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Agenda 

■ Tuesday 
■ 31 August 1999 

Foyer-Bar 

16.00-18.00 
Registration Open 

Palais des Congres 

18.00-20.00 
Welcoming Reception 

■ Wednesday 
■ 1 September 1999 

Foyer-Bar 

07.00-17.00 
Registration Open 

Salle Morey-St-Denis 

07.55-08.00 
Opening Remarks 
David J. Richardson, Univ. of Southampton, UK and Stefan 
Wabnitz, Univ. de la Bourgogne, Dijon, France 

08.00-10.00 
WA ■ Spatio-Temporal and Transverse 
Effects 
Govind Agrawal, University of Rochester, USA, Presider 

08.00 (Invited) 
WA1 ■ Generation of optical spatio-temporal solitons, 
X. Liu, L.J. Qian, F.W. Wise, Cornell Univ., USA. We report 
the experimental observation of spatio-temporal solitons. 
Femtosecond pulses in a quadratic medium evolve to 
constant and compressed beam size and pulse duration. 
(P-2) 

08.30 
WA2 ■ Spatio-temporal solitary waves in a self- 
defocusing AIGaAs slab waveguide, Nicolas Belanger, 
Alain Villeneuve, COPL, Univ. Laval, Canada; J. Stewart 
Aitchison, Univ. Glasgow, UK. We report the observation of 
a spatio-temporal solitonlike wave. In our experiments, we 
used coupled bright temporal and dark spatial solitary 
wave. (p. 5) 

08.45 
WA3 ■ Competing neck and snake instabilities of 
vector Kerr and type I quadratic solitons, Dmitry V. 
Skryabin, William J. Firth, Univ. Strathclyde, UK. We 
demonstrate dynamical competition between neck and 
snake instabilities of spatial solitons in normally dispersive 
X2 and x3 media. This competition originates either from 
the presence of internal soliton modes or from the second 
phase symmetry and results in spatial and/or polarization 
symmetry breaking, (p. 8) 

09.00 
WA4 ■ Observation of hybrid stripe-needle screening 
soliton interaction, Eugenio DelRe, Fondazione Ugo 
Bordoni, Italy; Stefano Trillo, Univ. Ferrara, Italy; Mordechai 
Segev, Princeton Univ., USA. We investigate experimentally 
the interaction of a one-dimensional and a two-dimen- 
sional photorefractive screening spatial soliton, observing 
phase-dependent warping, and particlelike collisions. 
(P. H) 

09.15 
WA5 ■ Pair generation of (2+1) dimensional dark 
spatial ring solitons, M.M. Mendez-Otero, S. Chävez- 
Cerda, M.D. Iturbe-Castillo, INAOE, Mexico. We report the 
generation of dark spatial ring solitons using an amplitude 
jump. An even number of collapsing and divergent ring 
solitons are generated simultaneously, (p. 14) 

09.30 
WA6 ■ Transverse structures in cavity-less paramet- 
ric amplifier, W. Chinaglia, S. Minardi, S. Sapone, 
G. Coppo, P. Di Trapani, Univ. Insubria, Italy; A. Berzanskis, 
G. Valiulis, Univ. Vilnius, Lithuania; K. Staliunas, PTB 
braunschweig, Germany. Large-beam transverse structures in 
saturated parametric amplification is demonstrated for a 
cavity-less configuration. Possibility of image digitalization 
and processing is pointed out. (p. 16) 



09.45 
WA7 ■ Pulse propagation and soliton formation using 
optical rectification, U. Peschel, K. Bubke, D.C. 
Hutchings, J.S. Aitchison, Univ. Glasgow, UK. We model the 
interaction of optical and microwave pulses due to optical 
rectification. We demonstrate that mutual bound states of 
both waves exist, (p. 19) 

Foyer-Bar 
10.00-10.30 
Coffee Break 

Salle Morey-St-Denis 

10.30-12.00 
WB ■ Nonlinear Effects in Fibers 
David J. Richardson, University of Southampton, UK, 
Presider 

10.30 
WB1 ■ Coupled core and cladding stimulated 
Brillouin scattering in single-mode optical fibers, 
Isabelle Bongrand, Antonio Picozzi, Eric Picholle, Carlos 
Montes, CNRS, France. A coherent model for longitudinal 
and transverse Brillouin scattering in fibers describes their 
coupling, in good agreement with experiments in a long- 
fiber ring resonator, (p. 24) 

10.45 
WB2 ■ Four-wave mixing of femtosecond pump-probe 
pulses in optical fibers, Gilbert Boyer, Ecole 
Polytechnique-ENSTA, France; Bjom Hall, Dan Anderson, 
Mietek Lisak, Magnus Karlsson, Chalmers Univ. of Technol- 
ogy, Sweden; Anders Berntson, Ericsson Telecom AB, Sweden. 
A new physical feature involving a large spectral jump is 
found, experimentally and numerically, for femtosecond 
pump-probe pulses near the zero-dispersion wavelength. 
(p. 27) 

11.00 
WB3 ■ Modulational instability in optical fibers with 
polarization-mode dispersion, F.Kh. Abdullaev, Uzbek 
Academy of Sciences, Uzbekistan; J. Gamier, Ecole 
Polytechnique, France; E. Seve, S. Wabnitz, Univ. Bourgogne, 
France. Random polarization-mode dispersion leads to a 
substantial extension of the modulational instability 
domain in both the normal and anomalous dispersion 
regime of fibers.-(p. 30) 

11.15 
WB4 ■ Optimized design of a fiber-based pulse 
compressor for gain-switched DFB laser pulses at 
1.5 microns, L.P. Barry, Dublin City Univ., Ireland; B.C. 
Thomsen, J.M. Dudley, J.D. Harvey, Univ. Auckland, New 
Zealand. The design of a fiber-based pulse compressor for 
gain-switched laser pulses is optimized using a technique 
based on frequency-resolved optical gating, (p. 33) 

11.30 
WB5 ■ Observation of isotropic polarization 
modulational instability in spun fibers, Pascal Kockaert, 
Marc Haelterman, Univ. Libre de Bruxelles, Belgium. 
Performing an experiment of polarization modulational 
instability in the normal dispersion regime, we show the 
possibility of achieving effective isotropy in an optical spun 
fiber, (p. 36) 

11.45 
WB6 ■ Fiber-optical parametric amplifier with 120-nm 
bandwidth, M.-C. Ho, M.E. Marhic, Y. Akasaka, ES. Yang, 
L.G. Kazovsky, Stanford Univ., USA. We have measured gain 
in excess of 12 dB over a 120-nm bandwidth for a fiber- 
optical parametric amplifier made from a 20-m high- 
nonlinearity fiber and an 11W pulsed pump. (p. 39) 

12.00-13.30 
Lunch 

Salle Morey-St-Denis 

13.30-15.00 
WC ■ Localized Structures in Optical 
Cavities 
J.R. Tredicce, University of Nice, France, Presider 

13.30 (Invited) 
WC1 ■ Spatial solitons in a single-mirror feedback 
system, B. Schaepers, M. Feldmann, T. Ackemann, 
W. Lange, Univ. Muenster, Germany. Spatial solitons and 
their interaction are investigated experimentally and 
theoretically in a bistable single-mirror feedback system. 
(P. 44) 

14.00 (Invited) 
WC2 ■ Two-dimensional vectorial localized structures 
in optical cavities, P. Colet, R. Gallego, E. Hernandez- 
Garcia, M. Hoyuelos, M. San Miguel, M. Santagiustina, 
Univ. Illes Balears, Spain; G.L. Oppo, Univ. Strathclyde, UK. 
The existence and dynamics of different types of polarized 
localized structures is discussed in broadarea lasers, Kerr 
resonators, and type II degenerate optical parametric 
oscillators, (p. 47) 

14.30 
WC3 ■ Interaction of cavity solitons in degenerate 
optical parametric oscillators, Dmitry V. Skryabin, 
William J. Firth, Univ. Strathclyde, UK. Numerical studies 
together with asymptotic and spectral analysis establish 
regimes where soliton pairs in degenerate optical paramet- 
ric oscillators fuse, repel, or form bound states. A novel 
bound state stabilized by coupled internal oscillations is 
predicted, (p. 50) 



14.45 
WC4 ■ Spatial structures and their control in 
injection-locked broadarea VCSELs, T.Ackemann, 
IMEDEA, Spain, CNRS, France and Univ. Muenster, 
Germany; S. Barland, IMEDEA, Spain and CNRS, France; 
M. Cara, M. Giudici, S. Balle, IMEDEA, Spain. We demon- 
strate tilted wave emission and hexagons in broadarea 
vertical-cavity surface-emitting lasers (VCSELs) locked to a 
master oscillator and explore the possibility of cavity 
solitons. (p. 53) 

Foyer-Bar 

15.00-16.30 
WD ■ Poster Session 1/ 
Refreshment Break 

WD1 ■ Quadratic bright solitons: counterpropagating 
scheme, Kazimir Y. Kolossovski, Alexander V. Buryak, 
Rowland A. Sammut, Univ. College, Australian Defence Force 
Academy, Australia. We analyze stability and optimal 
conditions for generation of quadratic bright solitons in a 
counterpropagating configuration, (p. 58) 

WD2 ■ Steering of discrete solitons, Hagai Eisenberg, 
Yaron Silberberg, Weizmann Institute of Science, Israel; 
Roberto Morandotti, Ulf Peschel, J. Stewart Aitchison, Univ. 
Glasgow, UK. We experimentally investigate the propagation 
of solitons in waveguide arrays. We found the dynamical 
properties to be considerably modified by the discrete 
nature of the structure, (p. 61) 

WD3 ■ Solitons due to double resonance wave 
mixing in quadratic nonlinear media, Alexander V. 
Buryak, Isaac Towers, Rowland A. Sammut, Univ. College, 
Australian Defence Force Academy, Australia; Boris A. 
Malomed, Tel Aviv Univ., Israel. We investigate the existence 
and stability properties of three-wave solitons due to double 
resonance (type I plus type II) parametric interaction in 
quadratic nonlinear media. Among other findings we 
present a novel family of stable quasi-solitons. (p. 64) 

WD4 ■ Collapse suppression via parametric wave 
mixing, Victoria V. Steblina, Alexander V. Buryak, Rowland 
A. Sammut, Australian Defence Force Academy, Australia; 
Yuri S. Kivshar, Australian National Univ., Australia. We 
demonstrate that even a weak parametric coupling between 
a fundamental beam and its third harmonic can suppress 
catastrophic collapse in a bulk cubic (Kerr) nonlinear 
optical medium, (p. 67) 

WD5 ■ Asymmetric incoherent solitons, Wieslaw 
Krolikowski, Nail N. Akhmediev, Australian National Univ., 
Australia; Natalia M. Litchinitser, Govind P. Agrawal, Univ. 
Rochester, USA. Media with slow saturable nonlinearity can 
support spatial solitons, which are asymmetric in shape and 
are composed of only a finite number of modes of the self- 
induced waveguide, (p. 70) 

WD6 ■ Do stable multihump solitons exist?, Elena A. 
Ostrovskaya, Yuri S. Kivshar, Australian National Univ., 
Australia; Dmitry V. Skryabin, William J. Firth, Univ. 
Strathclyde, Scotland. Stability analysis of multihump 
optical solitons in saturable media is presented. It is shown 
that, in contrast with common beliefs, multihump solitons 
can be stable, (p. 73) 

WD7 ■ Self-trapping of necklace beams in self- 
focusing Kerr media, Marin Soljacic, Suzanne Sears, 
Mordechai Segev, Princeton Univ., USA. We believe we 
present the first (2+l)D beams that exhibit stable self- 
trapping in a system described by the cubic self-focusing 
(2+l)D Nonlinear Schrodinger Equation. An analytical 
framework we developed allows us to predict and control 
dynamics of such beams, so we can design shapes that are 
essentially stationary for very large distances, (p. 76) 

WD8 ■ Coherence and incoherence in multisoliton 
complexes, Andrey A. Sukhorukov, Nail N. Akhmediev, 
Australian National Univ., Australia. We obtain a general 
N-soliton solution of M coupled NLSE, describing 
propagation of multisoliton complexes and their collisions. 
Coherent and incoherent internal interactions are studied. 
(P. 79) 

WD9 ■ Two-color multistep cascading and parametric 
soliton-induced waveguides, Solomon Saltiel, Univ. 
Sofia, Bulgaria; Andrey A. Sukhorukov, Yuri S. Kivshar, 
Australian National Univ., Australia. We introduce the 
concept of two-color multistep cascading in quadratic 
optical media. We demonstrate creation of parametric 
waveguides by spatial solitons and describe their properties. 
(p. 82) 

WD10 ■ Solitary waves in quadratically nonlinear 
media with loss and gain, S. Darmanyan, L. Crasovan, 
F. Lederer, Friedrich Schiller Univ. Jena, Germany. We report 
the existence of double-hump bright localized waves in 
nonconservative quadratic media. Numerics reveal a fair 
robust behavior of these waves, (p. 85) 

WD11 ■ Dark spatial solitonlike structures induced 
by low-power upconverted photobleaching of dye- 
doped polymer film, Aaron WiUwsz, Nichols Research 
Corp., USA; Sergey Sarkisov, Alabama A&M Univ., USA. 
Theoretical and experimental results are reported on the 
evolution of a Gaussian beam within a waveguide slab into 
a structure similar to a dark spatial soliton. (p. 88) 

WD12 ■ Guiding light by incoherent dark solitons, 
Zhigang Chen, San Francisco State Univ., USA; Mordechai 
Segev, Technion-Israel Institute of Technology, Israel and 
Princeton Univ., USA; Demetrios N. Christodoulides, Lehigh 
Univ., USA;RobertS.Veigdson,Stanford Univ., USA.We 
believe we report the first experimental demonstration of 
optical guidance of coherent light beams using incoherent 
light. Such guidance is made possible by generating self- 
trapped incoherent dark beams—incoherent dark solitons. 
(P. 91) 



WD13 ■ Towards soliton emission in GaAs/AlGaAs 
multiple quantum well asymmetric waveguide 
structures below half the bandgap, Patrick Dumais, 
Alain Villeneuve, COPL, Univ. Laval, Canada; 
A. Saher-Helmy, J. Stewart Aitchison, Univ. Glasgow, UK; 
Lars Friedrich, Russell A. Fuerst, George I. Stegeman, 
CREOL, Univ. Central Florida, USA. We have observed an 
intensity-dependent translation of a beam guided in a strip- 
loaded AlGaAs multiple quantum well waveguide with an 
asymmetric nonlinear cladding, (p. 94) 

WD14 ■ Quadratic soliton interactions in a bulk 
medium, Anatoly P. Sukhorukov, Dmitry A. Chuprakov, 
Xin Lu, Moscow State Univ., Russia. We believe the relative 
displacement of FF and SH beams of spiraling and 
scattering parametric solitons was first discovered. 
Cascaded soliton spiraling was investigated numerically. 
(p. 97) 

WD15 ■ Optical needles: Ultranarrow Maxwell's 
spatial solitons in Kerr media, N.N. Rosanov, 
V.E. Semenov.N.V.Vyssotina, Vavilov State Optical Institute, 
Russia. Spatial solitons are found in Kerr media as solutions 
of a full set of Maxwell's equations. Their width is less than 
wavelength for sufficient beam power, (p. 100) 

WD16 ■ Formation and interaction of adaptive 
waveguides using photorefractive screening solitons, 
Juergen Petter, Carsten Weilnau, Cornelia Denz, Darmstadt 
Univ. of Technology, Germany. Photorefractive solitons 
provide an attractive possibility for adaptive waveguiding 
and all-optical beam steering. To realize complex waveguide 
structures, the time-resolved examination of the develop- 
ment of their interaction is indispensable, (p. 103) 

WD17 ■ Stimulated Rayleigh wing scattering in 
soliton propagation, R. Barille, J.P. Bourdin, G. Rivoire, 
Univ. Angers, France. We show that the spectral observations 
of soliton propagation at the output of a waveguide are due 
to the stimulated Rayleigh wing scattering mainly produced 
in cascade process, (p. 106) 

WD18 ■ Quasi-periodic quadratic solitons in Fi- 
bonacci QPM gratings, Yuri Kivshar, Australian National 
Univ., Australia; Ole Bang, Carl Balslev Clausen, Peter L. 
Christiansen, Technical Univ. of Denmark, Denmark. We 
analyze nonlinear wave propagation and cascaded self- 
focusing due to second-harmonic generation in Fibonacci 
optical superlattices and introduce the novel quasiperiodic 
soliton. (p. 109) 

WD19 ■ A unified approach to self-trapped partially 
coherent beams in logarithmically nonlinear media, 
Wieslaw Krölikowski, D. Edmundson, Australian National 
Univ., Australia; Ole Bang, Technical Univ. of Denmark, 
Denmark. We investigate the propagation of a partially 
coherent beam in a logarithmically nonlinear medium 
using the evolution equation for the mutual coherence 
function. Depending on the detuning between the effective 
diffraction radius and the nonlinearity the beam either 
oscillates or forms stationary incoherent soliton. (p. 112) 

WD20 ■ Theoretical demonstration of beam scanning 
using time-dependent solitary wave interactions in a 
Bi^TiOj photorefractive crystal, A.D. Boardman, 
P. Bontemps, Univ. Salford, UK. The operation of a 
photorefractive scanning device, based on the time- 
dependent interaction of two (1D+1) solitary beams, is 
investigated numerically and analytically, (p. 115) 

WD21 ■ Collapse dynamics of multidimensional 
coupled waves, Luc Berge, Commissariat ä VEnergie 
Atomique, France; O. Bang, W. Krolikowski, Australian 
National Univ., Australia;]. Juul Rasmussen, Rise National 
Laboratory, Denmark. Different interaction regimes between 
two coupled waves in focusing Kerr media are identified. 
Four-wave mixing and walk-off are shown to alter signifi- 
cantly their self-focusing dynamics, (p. 118) 

WD22 ■ Transverse instability of coupled dark-bright 
solitons, Z.H. Musslimani, A. Nepomnyashchy, Technion- 
Israel Institute of Technology, Israel; M. Segev, Princeton 
Univ., USA;Y.S. Kivshar, Australian National Univ., 
Australia. We investigate the transverse instability of two- 
component (1+1)D vector (Manakov-like) solitons in 
three-dimensional saturable nonlinear media, in relation to 
recent experiments with incoherently coupled 
photorefractive soliton pairs. We show that both the 
nonlinearity saturation and the interaction between the 
vector constituents can lead to strong suppression of the 
soliton instability, (p. 121) 

WD23 ■ Solitary waves formation in liquid crystalline 
waveguides, Miroslaw A. Karpierz, Waldemar K. Bajdecki, 
Andrzej W Domanski, Marek Sierakowski, Tomasz R. 
Wolinski, Warsaw Univ. of Technology, Poland.The stable 
solitary waves governed by the orientation nonlinearity in 
nematic liquid crystalline waveguide have been analyzed 
theoretically and observed experimentally for light power of 
30 mW. (p. 124) 

WD24 ■ Engineered discrete breathers, C. Balslev 
Clausen, Yu. B. Gaididei, P.L. Christiansen, Technical Univ. of 
Denmark, Denmark; L. Torner, Univ. Politecnica de 
Catalunya, Spain. We show that engineered quasi-phase- 
matched samples with transverse patterns can generate a 
latticelike dynamical system, which support stable breath- 
ers, (p. 127) 



WD25 ■ Transition towards dynamical parametric 
solitary waves, Antonio Picozzi, Marc Haelterman, Univ. 
Libre de Bruxelles, Belgium. We present a novel transition 
towards a dynamical parametric solitary wave through an 
original extension of the Kolmogorov-Petrovskii-Piskunov 
conjecture, (p. 130) 

WD26 ■ Gateless computing using N-Manakov 
solitons, Suzanne M. Sears, Ken Steiglitz, Mordechai Segev, 
Marin Soljacic, Princeton Univ., USA; Mariusz Jakubowski, 
Microsoft Corp., USA; Richard Squier, Georgetown Univ., 
USA. We find explicit solutions for two soliton collisions in 
the N-Manakov system and discuss how such collisions 
could be used to possibly implement gateless computing. 
(p. 133) 

WD27 ■ Multistep cascading spatial solitons, 
Tristram J.Alexander, Yuri S. Kivshar, Australian National 
Univ., Australia; Solomon Saltiel, Univ. Sofia, Bulgaria. We 
introduce a novel class of parametric spatial optical solitons 
supported simultaneously by two second-order nonlinear 
cascading processes, second-harmonic generation, and 
sum-frequency mixing, (p. 136) 

W028 * Magneto optical cavity multistability and 
polarized dissipative solitons: dissitons, N.N. Rosanov, 
D.V. Liseev, Vavilov State Optical Institute, Russia; 
A.D. Boardman, M. Xie, Univ. Salford, UK. A theory of 
multistability, modulation instability, and polarized 
dissipative spatial solitons in a wide-aperture driven cavity 
with planar magneto optical nonlinear waveguide is 
presented, (p. 139) 

WD29 ■ Experimental observation of optical patterns 
in multiple well microcavities, I. Ganne, G. Slekys, 
I. Sagnes.R. Kuszelewicz, France Telecom-CNET, France. 
Patterns have been observed for the first time to our 
knowledge in GaAlAs/MQW vertical-cavity 
microresonators. We show and discuss how cavity reso- 
nance fluctuations affect the mechanism of pattern 
selection, (p. 142) 

WD30 ■ Emission of coupled vortex beams from 
nonlinear VCSEL arrays, J. Scheuer, Y. Yadin, Y. Gross, 
M. Orenstein, Technion, Israel. Novel emission of coherently 
coupled vortex beams from nonlinear vertical-cavity 
surface-emitting laser (VCSEL) arrays was measured and 
analyzed. Coupled beams with a variety of vortex and 
"amplitude" charges were exhibited, (p. 145) 

WD31 ■ Self-organized light pixels in semiconductor 
microresonators for optical information processing, 
M. Brambilla, T. Maggipinto, I. Perrini, Univ. Politecnico di 
Bari, Italy;L.A. Lugiato,L. Spinelli, G. Tissoni, Univ. 
Insubria, Italy. We describe models for semiconductor 
broadarea microresonators, where self-organized light peaks 
can be realized and exploited for all-optical signal treat- 
ment. We discuss some effects linked to experiments on 
such devices, (p. 148) 

WD32 ■ Donutlike patterns in intracavity second 
harmonic generation, Ruman Iliew, Pey-Schuan Jian, 
William E. Torruellas, Washington State Univ., USA; Falk 
Lederer, Friedrich Schiller Univ., Germany. We demonstrate 
experimentally the formation of donutlike patterns in 
intracavity second-harmonic generation with powers in 
excess of 5 Watts allowing the optical manipulation of 
mesoscopic particles, (p. 151) 

WD33 ■ Instability and multistability of cavity 
solitons in optical parametric oscillators, Dmitry 
Skryabin, Strathclyde Univ., UK. It is demonstrated that 
Hopf instability of cavity solitons in optical parametric 
oscillators can be directly linked with internal modes of free 
propagating quadratic solitons. Results on multistability 
and complex instability induced spatio-temporal dynamics 
of the single- and multihump cavity solitons are also 
presented, (p. 154) 

WD34 ■ Stability of cavity solitons in parametric 
downconversion, C. Etrich, D. Michaelis, F. Lederer, 
Friedrich Schiller Univ. Jena, Germany. We identified stable 
and unstable branches of cavity solitons in the degenerate 
parametric oscillator. Unstable cavity solitons may decay 
into oscillating structures, (p. 157) 

WD35 ■ On existence of gap solitons, E. Alfimov, 
Lukin's Institute of Physical Problems, Russia; V.V. Kbnotop, 
Univ. Madeira, Portugal. We study the existence of gap 
solitons as periodic in time and localized in space solutions 
of the nonlinear wave equation with periodic coefficients. 
(P- 160) 

WD36 ■ Evaporative cooling of a soliton gas, Soeren 
Rutz, Fedor Mitschke, Univ. Rostock, Germany. In numerical 
simulations of a synchronously driven fiber ring resonator, 
an optical soliton gas is transformed into a soliton crystal by 
evaporative cooling, (p. 163) 

WD37 ■ Nonlinear intermode interference in LiNb03 

planar optical waveguides, Yury Larionov.Vladymir 
Shandarov, Stanislav Shandarov, State Univ. of Control 
Systems and Radioelectronics, Russia. The theoretical and 
experimental nonlinear interference of collinear guided 
modes of photorefractive optical waveguide in LiNb03 in 
conditions of significant spatial self-action of light beams 
was made. (p. 165) 

WD38 ■ Curvature dynamics and fronts in the optical 
parametric oscillator, J.N.Kutz, Univ. Washington, USA; 
T. Erneux, M. Haelterman, Free Univ. of Brussels, Belgium; 
S. Trillo, Univ. Ferrara, Italy. For positive signal detuning, 
topological solitons of the optical parametric oscillator are 
shown to be stable with the front curvature governed by the 
heat equation, (p. 168) 



WD39 ■ Excitation and interactions of gap quadratic 
solitons, Sergey V. Polyakov, Anatoly P. Sukhorukov, 
CREOL, Univ. Central Florida, USA. Gap soliton train 
generation under input cw FF signal in quadratically 
nonlinear gratings is first numerically investigated. 
Collisions of slow and immobile solitons are considered. 
(p. 171) 

