few terms are 
necessary for nearly isotropic scattering, but a 
large number of terms are required for adequate 
treatment of anisotropic scattering, and in the past 
this has limited the use of the spherical harmonics 
treatment. However, recent advances in cross- 
section technology and increased computer ca- 
pacity have for all practical considerations re- 
moved this limitation. 

It has been shown1 that the accuracy of the 
spherical harmonics method is improved when the 
truncation number n is equal to or greater than 3. 
This is demonstrated in Table 3.1, in which the 
results obtained with P1, P P , and P approxi- 
mations are compared with those obtained from a 
rigorous calculation by the Wiener-Hopf method 
for the well-known Milne problem with spherically 
symmetric scattering and no absorption, These 
results indicate that the P3 approximation is a 
vast improvement over diffusion theory (P approxi- 
mation) and that computer implementation of the 
P   approximation is reasonable. 

Shure2 found that a multigroup P3 approach in 
one dimension for calculating spatial and spectral 
neutron distributions in metal hydrogenous reactor 
shields yielded satisfactory estimates of neutron 
attenuation for reasonable amounts of computer 
time. Further, it was recognized by Lanning3 that 
for some design problems the low-order approxima- 
tions were sufficiently accurate. He successfully 
calculated the spatial distribution of the gamma-ray- 
energy flux in one-dimensional slab geometry. 



Tabli , 3.1.   Comparison of Normalized Total Fluxes Obtained with Various P„ Approximations 

with a Rigorous Solution by the Wiener-Hopf Method 

Scattering 

(mfp) 

Total Flux 

P! P3 P5 P15 
Wiener-Hopf Method 

0.0 1 1 1 1 1 

0.1 1.1732 1.2094 1.2263 1.2528 1.2608 

0.2 1.3464 1.4123 1.4389 1.4680 1.4714 

0.3 1.5196 1.6099 1.6414 1.6664 1.6685 

0.4 1.6928 1.8031 1.8365 1.8564 1.8587 

0.5 1.8660 1.9927 2.0261 2.0417 2.0443 

0.6 2.0392 2.1794 2.2117 2.2241 2.2271 

0.7 2.2124 2.3637 2.3944 2.4045 2.4077 

0.8 2.3856 2.5460 2.5749 2.5834 2.5868 

0.9 2.5589 2.7267 2.7537 2.7613 2.7652 

1.0 2.7321 2.9060 2.9312 2.9382 2.9419 

2.0 4.4641 4.6623 4.6792 4.6853 4.6902 

"Table taken from: A. M. Weinberg and E. P. Wigner, The Physical Theory of Neutron Chain Reactors, University 
of Chicago Press, Chicago, 1958. 

3.3   Discrete Ordinates S,, Method 

The discrete ordinates Sn method is a means of 
effecting a numerical solution of the energy- 
dependent linear Boltzmann transport equation. 
The most recent versions of the method permit 
anisotropic scattering to be included, thus making 
it suitable for both neutron and gamma-ray deep- 
penetration calculations in a wide variety of shield- 
ing problems. Since the method is fundamentally 
formulated as a finite difference equation (rather 
than as finite differencing of an analytic approxima- 
tion), a minimum number of limiting assumptions is 
required, and the solutions apparently approach 
the exact solution of the Boltzmann equation as the 
space,   angle,  and energy mesh  approaches dif- 

*This section is primarily the work of F. R. Mynatt 
of the Computing Technology Center, Oak Ridge, Ten- 
nessee. 

ferential size. The method can be applied without 
significant restrictions to the general core criticality 
problem, and it can be used for both homogeneous 
and laminated shields with a variety of source 
configurations, including surface- and volume- 
distributed sources. 

The original method of discrete ordinates is 
attributed to Wick4 and to Chandrasekhar.s Early 
applications were primarily limited to simple 
problems such as the transport of monoenergetic 
neutrons isotropically scattered in one-dimensional 
slabs. The fundamental assumption in the method 
was that the integral in the Boltzmann equation 
could be approximated by a Gaussian quadrature 
formula; consequently, functions involved in the 
integral had to be evaluated only at the angles 
corresponding to the Gaussian zeros. Although 
this    original   discrete   ordinates   method   could 



be   extended   to   anisotropic   scattering,   it  was 
limited to slab geometry. 

A discrete ordinates technique which could be 
extended to curved geometries such as spheres or 
cylinders was introduced by Carlson,6 and it is 
this method that is commonly referred to as the 
discrete ordinates S method. The Sn technique 
serves as the basis for several widely used codes, 
such as the one-dimensional codes DTF II,7 DTF 
IV,8 ANISN,9 and DSN10 and the two-dimensional 
codes TDC10 and DOT.11 

Other approaches that can be classified as dis- 
crete ordinates methods are the direct numerical 
integration techniques employed by the NIOBE* 
and BIGGI-3P** computer programs, but these 
techniques have not been utilized to a large extent 
for shielding problems in the United States. 

As applied to one-dimensional spherical geometry, 
early versions of the S method assumed that the 
angular flux varies with angle as connected line 
segments in an even number of equally spaced 
angular increments. This representation, although 
very accurate for homogeneous one-dimensional 
systems, was found to be unsuitable for the general 
problem because it fails to preserve optical rec- 
iprocity (i.e., the method consists of a nonsym- 
metric angular quadrature). Also, recursions in- 
volving many terms are required, and an extension 
of the method to multidimensional geometries is 
most difficult. These shortcomings are largely 
alleviated by the use of the "diamond difference" 
technique,10 which relates in a more general 
fashion the angular flux within each particular 
angular increment to the endpoint values of the 
increment. With the diamond difference method 
the Boltzmann equation can be integrated over 
an angular increment, yielding, for the derivative 
terms, a two-point difference equation involving 
the angular flux evaluated at the increment end- 
points . 

The linear Boltzmann equation of transport 
theory is not derived from first principles of physics 
but is a flow balance for a differential phase 
space cell, treating in a phenomenological manner 
the   events   causing  an  increase  or   a decrease 

in the number of particles contained in the cell. 
The discrete ordinates difference equations can be 
formulated in an equivalent manner but considering 
a finite-difference cell — the Way it is presented in 
most references. For some time it was not clear 
that the difference equations would in general 
approach the analytic form of the Boltzmann 
equation as the finite-difference phase space cell 
approached differential size. Lathrop8 showed 
that they would for the one-dimensional geometries, 
and this is established implicitly in the following 
paragraphs in which the difference equations for 
spherical geometry are derived directly from the 
analytic Boltzmann equation. This geometry, 
although simple, illustrates all the characteristics 
of the discrete ordinates equations except for 
discrete ray streaming, which occurs only in two- 
or three-dimensional geometry. 

Transport Equation and Phase Space Geometry. — 
The differential phase space cell is defined by 
three variables: the radius of the sphere (r), the 
cosine of the angle of the particle direction relative 
to the radius (/z), and the energy of the particle 
(E); that is, 

differential phase space cell = dV dp dE 

= Am2 dr dp dE .        (3.15) 

The finite-difference cell is obtained by integrat- 
ing Eq. 3.15 over any particular finite intervals of 
radius, angle, and energy; it is given by 

finite-difference cell = V, A»„ AE„ 
I      'JJ G 

477 

<rm - TP fco-« - **«*> 

x CE,+l - V* • (3.16) 

*See, for example, S. Preiser, G. Rabonowitz, and 
E. deDufour, A Program for the Numerical Integration 
of Boltzmann Transport Equation — NIOBE, Nuclear 
Development Corp. of America, Aeronautical Research 
Laboratories, Report ARL-TR-60-314 (1960). 

**See Appendix 3A. 

*The following subscript notation is used throughout 
this section: subscripts I, D, and G denote functions 
whose values are associated with the Jth space interval, 
Dth angular interval, and Gth energy group respectively; 
i and i +1 refer to a function evaluated at the lower and 
upper limits of the 7th space interval; d and d +1 refer 
to a function evaluated at the lower and upper limits of 
the Dth angular interval; and g and g +1 refer to a func- 
tion evaluated at the lower and upper limits of the Gth 
energy group. 



For this problem (one-dimensional spherical geom- 
etry), the following two analytic forms of the 
Boitzmann  transport equation can be considered: 

p - $(r, p, E) + — — $(r, p, E) 
dr r        dp 

+ lT$(r,p,E) = S(r,p,E) 

f f    2s(f,E'-.E>/lo) 
J-i     Jo 

x   <&(r,E',/x') dE' dp' ,        (3.17) 

and 

1 d 
t _ [r

2 $(r, Mf E)] + - - [(1 - p2) $(r, /x, E)] 
r2 dr r d/i 

+ 2T(r,E)<D(r,M,E) = S(r,,x,E) 

+   f        [     Ss(r,E'-E,Mo) 
-l       o 

<D(r,E>') dE' dp' ,        (3.18) 

where 

$(f) ^x, E) = particle track length per unit volume 
(flux)  about r per unit time per unit 
energy   about   E   per  unit  direction 
cosine about p, 

2r(r,E) = position-  and energy-dependent mac- 
roscopic total cross section, 

ls(r,E' - E,p0) dE dp = differential scattering 
cross section describing the proba- 
bility that a particle with an initial 
energy E' and direction cosine p' 
undergoes a collision at r, resulting 
in a change of flight direction de- 
scribed by the cosine of the scatter- 
ing angle p , which places it into 
a new direction which lies in dp 
about p with a new energy in dE 
about E, 

p   = the scattering angle = Q, -D,', 

0,fl' = final  and initial flight direction unit 
vectors respectively, 

S(r, p, E) = source particles per unit volume about 
r per unit time per unit energy about 
E  per unit direction cosine about p. 

Integration of both Eqs. 3.17 and 3.18 would 
yield particle balance equations; however, the 
same would not be true for the numerical approxi- 
mation of Eq. 3.17. Equation 3.18 is called the 
"conservative" form of the transport equation, 
and its integration over any phase space volume 
results in interface terms, which may be identified 
as leakage terms, that satisfy the divergence 
theorem exactly. As a consequence, the "con- 
servative" equation (Eq. 3.18) is the preferred 
formal basis for numerical analyses. 

Derivation of Finite-Difference Equation. — The 
discrete ordinates difference equation is obtained 
by applying the following simple integral operator 
to the transport equation (Eq. 3.18) in a manner 
consistent with the classical technique for obtain- 
ing difference equations: 

integral operator =  Jrev    j^A/i /, E EAE 

x Am2 dr dp dE .        (3.19) 

This operator integrates* each term of the transport 
equation over the difference cell. Application of 
the  operator to the first term of Eq. 3.18 gives 

* 1 ~    * rev     J M£Au • fielAu      * E «AE G  r2 

x  _ [r2 <D(r, p, E)] Am2 dr dp dE   ,        (3.20) 
dr 

which on rearranging becomes 

T, =An /.,., /. 1 -   ■■'    - revt   ' pe&u    V 

§_ [r2   fE ,AE    <D(r, p, E) dE] dp dr . (3.21) 
dr ° 

The  integral of the flux over the energy group G 
may be identified as the multigroup flux 

*o('./0=  JEeAE    <S>(r,p,E)dE, (3.22) 

*The integration limits are expressed symbolically 
by xeX, which implies a definite integral with respect 
to the variable x over the interval X. 



in which case Eq. 3.21 becomes 

Ti =47T fpebd   >* 

/        — [r2<!><r,fi)]dr.      (3.23) 
rev, dr 

Since Eq. 3.23 is integrated independently with 
respect to each variable, 

/^*[r2$o(r',x)ldr 

■    ■   .= /reVjrf['2*0(r'^'       ^3-24) 

Therefore the volume integral in Eq. 3.23 can now 
be evaluated directly: 

r1=47r/AteA/iD/tfi
2
+1<»Ofl+100^ 

^/^^*0>*,       (3.25) 

where $Oil+Oi)=4o(fi+1,0and$OfiO£) = 4o(r1,^). 
It follows from the mean value theorem that any 
integral can be approximated by 

/ 
x f(x) dx = x f(x) Ax, 

for xl <x<x2 , (3.26) 

where x may be adjusted to give the equality; for 
well-behaved functions the closer x is to the true 
mean, the better the approximation. 

Applying the mean value theorem to Eq. 3.25 to 
evaluate the solid angle intervals results in 

ri=47f(/IDri
2
+1$Pfi+1(ßÄMD 

where $G ID = $G#J(£"D) ^fD 
is a mean value 

approximation for the direction cosine over the 
direction increment A;zD. Identifying the surface 
areas of the volume increment by 

yields the final form for the first term: 

The integral operator (Eq. 3.19) is next applied 
to the second term in Eq. 3.18 and the result re- 
arranged: 

^ = 4vT/r^/Me%r|-[(l-^) 

x   -4 «AM   <Kr,ß,E)dE]diidr.        (3.30) 

Defining the multigroup flux as before, Eq. 3.30 
becomes 

T2 = 47T /,ev/ dr /^ i- [(1 - M2) 

x    *0(.r,ri\dp.        (3.31) 

The integration over fi is accomplished by the 
procedure suggested by Eq. 3.24 with the following 
result: 

r
2=477[/r^(l-^+1)$G;d + 1(r)rc/r 

-   frevtt-ti)*GJr)rdr].     (3.32) 

The remaining integration over the radius variable 
is performed by using the mean value approxima- 
tion (Eq. 3.26): 

r2=477[(l-^+1)$Gd+1>/F/Ar/ 

-a-^V,/,^.        (3.33) 

Equation 3.33 reduces to a two-point difference in 
the angle index 

T   = 2\B       $ - B   $        ] (3.34) 1 2       *l    d + 1 *G,d + l,7       "d^G,d,IJ w"      ' 

if the curvature coefficient Bd+1 is defined by the 
expression 

4,=4™,2'   ^+1 = 4mm 
(3.28) Bd - 4v7F7 Ar/1 - M

2) . (3.35) 
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Consistent with the conservation property of the 
technique, Eq. 3.34 gives an overall neutron 
balance. This is apparent since incoming and 
outgoing flows cancel and the curvature coef- 
ficients become zero for the end values (ji = ±1). 
Equation 3.35, which defines the curvature coef- 
ficients, can be recast in the form of a recursion 
relation which involves the coefficients Brf+1 and 
B . First, Bd is subtracted from B (where B d 

and B_, , are given by Eq. 3.35), yielding 

x 4OT
2
 dr dii dE .        (3.42) 

The differential scattering cross section can be 
approximated by a truncated Legendre polynomial 
expansion in the cosine of the scattering angle: 

**+1 -
ß

d = -4^Af/^+i-^- (3-36)       Ss(r,E' ^E,Mo) 

It is assumed that r7 in Eq. 3.36 is the arithmetic 
mean, that is, that 

Then it follows that 

',*i- 2  

(3.37) 

(3.38) 

Following  similar arguments, the factor (jid+l 

fy can be expressed as 

^+i-^) = 2^A^ (3.39) 

Introducing Eqs. 3.38 and 3.39 into Eq. 3.36 yields 
the following recursion relation: 

The final form for the recursion relation is obtained 
by introducing the cell areas Aj+l and A{ (see 
Eq.   3.28) and rearranging, with the result that 

ß
d+i=ß

d-^AM^+i-^><       <3-41) 

= 1 £   In(r,E'-.E)P>0)  ,      (3.43) 
2 n = 0 

where  the 2"'s are Legendre coefficients of the 
expansion. 

The scattering angle is related to the initial 
and final angles in the problem coordinate system 
by the addition theorem for Legendre polynomials, 
which for spherically symmetric geometry is simply 

JW-WnOO   • (3.44) 

In adapting Eq. 3.42 to a multigroup calculation, 
the integrals over all incident energies and all 
incident angles are replaced by sums of integrals 
over the primed phase space cell. Symbolically 
this is denoted by 

/' 
f(E')dE' 

NOG 

-   L   4'<AE   >(£'>d£'- (3.45) 
G'=l 

/+1 NOA       . 

D'=l 

where B = 0. Equation 3.41 is the form of the 
curvature coefficient found in the literature. The 
only approximation made in the preceding deriva- 
tion is in the definition of mean values. 

When the integral operator, Eq. 3.19, is applied 
to the fifth term of Eq. 3.18 (which is called the 
inscattering integral), the result is 

where NOG and NOA signify the number of energy 
groups and number of angular increments respec- 
tively. 

Combining Eqs. 3.43 and 3.44 with Eq. 3.42, 
approximating the incident energy and angle in- 
tegrals by Eq. 3.45, and evaluating all remaining 
integrals by the mean value approximation yields 
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(after considerable rearrangement of terms) the following forms for the inscattering integral: 

NOG    N NOA 

■  r."F/^   £    £ Pn(PD)^LQ     £   \G^n0rD,)A^ 
G '= 1 n = 0 D '= 1 

Fj A/zD   WOG      iV 

G '=1 n = o 

where 2£^G is the nth Legendre moment of the multigroup scattering cross section (multigroup macro- 
scopic transfer coefficient), defined by 

477 frev   h eAE     4 -*AE     2n(r; E' - E)   J      <E>(r, E', p') P Q,') d^' dE' dE r2 dr 

^o'U — — , (3.47) 

7/ 4/£AEG, /      ^,E'^')P>') «fc' dE 

and j" 0, is the nth Legendre coefficient of the 
angular dependence of the flux, calculated from 

2Q(0 = flux-weighted group-G total cross sec- 
tion defined by 

NOA 

'I,G £ Vypn^'^D' (3.48) 
D =1 

Application of the integral operator (Eq. 3.19) to 
the removal term (third term) of Eq. 3.18 gives 

;   •'rev, Juehu   J t 
T3=J f     A f       A 22>'E> 

x $(r,ft,E) 477r2 or djz dE .   (3.49) 

The evaluation of Eq. 3.49 requires some effort 
in order to avoid the assumption of angle-energy 
separability in the weighting of the multigroup 
cross sections. As the first step in evaluating 
Eq. 3.49 in terms of a cross section that is 
independent of angle, the energy integral of Eq. 
3.49 is written as 

T3  = f    *■     2r(r,E)$(f,,z,E) dE 3      JE€AE- 

= 2£(r)$0(r,,£)-R,     (3.50) 

where 

R = correction  factor that is to be deter- 
mined, 

f lT(r,E) j°(r,E)dE 
JEeAE 

in which j°(r,E) is the zeroth Legendre coefficient 
of the angular dependence of the flux, which is 
identical to the differential flux <E>(r, E). 

Rearrangement of Eq. 3.50 provides an explicit 
expression for R: 

K = 2o('>*oGv/0 

/, EeAs, 
2T (r, E) <D(r, ii, E) dE , (3.52) 

which  has only  a small effect when the energy 
group structure is reasonably fine. 

The correction factor R is determined by ex- 
pressing the angular fluxes as truncated Legendre 
series and then combining the two terms which 
comprise Eq. 3.52. The truncated Legendre series 
representation of the flux is 

N r\       ,    -I 

<Kr,/*,E)=   £   -T—Jn(r,E)Pn0z) .     (3.53) 
n=o      l 
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When Eq. 3.53 is substituted into Eq. 3.52, the 

result is 

£.    2n + 1   „ 

n= o 

J B e\ IT 'E€AE 

x   £  ^-^;n(r,E) P„</0 cffi , (3.54) 
n= 0 

which can be written as 

*    2n + l 

*-I 
n= o 

[2;«-2Sn(ö];>)P». 
(3.55) 

where 

and the moments of the cross section are defined 

by 

f             Sr(r,£);"(r,E) dE 
2Tn(r) =jEeAEr.  .     (3.56) 

Substitution of Eq. 3.55 into Eq. 3.51 yields the 

final form for the energy integral: 

N     2n + 1   „ 
rf-sjfr) l -T-r0<r) pav> 

n=0       Z 

n= 0 
(3.57) 

Using this form for the energy integral in Eq. 
3.49, the remaining integrals are evaluated by the 
mean value approximation, yielding 

Ta-Vt&PD ^G.I^G.I.D 

-I 
2n+l 

^G,/      *G,I> ' o,i   n^r   J 

n= o 

The series in Eq. 3.58 is very similar in form to 
the   inscattering  integral  term  (Ts)   and  may be 
included  there  by  replacing 2"'/      in  Eq. 3.46 

... G -»G with 

vn,7 (mod)  _ Kp,I 

G'-*G G'^>G 

+ (2n + l) (^;/-2^)SG^,  (3,59) 

where 5„    > = 1 if G' = G and = 0 if G' t G. The 
modified  removal term then has the desired form 

Application of the integral operator to the source 
term of Eq. 3.18 is straightforward since, with the 

exception of defining multigroup constants, the 
mean value approximation is used for all variables. 
The finai result for a general fixed source is 

If multiplication is present (eigenvalue problem) , 

S(r,p,E) =- x(E) 
*eff 

x f°° vSf(r,E') $(r,E') dE' , (3.62) 

which gives 

NOG 

T^V^Ji*    I    vVtQ.*uo.,     (3.63) 
e f f    G = 1 

where 

it      = effective   multiplication   constant   of the 
e f f 

medium, 

Ef   '= macroscopic    fission    cross    section   at 
energy G', 

v = number of neutrons per fission by neutrons 

of energy G', 

y    = fission spectrum defined by 

*'mf..to*m"- 
f,       -x;(E-)*,t0..ffi" 

vl1 

fa' 

(3.58) /U'EAE.-*'-« 
dE' 
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The discrete ordinates difference equation is ob- 
tained by substituting the derived expressions for 
each of the five terms into Eq. 3.18 and then 
dividing through by A/z   .  The result is 

+ 'Kir(Bd+i®G'i'D+i~Bd<l?G'i-d) 

+ nT $      =v s      + — 
I      G,I      G.I.D rG,I,D 2 

N NOG 

n= o G=!      G"G 

NOA 

I   ®i,G',D'Pn(jiD>) Ap  ,. (3.64) 
D = 1 

Although derived for spherical geometry, that is, for 

^ = 4^andF/ = ±L(r3 + 1-rJ)     , 

Eq. 3.64 is the general discrete ordinates differ- 
ence «quation for the one-dimensional geometries. 
The equations for the other geometries are ob- 
tained from Eq. 3.64, with A{ = 1.0 and Vz = Arf 

for a slab and with .4 . = 27iti and V = n-(r? + — rr) 
for a cylinder. 

Numerical Solution of the Discrete Ordinates 
Equation. - Equation 3.64 contains discrete-flux 
variables having both centered and endpoint 
subscripts. This in effect increases the number of 
unknowns such that an insufficient number of 
determining relations are available for their solu- 
tion. This difficulty can be resolved by relating 
the "centered" and "endpoint" fluxes in some 
consistent fashion. The diamond difference tech- 
nique is the most widely used method for this 
purpose and includes two relationships for the 
spatial variable, 

$, ,I,D=AG,i+1,D+^-A^   $G,i,D 

fi>0,  (3.65) 

and 

(j.<0,  (3.66) 

and a single expression for the angular variable, 

where A and B are constants which can be assigned 
values of the interval ( x/, 1). When A = B = V , 
Eqs. 3.65 and 3.66 are the same for all values of 
fi and together with Eq. 3.67 are known as the 
"ordinary" diamond difference equations which 
form the basis for most current computer solutions. 
If A = B = 1, the step function relationship is ob- 
tained which equates the centered fluxes to the 
appropriate endpoint fluxes. The step-function 
relationship is less accurate than the ordinary 
diamond difference scheme for the same mesh; 
however, it has the advantage of always giving 
positive fluxes i for positive sources and is used 
for the correction of negative fluxes, which 
occasionally occur with other diamond difference 
schemes. 

The choice of the discrete directions plays an 
important role in the discrete ordinates or S 
method. It does not appear that a most accurate 
(or best) quadrature scheme for a specific problem 
can be selected a priori. The efficiency of a given 
set of discrete directions (quadrature set) depends 
on problem parameters such as geometry, optical 
thickness, energy group structure, spatial mesh 
size, etc., and a generalization , of these de" 
pendencies is not altogether impossible. 

The discrete directions and associated weights 
(which represent solid angle) define the quadrature 
used in the inscattering integral; the directions 
define the mean values for the angles, such as JI , 
and thus affect the approximations in the con- 
vection term. In Wick's original method the 
discrete directions corresponded to Gaussian 
zeroes, and the quadrature affected only the source 
integral. In the early Sn method the connected 
line segment technique was found to imply discrete 
directions; however, they are not symmetric about 
H = 0 and thus introduce difficulties with boundary 
conditions and symmetry requirements. 

Although the later ßn codes all use essentially 
the same form of the difference equation, they 
differ markedly in the type of discrete directions 
used. In all cases the discrete directions are 
represented as points on the surface of a unit 
sphere located at the point in space for which the 
flux is to be defined and oriented in a fixed manner 
with respect to the coordinate system. The points 
or   directions   are   located   on   the   sphere   in   a 
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reflective manner with respect to the three planes 
defining an octant such that the point description 
of one octant defines the whole sphere. This is 
not an absolute necessity but is usually required 
because of reflecting boundaries. 

In the DSN and TDC codes the discrete direction 
weights are defined by dividing the surface area of 
the unit sphere octant into equal segments. In one- 
dimensional spheres and slabs the octant is di- 
vided by latitudes about the radial axis which are 
often referred to as levels. In two-dimensional 
geometry the octant is divided by latitudes about 
the polar axis and longitudinal sections such that 
the first latitude division contains one segment, 
the second latitude division contains two segments, 
etc. In either case the equal-area method com- 
pletely defines the solid-angle weights once the 
number of direction weights is specified. This 
leaves the directions adjustable, with the re- 
striction that they lie interior to their area segment. 

The more recent S codes allow specification of 
direction weights as well as the directions them- 
selves.] Lee10 developed a rather elegant method 
of areas which computes directions and direction 
weights that are symmetric with respect to ro- 
tational interchange of the axes of the unit sphere. 
Although the directions and weights in the area 
method are somewhat adjustable, the best results 
occur with Lee's recommended values, which 
satisfy various approximate moment conditions 
and asymptotic theories. The area method has the 
advantage of rotation symmetry, which is extolled 
in the reference, and the important advantage of all 
positive weights for any order of Sn. 

Although rotation reflection symmetry has 
desirable qualities, only three-dimensional calcu- 
lations would benefit from full symmetry; two- 
dimensional problems thus require twofold sym- 
metry, and one-dimensional problems require no 
symmetry conditions within the octant. Thus for 
one- and two-dimensional geometries and especially 
for problems where other conditions outweigh the 
symmetry considerations, some liberty in choosing 
directions may be exercised. 

For one-dimensional plane and spherical geome- 
try, experience has shown that Gauss-Legendre 
quadrature is well suited for, deep-penetration 
problems. For thin shields involving isotropic 
plane or spherical shell sources, a double Gauss- 
Legendre quadrature is preferable. For specific 
problems, increased accuracy is usually obtained 
by using a higher-order Gaussian quadrature rather 

than by developing a special biased quadrature to 
exploit special characteristics of the problem. 

In two-dimensional geometries or one-dimensional 
cylindrical geometry less experience is available 
on which to base the selection of the quadrature 
scheme. Good results have been obtained using 
quadratures that are designed to integrate specified 
orders of a spherical harmonic. In this method the 
direction set is left to be specified, and is often 
based on Gaussian zeroes or complete symmetry 
requirements. For specific problems increased 
accuracy is gained by using a proven quadrature to 
a higher order rather than by developing special 
biased sets. It is usually more expensive to 
develop and test a biased quadrature than to use 
the standard quadrature with a higher order. 

A typical computer solution of the discrete 
ordinates problem is basically one of iterating the 
solution to some prescribed degree of convergence. 
The sweep of the mesh points is carefully ordered 
to "follow" the neutrons (or gamma rays). 
Beginning at a boundary along which the inwardly 
directed flux values are specified, the sweep is 
made across the geometric cell at one angle, then 
back. After progressing through all angles at one 
energy, the next lower energy group is treated in a 
similar fashion and so on. Details are omitted here 
but can be found in the descriptions of codes 
DTF IV,8 ANISN,9 and DOT.11 

Advantages and Disadvantages. — From the 
results of calculations made with S„ codes, it 
appears that for shielding applications the 
discrete ordinates methods have the following 
advantages': 

1. Depending somewhat on the sophistication 
desired, the Sn calculations are easy to prepare. 

2. The method is not stochastic, and flux errors 
at deep penetration are systematic rather than 
statistical. 

3. Production problems having similar character- 
istics benefit from knowledge of fluxes calculated 
in a similar case. 

4. Secondary gamma rays may be calculated by 
the same method, either as a second calculation or 
simultaneously with the neutrons. The gamma-ray 
yield distribution may also be made a function of 
the energy of the captured neutron. 

5. The range of neutron energies from highest 
fission energies to thermal, including upscattering, 
may be calculated by the same method. 



15 

6.   The  one-dimensional calculations  are much 
faster (in computer time) than similar Monte Carlo 
calculations (see Section 3.5).   In two dimensions 
the type of problem and the desired answers deter-' 
mine whether S   or Monte Carlo is better. n 

The following disadvantages are evident, but 
additional development can alleviate or eliminate 
them: 

1. Convergence of the iterative method is not 
always uniform and well defined. The best method 
currently  used is  to determine from each iterate 

the maximum error in the scalar flux at any point 
in space relative to the previous iterate value. 
Iterations proceed until the error falls below a 
specified limit. 

2. Flux aberrations are frequently observed in 
two dimensions due to localized sources and the 
propagation of neutrons in discrete directions. 

3. No basic ground rules exist which define for 
a particular problem the best direction set, space 
mesh, multigroup structure, and polynomial ex- 
pansion limit. 

3.4   Moments Method 

Another technique that can be used to solve the 
Boltzmann transport equation is the moments 
method.* This method has some important ad- 
vantages not shared by other methods, one being 
that foreknowledge about the behavior of the 
solution can be incorporated analytically in a very 
natural way, thereby often greatly reducing the 
effort required to achieve a specific result and/or 
a desired accuracy. Another is that the type of 
recursion relation developed precludes a truncation 
at a crucial part of the calculation; that is, a finite 
number of moments may be calculated exactly 
(ignoring errors due to the numerical solution) 
without considering the influence of higher 
moments. 

In the moments method one considers first the 
formal definition for the moments and the manner in 
which they relate to the system parameter of 
interest, f(x). If f(x) is defined for all x within 
the interval A = x = B, then the nth moment of 
f(x) is 

M„ n = f    x" i (x) dx , 
JA 

(3.68) 

provided that the integral exists. Only nonnegative 
integral values of n are considered in practical 
applications. 

*Brief descriptions of a few computer codes based on 
the moments method are given in Appendix 3A. 

Definite interpretations may be associated with 
the various moments. For example, the zeroth 
moment is a normalizing number, and the first, 
second, third, and fourth moments are closely 
related to the mean value, variance, skewness, 
and kurtosis respectively. In the physics of 
statics and dynamics the first moment of the mass 
is the center of gravity and the second is the 
moment of inertia. 

No such particular meanings are given to the 
moments as they are used in the solution of radi- 
ation transport problems. Rather, they may be 
regarded as a transform, much the same as Laplace, 
Fourier, or finite trigonometric transforms. The 
major portion of the calculation is performed in 
terms of the transform (moments) space; then, by 
an appropriate inversion, the desired answer of 
interest is reconstructed. 

The application of the moments method to the 
solution of the Boltzmann transport equation is 
limited with respect to the source-shield configu- 
ration. It is usually applied only to infinite 
homogeneous media with plane, line, or point 
sources. The method as applied to gamma rays 
has been described by Goldstein and Wilkins,12 

and as applied to neutrons by Goldstein,13 

Certaine,14 and Aronson ef a/.15,16 The tech- 
nique is basically the same for both neutrons and 
gamma rays, and a description for one should 
suffice for the other. The most significant differ- 
ences lie in the treatment of the scattering integral 
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and in the more  complex nature of the neutron cross sections.     The description presented below is for 
slab geometry in terms of the simpler gamma-ray problem,  in which the dependent variable is the angular 
energy flux/(x, A, <u ), and the Compton wavelength is taken as the energy variable. 

Consider the following specialized form of the Boltzmann equation: 

dl 
a) —- + /i(A) / (x, A, a>) 

ox 

-A - 8(1 + A'-A-ä-öO 
= f    f   /(x,A',<u') *(A',A) dü'd\'+S(\,a>) 8(x) , (3.69) 

•'O    •'477 2TT 

where 

I(x,X,co) dE da> = energy flux (MeV per unit 
area and time) due to 
gamma rays with energies 
in dE about E and di- 
rection cosines which 
lie in da about <y, 

x = spatial coordinate in slab 
geometry, 

A = gamma-ray energy after 
scattering expressed in 
terms of its Compton 
wavelength, 

A' = gamma-ray   wavelength 
prior to scattering, 

a> = x direction cosine with 
respect to x axis, 

fi(A) = total macroscopic cross 
section evaluated at the 
energy corresponding to 
the gamma-ray wave- 

length A, 

U-ti' = cos 8, cosine of the 
scattering angle between 
initial and final gamma- 
ray directions, where 0' 
and 12 are the initial and 
final unit direction vec- 
tors respectively, 

A 
k(X',X) = 2rr— oiX',6) , 

A 

a(X',d) = cross section for Compton 
scattering  given  by   the 

well-known Klein-Nishina 

formula, 

S(x) = Dirac delta function, 
which has the property 

fbf(x) S(x-X) dx=((X) , 
Ja 

a<X<b, 

g(l + X'— A — 0 • 11') = Dirac  delta function 
which  prescribes that 
the angular change 
(12 • 0,') be consistent 
with the change in 
wavelength (A — A') as 
given by the Compton 
scattering equation, 

A- A'= 1 -ti-Q,', 

S(A,w) dE doi = plane source of gamma 
rays (energy emission 
per unit area and time of 
gamma rays with ener- 
gies in dE about E and 
direction cosines which 
lie in dca about <y) . 

Solving Eq. 3.69 by the moments method is 
similar to the spherical harmonics treatment (see 
Section 3.2) in that the angular energy flux is 
first expanded  as  a Legendre polynomial series': 

7(x,A,<y)  =   £ _^_/.(x,A) P}(a>) ,     (3.70) 
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where the Legendre coefficients are given by 

Z,(x,A)  =f + 1 /(x,A,a>) P}(fi>) du> (3.71) 

It can be shown that7Q(x,A) is the energy flux and thatZj (x,A) is the energy current density. 
With this series representation for the angular energy flux the integrodifferential equation (Eq. 3.68) 

with the dependent variable 7(x,A,a>) and three continuous independent variables can be transformed into 
a sequence of integrodifferential equations for the variables 7, (x,A), which are dependent on only two 
independent variables. This desired result is obtained by multiplying Eq. 3.68 by the Legendre polynomial 
P.(<y) and integrating over all solid angle, yielding (after some manipulation) the following sequence of 
equations: 

j + 1    3/ 
;+i 

2; +1     dx 

37,. 

2} + 1      dx 
/*00 7, 

S;(A) S(x) + f   P(l + A'-A) k(\',X) 7.(x,A') d\' ,  ; = 0,1,2, ... ~ .   (3.72) 

Elimination of the spatial variable in this 
sequence of equations is accomplished by the 
generation of the moments of the Legendre 
coefficients of the angular energy flux, which are 
defined as 

bnjW B £1 
n\ s: Z,(x,A) xn dx ,   (3.73) 

where /z is the total macroscopic cross section 
evaluated at the source energy. The equations 
satisfied by *>n(A) are obtained by multiplying 
Eq. 3.72 by /^+1x"/n! and integrating with 
respect to x from —.<» to +.«>. It is because of this 
integration over all space that the application of 
the moments method to the transport problem be- 
comes inextricably restricted to the infinite- 
medium geometry. Using Eq. 3.73 permits the 
original Boltzmann equation to be reduced to the 
following doubly indexed sequence of linear 
integral equations of the Volterra type: 

POO bnß) =fx Hx',\) p,(i.+ y- x) bnj(\') dk' 

+ /i0S,(A)8B0. (3.74) 

where ;' = 0, 1, 2, ... <*>, and n = 0, 1, 2, ... ~. 
The 'Kronecker delta function 8n0 = 1 if n = 0 
and = 0 if n ^ 0. 

The   evaluation   of   the   moments   for   a   given 
problem can be accomplished by a rather straight- 

forward numerical solution of Eq. 3.74. The ease 
of numerical calculation depends on the form of 
the source function S XX). Many problems involve 
monoenergetic sources. Since the presence of the 
delta function is undesirable for machine calcula- 
tion, the following transformation is made: 

V»=V*>+V<X-VCni'     <3-75) 
where 

Cn. = S. ,  for n = 0 , 

2/+1    "-^+1     2j+l    "-1-'-1' 

for n = 1, 2, 3, . ..  . 