WD40 ■ Optical velocity control of parametric gap 
solitons, Michele De Sario, Claudio Conti, Gaetano 
Assanto, Terza Univ. of Rome and National Institute for the 
Physics of Matter, Italy. The velocity of solitons excited by 
fundamental frequency pulses in Bragg reflectors with 
quadratic nonlinearity can be controlled by a small 
coherent second-harmonic seed. (p. 174) 

WD41 ■ Optical gap solitons in nonresonant qua- 
dratic media, Takeshi Iizuka, Ehime Univ., Japan;Yuri S. 
Kivshar, Australian National Univ., Australia. We derive a 
novel physical model for gap solitons in quadratic Bragg 
grating in which the optical rectification plays an important 
role. (p. 177) 

WD42 ■ Formation and switching of multilobed 
patterns in ring-shaped complex nonlinear media, 
J. Scheuer, D. Arbel, M. Orenstein, Technion, Israel. 
Formation of spatial patterns with increasing complexity 
within a complex nonlinear medium was modeled. The 
predictions were verified experimentally with patterns 
emitted from ring-shaped VCSELs. (p. 180) 

WD43 ■ Polarization-locked vector solitons in a fiber 
laser, J.M. Soto-Crespo, C.S.I.C, Spain; N.N.Akhmediev, 
Australian National Univ., Australia; B.C. Collings, 
W.H. Knox, Bell Laboratories, Lucent Technologies and 
Princeton Univ., USA; S.T. Cundiff, Univ. Colorado and 
NIST-Boulder, USA; K. Bergman, Princeton Univ., USA. 
Stable polarization-locked temporal vector solitons are 
found in a saturable absorber mode-locked fiber laser with 
weak cavity birefringence, (p. 183) 

W044 ■ Multiple-soliton states in a passively mode- 
locked Tksapphire laser, M.J. Lederer, B. Luther-Davies, 
H.H. Tan, C. Jagadish, N.N.Akhmediev, Australian National 
Univ., Australia; J.M. Soto-Crespo, C.S.I.C, Spain. Multiple- 
pulse operation of a passively mode-locked Thsapphire 
soliton laser is considered. The mechanisms involved in the 
transition between and formation of multiple soliton states 
are analyzed, (p. 186) 

WD45 ■ Cavity-less oscillator through second- 
harmonic generation in backward quasi-phase- 
matching, Claudio Conti, Gaetano Assanto, Terza Univ. 
Rome and National Institute for the Physics of Matter, Italy; 
Stefano Trillo, Univ. Ferrara, Italy. Nonlinear feedback via 
second-harmonic generation can enhance the gain of an 
optical amplifier, up to oscillation, (p. 189) 

Salle Morey-St-Denis 

16.30-18.45 
WE ■ Quadratic and Discrete Solitons 
Falk Lederer, University of Jena, Germany, Presider 

16.30 (Invited) 
WEI ■ Vortex dynamics in quadratic nonlinear media, 
Lluis Tomer, D.V. Petrov, J.P. Torres, G. Molina, J. Martorell, 
R. Vilaseca, Univ. Politecnica de Catalunya, Spain; J.M. Soto- 
Crespo, C.S.I.C, Spain. A review of the recent progress in 
the dynamics of optical vortices in quadratic nonlinear 
media, including their impact to spatial soliton systems, is 
presented, (p. 194) 

17.00 
WE2 ■ Observation of quadratic spatial solitons in 
PPLN, B. Bourliaguet, V. Couderc, A. Barfhilemy, Univ. 
Limoges CNRS, France; G.W. Ross, P.G.R. Smith, 
D.C. Hanna, Univ. Southampton, UK; C. De Angelis, Univ. 
Brescia, Italy. We believe we report the first observation of 
quadratic-spatial-solitons in periodically poled lithium 
niobate, designed for second-harmonic generation. Solitary 
wave propagation was observed over more than six 
diffraction lengths, (p. 197) 

17.15 (Invited) 
WE3 ■ Second-harmonic generation in waveguides 
induced by photorefractive spatial solitons, Song Lan, 
Charalambos Anastassiou, Princeton Univ., USA; Ming-feng 
Shih, National Taiwan Univ., Taiwan; Greg Mizell, VLOC, 
Il-VIInc, USA; J.A. Giordmaine, Princeton Univ. and NEC 
Research Institute, USA; Zhigang Chen, San Francisco State 
Univ., USA; John Martin, Deltronic Crystal Industries, USA; 
Mordechai Segev, Princeton Univ., USA and Technion, Israel. 
We propose and demonstrate experimentally second- 
harmonic generation in waveguides induced by 
photorefractive solitons, and show that the conversion 
efficiency is improved considerably, (p. 200) 

17.45 
WE4 ■ Cantor set fractals from solitons, Marin 
Soljacic, Suzanne Sears, Mordechai Segev, Dmitriy Krylov, 
Keren Bergman, Princeton Univ., USA. We describe a 
general principle for generating fractals in physical systems 
that can support solitons. We illustrate this by numerically 
constructing Cantor set fractals in (1 + 1)D cubic self- 
focusing NLSE. To our knowledge, these are the first fractals 
proposed in optics, (p. 203) 



18.00 (Invited) 18.30 
WE5 ■ First experimental observation of optical WE6 ■ New families of discrete solitons in quadratic 
Bloch-oscillations, U. Peschel, R. Morandotti, waveguide arrays, A. Kobyakov, S. Darmanyan, 
J.S. Aitchison, Univ. Glasgow, UK; H. Esenberg, T. Pertsch, F. Lederer, Friedrich Schiller Univ. Jena, Germany. 
Y. Silberberg, Weizman Institute of Science, Israel. We believe We discover novel types of localized modes in quadratically 
we report the first experimental observation of Bloch- nonlinear discrete systems, derive stability criteria, and 
oscillations in waveguide arrays. The action of the focusing estimate required powers in a lithium niobate waveguide 
nonlinearity leads to symmetry breaking and power- array, (p. 209) 
induced beam spreading, (p. 206) 



■ Thursday 
■ 2 September 1999 

Foyer-Bar 

07.30-17.00 
Registration Open 

Salle Morey-St-Denis 

08.00-10.00 
ThA ■ Dispersion Management 1 
Stefan Wabnitz, Universite de la Bourgogne, Dijon, France, 
Presider 

08.00 (Invited) 
THAI ■ Pulse-overlapped dispersion-managed data 
transmission and intrachannel four-wave mixing, 
P.V. Mamyshev, N.A. Mamysheva, Bell Laboratories-Lucent 
Technologies, USA. We show that strong overlap of adjacent 
pulses in dispersion-managed RZ transmission reduces 
pulse-to-pulse interaction and the timing jitter. The limiting 
factor for this 'pulse-overlapped' transmission is the 
amplitude fluctuations induced by four-wave mixing 
between spectral components within a single channel. 
(P. 214) 

08.30 
ThA2 ■ 160-Gbit/s soliton transmission in a densely- 
dispersion-managed fiber in the presence of variable 
dispersion and polarization-mode dispersion, 
T. Hirooka, T. Nakada, A. Liang, Osaka Univ., Japan; 
A. Hasegawa, Kochi Univ. of Technology and NTT Science 
and Core Technology Laboratory Group, Japan. Soliton 
transmission at 160 Gbit/s over 2,500 km is numerically 
demonstrated using a dispersion flattened densely- 
dispersion-managed fiber with variable dispersion. 
(p. 217) 

08.45 
ThA3 ■ Dispersion maps with optimized amplifier 
placement for wavelength-division multiplexing, Brian 
S. Marks, William L. Kath, Northwestern Univ., [/SA;Tian- 
Shiang Yang, National Cheng Kung Univ., Taiwan; Sergei K. 
Turitsyn, Aston Univ., UK. We obtain amplifier placements 
in two-step dispersion maps that minimize dispersive 
radiation in different wavelength channels. Configurations 
appropriate for Bragg grating dispersion compensators are 
described, (p. 220) 

09.00 
ThA4 ■ Timing jitter of a strongly-dispersion-managed 
soliton in a WDM system, Hiroto Sugahara.Akihiro 
Maruta, Osaka Univ., Japan. Collision-induced timing jitter 
in a wavelength-division multiplexed (WDM) system is 
theoretically studied for a strongly-dispersion-managed 
line. We also propose an optimal path averaged dispersion 
by means of minimizing the timing jitter induced both by 
collision in WDM and amplifier noise, (p. 223) 

09.15 
ThA5 ■ Efficient reduction of interactions in disper- 
sion-managed links through in-line filtering and 
synchronous intensity modulation, Erwan Pincemin, 
Frederic Neddam, Oliver Ledere, Alcatel Corporate Research 
Center, France. The impact of combined use of in-line 
filtering and synchronous intensity modulation on 
interactions is investigated in a 40-Gbit/s dispersion- 
managed link. Numerical results confirm analytical 
predictions and show that interactions are efficiently 
suppressed, (p. 226) 

09.30 (Invited) 
ThA6 ■ Towards N x 40 Gbit/s transoceanic regener- 
ated systems, O. Leclerc, P. Brindel, D. Rouvillain, 
E. Princemin, B. Dany, E. Desurvire, Alcatel Corporate 
Research Center, France; C. Duchet, E. Boucherez, 
S. Bouchoule, Opto+, France. Error-free 40-Gbit/s regener- 
ated transmission over more than 20,000 km is demon- 
strated using new InP Mach-Zehnder modulator with 
wavelength-division compatibility, in good agreement with 
numerical simulations. This is a first step towards N x 40- 
Gbit/s transoceanic system demonstration, (p. 229) 

Foyer-Bar 
10.00-10.30 
Coffee Break 

Salle Morey-St-Denis 

10.30-12.00 
ThB ■ Nonlinear Periodic Media 
Neil G. Broderick, University of Southampton, UK, Presider 

10.30 (Invited) 
ThBl ■ Quantum and nonlinear optics in a photonic 
bandgap, Sajeev John, Univ. Toronto, Canada. Photonic 
bandgap (PBG) materials are a new class of dielectric 
materials, which exhibit a complete three-dimensional gap 
to electromagnetic wave propagation. The new effects such 
as light localization, inhibited spontaneous emission, and 
nonlinear wave propagation predicted to occur in these 
materials, as well as their consequences, are described. 
(p. 234) 

11.00 
ThB2 ■ Laue soliton in photonic crystal, B.I. 
Mantsyzov, Moscow State Univ., Russia. The theory of 
nonlinear dynamic two-wave Bragg diffraction of coherent 
short pulse in resonantly absorbing multidimensional 
photonic crystal is developed. A novel type of soliton has 
been found in the case of Laue geometry of diffraction. 
(P. 235) 



11.15 
ThB3 ■ The spectral characteristics of nonlinear 
pulse compression in an integrated Bragg waveguide 
filter, P. Millar, N.G.R. Broderick, DJ. Richardson, 
J.S. Aitchison, R. De la Rue, T. Krauss, Univ. Glasgow, UK. 
We present measurements of nonlinear pulse compression 
from 400 ps to 80 ps and the spectral broadening associated 
with soliton formation inside an integrated Bragg filter. 
(p. 238) 

11.30 
ThB4 ■ Soliton pulse compression in chalcogenide 
fiber Bragg gratings, G. Lenz, B.J. Eggleton, M.E. Lines, 
R.E. Slusher, Lucent Technologies, Bell Labs, USA; 
N.M. Litchinitser, Univ. Rochester, USA; J.S. Sanghera, 
I.D. Aggarwal, Naval Research Laboratory, USA. We propose 
chalcogenide fiber Bragg gratings for picosecond pulse 
compression as well as pulse train generation. The large 
nonlinearity and dispersion allow a small versatile device 
(P. 241) 

11.45 
ThB5 ■ Femtosecond second-harmonic and sum- 
frequency generation near the photonic band edge in 
one-dimension periodic media, A.V. Balakin, 
V.A. Bushuev, N.I. Koroteev, B.I. Mantsyzov, I.A. Ozheredov, 
A.R Shkurinov, Moscow State Univ., Russia; D. Boucher, 
P. Masselin, Univ. Littoral, France. Results of femtosecond 
second-harmonic and sum-frequency generation in 
multilayer structure for different GVD parameters and 
various states of polarization of incoming beam are 
discussed, (p. 244) 

12.00-13.30 
Lunch 

Salle Morey-St-Denis 

13.30-15.00 
ThC ■ Frequency Conversion and Cascaded 
Nonlinearity 
Alain Villeneuve, University of Laval, Canada, Presider 

13.30 (Invited) 
ThCl ■ Frequency conversion and switching in 
birefringent fibers, G. Millot, E. Seve, S. Wabnitz, Univ. 
Bourgogne, France; S. Trillo, Fondazione Ugo Bordoni and 
Univ. Ferrara, Italy. Experiments show that cross-phase- 
modulation instability induced by a small signal wave leads 
to strong frequency conversion and switching in a normally 
dispersive high-birefringence optical fiber, (p. 248) 

14.00 (Invited) 
ThC2 ■ Nondegenerate four-wave mixing in DFB 
lasers and its applications, H. Kuwatsuka, Fujitsu 
Laboratories Ltd., Japan. The wavelength conversion and the 
phase-conjugate wave generation have been realized by 
nondegenerate four-wave mixing in distributed feedback 
(DFB) lasers, (p. 251) 

14.30 
ThC3 ■ Wavelength shifting through cascaded 
second-order processes in a lithium-niobate channel 
waveguide, I. Cristiani, L. Tartara, M. Rini, G.P. Banfi, 
V. Degiorgio, Univ. Pavia, Italy. We have performed a 
wavelength-shifting experiment by using a cascaded 
second-order process in a 58-mm-long Ti-diffused lithium- 
niobate channel waveguide. Efficient wavelength conversion 
is obtained in the 1100-nm spectral range, (p. 254) 

14.45 
ThC4 ■ High-energy femtosecond pulse compression 
using the cascade nonlinearity, X. Liu, L.J. Qian, 
F.W Wise, Cornell Univ., USA. 100-microjoule pulses are 
efficiently compressed from 120 fs to 45 fs using cascade 
nonlinearities. Scaling to higher energies and compression 
ratios will be possible, (p. 257) 

Foyer-Bar 

15.00-16.30 
ThD ■ Poster Session 2/ 
Refreshment Break 

ThDl ■ Upper limit of power for stationary pulse train 
generation in modulational-instability fiber laser with 
intracavity Fabry-Perot filter, E.V. Vanin, Ericsson 
Telecom AB, Sweden; S.Helmfrid, Industrial Microelectronics 
Center, Sweden. We theoretically investigated the dynamics 
of modulational-instability fiber lasers with intracavity 
Fabry-Perot filter and found an upper power limit for 
stationary pulse train generation, (p. 262) 

ThD2 ■ Demonstration of new optical regeneration 
scheme for dispersion-managed solitons in dense 
WDM systems, Bruno Dany, Patrick Brindel, Olivier 
Leclerc, Emmanuel Desurvire, Alcatel Corporate Research 
Centre, France. We demonstrate compatibility between new 
black box optical regenerator and soliton dispersion 
management for dense-wavelength-division multiplexed 
(WDM) systems with 16 x 40 Gbit/s transoceanic applica- 
tion, (p. 265) 

ThD3 ■ Variational analysis of non-return-to-zero 
pulse propagation in optical transmission line, 
Akihiro Maruta, Osaka Univ., Japan. We give an analysis of 
non-return-to-zero pulse propagation in an optical 
transmission line by means of the variational method with 
a properly chosen ansatz for the pulse. It can describe pulse 
propagation in a dispersion-managed transmission line. 
(P. 268) 

ThD4 ■ Soliton interactions in moderate-strength 
dispersion-managed systems, A.M. Niculae, 
W Forysiak, N.J. Doran, Aston Univ., UK. Soliton interac- 
tion in moderate-strength dispersion-managed systems is 
studied. The collapse distance is maximized by symmetriz- 
ing the pulse dynamics via optimum positioning of the 
amplifier, (p. 271) 



ThD5 ■ Noise suppression in SOA transmission lines, 
Christian Knöll, Michael Gölles, Falk Lederer, Friedrich 
Schiller Univ. Jena, Germany. Stable propagation of high-bit- 
rate RZ signals can be achieved by properly combining a 
semiconductor optical amplifier (SOA) with a saturable 
absorber. Experiments have confirmed the predictions. 
(P- 274) 

ThD6 ■ Experimental observation of a new chirped 
continuous pulse-train soliton solution to the 
Maxwell-Bloch equations, Shihadeh Saadeh, Gregory J. 
Salamo, Univ. of Arkansas, USA. Chirped continuous pulse- 
train solutions to the Maxwell-Bloch equations have been 
observed, experimentally, numerically, and analytically. 
(p. 277) 

ThD7 ■ Cross-polarization mixing of a laser beam and 
a spectrum of light in a single-mode optical fiber, 
K.S. Chiang, K.P. Lor, City Univ. of Hong Kong, Hong Kong. 
We demonstrate a new cross-polarization four-wave mixing 
process in a single-mode optical fiber with a pulsed dye 
laser as the pump source, (p. 280) 

ThD8 ■ Standard perturbative analysis of zero- 
average dispersion management, C. Pare\ V. Roy, 
F. Lesage, P. Mathieu, P.-A. Belanger, Univ. Laval, Canada. 
A coupled-field description is used for the analysis of zero- 
average dispersion management. A straightforward 
perturbative treatment is shown to lead to a nonlinear 
integral equation for the spectral distribution of the pulse. 
This extends previous work and allows an accurate 
determination of the critical map strength parameter. 
(p. 283) 

ThD9 ■ Slow dynamics of dispersion-managed 
solitons, Anders Berntson, Ericsson Telecom AB, Sweden; 
Dan Anderson, Mietek Lisak, Chalmers Univ. of Technology, 
Sweden; Boris Malomed, Tel Aviv Univ., Israel. We show that 
strong dispersion management prevents optical pulses, 
deviating from the soliton shape, from shedding dispersive 
waves, (p. 286) 

ThDIO ■ Propagation of an optical pulse in a fiber 
link with random dispersion management, Boris 
Malomed, Tel Aviv Univ., Israel; Anders Berntson, Ericsson 
Telecom AB, Sweden. Real-world communication networks 
consist of fibers with randomly varying lengths. Soliton 
propagation in two models of a dispersion-managed 
communication line with randomly varying lengths of the 
fiber segments is studied in this work analytically and 
numerically, (p. 289) 

ThDll ■ Criterion for an oscillatory instability of 
multiparameter solitons, Dmitry Skryabin, Strathclyde 
Univ., UK. Criteria for the oscillatory and novel stationary 
instabilities of multiparameter solitons are obtained using a 
general form of the asymptotic approach to the stability 
problem, (p. 292) 

ThD12 ■ 40-Gbit/s standard fiber transmission for a 
range of input pulse widths, D.S. Govan, P. Harper, 
S.B. Alleston, N.J. Do ran, Aston Univ., UK. The effect of 
varying the pulse width in a 40-Gibt/s dispersion-managed 
transmission line is investigated numerically, (p. 295) 

ThD13 ■ Complete characterization of THz periodic 
pulse trains generated from nonlinear processes in 
optical fibers, J.M. Dudley, Univ. Auckland, New Zealand; 
M.D. Thomson, Johann Wolfgang Goethe Univ., Germany; 
F. Gutty, S. Pitois, P. Grelu, G. Millot, CNRS, France. We 
show how an adapted frequency-resolved optical gating 
measurement technique allows complete intensity and 
phase characterization of THz pulse trains generated in 
optical fibers, (p. 298) 

ThD14 ■ Symmetries, chirp-free points and bistability 
in dispersion-managed fiber lines, S.K. Turitsyn, 
J.H.B. Nijhof, V.K. Mezentsev, N.J. Doran, Aston Univ., UK. 
Using an elementary symmetry analysis we show that in 
dispersion-compensated systems where a "lossless" model is 
valid, a chirp-free point is at the center of map symmetry, if 
the periodic solution is unique. We also present an example 
when effect of bistability occurs, (p. 301) 

ThD15 ■ Cross-phase-induced pulse splitting—the 
optical axe, Lukas Helczynski, Björn Hall, Dan Anderson, 
Mietek Lisak, Chalmers Univ. of Technology, Sweden; Anders 
Bernstson, Ericsson Telecom AB, Sweden; Mats Desaix, Univ. 
Boras, Sweden. A new phenomenon—pulse splitting by 
induced cross phase modulation in a pump-probe configu- 
ration in a defocusing Kerr medium is analyzed analytically 
and numerically, (p. 304) 

ThD16 ■ Modulation instability in long amplified links 
with dispersion compensation, £. Ciaramella, 
M. Tamburrini, Fondazione Ugo Bordoni, Italy. In typical 
conventional fiber links with dispersion compensation, 
modulation instability features are far different than in 
uniform links, and can give much lower system impair- 
ments, (p. 307) 

ThD17 ■ Dynamics of dispersion-managed solitons in 
optical communication lines with random param- 
eters, F.Kh. Abdullaev, B.B. Baizakov, Uzbek Academy of 
Sciences, Uzbekistan. Disintegration of a soliton propagating 
in dispersion-managed optical communication line with 
randomly varying dispersion magnitudes of spans and span 
lengths is shown to occur. Soliton decay length is calculated 
for both types of modulation, (p. 310) 

ThD18 ■ Dispersion-managed solitons and the 
inverse scattering transform, J.H.B. Nijohf, 
S.K. Turitsyn, N.J. Doran, Aston Univ., UK. We apply the 
inverse scattering transform method to dispersion-managed 
(DM) solitons, and find how symmetries of the DM soliton 
imply symmetries of the scattering data. (p. 313) 



ThD19 ■ Transmission characteristics of optical fiber 
solKons in a dispersion-slope compensated system, 
Joji Maeda, Hiromitsu Ogawa, Nobumitsu Umezawa, 
Science Univ. of Tokyo, Japan. We numerically study 
transmission characteristics of a 50-Gbit/s soliton transmis- 
sion system using dispersion-slope compensation. It is 
predicted that the compensation within 0.4 times third- 
order dispersion length would greatly improve the trans- 
mission performance, (p. 316) 

ThD20 ■ Theoretical and numerical methods for 
dispersion-managed solitons, Vincent Cautaerts, Akihiro 
Maruta, Yuji Kodama, Osaka Univ., Japan. We present 
comparative results of different methods for calculating the 
pulse shape, width, and energy of dispersion-managed 
solitons. The applicability of those methods, depending on 
the dispersion map parameters, will be exposed, (p. 319) 

ThD21 ■ Modulational instability in fiber transmission 
lines, M. Gölles, S. Darmanyan, G. Onishchukov, 
A. Shipulin, V. Lokhnygin, F. Lederer, Friedrich Schiller Univ. 
Jena, Germany. Modulational instability of cw solutions in 
fiber systems with cascaded semiconductor optical 
amplifiers is studied. SOA and filter characteristics 
appreciably affect the instability behavior, (p. 322) 

ThD22 ■ Propagation and breakup of prechirped N- 
soliton pulses in anomalous optical fibers, D. Krylov, 
L.Leng.K. Bergman, Princeton Univ., USA; J.C. Bronski, 
Univ. Illinois-Urbana, USA; J.N. Kutz, Univ. Washington, 
USA. Strongly prechirped N-soliton pulses are shown 
numerically and experimentally to break up into an ordered 
train of fundamental solitons, imposing limits on chirped 
pulse propagation, (p. 325) 

ThD23 ■ 10-Gbit/s OTDM to 4 x 2.5 Gbit/s WDM 
conversion using an SOA-NOLM, Bragg gratings, and 
a supercontinuum pulse source, D.M. Ryan, N.J. Doran, 
Aston Univ., UK. A 10-Gbit/s time-division multiplexed 
datastream is converted to four separate wavelength 2.5- 
Gbit/s channels using an SOA-NOLM. The clock pulses are 
obtained using serial Bragg gratings and a supercontinuum 
source, (p. 328) 

ThD24 ■ Photorefractive grating assisted directional 
coupler, Ewa Weinert-Raczka, Robert Iwanow, Technical 
Univ. of Szczecin, Poland. Asymmetric directional coupler 
controlled by thin photorefractive grating based on Franz- 
Keldysh effect in AlGaAs/GaAs quantum wells as switching 
and demultiplexing element with memory is analyzed. 
(p. 331) 

ThD25 ■ Engineering competing quadratic and qubic 
nonlinearities, Ole Bang, Carl Balslev Clausen, Peter L. 
Christiansen, Technical Univ. of Denmark, Denmark; Lluis 
Torner, Univ. Politecnica de Catalunya, Spain. Weak 
modulation of a quasi-phase-matching (QPM) grating 
opens possibilities for engineering both the quadratic 
nonlinearity and the Kerr nonlinearity induced by QPM. 
(p. 334) 

ThD26 ■ Derivative quadratic nonlinearity and 
cascaded solitons in quasi-phase-matched waveguide 
systems, A.M. Kamchatnov, V.M. Agranovitch, Russian 
Academy of Sciences, Russia; M. Neviere, Laboratorie 
d'Optique electromagnetique, France; A.D. Boardman, Univ. 
Salford, UK. The quasi-phase-matching technique imple- 
mentation in the waveguide geometry with a thin periodi- 
cally modulated quadratically nonlinear layer placed on the 
surface of the waveguide is considered theoretically. 
(p. 337) 

ThD27 ■ KDV solitons on GaAs transmission lines 
due to the intrinsic second-order nonlinearity, 
K. Bubke, U. Peschel, D.C. Hutchings, Univ. Glasgow, UK. 
Soliton development in GaAs electrical transmission lines 
due to second-order nonlinearities is investigated. The 
theoretical analysis leads to a Korteweg-de Vries equation. 
(p. 339) 

ThD28 ■ Spontaneous formation of symbiotic solitary 
wave attractors in backward quadratic interaction 
and parametric oscillators, A. Picozzi.MarcHaelterman, 
Univ. Libre de Bruxelles, Belgium; C. Montes, CNRS, France. 
The amplifier and cavity configurations exhibit the 
formation of parametric solitary waves. An energy 
localization phenomenon through a zero-velocity solitary 
wave is presented, (p. 342) 

ThD29 ■ All-optical modulation in second-order 
nonlinear directional couplers by second-harmonic 
generation, Uwe Hempelmann, Univ. Paderborn, Germany. 
Based on the principle of seeded down-conversion, all- 
optical modulation by a weak control signal via type I 
second-harmonic generation in second-order nonlinear 
directional couplers is demonstrated theoretically, (p. 345) 

ThD30 ■ Modeling the effects of loss and fabrication 
error for second-harmonic generation in semiconduc- 
tor waveguides, F.A. Katsriku, B.M.A. Rahman, 
K.T.V. Grattan, City Univ., UK. An accurate numerical 
method is presented for modeling of second-harmonic 
generation in semiconductor waveguides after considering 
loss and domain fabrication error, (p. 348) 

ThD31 ■ The study of nonideal implementation and 
noise effects on quasi-phase-matched parametric 
interactions in optical waveguides, Ching-Fuh Lin, 
Hsu-Feng Chou, Yue-Wen Hong, National Taiwan Univ., 
Taiwan. The nonideal implementations of waveguide and 
noise of the pumping wave are found to have substantial 
influences on the quasi-phase-matched parametric 
interactions in optical waveguides, (p. 351) 



ThD32 ■ Finite-difference beam propagation methods 
for modeling quasi-phase-matched second-order 
nonlinear interaction in waveguide, Ching-Fuh Lin, 
Hsu-Feng Chou, Shing Mou, National Taiwan Univ., 
Taiwan. Two iterative finite-difference beam propagation 
methods are proposed to model quasi-phase-matched 
second-order nonlinear interaction in waveguide. Compari- 
sons with already published methods show their superiority. 
(p. 354) 

ThD33 ■ Wavelength conversion from 1.3 micrometer 
to 1.5 micrometer using Raman-assisted three-wave 
mixing in a single-mode optical fiber, T. Sylvestre, 
H. Maillotte, E. Lantz, Univ. Franche-Comte, France; 
P. Tchofo Dinda, A.B. Moubissi, Univ. Bourgogne, France. 
We demonstrate wavelength conversion from 1.32 to 1.52 
micrometer, by Raman-assisted three-wave mixing of a 
1.413-micrometer pump with a 1.32-micrometer signal in 
an optical fiber, (p. 357) 

ThD34 ■ Simultaneous second- and third-harmonic 
generation in layered media and related phenomena, 
V.V. Konotop, Univ. Madeira, Portugal; V Kuzmiak, Czech 
Academy of Sciences, Czech Republic. Using geometry of 
layered media, conditions for simultaneous second- and 
third-harmonic generation can be provided. In particular, 
fractional frequency conversion in such media is possible. 
(p. 360) 

ThD35 ■ A new class of optical solitary waves: 
embedded solitons, Alan R. Champneys, Univ. Bristol, 
UK; Boris A. Malomed, Tel Aviv Univ., Israel. Existence and 
application of quiescent and moving isolated solitons 
embedded into the continuous spectrum in fiber and planar 
second-harmonic-generating waveguides with gratings. 
(p. 362) 

ThD36 ■ Phase-matched second-harmonic generation 
in composite planar waveguide, M. Alshikh Khalil, 
G. Vitrant, LEMO-ENSERG, France; P. Raimond, 
P.A. Chollet, F. Kajzar, CEA-(LETI-Technologies Avancees), 
France. We report on the fabrication, and characterization, 
of composite planar waveguide using ion-exchanged glass 
and nonlinear poled polymer for frequency doubling. 
Phase-matching is obtained by using modal dispersion 
between TM0 fundamental and TM2 harmonic wavelength. 
(p. 365) 

ThD37 ■ Photochromic properties of PMMA-DR1 
functionalized polymer films: evidence of reversible 
trapped molecular states, Guy Vitrant, Amparo 
Rodriguez, Xavier Gregoire, Nadege Bodin, LEMO- 
ENSERG, France; P.A. Chollet, F. Kajzar, CEA/LETI, France. 
We report on photoinduced refractive index and absorption 
anisotropies in thin films of PMMA-DR1. We have obtained 
a photoinduced memory effect and experimental evidence 
of physical mechanisms of photoisomerization process. 
(p. 368) 

ThD38 ■ Chalcogenide glass films for nonlinear 
optics, S. Spalter, G. Lenz, H.Y. Hwang, J. Zimmermann, 
S.-W. Cheong, T. Katsufuji, M.E. Lines, R.E. Slusher, Lucent 
Technologies, Bell Labs, USA. We are fabricating highly 
nonlinear single-mode chalcogenide glass waveguides for 
nonlinear optics experiments and switching applications at 
the communication wavelength 1.55 microns, (p. 371) 

ThD39 ■ Waveguide writing in As2S3 glasses by a 
train of femtosecond laser pulses, T. Cardinal, 
M. Couzi, J.L. Brun£el, Univ. Bordeaux I, France; 
O.M. Efimov, L.B. Glebov, K.A. Richardson, E. Van Stryland, 
G.I. Stegeman, CREOL, Univ. Central Florida, USA; 
S.H. Park, Yonsei Univ., South Korea. Waveguide writing 
using femtosecond pulses at 850 nm in As2S3 glass is 
reported. The refractive-index variation and the 
photodarkening observed in the photoinduced structure 
were attributed to chemical changes, (p. 374) 

ThD40 ■ Evidence of structural orientations in poled 
niobium borophosphate bulk glass, V. Nazabal, 
E. Fargin, G. Le Flem, ICMCB CNRS, France; T. Buffeteau, 
B. Desbat, ICMCB, Univ. Bordeaux, France. The second- 
harmonic generation efficiency of a niobium 
borophosphate poled glass is measured. Infrared structural 
characterizations of the poled glass evidenced the break- 
down of isotropy. (p. 377) 

ThD41 ■ Optimizing the conversion efficiency for the 
Cerenkov second-harmonic generation in planar 
optical waveguides, Libor Kotacka, Hugo 
J.W.M. Hoekstra, LDG Univ. Twente, The Netherlands; Jiri 
Ctyroky, IREE, The Netherlands. The position of the 
maximum of the conversion efficiency and its continuous 
tuning to a desired wavelength for three and four layered 
waveguides has been investigated, (p. 380) 

ThD42 ■ Asynchronous optical logic, K.J. Blow, Aston 
Univ., UK; A.]. Poustie, R.J. Manning, BT Labs, UK. We 
discuss optical logic when the data stream is not synchro- 
nized to a local clock. We show how to generate a packet 
synchronization pulse, (p. 383) 

ThD43 ■ An easy approach for estimating absorption 
loss in organic thin sold films, Yu Shen, Shen Yuquan, 
Chen Yingli, Cao Zhuangqi, Edward YB Pun, Institute of 
Photographic Chemistry, China. An UV-VIS-NIR spectro- 
scopic method for determination of optical loss in organic/ 
polymeric films has been suggested. The optical losses of 
two polyimide polymers with push-pull azobenzene 
chromophore attached were examined by this method and 
the data calibrated by convertional optical methods. 
(p. 386) 



ThD44 ■ Spinning light bullets in second-harmonic- 
generating media, Yefim Bakman, Boris Malomed, Tel 
Aviv Univ., Israel. Solutions to a three-dimensional model 
with the quadratic nonlinearity are found, by means of 
variational approximation and direct simulations, in the 
form of fully localized vortex solitons. Consideration of the 
linearized equations suggests that the solitons are stable. 
(p. 389) 

ThD45 ■ Stable solitons in quadratic waveguides 
with losses and gain, Lucian-Cornel Crasovan, Dumitru 
Mihalache, Dumitru Mizilu, National Institute of Physics 
and Nuclear Engineering, Romania; Boris Malomed, Tel Aviv 
Univ., Israel; Falk Lederer, Friedrich-Schiller-Univ., Germany. 
A model of a second-harmonic-generating waveguide with 
linear gain and filtering is proposed, in which fully stable 
pulses exist, the background instability being suppressed by 
an extra parallel-coupled lossy core. (p. 392) 

Salle Morey-St-Denis 

16.30-18.45 
ThE ■ Vectoral Solitons and Incoherent 
Solitons 
Yuri Kivshar, Australian National University, Australia, 
Presider 

16.30 (Invited) 
ThEl ■ New physics and applications of Kerr spatial 
solitons in AIGaAs waveguides, George I. Stegeman, 
Lars Friedrich, CREOL, Univ. Central Florida, USA; Patsy 
Millar, J. Stewart Aitchison, Univ. Glasgow, UK; Nail N. 
Akhmediev, Australian National Univ., Australia. Experi- 
ments in AIGaAs slab waveguides investigating the 
polarization dynamics of spatial vector solitons and 
employing spatial solitons as reconfigurable interconnects 
will be presented, (p. 396) 

17.00 
ThE2 ■ Four-wave mixing of vector solitons, 
C. Anastassiou, M. Segev, JA. Giordmaine, S. Lan, 
K. Steiglitz, Princeton Univ., USA; M. Mitchell, Lucent 
Technologies, USA; M.F. Shih, National Taiwan Univ., 
Taiwan. We study theoretically and experimentally 
collisions between vector (Manakov-like) solitons. We 
demonstrate energy switching between solitons at large 
collision angles, for which scalar solitons pass through each 
other practically unaffected, (p. 399) 

17.15 
ThE3 ■ Applied magneto-optic soliton dynamics 
based upon TM and TE TM driven system, 
A.D. Boardman, M. Xie, Univ. Salford, UK. Novel effects 
based upon a magneto-optic influence on spatial solitons 
are analyzed. The general framework is given and schemes 
for structure optimization are found, (p. 402) 

17.30 
ThE4 ■ Incoherent solitons—properties and colli- 
sions, N. Akhmediev, A. Ankiewicz, A. Snyder, 
W. Krolikowski, G. McCarthy, B. Luther-Davies, Australian 
National Univ., Australia. We study the formation and 
interaction of partially coherent solitons in slow nonlinear 
media. Our theoretical predictions are confirmed in 
experiments with photorefractive screening solitons. 
(p. 405) 

17.45 
ThE5 ■ "Cooling" of spatially incoherent light beams 
using interactions with incoherent and coherent 
solitons, Tamer H. Coskun, Alexandra G. Grandpierre, 
Demetrios N. Christodoulides, Lehigh Univ., USA; 
Mordechai Segev, Technion-Israel Institute of Technology, 
Israel and Princeton Univ., USA. We show that the spatial 
coherence of a partially incoherent beam can be greatly 
enhanced through its interaction with an incoherent or 
coherent spatial dark soliton. (p. 408) 

18.00 
ThE6 ■ Two-dimensional incoherent light beams in 
Kerr media, Ole Bang, Technical Univ. of Denmark, 
Denmark; D. Edmundson, Wieslaw Krolikowski, Australian 
National Univ., Australia. We show that incoherent beams 
are unstable and may collapse in bulk Kerr media. The 
internal dynamics of collapsing and diffracting incoherent 
beams is illustrated, (p. 411) 

18.15 
ThE7 ■ "Phase memory" effects and incoherent dark 
Y-soliton splitting, Tamer H. Coskun, Demetrios N. 
Christodoulides, Lehigh Univ., USA; Zhigang Chen, San 
Francisco State Univ., USA; Mordechai Segev, Technion- 
Israel Institute of Technology, Israel and Princeton Univ., 
USA. The effects of incoherence on the evolution of 
incoherent dark soliton doublets are investigated both 
theoretically and experimentally. We show that the 
dynamics of these incoherent self-trapped entities are 
associated with strong "phase-memory" effects, which are 
otherwise absent in the linear regime, (p. 414) 

18.30 
ThE8 ■ Fixing solitonic waveguides in photorefractive 
strontium barium niobate, Matthew Klotz, Mike Crosser, 
Gregory J. Salamo, Univ. Arkansas, USA; Mordechai Segev, 
Princeton Univ., USA. Two-dimensional solitonic optical 
waveguides and y-junctions have been formed in a 
strontium barium niobate crystal. The waveguides are 10- 
20 microns in diameter and propagate unpolarized light 
with little loss. (p. 417) 

Chateau de Marsannay 
19.30-23.00 
Conference Banquet 
(separate registration required) 



■ Friday 
■ 3 September 1999 

Foyer-Bar 

07.30-17.00 
Registration Open 

Salle Morey-St-Denis 

08.00-10.00 
FA ■ Materials and Characterization 
J. Stewart Aitchison, University of Glasgow, UK,Presider 

08.00 (Invited) 
FA1 ■ Frequency conversion and parametric pro- 
cesses in form birefringent semiconductor 
heterostructures, V. Berger, THOMSON CSF, France; 
G. Leo, Univ. "Roma Tre", Italy. We discuss the feasibility of a 
parametric oscillator integrated on a GaAs chip, after 
reviewing the recent frequency conversion experiments 
using form birefringence in GaAs/oxidized-AlAs 
waveguides, (p. 422) 

08.30 
FA2 ■ Determination of nonresonant optical 
nonlinearities in undisordered and disordered 
semiconductor superlattices, D.C. Hutchings, Univ. 
Glasgow, UK. A band-structure algorithm is developed for 
semiconductor superlattices specifically formulated for 
determining nonlinear optical coefficients including the 
effects of disordering. The modulation of the second-order 
optical susceptibility tensor elements are addressed. 
(P. 425) 

08.45 
FA3 ■ Ultrafast excitonic saturable absorption at 
1.55 um in heavy-ion irradiated quantum well vertical 
cavity, J. Mangeney, J.L. Oudar, J.C. Harmand, C. Meriadec, 
G. Patriarche, G. Aubin, France Telecom, France; 
N. Stelmakh, J.M. Lourtioz, Univ. Paris-Sud, France. We 
describe an ultrafast saturable absorber InGaAs/InAlAs 
multiple quantum well vertical-cavity device operating at 10 
GHz, suitable for all-optical regeneration in a wavelength- 
division multiplexed context, (p. 428) 

09.00 
FA4 ■ Dispersion-scan method for the measurement 
of nonlinear refraction and absorption of waveguides, 
E. Lopez-Lago, F. Louradour, A. Barthelemy, IRCOM, 
France. The spectral analysis, after self-phase modulation, of 
short pulses with variable linear chirp is used for a simple 
and accurate measurement of Kerr nonlinearity. (p. 431) 

09.15 (Invited) 
FA5 ■ Wide bandwidth 1.5 urn and 1.3 um wave- 
length conversion in periodically-poled waveguides, 
M.-H. Chou, K. Parameswaran, M.M. Fejer, Stanford Univ., 
USA; I. Brener, Bell Labs, USA. Near-generate difference 
frequency mixing in periodically-poled lithium niobate 
waveguides is demonstrated for signal processing functions 
such as wavelenth conversion and spectral inversion. 
Efficient mixing is obtained for simple and for cascaded 
operation at pump powers in the range of 100 mW. 
(p. 434) 

09.45 
FA6 ■ Giant two-wave mixing in a photorefractive 
planar waveguide fabricated with He* implanted 
BaTi03, Pierre Mathey, Alexandre Dazzi, Pierre Lompre, 
Pierre Jullien, Univ. Bourgogne, France; Paul Moretti, Univ. 
Claude Bernard Lyon 1, France; Daniel Rytz, Edelsteine/ 
Edelmetalle GmbH, Germany. The highest known value of 
gain (58 cm"1) in a photorefractive waveguide is obtained 
from measurements conducted in function of the grating 
vector orientation, (p. 437) 

Foyer-Bar 
10.00-10.30 
Coffee Break 

Salle Morey-St-Denis 

10.30-12.00 
FB ■ Parametric Effects 
L. Lugiato, University of Milan, Italy, Presider 

10.30 
FBI ■ Competition between convection and chro- 
matic dispersion in an all-fiber synchronously driven 
bistable ring resonator, Stephane Coen, Philippe Emplit, 
Marc Haelterman, Mustapha Tlidi, Univ. Libre de Bruxelles, 
Belgium. An analytical and experimental study of a 
synchronously driven fiber cavity reveals the key role of 
convection and chromatic dispersion in optical bistability. 
(p. 442) 

10.45 
FB2 ■ Dynamical quadratic cavity solitons, 
D. Michaelis, C. Etrich, U. Peschel, F. Lederer, Friedrich 
Schiller Univ. Jena, Germany. Spatial symmetry breaking of a 
polarization front in vectorial second-harmonic generation 
leads to the formation of novel kinds of breathing and 
running cavity solitons. (p. 445) 

11.00 
FB3 ■ Raman-assisted parametric generation of non- 
phase-matched waves in normally dispersive optical 
fibers, E. Seve, G. Millot, P. Tchofo-Dinda, Univ. 
Bourgogne, France; T. Sylvestre, H. Maillotte, E. Lantz, Univ. 
Franche-Comte, France. We demonstrate generation of non- 
phase-matched idler waves by three-wave mixing interac- 
tion of a pump with an anti-Stokes signal in normally 
dispersive fibers, (p. 448) 



11.15 
FB4 ■ Second-harmonic generation and localized 
modes in multilayered structures, AndreyA. 
Sukhorukov, Yuri S. Kivshar, Australian National Univ., 
Australia; Ole Bang, Technical Univ. of Denmark, Denmark. 
We study second-harmonic generation at nonlinear 
interfaces embedded in linear medium. Two-color modes 
localized at a single interface are found, and profiles of gap 
solitons in multilayer structures are determined, (p. 451) 

11.30 
FB5 ■ Generation and characterization of 0.6 THz 
polarization domain wall trains in a spun fiber, 
F. Gutty, S. Pitois, P. Grelu, G. Millot, Univ. Bourgogne, 
France; M.D.Thomson, Johann Wolfgang Goethe Univ., 
Germany; J.M. Dudley, Univ. Auckland, New Zealand. We 
report the experimental generation and characterization via 
frequency-resolved optical gating of periodic trains of 
polarization domain walls in an ultralow birefringence spun 
fiber, (p. 454) 

11.45 
FB6 ■ Surface-emitting THz difference-frequency 
generation in GaAs-based waveguides, Yu. H. 
Avetisyan, Yerevan State Univ., Armenia. It was shown that 
THz difference-frequency generation emitted by the GaAs- 
based planar waveguide propagates in the normal direction 
to the surface of the waveguide due to its birefringence. 
(p. 457) 

12.00-13.30 
Lunch 

Salle Morey-St-Denis 

13.30-15.00 
FC ■ Frequency Conversion in Glasses 
versus Crystals 
P. G. Kazansky, University of Southampton, UK, Presider 

13.30 (Invited) 
FC1 ■ Quasi-phase-matched parametric fluorescence 
in poled silica fibers, G. Bonfrate, V. Pruneri, 
P.G. Kazansky, Southampton Univ., UK; P.R. Tapster, 
J.G. Rarity, DERA Malvern, UK. We believe we report the 
first observation of parametric fluorescence from a 
periodically poled silica fiber. The achieved pair-photon 
production rate resulted in >100 MHz at 1532 nm for 300 
mW of pump power at 766 nm. (p. 462) 

14.00 (Invited) 
FC2 ■ Parametric mid-infrared generation in periodi- 
cally poled Ti:LiNb03 waveguides, D. Hofmann, 
H. Herrmann, G. Schreiber, C. Haase, W. Grundkötter, 
R. Ricken, W. Sohler, Univ. Paderborn, Germany. Difference- 
frequency generation of highest conversion efficiency (105 
%/W), pulsed optical parametric fluorescence and cw 
optical parametric oscillation of lowest threshold (about 7 
mW coupled) are reported, (p. 465) 

14.30 
FC3 ■ Near-infrared cascaded difference-frequency 
generation in periodically poled Ti:LiNb03 

waveguides, G.Schreiber, D. Hofmann,W. Grundkötter, 
R. Ricken, W. Sohler, Univ. Paderborn, Germany. -14 dB 
conversion efficiency has been achieved in a difference- 
frequency generation experiment using two successive 
second-order processes in an 80-mm-long periodically 
poled waveguide, (p. 468) 

14.45 
FC4 ■ Blue upconversion in Tm3*-Yb3*-phosphosilicate 
rib waveguide generated by a cw pump at 980 nm, 
M.V.D.Vermelho, J.S. Aitchison, Univ. Glasgow, UK. 
Infrared to blue upconversion generation at 476 nm with 25 
mW of delivered cw pump power was observed. Optimiza- 
tion of this glass system points towards considerable 
improvement of the measured conversion efficiency. 
(P- 471) 

Foyer-Bar 
15.00-15.30 
Refreshment Break 

Salle Morey-St-Denis 

15.30-17.00 
FD ■ Dispersion Management 2 
Wladek Forysick, Aston University, UK, Presider 

15.30 (Invited) 
FD1 ■ Distributed amplification of optical solitons, 
G.P. Agrawal, Z.U. Liao, T. Lakoba, Univ. Rochester, USA. 
The issue of lumped versus distributed amplification is 
revisited. With a proper optimization of dopant density, the 
use of distributed amplification together with dispersion 
management can permit large spacing between pumping 
stations at even relatively high bit rates, (p. 476) 

16.00 
FD2 ■ Experimental investigation of soliton transmis- 
sion over high-strength dispersion-managed transmis- 
sion lines, S.B. Alleston, P. Harper, D. Govan, I. Bennion, 
N.J. Doran, Aston Univ., UK. We demonstrate experimen- 
tally transmission of data over high-strength dispersion 
maps using dispersion-managed soliton techniques. We 
determine the limiting factors, and several interesting 
features, (p. 479) 

16.15 
FD3 ■ Reduced interaction between n-shifted 
dispersion-managed solitons, C. Pare, P.-A. Belanger, 
S. Larochelle, Univ. Laval, Canada. The interaction between 
two dispersion-managed solitons is known to be indepen- 
dent of their relative phase when the pulses are sufficiently 
far apart. This work shows that the dynamics of the 
interacting pulses is different when they are brought close 
to each other and this is interpreted as being due to the 
existence of an antisymmetric dispersion-managed soliton. 
(p. 482) 



16.30 
FD4 ■ Energy, frequency, and time fluctuations 
reduction of DMS through synchronous amplitude 
modulation only, Fabien Merlaud, France Telecom, France; 
Thierry Georges, Algety Telecom, France. Numerical 
evidences are given that nontypical propagation regimes of 
dispersion-managed solitons exist where the use of 
amplitude modulators only is sufficient to achieve an active 
control on amplitude, frequency, and time fluctuations. 
(P. 485) 

16.45 
FD5 ■ Tuning of in-line filter position for dispersion- 
managed soliton transmission, A. Tonello, 
A.D. Capobianco, Univ. Padova, Italy; S. Wabnitz, Univ. 
Bourgogne, France; S.K. Turitsyn, Aston Univ., UK. We 
optimize the positioning of filters in dispersion-managed 
transmissions. Stabilization of both soliton energy 
fluctuations and interactions are achieved with filters at 
optima] positions, (p. 488) 

Salle Morey-St-Denis 

19.00-20.30 
Postdeadline Paper Presentations 



Nonlinear Guided Waves and Their Applications 

Spatio-Temporal and 
Transverse Effects 

Wednesday, 1 September 1999 

Govind Agrawal, University of Rochester, USA 
Presider 

WA 
08.00-10.00 
Salle Morey—St-Denis 
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Generation of Optical Spatiotemporal Solitons 

X. Liu, L. J. Qian, and F. W. Wise 

Department of Applied Physics 
212 Clark Hall 

Cornell University 
Ithaca, New York 14853 

tel: (607) 255-1184 
fax: (607) 255-7658 

Solitons have been studied in many areas of science over the last two decades. 
Multi-dimensional solitons include stationary waves that are confined in two 
transverse spatial dimensions as well as spatio-temporal solitons (STS). STS are 
theoretically unstable in third-order nonlinear media, but solutions can be stabilized 
if the nonlinearity is saturable. 

Recently, there has been a resurgence of interest in the effective third-order 
nonlinearity that arises from the cascading of second-order processes. The 
nonlinearity saturates with increasing intensity, so quadratic media possess the 
properties required for STS formation. Stationary spatial solitons have been 
generated in one [1] and two [2] transverse spatial dimensions via the cascade 
nonlinearity, as have temporal solitons [3]. However, STS in either quadratic or 
cubic nonlinear media have not been reported. 

Here we show experimentally that STS can be produced in a quadratic medium. 
Self-focussing and nonlinear phase shift balance the effects of diffraction and 
dispersion, respectively, to produce a soliton in one transverse spatial dimension 
and time. 

Experiments were performed with a 1-cm-long LÜO3 crystal cut for type-I phase- 
matching. Pulses of duration 120 fs and energy up to 1 mj at a wavelength of 795 
nm are produced by a Ti:sapphire regenerative amplifier. The pulses traverse 
gratings and lenses that create large negative dispersion in one transverse direction 
(x), while focussing the beam in the other (y). With the crystal oriented to produce a 
self-focussing nonlinearity, the output pulse duration and beam profile depend 
strongly on intensity. When the intensity reaches a threshold value, the output 
pulse begins to narrow temporally and the beam waist simultaneously decreases. 
Typical intensity autocorrelations and beam profiles are shown in Figure 1 for 
intensities near and well-above threshold. The corresponding results obtained by 
numerical solution of the coupled wave equations are also shown, and agree 
reasonably well with the experiments. The second-harmonic beam-size also 
decreases dramatically with intensity, which confirms the mutual trapping of the 
fundamental and harmonic beams. 
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Figure 1. Intensity autocorrelations (a) and beam profiles (b) of output pulses generated 
with the indicated intensities. Calculations of the corresponding intensities and beam 
profiles are shown in (c) and (d). 