Introducing the transformation defined by Eq. 3.75 
into Eq. 3.74 yields the defining equations for 
Bnj and Cn,: 

/* Bnj = fv   W' A> Pj (1 + A' - A) Bn} (A') dA' 

+ 2]TT[ü + 1)ß"-1-'+1+iß"-1^-11 

+ \0k(X0,\) P,(l + A0 - A) Cn, ,  (3.76) 

■ '; + ! 
+ 

2; + l    "-1-'-1 

+ F0S;Sno-  (3-77) 
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The equations that define C   . are similar in form n; 
to  the equations  that define b  .  and B   . except ^ n; n; r 

that the inscattering integral does not appear, 
which suggests that all collisions are considered 
to be removals.    It follows that A  S(\ - A   ) C   . 

0 0        nj 
must be the moments for the unscattered energy 
flux. Therefore the transformation given by Eq. 
3.75 separates the unscattered energy flux (energy 
flux corresponding to C .) from the total energy 
flux (energy flux corresponding to b .) . The 
solution   to  Eq.   3.76  requires   values  of C   .  as 

<■ ■ nj 

input,    and    the    calculated    moments    B   .   are 
nj 

associated only with the scattered energy flux. 
This is most convenient since the uncollided 
angular energy flux 7°(x, A, a> ) is easily calculated 
and values of C   . are then uniquely determined. 

For a typical calculation, the quantity of greatest 
interest is the total, or scalar, energy flux 7 (x,A). 
Therefore only the moments B (n = 0,1, 2, . . . N) 
are required. However, the calculation of a given 
B   . requires the prior calculation of B . .    and 

n/ n — 1 ,; + i 
£„   ,   ••   ,J therefore moments other than the   B n— 1 ,] — 1' no 
moments must be calculated. In general the 
moments B . (j = 0, 1, 2, ... /) can be calculated 
directly, while a B . moment cannot be calculated 
until calculations have been made of all the 
Z?ny's for which (n + ;') - (n' + ;') is a non- 
negative even integer (including zero) and n'< n. 
Table 3.2 illustrates a typical calculation sequence 

(for N = 5). It is noted that all the moments shown 
in the table must be calculated in order to deter- 
mine B  „ for n = 5. no 

Since Eq. 3.76 is a Volterra type of equation, it 
can be written as 

/*(*„> *A„) 

=fx "tfCVA') v(A') d\'+ 7(An)   , (3.78) 

where 

*n = V nAA , 

AA = arbitrary   increment   of  wavelength, 

77(An,A') =*(A',A) P.(l + A'-A) , 

^o KK) [ 0 + 1) B„ 
■i,;' >*n-.J+1] 2j+ 1 

+ V(A0,A)P.(l + A0-A)Cn. • 

Equation 3.78 is characterized by (1) the limit 
of integration being the independent variable A , 
(2) the value of the dependent variable v(A ) 
depending on the values of v(A') if A' < A but not 
if A' > An, and (3) 3n(An) involving only known or 
previously calculated quantities. A numerical 
evaluation of the integral is required, for which 
several   schemes   are   available.      Regardless  of 

Table 3.2.   Sequence of Moments Calculation for N = 5 

i = o ; = i 
n; 

; = 2 ; = 3 ; = 4 ; = 5 

05 
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which scheme is employed, there are coefficients 
Mnk such that Eq. 3.78 can be rewritten as 

MAn)v(An)=   I    ff(An,Ak) v(Ak) Mnk 
k=o 

+ H(\n,\n)v(\n)Mnn + H\n) .   (3.79) 

Note that 

ff(An,An) = k(\n,\n) P;.(l + An - An) = %   (3.80) 

and that, by the trapezoidal rule, M = A A/2 for 
n = 1, and Mnn = AA/3 for n > 1.   Then for n = 1 

T(A.) +tf(A.,An)v(An) (AA/2) 
v(A) = '- l—? °-    ,      (3.81) 
KlJ ,x(A1)-(3AA/8) 

and for n > 1 

T(\n)+   Iff(An,Afc)v(Ak)Af„k 
k=o 

v(AJ = .    (3.82) 
/^(An)-(AA/4) 

The gamma-ray scattering process is such that 

ff(An,Ak) = 0 when An > \k + 2 .        (3.83) 

It follows that 

ff(An, A0) = 0 when A„ > A„ + 2 .        (3.84) 

Therefore the sums on the index k involve only a 
fixed number of terms, and the second term in 
T(An > AQ + 2) also vanishes; H(\n,\k) can be 
calculated directly, since only the Klein-Nishina 
formula and the Legendre polynomials are in- 
volved. 

At this point it is presumed that the required 
moments for a given problem can be calculated, 
and the problem of reconstructing the fluxes is 
considered. It should be emphasized that the 
calculation to this point can be performed with 
very few approximations, excluding the approxi- 
mations involved in the numerical procedures. The 
major source of error will lie in the subsequent 
reconstruction process since only a finite number 
of moments are available. In fact, for a finite 
number of moments there is an infinite number of 
allowable functions. The problem is basically one 
of choice: the selection of a functional form that 
will come as close as possible to describing the 
spatial dependence of /. (x, A). 

Two methods can be used to reconstruct the 
fluxes: the polynomial expansion method and the 
method of undetermined parameters. The polynomial 
expansion method assumes that /.(p,A) behaves 
roughly as some trial function f(p), where p is 
measured in mean free paths at the initial energy; 
i.e.,p = l*-Q

x-   Then 

/;.(p,A)=/(p)£.(p,A) (3.85) 

where g.(p,A) contains the A dependence and 
provides a correction for the p dependence. If a 
reasonable choice of t(p) can be made, then 
g(p,A) need be only a gently varying smooth 
function of p, for example, a polynomial of degree 
N in p when (N + 1) moments are available; 
|.(p,A) could be represented as an infinite series 
with respect to a set of orthogonal polynomials of 
degree n: 

^■(p,A)=   I    Anj(X)Pn(p) (3.86) 
n= o 

The orthogonality relationship is given by 

Pn(x)Pm(x)/(x) dx = 8nm,      (3.87) 

where f(x) is a weighting function as well as the 
trial function /(p). This representation of 
g. (p,A) is limited to a truncated series since only 
(/V + 1) values of A . can be obtained, given 
(N + 1) moments. 

The    approximation   for   /s(p,A)    can   then   be 
written as 

N 

/;
s(p,A) = f(p)    21   4nj-U) P"(P) >   (3-88^ 

where /.s(p,A) is the ;'th Legendre coefficient of 
the scattered component of the angular flux. This 
assumes that values of (N + 1) moments B . are 
available for the reconstruction of/?(p, A) . 

The reconstruction is accomplished by evaluating 
the (N + 1) coefficient An- in terms of the known 
(N + 1) moments B . for a given value of ;'. To 
this end, Z.s(p,A) is multiplied by P (p) dp and 
the product is integrated from — °o to +oo': 

An.(A') l-(p^) Pn(p) dp .   (3.89) 
-OO J 
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The polynomial P„(p) can be written as 

Pn(p) = £   BiP
l , (3.90) 

i= 0 

where the a.'s are known parameters for a given 
type of polynomial. The expression for An.(\) 
then becomes 

" -+00 
An}^-   I  aif      t^p.Kip'dp.       (3.91) 

The moments B.. are defined as 

B..(X)slr+00/s(pIA)pidp. (3.92) 
'1 j]   J_OO      ' 

Elimination  of the integrals  between  the above 
expressions  for A- 
desired relationship 
expressions   for Anj(\)   and Bi;(A)   provides the 

Anj(\)=   I    00affi... (3.93) 

i= 0 

Practical considerations will usually restrict 
accurate calculation to l*(p,)0 and then only the 
A     (A) 's are required; that is 

/S0(P.A)=/(P)    I   Ano(X)Pn(p) ,       (3.94) 
n= 0 

where 

^no(A)= i aoMi. • 
i= 0 

In principle, Anj(\) for; > 0 can be calculated. 
However, since the angular flux /(x,A,&>) is 
usually highly peaked in the forward direction, the 
series 

/s (x, A,co) =   £  -^^ /? (x, A) P. («a)       (3.95) 
;= o 

converges slowly, thereby requiring a large number 
of values of If (x,A), which in turn would require 
an unreasonably large number of moments. Finally, 
the scattered and unscattered energy fluxes are 
easily combined for most simple geometries: 

The polynomial expansion method described 
above is most often used for reconstructing the 
energy flux of the gamma-ray problem. This is 
partly for historical reasons and partly due to the 
ability of the method to make full use of large 
numbers of moments within the same systematic 
framework of analysis. For the neutron problem 
the selection of a suitable weighting (or test) 
function is not obvious and the method loses much 
of its flexibility. 

In using the method of undetermined parameters 
to reconstruct the fluxes,/.(p,A) is represented as 

/;(P,A)= 2>,(A)/>,(p) (3.97) 

I0(.x,\)=I°0(x,X)+Is0(x,X) (3.96) 

where h(p) is a function having the general ex- 
pected behavior of 7(p,A) but containing one or 
more undetermined parameters, and aj is an un- 
determined parameter which includes the A de- 
pendence. In particular, let ;' = 0 and assume that 
(N + 1) values of the Sn0(A) moments are known; 
then 

/JM'IajWW. (3-98) 
i 

The moments corresponding to j = 0 can be written 

I       — + oo 

n = 0, 1, 2, ...N .  (3.99) 

Substituting Eq. 3.98 into 3.99 yields the following 
set of (N + 1) equations: 

1    n r + oo 
Bn0W=-Lai^J       *i(p)p"dP' 

11 = 0, 1, 2, ...N .   (3.100) 

Values of fi.(p) should be selected so that the 
above integration can be evaluated either analyti- 
cally or numerically, and if (/V + 1) moments are 
available, then a total of (W + 1) undetermined 
parameters are allowed. 

Problems not amenable to other methods can 
sometimes be solved by the method of undetermined 
parameters because of the much greater choice 
that can be made in the h{(p) values. As a result, 
this method has been more widely applied to the 
neutron  penetration problem.    A characteristic of 
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the method is that when it fails it fails cata- 
strophically, leaving no doubt about its appli- 
cability. Usually not all of the moments available 
are needed to obtain a satisfactory solution.   The 

surplus moments can be used to check the accuracy 
by constructing moments corresponding to the 
unused moments, a feature not so easily accom- 
plished by the other methods. 

3.5   Monte Carlo Method 

A fourth technique which can be applied to the 
solution of the Boltzmann transport equation is the 
Monte Carlo method. The Monte, Carlo method is a 
mathematical technique used to approximate a de- 
sired quantity by random sampling from the prob- 
abilities describing the true stochastic processes 
that affect the magnitude of the quantity. With 
sufficient sampling it is assumed that the average 
value obtained is an accurate estimate of the 
quantity. For example, a game of chance may be 
played in which the probability of success P is a 
number whose value is desired. If the game is 
played N times with r wins, then r/N is an esti- 
mate of P. 

Many types of problems in physics and mathe- 
matics can be solved successfully by random 
sampling or stochastic techniques.17,18 For 
simple problems, such as the evaluation of single 
or double integrals, the usual numerical integration 
schemes will give accurate results with less 
effort, but for four- or fivefold integrals, Monte 
Carlo becomes a practical tool.19 

The method can be demonstrated by considering 
the Monte Carlo evaluation of a single integral, 
for example, the integral 

/=   (b g(x) f(x) dx , (3.101) 
Ja 

which generates the average of the function g(x) 
weighted by the function tf(x). Let the values of 
the random variable x be sampled from f(x), a nor- 
malized probability density function (pdf); the 
normalization condition is 

/(x) dx = 1 (3.102) 

With this sampling procedure the integral can be 
rewritten as 

with 

J= f   g(x)dF(x) , (3.103) 
•'a 

F(x) = J"*/(x')dx\ (3.104) 

The function F(x) is the cumulative distribution 
function (cdf) corresponding to /(x). With this 
transformation a selection of values of F(x) with 
uniform probability over the interval (0,1) is 
equivalent to the selection of values of x accord- 
ing to f(x) over the interval (a, b). Then for the 
ith selection there is a value g(x), and an esti- 
mation for the value of / is given by 

/ = - 2 J(x,). 
N 1=1      ' 

(3.105) 

where / is the Monte Carlo estimate of / and N 
is the arbitrary number of samples. 

When  generalized to multidimensional integrals 
Q, the above procedure gives 

Q = / g(P) f(P) dP , (3.106) 

where P denotes the multidimensional phase 
space. Then the Monte Carlo estimate of Q is 
given by 

-     1     N 
Q=- 2 ÄPp, 

N i=i        ' 
(3.107) 

where the PVs are selected according to a com- 
plicated set of probabilities giving rise to the 
probability density function f(P). 
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The application of this technique to radiation 
transport becomes clear if the transport equation 
is written in terms of successive collisions. Fol- 
lowing Goertzel and Kalos,20 a particle is de- 
scribed by the six-dimensional phase space whose 
coordinates are the components of the position 
variable x and the energy vector c5E, where E is 
its kinfitic energy and £3 is a unit direction vector. 

The motion of the particle may be completely 
described in terms of the flux density $(P), the 
collision density iJ/(P), or the density of particles 
leaving collisions X(P). The collision density is 
so defined that the expected number of collisions 
of the particle within the medium in the volume of 
phase space V is given by the integral 

fvHP)dP. 

The flux density may be defined as the collision 
density divided by the total cross section X (x,E); 
then 

lt(x,E) $(P) = ftF) (3.108) 

The density of particles leaving collisions is de- 
fined so that the expected number of particles 
appearing in the volume V of phase space either 
as a result of a collision or directly from a par- 
ticle source is given by 

fy  X(F)  dP  . 

An important point is that the behavior of a 
particle is independent of its past history and is 
determined only by its position in phase space. 
Nevertheless, it is convenient to indicate the 
number of collisions n that a particle has under- 
gone. Thus with the collision density of particles 
that have undergone exactly n — 1 collisions (and 
are thus entering their nth collision) denoted by 
i/f ,   the  relation between i// and ifj    is   given by 

Similarly, 

and 

W= 2  ^n(P) 
n—1 

W = 2 *n(P) 

X(P) = 2 xn(P). 
0 

(3.109) 

(3.110) 

(3.111) 

The transport equation can now be expressed in 
terms of equations for the average values of the 
source   distributions   and   the   collision   density: 

XQ(P) = S(P), (3.112) 

Xn(x,E) =</Vn(XfE') C(E',E,x) dE', 

n= 1, 2, ... ,     (3.113) 

<l>n+1(x,E)=fXn(x',E) T(x',x,E) dx', 

n = 0, 1, 2, ... . (3.114) 

In these equations S(P) is the source distribution 
and T(x',x,E) denotes the transport kernel and is 
so defined that for particles leaving a collision 
(of the source) at (x',E) the expected number of 
next collisions in the spatial volume V is given by 

jv  T(x',x,E) dx . 

Similarly, the collision kernel C(E',E,x) is so 
defined that for a particle entering a collision at 
(x, E') the expected number of particles leaving 
the collision within the volume V of energy space 
is given by 

/„ C{E',E,x)dE . 

For simplicity, the direction variable 5 has been 
dropped but should be interpreted as being carried 
with E. 

In solving for the basic quantities mentioned 
above or for others determined by these quantities, 
the sampling in phase space is accomplished by 
following particle case histories from birth [sam- 
pling from S(P)] to death by absorption or leakage. 
This analogy to real particles has led some to call 
Monte Carlo a theoretical experiment. For ade- 
quate numbers of case histories to be traced, a 
computing machine is necessary; so it is no 
coincidence that the development of Monte Carlo 
methods has closely paralleled the development 
of high-speed computers. 

When generating the sequence of events in the 
life of a case history, certain quantities of in- 
terest are selected or computed at each step of 
the random walk. Each step may be regarded as a 
collision or as a flight. The quantities associated 
with the collision, called "collision parameters," 
are the phase-space coordinates such as x, y, and 
z (spatial coordinates), a, ß, and y (directional 
coordinates before or after the collision at x,y,z), 
the energy  E (before  or after the  collision), and 
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other quantities deemed useful, such as £((x,y,z,£). 
The steps proceed as follows: 

1. selection of the initial position, energy, and 
direction from the source function S(P), 

2. selection of the next collision site from e~y, 
which is the distribution of flight lengths in 
units of the mean free path [l/2(E)], 

3. selection of the energy and direction after col- 
lision from the appropriate collision kernel 
C(E',E,x). 

Termination of a history generally takes place 
when the particle is absorbed, reaches a portion 
of phase space not allowed, or is killed according 
to some prescription such as Russian roulette (see 
discussion below). The most common areas of 
phase space not allowed are spatial regions ex- 
terior to the system considered or energy regions 
below an arbitrary cutoff. 

Sampling Procedures. — Selecting a sample from 
a distribution usually requires first the selection 
of one or more random numbers, which customarily 
are numbers uniformly distributed between 0 and 
1. The rigorous definition of this uniform random 
number is that the probability of it being selected 
from an interval of length &, contained in the in- 
terval between 0 and 1, is simply Ü,. In actual 
practice there are computational algorithms 
adapted to digital computers that serve the pur- 
pose. One can find descriptions .of such methods 
in the literature, together with discussions of 
tests of randomness that have been applied. 

Once a random number has been selected, there 
are a number of possible ways to select from a 
distribution.      Consider  the   following  examples: 

1. Select a nuclide from N nuclides in a mix- 
ture. [The scattering function C(E',E,x) will, in 
general, depend on the particular nuclide, and 
hence it is simpler to select a scattering angle 
and energy for a particular nuclide than for a 
mixture.] 

Each nuclide has a total macroscopic cross 
section 2^, and the total macroscopic cross sec- 
tion for the medium, X, is given by 

n=l 
(3.115) 

n   < R< (3.116) 
n=l 

Once the nuclide has been selected, a choice is 
made between an absorption or a scattering re- 
action. If another random number R is less than 
2s/S, where 2s is the scattering cross section, a 
scattering reaction will occur; otherwise, it will 
be an absorption. 

2. Select the azimuthal scattering angle ^> from 
its uniform pdf, ((ff) = l/2n-, and from its corre- 
sponding cdf, F(0) = /* f(cf>') dcj>' = <j>/2n. A value 
for cf> is obtained by setting F(cß) = R and solving 
for cf>: 

4> = 2nR , (3.117) 

where R is a new random number. 
3.   Select a value of x from the pdf t(x),   where 

/CO 

/(x) dx = l , (3.118) 

and define the cdf F(x): 

F(x)=    V  Kx')dx'. (3.119) 
*'_co 

A value of x is selected by setting R = F(x) and 
solving for x: 

x = F~\R) (3.120) 

As an example, pick the distance from one col- 
lision site to the next.   The pdf is given by 

/(x) = 2e~lx , (3.121) 

and the cdf by 

F(x) = 1 f    e~lx' dx'=l-e~lx. (3.122 

Let 

then 

R=l-e~lx; (3.123) 

Nuclide  1  is  selected if a  random number R is 
less than Sj/X, and the fth nuclide is selected if 

x = --ln(l-F). (3.124) 
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The quantity (1 — R) is a random number and con- 
sequently can be replaced by the random number 
i?', giving 

x = -_lnK' (3.125) 

Often it is difficult or impossible to solve for 
x explicitly, as was done in this example. A table 
can be constructed with F(x) inverted; that is, 
x can be regarded as the dependent variable, and 
F(x) (or R) as the independent variable. Thus a 
value of x can be obtained from the table for any 

given value of R. 
Many prescriptions for picking from various dis- 

tributions have been given by Kahn.21 Cashwell 
and Everett22 also give many procedures useful in 

radiation transport applications. 
Importance Sampling. - In any numerical inte- 

gration scheme it is essential for accuracy to 
process a sufficient number of points in the 
phase-space regions where large contributions are 
made by the integrand. In many Monte Carlo 
problems adequate sampling becomes a crucial 
problem. For example, in deep-penetration shield- 
ing problems analog sampling may not within a 
reasonable period of time yield any histories for 
particles traveling through the regions of interest. 
Even when a few histories that make important 
contributions are obtained, the probable error may 
be too large, and increasing the number of his- 
tories decreases the error only slowly (inversely 
to the square root of the number of histories). A 
possible. solution to the problem is to alter the 
sampling scheme to one which samples primarily 

from the important regions. 
In importance-sampling techniques, the basic 

stochastic process is so modified that the event 
density of the basic process is multiplied by a 
chosen function (importance function) which 
measures the importance of an event at x on the 
quite reasonable basis that important regions of 
the phase space should be sampled most fre- 
quently. Important regions are those in which 
events contribute, directly or potentially, most 
heavily to the desired answer, the consideration 
of which provides some insight to the selection of 
the importance function. 

When the sampling schemes are altered, the 
concept of statistical weight is introduced to cor- 
rect for the altered or biased probability, so that 
the expected value of the mean will not be af- 
fected.   For example, the information obtained from 

a case history is increased (and thus the probable 
error is decreased), generally, by not permitting 
absorption. Absorption is accounted for by re- 
ducing the weight of each particle by the factor 
Ss/X( or, to be more general, by the ratio of the 
average number of particles emerging from a col- 
lision to the number entering a collision. The 
weighted particle whose history is being traced 
may be thought of as a bundle consisting of a 
number of particles, the number being proportional 
to the weight. At each collision some of the par- 
ticles in the bundle are absorbed, resulting in a 
decrease in the weight. 

If absorption is not allowed, the particle must 
eventually be killed by another means. The 
normal way is by Russian roulette. Thus when the 
weight becomes lower than some arbitrary value, 
a game is played in which a particle is killed if 
R > C, where C is the survival probability (0 = 
C = 1). If R = C, the particle survives and the 
weight is increased by the factor 1/C. The sur- 
viving particle then represents all those particles 
killed in the game. 

Russian roulette can also be used to decrease 
the sampling in any region of phase space by 
arbitrary tests, in which case it is often coupled 
with the inverse process splitting. That is, with 
certain criteria satisfied, a particle can split into 
two or more particles with the appropriate weight 
reduction. This is done when a particle crosses 
into an important region of phase space or at the 
first collision site in such a region. 

Importance sampling can be considered in a 
general way by referring back to Eq. 3.101, which 
can be rewritten as 

7=/a
bg*«/*(x)dx, (3.126) 

where 

g*(x) /*(x) = g(x) fa) (3.127) 

with the restrictions that /*(x) = 0 only for f(x) = 0 
and that 

/a
b /*(x) dx = 1 (3.128) 

The expected value of J remains the same in a 
Monte Carlo solution involving sampling from 
/*(x) and evaluating g*(x.). However, it can be 
shown that the variance is not the same, making 
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it  possible   to   improve  the   variance   if  f*(x)  is 
selected properly.   It is obvious that 

g*(x) = g(x) 
/*(x) 

(3.129) 

which shows that the statistical weight correction 
factor f(x)/f*(x) is to be used when sampling from 
f*(x) and evaluating g(x). 

For example, it is well known that in shielding 
problems the high-energy neutrons from a fission 
source dominate the penetration. In sampling from 
the Watt fission spectrum,23 however, less than 
1% of the samples have energies greater than 
7.5 MeV. Obviously, importance sampling is 
needed. One way is to pick from a uniform dis- 
tribution over only the range of importance 
bounded, for example, by the energies E and E . 
If it is assumed that the fission spectrum is given 
by the pdf KE), the pdf can be modified (without 

change) by the pdf /*(£) = (E2 - EJ-1 in the fol- 
lowing manner: 

f*(E) /(E) 
f(E) = f(£) -I— = /*(E) ■ 

f*(£) f*(E) 
(3.130) 

The selection of energy is made from /*(£), and 
the. particle weight is corrected by the factor 
KE)/i*(E). The cdf corresponding to f*(£) is 
given by 

F*(E) i*(E) dE 
E -E, 

E2~Er 

(3.131) 

The selection of an energy E is accomplished by 
setting F*(E) equal to a random number R and 
solving the resulting equation for E, which yields 

Et + R(E2 - EJ (3.132) 

Further discussions of importance sampling can 
be found in refs. 17—22. In many cases the im- 
portance function is selected arbitrarily and 
intuitively. A more systematic (and generally 
successful) approach is to use value functions.24 

The value function, a solution of a transport equa- 
tion adjoint to the Boltzmann transport equation, 
has been shown to be a very good, and sometimes 
an optimum, importance function for biasing the 
original Monte Carlo procedure. In most cases, a 
reasonable approximation to the actual value 
function will produce quite good results. A useful 
specialization   of   these   techniques   is   the  ex- 

ponential transformation, which can be quite 
helpful if parameters for its use are obtained from 
a value function approximation.25,26 

Scoring. - Thus far, only the generation of his- 
tories has been considered. At some point with 
each history a score must be evaluated, a score 
being the contribution to the quantity of interest. 
(Typical quantities of interest are flux density, 
current, absorption, heating, leakage, transmis- 
sion, reflection, and dose.) For example, suppose 
that it is desired to estimate a reaction rate inte- 
grated over a volume V of phase space, where 
2(x,E) is the macroscopic cross section for the 
reaction of interest. This reaction rate is given 
by 

fv S(P) <D(P) dP . 

One way of estimating it is to record 2(P)/X (P) 
for every particle absorbed in the volume V, where 
2fl(P) is the macroscopic absorption cross section. 
Another commonly used estimator records 2(P) • d 
for every flight of length d in the volume of in- 
terest, where it is assumed that 2(P) does not 
vary over the track d. It is possible to reduce 
the variance of the estimate by using computed 
means in connection with the basic collision 
data. An example of this is the next-event es- 
timator, which records at each collision site the 
probability of scoring in one additional flight. 
There are many other possible means of combining 
analytical computation with random sampling, but 
they will not be discussed here. 

Statistical Accuracy. — The mean is usually the 
quantity of most interest in a Monte Carlo problem, 
but in a study of the statistical properties of the 
problem higher moments are often calculated, 
particularly the second moment, or the estimate of 
the variance. The sample variance (an estimate of 
the second moment) is given by 

1 

^£(X<-X )2 

2x2 (2x.)2 

(3.133) 

where 

n = number of samples, 

x. = value of a sample, 

x = —Zx. = mean value of n samples. 
n      ' 
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The   estimate   of   the   variance   of   the   mean   is 

„2 

var(x) = o2 =  
n 

(3.134) 

The sample x. may be regarded as the result from 
one case history, or it might be the mean of many 
histories taken as a batch. Only in the limit of 
many histories will the estimate of the variance be 
the same for a particular set of case histories 

divided into arbitrary batches. 
For a normal distribution, a is called the stand- 

ard deviation and has the following properties: 
When samples are taken, the probability that the 
estimate of the mean will be within one standard 
deviation of the true mean (limiting value with an 
infinite number of samples) is about 67%, within 
two standard deviations about 95%, and within 
three standard deviations about 99%. Thus one 
generally computes the sum x2 as well as x. 
during a Monte Carlo calculation so that a can 

be calculated as well as x. 
There are some principles that should be kept 

in mind at this point. With adequate sampling of 
the important regions of phase space in shielding 
problems the distribution of the mean might be 
expected to be close to the normal distribution, 
but there is a good possibility that it will be 
skewed, and the above interpretation of the sample 
variance will be far from correct. From a practical 
standpoint the above interpretations of the vari- 
ance are overly optimistic. In many cases (es- 
pecially in deep-penetration problems) it is typical 
to undersample important regions of phase space 
and to obtain an underestimate of the mean. Then 
the estimate of the variance is likely to be even 
worse (frequently much worse27) and hence com- 
pletely unreliable. If the standard deviation ap- 
proaches 30 to 50% of the mean, the mean itself 
should be regarded as very unreliable. 

Use   of   Monte   Carlo   Methods   Today.   -  Monte 
Carlo techniques may be designed to reproduce a 
physical model in as much detail as is necessary, 
and so provide a powerful tool to solve problems 
with   very   few   compromises   with   the   physics. 
The   Monte   Carlo   method' is   capable   of  incor- 

porating any geometry.    To use Monte Carlo suc- 
cessfully,    however,    generally   requires   a   con- 
siderable investment in analysis, programming, and 
computer machine time.   The importance of machine 
time   is  often overemphasized, with  analysis and 
programming   being  underemphasized.      It   is   im- 
portant  for the user to keep in mind that a well- 
developed  theory exists which specifies, in prin- 
ciple, a near-optimum procedure for solving a given 
problem.      This   procedure  consists   of obtaining 
the best possible approximation to the value func- 
tion for the problem and then using this function to 
obtain   parameters   for   importance-sampling tech- 
niques   or  to   guide  development  of  new biasing 

techniques. 
To aid the programmer, the concept of a Monte 

Carlo programming system, as opposed to a 
particular general-purpose code, is now utilized. 
For example, a system known as the 05R sys- 
tem28 can, in principle, be utilized to solve any 
neutron transport problem. The framework is there 
(cross-section handling, geometry-solving routines, 
random-walk procedures, etc.), but the programmer 
must incorporate the special features he desires 
by adding subroutines to the framework. 

In general, Monte Carlo methods will not be 
applied to one-dimensional problems, since dis- 
crete ordinates codes are likely to be much faster 
than Monte Carlo codes. For two-dimensional prob- 
lems, Monte Carlo and discrete ordinates methods 
are somewhat comparable, but for three-dimensional 
or time-dependent problems there is no competitor 
to Monte Carlo for a rigorous solution of transport 

problems. 
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3.6   Application of Diffusion Theory 

An approach to the particle transport problem, 
that neglects the detailed directional aspects of 
the particle motion is that of diffusion theory. A 
neutron balance in the four-dimensional phase 
space (7, r) leads to the following equation of 
continuity for the one-speed neutron transport 
problem: 

fa (7> 0 
—-1 =S(7,0-2a*(r,0 -V./(7,0, (3.135) 

dt 

where 

n(7, t) = neutron   density   (neutrons   cm-3), 

2   = macroscopic absorption cross section 

(cm"1), 

S(7, t) = general source term .(neutrons cm-3 

sec-1), 

$(7,0 = total   neutron   flux  (neutrons   cm-2 

sec-1), 

7(7,0 = net neutron current (neutrons cm-2 

sec-1), 

dn 

dt 
= time  rate of change of the neutron 

density (neutrons cm-3 sec-1), 

2  $ (7, f) = loss  of neutrons  due  to absorption 
■ (neutrons cm      sec   l), 

V • 7 (7, 0 = loss of neutrons due to convection 
(neutrons cm-3 sec-1). 

Equation 3.135 can be regarded as a precise 
relationship that can be applied without restriction 
to the general problem of particle transport. How- 
ever, a basic limitation in its use is that except 
for certain very restricted situations a tractable 
form for the net neutron current 7(7, 0 does not 
exist. Diffusion theory in its usual form is based 
on the following time-independent expression for 
the net current: 

7(7)=-DV$(7) , (3.136) 

where D is the position-independent diffusion 
coefficient (cm), and V$(7) is the gradient of the 
total neutron flux. It is noted that with the steady- 
state assumption, phase space has been reduced to 
three position variables as denoted in general 
vector notation by (7). Equation 3.136 is identical 
in form with Fick's law, which simply states that 
the  net diffusion  of particles (or molecules)   in 

liquids and gases will be from regions of high 
particle density to regions of low particle density, 
with the gradient of the particle flux as the driving 
potential. The derivation of Eq. 3.136 can be 
found in any nuclear reactor theory textbook, for 
example, in the text by Weinberg and Wigner.' 

Substitution of Eq. 3.136 into the steady-state 
form of Eq. 3.135 leads to the "diffusion equation" 

DV2$(7) -2a$(7) +S(7) =0.     (3.137) 

Equation 3.137 has the same form as the steady- 
state form of the P approximation to the spherical 
harmonics treatment of the Boltzmann equation 
(see Section 3.2). 

Certain limitations are inherent to diffusion 
theory: (1) the scattering process is assumed to 
be isotropic in the laboratory frame of reference, 
(2) the directional distribution of the particle flux 
is nearly fsotropic, (3) the diffusing medium must 
be a poor absorber, i.e., Sa « Ss, and (4) the 
results are invalid for regions within 2 to 3 mean 
free paths of boundaries, strong sources, and strong 
sinks. The existence of these limitations is a 
clear indication of the approximate nature of 
diffusion theory insofar as the physical situation 
is concerned. In reality the above conditions of 
applicability for diffusion theory are seldom 
satisfied. However, with the judicious selection 
of system parameters the diffusion theory solutions 
of certain problems* compare favorably with 
solutions obtained with more exact theories or with 
the physical situation itself. 

A neutron shielding problem that can be solved 
by diffusion theory would involve neutrons having 
a continuous energy spectra over a wide energy 
range (typically from a low keV region to 10 MeV) 
so that a "group" approach is required to ade- 
quately describe the diffusion process. The energy 
range is divided into G energy groups with the gth 
group corresponding to the energy width Ej+ — Er 

The group-diffusion equation for the gth group is 
given by 

D6 V2<bg(J ) - Sf $(7 ) + Sg(T ) = 0 , (3.138) 

♦For example, diffusion theory is used in fast reactor 
shielding design since the leakage spectrum peaks 
below 0.5 MeV and the materials involved are non- 
hydrogenous (sodium and graphite). Also, the small 
source (reactor core) requires two-dimensional calcula- 
tions, which are much simpler with diffusion theory. 
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where 

D6 = group-averaged diffusion coefficient 

fEj + 1 D(E) <D(r ,E) dE 
JE. 

*,(7) 

$  (7) = total flux corresponding to the gth 
energy group (g = 1, 2, . .. G) 

= f   i+1 

JE. 
9(7,E) dE , 

2^ = group-averaged macroscopic absorption 
cross section 

.E. 
f   '+1£ (E)$(7,E) dE 

JE. a 

•Ä(7) 

S .(7) = general source term for the gth group 

rE/+1S(7,E) dE 

However, the typical neutron shielding problem is 
not amenable to solution by the straightforward 
application of diffusion theory, because the neu- 
trons are on the average very energetic and 
possess a strong forward directional bias. The 
limitations of diffusion theory under these con- 
ditions are clearly violated and results thus ob- 
tained would be meaningless. But when applied to 
certain special problems in combination with other 
methods, diffusion, theory has proved useful. 
Applications of diffusion theory to the neutron 
shielding problem are discussed further in Section 
3.9. 

The use of diffusion theory to predict gamma-ray 
energy fluxes seems to be unjustified on superficial 
examination of the gamma-ray transport phenomenon. 
Certainly deep penetration by gamma radiation 
cannot be described by diffusion theory, because 
the resultant gamma-ray flux is due to photons that 
have maintained a strong directional correlation. 
But diffusion theory seems to be adequate for 
small-to-moderate penetrations relatively near the 
source under conditions where the low-energy end 
of the spectrum predominates and the scattering is 
more nearly isotropic. These restricted conditions 
exist, for example, for gamma-ray heating calcula- 
tions.29 

3.7   Invariant Imbedding Method 

The method of "invariant imbedding" is not 
another method for solving the Boltzmann transport 
equation. Rather it is a different fundamental 
approach to the mathematical description of particle 
transport. The method has for its historical basis 
the early works of a Russian astrophysicist, V. A. 
Ambarzumian, who confined his interest to the 
transport problems of astrophysics.30 Recent 
investigations31'32 have shown that the invariant 
imbedding approach can be applied to a much 
broader class of problems, including the neutron 
and gamma-ray transport problems encountered in 
radiation shielding. 

The dependent variables of the invariant im- 
bedding formulation are the reflection and trans- 
mission    functions,   with   the   region   dimensions 

(shield thickness) and the energy and direction 
of the particle comprising the six-dimensional 
phase space. In this context a particular shielding 
problem is viewed as being "imbedded" in a more 
general class of shields having different dimen- 
sions. Characteristically, and in contrast with 
solutions of the Boltzmann transport equation, 
the invariant imbedding method provides trans- 
mission and reflection information for a large 
variety of shields, as well as for the specific 
problem of interest. However, the detailed behavior 
of the radiation during transport through the shield 
is not explicit during the analysis and for that 
reason is unavailable, a not too serious short- 
coming — if not a real advantage — for the typical 
shielding problem. 
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The reflection and transmission functions of 
invariant imbedding are each defined by an integro- 
differential equation. These equations can be 
derived by applying the usual conservation principles 
of radiation transport to a shield system, the dimen- 
sions of which are allowed to vary by differential 
amounts. For simplicity and greater clarity, the 
derivations are performed in slab geometry with 
azimuthal symmetry. Phase space becomes three- 
dimensional: the shield thickness X, the energy 
variable E, and the direction variable y (=cos 6). 
A schematic representation of this configuration 
is shown in Fig. 3.1. 

The reflection function R(X;y,E;y0,E0) dy dE 
is defined as the number of particles incident with 
energy EQ and direction y0 that are reflected from 
a slab of thickness X with energies in dE about E 
and directions that lie in dy about y per unit area 
on the emergent surface; the function can be regarded 
as an angular flux within the differential slab 
thickness dX. The reflection equation describes 
the change in the reflection function due to changes 
in the shield thickness and is formulated without 
involving the transmission function. The deriva- 
tion is accomplished by equating the difference 
in the reflection functions for slabs of thicknesses 
X + dX and X with the net change in the reflection 
function which results from collisions suffered by 
the particles within the differential slab dX: 

where 1t(x,EQ) is the position-dependent total 
macroscopic cross section evaluated at the particle 
energy EQ| and ls (x;y',E ';yQ,E0) dy'dE' 
represents the position-dependent differential 
scattering cross section which describes the 
probability that a particle with an initial energy 
E and an initial direction y undergoes a scat- 
tering collision that places it into a direction 
which lies in dy' about y' with a new energy in 
dE' about E 

The first and second terms on the right-hand 
side of Eq. 3.139 represent the particle losses 
due to collisions within dX (any collision is pre- 
sumed to alter the particle's energy and direction). 