Similar trends are observed over wide ranges of phase-mismatch and intensity. 
Measurements made with AkL = -80TC and AkL = -240rc (Figure 2, next page) 
exemplify these trends. The pulse duration decreases from -400 fs to -80 fs, and the 
beam waist is reduced by a factor of 12 compared to the ordinary diffracting beam, in 
good agreement with calculations. 

In conclusion, we have generated stable spatiotemporal solitons in a quadratic 
nonlinear medium. The fundamental and harmonic pulses trap each other 
spatially and temporally, overcoming the effects of diffraction and group-velocity 
dispersion. The results presented here open the way to studies of the interactions of 
spatiotemporal solitons. We expect that spatiotemporal solitons will find numerous 
applications in science and technology in the future. 
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Figure 2. Dependence of output pulse duration (a) and beam size (b) on incident intensity 
for the indicated values of phase mismatch. Symbols are measured points and solid 
lines are the results of calculations. The pulse duration and beam size incident on the 
crystal are indicated by the dashed lines. 
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Spatio-temporal solitary waves in a self-defocusing 
AlGaAs slab waveguide 

Nicolas Belanger, Alain Villeneuve 
Centre d'optique photonique et laser, departement de physique, pavilion Alexandre-Vachon, 

Universite Laval, 
Cite Universitaire (Qc), G1K 7P4 Canada 

nbelange@phy.ulaval.ca, avillene@phy.ulaval.ca 

J. Stewart Aitchison 
Department of Electronics and Electrical Engineering, University of Glasgow, G12 8QQ UK 

jsa@elec.gla.ac.uk 

Solitons can be bright or dark \ temporal or spatial. Until now, several possibilities have been 
observed (for a review see Ref.2). Bi-dimensional dark34 and bright5 spatial solitonic waves 
have also been reported. Here we present the first observation, to our knowledge, of a spatio- 
temporal soliton-like wave in a Kerr medium. 

We used an AlGaAs slab waveguide which guiding layers consists of four 20-nm GaAs 
quantum wells separated by 200-nm AlO2Ga08As barriers. This guiding layer is bounded by a 4- 
um-thick lower layer cladding and a 1.0-um-thick uplper cladding of Al025Ga075As. At wave- 
lengths (around 820 nm) just below the band gap (750 nm), the nonlinearity of AlGaAs is self- 
defocusing and the dispersion is normal2. The sign product of the dispersion and of the non- 
linearity implies a bright pulse in time. However, the diffraction acts in the spatial dimension 
as an anomalous dispersion leading to a dark spatial soliton. 

The propagation of a pulsed beam in this waveguide is describe by a particular case of the bi- 
dimentional Nonlinear Schrödinger equation that corresponds, if we ignore the losses, to the u-4 
equation (also called (|)-4) which is known to be non-integrable6. However, we have already 
shown by numerical simulations that a solitary wave can propagate in this waveguide over 
several dispersion and Rayeigh lengths2. The linear loss and, particularly, the two-photon 
absorption are not negligible. Hence, the propagation of the pulse in the slab waveguide is 
governed by the following differential equation: 

A 2ß0      & 
l2       dt2      +^o"2-yj V(x,z,t)-^-V(x,z,t) 

The pulse (V) propagates along z, tis the local time of the pulse that moves with it, and x is the 
unguided transverse dimension. ß0 is the guided wave number (=nefrko where neff is the effective 
index and ko=2jcA), ß2 is the dispersion parameter in s2/m (positive for normal dispersion), K* 
is the effective thickness of the slab, n2 is the nonlinear Kerr parameter in m2/W (negative when 
selr-defocusmg), a2 stands for the two-photon absorption, and a0 represents the weak linear 
loss. Note that in this equation the pulse's envelope (V) is expressed in «JWJm. 

In order to observe temporal soliton-like pulses, 190 fsec (dispersion length7 = 1.0 mm) pulses 
from a mode-locked Ti:Sapphire laser (82 MHz) were used. The pulses were hyperbolic secant 
and were slightly chirped as shown by the time-bandwidth product (TBWP) AvAt=0 38 
corresponding to a RMS TBWP=1.2. To observe the dark spatial soliton the input beam was 
shaped by a cylindrical telescope and a n phase jump produced by a phase mask placed 
between the 10X microscope-objective and the input facet of the 2.04 mm long slab waveguide 
The Rayleigh length is of the order of 10pm. Therefore, a soliton regime can be self established 
m both temporal and spatial dimensions. 
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Fig. 1: a) Normalized autocorrelation and b) spectrum of the output pulse at low power (thin 
dashed line) and at high power (dotted line) compared to the input (full line). 

Figure 1 depicts the pulse autocorrelation and the spectrum getting narrower with increasing 
input power. Notice that the output autocorrelation is always broader than the input contrary 
to the output spectrum that becomes narrower at high power. This narrowing of the spectrum is 
due to the soliton effect that shifts the pulse in the soliton family to compensate for the pulse 
broadening induced by the two-photon absorption2. This interplay between the time and the 
frequency domains makes the RMS TBWP decrease from 2.97 at low intensity to a minimal 
value of 2.48 at high intensity. The recovery of the TBWP, a signature of a soliton, is more 
significant for the AvAt that diminishes from 0.64 to 0.43. The two-photon absorption and 
non-solitonic radiations are responsible for the wings on the autocorrelation and on the 
spectrum that prevent the recovery of the initial RMS TBWP. 
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Fig.2: Normalized output spatial profile at low power (thin dashed line) and at the high power 
(dotted line). 

In Fig. 2 we see the output beam profile with a typical dip of a dark soliton. This dip is pro- 
duced by the diffraction along the waveguide of the input beam that has passes through the 
phase mask. By increasing the input power this dip becomes narrower, which is an indication 
that a solitonic effect occurs. The whole beam also gets narrower with increasing power, most 
probably due to a thermal self-focusing nonlinearity. As we can see on Fig. 3 the dip narrows 
monotonously for increasing power, while the whole beam (finite background) first broadens at 
low power before getting narrower for higher power.  Moreover, the width of the whole beam 
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always decreases slower than the width of the dip. This implies that at low power the self-de- 
focusing Kerr type nonlinearity is stronger than the self-focusing thermal nonlinearity. At higher 
power, the thermal nonlinearity slowly dominates the self-defocusing Kerr type nonlinearity and 
reduces the beam width. The Kerr type nonlinearity is local and is mostly effective at the begin- 
ning of the waveguide before the pulse's has been greatly reduce by the tow-photon absorption 
Indeed at the highest power levels used the transmission is reduced to 12% of the low power 
value. The heat produced at the beginning of the waveguide spreads further in the waveguide 
and enhances the thermal nonlinearity. This may explains why the whole beam narrows at high 
power, but still requires a solitonic effect to explain the dynamic of the dip. The high repetition 
rate of our laser, which causes the thermal effect, simply creates a potential well, as does the 
finite width of the background, where evolves the dark solitary wave. 
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Fig.3: Output Full Width Half Maximum (FWHM) of the dip (full line with circles) compare to 
the FWHM of its finite background (dashed line with diamonds). The two vertical axes are 
proportional to each other. 

In conclusion, we have observed a compensation of the dispersion and of the diffraction by a 
self-defocusing nonlinearity at high power even in the presence of two-photon absorption. This 
is the first experimental observation of a spatio-temporal soliton-like wave in a Kerr type 
medium. Also, the output spatial profile is narrower at high power than forseen due to another 
nonlinear effect that is self-focusing (probably a thermal nonlinearity). 
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Introduction. Solitary waves may exhibit MI (mod- 
ulational instability) if they are localized in some dimen- 
sions but extended in one or more others [1]. From a 
formal point of view the problem of the solitary wave MI 
can be considered as a continuation of the soliton spec- 
trum at zero modulational frequency 0. into the region 
n # 0 [i]. 

In the our recent work [3] we considered GVD (group 
velocity dispersion) induced MI of spatial solitons sup- 
ported by the nondegenerate three-wave mixing in a x'2' 
medium (type-II geometry). It was shown that presence 
of an additional symmetry in the differential phase leads 
to the appearance of the novel neutral soliton modes at 
fi = 0, which give a new branch of the neck MI in media 
with normal GVD. It was found that the novel instabil- 
ity strongly dominates the usual snake MI throughout the 
region of soliton existence. Because of this dominance, 
physical mechanisms responsible for the relative strength 
of the neck and snake instabilities are hidden in the type- 
II geometry. The internal modes of the quadratic solitons 
also produce MI branches, but in the type-II geometry 
they have been found suppressed by the MI linked with 
the differential phase [3]. 

Here we study MI of the incoherently coupled vector- 
Kerr and type-I quadratic solitons. The former problem 
has two phase symmetries. In spite of the fact that the 
symmetries are the same as in type-II model, the MI in- 
duced dynamics of solitons in the Kerr medium is more 
rich. In particular we show that the relative strength 
of the nonlinear cross-coupling governs the competition 
between neck and snake Mis in such a way that either of 
them can be dominating. 

The studies of MI of type-I quadratic solitons have 
been recently reported by several group of authors 
[2,4-7]. However the role of the internal modes, which 
X^ solitons are known to have [8], has not been ex- 
amined. As it will be demonstrated below these modes 
are responsible for an appearence of the novel branch of 
the neck MI, which competes and dominates over the 
standard snake MI over the region of negnetive wave- 
vector mismatches. 

Vector Kerr solitons. The evolution of two suitably 
scaled slowly varying incoherently coupled wave envel- 
opes Ei and E2 in a weakly nonlinear, dispersive and 
diffractive medium is governed by the following equations 

idzEx + cuViEj + 7la?JS1 + (|£a|2 + ß\E2\
2)E1 = 0,   (1) 

töijEfe + a2V3.£fc + TäöfjEfe + (|£2|
2 + 0|£i|2)£2 = 0, 

where Vj_ = idx + jdy. (z) and (x, y) are, respectively, 
scaled longitudinal and transverse coordinates and t is 
the scaled retarded time. Diffraction parameters Oii2 

are positive while GVD parameters 71,2 can have either 
sign. Rescaling x,y,t once more one can always choose 
ai/a2 and |7i|/|72| to be any convenient constants. The 
parameter ß measures the relative strength of cross-phase 
modulation compare to self-phase modulation. The non- 
linearity was chosen to be self-focusing because below we 
are interested in the dynamics of bright solitary waves. 

Eqs. (1) describe a variety of physical situations but 
we will focus here on their application to propagation 
of electro-magnetic waves. Using a circular polariza- 
tion basis to describe propagation of the quasimonochro- 
matic waves in isotropic dielectric materials leads to Eqs. 
(1), where, in such a case, Ex and E2 are envelopes of 
the left- and right- polarized components. The diffrac- 
tion and GVD parameters can be taken as ai,2 = 0.5, 

71,2 = 7 = ±0-5, and ß = 1 + Xx%x/Xxxyy, where xt\i is 
the nonlinear susceptibility tensor. For example, ß = 2 
for the nonresonant electronic nonlinearity and ß — 7 for 
the nonlinearity due to molecular orientation. 

While MI of circular polarised solitons is perfectly ana- 
logous to the MI of solitons in the single NLS equation [1], 
linearly and elleptically polarised solitons show novel dy- 
namics. For the sake of simplicity below we focus on the 
case of the linearly polarized one-dimensional solitons, 

£1,2 (z) = e* isechy/2itx, which covers the most 

important features of the MI induced dynamics. 
We have found numerically three branches of soliton 

spectrum which are linked with the translational sym- 
metry (x —>• 20), and with symmetries in the absolute <j> 
and differential i\> phases, 

{El,E2) -> {ExeV+W^e**-**). 

Assuming that fi2 <C 1 we also derived the analytical 
expressions for MI growth rates A: 

-^V, : 4fi27K, A/ = 2fi27«/(/0). 

Here f(ß) = (/ sechx g(x, ß) dx) x and function g obeys 
to (<92 - 1 + 22=£sech2x)g = sechx. Physically ß > 1 
and f(ß) is always positive in this region. 

The   A^   eigenvalues  and  associated  neutral  mode 
(Ei,.E2)

T are linked to the symmetry in the absolute 
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phase <t> and have their analogies in the spectral problem 
for solitons in single NLS. The A^2 eigenvalue and as- 
sociated neutral mode (Ei, -E2)

T are attributed to the 
symmetry in the differential phase tp. This branch of the 
discrete spectrum generates instability for normal GVD 
(7 < 0). Thus, the asymptotic analysis indicates that 
for 7 < 0 neck MI due to a symmetry in the differen- 
tial phase and snake MI (A2.) due to the translational 
symmetry coexist. 
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FIG. 1. Development of the snake MI for ß = 2, K = 1, 
S = 0, 7 = -0.5. (ai,2) \Ei,2\ for z = 12; (bi,2) |-Ei2| for 
z = 14.7. 
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FIG. 2. Development of the anti-phase neck MI for ß = 7, 
K = 1, 5 = 0, 7 = -0.5. (ai|2) |£i,2| for z = 8.4; (bi,2) |£i 2| 
for z = 10.2. 
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FIG. 3. Competition between the snake and anti-phase 
neck Mis: ß = 3.47, K = 1, 8 = 0, 7 = -0.5. (ai,2) |Ell2| for 
2 = 9; (bi,2) |£i,2| for z = 12 

We have found that the snake MI dominates the anti- 
phase neck for 1 < ß < ßsn and vice versa for ß > 
ßSn — 3.47. Typical simulation results are presented in 
Fig. 1,2,3. For ß < ßsn we observed in-phase snaking of 
the stripe along the temporal dimension, see Fig. 1. For 

ß > ßsn the soliton stripe breaks in such a way as to form 
the interleaved intensity peaks of Ei and E2, see Fig. 2, 
as expected when the out of phase neck MI is dominant. 
The spatio-temporal patterns formed at the initial stage 
of MI finally spread because of the unbalanced action 
of the normal GVD and self-focusing nonlinearity. For 
ß - ßsn we observed competition between the neck and 
snake Mis, see Fig. 3. In Fig. 3 (bi), (b2) one can clearly 
see that at the intermediate stage of MI the typical in- 
phase snake pattern is superimposed on the anti-phase 
neck pattern. 

The rescaled instability growth rate A as function of 
the modulational frequency tt can be related to physical 
units using the formulae: 

A„-_*_ a? -   7°2 
ph

 ~ 4WV ""» " 2kk"w*K' 
Here Xph and ttph are the instability growth rate and 
modulational frequency in physical units, k is the wave 
vector, w is the beam width, k" = d^k. K and 7 are 
the same parameters which have been used throughout 
the text. For example for radiation at 1/zm propagat- 
ing in an AlGaAs planar waveguide k" ~ -10~23s2/m 
[10] and for typical soliton transverse size w ~ 50/im [11] 
we get \ph ~ A/(K • 5cm) and ü2

ph ~ fi2/(/t ■ lfr25s2). 
For experiments with fused silica at wavelength 830nm, 
see second from Refs. [9], k" ~ -10-26s2/m and ü2

h ~ 
n2/(K. 10-2852). p 

Quadratic solitons. Interaction of the slowly vary- 
ing envelopes of the first (Ei) and second (£2) harmonics 
under the type-I phase matching conditions can be de- 
scribed by the following rescaled equations: 

idzEi + id2E! + 7lÖ
2£! + E*E2 = 0, 

idzEi + \d2
xE2 + l2d2

TE2 + |EJ = ßE2, 

(2) 

where ß is the wave-vector mismatch and 7m are GVD 
coefficients. Eqs. (2) with suppressed temporal deriv- 
atives have a famous family of soliton solutions Em = 
Am(x)eim(KZ+<l>), m = 1,2. It has been demonstrated 
that for the normal GVD these solitons are snake un- 
stable [2,4,5] and for the anomalous GVD they are neck 
unstable [2,5-7]. However analyzes presented in [4-7] 
were biased by the traditional focus on MI branches 
linked with the phase, Em ->■ Emeim<t,

: and transla- 
tional symmetries [1,2] and the role played by the in- 
ternal modes was largely ignored. Though breaf com- 
ments given in [1,4] could be a guideline for the more 
detail investigation of this problem. 

Key to the presented here results is that the tradi- 
tional formula for the neck instability growth rate in the 
low frequency limit 

2Q2 2Sr   f 
J-Q] dxijUt + ^A2.) (3) 

fails, if point dKQ = 0 is close enough. This is because 
an asymptotic method behind this formula does not work 
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and should be modified. The proper modification gives 
the quadratic equation for A2 

A2 QöKQ + A2Jlf) = & jdx{-nA\ + 4l2A2
2), (4) 

where M > 0 is the soliton mass, see, e.g. [12]. At fi = 0 
Eq. (4) describes eigenvalues of the doubly degenerate 
neutral mode and of the two internal modes. The pre- 
viously reported calculations for the snake MI [2,4,5] re- 
main correct throughout the eintire region of the soliton 
existence, because no spatially asymmetric modes exist 
inside the gap of the continuous spectrum for ti = 0. 

Providing that -ym < 0 and dKQ > 0, the neck MI 
starts to grow from 

n2 = (dKQ)2 \l6M fdx(7lA
2 +Al2A\) 

At Q = Qc two pair of the stable internal modes collide 
and give onset to the MI with complex conjugated eigen- 
values. Because these modes are even functions of x this 
instability is the neck one and it coexists with the snake 
MI. The novel neck MI is dominating over the standard 
snake MI for any ß < 0. The snake MI becomes domin- 
ating one only for ß > 0 and in the cascading limit ß » 1 
the neck MI complitely disappears. 
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FIG. 6. Competition between neck and snake instabilities. 

Neck instability is suppressed, K = 1, ß = 5, 71 = 72 = -0.5. 
(ai,2) |£i,2| at 2 = 10, (bi,2) |£lj2| at z = 12 

Summary. We have shown coexistent and competing 
neck and snake instabilities of spatial solitons in normally 
dispersive x(2) and x(3) media. In a x(3) medium this co- 
existence comes into play when the vector nature of the 
electromagnetic waves, resulting in the extra phase sym- 
metry, is taken into account and in a x'2) medium it ori- 
ginates form the presence of the internal soliton modes. 
In particularly, we found that in a x(3) medium with nor- 
mal GVD the snake MI induced spatial symmetry break- 
ing in the transverse plane changes to the neck MI in- 
duced polarization symmetry breaking when the relative 
strength of the cross-phase modulation exceeds a certain 
threshold value. 
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FIG. 4. Competition between neck and snake instabilit- 
ies. Snake instability is suppressed, K = 1, ß = —1, 
7i = 72 = -0.5. (ai,2) |Ei,2| at z = 10, (bi>2) |E12| at 
z = 15 
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FIG. 5. Competition between neck and snake instabilities. 
Neck and snake instabilities have approximatly equal growth 
rates, K = 1, ß = 0, 71 = 72 = -0.5. (ai,2) \Elt2\ at z = 10, 
(bi,2) |£i,2| at z = 15 
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Amongst the characterizing elements of solitons in nature, perhaps the most intriguing and important are 
their collisional properties, so much so that the actual operational definition of soliton pulses is largely 
dependent on the rigidity, upon collision, of the nonlinearly trapped confined wave-perturbations. 
Experiments in many diverse fields of Physics have tested this remarkable property, and today we might 
state that for real situations, self-trapped perturbations can behave much like particles. Although initial 
investigation in soliton physics was limited essentially to one-dimensional systems (1+1D), recent 
experimental endeavors in Optics have allowed the accessible observation of two dimensional (2+1D) 
self-trapped perturbations in photorefractive, quadratic, and Kerr-saturable media [1]. This circumstance 
spurns us to undertake the investigation of a basic, yet hereto unaddressed, issue of general import to 
soliton phenomenology: what happens when solitons of the same continuos medium, of approximately 
the same nonlinear nature, but of different dimensionality, collide and interact? 
We perform our experiments with optical spatial solitons in a biased centrosymmetric photorefractive 
sample of potassium-lithium-tantalate-niobate (KLTN) [2]. In these crystals, through the so-called 
screening nonlinearity, we have previously observed 1+1D spatial stripe solitons and 2+1D spatial needle 
solitons [3]. In the noncentrosymmetric screening configuration, interaction and collision of solitons has 
been previously investigated in diverse situations [4]. Individually, these manifestations, i.e. 
nondiffracting micron-size stationary optical beams, are characterized by a soliton existence curve, that is 
a combined set of system parameters, namely the ratio between the beam peak intensity k and the 
background illumination h , the beam size Ax (intensity full-width-half-maximum, FWHM), applied 
external voltage V, and the crystal temperature T, that allows for their stable formation. For stripe 
solitons this set of parameters can actually be approximately predicted in the standard photorefractive 
model, whereas for needle structures no clear theoretically understanding is yet agreed upon, although 
experiments suggest that this curve actually does exist. Thus, in a single photorefractive sample, we can 
fix independently the soliton parameters of two beams so as to give rise simultaneously to a stripe and a 
needle particle. Since observations indicate that the two curves are far from coincident except for 
regions of low nonlinear saturation, simultaneous observation of the two events requires two beams of 
generally different size and peak intensity, since Ib and V are forcibly in common. The experimental 
apparatus is similar to those typically employed for the observation of screening photorefractive solitons 
The zero-cut 3.7 w x 4.6 M x 2.4 (2) mm sample is kept at a constant temperature T slightly above its 
ferroelectric phase-transition O>10°C), so as to exhibit relevant quadratic electro-optic response. The 
two beams leading to stripe and needle self-trapping, polarized parallel to the direction of the externally 
applied field, are obtained from two independent lasers (one Argon ion laser at X=514nm and one 



12 / WA4-2 

doubled CW Nd:YAG laser at X=532nm) for incoherent collisions, whereas the same Argon ion laser is 
split into the two diffracting beams for coherent interaction investigation. In both cases lb is obtained 
from the Argon ion laser, and is polarized orthogonal to the soliton beams. Photographs of input and 
output intensity distribution are made by imaging the input and output facets of the sample onto a CCD 
camera. 
In order to find the "working point" of the hybrid system, we simultaneously launch the two beams at 
zero mutual angle, a=0°, but far enough so as to not lead to interaction. For a given V (electrodes are on 
the x facets of the sample) and Ib, we fix the stripe peak intensity Is and needle peak intensity In so as to 
observe soliton propagation. Simultaneous formation is obtained for V=1.4kV, Ax„=12(im, Axs=10um, 
and intensity ratios un=(In/Ib)

1/2=2.2, us=(Is/Ib)
I/2=1.6 (neglecting the difference in photorefractive response 

at the two frequencies). Furthermore, the sample has effective quadratic electro-optic coefficient 
geffsO.nn^C4, n=2.4, is operated at T=21°C (dielectric constant ^=8900) in the paraelectric phase. 
Having found the working point, we send forth the two beams at an angle a so as to intersect within the 
sample. In Fig.l we show typical results in two cases, one for a=2.0° and another for eel.3° . In the 
first case, the needle and slab solitons maintain their self-trapped characteristics after the collision, 
whereas in the second case, for the smaller angle, the output beams are appreciably distorted. In 
particular the slab beam in proximity of the needle (along the y axis) is destabilized, breaking its slab 
symmetry, whereas the needle is elongated in the y direction, losing its circular-symmetry (symmetry and 
structure exchange from one particle to the other). Discernible distortion was observed for values of 
cc<1.5°. For values of ool.5° the self-trapped structure survives the interaction. Thus, for such 
scattering conditions, the pulses behave as solitons. Parallel, but close propagation in this configuration 
did not lead to strong beam distortion. 

Fig.l: Hybrid soliton collisions: (a) "non- 
interacting" case for a=2.0°; (b) "interacting" 
case for 0^1.3"; (c) single needle soliton; (d) 
single slab soliton. 

a) b) c) d) 

Next we investigate the somewhat richer phenomenology related to mutually coherent beams. We check 
the approximate input relative phase by observing the fringe pattern the two beams form with the 
background beam, simply by introducing at the output, before the CCD camera, a 45° oriented polarizer. 
Results are shown in Fig.2, where the two beams are launched at oc=0° and at a peak to peak distance of 
approximately 20|J.m. For a relative phase §=K, the beams repel, whereas they attract for a zero phase 
condition §=0. Note, however, that in this case appreciable beam distortion is observed, both for the 
stripe structure and for the needle structure. 
The theoretical interpretation of this phenomenology is rather intricate, if not altogether impossible at 
present. In fact, as mentioned, the very interaction that supports circular-symmetric trapping in 
photorefractives is still not understood. We may, however, draw insight from results as to behavior of 
other, less complicated soliton supporting nonlinearities. Clearly the different dimensionality of the two 
particles poses a number of theoretical and modeling riddles. One thing can be interpreted: the presence 
(and eventually value) of the critical a that allows soliton behavior. In a "linear perspective", the two 
solitons can be viewed as "self-induced-waveguides". The stripe soliton can be seen, once formed, as a 
self-induced slab-waveguide, whereas the needle soliton a typical optical fiber waveguide. In such a 
simplified picture, light can pass from one soliton to the other, seeding interaction, when the relative 
scattering angle a is comparable to the angular aperture 6C of the single "waveguides". We can 
phenomenologically identify 9C with the equivalent (complementary) critical angle defined by the 
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relationship cos(ec)=(n-An)/n, where An=(l/2)n3gefi€0
2(er-l)

2(V/L)2(u2/(l+u2))2 , where 80 is the vacuum 
dielectric constant, L is the distance between the electrodes (L=3.7mm) and u=us for slab solitons, and 
u=un for needle solitons. This approach only roughly estimates the single soliton waveguide saturation 
and guiding characteristics (even more roughly for the optical needle) [4]. In our conditions we obtain 
0c=r for the slab structure, 0C=1.2° for the needle. We expect to observe significant soliton coupling for 
a=9c, as is indeed the case. For parallel coherent interaction we show in Fig.3 the soliton interaction 
simulated by the generalized 2D-NLS equation with a local saturable nonlinearity, manifesting 
phenomena which is qualitatively similar to that reported in Fig.2. 
Finally, for the parallel propagating case, we are observing the nonlinear equivalent of a very interesting 
phenomena, first described by Marcuse in 1989: directional coupling from a fiber to an infinite slab [5]. 
Although this theory is clearly linear, it does have a very unique ingredient: coupling amongst structures 
of different dimensionality, and it may be that in finding an interaction potential concepts developed in 
this paper are helpful. Furthermore, the same structures can actually be used to investigate the linear 
phenomena predicted by the author, coupling a non-photorefractively active infra-red beam, for example, 

Fig.2: Coherent soliton interaction for parallel 
propagating stripe and needle solitons. a) input b) 
<p=-7t\ repulsive case c) output with needle beam 
temporarily blocked d) output needle with stripe 
temporarily blocked e) <p=0 attractive case f) 
output with needle beam temporarily blocked g) 
output needle with stripe temporarily blocked. 

at telecommunication wavelengths (A^1.3-1.5u\m), into the needle guiding structure, obtaining a versatile 
soliton based equivalent of the fiber-surface plasmon sensors, much like we realized in a previous 
experiment a soliton based directional coupler. 

Fig.3: Stripe-needle soliton interaction 
simulated by the generalized 2D-NLS equation 
with a local saturable nonlinearity: (a) input 
condition; (b) output pattern for in-phase 
interaction; (c) output pattern for out-of-phase 
interaction. Here the input intensity ratio of the 
stripe and needle solitons are us=1.3 and un=2, 
respectively, and the output patterns 
correspond to a propagation distance of about 
twenty diffraction lengths. 

input 

10 
(a) 

0 0 
10 

output 4=0 output $=n 

10 

The work of E.D. was carried out in the framework of an agreement between Fondazione Ugo Bordoni 
and the Italian Communication Administration. 
[1]       For a comprehensive overview, see the Special Issue on Spatial Solitons, Opt.Quant.Electron. 
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It is well known that propagation of (l+l)-dimensional dark soliton stripes in self-defocusing media suffer 
from transverse instabilities that can lead to the formation of optical vortices. These dark spatial solitons in 
(2+1) dimensions, has been shown that are stable structures [1, 2]. A different type of (2+l)-D dark 
solitons with circular symmetry were studied theoretically by Kivshar and Yang [3]. In that work, ring 
structures with initial amplitude of hyperbolic tangent were investigated analytically and numerically and 
found that they were robust to perturbations. Experiments to study ring solitons were implemented by 
placing an opaque circle at the input of the nonlinear medium [4]. 

In this paper we report the generation of two dimensional dark spatial solitons using an initial condition 
similar to the (1+1)-D case for generation of dark soliton pairs. As in the (1+1) case, these gray solitons 
have a travelling wave component in opposite directions, creating a collapsing ring dark soliton and a 
divergent soliton. We performed the experiments in photorefractive media with a DC external electric field. 
We also analysed numerically the formation and evolution of the dark rings finding a very good agreement 
using a model with a nonlinear Schrödinger equation (NLSE) with Kerr-type nonlinearity. Further 
propagation shows that the ring dark solitons formed in this manner are not stable. 

The experiments were made using a He-Ne laser beam at A. = 632.8 nm and an amplitude mask with 
opaque rings with different radii and widths on a glass substrate. The medium used was a 5x2x9 mm 
Photorefractive BTO crystal. Typical results are shown in figure 1, where a ring of 46 |am of width and a 
radius of 40 |J.m was used. In 1(a) we show the input distribution on the crystals, and in 1(b) the output 
without external field. And in 1(c) the output for 10 kV/cm applied external field, respectively. When the 
external field is applied, two dark rings are generated after the 9 mm of propagation in the crystal. The 
inner dark ring is more defined than the outer one. The external field was applied along the 2 mm transverse 
dimension, corresponding to the horizontal direction in the images. 

For a broader initial dark ring, more pairs of dark soliton rings are generated with different degree of 
darkness, being darker those in the middle of the output distribution. 

Figure 1. Generation of two ring dark soltions using an intial ring of 46 um with a inner diameter of 80.um (a) 
Input; b) ouput and c) output with 10 kV/cm applied external field. 
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We investigated the generation and propagation of the (2+1 )-D rings we used the NLSE 

. ou     1     , .   |2 

dg    4 

where the longitudinal coordinate ^is normalised to the diffraction length, V2 is the normalised transverse 
Laplacian and ij is a parameter which carries the information of the nonlinearity strength. The function u(x, 
y, & is normalised such that at onset of propagation its maximum value is one. Our numerical results 
agreed very well with the experiment, despite the nonlinearity was assumed Kerr-type. Instead of showing 
this, we would like to present a very intriguing behavior of the solitons formed with equal phases at each side of 
the amplitude dip. For the initial condition of an annular amplitude dip with radius R = 6, width w = 1 and 7] 
= -18. We found that, contrary to what occurs for hyperbolic tangent ring dark solitons, they are not stable on 
propagation. Results of numerical simulations are shown in figure 2 where we observe that soliton pairs are 
formed. On propagation, the inner rings travel towards the center (collapsing) while the outer is diverging. 

Figure 2. Numerical simulation of the generation of ringed soliton pairs, a) Initial condition, b) Formation of four 
ring dark solitons, those at the middle are darker than the central and outer ones, c) Appearance of the transverse 

instability in one of the ring dark solitons. d) Break up into vortices pairs. 

We have observed that the darker ring is subject to transverse instabilities as the (l+l)-dimensional solitons 
do. We remark that the neighbor rings do not break up but until later stages of propagation, this possibly 
induced by the splitting one. The rings split into vortices pairs as was expected. Changing the diameter or 
the width of the ring produces similar results approximately at the same propagation distance. By changing 
the widths, as mentioned above, a different number of rings are produced. 

In conclusion we have shown the possibility of generation of ring dark solitons using an annular initial 
condition. The solitons generated this way are not stable and break up into vortices pairs. 

[1] A. W. Snyder, L. Polodian and D. J. Mitchell, Opt. Lett. 17, 789 (1992). 
[2] G. A. Swartzlander, Jr. And C. T. Law, Phys. Rev. Lett. 69, 2503 (1992). 
[3] Y. S. Kivshar and X. Yang, Phys. Rev E 50, R40 (1994). 
[4] S. A. Baluschev, I. Dreischuh, S. Velchev, S. Dinev and O. Marazov. Phys. Rev. E 52, 5517 (1995). 
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The single-pass (or traveling-wave, or cavity-less) parametric amplifier is a good candidate for 
achieving the generation and the ultrafast control of transverse structures of large complexity for image 
processing, switching, addressing, parallel beam processing and several other applications. In fact, the 
absence of any feedback mechanism and the fast electronic nonlinearity make the device response time 
very short (i. e. in the sub-ps regime, the limit being given by the gvm of the interacting waves); 
moreover, the large parametric gain (up to 108) allows the use of very weak signals for controlling the 
structure formation in intense laser beams. 

In this work we propose a reportage on our preliminary results on the generation and control of 
the large-beam transverse structures occurring in a cavity-less parametric amplifier (a 30mm LBO crystal 
in noncritical phase matching), pumped by single 1.5ps 527nm laser pulses and operated in regime of 
strong pump depletion. The phase matching was so that the gain is peaked at the collinear direction, in 
linear regime. 

_»~_ __»„_ _JE9P33K3! Fig. 1 I KMniB ■!/*$*»' Ä-^ 

(a) (b) (c) (d) 

Figure la shows the near-field pattern-like structure occurring on the signal-beam (as well as on 
the depleted pump) when the input pump is a lmm gaussian beam and the amplification is seeded by the 
quantum noise. The result seems to indicate the occurrence of a (short range) honeycomb-like structure, 
similar to those previously observed in resonators. We like to say that, in the present scheme, the spatial 
frequency of the structure is too low (i. e. the angular spectrum too narrow) to introduce sufficient 
correlation in the whole beam for the given aperture. This could justify the local character of the 
observed structure. Work is in progress to overcome this limitation, as well as to obtain a suitable 
interpretation the observed phenomenon (the absence of any feedback means that pattern is not 
originated by a sort of bistability). Preliminary investigation, however, seems to indicate that the 
symmetry of the structure is originated by the cascaded quadratic nonlinearity, whilst its breaking into a 
given realization is controlled by the defect distribution in the crystal. Figure lb shows the structure 
obtained when a plane-wave quasi-monochromatic seed, 105 times weaker than the pump pulse, is 
launched to the crystal synchronous with the pump pulse, whose intensity was slightly reduced. Beside 
the sharp increase in the contrast, this seeding gives rise to mutually trapped signal and pump beams, 
sitting on the bonds of a honeycomb-like structure very similar to that originated from quantum-noise 
amplification. Moreover, this plane-wave seeding should have the effect of locking the phases of the 
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different portions of the beam. This increase in "coherence" is evident in Figures 1c and Id, where the 
far-field signal intensity distributions are reported for the quantum-noise and plane-wave seeding, 
respectively. Note the 3 peaks in the rings of the signal angular spectrum that, together with the 3 other 
peaks in the idler wave (not seen by our detector), are consistent with the observed honeycomb-like 
structure. 

Fig. 2 
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In the following part of the work we investigate the structures obtained when a square-lattice intensity 
modulation is superimposed to the gaussian pump beam. The effect is achieved by simply placing a slide 
with modulated transmission on the pump-beam path. The slide has a sin2 modulation with 100 |im 
periodicity, 100% contrast (leading to) 25% transmission. Figure 2a shows the low-intensity pump-beam 
profile at the crystal exit when the slide was placed at the crystal input face. Figure 2b shows the output 
signal-beam profile obtained at high pump intensity (total conversion efficiency 40%) from parametric 
amplification of the quantum noise. Both the output signal and pump (not shown) appeared to be formed 
by a well ordered lattice of mutually trapped solitary-like beams, of about 20 (am diameter. 
Measurements of the divergence of the single beams composing the lattice lead to M2=l for the beam- 
quality parameter. Therefore the process here described represents a very simple method to achieve the 
generation of high-power spatially quasi-coherent beams of tunable radiation. Quasi-coherent means that 
the phases of the different beams are randomly distributed, since the amplification is seeded by the noise 
However, this would not be a problem for all those application in which parallel beam processing is 
required. In order to achieve the phase locking among the different beams we repeated the experiment by 
seeding the amplifier with a plane-wave quasi-monochromatic seed, 105 times weaker than the pump 
The near field profiles are not distinguishable by those in Fig. 2b. The impact of the external seeding on 
the whole-beam coherence is evident in the results shown in Figures 2c and 2d, where the far-field signal 
intensity distributions are reported without and with seeding, respectively. 

Fig. 3 

Fig. 4 

Z=0 Z=l cm Z=2 cm Z=3cm 
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The sequences in Figure 4 sows the results of the numerical calculations concerning the 
evolution of the signal beam profile inside the crystal, for the case of quantum noise amplification. The 
evolution of the angular spectrum is shown in the inset. The dynamics indicates that in the linear regime 
of amplification the signal underlies a sort of spatial mode-locking forced by the trasverse gain 
modulation, leading to the formation of single coherent beams. These beams finally forms the spatial 
solitons in the final part of the crystal, where gain saturation occurs. Figure 3 shows the analogous 
evolution for the case of the plane-seeding wave. 

Fig. 5 

The next point we like to address concerns the capability of this modulated-pump system of 
being used as a method for recovering high contrast pictures from eventually defocused images. To this 
end we placed the grid-slide 8 cm before the crystal input face. Figure 5a shows the resulting low- 
intensity pump profile as measured at the crystal input face. In spite of the very low contrast, the 
nonlinear process is still capable of reconstructing the soliton-like lattice, as evident in the high-intensity 
output signal-beam profile shown in Figure 5b. Note that not only the contrast is increased but also the 
spatial resolution. In fact the area of each generated soliton is about 2 order of magnitude smaller than 
that of the single input beams in the grid. A question which spontaneously arises concerns the capability 
of the system of processing more complex images. To this end we first verified that each soliton may be 
switched off independently by suitably darkening the corresponding cell in the slide. Figure 5c shows the 
low-intensity pump profile at the crystal exit when an arrow was "drawn" on the slide. Figure 5d shows 
the corresponding signal profile at high pump intensity, with the high contrast perfectly recovered. Also 
in this case the reconstructed image remained virtually unchanged when modifying the input-slide 
position by several cm along the pump-beam path. 

Work is in progress to achieve the control of the excited solitary beams by means of weak 
external seeding signal beams, launched to the desired positions together with a uniformly modulated 
pump. In this case the pump intensity have to be set just below the threshold for spontaneous soliton 
formation from quantum noise amplification. Preliminary measurements indicate that the modulation in 
the pump beam helps in stabilizing the position of the excited solitons respect to the wandering of the 
pump or of the writing-signal beams, a quite important issue if the possibility of coupling the solitons 
with a fiber bundle in on-field application is considered. 
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It is well known that in the presence of quadratic nonlinearities not only does frequency doubling occur 
but a static electric field is also generated. In early experiments it was shown that a laser pulse 
propagating through a non-centrosymmetric crystal gives rise to the formation of a voltage pulse [1]. It 
was realized that the generated dc-field may not only be an elegant tool for detecting the optical wave, but 
may also be the source of coherent THz radiation. Here we demonstrate that the refractive effects on the 
optical pulse are considerable. They may give rise to the formation of temporal solitons composing of 
bound states of the optical and microwave fields. 
Unfortunately there is no theory available to link the 
optical and the microwave propagation in a resonant 
geometry although those waveguiding structures are well 
known as e.g. electro-optic modulators. A typical example 
realized in AlGaAs is shown in Fig.l. Optical guiding is 
achieved by a high index layer, where lateral confinement 
is  provided by  a rib  etched  into  the  cladding.  The 
microwave field spreads between the metal electrode on 
top and the doped substrate. Here we assume monomode 
operation and the optical field to be polarized in Y- 
direction (TE) and the microwave to be mainly polarised in 
X-direction. (TM). To derive the basic set of evolution 
equations we start in Fourier space. In case of weak 
nonlinearities the mode amplitudes u(z,(Q) evolve in the z- 
direction according to [2] 

GaAs = optical waveguide 

AlAs = insulator 

Fig.l Structure under investigation 

£-iß(a>) ZCO 

Po (1) 

where po is the guided mode power. It is assumed that the field structure of the respective guided modes 

E is not affected by the action of the weak nonlinearly induced polarization $. Provided that the 
structure is not phase matched with the second harmonic the field evolution takes place in two distinct 
spectral domains: one centered around the optical frequency co0 and the other around co=0. An expansion 
of the propagation constant ß(co) around these points and a subsequent Fourier back transformation results 
in two evolution equations for the slowly varying envelope of the optical pulse and for the microwave 
fields. 
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Here we have neglected all losses and have dropped the expansion after the first dispersive term. Further 
we have assumed that the field structures remain unchanged in the respective frequency domains and that 
the propagation constant obeys the symmetry relation ß(-co)=-ß(co)* resulting in a suppression of all even 
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terms in the expansion around co=0. In what follows we express the nonlinear polarization by the 

respective fields, while taking into account the growth [100] and cleaving [Oil] directions of the fcc- 
lattice and as well as the polarization of the respective fields. We end up with the following set of 
equations 
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where we have scaled the optical field Uopt with the guided power p0 and the microwave field Um 

the electrical power pei=po/2. The nonlinear interaction is mediated by the overlap integral 
with 

Xeff = 
£o 

2/>oV Pel 

rjdxjdy%m\Ei opt nuc 

In case of the structure depicted in Fig.l and for Xi23=200pm/V [3] it amounts to 

Xeff =8.3*10~14sm"1W'1/2. While the internal structure of eq.(4) is quite common in optics, eq.(5) is 
closer to a KdV equation. Energy exchange is driven by the time derivatives rather than by the 
nonlinearly induced polarization itself as it is for usual frequency conversion. We find an additional term 
in (4), which describes the electro-optic modulation of the optical field by the generated dc-voltage, but 
does not give rise to an energy exchange. 
A simulation of an optical pulse injected into the structure depicted in Fig.2 shows, that two microwave 
pulses with opposite phases are generated close to the input facet. One "ghost pulse" travels with the 
velocity of the microwave, while the other one - the "image pulse" - stays with the optical pulse in a 
stationary state. Both are almost the exact image of the optical power distribution. The reason for this 
behavior is the huge velocity difference between both waves. In our case the group refractive indices 
differ by about 1. Consequently the group velocity difference is by far the dominant term in eq.(5). In the 
stationary limit eq.(5) can be integrated once and the resulting microwave field can be approximated by 

^mic ~ 
Xeff U opt 

(6) 

'mic /opt 

resulting in an exact image of the optical pulse. 

If reinserted into eq.(4) we end up with an effective cubic nonlinearity due to the electro optical effect. Its 
strength is given by 

Y = 
2wopt Xeff 

(7) 

vopt      vmic 
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Fig.2 Generation of microwave pulses in the 

geometry depicted in Fig.l (parameters of 
optical  pulse:   duration:   lps,   peak the 
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Fig. 3 ßoliton with a propagation constant in 

z-direction of 1.675mm"1 (parameters as 
given in Fig.2, except 
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power: 100W, ?L=1.5|0.m, injected at t=0, 
parameters of the structure: impedance: 
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and amounts to y=-5.2 * 10 J m"1 W"1 in case of 
our sample. This is still three orders of magnitude 
smaller than values obtained from intrinsic cubic 
nonlinearities. However, it can be easily enhanced 
by matching the respective group velocities as it is 
done in conventional electro-optic modulators. 
The effective index of microwave modes can be 
adjusted in a wide range by either pattering the 
metal electrodes or by covering the structure with 

high index materials, which are available for microwave frequencies [4]. 
At least in this Nonlinear Schrödinger Equation limit we expect to find stable light pulses or solitons 
provided that the sign of the velocity difference is chosen properly. A more detailed analysis reveals that 
even the whole set of equations (4) and (5) supports soliton solutions (see Fig.3). The optical field in 
these mutually bound states shows a nontrivial phase dynamics. It is real valued only if the energy 
exchange term in (4) can be neglected compared to the electro optic coefficient. In this case the solitons 
known from second harmonic generation are reproduced, although the dynamics which led to their 
formation are entirely different. 

[1] M.Bass, P.A.Franken, J.F.Ward, and G.Weinreich, Phys.Rev.Lett. 9,446 (1962). 
[2] M.Börner, R.Müller, R.Schiek, and G.Trommer, Elements of Integrated Optics, (Teubner, Stuttgart 

1990) (in German). ' 
[3] T.Y.Chang, N. van Tran, C.K.N.Patel, Appl.Phys.Lett.13, 357 (1968). 
[4] R.G.Walker, IEEE Journ.Quant.Electron.27, 654 (1991). 
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Besides their obvious industrial interest, single-mode optical fibers are ideal tools for 
fundamental studies of the dynamics of nonlinear interactions between light and matter, 
made easy by the high optical flux and the very long interaction lengths achieved in such 
media. Moreover, they are usually considered as fairly unidimensional, which is a key 
feature in the stability of nonlinear optical structures, such as NLS solitons. Nevertheless, 
it should be kept in mind that their finite numerical aperture sometimes allow unusual 
phase-matching conditions and call for more complex approximations to account for the 
observed dynamics in fiber devices. 

Here, we are interested in the electrostrictive interaction between light and matter, 
namely the stimulated Brillouin scattering (SBS). Implicitly, SBS usually refers to the ID 
approximation, where a forward propagating "pump" wave creates both a backward 
propagating (0 = it) "Brillouin" wave and a ultra-high frequency (tens of GHz) forward 
(9 = 0) longitudinal acoustic wave. For coherent enough pump beams, it is the 
dominant nonlinear effect in fibers, and its very rich dynamics, which includes solitonic, 
chaotic, and bistable behaviours in resonators, is now fully understood in the frame of a 
coherent (i.e. phase-sensitive) 3-wave model, accounting for the optical Kerr effect.1 

Nevertheless, the Brillouin process can also couple the 
pump wave with transverse acoustic waves propagating 
mostly in the fiber cladding (6 = %/2); from now on we will 
denote this geometry as cladding Brillouin scattering (CBS). 
The whole body of the fiber then constitutes an acoustic 
resonator, yielding a discrete set of resonant frequencies 
typically in the 107-109Hz range,2-3 and the scattered 
optical wave (0 < NA) propagates together with the pump. Figure l : 
In the spontaneous regime, for low enough optical copmpagativephase-matching 
intensities, CBS is known as guided-acoustic-wave Brillouin 
scattering (GAWBS) and a major limitation to quantum optics experiments in fibers.4 At 
higher level, it has recently become clear that CBS-induced phase modulations introduced 
an important slow electrostrictive contribution to the nonlinear index n2, of the same 
order than the fast Kerr contribution in the near infrared,5-6 and that this so-called "long- 
range interaction" is a key cause of jitter in solitonic optical telecommunications.2 We 
pointed out in a previous work7 its analogy with stimulated Raman scattering during the 
propagation of short optical pulses, where CBS induces a small self-frequency-shift. 
CBS has also been shown to affect in various ways the dynamics of fiber lasers.8-9 
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Here, we are interested in the coupling between both Brillouin process, SBS and CBS 
in single-mode fiber resonators. Our basic device (Fig. 2) is a cw pumped (argon-ion 
pump laser @ 514.5 nm) fiber resonator of length L with a low Brillouin feedback 
(R= 1%) and an intracavity 

beamsplitters 
(R«l%)   / 

Photodetector 

Faraday 
isolator 

^ 

4 

microscope 
_ flenses 

l Brillouin 
V   wave 

pump wave ac. wave 

isolator avoiding pump 
recoupling. If SBS alone is 
considered, the dynamics of 
the interaction depends on a 
single parameter, namely the 
overall gain G = gSBS Ip L 
for a given R : whenever 
R< 15 %, a regular Hopf 
bifurcation separates a cw 
"SBS mirror" regime from a 
stable pulsed regime at lower       
G.10 On the other hand, the    argon-ion laser 
spontaneous noise fn (the CBS     ^ _n^i4 
seed) would increase linearly       p~  '      ixm 

with L. In a previous paper, 
we reported observation of Figure. 2 : Experimental setup 
high-order modes (typ. 10 FSR), related to transverse acoustic resonances, in the 
transition region between the stable cw and pulsed regimes of a L = 80 m device, where 
the transients are long enough to be sensitive to any perturbation.1 

No influence of those transverse acoustic modes have been reported on shorter 
levices. For L = 150 m, this CBS instability appears to be developed enough to prevent 

the establishment of any stable pulsed 
regime : instead of the smooth pulses 
previously observed, we obtain rather 
unstable trains of pulses, with imperfect 
mode-locking (larger width) and strong 
intrapulse modulation (Fig. 3). The 
transition region is fully unstable, and 
even the "mirror" region presents a very 
poor stability in this configuration. This 
influence, through CBS, of the fiber 
length on the stability of SBS fiber lasers 
has been observed at various Xp, and 

Fieure 3: Modulated Brillouin pulses 
and FFT (experimental). 

configurations as thoroughly discussed in ref. 1 

We have developed a coherent model for CBS, which accounts for the transverse 
acoustic modal structure of the fiber, analyzed in some details in previous works-2'4 we 
describe locally each mode of frequency Qn, damping Yn, and amplitude qn through a 
standard forced harmonic oscillator equation : 

4 + 2 yn at + al ] qn   =   2Qn Kn
tr 

+   fn(z, 0 (1) 

This model is fully compatible with the usual 3-wave model of SBS, which describes 
the coupling of a pump wave Ep (cop) to a backscattered  wave Es (cos), though a 
ongitudinal acoustic wave Ea (coa= cop - ©s). It is customary to neglect the acoustic 

longitudinal propagation (of velocity cs« c), its dynamics being described though : 

Ea    =     KSBS Ep Es*    +    fa (z, t) [dt   +   Ya (2) 
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A poorer overlap between optical and acoustical waves yields a much lower gain in 
the CBS case (gcBS ~ 10~2 gSBs)- Accounting for the optical Kerr effect but neglecting the 
dispersion, we obtain for the Brillouin envelope : 

dz +Ye    EB n J 

=     KSBS EpE* + i { En Wn Xn +   Kkerr (2 Ip + IB )} EB 
(3) 

and a similar expression for the pump 
wave. Even with this very simplified 
model, we obtained a fair qualitative 
agreement between the numerical 
simulations and the experiment. No stable 
regime is ever achieved but, for long 
computation times (up to 5000 
roundtrips), an asymptotic evolutive train 
of modulated pulses is obtained (Fig. 4). 
Although we neglected several modes of 
comparable efficiency, the discrepancy 
remains well within the uncertainty over 
the estimation of the CBS mode width yn. 