ORNL-DWG 67-12748 
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Fig. 3.1.   Geometry for Invariant Imbedding Technique. 

dX 
R(.X + dX;y,E;y0,E0)-R(X;y,E;y0,E0) = -2t(X,E0)R(X;y,E;y0,E0) — dydE 

dX 
2t(X, E) R(X; y, E; yQ, E ) — dp dE 

s:«r. dX 
dE' 2s(X;y',E';y0,E0)R(X,y,E;y',E') — dy.dE 

j    —(    dE' R(.X;ii',E';fJL0,E0)2s(X;y.,E;fi'lE')dXdlidE 
0     (1 o 

I   ~f    dy~" I   dE  I   d£''*^''E>o'£o)2s(X;/i'',E'>',£') 
0       fl        "-1 

R(.X;n,E;n",E")dXdlidE ,    (3.139) 
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The first term is the loss of incident particles scattered within dX such that they do not enter the slab of 
thickness X, and the second term is the loss of particles that are scattered within dX such that they are 
prevented from emerging from the slab of thickness X + dX. The third, fourth, and fifth terms represent 
the inscattering gains due to scattering collisions within dX. The third term is the gain from particles 
that scatter from dX into the slab of thickness X with energies in dE' about E' and directions dy' about 
y , and then are reflected from the slab of thickness X with the proper emergent angle and direction. 
The fourth term is the gain from particles that scatter from the slab of thickness X into dX with energies 
in dE' about E' and directions dy about y and then are scattered within dX with the proper emergent 
energy and direction. The fifth term is the gain from particles that scatter from the slab of thickness 
X into dX with energies in dE' about E' and direction dy' about y , are scattered back into the slab of 
thickness X with energies in dE " about E " and directions dy " about y", and are finally reflected from 
the slab of thickness X with the proper emergent energy and direction. A rearrangement of terms leads to 
the usual form of the reflection equation: 

lRVC;n,E;p0,E0) = - 
2t(X,E0)    lß,E) 
 +  R(X;y,E;yQ,E0) 

+ f     dy'   f     dE'2(X;p',E';ßo,E0)R(X;n,E;ll',E')- 
J-i Jo Mi 

A   /      dE' R(X; y',E';y0,EQ) ls(X; y, E; y', E') 
>1   J..' 

+ 
-l0     y 

—    /      dy" J      dE' J      dE"R(X;y',E';y0,E0)ls(X;y",E";y',E') 

xR(X;y,E;y",E") ,        (3.140) 

+ 
■J0     y 

with the initial condition that 

R(0; y, E; yQ, EQ) = 0 . (3.141) 

The transmission function T(X; y, E; yQ, EQ)dydE is defined as the number of particles incident with 
energy E and direction y that are transmitted through a slab of thickness X, emerging with energies in 
dE about E and directions in dy about y per unit area on the exit surface. The derivation of the transmis- 
sion equation is accomplished in a manner similar to that used to derive the reflection equation and fol- 
lows the argument that the difference in the transmission functions^ for slabs of thickness X + dX and X 
is due to collisions suffered by the particles within the differential slab dX. A familiar form of the 
transmission equation is 

d ^(*'Eo) 
— T(X; y, E; y0, EQ) = T(X; y, E; y0, EQ) 
dX yQ 

+ 

+ 

f     dy'   f     dE'ls(X;y',E';y0,E0)T(X;y,E;y',E') 

J   dJL    f    dy" J     dE    J     dE" R(X;y',E';y0,E0)ls(X;y",E";y',E') 
0    y 

xT(X;y,E;y",E") ,        (3.142) 
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with the initial condition that 

T(P;VL,EIH0,E0) = 8(fi - H) S(E - EQ) .       (3.143) 

The first term in the right-hand side of Eq. 3.142 
represents the loss of incident particles scattered 
within dX such that they dö not enter the slab of 
thickness X. The second and third terms represent 
the inscattering gains due to scattering collisions 
within dX. The second term is the gain from particles 
that scatter from dX into the slab of thickness X 
with energies in dE' about E' and directions in 
d/z' about \L', finally emerging with energies in 
dE about E and directions in d\L about \L. The 
third term is the gain from particles that are re- 
flected from the slab of thickness X into dX and 
are then scattered back into the slab of thickness 
X, finally emerging with energies in dE about E 
and directions in dp about ft. 

The reflection equation (Eq. 3.140) and the 
transmission equation (Eq. 3.142) are both non- 
linear integrodifferential equations which for the 
radiation transport problems of nuclear engineering 
form problems of the "initial-value" type. The 
reflection equation involves only the reflection 
function as the dependent variable, thereby allow- 
ing its solution without consideration of the trans- 
mission equation. The transmission equation ap- 
pears simpler in form (fewer terms) but contains 
the reflection function, which must be known before 
,a solution can be effected. Therefore a typical 
shielding transmission problem (initial-value) would 
involve the solution of a coupled pair of nonlinear 
integrodifferential equations. This is in contrast 
to the Boltzmann equation (Eq. 3.2), which is a 
linear integrodifferential equation and for the same 
application forms a "boundary-value'' type problem. 

Analytical solutions of the reflection and trans- 
mission equations for practical problems are not 
possible because of their integrodifferential form; 
the nonliriearities are a further complication. As 
a consequence, all useful solutions are numerical 
in nature and are accomplished through the use of 
digital computers. The numerical techniques are 
similar to those used to solve the Boltzmann equa- 
tion by the discrete ordinates technique, in which 
a specific combination of the independent variables 

defines discrete values of the neutron flux $G t D 

(see Section 3.3 for a more complete description). 
In invariant imbedding, specific combinations of 

the energy and direction of the particle define the 

particle's state "i." In this context, the discrete 
reflection variable R. .(X) is the number of particles 
in state i per unit area normal to the x direction 
reflected by a slab of thickness X due to a unit 
source of particles in state ; that are incident on 
the slab. The discrete transmission variable T..(X) 
is the number of particles in state i per unit area 
normal to the x direction that penetrate a slab of 
thickness X due to a unit source of particles in 
state ; that are incident on the slab. The reflec- 
tion and transmission equations in discrete variable 
notation, along with a general description of numer- 
ical techniques used in their solution, are given 
by Mathews, Hansen, and Mason.33 

The paper of Mathews et al. also describes the 
application of invariant imbedding to practical 
energy-dependent neutron shielding problems, such 
as for a thick water shield and a thinner hetero- 
geneous iron-polyethylene-iron shield. A very 
detailed set of reflection and transmission equa- 
tions in particle-state notation for the monoenergetic 
neutron transport problem in slab geometry is given 
by Mingle,34 who includes applications of the 
method of escape probabilities, blackness coef- 
ficients, and critical size determinations. Solutions 
for the gamma-ray transport problem in slab geom- 
etry, including results for slabs of iron, water, lead, 
and concrete, are given by Shimizu and Mizuta.35 

The advantages and disadvantages of the invariant 
imbedding method relative to other techniques 
should strongly influence the extent and directions 
of future applications. The advantages of the 
method are that it yields very detailed solutions 
(gives energy and angular distributions), it is 
efficient for deep penetrations with reasonably 
short computer times, it is well suited for hetero- 
geneous shield configurations, the effects of 
boundaries are implicitly and exactly included 
in the solution, and it has the computational ad- 
vantages of being an initial-value problem. The 
disadvantages of the method are that it is inef- 
ficient for thin shields (the method is very slow 
during initial phases of solution), it is difficult 
to apply to other than slab geometries, it does not 
generate detailed particle-state information within 
the shield (actually an advantage from a computa- 
tional point of view), the basic equations are non- 
linear (not too serious if solution is obtained 
numerically), and the calculational techniques 
and "user" computer programs are not as advanced 
as those for the solutions of the Boltzmann equa- 
tion. 
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3.8   Kernel Techniques 

The kernel technique, which in the language of 
mathematical physics is known as the method of 
Green's functions, is one of the more widely used 
methods for the solution of both gamma-ray and 
neutron shielding problems.* The point kernel 
KQY - r'|) is formally the solution to the unit 
point source problem and is defined as the desired 
response of a detector (particle flux, energy flux, 
dose, or energy absorption) at the space point 7 
due to a unit point source of radiation at the space 
point 7'. This kernel provides the means for solv- 
ing a variety of problems which involve distributed 
sources. As an illustration of the procedure, con- 
sider the surface-source problem.** In terms of the 
point kernel, the detector response at a distance 
17 _ 7'| = R away from a differential source area 
dA(R) of intensity SAR) (particles cm-2 sec-1) is 

d$ [SA(R) dA(R)} K(R) (3.144) 

The differential area dA(R) is selected so that the 
term [S^W dA(R)] can be considered as a point 
source located at a distance R from the detector. 
The total detector response (the desired answer to 
the surface-source problem) is obtained by integrat- 
ing over the entire surface: 

$ = / <f<D = /   SAR) K(R) dA(R). (3.145) 

The utility of the method is considerably enhanced 
if the integral can be evaluated analytically. 

Kernels that are used in practical shielding cal- 
culations almost invariably result from solutions 
(either analytical or numerical) for infinite homo- 
geneous media. Consequently, applications of these 
kernels to finite-geometry configurations lead to 
systematic errors, the sign and severity of the 
errors depending on the particular conditions. 

3.8.1.   GAMMA-RAY CALCULATIONS 

Point Kernels 

In the analysis of gamma-ray transport problems, 
the  uncollided flux  (i.e.,  the  flux due  to source 

♦Brief descriptions of several computer codes based 
on the kernel technique are given in Appendix 3A. 

**The volumetric source problem is handled in a 
similar fashion. 

gamma rays that arrive at the point of interest 
without suffering an interaction) is usually easily 
calculated. For example, for the case of a mono- 
energetic point isotropic source in an infinite 
medium, the uncollided flux is given by 

<D°(R) = S 
-KE)R 

4TTR: 
— (gamma rays cm      sec     ) , 

(3.146) 

where 

S = source strength (gamma rays/sec), 
H(E) = macroscopic total cross section eval- 

uated at the initial gamma-ray energy 
Eicm-1), 

e"WE)R = material attenuation factor, which is 
the probability that a gamma ray of 
energy E travels a distance R (cm) 
without suffering a collision, 

1 
 = geometric attenuation for a point source 
4JTR2

     (cm-2). 

Calculation of the scattered flux is in general 
much more complex. The scattered component is 
handled by introducing a buildup factor, which 
accounts for the increase (i.e., buildup) in the flux 
at some point 7 that is due to the scattered gamma 
rays.   It is this buildup factor, defined as 

some desired property (particle flux, 
energy flux, dose, etc.) of the 

total gamma-ray flux at R 

same property due to the uncollided 
flux at R 

B (3.147) 

that serves as the basis for formulating the point 
kernels required for gamma-ray shield analysis. 
For the calculation of dose, the kernel is given by 

H AE)E 4>0(fl) 
K (R) =   flt —Br 

uXE)Ee-«B>* 

4TTR' 
Br,    (3.148) 

where fi   (E) is the macroscopic energy absorption 
cross  section for tissue  evaluated  at the initial 
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gamma-ray energy E, and B is the dose buildup 
factor, which is the ratio of the actual dose at R 
to the uncollided dose at R. Similarly, if the de- 
sired property is the energy absorbed, the kernel is 
given by 

K(R) = Pa        „ Ba 

(<fE)Ee-W'B 

4-rrR2 Ba ,    (3.149) 

where (J-a(E) is the macroscopic energy absorption 
cross section evaluated at the initial gamma-ray 
energy E for the material in which the energy is 
absorbed, and Bg is the energy absorption buildup 
factor, which is the ratio of the actual energy ab- 
sorbed at R to the uncollided energy absorbed at 
R. 

Buildup Factors 

The results of many accurate gamma-ray attenua- 
tion calculations are reported in terms of buildup 
factors, which in combination with the kernel tech- 
nique provide a relatively simple and, in many 
cases, quite accurate calculational method. Most 
of the buildup factors in current use are those pub- 
lished in 1954 by Goldstein and Wilkins,13 who 
give the results of infinite-medium calculations for 
seven materials and up to nine source energies, 
which cover the range of interest for reactor and 
weapons shielding. Results for other materials 
and energies may be obtained by interpolation 
since the buildup factors are smooth functions of 
energy and atomic number. 

Various approximate equations have been used 
for the buildup factors, the coefficients usually be- 
ing determined by a best fit of the available data. 
Some of these are discussed below. 

Early Linear Form. — Probably the oldest formula 
used for a buildup factor was a simple linear form 
given by 

B(E,fj.R) = 1 + nR , (3.150) 

where 

E = source energy, 
H = linear  attenuation coefficient,  evaluated at 

the source energy, 
R = distance to source. 

This particular linear form of the buildup factor 
has the advantage of being simple, but it is not 
very good over a significant range. 

Taylor Form. — A frequently used form of the 
buildup factor is that of Taylor,36 written as 

B(E,nR) = A e     1 + (1 - A) e    2 

(3.151) 

It is apparent that substitution of Eq. 3.151 into 
3.149 does not change the form of the kernel but 
merely generates two terms. Consequently, all 
available analytical solutions for the uncollided 
flux can be corrected for the scattered flux by 
simply using modified attenuation coefficients 
represented by (1 + a^fi and (1 + a2)\i and multi- 
plying the respective terms by A and (1 — A). 
Addition of these two terms then gives the total 
dose (uncollided plus scattered). 

Values of A, ax, and a2 were given in Taylor's 
original report for a number of materials, and sub- 
sequently coefficients for the energy absorption 
buildup factor for aluminum, tungsten, and lead and 
coefficients for the dose buildup factor for uranium 
were published by Strobel.37 

Only recently Buscaglione and Manzini38 pub- 
lished a rather complete set of coefficients for 
dose buildup factors, including those for ordinary, 
barytes, ferrophosphorous, and magnetite con- 
cretes. The values for concrete are based on data 
published by Walker and Grotenhuis.39 Since the 
data are so complete, covering all the point 
sources used by Goldstein and Wilkins,13 the dose 
coefficients are reprinted in Table 3B.1 in Appen- 
dix B. The values for concrete should be better 
than those published previously40,41 because a 
more realistic effective atomic number was as- 
sumed. 

Polynomial Form. — The use of a buildup factor 
given by a four-term polynomial capable of good 
accuracy became feasible when in 1958 Capo42 

published a rather complete set of coefficients for 
many materials.   The form of the buildup factor is 

3 

B(E,/iR) = £  0n(E) ULRY ,       (3.152) 
n=0 

and Capo gives the coefficients ß for several sets 
of energies, as well as coefficients for a bivarjant 
fit which allows a set of ß values to be generated 
for any energy. Unlike all other formulations con- 
sidered here, Capo's coefficients result in an ex- 
pression that does not reduce to exactly unity for 
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fiR = 0; however, the values of ßQ are extremely 
close to 1. 

A more recent set of coefficients for this form 
of the dose buildup factor has been published by 
Buscaglione and Manzini43 for various concretes. 
Their values, based on the data of Walker and 
Grotenhuis,39 are reproduced in Table 3B.2 in Ap- 
pendix B. 

Empirical Linear and Quadratic Forms. — By 
least-squares fits to the data of Goldstein and 
Wilkins13 for various materials and to the data of 
Walker and Grotenhuis39 for four types of concrete, 
Trubey44 determined values of the dose coefficient 

Al in the linear form of the buildup factor given by 

B(E,ILR)=1 + A1(E)VLR, (3.153) 

and the dose coefficients A2 and b in the quadratic 
form given by 

B(E,fiR) = 1 + A2(E) ftR + b(E)(tiR)2. (3.154) 

Two sets of data were used, one based on data 
for iiR = 7 mean free paths, and another based on 
data for fiR = 20 mean free paths. In the fitting 
procedure used, the results obtained for large 
values of the argument were better than those ob- 
tained for small values. With heavy elements, 
when the fit is from 0 to 20 or more mean free 
paths, a large error occurs in the fitting function 
at small distances such that the value of B as 
determined by Eq. 3.154 goes to zero or is nega- 
tive. This causes the absurd result of a maximum 
error ratio of infinity, which limits the use of the 
quadratic form with these parameters to deep- 
penetration calculations for such cases. 

Values of the coefficients Aw A2, and h are 
presented in columns 2, 4, and 5 in Tables 3B.3 
and 3B.4 in Appendix B. The maximum errors 
shown in columns 3 and 6 are those encountered 
over the fitted, range. The error is reported either 
in percentage or as a factor indicated by the letter 
F. 

Berger Form. — A two-parameter dose buildup 
formula proposed by Berger45 and reintroduced by 
Chilton et al.46 has the simplicity of the linear 
form but fits the buildup factor data well over a 
long range.   This formula is 

B(E,/xR)= 1 + C(E)//R eDCE)w .    (3.155) 

In an effort to investigate the adequacy of the 
formula and to make it generally useful, Trubey44 

used a least-squares procedure to obtain values of 
C  and D for all the materials  included  by Gold- 
stein and Wilkins13 and the four types of concrete 
covered  by Walker and Grotenhuis,39  again using 
two sets of data corresponding to fiR < 7 and 20 
mean free paths.   These values are given in columns 
7 and 8 of Tables 3B.3 and 3B.4 of Appendix B, 
with the maximum error encountered over the fitted 
range given in column 9.    It was found that this 
formula   could   reproduce   the   calculated   buildup 
factor  functions  extremely  well   and  had  the ad- 

vantages    of   being   easily   integrable    over   the 
various source regions and (unlike the Taylor form) 
resulting in two terms (unscattered and scattered) 
which have significance.   Consequently, this form 
was  highly recommended.44     Other  values  for C 

and D were published by Rudloff47 and by Chilton48 

for iiR = 15 and 10 mean free paths respectively. 
Chilton's values are reproduced in Figs.  3.2 and 
3.3  as  functions  of energy for various materials. 
It can be seen in Fig.  3.3 that for several mate- 
rials and certain energies the value of D is zero, 
which means that the Berger formula reduces to the 
linear form. 

Other Forms. - There are many other possible 
forms of buildup factors, such as those cited by 
Hubbell,49 but they are generally more complicated 
than the forms given here. Hubbell's power series 
form, for example, converges adequately at short 
distances   only   and   thus   usually   requires   many 
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Fig. 3.4.   Schematic of Disk Source. 

terms, but it has the advantage of allowing separa- 
tion of the variables dependent on the medium 
properties, geometry, and thickness. 

Application   of   Point   Kernels   to   Disk  and   Rec- 
tangular Sources 

Sometimes solutions to shielding problems can 
be reasonably approximated from attenuation data 
for a disk or rectangular source and a slab shield. 
These simple plane source problems are amenable 
to analytic or numerical solution by integrating a 
point kernel of the form of Eq. 3.146 over the 
source area. The results when tabulated or plotted 
are directly usable in practical applications. 

Disk Source. -Consider, for example, a detector 
shielded from a plane disk source that is uni- 
formly emitting S phptons cm-2 sec-1 isotropi- 
cally in 4TT steradians (see Fig. 3.4). Applying 
the point kernel as given by Eq. 3.146, the un- 
scattered dose rate along the disk axis is 

r>r,r0,z) = S G(£)   f 
'oe-^ sec( (2m) dr 

ATTR2 

Since Rz = r2 + z2, Eq. 3.156 can be transformed 
to 

rv, z/r0)      2 
S G(E)     r /"Vi+C-0/Z)2  e-y 

J — *. 
-fit 

where y = ^f sec 6.    When integrated,  Eq. 3.157 
becomes 

r>t,z/r0)=—— 

x {E^O - E^iit Vl + [r0/2]2)},       (3.158) 

where E1  is the exponential integral function* of 
the first order and is defined by 

E^x)s   I       dy. (3.159) 

[Equation 3.158, as well as the equations given 
below for computing uncollided doses, can be used 
to determine the total dose (uncollided + scattered) 
by using the Taylor form of the buildup factor 
(see Section 3.8.1).] 

For the case of an isotropic flux 0(0) at the 
source plane, which is equivalent to a current 
with a cos 6 angular distribution,** the unscat- 
tered dose is 

(3.156)       rV,r0,z) = 0(0) G(E)   f° 

e-fUsececosd(2TTr)dr 
+  i^i '      (3"160) 

(3.157) 
♦Plots of this function are given in Appendix C. 
**See Section 5.1.1 in Chapter 5 for a discussion of 

fluxes, currents, and sources. 



36 

which integrates to 

0(0) G(E) 
rv,z/r0) \EXiiO 

~   h     ]  / ^ E^ ^ + [r"/z]2)i ' (3'161) 
VI + 00/z) J 

where £. is the exponential function of the second 
order. 

The equivalent angular current 7(0) in the for- 
ward hemisphere is [O(0)/47r] COS 8, defined as the 
number of photons per unit solid angle crossing a 
unit area on the source plane in the directions 
within the interval -1 = cos 6 = 1 as measured 
normal to the source plane.   Therefore 

/(0) = 
•'n/2 

<KQ) 
477 

cos 6 dQ, r O(0) cos 8 

477 
277 

O(0) 
xc/(cos<9) = .    (3.162) 

If the  current  in  the  forward  direction   is used, 
4/(0)  must be substituted for O(0) in  Eq. 3.161. 

In  general,  for the cos"   6 angular distribution 
in the forward direction, 

0(0) 
(n+ l)O'(0)cos" 8 

_ (3.163) 

where $'(0) is the total or scalar flux in the for- 

ward direction only, and 

(n + 1) 0(0) G(E)   f f   N 

(VI + [r0Al2> 2yi+l 
. (3.164) 

For the off-axis position at a distance p meas- 
ured perpendicularly to the disk axis (see Fig. 
3.4), integrations must be done numerically. Hub- 
bell et al.so integrated an expression similar to 
Eq. 3.156, the isotropic source case, for off-axis 
positions and tabulated the results in terms of 
the parameters fit, z/rQ, and p/rQ. These results 
are shown «in Table 3D.1 of Appendix D. The 
quantity tabulated is 477r(fzr,z/r0,p/r0)/S G(E), 
which is the same as 477O°(p/r0)/S, where O°(pA0) 
is the uncollided flux at p/r.. 

In a similar manner Trubey51 determined the 
data for an isotropic flux. The results are given 
in Table 3D.2 of Appendix D as 2T{fit,z/rQ, p/r )/ 
O(0) G(E), which is the same as 2O°/O(0). 

Certain circular aperture and disk source con- 
figurations to which these results might be applied 
are shown in Fig. 3.5. 

Rectangular Sources. —A solution was developed 
by Hubbell ef a/.52 for the uncollided flux a dis- 
tance z from a plane isotropic rectangular source.* 
Expressed as the product of separable source and 
geometry functions, the uncollided flux is given 

by 

0°(a,/>) = £ 
n=0 

2n+1 
gn Pn(a,b) , (3.165) 

where g and p (a, b) are Legendre coefficients 
of the source and geometry functions respectively. 

If a = H/z and b = W/z, where H and W are the 
height and width of the source plane (see Fig. 
3.6), then Eq. 3.165 gives the flux at the corner 
position, that is, the flux at a distance z along 
the normal to the corner of the rectangular source. 
It follows that using the half-height and half-width 
gives one-fourth of the flux at z along a normal 
to the center of the source plane. The source 
function is 

£n = 
/, 

g(cos 9) P (cos 6) d(cos 0) , (3.166) 

where g(cos 8) represents the angular flux at the 
source plane for the case of a slab shield of thick- 
ness t (z = 0 located between the source and the 
detector at a distance z from the source; that is, 

g(lit,cos 8) = 
S e-lt/cosB 

477 cos 6 
(3.167) 

Substituting Eq. 3.167 into Eq. 3.166, Hubbell 
et ah evaluated g and p numerically and solved 
Eq. 3.165. The results for a corner position 
(a = H/z, b = W/z) are given in Table 3D.3 of 
Appendix D as 4F/S G(E), or 4O0/S, in terms of 
the parameters fit, a, and b. 

*The application of the work of Hubbell et al. to 
rectangular ducts, which is the special case of a zero 
shield thickness, is described in Section 5.1.1 in 
Chapter 5. 
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Fig. 3.6. Schematic Demonstrating Use of Corner 

Position of a Rectangular Source to Calculate Dose at 

an Arbitrary Position by Point Kernel Techniques. 

In a similar manner Trubey5 * numerically eval- 
uated the equivalent of Eq. 3.165 for an isotropic 
flux (cosine distribution of the angular current), 
that is, for 

g(^t,cos 9) 
<D(C»e- - fit/cos9 

An 
(3.168) 

These results for a corner position are given in 
Table 3D.4 of Appendix D as 2170(0) G(£), or 
2<t>°/(t>(0), which is the same quantity tabulated 
for the disk source in Table 3D.2. For the case 
of a square the dose will be slightly greater than 
that from a disk of radius W. 

Although these results relate directly to the 
response of a detector in a corner position, they 
are also applicable to any arbitrary position lying 
within the projection of the source plane. -It is 
obvious from Fig. 3.6 that the dose at the detector 
is 

aH    ßW\ f[i-a]H    [1 - ß] W 
+ r„   — ,—   + r 

,  [1 - a] H    ßW   , 
+ E\  I — , — )•    (3.169) 

3.8.2.   NEUTRON CALCULATIONS 

The use of buildup factors in the attenuation 
function, or kernel, for neutrons has not developed 
to a large extent, primarily because neutron inter- 
actions are much more complex than gamma-ray 

interactions, and consequently the uncollided 
neutron flux is not as easily determined as the 
uncollided gamma-ray flux. However, a simple 
kernel developed by Albert and Welton53 which 
uses an energy-dependent hydrogen cross section 
has been widely applied to hydrogenous shields. 
This section is devoted primarily to a description 
of the Albert-Welton kernel, together with a discus- 
sion of removal cross sections that are required 
in the kernel when other shield materials are used 
in conjunction with the hydrogenous medium. 

Other kernels that can be used to calculate dif- 
ferential energy spectra of neutrons in hydrogenous 
media can be developed from moments method or 
Monte Carlo calculations. For example, the mo- 
ments method code RENUPAK was used51 to cal- 
culate the differential energy flux as a function 
of distance from a point fission source in an in- 
finite medium of lithium hydride, and an empirical 
attenuation function based on the results was 
then incorporated in the point kernel code QAD 
(ref. 54) for use in space reactor shield designs. 
Because these kernels require large efforts to de- 
velop and have limited applicability, the method 
is not widely used. However, simple neutron dose 
attenuation functions determined from such calcu- 
lations can be used for preliminary shield design 
applications, and some of these functions for con- 
crete and several other materials are included in 
this section. 

Removal Cross Sections 

Measurements in the Oak Ridge National Lab- 
oratory Lid Tank Shielding Facility55 showed that 
the  insertion  of relatively thin  slabs  of material 
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between a fission source and a thick water shield 
gives an effect which can be correlated by a simple 
exponential attenuation factor that is character- 
istic of absorption processes alone. This behavior 
might not be expected since nonabsorption effects 
predominate in fast-neutron attenuation. However, 
the large thickness of water filters out the neu- 
trons deflected by the sample, thereby effecting 
their complete removal. Therefore the effect of 
slabs of shield materials when followed by large 
thicknesses of hydrogenous material can be de- 
scribed by an equivalent absorption cross section, 
called the "removal cross section." 

An ideal way to experimentally determine the 
validity of the concept would be to use a plane 
monodirectional source of fission neutrons inci- 
dent on a tank of water. For such a configuration 
the removal cross-section concept would be valid 
if the doses measured at the source distance z in 
water could be correlated by 

Table 3.3.   Microscopic Removal Cross Sections of 

Various Elements and Compounds Measured 

at the ORNL Lid Tank Shielding Facility3'6 

D2i.z) = DA.z)e     * (3.170) 

where 

DAz) ■= observed neutron dose attenuated through 
a distance z of water, 

DAz) = observed neutron dose attenuated through 
a   slab   of  material  of  thickness   t (in- 
serted  between  source   and  water) plus 
water of thickness z, 

2    = macroscopic removal cross section. 

In the actual experimental shielding facility 
where this concept was originally tested, the 
source was a finite isotropic disk rather than a 
plane monodirectional source. However, by making 
a few simple assumptions about the behavior of 
neutron penetration, an analog to Eq. 3.170 was 
derived and used in obtaining removal cross sec- 
tions from experimental data.56 

Values of microscopic removal cross sections 
(cr ) determined from measurements at the ORNL 
Lid Tank Shielding Facility for several elements 
and compounds are shown in Table 3.3. Empirical 
functions useful for interpolation in the experi- 
mental data have been derived by Zoller:s 7 

I/o = 0.19Z-0-743 cmVg, for Z ^ 8 , 

= 0.125Z-0-565 cmVg, for Z > 8 ;    (3.171) 

2R/p = 0.206^1/3 Z-°-294 « 0.206 (AZ)~i/3 , 

(3.172) 

Material Oft (barns /atom) 

Aluminum 1.31 +0.05 

Beryllium 1.07 ±0.05 

Bismuth 3.49 ±0.35 

Boron 0.97 ±0.10 

Carbon 0.81 +0.05 

Chlorine0 
1.2 ±0.8 

Copper 2.04 ±0.11 

Fluorine0 
1.29 ±0.06 

Iron 1.98 ±0.08 

Lead 3.53 ±0.30 

Lithium 1.01 ±0.05 

Nickel 1.89 ±0.10 

Oxygen0 
0.99 ±0.10 

Tungsten 3.36d 

Zirconium 2.36 ±0.12e 

Uranium 3.6 ±0.4 

Boric oxide, BO 4.30 ±0.41 

Boron carbide, B C 
4 4.7 +0.3f 

Fluorothene, C F Cl 6.66 ±0.8 

Heavy water, D O 2.76 +0.11 

Hevimet (90 wt % W, 3.22 ± 0.18 
6 wt % Ni, 4 wt % Cu) 

Lithium fluoride, LiF 2.43 ± 0.34 

Oil, CH2 2.84 ±0.11 

Paraffin, C^^ 80.5 +5.2 

Perfluoroheptane, C F 
7   16 26.3 ±0.8 

Except where noted these values were taken from 
G. T. Chapman and C. L. Storrs, Effective Neutron Re- 
moval Cross Sections for Shielding, Oak Ridge National 
Laboratory Report ORNL-1843 (Sept. 19, 1955), AECD- 
3978 (Dec. 2, 1955). 

A measurement not included here yielded a removal 
cross-section value of 0.036 ± 0.002 cm2/g for concrete. 

[From E. P. Blizard and J. M. Miller, Radiation At- 

tenuation Characteristics of Structural Concrete, Oak 
Ridge National Laboratory Report ORNL-2913 (Aug. 13, 
1958).] 

Cross-section value determined from measurements 
behind compounds of the elements. 

Weighted average of two values, 3.5 ± 0.2 and 3.13 ± 
0.25 barns/atom. iFrom P. B. Hemmig in Second Semi- 
annual ANP Shielding Information Meeting, November 
14-15, 1956, Convair Report NARF-56-41T (Vol. 4) 
(classified); and J. M. Miller in Applied Nuclear Phys 
Div. Ann. Prog. Rept. Sept. 1, 1957, Oak Ridge National 
Laboratory Report ORNL-2389, p. 187.] 

From J. M. Miller in Neutron Phys. Div. Ann. Prog 
Rept. Sept. 1, 1959, Oak Ridge National Laboratory Re- 
port ORNL-2842, p. 168. 

Average of two reported values, 4.3 ± 0.4 and 5.1 ± 
0.4 barns/atom. 
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where Z is the atomic number. Most of the macro- 
scopic removal cross sections given in Table 3.4 

were obtained with Eq. 3.171. 
It is emphasized that most of the removal cross 

sections determined by experiment were obtained 
for a slab-type configuration with water following 
the shield material and may not be applicable to 
other configurations. It has been demonstrated, 
for example, that in a homogeneous medium the 
removal cross section for oxygen58 is (0.75 ± 0.05) 
barn rather than (0.99 ± 0.10) barn as shown in 
Table 3.3. It is also pointed out that the removal 
cross section may vary with sample thickness 
(the value for oxygen59 obtained from the homo- 
geneous-medium measurements increased from 0.72 
barn at a distance 90 cm from the source to 0.79 
barn at a distance 140 cm from the source). There 

is really no reason to expect the removal cross 
section to remain constant with sample thickness 
since the removal concept is the result of a crude 
application of theoretical principles; however, 
the variation should not be very great up to about 
5 relaxation lengths. Another point that should 
be emphasized is that the removal cross section 
for a material can be applied only when that ma- 
terial is used in conjunction with a hydrogenous 
shield since hydrogen is required to moderate and 
absorb the scattered neutrons, as occurred in the 
experiments from which the removal cross sections 
were determined. 

It follows from the removal cross-section con- 
cept that the removal cross sections of elements 
in a series of slabs or mixed .together should be 
additive; that is, the number of relaxation lengths 
becomes 

Li0 t., 
• R .     I   ' 

1 i 

where the index i refers to the various elements. 
This additive property has been generally ac- 
cepted, even though some discrepancies have 
been noted, particularly in regard to compounds. 

Removal cross sections can be predicted by 
theory. Phenomenologically, the removal process 
can be considered equivalent to the total reaction 
rate minus the forward component of the scattering 
process. This suggests that an estimate of the 
removal cross section could be obtained from the 
transport cross section. As it turns out, 2 = 2. 
for neutrons between 6 and 8 MeV; therefore 

Removal cross sections may also  be estimated 
from 

2   = -2 R        it' (3.174) 

where 2, is the average total macroscopic cross 
section between 6 and 8 MeV, and from 

2„/p=0.21^-°-58 (3.175) 

*tr = ^ 
X   cos 0 s (3.173) 

where p is the density and A is the atomic weight. 
Figure 3.7 compares plots of measured values of 

2 /p and 2 /p at 8 MeV as a function of atomic 
weight. It can be seen that a reasonably good fit 
to the curve for A > 10 is obtained by Eq. 3.175. 

Albert-Welton Kernel 

The experimentally determined removal cross 
section provides a simple method for determining 
the attenuation through nonhydrogenous portions 
of shield material, but cannot be applied to the 
hydrogenous portion of the shield. Albert and 
Welton53 developed a semi-empirical theory of 
neutron attenuation which provides a simple method 
for calculating neutron attenuation through the 
complete shield, providing the shield contains 
hydrogen. Basic to the Albert-Welton model is 
the assumption that any collision with hydrogen 
has the effect of an absorption. This, in effect, 
neglects the buildup of scattered neutrons which 
have undergone only small-angle scatterings by 
hydrogen. Inelastic scatterings with heavier 
nuclei are also regarded as absorptions because 
of the characteristically large energy loss. Other 
collisions are mainly small-angle elastic scatter- 
ings within the forward peak of the angular distri- 
bution, which amount to virtually no collisions. 
Attenuation through the materials in the shield 
are described in terms of removal cross sections. 
For hydrogen the removal cross section is taken 
to be its energy-dependent total cross section, 
and for the heavier nuclides it is taken to be an 
empirical energy-independent removal cross section 
such as the removal cross sections described in 
the preceding paragraphs. Thus the Albert-Welton 
model provides a theoretical basis for the removal 
cross-section concept. 

The Albert-Welton formulation for fission neu- 
trons   from   a   plane   monodirectional   source  that 
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penetrate  through a mixture of   water and  heavy 
materials is given by 

$(r) «expf- £ t. 1R  r 

/,oo -2„(£)r 
S(E) ß    H        dE ,   (3.176) 

o 

where 

<J>(r) = number flux at a distance r from the 
source, 

2_  = macroscopic removal cross section of 
ith element (other than hydrogen), 

f. = volume fraction of ith nonhydrogenous 
material, 

S(E) dE = fraction of fission neutrons at E in 
interval dE for a total source of 1 
fission cm-2 sec-1, 

2H = total   macroscopic   cross   section  for 
hydrogen. 

Table 3.4.   Fast-Neutron Removal Cross Sections and Mass Attenuation Coefficients 

Element Atomic 

Number 
P 

(g/cm3) 

VP 
(Calo.) 

(cm2/g) (cm"1) 

VP 
(Exp.) 

(cm2/g) 

Element Atomic 

Number 
P 

(g/cm3) 

VP 
(Calc.) 

(cm2/g) 

2* 
(cm"1) 

VP 
(Exp.) 

(cm2/g) 

Aluminum 13 2.699 0.0293 0.0792 0.0292 ± 0.0012 Neodymium 60 6.960 0.0124 0.0861 
Antimony 51 6.691 0.0136 0.0907 Neon 10 0.0340 
Argon 18 0.0244 Nickel 28 8.900 0.0190 0.1693 0.0190 ± 0.0010 
Arsenic 33 5.730 0.0173 0.0993 Niobium 41 8.400 0.0153 0.1288 
Barium 56 3.500 0.0129 0.0450 Nitrogen 7 0.0448 
Beryllium 4 9.013 0.0678 0.1248 0.0717 ±0.0043 Osmium 76 22.480 0.0108 0.2432 
Bismuth 83 9.747 0.0103 0.1003 0.010 ±0.0010 Oxygen 8 0.0405 0.031 +0.002 
Boron 5 3.330 0.0575 0.1914 0.0540 +0.0054 Palladium 46 12.160 0.0144 0.1747 
Bromine 35 3.120 0.0168 0.0523 Phosphorus 15 1.820 0.0271 0.0493 
Cadmium 48 8.648 0.0140 0.1213 Platinum 78 21.370 0.0107 0.2279 
Calcium 20 1.540 0.0230 0.0354 Potassium 19 6.475 0.0237 0.1533 
Carbon 6 1.670 0.0502 0.0838 0.0407 ±0.0024 Praseodymium 59 6.500 0.0125 0.0812 
Cerium 58 6.900 0.0126 0.0870 Radium 88 5.000 0.0100 0.0498 
Cesium 55 1.873 0.0130 0.0243 Rhenium 75 20.530 0.0109 0.2238 
Chlorine 17 0.0252 0.020 ± 0.014 Rhodium 45 12.440 0.0145 0.1810 
Chromium 24 6.920 0.0208 0.1436 Rubidium 37 1.532 0.0163 0.0249 
Cobalt 27 8.900 0.0194 0.1728 Ruthenium 44 12.060 0.0147 0.1777 
Copper 29 8.940 0.0186 0.1667 0.0194 +0.0011 Samarium 62 7.750 0.0121 0.0941 
Dysprosium 66 8.562 0.0117 0.1003 Scandium 21 3.020 0.0224 0.0676 
Erbium 68 4.770 0.0115 0.0550 Selenium 34 4.800 0.0170 0.0818 
Europium 63 5.166 0.0120 0.0621 Silicon 14 2.420 0.0281 0.0681 
Fluorine 9 0.0361 0.0409 + 0.0020 Silver 47 10.503 0.0142 0.1491 
Gadolinium 64 7.868 0.0119 0.0938 Sodium 11 0.971 0.0322 0.0313 
Gallium 31 5.903 0.0180 0.1060 Stronium 38 2.540 0.0160 0.0407 
Germanium 32 5.460 0.0176 0.0963 Sulfur 16 2.070 0.0261 0.0540 
Gold 79 19.320 0.0106 0.2045 Tantalum 73 16.600 0.0111 0.1838 
Hafnium 72 13.300 0.0112 0.1484 Tellurium 52 6.240 0.0134 0.0837 
Helium 2 0.1135 Terbium 65 0.0118 
Holmium 67 0.0116 Thallium 81 11.860 0.0104 0.1238 
Indium 49 7.280 0.0139 0.1009 Thorium 90 11.300 0.0098 0.1111 
Iodine 53 4.930 0.0133 0.0654 Thulium 69 0.0114 
Iridium 77 22.420 0.0107 0.2408 Tin 50 6.550 0.0137 0.0898 
Iron 26 7.865 0.0198 0.1560 0.0214 ±0.0009 Titanium 22 4.500 0.0218 0.0981 
Krypton 36 0.0165 Tungsten 74 19.300 0.0110 0.2120 0.0082 ±0.0018 
Lanthanum 57 6.150 0.0127 0.0783 Uranium 92 18.700 0.0097 0.1816 0.0091 ±0.0010 
Lead 82 11.347 0.0104 0.1176 0.0103 ±0.0009 Vanadium 23 5.960 0.0213 0.1267 
Lithium 3 0.534 0.0840 0.0449 0.094 ±0.007 Xenon 54 0.0131 
Lutetium 71 0.0112 Ytterbium 70 0.0113 
Magnesium 12 1.741 0.0307 0.0535 ''Yttrium 39 3.800 0.0158 0.0599 
Manganese 25 7.420 0.0203 0.1505 Zinc 30 7.140 0.0183 0.1306 
Mercury 80 13.546 0.0105 0.1424 Zirconium 40 6.440 0.0156 0.1001 
Molybdenum 42 10.200 0.0151 0.1543 

Table taken from L. K. Zoller, "Fast-Neutron-Removal Cross Sections," Nucleonics 22(8), 128-129 (1964). 
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is also valid when slabs of heavy material are 
laminated with the water. A minimum of about 50 
or 60 cm of water is required between the dose 
point and the last of the heavy materials (whether 
as slabs or in a mixture) in order to comply with 
the limitations of the removal cross-section con* 
cept. 

Based on more recent experimental results, 
Casper60 evaluated new constants for the Albert- 
Welton kernel. The result for a point fission spec- 
trum source is 

4-rrr2 D(r) = 2.78 x 10" 

-0.422(/    r 
X  e 

[(V)0-349 

)°-58l     -0.0308/   r Je (3.178) 

where D(r) is the neutron dose r cm from the source 
in (rads/hr)/(neutron/sec). When shield materials 
are inserted between the water and the fission 
source, Eq. 3.178 is multiplied by 

exp -a-'„> E* Rji 

The proportionality constant included in the 
original Albert-Welton derivation has been re- 
moved from the inequality 3.176 to avoid the impli- 
cation ' that the actual number flux can be com- 
puted from this. 

Integration of the inequality 3.176 yields the 
original Albert-Welton kernel for the hydrogenous 
portion of the shield, which is included in the 
brackets of the following equation: 

,0.5 81 «[(/ *M« (CO 

x exp     — / 

where 

\0.29 -0.928(/   r)u 

^O-^1 {>L{ih 

(3.177) 

/    = -volume fraction of water, 
S      = removal cross section of oxygen, 
2R   = removal cross section of nonhydrogenous 

'     materials   other  than  the   oxygen   in   the 
water. 

Although the derivation was for a plane source, 
Eq. 3.177 holds for a point source when multiplied 
by the geometric factor l/47Tr2 and the integral of 
S(E) is normalized to 1 fission/sec.   The equation 

to obtain the dose at the shield surface. 
The Albert-Welton kernel is especially useful ih 

the following two applications: 

1. It can be used to correct measured or cal- 
culated data when small changes are made in the 
heavy elements of a shield. For example, suppose 
that a lead layer and a water layer surround a point 
source. If the lead layer is increased and the 
water thickness remains the same, the new dose 
rate will be given by 

4nr2
2 D(r2) = 477r* D^rJ e R   ,    (3.179) 

where 

removal cross section for lead, 
t = change in lead thickness = r   + t, 

new distance from source, 
new dose rate, 

r   = original distance, 
D(fj) = original dose rate. 

D(r2) 

It will be noticed that the assumption is made 
that the water thickness (and its effect) remains 
unchanged. Consequently, the dose rates are 
evaluated at different positions. 

2.   It can be used to correct results obtained for 
one  hydrogenous   medium   so  that   they   apply  for 
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another hydrogenous medium. The basic assump- 
tion is that the hydrogen effect remains constant 
for a given "hydrogen length," with the effects 
of other elements accounted for on the basis of re- 
moval cross sections. Thus the hydrogen attenua- 
tion kernel in one medium is set equal to the 
hydrogen attenuation in the other, giving 

ATTTI D(r,) e   *2 * = 4mjD1(r1)e     x     ,    (3.180) 

with the constraint, to ensure the equivalence of 
the hydrogen effect, of 

'2'2 (3.181) 

where 

p2 =hydrogen   density   in   medium   for   which 
D(r2) is unknown, 

px = hydrogen    density   in   reference   medium 
for which D(r  ) is known, 

2R   = removal   cross   section   for   all   elements 
except   hydrogen   in   the   medium   being 
analyzed, 

SR   = removal   cross   section   for   all  elements 
except hydrogen in the reference medium. 

Combining the above equations yields 

x exp I 2 -Ü.-2  r R  2 (3.182) 

A word of caution is appropriate here. The 
above equations represent a simple model of 
rather complex phenomena, and rather large errors 
are possible. 

Attenuation Kernels from 
Monte Carlo Calculations 

Results from Monte Carlo calculations (or from 
other sophisticated methods) for dose transmission 
through slab shields with an incident beam of 
neutrons can be quite useful when expressed in 
terms of attenuation kernels, that is, as plots of 
transmission factors or dose attenuation as a func- 
tion of slab thickness. With such graphs it is a 
simple matter tb estimate the fraction of the dose 
that is transmitted for each incident energy group 

of neutrons, the total dose being the sum of the 
doses from all energy groups. 

Clark ef a/.61 performed Monte Carlo calcula- 
tions for monoenergetic beams of neutrons normally 
incident on slabs of ordinary concrete and also 
on a semi-infinite medium (half-space) of concrete. 
The neutron energies were 0.7, 1.2, 2, 3, 4, 6, 8, 
10, 12, and 14 MeV. The density of the concrete 
was assumed to be 2.43 g/cm3, and its composi- 
tion, other than its water content, was representa- 
tive of that given for ordinary concrete 01 in ANL- 
5800 (ref. 62). The resulting dose attenuation 
curves are shown in Figs. 3E.1 through 3E.10 in 
Appendix E. 

In addition to being useful directly, these re- 
sults  can be helpful in adjusting the large body 

Table 3.5.   Compositions of Materials Used 

for Neutron Transmission Calculations8 

Material 
Density 

(g/cm3) 
Composition 

Element    Atoms/cm3 

X 1021 

Borated polyethylene 0.97 H 76.80 
(8 wt % B.C)6 

4 C 39.20 
10B 0.658 
UB 2.67 

Water 1.00 H 66.90 

O 33.45 

Concrete 2.26 H 13.75 

O 45.87 

Al 1.743 
Si 20.15 

Nevada Test Site 1.15 H 8.553 
soil (dry) O 22.68 

Al 2.014 

Si 9.533 

Nevada Test Site 1.25 H 16.87 
soil (100% saturated) O 27.00 

Al 1.976 
Si 8.963 

aTable taken from F. J. Allen and A. T. Futterer 
' Neutron Transmission Data," Nucleonics 21(8). 120 
(1963). 

Several calculations made for pure polyethylene 

slabs (p= 0.925 g/cm3) up to 6 in. thick yielded ap- 

proximately the same neutron transmission results as 

those for the borated polyethylene. 
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of neutron attenuation data63 that have been ob- 
tained for an infinite concrete medium so that 
the infinite-medium data can be applied to finite 
systems. This results from the fact that after 1 or 
2 relaxation lengths the penetrating characteristics 
of neutrons in an infinite medium of concrete 
should differ very little from those of neutrons in 
a semi-infinite medium. Therefore such data, 
which in all other respects appear to be appropriate 
for application to a particular situation, might be 
fairly well adapted to a finite system by correct- 
ing the data in proportion to the ratio of the curve 
for the semi-infinite medium (dashed curve) to the 
curve for the slab configuration (solid curve) at 
the proper penetration distance and energy. 

Other  useful  results  were  calculated  by  Allen 
and Futterer,64 who determined the attenuation of 

the multicollision dose in the materials listed in 
Table 3.5 due to monoenergetic neutron beams 
incident at various angles. The neutron energies 
used were 5, 3, 2, 1, and 0.5 MeV, and the results 
are plotted in Figs. 3E.11 through >3E. 15 in Ap- 
pendix E. In order to use these curves, the multi- 
collision dose (rate) must be known at the inner 
surface of a slab of one of these materials due to 
neutrons incident in a broad beam at an angle (or 
angle band) and energy (or energy band) close to 
the angle and energy for which the attenuation 
data are given. The attenuation factor appropriate 
to the material, thickness, energy, and angle is 
read from the curve, and the incident döse multi- 
plied by that factor should approximate the dose 
that has penetrated the slab. 

3.9   Combination Removal-Diffusion Methods 

The removal cross-section concept described 
in Section 3.8.2 provides a method for calculating 
the dose due to high-energy neutrons that pene- 
trate a hydrogenous shield; however, the tech- 
nique cannot be used to predict the dose due to 
neutrons that have been moderated to epithermal 
and thermal energies or to predict the thermal- 
neutron flux, which is used to obtain the capture 
gamma-ray source distribution within the shield.* 

The energy and spatial distributions of the 
moderated neutrons throughout a shield have some- 
times been calculated by using the elementary 
theories of neutron diffusion and moderation (see 
Section 3.6). But these methods of reactor physics 
are normally used to predict the average behavior 
of neutrons involved in reactor criticality prob- 
lems, and in the typical shielding problem the 
neutron of significance is the unusual fission 
neutron, born with an energy much greater than 
the average and contributing very little to reactor 
criticality. It is this unusual neutron that pene- 
trates into regions deep within the shield. 

"■Calculations   of  capture   gamma-ray   doses   are   dis- 
cussed in Section 3.10. 

The inadequacy of both the removal concept 
and the elementary methods of reactor core physics 
to calculate the whole shielding problem has re- 
sulted in neutron transport being regarded as a 
two-step process: a step in which a high-energy 
neutron penetrates to a position deep within the 
shield, where it suffers a collision that degrades 
its energy significantly; and another step in which 
the resulting low-energy neutron enters a diffusion 
process. Characteristically, the distance traveled 
by the neutron during the diffusion process is very 
much less than that which it traveled as a fast 
neutron, and once it has entered this second 
phase, the methods of reactor physics conceivably 
could apply. It was such reasoning that prompted 
the first-flight correction to the age in Fermi age 
theory.1 This correction was necessary because 
a neutron cannot enter a process described as 
continuous slowing down (as required by Fermi 
age theory) until it has had at least one collision. 

The development of high-speed computers and 
the resulting extensive use of multigroup diffusion 
theory for reactor criticality problems made the 
development of a technique that utilized diffusion 
theory  even more attractive.     In one of the first 
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attempts to develop such a technique, Haffner65 

in 1958 used diffusion theory to calculate thermal- 
neutron fluxes within a reactor shield and then 
normalized the results at each space point ac- 
cording to the fast-neutron dose rate obtained with 
the Albert-Welton kernel (see Section 3.8.2). An- 
derson and Shure66 used a similar technique when 
they applied a known pure water kernel to normal- 
ize diffusion (actually P: multigroup) results for 
a metal-water mixture. In general, they obtained 
good results for laminated iron-water shields. 
(Shure2,67 later showed that a straightforward P 
calculation without the use of a kernel also gave 
good results.) The main assumption in the Ander- 
son-Shure technique is that the multigroup proce- 
dure correctly calculates the ratio between the 
fluxes in water and those in a metal-water mixture. 

After several attempts had been made to develop 
a technique by correcting diffusion theory results, 
a different approach to the problem evolved: a 
first-flight correction was made before the diffusion 
theory calculation was performed. In the early 
calculations this was done by computing the singly 
scattered neutron flux from the uncollided flux and 
then using it as a source for the diffusion theory 
calculation. A difficulty inherent in this proce- 
dure, especially for hydrogenous media, is ,that 
the penetrating component does not consist of un- 
collided neutrons alone, but rather is composed 
largely of neutrons that have had one or more col- 
lisions but have suffered only small angular de- 
flections. When these neutrons were accounted 
for, the first successful two-step model for neu- 
tron-penetration calculations became available. 
Combining the fast-neutron removal concept and 
age-diffusion theory, the method is commonly re- 
ferred to as the "Spinney method," after its chief 
developer. The remainder of this section is de- 
voted to a description of the original version of 
this removal-age-diffusion method and subsequent 
variations of it. 

3.9.1.   THE SPINNEY METHOD 

The Spinney method as first described by Avery 
et a/.68 is characterized by the following basic 
physical assumptions: 

1. The penetrating component of the source 
neutrons consists of the high-energy neutrons that 
suffer only small energy loss through small-angle 
elastic   collisions   plus  the  uncollided  neutrons. 

2. Neutrons that suffer large energy loss through 
either wide-angle elastic or inelastic scattering 
are regarded as being removed from the fast beam. 

3. The removed neutrons are degraded in energy 
in accordance with age theory and do not travel 
significantly from the point of removal. 

4. The removed neutrons have a spectral and 
spatial distribution closely described by the con- 
ventional   age-diffusion   theory   near  the   source. 

5. Neutrons removed after they have penetrated 
deep into a homogeneous medium develop an equi- 
librium spectrum and are attenuated at the same 
rate that the penetrating component is attenuated. 

6. The equilibrium spectrum of the degraded 
neutrons is disturbed near the boundaries between 
dissimilar media. 

The neutron flux that corresponds to the pene- 
trating component of the source neutrons is given 
by the kernel 

«•« - — 
4 77r2 

(3.183) 

where 

S0 = source   strength   of   high-energy   neutrons 
of energy E, 

2R = removal cross section evaluated at the 
source energy E (determined experimentally 
or approximated by the transport cross sec- 
tion),* 

r = distance   traveled   by   the   neutron   to  its 
first collision. 

The removed neutrons are regarded as a local 
source of degraded neutrons, the behavior of which 
can be adequately described by diffusion theory. 
The intensity of this source is given by 

S(r) = <B°(r) £c 

SoSRe' 
-2RT 

4-nr2 (3.184) 

These neutrons (that is, the removed neutrons) 
are then introduced into the highest energy group 
of an appropriate set of multigroup diffusion equa- 
tions in order to calculate the distribution of the 

*See Section 3.8. 
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low-energy neutron flux.   The equations comprising 
the multigroup set are given by 

V2^)-*2^)- —(^(r) 

Sir) 
+ 0, i=l, 

V2d».(f)=/:/
2(D.(r)--^i<Di(r) 

D-   , k2   , <D.   ,(r) 
,_i    ,-i    .-iw=0        f> !       (3185) 

Di 

where 

0. = group flux for the i'th group, 

2  . = group-averaged   macroscopic  absorption 
cross section, 

D. = group-averaged diffusion coefficient, 

kj 1 = slowing-down length for the /th group. 

The slowing-down length is calculated according 
to  age theory and for the  /th  group is  given by 

l' E .     . 

dE 

3 £(£) ls(E) 2tr (E) E 

(3.186) 

where 

£(E) = average change in lethargy per collision 
for neutrons of energy E, 

Ss(E) = macroscopic scattering cross section for 
neutrons of energy E, 

^tr(E) = macroscopic transport cross section for 
neutrons of energy E. 

In the original formulation of the Spinney method, 
five energy groups were taken for the multigroup 
diffusion calculation. The bottom group, which 
was a thermal group, had an upper energy of 2.81 
kT (k = 8.61 x 10-5 eV/°K), and the highest group 
(/' = 1) had an upper energy of 2 MeV. It was as- 
sumed that all removed source neutrons were placed 
directly into the highest group. Solution of the 
group diffusion equations, of course, required that 
boundary conditions be specified at the inner and 
outer surfaces of the shield. A zero reentrant 
condition was imposed at the outer boundary; this 

was stated in terms of the extrapolated boundary 
condition, which requires the fluxes to vanish at a 

distance 3.13D. beyond the physical boundary. 
The boundary conditions at the inner surface of 
the shield were established by requiring that the 
fluxes and currents be equal to those determined 
from reactor core calculations. 

This original formulation was used with some 
success to predict the distribution of low-energy 
neutrons in concrete shields for existing graphite- 
moderated reactors, but it was not suited for gen- 
eral application. Some of its inadequacies were 
that (1) all the removed neutrons were placed in 
one group, which neglected any additional dif- 
fusion-type transport that could have been accom- 

plished at energies greater than 2 MeV, (2) not 

enough groups were used to adequately represent 
the continuous slowing-down process, and (3) the 
transfer of neutrons from one energy group to the 
next lower group did not describe the large energy 
losses experienced by neutrons that had suffered 
an inelastic scattering or a collision with hydrogen. 

3.9.2.   MODERN VARIATIONS 
OF THE SPINNEY METHOD 

Many modifications to and variations of the 
Spinney method have been developed, the most 
recent of which are exemplified by the RASH E, 
MAC, and NRN codes. In the RASH E* formula- 
tion ■ ° the modifications include an increase 
in the number of groups to 16 and a broader energy 
range (0-10 MeV). Also, the multigroup equations 
have been modified to include a direct source of 
removed neutrons into the nine highest energy 
groups.   The equations so modified are as follows: 

= 0. 

V'O.W-^? ,!>.(,) __£i0.(f) 

■ $,_i(r) + 
D. D. 

i=2,3, ... 9, 

*RASH E is the latest member of the RASH family of 
codes utilizing the Spinney method. RASH E is included 
in a FORTRAN code package known as COMPRASH 
and can be obtained from the Radiation Shielding Infor- 
mation Center (RSIC) (see Appendix 3A). 
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i 

Di    1 */   1 
+    '-1    ,-1$j_1(r) = 0, 

D: 1- 

1 = 10, 11, ... 15 , 

flux") corresponding to the glh removal band, 
which is introduced into the ith energy group, is 
given by 

0°  - "5 
/ 

-2    (E)r 
E«+i F(£) e     R 

ATTT
2 

dE (3.189) 

V2$r(r)-^$T(r) 
r 

>    k2 
'15*15 

*ls(r)=0,      f = 16,     (3.187) 

where T corresponds to i = 16 and designates the 
thermal group flux. 

The source term for the ith group resulting from 
removed neutrons is designated as ^f-(r) and is 
determined in the following manner. The fission 
spectrum is divided into 18 energy bands of 1-MeV 
width. Neutrons removed from the >th energy band 
are given by 

;=1, 2, . .. 18 ,      (3.188) 

■/: 

where SQ is a magnitude factor determined by the 
power level of the reactor, and F(E) is .the normal- 
ized fission spectrum. 

The neutrons from each of the removal bands 
in the energy range 0 to 8 MeV 0' = 18, 17, 16, 
... 11) are introduced into the energy group whose 
upper energy limit corresponds to the mid-energy of 
the band. Neutrons from all the bands above 8 
MeV 0 = 10, 4, 8, ... 1) have a mean energy of 
about 10 MeV and are all introduced into the high- 
est energy group (group 1), which has an upper 
energy of 10.5 MeV. This transfer scheme, along 
with the removal-band and energy-group structures 
for RASH E, is presented in Table 3.6. 

In the MAC* formulation71,72 the number of en- 
ergy groups for the group-diffusion calculation is 
increased to 31 over an energy range from 0 to 10 
MeV. Again the fission spectrum is divided into 
18 removal bands of 1-MeV width. The flux from 
the   removed   neutrons   (usually   called   "removal 

The removed neutrons are introduced into the five 
highest energy groups only. The transfer scheme, 
along with the removal-band and energy-group struc- 
tures, is presented in Table 3.7. 

The MAC formulation differs from the original 
Spinney method in two major respects: (1) the re- 
moval flux is added directly to the group-diffusion 
flux after the diffusion calculation has been per- 
formed, and the combined flux is then used to cal- 
culate source neutrons for the lower-energy groups, 
and (2) the general treatment of the downscatter 
transfer of neutrons allows for a more accurate 
representation of inelastic scattering and col- 
lisions with hydrogen. 

The highest energy group (i = 1) in the diffusion 
part of the calculation is not actually treated as 
a diffusion group.   The collision density, 

'lk 
"-0=1 

which is based on the removal fluxes (correspond- 
ing to the energy bands 1 through 12), provides 
neutrons by downscattering from the first group 
into the kth group, k = 2, 3, . .. K. The kinds of 
possible interactions, as described by their re- 
spective group-to-group removal cross section 2 
will determine the extent of the downscatter. A 
diffusion calculation is then performed on the 
second group, with the neutrons removed from 
group 1 used as the source. Solution of the group-2 
diffusion equation, 

ö2V
2<D2(r)-   I   22;c<I>2(r)-2a2$2(r) 

k=3 

Sl2(   I   *2i   )=°'     <3-190> 

♦Available   from   RSIC   in  several  versions   (see  Ap- 
pendix 3A). 

yields the group-diffusion flux <J>2(F).   The group-2 
removal fluxes are then added to the diffusion flux 
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Table 3.6.   Removal-Band and Energy-Group Structures Used in RASH Ee 

Removal Bands Diffusion Groups Band-to- 

Band Energy Limits (MeV) Group 

No. 

Energy Limits (MeV) Group 

Tran ^ff»r 
No. Upper Lower UPF er Lower Scheme 

1 18 17 1 1.05 x 101 7.5 x 10° 1 - 1 

2 17 16 2 7.5 x 10° 6.5 x 10° 2 -1 

3 16 15 3 6.5 x 10° 5.5 x 10° 3-. 1 

4 15 14 4 5.5 x 10° 4.5 x 10° 4- 1 

5 14 13 5 4.5 x 10° 3.5 x 10° 5 - 1 

6 13 12 6 3.5 x 10° 2.5 x 10° 6-i 

7 12 11 7 2.5 x 10° 1.5 x 10° 7-1 

8 11 10 8 1.5 x 10° 5.0 x IO"! 8 - 1 

9 10 9 9 5.0 x io- > 5.0 x IO"2 9- 1 

10 9 8 10 5.0x io-2 
5.0 x IO-3 10- 1 

11 8 7 11 5.0 x 10-3 5.0 x io-4 
11 -2 

12 7 6 12 5.0 x io-4 
5.0 x IO-5 12-3 

13 6 5 13 5.0 x IO-5 
5.0 x IO-6 13-4 

14 5 4 14 5.0 x io-6 
5.5 x IO"7 14-5 

15 4 3 15 5.5 x IO"7 7.0 x IO-8 15-6 

16 3 2 16 Thermal 16-7 

17 2 1 17-8 

18 1 0 18-9 

aFrom D. E. Bendall, RASH D — A Mercury Programme for Neutron Shielding Calculations, Great Britain 
Atomic Energy Establishment Report AEEW-M-261 (August 1962). 

in order to calculate the downscatter source of 
neutrons from group 2 into the lower-energy groups. 
The downscatter source into group k (k = 3, 4, 
... K) is given by 

'2k 

15 

*2« +     I     *Ä2® 
5=13 

The calculation proceeds in a similar fashion 
from one group to the next lower group and so on. 
In general, for / > 2, the group-diffusion equations 
are given by 

D,.V2 $,.(,)-    I    S,**,«-!.,*,« 
/c=i + i 

;='- 
*6i 

= 0, I     2„   *,(r) +  £ *« 

i=3,4,...,      (3.191) 

and the downscatter source term from the ith group 
into the kth group is 

"ik *,(?) + *£i 
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Table 3.7.   Removal-Band and Energy-Group Structures Used in MAC 

Removal Bands Diffusion Groups Band-to- 

Band Energy Limit 

Upper 

3 (MeV) 

Lower 
Group 

No. 

Energy Limits (MeV) Group 

Transfer 

Scheme 
No. Upper Lower 

1 18 17 1 6.065 x 10° 1.000 x 10"1 
1 - 1 

2 17 16 2 3.679 x 10° 6.065 x 10° 2 - 1 

3 16 15 3 2.231 x 10° 3.679 x 10° 3- 1 

4 15 14 4 1.353 x 10° 2.231 x 10° 4- 1 

5 14 13 5 8.208 x 10_1 1.353 x 10° 5-1 

6 13 12 6 3.876 x 10_1 
8.208 x 10_1 

6- 1 

7 12 11 7 1.830 x 10-1 3.876 x 10-1 
7 -1 

8 11 10 8 6.733 x 10~2 
1.830 x 10-1 8 - 1 

9 10 9 9 2.600 x 10-2 
6.733 x 10-2 9 - 1 

10 9 8 10 2.000 x 10~2 2.600 x 10~2 10-1 

11 8 7 11 9.118 x 10~3 
2.000 x 10~2 

11- 1 
12 7 6 12 3.355 x 10-3 9.118 x 10~3 12- 1 

13 6 5 13 1.234 x 10~3 
3.355 x 10-3 

13-2 

14 5 4 14 4.540 x 10-4 
1.234 x 10~3 

14-2 

15 4 3 15 3.199 x 10-4 4.540 x 10~4 
15-2 

16 3 2 16 2.255 x 10~4 
3.199 x 10~* 16-3 

17 2 1 17 1.120 x 10-4 
2.255 x 10-4 

17-4 
18 1 0 18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

6.147 x 10-5 

3.374 x 10-5 

1.515 x 10_s 

1.016 x 10"5 

4.565 x 10~6 

1.375 x 10~6 

9.214 x 10~7 

6.716 x 10"7 

4.140 x 10-7 

2.775 x 10~7 

1.860 x 10~7 

1.247 x 10~7 

7.595 x 10-8 

0 

1.120 x 10-4 

6.147 x 10-5 

3.374 x 10-s 

1.515 x 10-s 

1.016 x 10~s 

4.565 x 10~6 

1.375 x 10~6 

9.214 x 10-7 

6.716 x 10-7 

4.140x 10~7 

2.775 x 10~7 

1.860 x 10-7 

1.247 x 10-7 

7.595 x 10"8 

18-5 

u,„ CLrSm % G; f„ei^SOn' MAC ~ A Bulk Shieldin& Code< Hanford Atomic Products Operation Report HW-73381 (April 1962). r 
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In the NRN* formulation73,74 the energy struc- 
ture for the removal bands and energy groups dif- 
fers significantly from that used in the RASH and 
MAC formulations. The group structure for the 
group-diffusion calculation consists of 24 groups 
over an energy range 0 to 18 MeV, and the fission 
spectrum is divided into 30 bands of varying widths. 
The removal-band and energy-group structures are 
presented in Table 3.8. 

The NRN method allows for the transfer of re- 
moved neutrons from each removal band to many 
diffusion groups. The source for the ith diffusion 
group arising from all removal collisions is 

where 0° = removal flux in the gth energy band, 
and X . = energy-averaged removal cross section 
for the transfer of neutrons from the gth removal 
band into the ith energy group. 

The calculation also allows transfer from each 
diffusion group to all lower-energy diffusion groups. 
The group-diffusion equation for the ith group is 
given by 

D^'O-Gr)-     t    2,.,d>,.(r)-2ai*,.(r) 
k=i + l 

+    I   2.. <J>.(T) + 2°. *° = 0,     (3.192) 

where the various diffusion theory parameters have 
conventional definitions. 

3.9.3.   DIFFERENCES IN MODERN METHODS 

A comparison of the three preceding formulations 
shows that, with respect to the removal-band and 
energy-group schemes, RASH E and MAC are simi- 
lar in concept and identical in many respects. The 
NRN approach is more general and should provide 
the most accurate model if the required removal 
and transfer cross sections are known. 

With regard to removal cross sections, RASH E 
and MAC use the cross sections suggested by the 

original Spinney formulation, which have the gen- 
eral form 

*,- 'Sei (3.193) 

*Available from RSIC (see Appendix 3A). 

where 

2R = removal cross section, 

2( = total macroscopic cross section, 

2el = elastic scattering cross section, 

/ = fraction of elastic collisions that can be 
regarded as glancing. 

If / is taken to be the average cosine of scattering 
in the laboratory system, Jl0, the removal cross 
section becomes the transport cross section origi- 
nally used by Spinney. In general, the parameter f 
cannot be determined intrinsically, and so a value 
must be assumed or determined empirically. This 
has been accomplished for a large variety of typ- 
ical shield configurations, and the removal cross 
sections thus determined are used with a high 
degree of confidence. 

NRN removal cross sections are obtained by 
experimentally determining the angles of scatter 
above which elastic collisions can be considered 
as removals. The removal cross section is given 
by 

ZR = 2t-2irfc\s9        a(d) d(cos 6) ,   (3.194) 
rem 

where a(6) - differential elastic scattering cross 
section per unit solid angle about the scattering 
angle 6 in the center-of-mass system, and 8 J ' rem 
scattering angle above which the collision is con- 
sidered  to be a  removal.     The  value of 6        is rem 
determined   by   comparison   of   predicted   neutron 
reaction rates with experimental values. A "best" 
value of cos ö.em = 0.45 was obtained for hydro- 
gen, and cos 0vem = 0.60 was obtained for other 
nuclides. With these values of 6 a full set of 
removal cross sections can be derived. 

The NRN removal cross sections do not appear 
to have any advantage over the Spinney cross sec- 
tions since each scheme involves only a single 
adjustable   parameter,   ö.em   and   /  respectively. 

The MAC scheme for transferring removed neu- 
trons into energy groups differs significantly from 
that used by either RASH E or NRN. The practice 
in MAC of adding the removal flux to the newly 
calculated group-diffusion flux in order to estab- 
lish the group-to-group downscatter source violates 
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Table 3.8.   Removal-Band and Energy-Group Structures Used in NRNa 

Removal Bands Diffusion Group 

Band Energy Limits (MeV) 
Group 

No. 

Energy Limits (MeV) 

No. Upper Lower Upper Lower 

1 1.8x 101 
1.43 x 101 1 1.8 x 101 

1.35 XlO1 

2 1.43 xlO1 
1.136 x 101 

2 1.35 X 101 
l.Ox 101 

3 1.136 X 101 9.021 X 10° 3 l.Ox 101 
7.8 X 10° 

4 9.021 x 10° 7.166 X 10° 4 7.8 x 10° 5.9 X 10° 

5 7.166 x 10° 5.692 X 10° 5 5.9 x 10° 4.4 X 10° 

6 5.692 X 10° 4.521 X 10° 6 4.4 X 10° 3.4 X 10° 

7 4.521 X 10° 3.591 X 10° 7 3.4 X 10° 2.6 X 10° 
8 3.591 X 10° 2.853 X 10° 8 2.6 X 10° 2.0X10° 
9 2.853 X 10° 2.267x10° 9 2.0 x 10° 1.5 x 10° 

10 2.267 X 10° 1.800 x 10° 10 1.5x10° 1.2X10° 

11 1.800 X 10° 1.430x10° 11 1.2 X 10° 9.Ox 10-1 

12 1.430x10° 1.136 x 10° 12 9.0 X 10_1 
7.0 x 10-1 

13 1.136 X 10° 9.021 x 10-1 
13 7.0 X 10-1 

5.1 X 10_1 

14 9.021 x 10_1 
7.166 X 10_1 

14 5.1 x 10_1 
3.8 x 10-1 

15 7.166 X 10_1 
5.692 x 10-1 

15 3.8 x 10_1 
3.Ox 10-1 

16 5.692 X 10_1 
4.521 X 10_1 

16 3.Ox 10-1 
l.Ox 10_1 

17 4.521 XlO"1 
3.591 x 10_1 

17 l.Ox 10_1 
3.10 XlO-2 

18 3.591 x 10_1 
2.853 X 10_1 

18 3.10X 10-2 
l.lOx 10-2 

19 2.853 x 10_1 
2.267 x 10-1 

19 1.10 X 10-2 
1.10 x 10-3 

20 2.267 x 10_1 
1.800 X 10_1 

20 1.10 X 10-3 
l.lOx 10~4 

21 1.800 X 10_1 
1.430 x 10-1 

21 1.10 x 10-4 
l.lOx 10-5 

22 1.430 x 10_1 1.136 X 10_1 
22 1.10 x 10-5 

1.10 x 10-6 

23 1.136 X 10_1 
9.021 X 10-2 

23 1.10 X 10-6 
1.05 x 10-7 

24 9.021 X 10-2 
7.166 x 10-2 

24 Thermal 

25 7.166 X 10-2 
5.692 XlO-2 

26 5.692 X 10-2 
4.521 X 10-2 

27 4.521 X 10-2 
3.591 X 10-2 

28 3.591 x 10-2 
2.853 x 10-2 

29 2.853 x 10~2 
2.267 x 10-2 

30 2.267 x 10-2 
1.80 X 10-2 

From L. Hjarne and M. Leimdorfer, "A Method for Predicting the Penetration and Slowing Down of Neutrons 
Reactor Shields," Nucl. Sei. Eng. 24, 165 (1966). 
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the "conservation of neutrons" precept usually 
intrinsic to the group-diffusion concept. This 
could result in serious calculational errors that 
are difficult to diagnose. 

In contrast, RASH E and NRN introduce the re- 
moved neutrons into given groups as source neu- 
trons to that group, a more natural procedure for 
the group-diffusion calculation. RASH E has a 
very restricted transfer scheme wherein the re- 
moved neutrons from a given removal band are in- 
troduced into a prescribed energy group and into 
no other. NRN provides for a much more general 
scheme, employing a removal matrix to describe 
the transfer of removed neutrons from a given re- 
moval band into any of the lower-energy  groups. 

Of the three methods, the slowing-down model 
embodied in NRN gives the most accurate descrip- 
tion of the slowing-down process. It involves a 
general-group to any lower-energy-group transfer 
matrix using detailed elastic and inelastic scat- 
tering cross sections for all nuclides. A similar 
scheme is employed by MAC; however, some in- 
accuracy is allowed in the description of the non- 
hydrogen elastic scattering. 

RASH E uses a group-to-group transfer cross 
section based on the continuous slowing-down 
(age) model, which allows transfer to the next 
lower energy gioup only. This could lead to 
serious inaccuracies, particularly with respect to 
inelastic scatterings and collisions with hydrogen. 