Figure 4: Numerical simulation of the 4 wave 
problem (CBS + SBS + Kerr) 

The CBS characteristic length is of the same order than the Kerr length, and, as could be 
expected from earlier Kerr studies,11 more complex structures were obtained for higher 
Kst- but could not be correlated to the experiment, and chaotic behaviours appeared for 
Kst> 10 KKerr. 

We will also present new experimental results about CBS-induced cross-amplitude 
modulation when a secondary cw-laser beam is launched in the resonator, with an 
arbitrary wavelength and an intensity too low to stimulate Brillouin scattering by itself. 
The agreement between the new model of these electrostrictive interactions presented 
here, bypassing the usual one-dimensional approximation in single-mode fibers, and 
various experiments in Brillouin fiber ring resonators is satisfactory. From this, it can be 
inferred that the coherent dynamics of CBS and SBS are very similar, and thus that CBS 
might become a major limitation to high bit/rate telecommunication systems, once its 
instability threshold is attained (typically in the THz range). 
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Introduction The nonlinear propagation of a pump-probe pulse pair in an optical fiber has been 
extensively studied both experimentally, numerically and theoretically. In particular, it has been shown 
that the probe can attain a spectral shift under the influence of cross-phase modulation (XPM) from 
the pump, an effect having important applications in e. g. optical switching and demultiplexing. 

Propagation of femto-second pump-probe pulse pairs near the zero-dispersion wavelength of a fiber, 
gives rise to new effects. In earlier work, spectral splitting of a single pulse propagating near the 
zero-dispersion wavelength was observed [1]. For moderate pump powers, the pump causes a gradual 
spectral shift of the probe-pulse, due to XPM [2]. However, for sufficiently high pump-powers, we have 
discovered that this continuous spectral shifting is replaced by a new physical feature involving a large 
spectral jump, with substantial parametric amplification of the new signal. The physical mechanism 
behind this feature is four-wave mixing (FWM). Phase-matching for this process is greatly simplified 
by the high peak-power and large spectral width inherent in femto-second pulse-propagation. On the 
other hand, group-velocity matching emerges as an equally important factor to be fulfilled for efficient 
power-conversion from the pump to the probe. 

Experiments We synthesized the pump-probe pair by spectrally filtering an initial, spectrally broad 
pulse. The laser-source was a Kerr-lens mode-locked femto-second Cr4+:forsterite laser, previously 
described in [3]. After filtering, the pulses were of around 200 fs in duration, with a peak-power of 
up to 670 W for the pump and 1-5 W for the probe. The probe-wavelength could be tuned between 
1260-1330 nm, while the pump was fixed at 1260 nm to maximize pump-power. The pump-probe pair 
was coupled into a 15 m long standard single-mode fiber and the output-spectra were recorded on a 
spectrometer. 

A typical result is presented in figure 1. For increasing but relatively low power, the probe is spectrally 
shifted by cross-phase modulation in the conventional way. However, above a certain pump-power 
threshold, a new signal rapidly builds up at a much longer wavelength. In fact, this results in a much 
increased spectral shift, along with a parametric amplification of the probe. 
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Figure 1: Experimental demonstration of frequency-jump. 

Simulations We have simulated the propagation of the pump-probe pulse pair using the nonlinear 
Schrödinger equation: 

.dA 

$£ + %%-*** 
where we have included dispersion up to third order but neglected stimulated Raman-scattering and 
self-steepening. The equation was solved numerically using the split-step Fourier-method. By solving 
one single NLSE for the entire spectral and temporal domain of interest, no assumptions need to 
be made regarding phase-matching, group-velocity matching and pulse walk-off. Typical results are 
presented in figure 2. As can be seen, the agreement with experimental data was good. 

By varying the pump-amplitude, time-delay and relative phase between the pump and the probe, the 
origin of the frequency-jump could be determined. For low pump-intensities, only the XPM-induced 
spectral shift is observed. This shift is insensitive to the phase, but very dependent on the time-delay 
between the pulses in terms of size and direction (red or blue). For a FWM-process, on the other 
hand, the time-delay is only important in terms of interaction length, while the relative phase is a very 
important parameter. By analyzing the behaviour of the frequency-jump when we varied the time- 
delay and the phase, we could conclude that the jump is indeed caused by a FWM-process. Apart from 
this, it was noted that the new signal always was group-velocity matched with the peak wavelength of 
the pump. 

Theoretical studies FWM is usually studied in terms of four coupled equations; one for each 
frequency taking part in the process [4]. One is then forced to assume that the spectra do not overlap. 
When using femto-second pulses, with their much larger spectral width, this assumption is no longer 
valid, and the pulse dynamics must rather be regarded as a redistribution of energy within a quasi- 
continuous spectrum, formed by simultaneous as well as cascaded FWM-processes. 
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Intensity in the frequency domain; pump-normalized decibel units 

Figure 2: Numerical simulation of the frequency-jump, showing fiber input and output 

Some qualitative understanding of the dynamics can still be obtained from the results for longer pulses 
For degenerated FWM, optimum phase-matching can be achieved if the pump is slightly shifted from 
the zero-dispersion wavelength. This makes it reasonable to assume that the most important FWM- 
process m our case is a degenerated process with the probe serving as a "pseudo-pump" while the 
jump-frequency wave and the original pump-wave are playing the parts of Stokes and anti-Stokes waves 
respectively. In this situation, one of the sidebands is much larger than the pseudo-pump and the other 
sideband. By analyzing the resulting system with respect to phase- and group-velocity matching we 
infer that the probe pulse must indeed have a wavelength close to the zero-dispersion wavelength The 
pseudo-pump is also boosted by contributions from the spectral broadening of the pump, analogous 
to the case of spectral splitting [1]. We infer that the process is more efficient when the second- and 
third-order dispersion terms are such that the low-frequency band of the splitted spectrum appears at 
the jump-frequency. A theoretical model is presently being developed to describe the main features of 
the FWM process responsible for the appearance of the new signal at the jump-frequency. 

Conclusions The present experimental and numerical results demonstrate a new phenomenon of 
spectral shifting of a weak signal pulse by FWM involving a high-intensity femtosecond pump-pulse 
close to the zero-dispersion wavelength. Simulations of the nonlinear Schrödinger equation including 
third order dispersion give good agreement with the experimental results. 
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As is well known, the interplay between optical Kerr effect and chromatic dispersion leads to 
the phenomenon of modulational instability (MI) of light waves [1]. Such instability, also called 
Benjamin-Feir instability, occurs in different physical environments : plasmas, fluids, solid-state 
lattices, electrical circuits and nonlinear optics. MI leads to the breakup of a cw or quasi-cw beam 
into a train of ultrashort pulses and it can be used to generate a train of soliton-like pulses [2]. MI 
also sets a fundamental nonlinear limiting factor in the transmission of dense wavelength-division 
multiplexed signals in long-distance fiber links. 

All these results were obtained by deterministic models. In realistic fiber transmission links, 
the chromatic dispersion, nonlinearity and birefringence are not constant but can fluctuate stochas- 
tically around a constant value. In this work we will study MI in fibers with random birefringence. 
In the model we adopted to treat random birefringence, the orientation of the principal axes is 
taken as constant but their magnitude varies randomly with distance. This simplified model has 
the advantage of leading to exact solutions for the linear stability analysis of plane waves. The 
evolution of the polarized fields in randomly birefringent fibers is ruled by a modified vector non- 
linear Schrödinger system with a random group velocity mismatch or polarization mode dispersion 
(PMD) between the two modes [3-4] 

iuz + iA(z)ut + ßuti + (|u|2 + a |u|2) u = 0, (1) 

ivz - iA{z)vt + ßva + (\v\2 + a |u|2) v = 0. (2) 

Here standard dimensionless variables are used. The group velocity dispersion coefficient ß is equal 
to 1 or -1, for the anomalous and normal dispersion regime, respectively. A(z) is the sum of a 
constant term Ao, and a white Gaussian-distributed noise 

(A(z)) = A0,     ((A(z)-Ao)(A(z')-Ao)) = 2a26(z-z'). (3) 

The standard linear stability analysis of MI consists in perturbing the stationary solution of the 
nonlinear Schrödinger equations [1]. In our notation, we write a perturbed plane wave as 

u{z,t) = [A + ul{z,t))ei(A2+aB2>,v{z,t) = (B + vl(z,t))ei(B3+aA2)'. (4) 

One obtains a linear system of equations for Ui and uj ; using the complex representation, u± = c+id, 
vi = e + if and performing the Fourier transform c = fce~lu,tdu;, we obtain a differential system 
■ja = Q(z)q with q — (c, d, e, /)f. This ODE system describes the evolution of the amplitude of the 
perturbation along the fiber. The eigenvalues of the associated matrix Q give the MI gain. Unlike 
the deterministic case, the perturbation matrix is no longer constant but varies randomly with 
distance. The study of the first moments of the perturbations is not sufficient to determine stability 
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in the random case. Indeed, the MI gain for the average values of the perturbation coefficients is 
simply reduced, owing to the presence of random phases of the kind exp{±iua f* A(y)dy) that 
multiply the coefficients c, d, e, and /, so that their expectation values decay exponentially along 
the fiber. It is therefore necessary to consider the moments of the moduli |c|2, \d\2, \e\2 and |c|2. 
By applying the Furutzu-Novikov formulae [5], one obtains a 16-dimensional differential system 
^ = Rr where r is a row vector whose elements are (|c|2), (\d\2), (|e|2), (|/|2), and the real and 
imaginary parts of (c*d), (c*e), (c*/), (<fe>, (d*f) and (e*/), while R is a 16 x 16 dimensional 
matrix. Simple analytical formulae for the MI gain can be found for a < 1 or a > 1. In the 
general case, the MI gain can be evaluated by computing the eigenvalues of the stability matrix R 
through a numeric manipulation package. The left part of figure 1 shows MI gain curves for the 
anomalous dispersion (ß = 1) case, different average PMDs and standard deviations a. When the 
average PMD is zero, the MI region is enhanced so that all frequencies are unstable as soon as 
a > 0. Nevertheless, the MI peak gain is reduced with respect to the deterministic case. We find 
that the MI gain peak is equal to 2(1 + a) A2 when a = 0, and it decays to 2Ä2 as a goes to infinity. 

Consider now the case A0 > 0. When A0 < aA2, MI is present for all sideband frequencies, 
but the peak gain is reduced and converges to 2 |w| V2A2 - u2 (which is the MI gain corresponding 
to the case a = 0). Finally, if A0 > aA2 and a = 0, the MI gain consists of a first peak at low 
frequencies and a second peak which lies close to A0. When taking into account PMD fluctuations, 
the second peak is strongly reduced and ultimately it disappears for large CT, while the first peak 
converges to 2 \u>\ V2A2 -u>2. 
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Figure 1: MI gain vs frequency for anomalous (ß = I) and normal dispersion (ß = -1), a = 1 and 
different average PMD A0 and standard deviation a. 

The right part of figure 1 displays the gains in the normal dispersion (ß = -1) case. Whenever 
the PMD between the fields is identically zero (i.e. A0 = 0,a = 0), there is no MI in the normal 
dispersion [1]. Nevertheless, if the group velocities are randomly mismatched (i.e., a > 0), one finds 
that MI is present, and even that all frequencies are unstable! With increasing a, the MI peak gain 
first grows larger, then it reaches a maximum for some particular a0 which depends on a, but not 
on the power A2. For a = 1, one finds that a0 = 0.85.  For deviations larger than a0} the gain 
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decays to zero. When Ao ^ 0, deterministic MI occurs for frequencies between WAg - 2(1 + a)A2 

and JAQ 2(1 - a)A2. Whenever the PMD fluctuations increase, all frequencies are unstable but 
the peak gain decays to zero. For large a, one gets the same behavior as for Ao = 0, whatever Ao- 

Above mentioned results were obtained by means of the linear stability analysis of Eqs(l-2). 
To check the validity of the results we performed the numerical experiments by directly solving 
the system (1-2) with a randomly varying PMD A(z). The simulations were done using the split- 
step Fourier method. The discrete value of the deviation a is a^is = <r/y/dz, where dz is the z 
step. The initial condition was u\,v\ = eexp(-iut) +eexp(iu>t), with e = 10~4. The number of 
points in the time domain was 256 and the z step is a small fraction of the propagation length 
{dz = L/200). The value of A was randomly changed after each step since we have considered a 
white Gaussian-distributed noise. 

The results of the numerical simulations in the anomalous and normal dispersion regimes are 
presented in the left and right part of Fig. 2, respectively. In both cases, the analytic stability 
analysis (solid curves) predicts the extension of the spectral width of the MI gain, which leads to 
instability for all frequencies of modulations. These predictions are well confirmed by the numerical 
simulations in all cases (stars) : note the quantitative agreement with the numerically calculated 
MI gain values. 

The PMD induced extension of MI to a broad range of wavelengths around the pumps both in 
the normal and anomalous dispersion regime, that we discovered in this work, may have interesting 
implications to the stability of fiber transmissions, in particular when operating close to the zero 
dispersion wavelength or whenever dispersion compensation techniques are employed. 
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Figure 2: Gain curves for ß = 1 (a, b) and ß — -1 (c, d). A = 1 and a = 0.25 for both cases. Ao 
2 (a), 1 (b), 3 (c) and 0.5 (d). The stars represents the MI gain obtained with the simulation of 
system (1-2), the solid curve is from linear stability analysis ; the dashed curve is the deterministic 
gain curve (i.e., with a = 0). 
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The development of future Terabit all-optical communication systems exploiting Optical Time 
Division Multiplexing (OTDM) will require stable laser sources around 1.55 um producing 
transform-limited sub-picosecond pulses [1]. A simple and reliable technique for pulse generation 
around 1.55 um is the gain-switching of semiconductor laser diodes. Although the pulses generated 
using this technique are usually heavily chirped, and have durations exceeding 10 ps, it has been 
shown that near-transform limited sub-picosecond pulses can be obtained after fiber-based pulse 
compression [2]. Although many different fiber-based compression schemes have been proposed 
[3-5], the design of such compressors is usually only approximate. Typically, a simple model of the 
gam-switched pulses assuming symmetric gaussian profiles with a linear chirp is used to determine 
initial approximate lengths for the fiber used in the pulse compressor. This is then followed by trial- 
and-error length optimization to obtain the best experimental compression [2]. 

It is clear that the generation of transform-limited sub-picosecond pulses from gain-switched lasers 
would be greatly simplified if the design of fiber pulse compressors could be performed in a 
systematic manner without a priori assumptions about the nature of the initial pulse characteristics, or 
the time-consuming process of trial-and-error optimization. In this paper we report a systematic 
approach to fiber compressor design based on the complete intensity and phase characterization of 
the initial gain-switched laser pulses using the technique of frequency-resolved optical gating (FROG) 
[6]. The complete characterization of the electric field of the laser pulses allows the precise design of 
a fiber pulse compressor using numerical simulations based on the nonlinear Schrödinger equation 
(NLSE). We have recently demonstrated the utility of FROG for gain-switched pulse characterization, 
and suggested its use in compressor design [7], and in the paper we present experimental verification 
of the use of FROG for this purpose. We report results showing the compression of initially-chirped 
10 ps pulses to near chirp-free 800 fs pulses. 

Figure 1 shows the experimental set up for pulse generation and compression. The laser source was a 
distributed feedback (DFB) laser with an operating wavelength of 1538 nm, a threshold current of 
24 mA, and a 10 GHz modulation bandwidth. The laser was biased below threshold at 5 mA, and 
gain-switched at a repetition rate of 500 MHz using electrical pulses from a step recovery diode' The 
electrical pulses had a duration of 80 ps and an amplitude of 13 V. The intensity and phase of the 
DFB laser pulses were characterized using spectral and autocorrelation measurements, as well as a 
second-harmonic generation FROG set-up [6]. 

The gain-switched pulses are compressed in a two-stage fiber compressor. Firstly, dispersion 
compensating fiber (DCF) compensates for the linear part of the intrinsic negative chirp on the DFB 
laser pulses to generate near-transform-limited pulses with average power around 140 uW. Secondly 
these pulses are amplified in an erbium doped fiber amplifier (EDFA) to an average power level of 
around 7 mW and injected into a nonlinear compression stage containing both dispersion shifted 
fiber (DSF) and standard single mode fiber (SMF). The propagation in the DSF is governed by the 
interplay of self-phase modulation and a small normal dispersion. This leads to temporal and 
spectral broadening, and the development of a large positive chirp across the pulse center.   The large 
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chirp developed in the DSF is then compensated in the SMF leading to a chirp-free compressed 
output pulse. We note that this method of nonlinear compression is advantageous when compared to 
soliton compression schemes as it does not require a threshold input intensity, and leads to 
comparable levels of compression with only modest levels of pre-amplification. To optimize the 
compressor, NLSE simulations were used to propagate the fully characterized initial DFB pulses 
through various lengths of DCF, DSF and SMF in order to determine the lengths required to obtain 
the shortest possible output pulse with the minimum amount of low amplitude pedestal structure. 
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Figure 1.  Experimental set-up used for pulse generation and compression. 

Figure 2 presents NLSE simulation results showing the optimal evolution of the initially chirped DFB 
pulses. The optimum fiber lengths were found to be: 75 m of DCF (D =-102.5 ps/nm/km, 
Y = 2 W'km"1), 1.3 km of DSF (D =-0.6 ps/nm/km, y = 2.3 W'km1) and 80 m of SMF 
(D =16.0 ps/nm/km, y= 1.1 W'km"1). The parameters D and y in each case are the fiber dispersion 
and nonlinearity parameters respectively. The effect of the 6 m long EDFA was also included in the 
simulations but at the amplification levels in our experiments, its effect on the pulse duration and 
chirp characteristics was found to be negligible. 
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Figure 2. Evolution of pulse FWHM in the pulse compressor, 
the input pulse while B and C correspond to the outputs 
respectively. 
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With the compressor designed according to the simulation results, FROG measurements were used to 
measure the intensity and chirp of pulses at three different points in the compressor in order to verify 
the accuracy of the numerical design procedure. These results are shown in Figure 3. Figure 3(a) 
shows the initially chirped pulse from the DFB with a FWHM = 9 ps. The pulse in Figure 3(b) was 
measured after linear compression in the DCF, and it is clear that the chirp is significantly reduced, 
and the pulse is compressed by around a factor of 2 with a FWHM = 4.5 ps.   The solid and dashed 
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lines m Figure 3(c) show the intensity and chirp of the pulse after the nonlinear compression stage. 
This stage results in a further factor of 6 compression with the final output pulse having a FWHM 
= 800 fs. It is important to note that these output pulses are essentially chirp-free across the pulse 
center. The residual pedestal structure is due to uncompensated nonlinear chirp. To illustrate the 
accuracy of our numerical design procedure, the circles in Figure 3(c) show the expected output 
pulses obtained from the NLSE propagation of the input pulse through the compressor. It is clear 
that there is excellent agreement. 
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Figure 3. Intensity (solid line, left axis) and chirp (dashed line, right axis) of (a) initial 
DFB pulse (b) pulse after the linear stage in DCF, and (c) pulse after the nonlinear stage 
ST C£ • d

r
SMF The Clrcles in (c) show the expected pulse characteristics from the 

NLSE simulations.  The chirp is only plotted over regions of significant intensity. 

In conclusion, we have shown that the complete intensity and phase characterization of DFB laser 
pulses using FROG allows the precise optimization of a multi-stage fiber pulse compressor via NLSE 
simulations. We have presented experimental results using a compressor design optimized for high 
compression factors and minimal pedestal structure in order to obtain output pulses suitable for 
telecommunications applications. From initially chirped 9 ps pulses generated from a DFB laser we 
obtain chirp-free 800 fs pulses. We expect that this method of compressor design will find wide 
application in optimizing other forms of pulse compressor based on fiber Bragg gratings, fiber loop 
mirrors or dispersion decreasing fiber. 
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Modulational instability (MI) in optical fibers is a spontaneous four wave mixing process in which phase- 
matching is automatically achieved through the compensation of chromatic dispersion by Kerr nonlinear- 
ity. Self-phase modulation in silica results from a positive Kerr effect and can therefore be compensated 
only in the anomalous dispersion regime. However, if the polarization of light is taken into account, 
cross-phase modulation enters into play allowing MI to appear in the normal dispersion regime. In this 
case, MI is called Polarization MI (PMI) because it alters the state of polarization. The existence of MI 
in the normal dispersion regime was predicted by Berkhoer and Zakharov (BZ) [1] as early as in 1970 
but has never been, up to now, the object of a direct experimental demonstration. The main experimental 
obstacle was to satisfy the basic assumption of isotropy of the Kerr medium. However, as shown by 
Wabnitz [2], PMI can also occur in birefringent fibers, but in this case birefringence plays an essential 
role in the phase matching condition, leading to physical behaviors that can be very different from those 
predicted in the framework of BZ's theory (PMI due only to dispersion and nonlinearity). Several ex- 
periments [3, 4] in birefringent fibers have indeed confirmed that birefringence in the phase matching 
condition induces different behaviors between light polarized along the fast and the slow axis. Recently, 
several attempts have been performed in order to confirm BZ's theory by means of other physical systems 
such as the bimodal fiber proposed by Millot et al. [5]. 

We performed the first observation of BZ's predictions using a specially designed (spun) fiber having a 
residual birefringence of less than 10-8, which makes the fiber effectively isotropic because this birefrin- 
gence is so low that it is negligible against the Kerr nonlinearity at readily accessible optical powers. The 
experimental setup consists essentially in a Nd:YAG laser emitting pulses (230 ps, 1064 nm) which are 
injected in the spun fiber. This fiber has a total length of 50 m and is wounded with a radius of curvature 
of 25 cm so that the induced birefringence is negligible (< 10-8). Before the injection, various wave 
plates allow to control the input state of polarization, while a quarter wave plate and a polarizer at the 
output of the fiber allow for the selection of one polarization component before the spectral measurement. 

Using this setup, we have checked all BZ's predictions about PMI. The most remarkable result is the ver- 
ification that PMI appears with the same gain for all orientations of the linear input state of polarization 
[see Fig. 1(a)]. This result proves that residual birefringence has negligible effects on the four-wave- 
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Figure 1: Spectra recorded at the fiber output for an input peak power of 120 W. (a) Total power spectra 
recorded for an input linear polarization angle varying by steps of 10° over 90°. (b) Power spectra in the 
polarizations parallel (||) and orthogonal (±) to that of the pump. 

mixing process underlying PMI. The fiber can therefore be considered as being isotropic. 

This result is confirmed by the analysis of both polarizations at the output of the fiber. Fig. 1(b) shows 
that the sidebands appear in the polarization orthogonal to the pump. The small depolarization (about 
1% in intensity) is already present before the injection of light in the fiber and is due to the imperfections 
of the pjolarizjng_components. In accordance with the theory, we verified that the PMI gain, GPMI « 
1 - 2^/1 - 3/4q2, decreases when the ellipticity (q) of the polarization state increases. Fig. 2(a) shows 
this evolution. We see, in particular, that the PMI gain vanishes for a circular polarization state. 

In addition to these spectral measurements, we have recorded an autocorrelation trace of the output signal 
[see Fig. 2(b)], which is in excellent agreement with the theory [see Fig. 2(c)]. We are currently planning 
the measurement of the temporal pulse profiles by means of a phase and amplitude retrieval technique. 
We expect from these measurements the observation of polarization domain-wall structures that are rem- 
iniscent of the fundamental vector soliton associated with PMI, i.e., the so-called polarization-domain 
wall soliton. 

All these results show that we obtained effective isotropy in a spun fiber over a distance as long as 50 m, 
which suggests that this fiber is suitable for the study of other phenomena requiring an isotropic Kerr 
media, like the polarization domain-wall solitons [6], the rotating elliptically polarized bright soliton [7] 
and the vector soliton bound states [8], as well as their applications in the field of data transmission and 
all-optical signal processing in fiber. 
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Figure 2: (a) Spectra recorded at the output of the fiber when the ellipticity {q) is increased (#i = 0, 
#2 « 0.4, 93 = 1). (b) Experimental and (c) theoretical autocorrelation traces. In all cases, the input peak 
power is of 120 W. 
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INTRODUCTION 
Several techniques have recently been studied for making optical amplifiers with bandwidths exceeding 

™A. S" aVaif wlV°nVenti0nal EDFA'S- I** mcIude: dual"band silica EDFA's™; tellurite 
EDFA s , possibly assisted by Raman gain; Raman amplifiers with multiple pumps[3J. We have shown 
that fiber optical parametric amplifiers (OPA's) can in principle exhibit gain over several hundred 
nanometers, if they are made from high-nonlinearity fibers, and use a few Watts of pump power141 In a 
previous experiment with a conventional dispersion-shifted fiber (DSF), we measured gain over a 35 nm 
bandwidth, limited by an EDFA used for the measurement. Here we report on measurements 
performed on a fiber OPA made from a high-nonlinearity fiber, with 11W pump power We have 
measured gam in excess of 12 dB over a 120 nm bandwidth (limited by the signal lasers available)- to our 
knowledge this is the largest bandwidth obtained to date with a fiber amplifier of any kind. 

With this wide bandwidth, the Raman gain due to the pump may not be negligible; therefore we have 
also performed a separate measurement of the Raman gain to ascertain whether it played a role in our 
measurements. 