3.10   Application of Kernel Technique to Secondary 

Gamma-Ray Dose Calculations 

Often a large fraction of the radiation dose 
behind reactor and shelter shields is the gamma-ray 
dose due to neutron capture, and possibly to in- 
elastic scattering, within the shield. If the spatial 
distribution of the neutron flux is known, the 
gamma-ray dose rate may be calculated for a large 
number of configurations by integrating the dose 
kernel over the source volume. Using the kernel 
technique as exemplified by Eq. 3.148 and slab 
geometry as shown in Fig. 3.8, the dose rate 
F(r,a,6) on the shield surface due to a distributed 
monoenergetic isotropic gamma-ray source S(x) 
bounded by planes at a and b is given by 

\\t,a,b) 

= G(E)  j     S(x) dx I      BQiR)  2TTP dp     , 

(3.195) 

where 

x = one-dimensional spatial coordinate meas- 
ured from the reference plane, 

t = shield thickness, 

p = radial  distance  to source   point  meas- 
ured from the detector axis, 

R = distance  from the  source  point  to the 
detector, 

li = total    macroscopic   cross   section   for 
gamma rays of source energy E, 

GiE) = flux-to-dose   conversion   factor,   which 
for   conversion  to  rads/hr   is   5.767 x 

5    /**<«> ßa 
10         E,  where   is   the  mass 

P P 

energy absorption coefficient for tissue, 

Br(iiR) = dose  buildup factor for gamma rays of 
energy E. 

Since R2 = p2 + z2, 

rit,a,b) 

GiE) — flR /b                      i-oo                     e    f~" 
Six) dx J       Bri,tR) dR . (3.196) 

R 

The gamma-ray source term usually can be repre- 
sented quite well either by fitting with several 
terms or by piecewise fitting of the thermal-neutron 
flux  distribution* (or of the fast flux distribution 

*The production of secondary gamma rays by the 
capture of nonthermal neutrons is usually insignificant 
in shelter design. 
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Fig.   3.8.     Geometry  for   Integration  over  Exponential 

Source Distribution. 

if inelastic scattering is being considered) with a 
function of the form 

S(x) = Sa e-** , (3.197) 

tive neutron relaxation length.   Usually S   can be 
calculated by 

S=y$(a)Z (3.198) 

where 

y = number of photons of energy E released 
per neutron capture (or per inelastic 
scattering), 

0(a) = neutron flux (usually thermal flux for 

capture and fast flux for inelastic scat- 
tering), 

2 = macroscopic neutron cross section for 
thermal-neutron capture (or for inelastic 
scattering). 

When exponential or polynomial forms of the 
buildup factor are used (see Section 3.8.1), to- 
gether with the source description given by Eq. 
3.197, then Eq. 3.196 can be integrated analyti- 
cally and very useful results obtained. In the 
paragraphs given below, examples of such integra- 
tions are given for two cases of interest: a slab 
shield of finite thickness f and a semi-infinite 
shield (r = oo), the latter corresponding to a real 
problem in which the shield is very thick. 

3.10.1. CALCULATION FOR SLAB SHIELD 

Trubey40 calculated the secondary gamma-ray 
dose rate for a slab shield by using the Berger 
form of the buildup factor, 

Br{EtliR) = 1 + C(E) nR eD^R ,     (3.199) 

in Eq. 3.196.   The equation then becomes 

„-MR G(£) r 
r«,a,Ä) =-i-ls,   f 

2      a Ja 

e~kx dx 
/ _*Vc-x)    R 

dR 

C(£)e«D-""rf^) (3.200) 

where the uncollided dose rate r (t,a,b) is repre- 
where Sa is the gamma-ray source at a in the sented by the first term, and the scattered dose 
interval (a,b) and k is the reciprocal of the effec-       rate Vs(t,a,b) is given by the second term. 



54 

Letting fi(t — x) = y and integrating the first term of Eq. 3.200 by parts, the dose rate from the un- 
collided gamma-ray dose rate is given by 

rn(*,a,&) = 
G(£)Sae-a/i' 

G(E)S  e-a/i' 

e^fi.Cy) 
W'-a) r mt-a) 

,°-y + J e -dy 

2afi 
.{ea«t-«)£i (/iU _ flJ) _ £j ([1 _ a]^ _ a]) 

+ El ([1 - a] [At - b]) - ea>J<t-b>El (pit - b})}   , (3.201) 

where a = k/fi and E   is an exponential function of 

the first order and is defined by 

/oo e-y 
(3.202) 

Graphs of the exponential functions and other de- 
tails of their properties are shown in Appendix 3C. 

If a = 1 or 0 (case of uniform source distribution) 
or if b = t, indeterminate forms result which may 
be resolved by L'Hopital's rule, by series ex- 
pansions, or by integrating Eq. 3.200 for k = fi, 
k = 0, and b = t, respectively. These cases are 
as follows: 

For b < t and a = 0 

G(E)Sa 

T (f,a,i) 
2p 

{lJLb-a]E1(tf.t-b]) 

+ iitE^U --a]) - iitEMj - b))} . (3.203) 

For b < t and a = 1 

G(E)S 
l\(t,a,b) = -y-1 [e-^E^U - a\) 

- e-^EMt - b\) + e"^ lni—1) 
t — b J 

(3.204) 

For 6 = t and a / 0 or 1 

G(£)S 

r0e.a.o 
2\i<x 

(e-a^ E^it-a]) 

e-a^ {E^U - alU - a]) + In |1 - a|_}) 

(3.205) 

For b = t and a = 0 

G(E)Sa 

r0(t,a,o = —— 
2/x 

{1 + //[f-a] EMt-a\) 

i[t-a]-j _ (3.206) 

For 6 = < and a = 1 

G(E)S 

r,(,A0—JJ-: ie-l» EMt-a]) 

- e-^'lny/xtf-a] } ,   (3.207) 

where In y = 0.577215665 . .. , Euler's constant. 

For the special case of b = t and a = 0, Eq. 3.205 
can be represented by 

<KE)Sa 

r0(t,o,t) ■ifr0(pt,a) ,       (3.208) 

where 

<P0(ßt,a) =—  (Et0/0 - e-a^ {£,([1 - a] ,it) 

+ In 11 - a|})    .   (3.209) 

Equation 3.209 is shown plotted in Fig. 3F.1 of 
Appendix F as a function of the number of mean 
free paths fit with a as a parameter. 

[Note: Equations 3.203 through 3.209 can be 
used to calculate the total gamma-ray dose (un- 
collided + scattered) when the Taylor form of the 
buildup factor is used (see Section 3.8.1).] 
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Since z = t - x, the scattered dose rate behind a slab shield can be determined by expressing the 
second term of Eq. 3.200 (i.e., the Berger term) as 

G(E)C(E)S  e-afJ* 

r.(«A«. J     */ ea/jz  e-(l-D)/iR <KiW. (3.210) 

Integrating Eq. 3.210 gives 

rs(t,a,b) 
G(E)C(E)Sae-

a^ 

2(1 -£>)(! -Ö- a)p 
[e-(l-D-a)^(f_fc) _ e-(i_jD-a)^((_a)] '3.211) 

Examination of Eq. 3.210 and Eq. 3.211 reveals 
that unless D < 1, negative doses are obtained. 
However, D is always significantly <1, as is 
shown in Fig. 3.3 in Section 3.8. 

When a + D = 1, Eq. 3.211 gives an indeterminate 
form which, when resolved, becomes 

G(E)C(E)Sae-a'M(b-a) 

r*(t'a'b) = 27TT^ •   <3-212> 

For the special case when b = t and a = 0, Eq. 
3.212 can be expressed as 

r,(f,o,0 
G(E)C(E)Sae

Dllt 

til ~ Ö) 
■ f^t.a') ,   (3.213) 

where 

e-a fjt^i _ e-fj.t(i-a  )| 

'A1(^,a/)=     (3.214) 

and a' = a + D.    The function given by Eq. 3.214 
is shown in Fig. 3F.2 in Appendix F. 

3.10.2.  CALCULATION FOR SEMI-INFINITE 
SHIELD 

Solutions of Eq. 3.196 for a semi-infinite shield, 
that  is,  for  b = °°,   give  useful results  that are 

generally applicable for the special case in which 
a = 0, particularly if one is interested in a gamma- 
ray heating rate within a shield. Using the poly- 
nomial form of the buildup factor, 

3 

*>K) = I  4„ W , (3.215) 
n=0 

Claiborne75 determined solutions to Eq. 3.196 for 
this case, which were all in the form 

G(E)Sa    3 

The dose rate from the uncollided flux is repre- 
sented by the first term and is given by 

*A«>0 = 2^ (Ei 0*0 - e-a^ {^,([1 - a] ßt) 

1 + a  -i\ 
- In 

and the sum of the next three terms represents the 
scattered contribution.   The terms are 

^0*0 
- aßt 1 - e" -(l-a.)fit j 

+ 
1 - a 1 + a 

, (3.218) 

<A2 0*0 = 
4e-a^_(l + a)2 (2 - a)e~^ - (1 + a)2 (1 - a^re"^ 

4(1 - a)2 (1 + a)2 (3.219) 
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-a/M 

2(1 _a)    (1 - a)2     (1 - a)3J     6 

-fit 

(3.220) 

When a -- 0, an indeterminate form occurs in 
Eq. 3.162, and when a = 1, indeterminate forms 
occur in Eqs. 3.218 through 3.220. The following 
equations result when the indeterminate forms are 
evaluated: 

For a = 0 

-V* 

r-l-i*,w 
(3.221) 

For a = 1 

1/JO Q,t) = -L^LL + ~— In (2y/x0 , (3.222) 

'A, 

2 

(3.223) 

-/* 
«//2(/t0-Y ' [2(^)2 + l] —,    0.224) 

The functions given by Eqs. 3.222 through 3.225 
for the semi-infinite medium are plotted in Figs. 
3F.3 through 3F.4 in Appendix F for various values 
of a. Figures 3F.3 and 3F.4 may be compared 
with Figs. 3F.1 and 3F.2, which are the corre- 
sponding functions evaluated for a slab shield. 

These solutions contain the contribution from the 
gamma-ray sources between the detector position 
at t and infinity, since integration of Eq. 3.196 
from x = 0 to x = °° produces two integrals: one 
giving the contribution from the interval 0 = x = t 
and the other giving the contribution from the 
interval t = x = ■». In the usual shield, however, 

the contribution from the second interval at deep 
penetrations is small, and the gamma-ray dose 

rate outside a shield of thickness fit will be only 
slightly less than that calculated for a distance 
fit within a semi-infinite shield. 

If Eq. 3.216 is used for gamma-ray heating cal- 
culations within a shield, the coefficients A 
must correspond to the polynomial fit of the energy 
absorption buildup factor, and the conversion 
factor for expressing the heating rate in W/g be- 
comes 

G(E) = 1.6 x 10-13 ^-E 
P 

(3.226) 

2</y, 
<A30«)=^ + 

Xßty  i 
—+— 

3        4 

-i* 

12 
.    (3.225) where f*a/p is the mass energy absorption coeffi- 

cient of the material in which heat is generated. 
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Appendix 3A. Computer Code Abstracts 
Computer codes which utilize the methods de- 

scribed in this chapter are abstracted below. 
These abstracts also appear in ORNL-RSIC-13,76 

a publication of the Radiation Shielding Information 
Center which is continually updated to include 
new codes as they become available. It is em- 
phasized that the abstracts given here do not 
represent all the codes available from RSIC, nor 
the many shielding codes not in the RSIC collec- 
tion for reasons such as obsolescence, nonavaila- 
bility due to proprietary interests, or insufficient 
testing or documentation. 

All codes and auxiliary routines received by 
RSIC are checked out for operability; that is, 
sample problems are run by the RSIC staff. If the 
code is operable, it is packaged and assigned a 
CCC number, and a code abstract is written and 
distributed. 

Inquiries or requests for a code package should 
be mailed to 

CODES COORDINATOR 
Radiation Shielding Information Center 
Oak Ridge National Laboratory 
P.O. Box X 
Oak Ridge, Tennessee  37830 

or telephoned to 

Area Code 615; 483-8611, Ext. 3-6944, or to 
FTS 615-483-6944. 

A   reel of magnetic  tape  should accompany each 
request for a code. 

Members of the RSIC staff are always available 
for consultation in connection with the shielding 
code packages, either in regard to operation of 
the code or to its applicability for a particular 
shielding problem. Also, RSIC maintains a file 
indicating whether a code package has been made 
available in additional machine languages, made 
operable on other machines, etc. 

3A.1.   DISCRETE ORDINATES PROGRAMS 

DTF-IV (CCC-42*). - The Los Alamos Scientific 
Laboratory program DTF-IV8,77'78 solves the mul- 
tigroup, one-dimensional Eoltzmann transport equa- 
tion for plane, cylindrical, or spherical geometries. 

♦Refers to RSIC code package number. 

Anisotropie scattering is represented by Legendre 
polynomial expansion of the differential scattering 
cross section. Energy dependence is treated by 
the multigroup approximation and angular de- 
pendence by a general discrete ordinates approxi- 
mation. Iteration processes for within-group 
scattering and upscattering are accelerated by 
system-wide renormalization procedures. 

General anisotropic scattering capability is 
provided in each of the three geometries, up- 
scattering convergence acceleration is used, an 
optional group- and pointwise convergence test is 
available, and a neutron-conserving negative flux 
correction routine is used. 

An auxiliary routine, GAMLEG, provides cross 
sections for photon transport problems in a form 
suitable for input to DTF-IV. 

DTF-IV is written in FORTRAN IV language and 
is operable on IBM-7090 and -7030 computers. 

ANISN (CCC-82). - ANISN,79 a code developed 
jointly by the Oak Ridge Computing Technology 
Center and Oak Ridge National Laboratory, solves 
the one-dimensional Boltzmann transport equation 
in slab, spherical, or cylindrical geometry. The 
source may be a fixed source, a fission source, or 
a subcritical combination of the two. A criticality 
search may be performed on any one of several 
parameters. Cross sections may be weighted using 
the space- and energy-dependent flux generated 
in solving the transport equation. 

The solution technique is an advanced discrete 
ordinates method which represents a generalization 
of the method originated by G. C. Wick and greatly 
developed and extended to curvilinear geometry 
by B. G. Carlson at Los Alamos Scientific Labo- 
ratory. 

ANISN has been used for many shielding prob- 
lems, including deep-penetration problems in which 
angle-dependent spectra are calculated in detail. 
The principal feature that makes ANISN suitable 
for such problems is the use of an advanced pro- 
gramming technique with optional data-storage 
configurations, which allows efficient execution 
of small, intermediate, and extremely large prob- 
lems. ANISN also includes an efficient technique 
for handling general anisotropic scattering, point- 
wise convergence criteria, and alternate step func- 
tion difference equations that effectively remove 
the oscillating flux distributions sometimes found 
in discrete ordinates solutions. 
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ANISN is written in FORTRAN IV language for 
use on IBM-7090 and -7094 computers and in 
FORTRAN IV (H) language for use on the IBM-360 
computer. 

BIGGI 3P (CCC-66). - The BIGGI 3P pro- 
gram,79,80 developed by EURATOM, Ispra (Varese), 
Italy, solves the Boltzmann transport equation in 
plane multilayer geometry. It computes gamma-ray 
angular fluxes, spectra, buildup factors, and 
albedos. The sources must be monoenergetic and 
located on one outer boundary; their angular distri- 
bution can be isotropic or collimated. 

BIGGI 3P integrates the Boltzmann equation 
numerically. The basis is the pair of coupled 
integral equations, discussed for the case of 
neutrons by Weinberg and Wigner.1 Discrete 
ordinate meshes are defined in each of the three 
concerned dimensions (angle, space, and gamma- 
ray wavelength), and the integrals figuring in the 
transport equation are approximated by sums. The 
program solves the integral equations without 
iteration, since they are of the Volterra type (as 
long as only energetic downscattering is assumed). 
The gamma-ray cross sections (in Thompson units 
per electron) of each slab must be given in the 
input. The contribution of the low-energy tail 
below the cutoff energy to the four buildup factors 
(energy flux, particle flux, dose rate, and energy 
absorption rate) and to the two albedos (energy 
and particle current) is estimated. An exponential 
transformation allows rather great spatial integra- 
tion steps, up to 2 or 3 mean free paths. 

BIGGI 3P is written in FORTRAN language for 

use on the IBM-7090 computer. 

3A.2. MOMENTS METHOD PROGRAMS 

RENUPAK (CCC-41). - The United Nuclear Cor- 
poration's moments method code RENUPAK81 pro- 
vides a solution to the Boltzmann equation for 
steady-state neutron transport in one-dimensional 
homogeneous geometry, with elastic, inelastic, and 
fission processes included. Point sources or plane 
isotropic sources with continuous energy distri- 
butions can be used. The output consists of the 
dose (using response function' data) and of the 
spatial moments, neutron flux density, and current 
as a function of energy and position. 

After the moments are computed, they are used 
to reconstruct the flux and current. The flux 
density is assumed to consist of a linear combina- 

tion of functions of given form, and constants in 
the expansion are adjusted so that the moments 
of the linear combination are the same as the 
computed moments of the flux density. 

In the elastic slowing-down treatment the neutron 
energy-angle relationship is properly taken into 
account. The inelastic scattering of neutrons is 
assumed to be isotropic in the laboratory system, 
with several nuclear models being available to 
compute its energy dependence. In particular, the 
program permits a choice of discrete energy levels 
when the levels are well separated and a continuum 
of energy levels when the levels are.very close. 
For heavy materials a statistical model is avail- 

able. 
RENUPAK is written in FAP assembly language 

and is operable on the IBM-7090 computer. 

MOMGEM-MOMDIS (CCC-85). - The MOMGEM 
and MOMDIS codes82'83 of the U.S. Naval Radio- 
logical Defense Laboratory, San Francisco, cal- 
culate the angle and energy distributions of gamma 
rays scattered at various depths within an infinite 
homogeneous medium, yielding results that closely 
approximate the distribution determined for a finite 
slab case, with the thickness of the slab the same 
as the depth of penetration in the infinite medium. 

There are two phases of the calculation.   Phase 
I is performed by MOMGEM and consists of the 
generation of the moments. Three sets of moments 
are needed to determine the required moments for 
third- and higher-order scattering: one set each 
for total, first, and second scatterings. Third- 
and higher-order scattering moments are obtained 
by adding the first and second moments together 
and subtracting their sum from the moments for 
total scattering. 

In Phase 2, performed by MOMDIS, a biorthogonal 
polynomial expansion is used to fit the moments. 
The resulting distribution is for third- and higher- 
order scattering. Distributions for first- and 
second-order scattering are determined from ana- 
lytical expressions. Finally, a composite spectrum 
is formed by adding the three distributions. 

MOMGEM and MOMDIS are written in FORTRAN 
II and IV languages and can be used on the IBM- 

704 computer. 

3A.3.  MONTE CARLO PROGRAMS 

15-2   (CCC-4).   -   The   General   Electric Monte 
Carlo code  15-2 (refs.  84 and 85) calculates the 
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energy spectrum and angular distribution of gamma 
rays at a point detector in an infinite homogeneous 
medium of air that result from single and multiple 
scattering of monoenergetic, monodirectionäl 
gamma rays from a point source. The single- 
scattering contribution is computed by numerical 
integration, and the contribution due to second- 
and higher-order scattering is determined by Monte 
Carlo techniques. 

First-collision points for the Monte Carlo calcu- 
lation are obtained by means of systematic 
sampling, with subsequent collision points deter- 
mined randomly. A quota sampling scheme, which 
assigns N. histories to the Mi first-collision 
point, is used to allow a more intensive study of 
those histories that make the largest contribution 
to the result. Scoring is done at second- and 
higher-order collision points by a statistical esti- 
mation technique. At each collision point the 
product of the weight of the particle and the con- 
ditional probability that the particle will reach the 
detector without further collision, assuming that 
it had a scattering collision, is scored for the 
appropriate detector energy-angle bin. The de- 
tector-angle bins are determined by dividing the 
space about the detector into a number of solid 
angles whose apexes are at the detector. Colli- 

sions close to the detector, which would result 
in very large scores, are prohibited. 

Two options in the program provide for further 
possible reduction of the variances of the esti- 
mates. One is the biased sampling of the scatter- 
ing angle from an isotropic distribution. Correc- 
tions for an anisotropic distribution are made later 
by weighting the particle according to the Klein- 
Nishina' relationship. In the other option, called 
"exponential transformation," the mean free path 
of a gamma ray is altered on the basis of its 
energy, position, and direction with respect to 
the detector. 

The gamma-ray events treated are photoelectric 
effect, pair production, and Compton scattering. 
The total cross sections for air are computed by 
means of a power series fit to the ratio of the 
total-to-Compton cross sections. There is also 
an option which allows the generation and tracking 
of 0.5-MeV photons following pair-production 
events. 

The 15-2 code is written in FAP language and 
is operable on IBM-704 and -7090 computers. 

FMC-G (CCC-14). - The General Electric Monte 
Carlo program FMC-G,86 together with its auxiliary 

routines 20-2 (ref. 87), 20-4 (ref. 88), and SG 
(ref. 89), solves the gamma-ray transport equation 
with considerable flexibility in the geometrical, 
material, nuclear, and source descriptions of 
source-shield configurations and in the variance 
reduction techniques. Homogeneous regions are 
enclosed by surfaces described by the general 
equation 

AX2 + X0X + BY2 + Y0Y + CZ2 + ZQZ - K = 0 

The output of the code includes optional ab- 
sorption or energy deposition tallies, Monte Carlo 
entrance and leakage tallies, expectation entrance 
and leakage tallies, Monte Carlo or expectation 
flux tallies, and history tallies of particles reach- 
ing selected regions. The absorption or energy 
deposition, entrance, leakage, and flux tallies 
are made by region and energy groups. Parameters 
of secondary gamma rays are stored on tape for 
later analysis. 

A nonoptional statistical estimation technique 
of weighting for nonabsorption is applied at each 
collision. Optional statistical estimation tech- 
niques may be used for scoring entrance tallies 
and mandatory leakage tallies. Flexibility in 
sampling from source spectra is achieved by using 
energy-group-averaged acceleration factors. Im- 
portance sampling options are (1) splitting and 
Russian roulette, depending on energy, region, 
and location within a region, (2) Russian roulette 
on particles whose weights fall below the weight 
cutoff, and (3) exponential transformation. 

The auxiliary routine SG (Source Generator) ap- 
plies statistical methods to generate the seven 
parameters required to describe source particles 
for FMC-G. These parameters are stored on mag- 
netic tape for later Monte Carlo processing. The 
code provides three methods for generating the 
direction cosines of the source particle, three 
methods for generating the spatial coordinates, 
and one method for generating the source energy. 
Any or all of these parameters may also be entered 
as input. 

The auxiliary code 20-2 approximates cross- 
section dependence on energy by discontinuous 
straight-line segments across specified energy 
groups and prepares a printed listing. 

The auxiliary code 20-4 averages input differ- 
ential-scattering cross sections over specified 
energy groups to obtain angular distribution data 
in the form of cumulative probability tables suit- 
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able for use in FMC-G. Differential-scattering 
cross-section input data can be in the form of 
either a two-dimensional tabular array of (/"(E,^) 
or a set of one-dimensional tabular arrays of 
Legendre polynomial coefficients. Output is 
available as a printed listing and as punched card 
input to FMC-G. 

FMC-G and SG are written in FAP language, 
and the routines 20-2 and 20-4 are written in 
FORTRAN II language. The programs can be 
run on IBM-7090 and -7094 computers. 

FMC-N (CCC-15). - A General Electric Monte 
Carlo program for solving the neutron transport 
equation is designated as FMC-N.86 In most 
respects the program description is the same as 
that given above for FMC-G; however, FMC-N uses 
two additional auxiliary routines. One, identified 
as code 20-5 (ref. 90), applies the evaporation 
model of nuclear reactions to determine cumulative 

probability tables for energy spectra of inelasti- 
cally scattered neutrons. The output from this 
routine includes a printed listing and punched 
cards suitable for input to FMC. The other routine, 

identified as code 20-6 (ref. 91), computes ex- 
citation and transition probabilities for excited 
states of the residual nucleus from a neutron in- 
elastic-scattering reaction, given the relative 
gamma-ray intensities of the transitions that occur 
in the process and the energy level structure of 
the nucleus.   The output is in printed form only. 

FMC-N is written in FAP language, and codes 
20-5 and 20-6 are in FORTRAN II language. The 
programs can be used on IBM-7090 and -7094 
computers. 

05R (CCC-17). - The Oak Ridge National Labo- 
ratory code system 05R28 was designed to cal- 
culate, by Monte Carlo methods, any quantity 
related to neutron transport in reactor or shielding 
problems. Arbitrary three-dimensional geometries 
bounded by quadric surfaces may be treated, and 
the sources may have arbitrary spatial, energy, 
and angular distributions specified by a subroutine 
written by the user. Anisotropie scattering can 
be included for both elastic and inelastic 
processes. Fissionable as well as nonfissionable 
media can be treated. Several variance reduction 
techniques are available. 

For maximum flexibility, a calculation generally 
consists of two main operations. The primary 
routine, called the 05R Generator, is use'd to 
generate neutron case histories and produce 
collision  tapes  on which  are written any,  or all, 

of 34 distinct parameters describing each collision. 
These tapes are subsequently processed by 
analysis routines usually written by the user to 
produce Monte Carlo estimates of any desired 
quantity. Analysis routine STATEST92 is included 
in the prototype of the 05R system for shielding 
problems (a "prototype" code is one which is a 
completely assembled version, including sample 
input and output). STATEST provides for sta- 
tistical estimation of the flux in energy bins for 
an array of space points. 

A batch system of generating case histories is 
employed to obtain a very detailed table of cross 
sections in fast memory. The cross sections in 
memory at one time encompass only a small energy 
range. All collisions of a batch for which these 
cross sections are needed are generated before 
another group of cross sections are read from tape. 
Cross-section data are prepared for use in 05R 
by XSECT, a code which performs a variety of 
manipulations: preparing, updating, and editing 
a master tape and performing cross-section arith- 
metic. 

Source data are generated by subroutine SOURCE, 
usually written by the code package user for his 
specific problem. 

A very general geometry subroutine permits the 
treatment of complicated geometries. As many as 
16 media are permitted and boundaries may be 
either planes or quadric surfaces, arbitrarily 
oriented and intersecting in arbitrary fashion. 

The 05R program is available in FORTRAN 
language for both the IBM-7090 and the CDC-1604 
computer. It is also available in FAP language 
for the IBM-7090 computer and in CODAP language 
for the CDC-1604 computer. 

TRG-SGD (CCC-25). - The Monte Carlo code 
TRG-SGD,93 written by the Technical Research 
Group for the Air Force Weapons Laboratory 
(Kirtland), calculates the time and space distribu- 
tion of secondary gamma-ray doses and dose rates 
from a nuclear weapon detonation in the atmosphere 
or in the ground near the surface of the earth. 
The neutron source is given as leakage from the 
exploded device. The effects of the blast and 
fireball on the transport of the neutrons and gamma 
rays are taken into account. 

The neutron reactions considered are elastic 
scattering, inelastic scattering, radiative capture, 
and nonradiative capture. The (n,2n) reaction is 
treated as inelastic scattering by cross-section 
modification.     The  prompt  neutrons  are degraded 
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14-MeV neutrons from a fusion reaction, fission 
neutrons, and neutrons which are assumed to have 
a "bomb thermal Maxwell-Boltzmann spectrum." 
The delayed neutrons are from a fission source 
with a time-dependent volume distribution. The 
only gamma-ray reactions considered are Compton 
scattering and absorption, the latter being the total 
of pair production and photoelectric effects. 

The Monte Carlo method is used to generate the 
neutron distribution, the secondary gamma-ray 
source distribution, and the secondary gamma-ray 
dose distribution. The effects of the air-ground 
interface, an inhomogeneous atmosphere, and time- 
dependent hydrodynamics are taken into account. 
The type and yield of weapon and the detonation 
altitude determine the initial conditions. The 
geometric system is taken to be axially symmetric. 
In addition to statistical estimation of the gamma- 
ray source and dose distributions, various im- 
portance-sampling techniques are used. These 
include Russian roulette for low-contribution par- 
ticles and generalized quota sampling. In addition, 
all random variables are picked from a truncated 
exponential distribution. This procedure is con- 
trolled by input parameters. 

TRG-SGD is written in FORTRAN language and 
is operable on the CDC-1604 computer. 

SALOMON (CCC-33). - The Monte Carlo program 
SALOMON94 was developed by the Research Insti- 
tute of National Defense, Stockholm, Sweden, to 
treat gamma-ray transport problems in multislab 
one-dimensional plane geometry. The program 
calculates the penetrating gamma-ray dose rate 
and energy deposition rate in a system of slabs 
of infinite extension and finite thickness. An 
isotropic monoenergetic volume source distribution 
is given pointwise, and one source energy at a 
time is calculated. 

Various transformation techniques are utilized. 
Importance sampling is used to modify the spatial 
and directional distribution of the source, as well 
as the transport kernel. All biasing is completely 
contained in the program and is automatically 
optimized. 

Two versions of the code exist, one giving better 
penetration accuracy and one giving better energy 
deposition accuracy. 

SALOMON is written in FORTRAN language and 
can be used on IBM-7090 and -7094 computers. 
(Note: This program is also in the ENEA Computer 
Programme Library, where it carries the number 
ENEA 062.) 

DIPSEA (CCC-35). - The Monte Carlo code 
DIPSEA95 was developed by Technical Operations 
Research to determine the radiation dose resulting 
from a point isotropic gamma-ray source in an 
atmosphere of air whose density varies exponen- 
tially. The source may be monoenergetic or poly- 
energetic. A cylindrical geometry is used to de- 
scribe the atmospheric region surrounding the point 
source. The assumed cylinder, divided into a 
layered series of square toroids of uniform cross 
section, extends from a lower altitude of 11 km 
to an upper altitude of 100 km and has a variable 
radius that normally has a maximum limit imposed 
by statistical fluctuations inherent in Monte Carlo 
calculations. The code assumes that the photon 
is lost after passing these boundaries. 

The atmosphere is assumed to be divided into 
two zones, each zone having its own exponential 
expression for the density. The range of each 
zone is set equal to the altitude interval in which 
the gradient of the molecular-scale temperature 
is nearly constant. 

Energies in the program are expressed in units 
of Compton wavelength. All interactions in the 
media are considered to be either Compton 
scattering or pair production. 

The components calculated are the scattered, 
direct, and total doses in the center, of each 
toroidal cross section, in units of both keV/g 
and ion pairs/cm3. The scattered dose is com- 
puted by the Monte Carlo method and the un- 
scattered dose is computed analytically. 

DIPSEA is written in FORTRAN and FAP lan- 
guages and can be used on IBM-704, -709, -7090 
and -7094 computers. 

TORN (CCC-44). - The TORN system96"102 is 
a Monte Carlo neutron-transport system for slab 
configurations originally developed for the U.S. 
Army Nuclear Defense Laboratory (Edgewood 
Arsenal) by Technical Operations Research and 
later modified by Radiation Research Associates. 
The system has two prototypes: TORN I for 
homogeneous materials and TORN II for hetero- 
geneous materials. 

The TORN system determines the transmission 
and reflection of monoenergetic neutrons and the 
production of secondary gamma rays in slab con- 
figurations. The transmission is determined for 
shields consisting of up to five slabs and for up 
to five source incident angles in one run. The 
reflection is obtained for the maximum thickness 
of the slab configurations.    Elastic, inelastic, and 
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absorption interactions are considered. The 
results are stored on tape in binary form. The 
information that may be obtained includes the 
number of neutrons backscattered or transmitted, 
the energy backscattered or transmitted, and the 
angular distribution of the emergent number, 
energy, or dose of neutrons. 

The auxiliary analysis code (RRA-29) processes 
the output from TORN I and calculates the angular 
distribution of the neutron flux, current, and dose 
rate and the average energy of the emergent neu- 
trons. Another analysis code (RRA-37) analyzes 
the characteristics of the transmitted and reflected 
particles recorded on magnetic tape by the TORN 
systems. This code calculates and prints out 
the angular distribution of the flux and current of 
the emergent particles (transmitted or back- 
scattered) for a multilayer slab. The angular 
distribution of the emergent particle and dose cur- 
rent, dose rate, and average energy and of the un- 
scattered particle and dose current and dose rate 
is also computed and is printed out and punched. 

The TORN system is written in FORTRAN II 
and FAP languages and can be run on the IBM-7090 
computer. 

TORG (CCC-45). - The TORG program103'104 

is a generalized Monte Carlo program for gamma 
rays transported through one, two, or three slab 
layers. It is analogous to the TORN system for 
neutrons (see above) and was developed by the 
same group. 

Information obtained from TORG includes the 
number and energy of gamma rays that are back- 
scattered or transmitted and the angular distri- 
bution of the emergent number, energy, or dose. 
The source may be monoenergetic or polyenergetic. 
The source angular distribution may be isotropic, 
anisotropic, or described by a single incident polar 
angle. 

The energy, angular, and spatial distribution of 
transmitted and reflected gamma rays is computed 
for arbitrary point source energy-angular distribu- 
tions in slab geometry. The model is believed to 
be adequate up to about 200 MeV since brems- 
strahlung from pair-produced and Compton-scattered 
electrons is accounted for. Details of emerging 
photons may be written on tape for further analysis. 

An auxiliary analysis routine102 (RRA-37) 
generates punched and printed output of the angular 
distribution of the emergent particle (transmitted or 
backscattered) dose current, dose rate, and average 

energy   and   of  the  unscattered   particle and dose 
current and dose rate. 

TORG is written in FORTRAN II language and 
can be used on the IBM-7090 computer. 

OGRE (CCC-46). - The OGRE code sys- 
tem105,106 was designed by Oak Ridge National 
Laboratory to calculate by Monte Carlo methods 
any quantity related to gamma-ray transport. The 
system is represented by two typical codes: 
OGRE-PI and OGRE-G. The OGRE-PI code is a 
simple prototype which calculates dose rate on 
one side of a slab due to a plane source on the 
other side. OGRE-G, a prototype of a code uti- 
lizing a general-geometry routine, calculates the 
dose rate at arbitrary points and provides for a 
very general source description by allowing the 
user to prepare his own source tape. 

Case histories of gamma rays in the prescribed 
geometry are generated and then analyzed to 
produce averages of any desired quantity, which 
in the case of the prototypes is the gamma-ray 
dose rate. The system is designed to achieve 
generality by ease of modification. No importance 
sampling is built into the prototypes. 

A very general geometry subroutine permits the 
treatment of complicated geometries. This is 
essentially the same routine used in the 05R 
neutron-transport system (see above). Boundaries 
may be either planes or quadric surfaces, arbi- 
trarily oriented and intersecting each other in 
arbitrary fashion. 

Cross-section data are prepared by an auxiliary 
master cross-section code (XSECT), which may 
be used to originate, update, or edit the master 
cross-section tape. The master cross-section tape 
is utilized in the OGRE codes to produce detailed 
tables of the macroscopic cross sections required 
for the Monte Carlo calculations. 

OGRE is available in FORTRAN II and IV lan- 
guages and in FAP language for use on the IBM- 
7090 computer, in FORTRAN IV for IBM-360/50 
and -360/75 computers, and in FORTRAN 63 and 
CODAP for the CDC-1604 computer. 

SPARC (CCC-58). - SPARC107"110 is a Monte 
Carlo program for solving neutron- and gamma-ray 
transport problems in multilayer slabs. It was 
developed by the USAF Nuclear Aerospace Re- 
search Facility, General Dynamics, for the U.S. 
Army Tank Automotive Center and the U.S. Army 
Ballistic Research Laboratories. 

SPARC analyzes the effects of radiation, either 
as a source incident on the shield or as distributed 
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sources inside the shield, to obtain spatial and 
energy distributions of the particle flux within the 
shield, angular distributions of the transmitted 
and reflected particle current, and angular distribu- 
tions of the transmitted and reflected particles 
separated into ten ranges of energy. 

SPARC is available in FORTRAN and FAP 
languages for use on the IBM-7090 and -7094 
computers. [Note: The COMBINE kernel code 
(see below) was designed to utilize the results of 
SPARC to calculate flux or dose rate at detector 
points inside a shielded compartment.] 

ADONIS (CCC-13A,B), UNC-SAM, and UNC-SAM-2 
(CCC-81). — The United Nuclear Corporation sto- 
chastic approximation method, developed originally 
as ADONIS111 and later as UNC-SAM,112 calcu- 
lates the solution to the Boltzmann transport equa- 
tion in three-dimensional geometry by Monte Carlo 
methods. ADONIS tracks either neutrons or gamma 
rays through shields composed of rectangular 
parallelepipeds of different compositions. Particle 
splitting is used to improve the efficiency of the 
calculation by assigning importance weights to 
each of the regions. The program computes fluxes 
and their standard deviations in each of up to 80 
regions. By use of response functions the dose 
and strength of secondary gamma rays from any 
neutron-induced reaction can be computed through- 
out the configuration. UNC-SAM will calculate 
fluxes, flux-dependent functionals such as doses, 
and their standard deviations in geometry com- 
prised of rectangular parallelepipeds, which, in 

turn, may contain spheres, cylinders, parallel- 
epipeds, or wedges. Importance sampling is used 
to increase efficiency. In evaluating neutron 
fluxes in small-volume detectors, a scoring by 
analytical estimation, referred to as "flux at a 
point," is used. 

A modified version of UNC-SAM, identified as 
UNC-SAM-2,113 treats time-dependent neutron and 
photon transport through matter. 

ADONIS versions are available in FORTRAN- 
FAP language for the IBM-7090 and -7094 com- 
puters (CCC-13A) and in FORTRAN-CODAP lan- 
guage for the CDC-1604 computer (CCC-13B). 

UNC-SAM and UNC-SAM-2 are written in 
FORTRAN 63 language and are operable on the 
CDC-1604 computer. 

3A.4. PROGRAMS BASED ON KERNEL 
TECHNIQUE 

14-0 (CCC-1). - The shielding computer program 
14-0 (ref. 114), developed by the General Electric 
Nuclear Materials and Propulsion Operation, 
evaluates point-to-point kernels and integrates 
over source regions to perform reactor-shield pene- 
tration calculations for neutrons and gamma rays. 
Neutron and gamma-ray fluxes and spectra and 
the dose and energy absorption rates can be com- 
puted for positions in and around complex shields 
containing multiple sources described in a cylin- 
drical coordinate system. In addition, the program 
can compute reactor shield weight. Computation 
of any of these quantities in a single problem is 
optional. 

Reactor and shield geometries are described by 
combinations of regions formed by rotation of 
rectangles and trapezoids about the reactor-shield 
axis or parallel axes or by translation of convex 
quadrilaterals parallel to any axis of the rec- 
tangular coordinate system. Compositions are 
expressed as volume fractions for each material 
in the reactor-shield assembly and are associated 
with the appropriate geometrical regions by code 
numbers. 

Source-region integration limits are specified for 
as many as six source types, and location dimen- 
sions are specified for the axis of each source 
region; a maximum of 200 source regions are 
possible. Source-region nodal points are located 
by intersection of axial lines in shells concentric 
about the source region axes and planes normal to 
the axes. The provisions for spacing these lines, 
shells, and planes permit description of cylindrical 
volume, cylindrical or plane surface, axial or radial 
line, or point sources. A different source-point 
spacing is permitted for each source type. 

A modification of the Albert-Welton theory of 
neutron attenuation is used for fast-neutron flux 
or dose-rate calculations in hydrogenous materials. 
Moments-method differential number spectra and 
differential scattered gamma-ray energy spectra are 
used in the computation of differential neutron 
spectra and gamma-ray energy spectra. Buildup 
factors computed by empirical expressions are 
used in conjunction with exponential attenuation 
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to compute gamma-ray fluxes and dose and energy 
absorption rates. 

Integration over source regions is performed 
according to the trapezoidal rule. The integration 
procedure is automatically adjusted to correctly 
integrate over volume, surface, or line sources. 
No integration is performed for point sources. 
Contributions from multiple source regions are 
summed to obtain total calculated detector re- 
sponses. 

An auxiliary routine (14-3)115 performs an ex- 
tensive check of input data to code 14-0 for range 
of values, sign, sequencing, and completeness. 

This program is written in FAP language for use 
on IBM-704 and -7090 computers. 

14-1 (CCC-2). - The shielding computer program 

14-1 (ref. 114), also developed by the General 
Electric Nuclear Materials and Propulsion Opera- 
tion, has the same description as code 14-0 (see 
above) except that the source density must be 
specified as input for each ring of source points 
in each different source type. 

The auxiliary routine (14-3)115 performs an ex- 
tensive check of input data to 14-1 for range of 
values, sign, sequencing, and completeness. 

Program 14-1 is written in FAP language for 
use on IBM-704 and -7090 computers. 

14-2 (CCC-3). — The shielding computer program 
14-2 (ref. 116) is a third kernel-type code de- 
veloped by the General Electric Nuclear Materials 

and Propulsion Operation and, except for the 
source description, is the same as codes 14-0 
and 14-1 described above. In this code the source 
location and dimensions are described in rec- 
tangular coordinates. Integration limits, which 
are specified for each space variable, may be 
equal for any or all variables. Planes of source 
region nodal points may be equally or unequally 
spaced between the integration limits of each 
space variable. Consequently, rectangular paral- 
lelepipedal volume or rectangular plane surface 
sources or line or point sources may be described. 

Source density distributions, which must be 
identical for neutrons and gamma rays, are assumed 
to be nonseparable. They must be continuous over 
X, but may be discontinuous over Y and Z. A 
table of source densities is required as input data. 
Gamma-ray source energy spectra are assumed to 
be independent of position. 

A data input check is provided by the auxiliary 
routine 14-3 (ref.'115). 

Code 14-2 is written in FAP language for use on 
IBM-704 and -7090 computers. 

CLOUD (CCC-32). - CLOUD117 is a program 
designed by Atomics International to calculate 
the external gamma-ray dose rate and total inte- 
grated dose resulting from the accidental release 
of radioactive materials to the atmosphere. 

Wind velocity, lateral and vertical diffusion co- 
efficients, stability parameters, and the presence 
of physical boundaries such as a ground surface 
or a temperature inversion layer are considered. 
Depletion of the radioactive cloud due to washout 
and fallout is also included. The degree of hazard 
is estimated from the standpoint of both internal 
and external exposure. 

A Legendre-Gauss quadrature technique is used 
to perform the numerical integrations of the atten- 
uation kernel over the source regions. A two- 

compartment continuous-release model is assumed 
to simulate holdup of the source material. Decay 
of the source material is described either by the 
use of a simple parent-daughter decay scheme or 
by a Way-Wigner type of relationship. Either em- 
pirical or calculated fission-product-decay data 
may be used. 

CLOUD is written in FORTRAN language for 
use on IBM-709, -7090, and -7094 computers. 

QAD (CCC-48). - The QAD point-kernel code 
system118 was developed by Los Alamos Scien- 
tific Laboratory for calculating fast-neutron and 
gamma-ray penetration in various shield configura- 
tions. In the gamma-ray calculation the point 
kernel method involves representing the gamma-ray 
source by a number of point isotropic sources and 
computing the line-of-sight distance from each 
source point to the detector point. From the 
distance through the shielding regions and the 
characteristics of the shielding materials, the geo- 
metric attenuation and material attenuation are 
calculated. The energy transferred along the line 
of sight is then calculated on the basis of this 
attenuation and the appropriate buildup factor to 
account for the scattered radiation. With a dis- 
tributed source the point kernel including the 
buildup factor is integrated over the source volume 
for each source energy considered. 

The neutron-penetration calculation is made 
using a kernel obtained from the moments-method 
solution to the Boltzmann equation which has been 
fit by an exponential expression. In this method 
the  neutron  spectrum  penetrating a  shield  is de- 
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termined on the basis of equivalent length of a 
reference material between the source point and 
the receiver point. The equivalent length is cal- 
culated by weighting the penetration distance for 
each material in accordance with the material 
removal cross section. Provisions are also made 
for computing an alternate neutron dose rate based 
on the Albert-Welton kernel. 

The input data consist of a description of the 
source distribution and intensity by a number of 
point isotropic sources, a mathematical represen- 
tation of the physical geometry with quadratic 
surfaces, and the tabulation of attenuation co- 
efficients, buildup factors, and conversion factors. 

There are several versions of QAD: 

1. QAD-IV, the general-purpose basic QAD proto- 
type, which estimates the uncollided gamma-ray 
flux, dose rate, and energy deposition at 
specified detector points, and also the fast- 
neutron dose, 

2., QAD-P5, which incorporates a technique for 
interpolating the results of neutron calcula- 
tions, has additional source description rou- 
tines, and has an increased number of output 
options, 

3. QAD-HD (ref. 119), which evaluates the heat 
deposition and temperature rise of the pro- 
pellant and the dose to a crew during nuclear 
rocket reactor operation, 

4. QAD-P5A, another version of QAD-P5, which 
includes a built-in library of gamma-ray attenua- 
tion coefficients, buildup factor coefficients, 
neutron removal cross sections, and neutron 
moments-method spectra coefficients, 

5. QAD-INT, which calculates gamma-ray heating 
rates within a source region or in a semi- 
infinite region surrounding the source zone, as 
well as unscattered and built-up fluxes and 
dose rates, 

6. QAD-V, which permits heating calculations with 
a two-dimensional integration scheme, 

7. QAD-B, which is an expanded version of 
QAD-P5 with a simplified input format and a 
more detailed output format and which includes 
a data library of many of the required input 
parameters. 

All codes in' the QAD system are available in 
FORTRAN IV language for use on IBM-7090 and 
-7094 computers.   QAD-P5 is in addition available 

in FORTRAN II for use on IBM-7090 and -7094 
computers, and in FORTRAN IV for the IBM-360 
computer. 

COMBINE (CCC-59). - The Combine sys- 
tem120-125 was developed by the USAF Nuclear 
Aerospace Research Facility (GD/FW) for the U.S. 
Army Tank Automotive "Center and the U.S. Army 
Ballistic Research Laboratories, Aberdeen. The 
system, which consists of Combine I and II, is 
a set of integration procedures designed to cal- 
culate the radiation flux and dose at one or more 
detector points inside a shielded compartment. 
The calculation is performed by combining the 
radiation incident on the shielded compartment, 
the transmission and reflection probabilities gen- 
erated by the SPARC program (see above) or 
similar Monte Carlo codes, and the definition of 
the geometry of the shielded compartment. The 
transmission calculation is performed with Com- 
bine I and the reflection calculation with Combine 
II. 

Combine I is available in FORTRAN II and 
FORTRAN IV languages (designated by GD/FW 
as E91 and E20, respectively), and Combine II 
is available in FORTRAN IV language. The 
programs can be used on the IBM-7090 and -7094 
computers. 

SHADRAC (CCC-84). - The shield penetration 
code SHADRAC126 was developed by the USAF 
Nuclear Aerospace Research Facility (GD/FW) 
for calculating the neutron or gamma-ray spectrum, 
the heat generation rate, and/or dose rate at each 
of a group of point detectors due to each of a group 
of point sources. The sources may be divided into 
sets, with each set having a unique source spec- 
trum. The results can also be summed over each 
source-point set and over the entire source group. 
Complex geometry may be treated. 

Point-to-point kernels based on the differential 
energy spectrum for a point isotropic source in an 
infinite medium are integrated over various sources. 
The data used are based on the moments-method 
solution of the fast-neutron or gamma-ray transport 
equation. The stepping-point method is used to 
solve for the path lengths from source to detector 
in each region. 

The gamma-ray absorption coefficients are based 
on interpolations of the photoelectric and pair- 
production cross sections so that the coefficients 
may be computed for all media of the system. The 
effective atomic number is interpolated from a 
table of atomic numbers versus the absorption co- 
efficient per electron. 
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The source points, which are distributed either 
by dividing into equal intervals or by a Gaussian 
quadrature, locate the coordinate planes that are 
perpendicular to the coordinate axes. The inter- 
sections of these planes are source point loca- 

tions. 
SHADRAC is available in FORTRAN IV language 

for use on IBM-7090 and -7094 computers. 

3A.5.   PROGRAMS BASED ON SPINNEY 
REMOVAL.DIFFUSION METHOD 

MAC    and   MAC-RAD   (CCC-22).    -    The   MAC 
code,71,127 originally developed by Hanford 
Atomic Products Operation and placed with RSIC 

by Pacific Northwest Laboratory, Battelle-North- 
west, calculates the neutron energy spectrum and 
dose rate and the gamma-ray dose rate as a func- 
tion of distance through large reactor shields of 
concrete or hydrogenous material in slab geometry. 
The results are given as multigroup neutron fluxes 
for as many as 35 energy groups and as neutron 
dose rates, approximate neutron spectra, total 
gamma-ray dose rates (with a breakdown of the 
contribution from each region in the shield), and 
approximate gamma-ray spectra. 

The code is based on the Spinney method, which 
uses a high-energy kernel as the source of neutrons 
in a multigroup diffusion procedure. This kernel 
is proportional to the energy-dependent removal 
flux, which is calculated similarly to the un- 
collided flux except for the use of a removal cross 
section equal in magnitude to the usual transport 
cross section. The removal flux, divided into 18 
groups, is calculated for neutrons above 0.5 MeV. 

The diffusion equation is reduced to a system of 
three first-order differential equations which are 
numerically integrated. In the MAC code the 
boundary conditions are the diffusion flux at 
the core-shield interface and a zero incoming flux 
at the outside edge of the shield. In the MAC-RAD 
code,128,72 originated by Allgemeine Elektricitats- 
Gasellschaft, Kernenergieanlagen at Frankfurt, 
Germany, the removal flux is added to the diffusion 
flux at the core-shield interface to obtain the input 
boundary value. In the first group the entire flux 
is removal flux. Secondary gamma-ray sources 
are discontinuous at boundaries. 

In both codes the gamma-ray dose rate is cal- 
culated for seven source energy groups by using 
buildup factor kernels. 

MAC and MAC-RAD are available in FORTRAN II 
language for use on the IBM-7090 computer. 

NRN (CCC-54). NRN, 73,74,129,130 a system 
of codes developed by Aktiebolaget Atomenergi, 
Stockholm, Sweden, is built around' the Spinney 
method of combining high-energy exponential atten- 
uation with low-energy diffusion. The high-energy 
exponentially attenuating flux is broken into 
several energy groups, each of which requires 
removal cross sections. 

Given a distribution of fissions (e.g., power 
distribution) in certain allowed geometric regions, 
NRN solves for neutron flux densities, absorption 
rates (from which secondary gamma-ray source 
rates may be determined), dose rates, and energy 

deposit rates (by energy groups) in primary knock- 
on atoms. Two of its auxiliary routines, REBOX 
and REMC, can be adapted to compute gamma-ray 
dose rates from gamma-ray sources in the central 
region (core). 

The routine NECO computes all the required 
macroscopic quantities, including removal cross 
sections, from the microscopic quantities and the 
material compositions. The calculation of removal 
cross sections is a unique feature of NRN. 

The exponential attenuation of the fasi group 
fluxes (removal fluxes) is carried out by the 
REBOX routine if the source region is a parallel- 
epiped or a large cylinder, and by the REMC 
routine if the source region is a sphere or a small 
cylinder. The integration over the source volume 
is carried out by a mesh-sum procedure in REBOX 
and by a Monte Carlo procedure in REMC. 

NEDI, a diffusion routine, uses as sources the 
removal fluxes in the shield region computed by 
REBOX or REMC. Since the geometry of NEDI 

is limited to multiregion infinite slabs, infinite 
cylinders, and spheres, there is a geometric 
inconsistency, except for the sphere, with REBOX 
and REMC. This is to be interpreted as an ap- 
proximation, not an error. NEDI further pro- 
vides for transverse bucklings in the slab and 
cylindrical cases in order to estimate the effect 
of truncating the infinite systems. NEDI solves 
the diffusion equation by preserving the form 
V-DV<1>, which should allow the cross sections 
within a region to be continuously varied, although 
no such provision has actually been included. 

The specification of reasonable external boundary 
conditions in the shield region is relatively simple, 
but the specification of reasonable internal 
boundary   conditions   is   very  difficult.     If  a sig- 
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nificant part of the final answer depends heavily 
upon the diffusion current or flux (rather than on 
the removal current or flux) at the interior shield 
boundary, this program should be used only with 
great circumspection. 

NRN is available in FORTRAN IV and MAP 
languages for use on IBM-7090 and -7044 com- 
puters. 

COMPRASH (CCC-72). - COMPRASH70-131 is 
the latest code made available in a series of 
programs developed by the Shielding Groups of the 
Atomic Energy Research Establishment at Harwell 
for calculating fast-neutron spectra, thermal- 
neutron flux densities, and secondary gamma-ray 
dose rates for reactor shields in slab geometry. 

It uses the two-step Spinney removal-diffusion 
method of calculating neutron transport. The 
basic assumption is that the penetrating component 
from a point source can be calculated by a kernel 
given by 

&0 (E,R) 
S f(£) e 

-ZiE)R 

4TTR' 

where 

®0(R) = removal flux density, 

/(£) = fission neutron spectrum, 

S = source normalization, 

Sr(£) = energy-dependent removal cross section, 

R = distance from source. 

The removal source function 

S(R,E) = 2r(E) ®0(E,R) 

is then made the source term in a conventional 
multigroup age-diffusion calculation to calculate 
the diffusing neutron spectra, including a thermal- 
neutron group. 

The value of the removal cross section is taken 
to be the usual transport cross section, an assump- 
tion that is justified by the remarkable success 
of the model in predicting the thermal-neutron flux 
densities measured in bulk concrete shields. 

The secondary gamma-ray transport is calculated 
with the use of an analytic form of the buildup 
factor. 

COMPRASH is written in FORTRAN II and FAP 
languages for use on the IBM-7090 computer. 

Appendix 3B.    Coefficients for 

Gamma-Ray Buildup Factors 

This appendix consists of tabulations of coeffi- 
cients for the Taylor, Berger, and polynomial forms 
of  the  empirical   equation for   gamma-ray buildup 

factors. The coefficients were determined from 
best fits to the data of Goldstein and Wilkins (see 
Section 3.8.1). 
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Table 3B.1.   Coefficients for the Taylor Form of the Dose Buildup Factor3 

Maximurr Deviation 
Material E (MeV) A -ai a2 (.%)" 

Water 0.5 100.845 0.12687 -0.10925 -27.4 /AX = 10 

1 19.601 0.09037 -0,02522 -10.8 fix = 10 

2 12.612 0.05320 0.01932 4.2 flX = 1 

3 11.110 0.03550 0.03206 1.7 fix = 1 

4 11.163 0.02543 0.03025 0.8 fix = 20 

6 8.385 0.01820 0.04164 -0.5 fix = 2 

8 4.635 0.02633 0.07097 0.6 fix = 7 

10 3.545 0.02991 0.08717 -0.7 fix = 1 

Aluminum 0.5 38.911 0.10015 -0.06312 -12.2 fix = 10 

1 28.782 0.06820 -0.02973 -8.6 fix = 10 

2 16.981 0.04588 0.00271 -5.2 fix = 10 

3 10.583 0.04066 0.02514 -2.5 fix = 10 

4 7.526 0.03973 0.03860 1.8 fix = 20 

6 5.713 0.03934 0.04347 1.6 fix = 20 

8 4.716 0.03837 0.04431 -1.3 fix = 15 

10 3.999 0.03900 0.04130 1.2 (tx = 20 

Barytes concrete 0.5 33.026 0.06129 -0.02883 7.5 fix = 2 

1 23.014 0.06255 -0.02217 8.9 fix = 20 

2 9.350 0.05700 0.03850 9.0 fix =2 

3 6.269 0.06064 0.04440 4.8 fix = 20 

4 4.730 0.06500 0.05883 4.8 fix = 2 

6 3.240 0.08000 0.06407 5.0 fix = 2 

8 2.167 0.09514 0.07857 1.3 fix = 20 

10 1.433 0.11201 0.13021 3.2 fix = 20 

Ferrophosphorous 0.5 61.341 0.07292 -0.05265 11.0 fix =2 

concrete 1 46.087 0.05202 -0.02845 10.3 fix = 2 

2 14.790 0.04720 0.00867 3.0 fix = 2 

3 10.399 0.04290 0.02211 2.6 fix = 20 

4 6.240 0.05280 0.03765 1.7 fix = 2 

6 4.425 0.05880 0.04262 -1.0 fix =2 

8 3.000 0.06750 0.05730 0.8 fix = 4 

10 2.279 0.07575 0.06438 0.4 fix = 6 

Ordinary concrete 0.5C 38.225 0.14824 -0.10579 -7.5 fix = 4 

1 25.507 0.07230 -0.01843 11.1 fix = 2 

2 18.089 0.04250 0.00849 4.9 fix =2 

3 13.640 0.03200 0.02022 4.3 fix = 2 

4 11.460 0.02600 0.02450 -5.1 fix = 2 

6 10.781 0.01520 0.02925 -2.7 fix = 2 

8 8.972 0.01300 0.02979 -3.7 fix = 2 

10 4.015 0.02880 0.06844 -2.2 fix = 2 

Magnetite concrete 0.5 75.471 0.07479 -0.05534 15.9 fix = 2 

1 49.916 0.05195 -0.02796 11.5 fix = 2 

2 14.260 0.04692 0.01531 4.0 fix = 2 

3 8.160 0.04700 0.04590 5.0 fix = 2 

4 5.580 0.05200 0.05728 2.7 fix = 2 

6 3.437 0.06000 0.11520 4.3 fix = 4 

8 2.480 0.06645 0.14002 4.0 fix = 20 

10 1.743 0.08082 0.27209 5.3 fix = 20 
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Table 3B.1 (continued) 

Material E (MeV) -«-. 
Maximum Deviation 

Iron 

Lead 

Tin 

Tungsten 

Uranium 

0.5 31.379 0.06842 -0.03742 -6.5 fix = 10 

1 24.957 0.06086 -0.02463 -6.4 fix = 10 

2 17.622 0.04627 -0.00526 4.0 fix = 2 

3 13.218 0.04431 -0.00087 -3.0 fix = 10 

4 9.624 0.04698 0.00175 -2.7 fix = 10 

6 5.867 0.06150 -0.00186 2.1 fix = 20 

8 3.243 0.07500 0.02123 3.8 fix = 4 

10 1.747 0.09900 0.06627 3.7 fix = 2 

0.5C 1.677 0.03084 0.30941 -0.8 fix = 10 

1 2.984 0.03503 0.13486 -1.0 fix = 1 

2 5.421 0.03482 0.04379 -0.6 fix = 1 

3 5.580 0.05422 0.00611 1.3 fix = 4 

4 3.897 0.08468 -0.02383 1.4 fix = 20 

6 0.926 0.17860 -0.04635 1.3 fix =20 

8 0.368 0.23691 -0.05684 1.8 fix = 15 

10 0.311 0.24024 -0.02783 -0.5 fix = l 

0.5C 11.440 0.01800 0.03187 -1.6 fix = 1 

1 11.426 0.04266 0.01606 -2.6 fix = 10 

2 8.783 0.05349 0.01505 -2.8 fix = 10 

3 5.400 0.07440 0.02080 4.3 fix =20 

4 3.496 0.09517 0.02598 -3.9 fix = 10 

6 2.005 0.13733 -0.01501 -2.8 fix = 10 

8 1.101 0.17288 -0.01787 -3.4 fix = 15 

10 0.708 0.19200 0.01552 2.6 fix = 15 

0.5C 2.655 0.01740 0.11340 -4.9 fix = 2 

lc 3.234 0.04754 0.13058 -0.9 fix = 10 

2C 3.504 0.06053 0.08862 2.1 fix = 10 

3 4.722 0.06468 0.01404 -2.4 fix = 10 

4 5.520 0.08857 -0.04570 1.3 fix = 20 

6 1.273 0.17257 -0.12178 -2.9 fix = 15 

8 0.664 0.20710 0.04692 1.4 fix = 10 

10 0.509 0.21743 0.05025 -3.6 fix = 15 

0.5° 1.444 0.02459 0.35167 -0.9 fix = 10 

lc 2.081 0.03862 0.22639 -0.7 fix = 10 

2C 3.287 0.03997 0.08635 -0.5 fix = l 

3 4.883 0.04950 0.00981 -0.9 fix = 15 

4 2.800 0.08240 0.00370 1.4 fix = 4 

6 0.975 0.15886 0.21101 -2.2 fix = 15 

8 0.602 0.19189 0.02774 -2.1 fix = 15 

10 0.399 0.21314 0.02083 -2.9 fix = 15 

Table taken from: S. Buscaglione and R. Manzini, Build-Up Factors: Coefficients of the Equation of J. J. 
Taylor, Oak Ridge National Laboratory Report ORNL-tr-80[translated from Comitato Nazionale per l'Energia Nucleare 
Report RT/FI (65)7 (January 1965)]. 

The values of fix given in this column are the values for which the corresponding errors are valid. 

''For some materials the values of the buildup factor for given energies are known only in the interval of 1  = fix 
15.   In these cases, the parameters are valid up to fix = 15. 

< 
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Table 3B.2.   Coefficients for the Polynomial Form of the Dose Buildup Factor* 

Maximum Average 

Material E (MeV) £o 0. ß2 ^3 
Deviation 

(%)" 

Deviation 

(%) 

Ordinary concrete 1 5.1902(-l)c 1.6152(   0 5.4702(-2) 1.8803(-3) -3.6, fix =4 1.8 

2 7.7342(-l) 9.1835(-1 2.7260(-2) -3.9911(-4) 1.2, /xx = 2 0.4 

3 1.0530(  0) 6.3743(-l 1.6185(-2) -3.8875(-4) -3.9, fix = 2 1.2 

4 1.1506(   0) 4.9800(-l 1.0547(-2) -2.9613(-4) -1.9, fix = 8 0.8 

5 1.1806(   0) 4.1634(-1 7.2376(-3) -2.2268(-4) 2.8, fix =2 1.3 

6 1.1846(   0) 3.6314(-1 5.0942(-3) -1.6888(-4) 2.1, [ix = 8 0.9 

7 1.1784(   0) 3.2590(-l 3.6051(-1) -1.2895(-4) -1.3, /ix = 4 0.4 

Magnetite concrete 1 5.2780(-l) 1.1562(   0 9.7936(-2) -1.4084(-3) 1.8, \ix = 20 0.8 

2 9.3721(-1) 8.0638(-l) 3.1686(-2) -4.9503(-4) 1.5, \ix =8 0.6 

3 9.5856(-l) 6.5113(-1) 1.3680(-2) -2.0725C-4) —1.6, fix = 4 0.6 

4 9.7216(-1) 5.3998(-l) 7.8749(-3) -1.0316(-4) -2.3, fix = 10 1.7 

5 9.8690(-l) 4.5747(-l) 5.8668(-3) -6.0375C-5) 1.8, fix = 10 1.0 
6 1.0GM0(   0) 3.9452(-l) 5.2611(-3) -4.1859(-5) 3.0, fix = 10 2.3 

7 1.0237(   0) 3.4521(-1) 5.2272(-3) -3.4147(-5) 2.6, \lx =8 1.4 

Ferrophosphorus 1 5.2446(-l) 1.1570(   0) 6.6197(-2) -2.6909(-4) 1.4, [ix = 10 0.7 
concrete 2 9.0796(-l) 8.0470(-l) 2.4051(-2) -1.3747(-4) 1.4, \ix = 20 0.5 

3 9.7879(-l) 6.3258(-l) 1.3122(-2) -2.8460(-5) -3.6, \ix = 20 1.1 

4 9.9224(-l) 5.2504(-l) 8.2727(-3) 8.2210(-5) -2.0, fix = 12 1.5 

5 9.9175(-1) 4.5156(-1) 5.5458(-3) 1.7478(-4) 2.6, fix = 20 1.0 

6 9.8751(-1) 3.9831(-1) 3.7988(-3) 2.4954(-4) 3.3, fix = 20 2.4 

7 9.8244(-l) 3.5799(-l) 2.5837(-3) 3.1005(-4) 2.4, fix = 6 1.6 

Barytes concrete 1 1.4863(   0) 4.2184(-1) 1.3686(-1) -2.7616(-3) 2.1, px = 4 1.0 

2 1.0139(   0) 6.7003(-l) 3.5826(-2) -5.2672(-4) 2.2, fix = 8 1.1 
3 9.3467(-l) 5.9469(-l) 2.0106(-2) -2.9295(-4) —5.4, pc = 6 2.6 

4 9.1379(-1) 5.1277(-1) 1.3442(-2) -5.069K-5) -3.8, /xx = 14 2.2 
5 9.0721(-1) 4.4778(-l) 9.2573(-3) 1.8044(-4) 2.4, pr = 8 1.5 
6 9.0525(-l) 3.9750C-1) 6.2307(-3) 3.8250(-4) 5.3, fix =8 3.8 

7 9.0500(-l) 3.5806(-l) 3.8974(-3) 5.5449(-4) 4.0, /« =8 2.9 

Table taken from: S. Buscaglione and R. Manzini, On the Build-Up Factors of Concrete: Coefficients of the 
Polynomial Representation, Oak Ridge National Laboratory Report ORNL-tr-349 [translated from Comitato Nazionale 
per l'Energia  Nucleare  Report CEC-94 (June 1964)]. 

The values of fix given in this column are the values for which the corresponding errors are valid. 

°Read:   5.1902 x 10-1, etc. 
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Table 3B.3.   Coefficients for Linear, Quadratic, and Berger Forms of Dose Buildup Factors Fitted 

over the Range 0 to 7 Mean Free Paths from Point Isotropie Source0 

Maximum Maximum Maximum 
Material E (MeV) Al 

Error 

(%)6 

A
2 

b Error 

(%) 

C D Error 

(%) 

Water 0.255 8.6524 F3.1 -0.2525 1.4984 30 1.7506 0.2609 10 

O.S 4.6800 F2.3 0.6684 0.6750 8 1.3245 0.2078 5 
1 1.9953 40 1.0053 0.1666 2 1.0622 0.1052 3 

2 1.0301 10 0.8242 0.0346 2 0.8093 0.0408 1 

3 0.7397 3 0.6962 0.0073 0.6876 0.0125 1 
4 0.5884 1 0.5801 0.0014 0.5800 0.0024 1 
6 0.4321 3 0.4616 -0.0050 0.4655 -0.0126 1 
8 0.3406 4 0.3782 -0.0063 0.3860 -0.0214 1 

10 0.2877 4 0.3251 -0.0063 0.3342 -0.0257 1 

Aluminum 0.5 2.6461 F1.5 1.0688 0.2654 2 1.2435 0.1250 3 
1 1.6089 30 0.9316 0.1140 2 0.9589 0.0864 3 
2 0.9686 13 0.7437 0.0378 2 0.7267 0.0486 2 
3 0.7197 5 0.6355 0.0142 0.6294 0.0227 
4 0.5663 3 0.5284 0.0064 0.5253 0.0127 
6 0.4334 2 0.4142 0.0032 0.4177 0.0061 
8 0.3476 1 0.3346 0.0022 0.3371 0.0050 

10 0.2847 2 0.2715 0.0022 0.2752 0.0055 

Iron 0.5 1.4283 25 0.8642 0.0949 0.9081 0.0752 2 
1 1.2373 20 0.8026 0.0731 0.8214 0.0684 2 
2 0.8556 12 0.6526 0.0342 0.7020 0.0319 3 
3 0.6691 9 0.5338 0.0228 0.5323 0.0384 
4 0.5403 7 0.4366 0.0175 0.4366 0.0358 
6 0.4297 8 0.3237 0.0178 0.3271 0.0457 
8 0.3391 8 0.2473 0.0154 0.2563 0.0464 

10 0.2681 8 0.1785 0.0151 0.1876 0.0592 

Tin 0.5 0.5153 3 0.5479 -0.0055 0.5608 -0.0146 
1 0.7199 6 0.6153 0.0176 0.6219 0.0244 
2 0.6731 8 0.5455 0.0215 0.5498 0.0338 
3 0.5837 11 0.4284 0.0261 0.4379 0.0479 
4 0.5146 12 0.3420 0.0290 0.3583 0.0601 
6 0.4153 17 0.2082 0.0348 2 0.2369 0.0925 
8 0.3317 17 0.1371 0.0327 2 0.1692 0,1103 

10 0.2550 16 0.0945 0.0270 2 0.1232 0.1190 

Tungsten 0.5 0.1903 8 0.2692 -0.0133 2 0.2938 -0.0751 
.1 0.3817 5 0.4269 -0.0076 2 0.4425 -0.0255 
2 0.4376 2 0.4164 0.0036 1 0.4172 0.0080 
3 0.4171 5 0.3515 0.0110 1 0.3501 0.0295 
4 0.4054 12 0.2540 0.0255 1 0.2710 0.0666 
6 0.3363 17 0.1435 0.0324 2 0.1771 0.1049 
8 0.2624 16 0.0957 0.0281 2 0.1245 0.1223 

10 0.2073 14 0.0748 0.0223 2 0.0974 0.1238 
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Table 3B.3 (continued) 

Maximum Maximum Maximum 

Material               E (MeV) Al 
Error 

^2 
b Error 

(%) 

C D Error 

(%) 

Lead                                     0.5 0.1549 8 0.2273 -0.0122 3 0.2526 -0.0848 2 

1 0.2990 6 0.3613 -0.0105 2 0.3779 -0.0403 

2 0.3796 1 0.3787 0.0001 1 0.3862 0.0032 

3 0.3810 5 0.3164 0.0109 1 0.3267 0.0253 

4 0.3523 10 0.2389 0.0191 1 0.2530 0.0547 

5.1 0.3219 13 0.1747 0.0248 1 0.1936 0.0839 

6 0.3034 15 0.1346 0.0284 2 0.1622 0.1027 

8 0.2419 15 0.0894 0.0257 3 0.1220 0.1112 2 

10 0.1933 13 0.0642 0.0217 3 0.0939 0.1167 2 

Uranium                               0.5 0.1054 7 0.1637 -0.0098 2 0.1825 -0.0951 2 

1 0.2264 7 0.2990 -0.0122 2 0.3204 -0.0599 2 

2 0.3023 3 0.3250 -0.0038 0.3321 -0.0162 

3 0.3169 4 0.2760 0.0069 0.2814 0.0196 

4 0.3010 7 0.2199 0.0136 0.2283 0.0458 

6 0.2571 12 0.1314 0.0212 0.1476 0.0916 

8 0.2081 12 0.0885 0.0201 0.1081 0.1076 

10 0.1621 11 0.0638 0.0165 0.0798 0.1163 

Ordinary concrete           0.5 3.7443 30 1.3563 0.4018 1.4489 0.1586 10 

1 1.9057 40 1.0980 0.1359 1.0448 0.1014 7 

2 1.0226 12 0.8238 0.0335 2 0.8062 0.0403 2 

3 0.7303 7 0.6189 0.0187 1 0.6267 0.0254 1 

4 0.5736 5 0.6106 -0.0062 3 0.6451 -0.0207 3 

6 0.4329 6 0.4667 -0.0057 4 0.5086 -0.0286 3 

8 0.3376 6 0.3794 -0.0070 3 0.4085 -0.0334 2 

10 0.2923 5 0.3344 -0.0071 3 0.3584 -0.0356 2 

Ferrophosphorous           0.5 1.9407 F1.5 0.9330 0.1696 8 0.9059 0.1283 8 

concrete                           1 1.4657 30 0.8542 0.1029 3 0.8467 0.0921 5 

2 0.9264 10 0.7481 0.0300 2 0.7327 0.0397 2 

3 0.6996 4 0.6198 0.0134 1 0.6331 0.0164 1 

4 0.5611 6 0.4980 0.0106 2 0.4879 0.0237 2 

6 0.4399 2 0.4119 0.0047 2 0.4346 0.0011 2 

8 0.3493 2 0.3243 0.0042 2 0.3390 0.0043 2 

10 0.2827 3 0.2574 0.0043 1 0.2563 0.0165 1 

Magnetite concrete         0.5 2.3150 F1.5 0.9510 0.2295 3 1.1049 0.1221 4 

1 1.6021 33 0.8847 0.1207 3 0.9006 0.0965 4 

2 0.9757 10 0.7636 0.0357 2 0.7770 0.0380 1 

3 0.7110 5 0.6163 0.0159 2 0.6321 0.0194 1 

4 0.5634 4 0.5177 0.0077 1 0.5241 0.0119 2 

6 0.4410 2 0.4200 0.0035 2 0.4401 -0.0004 2 

8 0.3391 2 0.3127 0.0044 1 0.3225 0.0080 1 

10 0.2840 2 0.2670 0.0029 1 0.2682 0.0096 1 
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Table 3B.3 (continued) 

Material E(MeV) 

Maximum 

Error 

(%)b 

Barytes concrete 0.5 

1 

2 

3 

4 

6 

8 

10 

1.4414 

1.2066 

0.8740 

0.6556 

0.5634 

0.4571 

0.3519 

0.2684 

23 

21 

10 

6 

9 

10 

5 

7 

0.8769 

0.7599 

0.6886 

0.5345 

0.4682 

0.3344 

0.2836 

0.1894 

0.0950 

0.0752 

0.0312 

0.0204 

0.0160 

0.0207 

0.0115 

0.0133 

Maximum 

Error 

(%) 

Ö.9313 

0.7764 

0.7006 

0.5508 

0.4413 

0.3342 

0.2901 

0.1990 

0.0724 

0.0737 

0.0368 

0.0289 

0.0418 

0.0525 

0.0321 

0.0495 

Maximum 

Error 

(%) 

aFrom D.  K.  Trubey, A Survey of Empirical Functions Used to Fit Gamma-Ray Buildup Factors, Oak Ridee Na- 
tional Laboratory Report ORNL-RSIC-10 (February 1966). 

F3.1 means "factor of 3.1," etc. 