EXP#1 - OPA GAIN MEASUREMENT 
The gain medium used in this demonstration is a high-nonlinearity fiber (NLF) provided by Furukawa 
Electric. The parameters of this NLF are: zero dispersion wavelength ^ = 1540 nm, dispersion slope 
Dj.-0.031 ps nm km", nonlinear coefficient y= 18 km^W1, fiber length L = 40 m, and ß4 = -1 5X10'55 

s m The nonlinear coefficient of this NLF is nine times that of DSF, while the dispersion slope is 
smaller than half of DSF's. Both characteristics make this fiber suitable for wideband amplification 
Theory predicts net gain over 200 nm. 
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Figure 1: Experimental Setup for measuring OPA gain (a) from 1535nm to 1587nm; 
(b) at 1466,1480, and 1495 nm. Differences are enclosed in dashed lines. 
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Two experimental setups used for this pulsed OPA demonstration are shown in Figure 1 (a) and (b). For 
wavelengths from 1535nm to 1587nm, Figure 1(a) is used. In this setup, a DFB laser with \ = 1542 nm 
is used as the pump. The pump is modulated by a train of 4 ns square pulses with duty cycle of 1/256, 
using a Mach-Zehnder modulator. This provides a high peak pump power of 11W at the output of 
EDFA2. A tunable laser (TL) generates the signal, which is externally modulated at 1GHz to allow AC 
gain measurements. EDFA3 is used to compensate the loss due to the Mach-Zehnder modulator and the 
10/90 coupler. The signal power at the input of the NLF is approximately 0 dBm. Tunable optical filters 
in series are used to extract the signal and suppress the pump at the output of the NLF. The gain is 
measured by comparing the AC amplitude of the signal during the 'on' and 'off portions of the pump 
pulses, as shown at the bottom of Figure 1(a). The range of measurement is mainly limited by the tuning 
range of the available tunable filter. 

The setup used to measure OPA gain at three discrete wavelengths - 1466, 1480, and 1495 nm is shown 
in Figure 1(b). It is similar to Figure 1(a) except for the filter in use, and the absence of EDFA3. The 
filter in the second setup is a WDM coupler normally used to separate EDFA 1480 nm pump from signal. 
EDFA3 is removed because EDFA absorbs signal around 1480 nm rather than amplify it. Fortunately, 
the three discrete laser sources have enough power to compensate the loss due to the Mach-Zehnder 
modulator and the 10/90 coupler. The input signal power to NLF is again maintained around 0 dBm. 

EXP#2 - RAMAN GAIN MEASUREMENT 
To estimate Raman gain in this nonlinear fiber, the following experiment is conducted. The experimental 
setup is shown in Figure 2. The Raman gain was measured under cw conditions, by using a low power 
pump. In this manner the OPA gain was confined to a small bandwidth near the pump, and the Raman 
gain could be measured very clearly. A 1.9 km NLF, from which the 20 m NLF is cut, is used as the gain 
medium. Furukawa High Power Pumping Unit (HPU) is used as the pumping source. HPU consists of 
five pumping diodes, but only two 1480 nm diodes are used in this experiment. The wavelength is 
chosen to be far away (-60 nm separation) from A«, so that OPA gain is negligible in this measurement. 
The two diodes are polarization-combined to avoid polarization-dependent gain. However, a polarization 
controller is still inserted in the signal path to ensure maximum gain is obtained. The input power to 
NLF is 107 mW after subtracting connector and splice loss. The net gain is measured by comparing the 
output signal power in the optical spectrum analyzer, with and without pumping signal. 
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(TL)   • 

HPU: High Power 
Pumping Unit 

PC: Polarization 
Controller 

TL: Tunable Laser Optical 
Spectrum Analyzer 

Figure 2: Experimental Setup for measuring Raman 
gain in NLF. 
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Figure 3: Results of exp#l and exp#2. 
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RESULTS AND DISCUSSIONS 
The results of the pulsed OPA demonstration are shown in Figure 3. The solid line is a theoretical plot 
and the dots are expenmental data. From the plot, we see that the experimental results match well with 
the theoretic^ curve^ except for points near the pump wavelength. This is because filtering out pump 
power as well as EDFA ASE is difficult in that region. The Raman gain curve obtained l l^s 
converted to parameters equivalent to those used in exp#l, i.e. 1542 nm pump wavelength, 11 W pump 
power, and 20 m NLR In this manner we have the Raman gain as if we had measured ifunder the same 
conditions as the OPA gain The result is plotted in the same figure as OEA gain. The diamond dots are 
expenmental results, while the dashed line is a curve fit to smoothly connect data points. From Figure 3 
we see that the Raman gam peak is 17.5 dB smaller than the OPA gain peak, and offset from it by 30 nm' 
This implies that within the measurement range (1535-1587nm), the Raman gain, which is less than 2 5 
dB, is negligible compared to the OPA gain, larger than 12 dB. A similar conclusion holds for our OPA 
gam measurements at 1466, 1480, and 1495 nm. Hence, the 120 nm gain bandwidth that we have 
measured is entirely attributable to OPA gain. 

CONCLUSION 
We have measured gain in excess of 12 dB over 120 nm, for a fiber OPA with a theoretical bandwidth of 
about 200 nm. This work confirms that fiber OPA's may provide a means for making very broadband 
amplifiers (as well as wavelength converters) for future optical communication systems. 
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Two-dimensional spatially localized structures are intriguing objects in self-organizing non- 
linear systems and provide new insights into the process of pattern formation. Therefore they 
found considerable attention during the last years also in the context of optics [1, 2, 3, 4, 5], 
where they are often referred to as spatial solitons (SS). They might turn out to be the key for 
new methods of all-optical information coding and processing. We demonstrate the existence 
of spatial solitons in a single-mirror feedback system based on sodium vapor as a nonlinear 
medium and provide quantitative characterization of their properties. Special focus is on the 
interaction of multiple spatial solitons. 

In our experimental setup, an enlarged and spatially filtered cw dye laser beam tuned several 
GHz above the sodium Di-line is injected into a cell containing sodium vapor. 99% of the 
transmitted power is fed back into the sodium cell by a plane mirror at distance d behind 
the vapor. By means of a CCD camera we observe the near field intensity distribution of 
the transmitted light (Fig. 1). A small area photodetector monitors the transmission in the 
beam center. 

The input beam is circularly polarized. Optical pumping between the Zeeman sublevels of the 
sodium ground state creates an orientation which in turn changes the complex susceptibility 
of the vapor. If an external magnetic field is applied, we can create a bistable response of the 
system to the power of the input beam (Fig. 2). The low transmission branch has no distinct 
large amplitude structures. At the switch-up point bright spots appear spontaneously in the 
beam profile (Fig. 3a). They are not densely packed as in a periodic (hexagonal) lattice but 

adressing 
beam 

holding 
beam 

Na + Nj 
mirror   lens 

CCD 

Figure 1: Schematic view of setup. Beam radius of holding beam WQ « 1.5 mm, of addressing 
beam 0.1 to 0.2 mm (l/e2-point of intensity). The polarization of the adressing beam can be 
changed by a quarter waveplate. 
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might form clusters which however do not have an apparent symmetry. These facts hint 
already at their solitary origin. 

In the bistable region single spots can be ignited by injecting an incoherent second laser beam 
of smaller width and the same circular polarization as the holding beam. The SS remain stable 
when the second beam is switched off. By changing the sign of the circular polarization of the 
second beam we can make use of the polarization properties of the light-matter interaction 
and use the second beam to erase the SS. This provides a very robust and phase-insensitive 
way of control. A detailed analysis of the switching behaviour reveals critical slowing down 
of the switching time for small intensities of the second laser beam (lower trace in Fig. 2). 

Optical structures in general and self-guided waves in particular are stabilized by an interplay 
of nonlinearity and diffraction. Since these features are separated in space in the system under 
study, their effect can be investigated separately: By changing the position of the imaging lens 
the variation of the intensity profile during the free space propagation from the vapor cell to 
the mirror and back can be examined. It turns out that the incoming laser-field experiences 
a local phase retardation inside the sodium vapor and thus is focused during its propagation. 
We conclude that the SS are stabilized by a self-lensing effect. 
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Figure 2: The crosses denote the transmission of the sodium cell in beam center in dependence 
of the power of the holding beam. The stars denote the power necessary to ignite a SS in 
dependence of the input power of the holding beam. 

The intensity profile of a SS reentering the vapor cell consists of an intense central spot 
which is surrounded by several diffraction fringes. The latter influence the interaction of 
spatial solitons: For a given number of spatial solitons only a few stable configurations are 
observed in the experiment. Especially for two constituents, there is only a discrete set of 
distances between them. Similar behavior is found for clusters of solitary excitations in gas 
discharges and reaction diffusion systems [6]. 



Figure 3: Typical near field intensity distributions displaying spatial solitons and spirals. 

Numerical and analytical calculations reveal that these spatial solitons appear in a region 
where the homogeneous solution is bistable due to a light-shift induced level crossing of the 
Zeeman ground states of the sodium atom [7]. The spatial solitons and the existence of a 
discrete set of stable mutual distances can be reproduced in numerical simulations of the 
microscopic model. The simulations indicate that the excitation is no longer localized, i.e. a 
whole hexagonal lattice appears, if the intensity on the first diffraction fringe is high enough 
to excite further spatial solitons. The SS can therefore interpreted to be the building block 
of the emerging periodic pattern. 

For slightly modified experimental parameters, the linear stability analysis predicts a com- 
plicated situation involving instability regions of focusing and defocusing length scales as 
well as a Hopf bifurcation. The experiments in this region show a spiraling pattern and the 
interaction of spirals with spatial solitons (Fig. 3b-d). 
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Localized structures in lasers and in optical cavities containing nonlinear optical materials are being 
intensively studied [1-4] because of two main reasons. On the one hand complex spatio-temporal dynamics 
is often dominated by these particle-like objects. Secondly, the ability to control, create and erase these 
objects opens the way to new technological developments, including parallel information processing. We are 
here concerned with two dimensional localized objects in the transverse plane of an optical cavity. Generally 
speaking they are named cavity solitons and they can take the form of vortices or bright or dark dissipative 
spatial solitons. 

Most studies of localized structures in optical systems consider light with a fixed polarization. However 
the vectorial degree of freedom of light leads to a very interesting phenomenology associated with a space and 
time dependent polarization [5]. Such degree of freedom is also relevant from the point of view of information 
encoding and processing. We address here the question of new types of localized structures emerging from 
polarization nonlinear dynamics. 

A visualization of vectorial localized structures can be given in terms of isolated zeroes or peaks of either 
of the two independent polarization components of the electric field. Situations of hole-hole, peak-hole or 
peak-peak in a given polarization background can be envisaged. A proper classification [6] of these objects 
depends on the reference states preferred by a particular system. We consider here three different systems 
which give relevant examples of possible vectorial localized structures and of their dynamics. 

Broad Area Lasers 

The interaction of the two polarization components of light in rotationally symmetric large aperture 
asers cart be described, close to threshold, by the Vector Complex Ginzburg Landau Equation (VCGLE) 

[7J. The VCGLE can be written as coupled equations for the two circularly polarized components A± of the 
slowly varying part of the vector complex field: 

dtA± =A± + (1 + ia)V2A± - {l + iß)(\A±\2+7\A^\2)Ad (1) 
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FIG. 1. Frozen field configuration:  (a) \A+\2, (b) 4>g FIG. 2. Instantaneous configuration for 7 = 0 8   (a) 
(7 = 0.1, a = 0.2, and ß = 2). j^+l2, (b) \A-\2. Bright (dark) spots correspond to max- 

imum (minimum) intensity. 

The parameters a and ß are associated with the strength of diffraction and detuning respectively and the 
condition 1 + aß > 1 is always satisfied. For the coupling parameter 7 < 1, as considered here, homogeneous 
linearly polarized solutions in an arbitrary direction are preferred. In this background it is natural to look 
for localized structures of vortex type as isolated zeros of ,4+ and/or A- [4]. Charges n± are associated with 
the change of the phases 0± of A± around those zeroes. We call vectorial defect a zero that is present in 
both components of the field at the same point. A vectorial defect can be of argument type (n+ = n_ = 1) 
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or of director type (n+ = -n_ = 1). They are identified, respectively, by a two-armed spiral or a target 
pattern of the global phase cj>g = <j>+ + <j>- (Fig. 1). A mixed defect is a zero present only in one component of 
the field. Vectorial defects are stable in a range of parameters. Within this range they freeze the dynamics 
creating exclusion islands with mixed defects concentrated at their borders. Vectorial defects loose their 
stability either by an unbinding of the zeroes of the two fields or by an instability of the phase spirals. This 
leads to a dynamical state in which A± are highly anticorrelated. This state is dominated by mixed defects 
characterized as a localized bound state of a zero of one component and a peak of the opposite circularly 
polarized component. These localized objects move on a linearly polarized background (Fig. 2). 

Vectorial self-defocusing Kerr Resonators 

Consider a ring cavity filled with an isotropic Kerr medium and driven by an external linearly polarized 
input field. This can be described by coupled driven and damped Non Linear Schrödinger Equations for the 
two circularly polarized components A± of the slowly varying part of the vector complex field. In a mean 
field approximation they become [5] 

8A± = -(1 - i6)A± + iaX/2A± + A0 - i[a\A±\2 + (a + ß)\A^\2]Ad (2) 

where Ao is the input field, and 8 is the cavity detuning. A stripe pattern orthogonally polarized to the 
input field occurs close to threshold. For higher values of Ao the system prefers either of two equivalent 
homogeneous states which are close to circularly polarized states. Polarized localized structures are here 
visualized as a hole of A+ (A-) in the background of a circularly positive (negative) polarized state together 
with a peak of A- (A+) (Figs. 3 and 4) . These structures are related to domain walls separating the 
two equivalent homogeneous circularly polarized states. They are stable for Ao,m < A0 < AO,M within the 
range in which homogeneous states are stable. For AQ < Ao,m a circular spot of one polarization, in the 
background of the opposite one, grows and leads to a labirynthine pattern. For AQ:M < Ao the system, after 
switching-on ^o, evolves in a self-similar way to a final homogeneous state. The situation is reminiscent of 
what has been described for vectorial intracavity Second Harmonic Generation [3]. 

FIG. 3.  Field intensities |J4±|
2
 in the range of exis- 

tence of localized structures Ao,m < Ao < AO,M- 

FIG. 4. Total field intensity (\A+\ 
calized structure and transverse profile of the intensities 
|A+|2 (solid line) and |.4-|2 (dotted line). 

Type II Degenerate Optical Parametric Oscillator 

A Type II degenerate OPO, for which the pump is not resonant with the cavity, can be described by the 
following equations for the signal Ax and the idler Ay. These are two orthogonally and linearly polarized 
complex fields. 

dtAx = -(1 + iA)Ax + iaV2Ax + \iAy + a\Ay\2Ax 

dtAy = -(1 + iA)Ay + iaV2Ay + ßA"x + a\Ax\2Ay 

(3) 

(4) 

The parametric coupling coefficient fx and the nonlinear coupling coefficient a depend on phase mismatch 
and they are generally complex. We consider a situation of negative detuning A < 0 for which preferred 
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states axe traveling waves of Ax and Ay in an arbitrary direction, with the same amplitude and frequency but 
with opposite phase and wavenumber. Localized structures occur in this background as isolated zeroes of the 
two fields Ax and Ay. Due to the parametric coupling these defects occur simultaneously for the two fields 
(Fig. 5) and with opposite charge, m = ±1 and n2 = Tl, for each field. Note that they do not correspond 
to isolated zeroes of the circularly polarized components of the vector field. These localized structures are 
spontaneously formed when switching-on the pump field. After a transient dynamics, in absence of walk- 
off [8], they are stable and their number is conserved for very long times (Fig. 6). One of these objects 
can be isolated and stabilized by choosing a beam size smaller than the wavelength of the traveling wave 
selected m the background. These structures are spontaneously formed vectorial dark spatial solitons of a 
different nature than the bright structures discussed for degenerate Type I OPO [2] or the dark structures 
for non-degenerate Type I OPO [9]. They are also different from the dark solitons which can be stabilized 
m a degenerate Type I OPO by imposing the structure in the pump beam [10] or by the walk-off [11]. 
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FIG. 5. Transverse amplitude profile (solid line \AX\, 
dotted line \Ay \ across the center of a vectorial dark soli- 
ton at perfect phase-matching (/j, = 1.5, a = -1.5, other 
parameters A = —0.2, a = 2). 

FIG. 6. Instantaneous configuration of \AX\; dark 
spots correspond to minimum intensity (A = -0.25, 
a = 1, other parameters as in fig. 5). 
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Many nonlinear media can support soliton-like struc- 
tures when contained in a driven optical cavity [1-4]. We 
will refer to such structures as cavity solitons (CS). In 
quadratic nonlinear media CS have recently been pre- 
dicted in both optical parametric oscillator (OPO) [3] 
and second harmonic generation [4] configurations. Al- 
though experimental observation of x'2^-CS remains a 
challenge, impressive bistability results [5] demonstrate 
the required level of nonlinearity and thus pave the way 
towards this goal. 

The large values of effective x^ accessible in artifi- 
cially phase-matched materials in combination with their 
practically instantaneous response are important advant- 
ages of using quadratic nonlinearity for implementation 
of CS for all-optical processing of information. They thus 
represent an interesting alternative to the CS which can 
be created in cavities with dispersive-absorptive [l],and 
resonant electron-hole [2] types of nonlinearities. In all 
such schemes high CS density is desirable and therefore 
understanding of their interaction is a practically import- 
ant problem which is still largely open. In this Letter 
we focus on the interactions of CS found in the below- 
threshold regime of a degenerate doubly resonant OPO, 
under conditions where the signal field has three coexist- 
ent plane-wave states [3]. 

Assuming phase-matching, a plane-wave input field, 
and ignoring walk-off, the mean-field OPO equations can 
be presented in the following dimensionless form [3] 

-idtE1 = {axdl + <5i + i7i)£i + (E2 + ß)E*,       (1) 

-idt E2 = (a2d
2

x + 62 + %ii)E2 + El/2, 

Here E\ and (E2 + ß) are the signal and pump fields, re- 
spectively, at frequencies w and 2w (we use n as a measure 
of the pump strength). The slow time t is scaled so that 
7m (proportional to the cavity damping rates) and 5m 

(to the detunings from its resonances) are of order unity. 
Here and below m = 1,2. 

This system can describe either diffractive or dispers- 
ive effects. We consider x a dimensionless transverse co- 
ordinate, and so set am = \/m. For this case, existence 
of CS for Sm < 0 was numerically demonstrated [3] for 
ßL < ß < ßR, where ßL = hiS2 + 726^/^6% + y$, and 
HR = y/S% + 7i is the OPO threshold. Within this range 
two different non-trivial homogeneous solutions (Em ^ 0, 
dxEm = 0) coexist with the trivial one (Em = 0), and the 
CS are sech-like localized states on the zero background. 

We start our analysis by applying a perturbative 

method [6] to the problem of CS interaction. We seek 
solutions of Eqs. (1) in the form 

Em(x,t) = Am(x - xA) + Bm(x - xB) + 

e(am(x - xA,xB,t) + bm(x- xB,xA,t)) + 0(e2),    (2) 

where Am(x — xA) and Bm(x — XB) are CS centred on 
XA,B- Note that Eqs. (1) are invariant with respect to a 
■K phase flip of the signal field, so that A and B can be 
either in-phase or out-of-phase CS. We assume 0 < e < 1, 
and that the perturbation functions am, bm are negligible 
except close to xA, XB respectively. We further assume 
that xAtB vary on the slow time scale r = et and that 
d — \xA — XB\ is large enough that the overlap functions 
T\ = A2B{ + B2A{ and X2 = A1B1 are of order e. 

Substituting ansatz (2) into Eqs. (1) and truncating 
0(e2) terms we obtain two analogous systems of equa- 
tions for am and bm, the former expressible in the form: 

(CA - dt)a = -{dTxA)£A+l/e, (3) 

Here a = (Reai,Rea2,Imai,lTna2)
T; operator LA is 

the linearization of Eqs. (1) around the soliton Am; 
£,A = dx(ReAi,ReA2,ImAi,ImA2)

T is the neutral ei- 
genmode of LA associated with translational symmetry, 
C-Ä^A — 0; and X = (—ImXi, —ImI2,ReXi,ReX2)

T con- 
trols the interaction of the two CS. 

The solution of Eq. (3) should in general be expressed 
as a superposition of the eigenmodes of tA with time 
dependent coefficients, because the CS interaction will 
couple to them all. However, apart from the above- 
mentioned neutral eigenmodes, the only analytic know- 
ledge about the eigensystems of tA and CB is that they 
have two bands of continuum modes with eigenvalues A 
lying on ReX = —7m, i.e. that all extended eigenmodes 
are damped. We have obtained their full eigensystems 
numerically, using finite-differences, over wide ranges of 
all relevant parameters. We find that for sufficiently 
large dissipation all cavity solitons are stable throughout 
the entire region of their existence. A Hopf bifurcation 
can occur as photon lifetime is increased, but we will 
not consider here any parameter regions where isolated 
CS are unstable. With oscillatory eigenmodes absent or 
well damped, only the neutral mode is easily excited by 
external perturbations, and so we meantime neglect all 
other modes. This enables us to obtain semi-analytic 
results on CS interactions. 
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FIG. 1. Plots of the CS velocity function / vs d. Pull 
(dashed) lines correspond to in-phase (out-of-phase) solitons 
and thin (thick) lines correspond to ft = 1.6(1.9). Other para- 
meters are Si = -4.0, Si = -1.8, 71 = 1, 72 = 0.8. 

To exclude secularly growing solutions the right-hand 
side of Eq. (3) must be orthogonal to the neutral ei- 
genmode of t\ (which we calculated numerically). This 
solvability condition, together with that for the B soliton, 
defines a function / which governs the dynamical evolu- 
tion of the distance d between the soliton centers: 

dtd = f(d). (4) 

We computed / for both in-phase and out-of-phase inter- 
acting CS, for many parameter values. Typical examples 
are plotted in Fig. 1. Regions where / is negative (pos- 
itive) correspond to CS attraction (repulsion). Zeros of 
f(d) thus mark stationary bound states of CS pairs, which 
are stable if ddf < 0 where / = 0. 

100    200    300    400 

FIG. 2. Interaction dynamics of x(2) cavity solitons [8]. At 
different values of pump parameter ft, in-phase CS: (a) merge, 
ft = 1.6; (b) form oscillatory bound state, ft = 1.8; (c) form 
stable stationary bound state, ft = 1.9; (d) generate a pattern 
via a switching wave, ft = 2. Out-of-phase solitons repel, e.g. 
at n = 2, (e). Other parameters as for Fig. 1. 

We find that this equation gives generally correct pre- 
dictions of the inter-soliton forces, in particular that in- 
phase CS attract and out-of-phase CS repel.   Both re- 

pulsion and attraction become stronger as ft increases, 
presumably because the signal component (Ei) of the 
CS becomes less localized as ft approaches plane-wave 
threshold at HR. A similar effect can be envisaged in 
other CS models. For in-phase CS the function / can de- 
velop pairs of zeros, see Fig. 1. This predicts birth of new 
pairs of CS bound states, one stable and one unstable. 

In Fig. 2 we present simulation results showing differ- 
ent interaction scenarios for two CS initially separated by 
about three soliton widths. The interaction of in-phase 
solitons gives a rich variety of phenomena. For small ft 
mutual attraction results in fusion of two solitons into one 
(Fig. 2(a)). Gradually increasing ft we first observe form- 
ation of a stable oscillatory bound state (Fig. 2(b)), then 
of a stationary bound state (Fig. 2(c)) which is stable 
(the radiation visible in Fig. 2(c) decays, albeit slowly). 
Note that the equilibrium separation in Fig. 2(c) is pre- 
dicted quite well by the appropriate zero of f(d) in Fig. 
1, even though these CS are close enough to endanger 
the assumptions of our perturbation method. Station- 
ary two-hump solitary states have been found previously 
[3] as solutions of an approximate equation derived from 
Eqs. (1), but no analysis of soliton interactions was per- 
formed. Close to the upper boundary of CS existence the 
interaction of two solitons excites a global pattern (Fig. 
2(d)). As predicted by Eq. (4), out-of-phase CS repel 
each other throughout the entire region of their existence 
- contrast Fig. 2(e) with Fig. 2(d), which corresponds to 
the same value of ft. 

Now we will describe numerical results of the inter- 
action of CS where weakly-damped oscillatory modes 
strongly influence the soliton interactions. Oscillat- 
ing solitons generally radiate energy, which can become 
trapped between neighbouring solitons, exerting a radi- 
ation force which may lead to formation of a bound state. 
An effect of this kind has been reported for solitons in 
models with a weak global dissipation [7]. We investig- 
ated a quite different situation, where linear waves escap- 
ing from the soliton are strongly damped. Here strong 
interaction between the solitons is due, not to radiation 
modes, but to proto-Hopf modes, and thus has novel as- 
pects. 

The effect is strong providing that two conditions are 
satisfied. First, and crucially, the corresponding eigen- 
modes must have tails with well pronounced and weakly 
decaying oscillatory structure, see Fig. 3(a). Second, 
as might be expected, the oscillatory mode should be 
weakly damped (see Fig. 3(b)), i.e. the CS is close to 
a Hopf instability. If both conditions hold, then, even if 
the global damping due to the jm is strong, a CS acts as 
a guide for waves weakly damped in both space and time. 
If a second CS is close enough, these guided waves can 
couple and reinforce each other. Fig. 3(c, d) illustrates 
the dynamics of two interacting CS having eigenmodes 
shown in Fig. 3(a). Note that the separation of the in- 
teracting solitons in Fig. 3(c) is much greater than their 
width. Comparison with Fig. 3(b) clearly indicates that 
the undamped pulsations shown in Fig.  3(d) originate 
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from coupling and mutual reinforcement of the oscillat- 
ory modes of the two solitons. A further interesting point 
is that we find these dynamic bound states also for out-of- 
phase solitons, balancing the repulsion induced by their 
neutral-mode interaction. 