Table 3B.4.   Coefficients for Linear, Quadratic, and Berger Forms of Dose Buildup Factors Fitted 

over the Range 0 to 20 Mean Free Paths from Point Isotropie Sources3 

Maximum Maximum Maximum 
Material E (MeV) Al 

Error 

(%)6 

A
2 b Error 

(%)b 

C D Error 

(%) 

Water 0.255 36.1015 F12 -12.9947 3.0515 F°o 2.5048 0.1623 30 
0.5 13.0926 F5.6 -0.9744 0.8743 F3 1.8035 0.1224 25 
1 3.4788 F2 1.1152 0.1469 6 1.2282 0.0649 11 
2 1.2549 25 0.9173 0.0210 6 0.8594 0.0240 5 
3 0.7863 6 0.7218 0.0040 2 0.7004 0.0074 2 
4 0.5951 1 0.5907 0.0003 1 0.5826 0.0014 1 
6 0.4030 5 0.4471 -0.0027 2 0.4853 -0.0082 1 
8 0.3085 7 0.3561 -0.0038 2 0.3741 -0.0124 2 

10 :0.2584 7 0.3002 -0.0026 3 0.3206 -0.0139 2 

Aluminum 0.5 5.7374 F3 0.6696 0.3150 20 1.4412 0.0850 12 
1 2.5385 F1.9 1.1185 0.0883 10 1.0831 0.0535 9 
2 1.1928 30 0.8751 0.0197 8 0.7869 0.0266 6 
3 0.8061 12 0.6812 0.0078 3 0.6504 0.0137 3 
4 0.6075 6 0.5503 0.0036 2 0.5343 0.0082 2 
6 0.4626 6 0.4252 0.0023 2 0.4182 0.0063 1 
8 0.3697 5 0.3395 0.0019 1 0.3366 0.0058 1 

10 0.3087 5 0.2750 0.0021 1 0.2738 0.0074 1 
Iron 0.5 2.3773 F1.9 0.9019 0.0917 3 0.9814 0.0548 7 

1 1.8643 F1.6 0.9212 0.0586 7 0.8932 0.0460 7 
2 1.1194 33 0.7423 0.0234 6 0.7173 0.0277 4 
3 0.8446 25 0.5840 0.0162 4 0.5571 0.0261 4 
4 0.6942 25 0.4605 0.0145 2 0.4518 0.0268 3 
6 0.6134 34 0.3201 0.0182 1 0.3381 0.0368 3 
8 0.5245 40 0.2207 0.0189 3 0.2603 0.0428 2 

10 0.4759 50 0.1143 0.0225 6 0.1902 0.0553 1 
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Table 3B.4 (continued) 

Maximum Maximum Maximum 
Material E (MeV) Al 

Error 

(%)" 
A2 b Error 

(%)b 

C D Error 

(%) 

Tin 0.5 0.5090 4 0.5150 -0.0005 3 0.5457 -0.0063 3 
1 0.8495 18 0.6666 0.0114 3 0.6378 0.0180 3 
2 0.8521 25 0.5826 0.0168 3 0.5678 0.0254 3 
3 0.8509 40 0.4254 0.0264 1 0.4533 0.0388 3 
4 0.8643 F1.58 0.2845 0.0360 ■ 5 0.3700 0.0518 3 
6 1.0786 F2.2 -0.1374 0.0756 40 0.2401 0.0891 2 
8 1.1907 F2.8 -0.4693 0.1032 F3 0.1669 0.1145 1 

10 1.1075 F3.0 -0.6523 0.1094 F12 0.1190 0.1278 5 

Tungsten 0.5 0.1550 13 0.2206 -0.0054 5 0.2692 -0.0477 5 
1 0.3382 9 0.4149 -0.0048 2 0.4279 -0.0150 2 
2 0.4671 8 0.4072 0.0037 3 0.4163 0.0070 4 
3 0.5919 30 0.3255 0.0165 2 0.3484 0.0324 2 
4 0.8102 F1.8 0.0995 0.0442 15 0.2727 0.0653 1 
6 1.2616 F3 -0.5462 0.1124 F4 0.1704 0.1160 2 
8 1.3753 F3.5 -0.9399 0.1439 FCXJ 0.1161 0.1405 6 

10 1.2730 F3.8 -0.9502 0.1.382 F°o 0.0882 0.1510 7 

Lead 0.5 0.1043 15 0.1791 -0.0047 5 0.2243 -0.0500 5 
1 0.2549 11 0.3133 -0.0036 5 0.3530 -0.0211 4 
2 0.3947 3 0.3695 0.0015 2 0.3791 0.0021 1 
3 0.5123 30 0.2990 0.0133 2 0.3244 0.0279 1 
4 0.6378 F1.6 0.1449 0.0306 10 0.2526 0.0557 1 
5.1 0.8560 F2.1 -0.1480 0.0624 40 0.1904 0.0883 2 
6 1.1247 F2.8 -0.5070 0.1014 F4 0.1554 0.1143 4 
8 1.4165 F4 -1.1408 0.1589 F °° 0.1075 0.1440 12 

10 1.2370 F4 -1.0279 0.1408 F <x> 0.0824 0.1513 12 

Uranium 0.5 0.0812 11 0.1262 -0.0037 5 0.1635 -0.0606 5 
1 0.1914 11 0.2556 -0.0053 5 0.2991 -0.0385 5 
2 0.2838 5 0.3185 -0.0022 2 0.3240 -0.0084 2 
3 0.4081 20 0.2614 0.0091 2 0.2781 0.0234 1 
4 0.4991 43 0.1621 0.0210 6 0.2273 0.0475 1 
6 0.8088 F2.3 -0.2492 0.0658 F2 0.1426 0.1011 2 
8 0.9323 F2.9 -0.5357 0.0912 F5 0.1004 0.1274 5 

10 0.9203 F3.3 -0.6560 0.0980 F oo 0.0721 0.1442 7 

Ordinary concrete 0.5 5.0124 F2.3 0.8341 0.5016 10 1.5177 0.1413 12 
1 2.9917 F2 1.1821 0.1125 10 1.2208 0.0562 11 
2 1.2334 25 0.9344 0.0186 7 0.8579 0.0231 5 
3 0.7857 12 0.7141 0.0044 6 0.6589 0.0115 5 
4 0.5942 4 0.5662 0.0017 5 0.6056 -0.0018 4 
6 0.4145 5 0.4440 -0.0018 5 0.4769 -0.0093 4 
8 0.3200 4 0.3445 -0.0015 5 0.3789 -0.0113 4 

10 0.2737 5 0.3015 -0.0017 5 0.3318 -0.0128 4 
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Table 3B.4 (continued) 

Maximum Maximum Maximum 
Material E (MeV) Al Error 

(%)b 

A
2 b Error 

(%)" 

C D Error 

(%) 

Ferropho sphorous 0.5 3.4067 F2.2 1.1051 0.1431 15 1.1098 0.0704 15 
concrete 1 2.1096 F1.7 1.1170 0.0617 15 0.9892 0.0481 10 

2 1.1583 30 0.7992 0.0223 4 0.7703 0.0256 3 
3 0.8138 16 0.6488 0.0103 2 0.6373 0.0152 2 
4 0.6702 16 0.4923 0.0111 2 0.4966 0.0186 2 
6 0.5469 18 0.3622 0.0115 5 0.4118 0.0167 3 
8 0.4477 19 0.2692 OiOlll 5 0.3207 0.0196 4 

10 0.3972 25 0.1971 0.0124 5 0.2456 0.0287 3 

Magnetite concrete 0.5 4.2793 F2.5 1.4544 0.1756 23 1.3246 0.0736 18 
1 2.3058 F1.7 1.2562 0.0652 20 1.0651 0.0492 12 
2 1.1752 25 0.8756 0.0186 5 0.8208 0.0227 5 
3 0.8098 15 0.6616 0.0092 3 0.6445 0.0143 2 
4 0.6263 10 0.5280 0.0061 2 0.5265 0.0108 1 
6 0.4781 7 0.4257 0.0033 2 0.4312 0.0062 2 
8 0.3805 9 0.3195 0.0038 2 0.3204 0.0106 2 

10 0.3399 12 0.2428 0.0060 3 0.2623 0.0156 2 

Barytes concrete 0.5 2.2489 F1.8 1.1064 0.0710 11 1.0183 0.0496 10 
1 1.8761 F1.7 1.0022 0.0543 14 0.8555 0.0495 12 
2 1.1122 30 0.7591 0.0219 4 0.7291 0.0265 4 
3 0.8068 24 0.6047 0.0126 6 0.5673 0.0222 4 
4 0.6873 21 0.4913 0.0122 4 0.4689 0.0242 4 
6 0.6277 30 0.3420 0.0178 2 0.3542 0.0355 4 
8 0.5574 40 0.1882 0.0229 10 0.2806 0.0409 3 

10 0.4943 50 0.0936 0.0249 10 0.1949 0.0555 2 

From D. K.  Trabey, A Survey of Empirical Functions Used to Fit Gamma-Ray Buildup Factors, Oak Ridge Na- 
tional Laboratory Report ORNL-RSIC-10 (February 1966). B 

Fl2 means "factor of 12," etc. 

Appendix 3C.   Graphs and Formulas of Exponential 

and Exponential Integral Functions 

Several exponential functions that are extremely 
useful in shielding calculations are presented in 
this appendix. They include the exponential func- 
tion e~x and the exponential integral functions 
£„(*),   which  are  expressed  in  integral  form  by { 

*-y 
dy 

£n« 
dy 

— XV     ' -xy 

(Cl) 

(C2) 
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w = J yn E_(x)=    I    yn~2 e-x/y dy , 
'o 

(C3) 

and in series form by 

*„(*> =    I (-*)" 

0    (n - 1 - m) ; 
m^n— 1 

..n-1 
+ (-1)" (to yx - An )   ,   (C4) 

(n - D! 

where 

In y = 0.577216 

^ = 0, 

n- 1 

K- I 
l 

and n = 0, 1, 2, 3, ... .   The recursion relation for 
the exponential integrals is 

1 
En(x) =  [e-x - xE      (x)]     (ref. 132) .   (C5) 

n — 1 "~l 

In particular, the first-order exponential integral 
is given by 

r"1 e-y 

dy 

and the series representation by 

(-1)" x" 

(C6) 

£j(x) = - lnyx -   2] (C7) 

In some publications the E^x) function is denoted 
by -Ei'(-x); that is, Ex(x) = -E/'(-x). In using 
tables of the exponential function, caution should 
always be exercised so as not to confuse —Ei(—x) 
with —£f(x), which is defined below. 

For negative arguments, the E ^x) function is 
frequently denoted by the symbol Ei(x), which is 
defined by 

Ei(x) ■s: dy (C8) 

and related to Ej(—x) by 

-£i(x) = E1(-x)=   J 
dy 

(C9) 

Graphs  of e~x and En(x) for n = 1, 2, and 3 are 
presented   in Figs.  3C.1 through 3C.6   (from ref. 
134).    The function Ei(x) is plotted in Figs. 3C.7 
through 3C.10 (from ref. 133). 

Some   approximations that are frequently useful 
are 

e_x e~x 

 ,<E(X)<  „> 
x+n x + n — 1 

,       nil, (CIO) 

En(x) = {1 - (n/x) + [n(n + l)/x2] 

- [n(n + l)(n + 2)/x3] + ...j , 

x » 1 ,        n = 0 ,       (Cll) 

En(x) = i(l + x + n)/[x + (x + n)2]! e~x , 

x > 1       (ref. 135) ,       (C12) 

Ei'(x) = e> X(LU2±\+(*±i+... xl    vx2/    VxV    \x< 

x > 10 .        (C13) 

Further   information concerning the exponential 
integrals can be found in ref. 136. 
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Fig.   3C.1.     The   Functions   e   x,  E.(x), EAx),  and E~{x) for  x = 0 to 0.7.    (Plotted from data tabulated in ref. 

133.) 
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Fig. 3C.2.    The Functions e_x, E}(x), Ej(x), and Ej(x) f or x = 0 to 3.    (Plotted from data tobulated in ref.  133.) 
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Fig. 3C.3.    The Functions e   x, E} (x), E2(x), and E3(x) for x = 3 to 9.    (Plotted from data tabulated in ref. 133.) 
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Fig. 3C.4.    The Functions e~x, E. (x), E2(x), and.E,(x) f or x = 8 to 15.    (Plotted from data tabulated in ref. 133.) 
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Fig,   3C.5.     The   Functions  e~x, E. (x), E^x),  and Ej(x) for  x =  13 to 20.    (Plotted from data tabulated in ref. 

133.) 
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Fig. 3C.7.   The Function E] (x) for Negative Arguments.   (Plotted from data tabulated in ref. 134.) 
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Fig. 3C.8.    The Function E.(x) for Negative Arguments.    (Plotted from data tabulated in ref. 134.) 



85 

2-CM-059-532 
■10 

-10e 

-\0~ 

-10" 

-10w 

-10£ 

i   j   :   : +-—H—r trr- ,,;;;■■!■    ; :+:=4:::;=i::jS-l- 
Nil         i                                 i             i                                     .'T : ■ ■ 

:   :       :       : N : :    : ; ; ;    ■ : ; :    : : ; ■    N * •    i. }:,u   j   ■; J- " 
:   •       i      .;   ; ~TT        ! '"-'-i-j 1—T—f—i F M |--4-n"F*r^*^- 

- '-..'- ■ 

:         I    !         :    ■    ■    :         :    :    :    ':         ■    i    '    f          :.[.;.-":     F '4--   T 7- ~": "4- - --  - ~ .- 

:    i    •    •         i    i    i    i         i    i    i    i         :    :    :    :              it.--      .]-; :;- "■: ■- ■= ^    |.-V --~-.;. }" 
i :                : :     :                        t   T D     '"- .:-. .-.'--- -I-:.;:=:.i" 7:7. 

;;4f;..j-.i::^-:-:p-i£-Ll=rEFJE^z 

; I                 : :     : : : :     : : : :   A'M  '^'f^'rM\^^Z 
' N :    : : : :    : : : :    : : : : 4"f-n"-:;::ffi■■-..:.|.i::7.777: 7-7 

!■   1   .   ! '   1   t   • ■                 ] -i-^44-34irr3iixnxiDiajiti:_ ih±— 
—i-—f— 

:::::;::        :   :   r   ;        ■   •   ]   ■        ■    ■    ■             '■   i                          :                 :        ! 

i : . . ; : : : 1 ,   1   i   . 
!  i   M i ' { i 1—i i i i—Nji—i 1 i 1—ji ; j—; 1 1 j—■ i j 1—1 i j i 

i   !        ■ j   1 _TJ-t---TTi^-r+T-h_!-r-f-T-4-H-i—H—\-~:     ' '     'II 
i   :          J_  • 

:   :    :   i        !   i   ':'.::   i   •        i        |            i    :    N        i    :        !        :   !   i   !            :   •   ! 
N      i   :   !   ! •   ;   i   i      :   i   !   :      :   i  :   :       •   !   •  j      ;  ;   •   •      j   •   !  !      Mi:      i   '   I  ] 

•':.:•';  i  •'•      : .f : ;      :!•;-:•••      !  ! : j      :  r |  ;     •!  •  •  : 

: : T : : r: ■:" " : i:i     H 4 ":■':■■ I" " 1' 1 "| i- :f;H'T; ! Y \ \ \ \    \\\\  -\\\ \    \\\\ 

-i  ; .;—t— 
■(■ i i-h -T--J 4-.) 1 4 i 

'     r4 

~TJJt ;p:tJi#r fir- -i--|-  ~r 
o^^äfp^-^^i^iis^i-iipp--■■■■■■ p. -t p   -  Yjp 

I 1 r-'f- , ■■ hi --- i\ t-Lffl'"-l\ -* - :' -"pti"- • i±i  JS?Z .N MrNi- J   ' f- -r-41-I-.-M,-.-j-:--.--, 7t:.i7f+ - ;r,ifh-r-TV- '*' 1 
- : '.   - i-ff-T 'TT rf^N 4 ■I!-- -- i:j=:7|.:!^-f -NN .pU -.^Hj    1. .{J^'J    jj 

if" <  l ill] ::     1     .     ;   . ■M-Nr ft ■■ 4 N- '     -I: -.-■ : L-4--ii=-^ -i.-.   ;    1    --.-■:.■■■.•,... j. i_-j   I          -^    -  ^-: ..-4--^ ^--   -       --     I • 

:    ;    :   .: I Mr ■ r -_1_ - ■>■■_)- _i-----4-j^4—t-r'     -   H| r-TT/    "-It:   r- 
;  ; •■ • I -   T'f 

■ iHi  J .  '  r*i |+---|.-i,l "■1" iv p r-. ,;-'^. r :" T"    1 '■•' - 1    ■' '   '    "*'■*}': 'I-        T::JFT --J- ■■■-! J- '-"I  "      T- 

-i-"H "j/..J..J-. |,j...t.l}. .j-tr$_..ji,ji,d. t,,    ini-.Jf..-. 4 -t1 t+tj 
" r : --1 ;-. 44NM4-E: 

T f   "T ":r ;[n'-1Fr-M-j ■ Ml- W^|l   1 ii"^T 
: r':. V- ■i.H ;■ /;.I TT';-;f:4 

:'::?:v "•..' 1 ]' : * ■ 
f--T       --t    1-    -     ( 

-|fuln{:T;|i;4^jr|;  ) \ j f   f{t]   ]ii; 
'      !     ;     i i    i     i    ! 1   t'l Mi   it N-:   'Hi 'I'M t" ':JT T <*^::i= 1TF i' ■  -B- .! -i 4f ' M i -T- i '■ ■•' -| «4 l-'H 1   It i'ltj ■   -]t    J^^ 1 ' ! '   11       I ^~      ^^-R-r 

:   1   :   i ' >i-\- ■   ! r>n  )■-■- -11.   1!   !  .!       -. t TTT 
)■ ::?   :     4   • ! --    1    p iy)    !"■:.    j-V'         i    i.rl      I I    -I    i                   :-■     i !~ 

|'L;    1 rl   't ■'-(*"'    1 ■■   jfl.    1 "TTT   T—rr                      -1-      -H- 
.:    '  -      S   i   .    ,- HTj-j   ^114-.    -i        4    4   4.              iJ       ■1..,                  --       4 1 

; r : :     : j 
N N.    1- >. ! •■■    i ] N !■ jyrT    1 i j ;    • i    !     i■   i 1    1       ! ■ .'                                i ; 

<?i '■ i    N i :    it   i ■ !.  i !    j i . i    '■    i    .   ill    IN1 

j^< Nil   Mil   \\\]   i'i N   MM   MM   M. M   i\\\ 
. 

i     i     i     : |    ■    ;    ■ j   ; ü-^-     ! 
[     "          I     ' ', i 1 1 i j ;     1 , 1 1   i . 1     -1,1   II ]""f ;iti   1 1 1 | 

:     '    :    i 
:           !     : 

i i i i     : : ! ;     ■             : i !     " ; ' : I     ' ' = :     j ■ 
,    :                 -.:■:■                      - 

'      i      !      : it          1     j     i     ! M , 1     ! !           1 1     ; [• -j|     11 1 I     j 1 ! ,     j | | j     i j j ! :                            '     : 
i  '            i  i  ■         :     i         i     ;■■;;•!      i  ! i        i  : i  '     ;  : 

■:•■;; i .     ;                             '        ■     ;                    ' 

1 
'■ 

-7 -8 -9 -10 -11 

x 

-12 -13 -14 

Fig. 3C.9.   The Function E,(x) for Negative Arguments.    (Plotted from data tabulated in ref. 134.) 
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Fig. 3C.10.    The Function E. (x) for Negative Arguments.    (Plotted from data tabulated in ref.  134.) 
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Appendix 3D.   Tables of Attenuation Functions 
for Finite Slab Geometry 

This appendix consists of tabulations of attenua- 
tion functions for slab shields and disk or rec- 
tangular sources obtained by integrating over a 
point kernel of the form given for gamma rays in 
Section 3.8.1. The geometry for the disk-source 
configuration is shown in Figs. 3.4 and 3.5, and 
that   for  the   rectangular-source  configuration  is 

shown in Fig. 3.6. Data are presented for sources 
with both isotropic and cosine angular distribu- 
tions, the isotropic-source data being taken from 
the work of Hubbell et al. 5 ° and the cosine-source 
data from the work of Trubey.51 

The   use of these attenuation functions is ex- 
plained in Section 3.8.1. 

Table 3D.1.   Unscattered Flux from a Disk Source with an Isotropic Angular Distribution' 

z/ro        f 
4nT/S G(£) 

Pl'o = 0 p/r0=0.2 p/r0=0.5 P/'„ = 0.8 p/r„ = 1.0 p/r0 = 1.2 P/r0 = 1-5 p/r0=2.0 p/r0 = 5.0 p/r0 = 10.0 

0.1         0 1.45(1)* 1.44(1) 1.36(1) 1.15(1) 7.39(0) 3.60(0) 1.83(0) 9.00(-l) 1.28(- 1) 3.16(-2) 
0.01 1.39(1) 1.38(1) 1.31(1) 1.10(1) 7.03(0) 3.33(0) 1.62(0) 7.53(- 1) 7.84(-2) 1.17(-2) 
0.02 1.34(1) 1.33(1) 1.26(1) 1.06(1) 6.71(0) 3.08(0) 1.44(0) 6.31(-1) 4.8K-2) 4.31(-3) 
0.05 1.20(1) 1.19(1) 1.13(1) 9.54(0) 5.86(0) 2.47(0) 1.02(0) 3.76(- 1) 1.13(-2) 
0.1 1.01(1) 1.00(1) 9.57(0) 8.11(0) 4.81(0) 1.76(0) 5.99(- 1) 1.66(- 1) 
0.2 7.38(0) 7.34(0) 7.10(0) 6.12(0) 3.45(0) 9.94(- 1) 2.09(- 1) 4.56(-2) 1.36(-3) 1.34(-4) 
0.5 3.50(0) 3.50(0) 3.46(0) 3.17(0) 1.66(0) 2.5K-1) 2.74(-2) 3.45(-3) 2.17(-5) 1.72(-5) 
IX) 1.38(0) 1.38(0) 1.38(0) 1.32(0) 6.63(-1) 4.25(-2) 1.03(-3) 2.49(-4) 
2.0 3.08(- 1) 3.08(- 1) 3.08(- 1) 3.05(-1) 1.49(- 1) 2.11(-3) 
5.0 7.22(-3) 7.22(-3) 7.21(-3) 7.21(-3) 3.54(-3) 

10.0 2.6K-5) 2.61(-5) 2.61(-5) 2.61(-5) 1.29(- 5) 

0.2         0. 1.02(1) 1.01(1) 9.42(0) 7.65(0) 5.37(0) 3.25(0) 1.77(0) 8.90(-l) 1.28(-1) 3.16(-2) 
0.01 9.98(0) 9.87(0) 9.19(0) 7.44(0) 5.20(0) 3.11(0> 1.67(0) 8.13(-1) 1.00(- 1) 1.92(-2) 
0.02 9.74(0) 9.62(0) 8.96(0) 7.25(0) 5.04(0) 2.98(0) 1.57(0) 7.43(- 1) 7.83(-2) 1.17(-2) 
0.05 9.04(0) 8.94(0) 8.32(0) 6.71(0) 4.60(0) 2.63(0) 1.31(0) 5.70(- 1) 3,76(-2) 2.63(-3) 
0.1 8.01(0) 7.92(0) 7.38(0) 5.93(0) 3.97(0) 2.15(0) 9.78(-1) 3.70(-l) J.l2(-2) 1.01(-3) 
0.2 6.35(0) 6.28(0) 5.88(0) 4.71(0) 3.17(0) 1.49(0) 5.66(- 1) 1.62(-1) 3.48(-3) 3.16(-4) 
0.5 3.37(0) 3.35(0) 3.19(0) 2.60(0) 1.55(0) 5.79(-l) 1.37(-1) 2.19(-2) 1.62(-4) 4.90(-6) 
1.0 1.37(0) 1.37(0) 1.34(0) 1.14(0) 6.3S(-1) 1.67(- 1) 1.73(-2) 1.02(- 3) 
2.0 3.08(-l) 3.08(-l) 3.06(- 1) 2.80(- 1) 1.42(- 1) 2.06(-2) 5.93(-4) 
5.0 7.22(-3) 7.22(-3) 7.21(-3) 7.08(-3) 3.48(-3) 1.04(-4) 7,67(-7) 

10.0 2.6K-5) 2.6K-5) 2.61(-5) 2.61(-5) 1.27(-5) 2.71(-8) 

0.5         0 5.06(0) 4.98(0) 4.53(0) 3.69(0) 2.96(0) 2.26(0) 1.49(0) 8.26(-l) 1.27(-1) 3.15(^2) 
0.01 4.98(0) 4.90(0) 4.46(0) 3.62(0) 2.90(0) 2.21(0) 1.45(0) 7.95(-l) 1.15(-1) 2.58(-2) 
0.02 4.90(0) 4.82(0) 4.39(0) 3.56(0) 2.84(0) 2.16(0) 1.41(0) 7.66(- 1) l-04(- 1) 2.11(-2) 
0.05 4.68(0) 4.61(0) 4.19(0) 3.38(0) 2.69(0) 2.02(0) 1.30(0) 6.84(- 1) 7.74(-2) 1.16(-2) 
0.1 4.34(0) 4.27(0) 3.87(0) 3.11(0) 2.45(0) 1.81(0) 1.13(0) 5.68(- 1) 4.74(- 2) 4.30(-3) 
0.2 3.73(0) 3.66(0) 3.32(0) 2.63(0) 2.03(0) 1.47(0) 8.69(- 1) 3.94(- 1) 1.79(-2) 
0.5 2.38(0) 2.34(0) 2.11(0) 1.63(0) 1.21(0) 8.07(-l) 4.09(-l) 1.3.8(-1) 1.72(-3) 6.69(-5) 
1.0 1.16(0) 1.14(0) 1.03(0) 7.78(-l) 5.43(- 1) 3.26(-l) 1.30(-1) 2.73(-2) 1.87(-5) 
2.0 2.93(- 1) 2.90(-l) 2.69(- 1) 2.03(-l) 1.32(- 1) 6.64(- 2) 1.73(-2) 1.62(-3) 
5.0 7.2K-3) 7.20(-3) 7.04(-3) 5.76(-3) 3.29(-3) 1.09(-3) 9.00(-5) 6.03(-7) 

10.0 2.61(-5) 2.61(-5) 2.61(-5) 2.3K-5) 1.22(-5) 2.29(-6) 2.52(-8) 
1.0        0 2.18(0) 2.15(0) 1.99(0) 1.72(0) 1.51(0) 1.30(0) 1.01(0) 6.66(- 1) 1.23(- 1) 3.13(-2) 

0.01 2.15(0) 2.12(0) 1.96(0) 1.70(0) 1.49(0) 1.26(0) 9.95(- 1) 6.52(- 1) 1.17(-1) 2.83(-2) 
0.02 2.13(0) 2.10(0) 1.94(0) 1.68(0) 1.47(0) 1.20(0) 9.78(-l) 6.38(- 1) 1.1«-1) 2.56(-2) 
0.05 2.05(0) 2.02(0) 1.87(0) 1.61(0) 1.41(0) 1.20(0) 9.29(-l) 5.99(- 1) 9.57(-2) 1.90(-2) 
0.1 1.93(0) 1.90(0) 1.76(0) 1.51(0) 1.31(0) 1.12(0) 8.53(-l) 5.39(- 1) 7.45(-2) 1.15(-2) 
0.2 1.71(0) 1.69(0) 1.55(0) 1.32(0) 1.14(0) 9.62(-l) 7.20(- 1) 4.37(-l) 4.52(-2) 4.24(-3) 
0.5 1.20(0) 1.18(0) 1.07(0) 8.96(- 1) 7.56(- 1) 6.18(-1) 4.37(-l) 2.35(-l) 1.02(-2) 3.96(-4) 
1.0 6.64(-l) 6.51(-1) 5.85(-l) 4.73(-l) 3.87(- 1) 3.02(- 1) 1.95(-1) 8.65(-2) 1.06(-3) 2.27(-6) 
2.0 2.05(- 1) 2.01(-1) 1.77(^1) 1.37(- 1) 1.06(-1) 7.67(-2) 4.22(-2) 1.29(-2) 6.65(- 6) 
5.0 6.54(-3) 6.42(-3) 5.70(-3) 4.21(-3) 2.95(-3) 1.79(-3) 6.51(-4) 7.40(- 5) 

10.0 2.58(-5) 2.56(-5) 2.41(--5) 1.78(-5) 1.14(-5) 5.57(-6) 1.13(-6) 2.66(-8) 
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Table 3D.1.   (con inued) 

z/r0          (U 
4-nr/S G(£) 

p/r0=0 P/'o = °-2 p/r0 = 0.5 P/'0 = 0-8 P/'0 = 1-0 p/r0 = 1.2 p/rQ = 1.5 P\ = 2.0 P/'O = 5.0 p/r0 = 10.0 

2.0         0 7.0K-1) 6.96(-l) 6.7K-D" 6.27(-l) 5.9K-1) 5.52(-l) 4.90C-1) 3.92(-l) 1.10(-1) 3.03C-2) 
0.01 6.94C-1) 6.89(- 1) 6.63C-1) 6.20(-l) 5.85(-l) 5.45(-l) 4.84(-l) 3.86(-l) 1.07(- 1) 2.88(-2) 
0.02 6.86(-l) 6.8K-1) 6,56(-1) 6.14(-1) 5.78(-l) 5.39(-l) 4.78(-l) 3.8K-1) 1.04(-1) 2.74(-2) 
0.05 6.65(-l) 6.60(-l) 6.35(-l) 5.93(-1) 5.58(-l) 5.20(-l) 4.60C-1) 3.65(-l) 9.60(-2) 2.35(-2) 
0.1 6.3K-1) 6.26(-l) 6.02C-1) 5.61(-1) 5.27(-l) 4.90(-l) 4.32(-l) 3.40(- 1) 8.40(-2) 1.83(-2) 
0.2 5.67C-1) 5.63(-l) 5.40(- 1) 5.02C-1) 4.70(- 1) 4.35C-1) 3.8K-1) 2.96(-l) 6.44C-2) i:i0(-2) 
0.5 4.13(-1) 4.09(-l) 3.9K-1) 3.60(- 1) 3.34(-l) 3.05C-1) 2.62(-l) 1.95C-1) 2.9K-2) 2.4K-3) 
1.0 2.44C-1) 2.4K-1) 2.28C-1) 2.06(-l) 1.89(- 1) 1.70(-1) 1.4K-1) 9.74(-2) 7.83(-3) 2.35C-4) 
2.0 8.47(-2) 8.36(-2) 7.79(-2) 6.85C-2) 6.09(-2) 5.29(-2) 4.12(-2) 2.50(-2) 6.16(-4) 
5.0 3.59(-3) 3.52(-3) 3.17(-3) 2.60(-3) 2.16(-3) 1.72(-3) 1.14C-3) 4.77(-4) 2.28(-7) 

10.0 1.89C-5) 1.84C-5) 1.6K-5) 1.24(-5) 9.55(-6) 6.86(-6) 3.45(- 6) 9.02C-7) 

5.0         0 1.23(-1) 1.23(-1) 1.22C-1) 1.20(-1) 1.19(-1) 1.17C-1) 1.14C-1) 1.07(-1) 6.28(-2) 2.52C-2) 
0.01 1.22C-1) 1.22(-1) 1.2K-1) 1.19(-1) 1.18C-1) 1.16(-1) 1.12C-1) 1.06(-1) 6.27(-2) 2.5H-2) 
0.02 1.2K-1) 1.2K-1) 1.20(-1) 1.18(-1) 1.16C-1) 1.14(-1) 1.1K-1) l.OS(-l) 6.11(-2) 2.4K-2) 
0.05 1.17(-1) 1.17(-1) 1.16C-1) 1.14(-1) 1.13C-1) l.ll(-l) 1.08(-1) l.Ol(-l) 5.85(-2) 2.25(-2) 
0.1 1.1U-1) 1.1K-1) 1.10(-1) 1.09C-1) 1.07(-1) 1.05(-1) 1.02(-1) 9.60(-2) 5.46(-2) 2.02(-2) 
0.2 l.Ol(-l) l.Ol(-l) 9.96(- 2) 9.81(-2) 9.66(-2) 9.50(-2) 9.20(-2) 8.62(-2) 4.74(-2) 1.61(-2) 
0.5 7.44(-2) 7.43<-2) 7.35(-2) 7.22(-2) 7.10(-2) 6.96(-2) 6.7U-2) 6.23(-2) 3.10(-2) 8.26(-3) 
1.0 4.49(-2) 4.48(-2) 4.43(-2) 4.33(-2) 4.25(-2) 4.14(-2) 3.97(-2) 3.62(-2) 1.53(-2) 2.71(-3) 
2.0 1.64C-2) 1.63(-2) 1.60(-2) 1.56(-2) 1.52(-2) 1.47(-2) 1.39(-2) 1.23(-2) 3.76C-3) 2.94(-4) 
5.0 7.91(-4) 7.87(-4) 7.66(-4) 7.29(-4) 6.97(-4) 6.60(-4) 5.97(-4) 4.83C-4) 5.7K-5) 3.77(-7) 

10.0 5.09(-6) 5.05C-6) 4.83C-6) 4.45C-6) 4.13(-6) 3.78(-6) 3.20(-6) 2.27(-6) 5.99(-8) 

10.0         0 3.13(-2) 3.12(-2) 3.12(-2) 3.1K-2) 3.10(-2) 3.08(-2) 3.06(-2) 3.01(-2) 2.51(-2) 1.57(-2) 
0.01 3.09(-2) 3.09(-2) 3.09(-2) 3.08(-2) 3.06(-2) 3.05(-2) 3.03(-2) 2.98(-2) 2.48(-2) 1.55(-2) 
0.02 3.06(-2) 3.06(- 2) 3,06(-2) 3.04(-2) 3.03(-2) 3.02(-2) 3.00(-2) 2.95C-2) 2.45(-2) 1.53(-2) 
0.05 2.97(-2) 2.97(-2) 2.97(-2) 2.95C-2) 2.94C-2) 2.93C-2) 2.9K-2) 2.86C-2) 2.37(-2) 1.46(-2) 
0.1 2.83(-2) 2.83(-2) 2.82(-2) 2.81(-2) 2.80(-2) 2.79(-2) 2.76(-2) 2.72(-2) 2.24(-2) 1.36C-2) 
0.2 2.56(-2) 2.56t-2) 2.55C-2) 2.54C-2) 2.53(-2) 2.52C-2) 2.50C-2) 2.45(-2) 2.00C-2) l.I8(-2) 
0.5 1.89(-2) 1.89C-2) 1.89C-2) 1.88(-2) 1.87(-2) 1.86(-2) 1.84(-2) 1.80(-2) 1.43(-2) 7.75C-3) 
1.0 1.15(-2) 1.15C-2) 1.14(-2) 1.14C-2) 1.13(-2) 1.12(-2) 1.1K-2) 1.08(-2) 8.20(-3) 3.82(-3) 
2.0 4.21(-3) 4.21(-3) 4.19C-3) 4.16(-3) 4.13C-3) 4.09(-3) 4.03(-3) 3.90C-3) 2.68(-3) 9.3K-4) 
5.0 2.08(-4) 2.08(-4) 2.06(-4) 2.04C-4) 2.04C-4) 2.0H-4) 1.93(~4) 1.82(-4) 9.37(-5) 1.36(-5) 

10.0 1.39(-6) 1.38C-6) 1.37C-6) 1.34(-6) 1.3K-6) 1.28(-6) 1.22(-6) 1.10(-6) 3.53(-7) 1.26(-8) 

"Table taken from:   J. H. Hubbell, R. L. Bach, and R. J. Herbold, 'Radiation F eld from a Circular Disk Source," /. Res Noll. Bur. Sid 
65C(4), 249 (1961). 

'Read:   1.45 X 10 , etc. 
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Table 3D.2.   Unscattered Flux from a Disk Source with a Cosine Angular Distribution (Isotropie Flux) 

z/r0         /It 
p/r0 = 0 p/r0 = 0.2 P/'0 = 0.5 P/'0 = 0.8 

2r/[* 
p/r0 = 1.0 

(0) G(£)] 

p/r0 = 1.2 P/'O = 1-5 p/r0=2.0 p/r0=5.0 p/rQ = 10.0 

0.1        0 9.01(-1)" 8.97(-l) 8.77(-l) 7.88C-1) 4.30(-l) 9.65(-2) 2.79(-2) 8.56(-3) 4.18(-4) 5.06C-5) 
0.01 8.78(-'l) 8.75(-l) 8.55(-l) 7.70(-l) 4.19C-1) 9.10C-2) 2.51(-2) 7.25(-3) 2.57(-4) 1.87(-5) 
0.02 8.56(-l) 8.53(-l) 8.35(-l) 7.53(-l) 4.08(-l) 8.60(-2) 2.27(-2) 6.15(-3) 1.59(-4) 6.96C-6) 
0.03 8.35(-l) 8.33(-l) 8.15(-1) 7.36(-l) 3.97(-l) 8.13(-2) 2.05(-2) 5.23(-3) 9.80(-5) 2.59(-,6) 
0.1 7.08(-l) 7.06(-l) 6.95(-l) 6.35(-l) 3.36(-l) 5.65(-2) 1.06(-2) 1.77(-3) 3.59(-6) 2.75(-9) 
0.2 5.70(-l) 5.70(-l) 5.64(-l) 5.23(-l) 2.71(-1) 3.57C-2) 4.55(-3) 4.24(-4) 3.73C-8) 1.84(-13) 
0.5 3.26(-l) 3.26(-l) 3.26(-l) 3.12(-1) 1.57(-1) 1.12(-2) 5.01(-4) 9.12C-6) 8.01C-14) 1.13(-25) 
1.0 1.48(-1) 1.48(-1) 1.48(-1) 1.46(-1) 7.19(-2) 2.16(-3) 1.98(-5) 2.73C-8) 6.52(-23) 6 
2.0 3.75(-2) 3.75(-2) 3.75(-2) 3.74(-2) 1.83(-2) 1.19(-4) 5.43(-8) 4.86(-13) b 6 
5.0 9.96(-4) 9.96(-4) 9.96(-4) 9.96(-4) 4.91(-4) 5.05(-8) 3.72(-15) b b b 

10.0 3.83(-6) 3.81(-6) 3.83(-6) 3.82(-6) 1.89(-6) 2.85(-13) b b b b 
0.2        0 8.04(-l) 7.98(-l) 7.6K-1) 6.30(-l) 3.83(-l) 1.54(-1) 5.E5C-2) 1.68(-2) 8.35(-4) 1.01(-4) 

0.01 7.88(-l) 7.82(-l) 7.46(-l) 6.18(-1) 3.74(-l) 1.49(-1) 4.98(-2) 1.54(-2) 6.55(-4) 6.15(-5) 
0.02 7.72(-l) 7.67C-1) 7.32C-1) 6.06(-l) 3,66(-l) 1.44C-1) 4.72(-2) 1.42(-2) 5.13(-4) 3.75(-5) 
0.03 7.57(-l) 7.52(-l) 7.18(-1) 5.95(-l) 3.58(-l) 1.40C-1) 4.48(-2) 1.31C-2) 4.03(-4) 2.28(-5) 
0.1 6.60(-l) 6.56(-l) 6.28(-l) 5.23(-l) 3.09(-l) 1.12(-1) 3.14C-2) 7.4K-3) 7.5K-5) 7.24(-7) 
0.2 5.46(-l) 5.43(-l) 5.23C-1) 4.39(-l) 2.54(-l) 8.37(-2) 1.94(-2) 3.42(-3) 7.13C-6) 5.49C-9) 
0.5 3,23(-l) 3.22(-l) 3.15(-1) 2.71(-1) 1.50{-1) 3.84(-2) 5.34(-3) 4.07(-4) 7.94(-9) 3.19C-15) 
1.0 1.48(-1) 1.48(-1) 1.47C-1) 1.3K-1) 6.95(-2) 1.25(-2) 8.10(-4) 1.66(-5) 1.57(-13) 2.24(-25) 
2.0 3.750-2) 3.75(-2) 3.75 (-2) 3.52(-2) 1.79(-2) 1.77(-3) 2.77(-5) 4.61(-8) 1.25C-22) b 
5.0 9.96(~4) 9.96(-4) 9.96(-4) 9.84(-4) 4.82(-4) 1.0K-5) 2.90(-9) 3.20(-15) 6 b 

10.0 3.83(-6) 3.83C-6) 3.83(-6) 3.83(-6) 1.87(-6) 3.73(-9) 1.64(-15) b 6 b 
0.5         0 5.53(-l) 5.44(-l) 4.94(-l) 3.84(-l) '2.81(-1) 1.86(-1) 9.50(-2) 3.70(-2) 2.06(-3) 2.52(-4) o.oi 5.45(^1) 5.36(-l) 4.87(-l) 3.78(-l) 2.77(-l) 1.82C-1) 9.27(-2) 3.57(-2) 1.87(-3) 2.06(-4) 

0.02 S;.37(-l) 5.28(-l) 4.79(-l) 3.72(-l) 2.72C-1) 1.79(-1) 9.04(-2) 3.47(-2) 1.69(-3) 1.69C-4) 
0.03 5.29(-l) ' 5.2K-1) 4.73C-1) 3.67(-l) 2.68(-l) 1.75(-1) . 8.82(-2) 3.33C-2) 1.54(-3) 1.39(-4) 
0.1 4.78(-l) 4.71(~1) 4.27(-l) 3.30(-l) 2.39(-l) 1.53(-1) 7.43(-2) 2.60(-2) 7.77(-4) 3.46(-5) 
0.2 4.14C-1) 4.08(-l) 3.70(-l) 2.84(-l) 2.03C-1) 1.27(-1) 5.85(-2) 1.85(-2) 2.96(-4) 4.80(-6) 
0.5 2.71(-1) 2.67(-l) 2.43C-1) 1.85C-1) 1.28(-1) 7.48(-2) 2.94(-2) 6.85(-3) 1.72(-5) 1.35C-8) 
1.0 1.36(-1) 1.34C-1) 1.23C-1) 9.37(-2) 5.20(-2) 3.29(-2) 1.02 (-2) 1.46(-3) 1.74C-7) 8.95(-13) 
2.0 3.67(-2) 3.64<-2) 3.43C-2) 2.64(-2) 1.65(-2) 7.38(-3) 1.49(-3) 8.58(-5) 2.54C-11) 5.82(-21) 
5.0 9.96(-4) 9.95(-4) 9.79(-4) 8.07(-4) 4.57(-4) 1.37(-4) 8.77(-6) 3.79(-8) 2.39(-22) 4 

10.0 3.83(-6) 3.83C-6) 3.82(-6) 3.42(-6) 1.80(-6) 3.07(-7) 3.29(-9; '2.17(-13) b * 
1.0         0 2.93(-l) 2.88(-l) 2.6K-1) 2.1S(-1) 1.79(-1) 1.43C-1) 9.85(-2) 5.18C-2) 3.93C-3) 4.98(-4) 

0.01 2.89(-l) 2.84(-l) 2.57(-l) 2.12(-1) 1.76C-1) 1.4K-1) 9.69(-2) 5.08(-2) 3.74(-3) 4.5H-4) 
0.02 2.86(-l) 2.8K-1) 2.54(-l) 2.09(-l) 1.74(~1) 1.39(-1) 9.54(-2) 4.98C-2) 3.56(-3) 4.08C-4) 
0.03 2.83(-l) 2.77(-l) 2.5K-1) 2.07(-l) 1.72(-1) 1.37(-1) 9.38(-2) 4.88(-2) 3.38(-3) 3.69(-4) 
0.1 2.60(-l) 2.55(-l) 2.31(-1) 1.89C-1) 1.S6C-1) 1.24(-1) 8.37(-2) 4.23(-2) 2.39(-3) 1.84(-4) 
0.2 2.31(-1) 2.27C-1) 2.04C-1) 1.66(-1) 1.37(-1) 1.08(-1) 7.12(-2) 3.46(-2) 1.46(-3) 6.79(-5) 
0;5 1.62(^1) 1.59(-1) 1.43(-1) 1.14(-1)  . 9.20(-2) 7.05(-2) 4.42(-2) 1.9K-2) 3.35(-4) 3.48(-6) 
1.0 9.03(-2) 8.84(-2) 7.86(-2) 6.16(-2) 4.83(-2) 3.55(-2) 2.04C-2) 7.27C-3) 3.01(-5) 2.57(-8) 
2.0 2.82(-2) 2.76(-2) 2.44C-2) 1.85C-2) 1.39(-2) 9.51(-3) 4.68(-3) 1.16C-3) 2.78(-7) 1.63(-12) 
5.0 9.29(-4) 9.13(-4) 8.17(-4) 6.02(-4) 4.14(-4) 2.41(-4) 7.93(-5) 7.24(-6) 4.16(-13) 8.52(-25) 

10.0 3.80(-6) 3.77(-6) 3.54C-6) 2.65C-6) 1.68(-6) 7.93(-7) 1.45(-7) 2.78(-9) 1.84(-22) 6 
2.0        0 1.06(-1) 1.04(-1) 9.91(-2) 9.01(-2) 8.27(-2) 7.47(-2) 6.28(-2) 4.50(-2) 6.60(-3) 9.52(-4) 

0.01 1.04(-1) 1.03(-1) 9.81(-2) 8.91(-2) 8.17(-2) 7.39(-2) 6.20(-2)' 4.44C-2) 6.43(-3) 9.05(-4) 
0.02 1.03(-1) 1.02(-lj 9.70C-2) 8.81(-2) 8.08(-2) 7.30(-2) 6.12(-2) 4.38(-2) 6.26(-3) 8.51(-4) 
0.03 1.02(-1) l.Ol(-l) 9.60(-2) 8.71(-2) 7.99(-2) 7.22C-2) 6.05C-2) 4.32(-2)    . 6.09 (-3) 8.18(-4) 
0.1 9.50(-2) 9.40(-2) 8.90(-2) 8.06(-2) 7.38(-2) 6.65(-2) 5.54(-2) 3.92(-2) 5.07(-3) 5.74(-4) 
0.2 8.55(-2) 8.45C-2) 7.99(-2) 7.22(-2) 6.59(-2) 5.91(-2) 4.90(-2) 3.41(-2) 3.89(-3) 3.46(-4) 
0.5 6.22(^2) 6.15(-2) 5.79(-2) 5.18(-2) 4.69(-2) 4.16(-2) 3.38(-2) 2.26(-2) 1.77(-3) 7.61(-5)' 
1.0 3.67(-2) 3.62C-2) 3 3C-2) 2.98C-2) 2.66(-2) 2.32C-2) 1.83(-2) 1.14(-2) 4.80(-4) 6.16(-6) 
2.0 1.28(-2) 1.26(-2) 1.16(-2) 9.96(-3) 8.66(-3) 7.33(-3) 5.43(-3) 2.97(-3) 3.67(-5) 4.22C-8) 
5.0 5.43(-4> 5.32!-4) 4.75(-4) 3.84(-4) 3.14(-4) 2.45(-4) 1.55(-4) 5.95(-5) 2.07(-8) 1.78(-14) 

10.0 2.87(-6) 2.80(-6) 2.45C-6) 1.86(-6). 1.42C-6) 1.01C-6) 5.16(-7) 1.17(-7) 1.28(-13) 7.29C-25) 
5.0        0- 1.94(-2) 1.94(-2) 1.91(-2) 1.87(-2) 1.84(-2) 1.79(-2) 1.72(-2) 1.57C-2) 7.10(-3) 1.80(-3) 

0.01 1.92C-2) 1.92(-2) 1.90(-2) 1.85(-2) 1.82(-2) 1.78C-2) 1.70(-2) 1.56(-2) 7.00(-3) 1.76(-3) 
0.02 1.90(-2) 1.90(-2) 1.88(-2) 1.84(-2) 1.80(-2) 1.76(-2) 1.68(-2) 1.54(-2) 6.90(-3) 1.72C-3) 
0.03 1.88(-2) 1.88(-2) 1.86(-2) 1.82(-2) 1.78(-2) 1.74(-2) 1.67(-2) 1.52(-2) 6.80(-3) 1.68(-3) 
0.1 1.75C-2') 1.75(-2) 1.73(-2) 1.69C-2) 1.66(-2) 1.62(-2) l.B5(-2) 1.4K-2) 6.16(-3) 1.44(-3) 
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Table 3D.2.   (conti nued) 

zA0        pi 
2r/[«(0) G(£)] 

p/rQ = 5.0 p/rQ=0 p/r„ = 0.2 p/r0 = 0.5 p/r„=0.8 P\ = I-« p/r„ = 1.2 P/'0 = 1.5 p/r0 = 2.0 p/rQ = 10.0 

0.2 1.59(-2) 1.58(-2) 1.56(-2) 1.53(-2) 1.50(-2) 1.46(-2) 1.39(-2) 1.27(-2) 5.35(-3) 1.15(-3) 
0.5 1.17(-2) 1.17(-2) 1.15(-3) 1.12(-2) 1.10(-2) 1.07(-2) 1.02(-2) 9.16(-3) 3.51(-3) 5.91(-4) 
1.0 7.07(-3) 7.05(-3) 6.94(-3) 6.75(-3) 6.57(-3) 6.37(-3) 6.02(-3) 5.34(-3) 1.74(-3) 1.95(-4) 
2.0 2.58(-3) 2.57(-3) 2.52(-3) 2.43(-3) 2.35(-3) 2.26(-3) 2.1K-3) 1.8H-3) 4.28(-4) 2.12(-5) 
5.0 1.25(-4> 1.24(-4) 1.20(-4) 1.14(-4) 1.08(-4) 1.02(-4) 9.08(-5) 7.16(-5) 6.57(-6) 2.88C-8) 

10.0 8.00(-7) 7.93(-7) 7.57(-7) 6.94(-7) 6.41(-7) 5.82(-7) 4.88(-7) 3.36C-7) 6.77(-9) 5.46(-13) 
10.0         0 4.96(-3) 4.96(-3) 4.94(-3) 4.92(-3) 4.89(-3) 4.86(-3) 4.80(-3) 4:68(-3) 3.57(-3) 1.77(-3) 

0.01 4.91(-3) 4.9H-3) 4.89(-3) 4.87(-3) 4.84(-3) 4.81(-3) 4.75C-3) 4.64(-3) 3.53(-3) 1.74(-3) 
0.02 4.86(-3) 4.86(-3) 4.85(-3) 4.82(-3) 4.79(-3) 4.76(-3) 4.71(-3) 4.59(-3) 3.49(-3) 1.72(-3) 
0.03 4.82(-3) 4.81(-3) 4.80(-3) 4.77(-3) 4.74(-3) 4.7K-3) 4.66(-3) 4.54(-3) 3.45(-3) 1.70(-3) 
0.1 4.49(-3) 4.49(-3) 4.47(-3) 4.45(-3) 4.42(-3) 4.39(-3) 4.34(-3) 4.23(-3) 3.19C-3) 1.54(-3) 
0.2 4.06(-3) 4.06(-3) 4.04(-3) 4.02(-3) 4.00(-3) 3.97(-3) 3.92(-3) 3.82(-3) 2.85(-3) 1.33(-3) 
0.5 3.01(-3) 3.00(-3) 2.99(-3) 2.97(-3) 2.95(-3) 2.93(-3) 2.89(-3) 2.81(-3) 2.04(-3) 8.73(-4) 
1.0 1.82(-3) 1.82(-3) 1.81(-3) 1.80(-3) 1.79(-3) 1.77(-3) 1.74C-3) 1.69(-3) 1.17C-3) 4.31(-4) 
2.0 6.68(-4) 6.68C-4) 6.64(-4) 6.58(-4) 6.52(-4) 6.45(-4) 6.33(-4) 6.07(-4) 3.81(-4) 1.05(-4) 
5.0 3.30(-5) 3.30(-5) 3.27(-5) 3.22(-5) 3.18(-5) 3.12(-5) 3.03(-5) 2.83(-5) 1.34(-5) l.54(-6) 

10.0 2.20(-7) 2.19(-7) 2.16(-7) 2.11(-7) 2.06(-7) 2.01 (-7) 0.91(-7) 1.72(-7) 5.06(-8) 1.37(-9) 

*Read:   9.01 X 10"', etc. 
'Effectively zero. 

Table 3D.3.   Unscattered Flux at a Corner Position from a Rectangular Plane Source 

-with an Isotropie Angular Distribution0 

ATTT/S G(E) 

r" 6 = 0.1 6 = 0.2 6=0.2 6 = 0.5 6 = 0.5 6 = 0.5 
a = 0.1 a =0.1 a = 0.2 a = 0.1 a = 0.2 a =0.5 

0 9.93(-3)b 1.97(-2) 3.90(-2) 4.62(-2) 9.16(-2) 2.16(-1) 
0.01 9.83(-3) 1.95(-2) 3.86(-2) 4.57(-2) 9.07(-2) 2.14(-1) 
0.02 9.74(-3) 1.93(-2) 3.82(-2) 4.53(-2) 8.97(-2) 2.1K-1) 
0.05 9.44(-3) 1.87(-2) 3.70(-2) 4.39(-2) 8.69(-2) 2.05(-l) 
0.1 8.99(-3) 1.78(-2) 3.52(-2) 4.17(-2) 8.25(-2) 1.94(-1) 
0.2 8.13(-3) 1.61(-2) 3.18(-2) 3.75(-2) 7.43(-2) 1.74(-1) 
0.5 6.02(-3) 1.19(-2) 2.35(-2) 2.75(-2) 5.44(-2) 1.26(-1) 
1.0 3.64(-3) 7.18(-3) 1.42(-2) 1.64(-2) 3.23(-2) 7.38(-2) 
2.0 1.34(-3) 2.62(-3) 5.14(-3) 5.79(-3) 1.14(-2) 2.53(-2) 
5.0 6.60(-5) 1.28(-4) 2.47(-4) 2.60(-4) 5.04(-4) 1.04(-3) 

10.0 4.37(-7) 8.26(-7) 1.54(-6) 1.50(-6) 2.83(-6) 5.1S(-6) 

6 = 1.0 6 = 1.0 6 = 1.0 6 = 1.0 6 = 2.0 6 = 2.0 
\1X a = 0.1 a = 0.2 a =0.5 a = 1.0 a = 0.1 a = 0.2 

0 7.83(-2) 1.55(-1) 3.69(-l) 6.40(-l) 1.10(-1) 2.19(-1) 
0.01 7.75(-2) 1.54(-1) 3.65(-l) 6.32(-l) 1.09(-1) 2.17(-1) 
0.02 7.66(-2) 1.52(-1) 3.60(-l) 6.24(-l) 1.08(-1) 2.14C-1) 
0.05 7.40(-2) 1.47(-1) 3.48(-l) 6.01(-1) 1.04(-1) 2.06(-l) 
0.1 7.00(-2) 1.39(-1) 3.29(-l) 5.65(-l) 9.70(-2) 1.93(-1) 
0.2 6.26(-2) 1.24(-1) 2.93(-l) 4.99(-l) 8.53(-2) 1.69(-1) 
0.5 4.47(-2) 8.85(-2) 2.07(-l) 3.45(-l) 5.82(-2) l.lS(-l) 
1.0 2.56(-2) 5.06(-2) 1.17C-1) 1.87(-1) 3.14(-2) 6.20(-2) 
2.0 8.49(-3) 1.67(-2) 3.74(-2) 5.61(-2) 9.57(-3) 1.88(-2) 
5.0 3.85(-4) 7.55(-4) 1.77(-3) 7.99(-3) 3.37(-4) 6.54(-4) 

10.0 1.67(-6) 3.16(-6) 5.77(-6) 6.49(-6) 1.67(-6) 3.16(-6) 
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Table 3D.3.   (continued) 

ATTT/S G(E) 

6 = 5.0 6 = 2.0 6 = 2.0 6 = 2.0 6 = 5.0 6 = 5.0 
f" a = 0.5 a = 1.0 a = 2.0 a = 0.1 a = 0.2 a = 0.5 

0 5.25(-l) 9.31(-1) 1.41(0) 1.37(-1) 2.73(-l) 6.57(-l) 
0.01 5.18(-1) 9.18(-1) 1,38(0) 1.35(-1) 2.68(-l) 6.46(-l) 
0.02 5.1K-1) 9.05(-l) 1.36(0) 1.33(-1) 2.64(-l) 6.35(-l) 
0.05 4.9K-1) 8.67(-l) 1.30(0) 1.26(-1) 2.5K-1) 6.03(-l) 
0.1 4.60(-l) 8.07(-l) 1.20(0) 1.16(-1) 2.3K-1) 5.55(-l) 
0.2 4.03(-l) 7.01(-1) 1.02(0) 9.93(-2) 1.97(-1) 4.72(-l) 
0.5 2.72(-l) 4.62(-l) 6.38(-l) 6.38(-2) 1.27(-1) 3.00(-l) 
1.0 1.44(-1) 2.35(-l) 3.02(-l) 3.27(-2) 6.46(-2) 1.50(-1) 
2.0 4.24(-2) 6.43 (-2) 7.46(-2) 9.69(-3) 1.90(-2) 4.28(-2) 
5.0 1.32(-3) 1.75(-3) 1.80(-3) 3.37(-4) 6.54(-4) 1.35(-3) 

10.0 5.79(-6) 6.51 (-6) 6.52(-6) 1.67(-6) 3.16(-6) 5.79(-6) 

6 = 5.0 6 = 5.0 6 = 5.0 6 = 10.0 6 = 10.0 6 = 10.0 
f a = 1.0 a =2.0 a =5.0 a =0.1 a = 0.2 a = 0.5 

0 1.19(0) 1.88(0) 2.73(0) 1.47(-1) 2.92(-l) 7.06(-l) 
0.01 1.17(0) 1.84(0) 2.65(0) 1.44(-1) 2.86(-l) 6.92(-l) 
0.02 1.15(0) 1.80(0) 2.58(0) 1.4K-1) 2.8K-1) 6.77(-l) 
0.05 1.08(0) 1.69(0) 2.39(0) 1.33(-1) 2.65(-l) 6.38(-l) 
0.1 9.92(-l) 1.53(0) 2.10(0) 1.2K-1) 2.41(-1) 5.79(-l) 
0.2 8.35(-l) 1.26(0) 1.64(0) 1.02(-1) 2.02(-l) 4.84(-l) 
0.5 5.14(-1) 7.27(-l) 8.53(-l) 6.42(-2) 1.27(-1) 3.01(-1) 
1.0 2.47(-l) 3.20(-l) 3.44(-l) 3.27(-2) 6.47(-2) 1.50(-1) 
2.0 6.51(-2) 7.57(-2) 7.69(-2) 9.69(-3) 1.90(-2) 4.28(-2) 
5.0 1.75(-3) 1.80(-3) 1.80(-3) 3.37(-4) 6.54(-4) 1.35(-3) 

1Ö.0 6.51(-6) 6.53(-6) 6.54(-6) 1.67(-6) 3.16(-6) 5.79(-6) 

6 = 10.0 6 = 10.0 6 = 10.0 6 = 10.0 6 =20.0 6 = 20.0 
f a = 1.0 a = 2.0 a =5.0 a = 10.0 a = 0.1 a = 0.2 

0 1.28(0) 2.07(0) 3.15(0) 3.80(0) 1.52(-1) 3.02(-l) 
0.01 1.26(0) 2.02(0) 3.04(0) 3.64(0) 1.48(-1) 2.95(-l) 
0.02 1.23(0) 1.97(0) 2.94(0) 3.49(0) 1.45(-1) 2.88(-l) 
0.05 1.15(0) 1.83(0) 2.67(0) 3.10(0) 1.36(-^1) 2.70(-l) 
0.1 1.04(0) 1.63(0) 2.30(0) 2.58(0) 1.22(-1) 2.43(-l) 
0.2 8.60(-l) 1.31(0) 1.74(0) 1.86(0) 1.02(-1) 2.03(-l) 
0.5 5.18(-1) 7.34(-l) 8.65(-l) 8.78(-l) 6.39(-2) 1.27(-1) 
1.0 2.47(-l) 3.21(-1) 3.44(-l) 3,45(-l) 3.27(-2) 6.47(-2) 
2.0 6.51 (-2) 7.56(-2) 7.69(-2) 7.68(-2) 9.69(-3) 1.90(-2) 
5.0 1.75(-3) 1.80(-3) 1.80(-3) 1.80(-3) 3.37(-4) 6.54(-4) 

10.0 6.5K-6) 6.53(-6) 6.53(-6) 6.53(-6) 1.67(-6) 3.16(-6) 
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Table 3D.3.   (continued) 

4TTT/S G(E) 

ßt 6 = 20.0 6 = 20.0 b =20.0 6 = 20.0 6 = 20.0 6 = 20.0 
a =0.5 a = 1.0 a = 2.0 a =5.0 a = 10.0 a = 20.0 

0 7.31(-1) 1.33(0) 2.17(0) 3.38(0) 4.22(0) 4.88(0) 
0.01 7.13(-1) 1.30(0) 2.10(0) 3.25(0) 4.01(0) 4.56(0) 
0.02 6.96(-l) 1.27(0) 2.04(0) 3.12(0) 3.81(0) 4.28(0) 
0.05 6.50(-l) 1.18(0) 1.88(0) 2.79(0) 3.30(0) 3.59(0) 
0.1 5.86(-l) 1.05(0) 1.65(0) 2.36(0) 2.68(0) 2.81(0) 
0.2 4.86(-l) 8.63(-l) 1.31(0) 1.75(0) 1.89(0) 1.92(0) 
0.5 3.01(-1) 5.18(-1) 7.34(0) 8.63(-l) 8.79(-l) 8.82(-l) 
1.0 1.50(-1) 2.47(-l) 3.21(0) 3.44(-l) 3.45(-l) 3.45(-l) 
2.0 4.28(-2) 6.51(-2) 7.56(-2) 7.-69(-2) 7.68(-2) 7.68(-2) 
5.0 1.35(-3) 1.75(-3) 1.80(-3) 1.80(-3) 1.80(-3) 1.80(-3) 

10.0 5.79(-6) 6.51(-6) 6.53(-6) 6.53(-6) 6.53(-6) 6.53(-6) 

"Table taken from:   J. H. Hubbell, R. L. Bach, and J. C. Lamkin, "Radiation Field from a Re :tangular Source," J. Res. Natl . Bur . Std. 64C(2), 121 (1960) 
bRead: 9.93 - < 10~3. etc. 

Table 3D.4.    Unscattered Flux at a Corner Position from a Rectangular Plane Source 

with a Cosine Angular Distribution (Isotropie Flux) 

,2r/[$(0) G(E)] 

f" 6 = 0.1 6 = 0.2 6 = 0.2 6 = 0.5 b = 0.5 6 = 0.5 
a = 0.1 a = 0.1 a = 0.2 a = 0.1 a =0.2 a = 0.5 

0 1.58(-3)a 
3.11(-3) 6.121.-3) 7.09(-3) 1.40(-2) 3.21(-2) 

0.01 1.56(-3) 3.08(-3) 6.06(-3) 7.01(-3) 1.38(-2) 3.17(-2) 
0.02 1.55(-3) 3.04(-3) 6.00(-3) 6.94(-3) 1.37(-2) 3.14(-2) 
0.05 1.53(-3) 3.01(-3) 5.94(-3) 6.87(-3) 1.36(-2) 3.10(-2) 
0.1 1.43(-3) 2.81(-3) 5.53(-3) 6.39(-3) 1.26(-2) 2.88(-2) 
0.2 1.29(-3) 2.54(-3) 5.00(-3) 5:76(-3) 1.14(-2) 2.59(-2) 
0.5 9.54(-4) 1.88(-3) 3.69(-3) 4.22(-3) 8.30(-3) 1.88(-2) 
1.0 5.78(-4) 1.13(-3) 2.22(-3) 2.51(-3) 4.93(-3) 1.10(-2) 
2.0 2.12(-4) 4.14(-4) 8.08(-4) 8.90(-4) 1.74(-3) 3.77(-3) 
5.0 1.04(-5) 2.01(-5) 3.87(-5) 4.00(-5) 7.70(-5) 1.54(-4) 

10.0 6.92(-8) 1.30(-7) 2.45(-7) 2.31(-7) 4.36(-7) 7.79(-7) 

V 
b = 1.0 6= 1.0 6 = 1.0 6 = 1.0 6 = 2.0 6 = 2.0 
a = 0.1 a = 0.2 a = 0.5 a = 1.0 a = 0.1 a = 0.2 

0 1.12(-2) 2.21(-2) 5.12(-2) 8.33(-2) 1.42(-2) 2.81(-2) 
0.01 1.1K-2) 2.19(-2) 5.06(-2) 8.23(-2) 1.40(-2) 2.77(-2) 
0.02 1.08(-2) 2.17(-2) 5.01(-2) 8.13(-2) 1.38(-2) 2.74(-2) 
0.05 1.08(-2) 2.14(-2) 4.95(-2) 8.03(-2) 1.37(-2) 2.70(-2) 
0.1 1.00(-2) 1.98(-2) 4.57(-2) 7.38(-2) 1.25(-2) 2.48(-2) 
0.2 8.98(-3) 1.77(-2) 4.07(-2) 6.53(-2) l.ll(-2) 2.19(-2) 
0.5 6.44(-3) 1.27(-2) 2.89(-2) 4.54(-2) 7.71(-3) 1.52(-2) 
1.0 3.71(-3) 7.29(-3) 1.64(-2) 2.49(-2) 4.26(-3) 8.38(-3) 
2.0 1.24(-3) 2.43(-3) 5.30(-3) 7.57(-3) 1.35(-3) 2.64(-3) 
5.0 4.91(-5) 9.47(-5) 1.91(-4) 2.38(-4) 5.00(-5) 9.65(-5) 

10.0 2.54(-7) 4.79(-7) 8.61(-7) 9.54(-7) 2.55(-7) 4.80(-7) 
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Table 3D.4.   (continued) 

2r/[4>(0) G(£)] 

6 = 2.0 6 = 2.0 6 = 2.0 6 = 5.0 6 = 5.0 6 = 5.0 
ßt a = 0.5 a = 1.0 a =2.0 a =0.1 a =0.2 a =0.5 

0 6.55(-2) 1.09(-1) 1.480-1) 1.560-2) 3.080-2) 7.230-2) 
0.01 6.47(-2) 1.08(-1) l'.45(-l) 1.530-2) 3.040-2) 7.120-2) 
0.02 6.39(-2) 1.06(-1) 1.430-1) 1.5K-2) 3.00(-2) 7.020-2) 
0.05 6.30(-2) 1.05(-1) 1.41(-1) 1.490-2) 2.950-2) 6.920-2) 
0.1 5.77(-2) 9.52(-2) 1.27(-1) 1.35(-2) 2.680-2) 6.260-2) 
0.2 5.08(-2) 8.32(-2) 1.09(-1) 1.18(-2) 2.340-2) 5.450-2) 
0.5 3.49(-2) 5.58(-2) 7.O50-2) 8.020-3) 1.580-2) 3.640-2) 
1.0 1.89(-2) 2.92(-2) 3.49(-2) 4.330-3) 8.530-3) 1.930-2) 
2.0 5.78(-3) 8.34(-3) 9.26(-3) 1.350-3) 2.650-3) 5.810-3) 
5.0 1.95 (-4) 2.44(-4) 2.49(-4) 5.000-5) 9.650-5) 1.95(-4) 

10.0 8.63(-7) 9.56(-7) 9.580-7) 2.550-7) 4.800-7) 8.630-7) 

6 = 5.0 6 = 5.0 6 = 5.0 6 = 10.0 6 = 10.0 6 = 10.0 
V* a = 1.0 a = 2.0 a = 5.0 a = 0.1 a = 0.2 a = 0.5 

0 1.22(-1) 1.70(-1) 2.06(-l) 1.58(-2) 3.130-2) 7.34(-2) 
0.01 1.20(-1) 1.67(-1) 2.010-1) 1.56(-2) 3.080-2) 7.230-2) 
0.02 1.18C-1) 1.64(-1) 1.97(-1) 1.580-2) 3.04(-2) 7.120-2) 
0.05 1.16(-1) 1.620-1) 1.930-1) 1.51(-2) 2.990-2) 7.010-2) 
0.1 1.05(-1) 1.43(-1) 1.68(-1) 1.370-2) 2.70(-2) 6.32(-2) 
0.2 9.02(-2) 1.2K-1) 1.380-1) 1.19(-2) 2.350-2) 5.48(-2) 
0.5 5.87(-2) 7.51(-2) 8.1O0-2) 8.O20-3) 1.580-2) 3.650-2) 
1.0 2.99(-2) 3.59(-2) 3.710-2) 4.330-3) 8.53(-3) 1.930-2) 
2.0 8.38(-3) 9.32(-3) 9.38(-3) 1.35 (-3) 2.650-3) 5.8K-3) 
5.0 2.44(-4) 2.49(-4) 2.49(-4) 5.000-5) 9.65 (-5) 1.95(-4) 

10.0 9.56(-7) 9.58(-7) 9.580-7) 2.550-7) 4.80(-7) 8.630-7) 

6 = 10.0 6 = 10.0 6 = 10.0 6 = 10.0 6 = 20.0 6 = 20.0 
fit a = 1.0 a =2.0 a =5.0 a = 10.0 a =0.1 a = 0.2 

0 1.24(-1) 1.750-1) 2.150-1) 2.28(-l) 1.580-2) 3.14(-2) 
0.01 1.22(-1) 1.7K-1) 2.100-1) 2.220-1) 1.560-2) 3.090-2) 
0.02 1.20(-1) 1.68(-1) 2.050-1) 2.160-1) 1.54(-2) 3.040-2) 
0.05 1.18(-1) 1.65(-1) 2.01(-1) 2.11(-1) 1.51(-2) 3.00(-2) 
0.1 1.06(-1) 1.46(-1) 1.720-1) 1.780-1) 1.37(-2) 2.710-2) 
0.2 9.08(-2) 1.22C-1) 1.400-1) 1.430-1) 1.190-2) 2.350-2) 
0.5 5.88(-2) 7.53(-2) 8.130-2) 8.170-2) 8.020-3) 1.58(-2) 
1.0 2.99(-2) 3.59(-2) 3.710-2) 3.710-2) 4.330-3) 8.53(-3) 
2.0 8.38(-3) 9.320-3) 9.38(-3) 9.38(-3) 1.35(-3) 2.650-3) 
5.0 2.44(-4) 2.49(-4) 2.490-4) 2.49(-4) 5.00(-5) 9.650-5) 

10.0 9.56(-7) 9.580-7) 9.580-7) 9.580-7) 2.550-7) 4.81(-7) 



94 

Table 3D.4.   (continued) 

2r/[4>(0) G(£)] 

V b = 20.0 b = 20.0 b = 20.0 b = 20.0 6 = 20.0 b = 20.0 

a = 0.5 a = 1.0 a =2.0 a = 5.0 a = 10.0 a =20.0 

0 7.37(-2) 1.25(-1) 1.76C-1) 2.18(-1) 2.32C-1) 2.39(-l) 

0.01 7.26(-2) 1.23(-1) 1.72(-1) 2.12C-1) 2.26(-l) 2.31(-1) 

0.02 7.14(-2) 1.2K-1) 1.69(-1) 2.07(-l) 2.20(-l) 2.24(-l) 

0.05 7.03(-2) 1.19(-1) 1.66(-1) 2.02(-l) 2.14(-1) 2.18(-1) 

0.1 6.33C-2) 1.06(-1) 1.46(-1) 1.73(-1) 1.79(-1) 1.80(-1) 

0.2 5.48(-2) 9.08(-2) 1.22(-1) 1.40(-1) 1.43(-1) 1.44(-1) 

0.5 3.65(-2) S.88(-2) 7.53(-2) 8.13(-2) 8.17(-2) 8.17(-2) 

1.0 1.93(-2) 2.99(-2) 3.59(-2) 3.71(-2) 3.7K-2) 3.71(-2) 

2.0 5.8K-3) 8.38(-3) 9.32(-3) 9.38(-3) 9.38(-3) 9.38(-3) 

5.0 1.95(-4) 2.44(-4) 2.49(-4) 2.49(-4) 2.49(-4) 2.49(-4) 

10.0 8.63(-7) 9.56(-7) 9.58(-7) 9.58(-7) 9.58(-7) 9.58(-7) 

sRead:   1.58 x 10" etc. 

Appendix 3E.    Graphs for Neutron 
Attenuation Calculations 

This appendix consists of graphs of neutron 
penetration results obtained from Monte Carlo 
calculations by Clark et a/.61 and by Allen and 
Futterer.62 Figures 3E.1 through 3E.10 show the 
dose (in ergs/g per incident neutron/cm2) due to 
monoenergetic beams of neutrons normally incident 
on ordinary concrete, both on a slab and on a 
semi-infinite medium (half space). Figures 3E.11 
through   3E.15 present plots  of the neutron dose 

transmission factor as a function of polyethylene 
thickness for monoenergetic neutrons incident at 
various angles. When the thickness is adjusted 
according to the key included at the top of each 
figure, these latter curves apply also to water, 
to concrete, and to Nevada Test Site soil, both 
dry and water-saturated. 

The use of these curves is explained in Section 
3.8.2. 
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Appendix 3F.   Graphs of the \f/ Function 

A useful function in calculating the shield 
penetration of the uncollided secondary gamma- 
ray flux is the </» function, defined in Section 3.10. 
Values of this function have been obtained by 
Trubey44   for  the  case  of  a slab shield  and by 

Claiborne75 for the case of a semi-infinite shield. 
The functions are plotted in Figs. 3D.1 through 
3D.6, all of which are taken from a compilation 
of Trubey.44 
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Fig. 3F.1.    The Function ^Q(jlt,a) for a Slab Shield,    (From ref. 44.) 
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