In summary, we have presented the analytical and nu- 
merical study of the interaction of cavity solitons in a de- 
generate OPO and identified distinct static and dynamic 
binding mechanisms. 

560      570      5S0 550       560        570       580 

FIG. 3. Dynamic interaction of CS for p = 2, 8\ = —3, 
82 = -12, 71 = 0.3, 72 = 1, for which the CS has a mode 
with eigenvalue pair A ~ —0.03 ± t4.14: (a) Spatial structure 
of the eigenmode, Re{u\) - full lines, Re(u2) -dashed lines; 
(b) Temporal evolution of signal energy Q = f dx\Ei\2 for 
slightly perturbed single soliton, showing damped oscillation; 
(c) Spatio-temporal evolution [8] of \Ei\ (time window much 
later than in (b)), showing dynamic bound state; (d) Tem- 
poral evolution of signal energies of the two CS in (c), in the 
same time window, showing rapid undamped oscillations and 
slow energy exchange between the two solitons. 
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The existence of localized, soliton-like excitations (cavity solitons) in the transverse cross- 
section of nonlinear optical systems has attracted a lot of attention in the last years [1, 2, 3] 
and experimental proof was given in an electro-optical system [4], dye lasers with saturable 
absorber [5] and sodium vapor [6]. Recent work predicts the possibility of cavity solitons 
in semiconductor microcavities [7]. Their demonstration might enable new forms of all- 
optical information coding and processing with the speed, compactness and robustness of a 
semiconductor device. 

We set up an experiment to study this in vertical-cavity surface emitting lasers (VCSEL) 
which are biased electrically around threshold (Fig. la). Injecting a homogeneous holding 
beam in the VCSEL should create a bistable response of the slave in dependence of the injec- 
tion level [7]. A second addressing beam is used to manipulate locally the spatial structure 
in the bistable interval. 

The investigated devices are based on three InGaAs/GaAs quantum wells in a A-cavity emit- 
ting in the 960 to 990 nm region [8]. The emission takes place through the anti-reflection 
coated substrate (bottom emitter). The p-side is soldered on a diamond heat spreader for 
heat sinking. The active region is circular with a diameter of 38 /mi. An oxide layer close to 
the active region provides the current confinement and optical confinement. 

The output of a high power edge emitter is stabilized by feedback from a grating and injected 
into the VCSEL via two mode matching lenses. The injection level is controlled with an 
acoustooptical modulator, the polarization chosen to coincide with the axis of the dominant 
polarization mode of the solitary VCSEL. The near and far field of the output of the VCSEL, 
respectively the reflected master, are observed with two CCD cameras. The spectra are 
monitored with a scanning Fabry-Perot interferometer and a monochromator. 

Injection locking and an amplification of the reflected beam is achieved in a rather broad 
region to the blue side of the longitudinal resonance (Fig. 2g). The amplification is highest 
around the lasing frequency of the solitary VCSEL. The emission shows distinct contributions 
on a ring in Fourier space which contracts if the detuning is reduced. A log-log plot of the 
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Figure 1: a) Schematic view of setup, QW quantum well, b) Experimental setup: EGTL 
external grating tunable laser, OD optical diode, AOM acoustooptical modulator, A/2 half- 
waveplate, LP linear polarizer, SFPI scanning Fabry-Perot interferometer, MO monochro- 
mator. 

magnitude of this transverse wavevector in dependence of the detuning yields a scaling expo- 
nent between 0.43 and 0.54. An exponent of 0.5 is expected for the emission of tilted waves 
in a piano-planar resonator [7]. In the near field we observe - starting from high detuning - 
rings (Fig. 2a), which become increasingly modulated (Fig. 2b) until true symmetry breaking 
sets in (Fig. 2c). In this region the patterns are hexagons. Moving closer to the resonance 
the patterns are increasingly irregular, have a coarser scale and contract towards one side of 
the laser (Fig. 2d, e, f). 
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Figure 2: a)-f) typical near field patterns. The detuning with respect to the longitudinal res- 
onance of the cavity decreases from a) to f). g) amplification of injected power in dependence 
on the detuning. 

Biasing the slave above threshold we can achieve a bistable response to the external injec- 
tion (Fig. 3a). The low-and high transmission branches correspond to the emission of one, 
respectively two, spots. We can induce the switch up of the second spot by an injection of a 
second addressing beam. After the perturbation is removed the system remains in the high 
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Figure 3: a) Bistable characteristic of injection locked laser. Near field structure in b) low 
and c) high emission state. 

transmission branch. 

To conclude we demonstrated the emission of tilted waves and hexagonal patterns in an 
injection locked VCSEL. These are prerequisites for stable cavity solitons which can be placed 
at an arbitrary point in the cross section of the laser. In the region most favorable for cavity 
solitons further investigations will be carried out with devices of improved homogeneity. 

The authors are grateful to the group of K. J. Ebeling, University of Ulm, for supplying the 
devices. 
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Self-guided optical beams (or spatial solitons) have 
attracted significant research interest because they of- 
fer the possibility of all-optical switching and control- 
ling light by light (see, e.g., [1]). During the last few 
years it has been realised that quadratic nonlinearity is 
particularly attractive for potential practical realizations 
of all-optical switching, not only supporting stable soli- 
tons both in planar waveguides and bulk media, but also 
providing ultra-fast electronic nonlinear response (see, 
e.g., [2]). The advantages of quadratic nonlinear mate- 
rials are hampered in part by difficulties with obtaining 
close phase-velocity matching between interacting waves. 
One of the most effective ways to achieve such a match- 
ing is the use of so-called quasi-phase-matching (QPM) 
technique, where large wave-vector mismatch between in- 
teracting waves is compensated by periodic alternation 
of the sign of effective x'2) coefficient. This technique 
has been known since 1962, Ref. [3], but only in the last 
decade has technological progress put the QPM technique 
in the front line of modern nonlinear optics [4]. In spite 
of all the theoretical and experimental progress achieved 
in the field of quadratic solitons, only solitons formed by 
waves with the same direction of propagation have been 
analysed so far (conventional co-propagating configura- 
tion; see, e.g., [2,5]). In a few works the advantages and 
implications of QPM technique to this type of solitons 
have been analysed specifically [6]. However, a paramet- 
ric interaction between counterpropagating quasi-phase- 
matched waves in quadratic [x^] media is also possi- 
ble. Corresponding analysis made for non-soliton (plane 
wave interaction) case [7] revealed certain advantages of 
a counterpropagating interaction system in comparison 
with conventional copropagating strategies. Moreover, 
recently a very similar so-called backward QPM config- 
uration has been investigated experimentally (see [8] for 
details). Here we investigate the QPM counterpropagat- 
ing scheme, searching for bright solitons and investigating 
their stability. 

We consider the interaction between four optical waves 
in a slab waveguide with appropriate nonlinear grating. 
Two forward-propagating waves, the fundamental at fre- 
quency u) and with the wave number ku and the sec- 
ond harmonic (2w, &2W)J 

are coupled with two backward- 
propagating ones, the fundamental (u>, —ku) and the sec- 
ond harmonic (2w, —kzJ) [see Fig. 1, (a)]. Spatial mod- 
ulation of nonlinear susceptibility along a crystal can 
be described in terms of square-wave function d(z) [see 
Fig. 1, (b)]. In this case the only nonzero matrix el- 
ements of the Fourier transform of d(z) are given by: 

di = -2i/(?cl), where I = 2m - 1, m = ±1,±2,±3... 
Following the method developed in Ref. [6] we can derive 
the corresponding normalised system of equations which 
has the following dimensionless form: 

.8E+  , d2E+ „+ ,   ,    „_.     . l'W + Hx?' ~ a+E» + Ä2uE"   = °' 
ap-       a2p- 

-i^t + ^" " <*-Ez + A2uE+* = 0, 

■-9Et+^-aß+Et + AZEz=0,     (1) iaS„ 
'2M. 

8E. 2ui + 
dx 

d2EZ 
dx 

- <7/3_E2- + AZE+ = 0, 

where A2ul = (cL,£2+ + diE^,), A+ = 2dtE+, Aj = 
2d.iEz, ß+ = Q+ - a- + S, /?_ = Q_ - a+ + Ö; 
E^(x,z),E2U(x,z) are the envelopes of the fundamen- 
tal wave and its second harmonic, respectively, sign " +" 
("-") corresponds to the forward (backward) propagat- 
ing wave; x is the transverse coordinate normalised on the 
width of the beam ro; z is the propagation distance which 
is normalised on the diffraction length Zd = fau^o! pa- 
rameters a+ and a_ are nonlinear induced propagation 
constant shifts of the fundamental waves. Other two sys- 
tem parameters, a = k2ul/ku = 2 and S = (2nl/L—k2u)zd 
(where L is the period of the nonlinear grating and I is 
the order of QPM), are defined by the particular experi- 
mental setup. Note, that in contrast to Ref. [6] we have 
omitted all effective cubic terms in Eqs. (1). This is well 
justified for lower order QPM (for I < 15) because in 
this case the cubic terms would become noticeable only 
when light intensity exceeds the damage threshold for the 
typical nonlinear crystal. 

(a) 
*-* CO 

E 2co 
-■ ■■■■    w 

'E~ *-* CO 

E 2(0 
■*  

d(z) I    L   | 
1 

-1 z 
(b) 

FIG. 1. Parametric interaction of counterpropagating 
waves, (a) Nonlinear grating is used to couple forward- ("+") 
and backward propagating ("-") waves; (b) square-wave func- 
tion d(z) approximates the periodic modulation of the effec- 
tive second order nonlinear susceptibility coefficient. 
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The system (1) has the following family of power-like 
integrals of motion, which are important for our analysis. 

+v(Pi-P2)(\Et\*-\E;J*)}dx, 
<+ 

(2) 

where pu & are any real numbers. Using the asymptotic 
expansion technique and the method based on integrals 
of motion (see Ref. [9]) one can demonstrate that the sta- 
bility threshold for the fundamental family of stationary 
localised solutions of the system (1) is given as: 

djQitQi) ^ dQi dQa     dQ1dQ2 

d(a+,a-)     da+da-     da.-da+ 
= 0, (3) 

where Qx, Q2 are any two linearly independent invari- 
ants from the family (2), calculated for the fundamental 
stationary solitons, e.g. Qx = Q(1,0) and Q2 = <2(0,1). 
More elaborate analysis shows that for the instability do- 
mains either of the two following conditions is satisfied 
in the vicinity of stability/instability boundaries: 

dQi,8Q1dQ2     ÖQ1ÖQ2, 
9Q4 

dQ2 

da+ da- 
dQi 8Q2 

da- da+ 
dQl dQ2 

<0, 

)<0. (4) da- da+ da- da- da+ 

At a+ = a-, 5 = aa+/2 the system (1) has an ex- 
act analytical stationary localised solution in the form 
<*<.(*) = 3a+/[4|^|cosh2(VSTx/2)], E&t,(x) = 
^iEu,s(

x)- For other values of the parameters, analyti- 
cal expressions cannot be found and numerics should be 
used. For the numerical analysis it is more convenient 
to renormalise the system (1) reducing the number of 
parameters. As a result we obtain the system 

*$£+w -v++{w++w~w*=°> 

iadW^. + a$£- a0+,W+ + 2V+V- = 0, (5) 

—1(7 s.dw- , d2w- 
~UT + • 

~dXT - aßüW- + 2V+V- = 0, 

where ß& = 1 - 7 4- Q, ßw = 7 _ 1 + a. The connec- 
tion between Eqs. (1) and Eqs. (5) is given by scaling 
£± = o+yi/ld,!, Et = Tia+W±/\di\, x = X/^äT, 
z = Z/a+. The new system (5) has only two parameters, 
denned as 7 = a-/a+, a = 5/a+. Stationary solitons of 
the system (5) can be found numerically, e.g., by relax- 
ation technique, for all 7 > 0, ß% > 0. Some examples of 
stationary solitons of the system (5) are shown in Fig. 2. 

Criteria (3), (4) can be rederived for the system (5), 
and then used to calculate the boundary of stability area 
in the (0,7) plane. However, when values of the pa- 
rameters a and 7 are close to the boundary of soliton 
existence (e.g. when 7 < 1), solutions become weakly 
localised and it is difficult to calculate Qi and Q2 ac- 
curately by conventional numerical methods. Thus we 
use the tangential transformation of transverse soliton 

coordinate X = tan7rX as was suggested in Ref. [10]. 
Using this map we can cover the infinite interval in X 
(-00 < X < 00) by a finite one in X (-1/2 < X < 1/2) 
and calculate the invariants very accurately. 

FIG. 2. Examples of stationary solitons due to counter- 
propagating QPM configuration. Profiles are calculated for 
the system (5). Solid curves correspond to the forward set of 
waves, dashed lines - to the backward-propagating ones. 

FIG. 3. (a) Existence (shaded) and stability (dashed) do- 
mains for the stationary solitons of system (5). Solid curves 
are defined by the stability threshold condition (3); (b), (c) 
enlarged plots of the unstable regions I and II. Soliton profiles 
calculated for the points A and B are shown in Fig. 2. Filled 
circle corresponds to the exact solution (see text). 

To confirm the validity of the stability results given 
by Eqs. (3) and (4) we analyse numerically an eigen- 
value/eigenvector problem corresponding to Eqs. (5) lin- 
earised about stationary solitons of interest. In all anal- 
ysed cases the theoretically predicted stability/instability 
properties were confirmed numerically. However, we 
should note that the theoretical approach which we use 
does not describe so-called oscillatory instabilities (see, 
e.g., [11]) and, although we have not detected such insta- 
bilities numerically, further analysis is necessary to com- 
pletely rule out their possibility. The stability/instability 
domains given by criteria (3) and (4) are shown in Fig. 3. 
Note, that the system (1) is invariant under the transfor- 
mation z -» -z, Et -> ES, Efu -> £* , and a± ->• aT. 
Using this symmetry one can derive that if the boundary 
of the first instability domain is given by 7 = 71(a), then 
the boundary of the second domain can be written in a 
parametric form as an = 0/71(0), 711 = 1/71(a). 

Direct numerical modelling of Eqs. (5) confirms the 
results of our stability analysis. Two examples of propa- 
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gation of unstable solitons are presented in Fig. 4. 

0   -20 

FIG. 4. Examples of unstable propagation of a slightly 
perturbed stationary soliton shown in Fig. 2, A. Two typi- 
cal kinds of instability correspond to slightly increased, (a), 
and reduced, (b), soliton amplitudes. Unstable soliton with a 
slightly increased amplitude is clearly evolving to some stable 
state with an excited internal mode (see, e.g., [12]). 

Optical power required for generation of counterprop- 
agating solitons of a given beam width can be estimated 
by the method proposed in Ref. [13]. After defining the 
soliton width Rs as the maximum width at the half- 
maximum of the the second harmonic amplitude E%u the 
conditional minimum Qmin of the total power functional 
Qian) = R*/2 S+~{\V+\2 + \V-\ + 2a\W+\>+2a\W-f}dX 
has to be found. Then minimal power density Imin can 
be calculated as: 

Leff 
12 = Q, l   A 9 (6) 

buikro\di\ 

where nonlinear coefficient Xbuik = (w2/c2)(2/ceorc)1/,2x^ 
is expressed in W~l^2cm~1, x^ IS tne effective ele- 
ment of the second order susceptibility tensor, Le// is 
the width of a waveguide. For the first order QPM, 
i.e. I = 1, and the values from Ref. [5]: ro = 20/mi. 
A = 2nc/u ~ 1.064/mi, refractive index n ~ 1.79, 
X^ « 6pm/V and a waveguide with effective width Leff 

about l/im, we obtain Imin « 2.8 W/fj,m {Qmin « 103 
at a = 3.15,7 = 1.00). Our analysis shows that the 
point of optimal generation is in the domain of stability 
and corresponds to V+ = V~ and W+ — W~, i.e., one 
can generate the whole four-wave soliton using only two 
seeded forward-propagating waves at one end of a crystal 
and a mirror on the other [the use of mirror will also halve 
the generation threshold (6)]. Thus the solitons due to 
counterpropagating QPM, in principle, require less opti- 
cal power for an experimental observation in comparison 
with conventional quadratic solitons, for which the cor- 
responding value is Imin K, 3.4 W/ßm (see Ref. [13]). 

In practice lowering the generation threshold requires 
a very short (sub-micron) grating period to arrange for 
lower order QPM. This was not the case for the experi- 
ments [8] where the grating period was about 3/xm and 
QPM order was high. However, experimental progress in 
quantum well technology (see, e.g., [14]) may make lower 
order counterpropagating QPM experimentally possible 
in the near future. 

In conclusion, we have demonstrated the existence of 
solitons due to counterpropagating QPM in quadratic 
media. We obtained an analytic criterion for the stabil- 
ity threshold for these solitons and found a substantial 
region of stability with only two small regions of unstable 
solitons. We also discussed the conditions for experimen- 
tal observation of these novel solitons. 
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Optical solitons can be formed in the presence of the optical Kerr effect. They have been demonstrated in 
the past, both in the time domain as stable light pulses [1], and in space, as self-guided beams in a slab 
waveguide [2]. Recently, there is a growing interest in discrete spatial solitons. These solitons share a 
few properties with spatial solitons and differ in others. They were proposed as candidates for all-optical 
switching devices. One advantage over traditional solitons is the waveguide structure they are formed in, 
enabling easy in-coupling and collection of their light. The formation of discrete solitons in a structure of 
optical waveguide array was demonstrated recently [3]. In this experiment, light is coupled into one ridge 
waveguide of an array. As the light propagates, linear coupling between neighboring waveguides 
broadens the light distribution in a process that is called discrete diffraction. After propagating for about 
four coupling lengths, the light is distributed among some 35 waveguides. Increasing the light intensity, 
such that the Kerr effect becomes significant, results in confinement of the light around the input 
waveguide. This confined distribution which propagates along the waveguide without a change of profile 
is a discrete soliton. 

As was already mentioned, discrete solitons share some properties with spatial solitons. One example is 
the possibility to have solitons advancing at an angle to the waveguides direction. In the continuous 
analogue, because of rotational symmetry, this is rather obvious. Surprisingly, it is possible in the 
discrete case as well. A discrete soliton which is launched with a gradient of the field phase across the 
initial distribution, will hop sideward while propagating in the array. The deviation from the continuous 
case appears at higher powers, where the soliton may be locked to the initial waveguides and the 
transverse motion is prevented [4]. This effect leads to power dependant steering. 

We report here the demonstration of power steering. We used 100-200fs pulses with an in-coupled peak 
power of about lkW at a wavelength of 1.53^im. The waveguide array pattern was etched on top of an 
AlGaAs slab waveguide. The wavelength was chosen to be such that two-photon absorption processes 
are minimized. An elliptically shaped beam was injected into the center of a 41 waveguide array, 6mm 
long. By controlling the angle of incidence in which the beam was coupled, we were able to induce the 
required phase gradient. The output facet was imaged onto an infrared camera and sampled and analyzed 
in a computer. 

We present the results of such an experiment in figure 1. The output profile of the light coming out of the 
array is drawn as a function of the induced angle inside the sample. If the soliton was free to move 
sideways as in the continuous case, a straight diagonal line would have been formed, representing a 
linear relation between the output central location and the input angle. We observed this kind of behavior 
for other, low energy beams propagating in the array. As this high energy soliton is discrete, it has 
enough power to lock on the input waveguide and to resist the induced steering. Only a sufficient tilt can 
release the soliton so it can propagate at an angle to the waveguides direction. 
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Fig. 1: Output distribution of a discrete soliton as a function of the input angle. 

Power induced locking is a result of a discreteness induced lateral potential for discrete solitons across 
the array. This potential is known from solid state physics and is called the Peierls-Nabarro potential [5]. 
Another result of this potential is that a discrete soliton centered on a waveguide (mode A), has the 
minimal Hamiltonian as compared with a soliton centered in between two adjacent waveguides (mode B) 
which has the maximal Hamiltonian. Therefore, mode A is stable and is harder to steer than mode B, 
which is unstable. 

We observed an effect that is directly related to the presence of this potential. The input position of a 
beam with no phase gradient was scanned laterally by moving the array sample on a piezo-driven stage. 
The output profile as a function of the scanning input position is sketched in figure 2. The waveguides 
periodicity is 9jim and such a cycle is clear in the results. Position zero matches the case for launching 
mode A, while at -4.5|im and 4.5(im, mode B is launched. At other positions we observed a very large 
transversal shifts of the output beams, amplifying small deviations of the input beam position from the 
symmetric input conditions. An input change as small as 3(xm, without any initially induced angle, 
resulted in an output deviation of about 30(J.m. These deviations are a clear difference from the 
continuum case where translational invariance exists and hence, small changes in the input position have 
small effects. The sensitivity to small changes of the output distribution around mode A is obviously 
smaller than the rapid sweep around mode B, because of the difference in their stability. 

In conclusion, we observed two effects, which are unique to discrete spatial solitons. These are discrete 
soliton power locking and induced steering due to the presence of the Peierls-Nabarro potential. They 
appear because of the lack of rotational and translational symmetries in the array structure, respectively. 
Techniques for controlling the position where solitons emerge out of a waveguide may be useful for 
ultrafast optical switches. 
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Fig. 2: Output distribution of a discrete soliton as a function of lateral input position. 
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Analysis of mixing between waves at different carrier 
frequencies is a fundamental problem of nonlinear optics 
[1]. In an optical medium without a centre of symmetry, 
the lowest-order nonlinear response is quadratic, lead- 
ing to three-photon interactions. Resonant parametric 
mixing among three waves at different carrier frequen- 
cies occurs when the resonance condition W3 = u\ + U2 is 
satisfied. A particular case of this three-wave interaction, 
is known as type II second-harmonic generation (SHG), 
for which the frequencies are degenerate (i.e., LJ\ = wi), 
but the polarisations of the fields are different. In a more 
degenerate case (when the two waves at the fundamen- 
tal frequency are identical), such a resonant interaction 
reduces to two-wave mixing or type I SHG. 

Solitary waves due to single resonance (type I or type 
II) SHG have been extensively investigated in the liter- 
ature recently (see, e.g., [2] for type I SHG solitons and 
[3,4] for type II SHG solitons). Usually, the type II inter- 
action is considered in anisotropic birefringent models. 
The analysis of the natural type I - type II mix for a 
model with two polarization components of the funda- 
mental harmonic in an Isotropie medium with no bire- 
fringence was developed too [5]. 

More complex cases of double (or multi) resonance 
wave mixing in quadratic media have not received much 
attention because of serious difficulties of their ex- 
perimental realisation by traditional birefringence-based 
wave-vector matching schemes. (We are only aware of 
one work: very recently solitons due to double resonance 
wave mixing involving fundamental, second, and third 
harmonics have been considered [6].) However, the ex- 
perimental situation has changed recently as a result of 
rapid progress in the quasi-phase matching (QPM) tech- 
nique (see, e.g., [7]), where large wave-vector mismatch 
between interacting waves is compensated by periodic re- 
versal of the sign of the effective x2 nonlinearity. QPM 
technique not only leads to high values of effective x2 

coefficients, but may also allow more than one paramet- 
ric mixing resonance (in different QPM orders) to be 
achieved. Thus an important question arises: will dou- 
ble (or multi) resonance wave mixing in quadratic media 
bring any novel features for solitons in comparison to sin- 
gle resonance two-wave (type I) or three-wave (type II) 
interaction processes? In this paper we analyse this ques- 
tion for the example of double resonance (combined type 
I and type II) three wave interaction. 

The derivation of equations describing double reso- 
nance x^ interaction is quite similar to one described 
in Ref. [4] and is not presented here. The resulting nor- 
malised equations have the form 

.dv     —*        . . , 
i-T- + Vj_v - ßv + wv  + xwu     = 0, oz 

OH 
i-^-+V2

Lu-(ß + Ak1-Ak2)u + xwv*    = 0, oz 

2i-~ + V]_w - (4/3 + 2Ak1)w + ~- + xuv = 0, 
(1) 

where v and u are fundamental harmonic components 
of orthogonal polarisations, w is the second harmonic 
component, z is the propagation distance normalised 
in diffraction length units, V^_ = d2/dx2 for (1+1)- 
dimensional case which we investigate in this work, 
Afci = 2ki — kz and Afo = k\ + k% — k$ are wave- 
vector mismatches for type I and type II SHG respec- 
tively, the parameter x measures the relative strength of 
second order nonlinear susceptibility coefficients respon- 
sible for type I and type II interactions, and ß is the 
nonlinear induced shift to the propagation constant. 

Similar to type I SHG soliton equations the system (1) 
has only one power (Manley-Rowe) invariant: 

Q 
/+00 

< -00 
(4M2 + \v\2 + \u\2)dx. (2) 

Not surprisingly the stability criterion for the fundamen- 
tal family of solitons of the system (1) can be derived 
in a similar way and has the same form as for type I 
SHG self-guided beams: dQ/dß > 0, for stable solitons. 
In the case of type II SHG equations considered in Ref. 
[4,8], there is an extra integral of motion (power imbal- 
ance) and the stability criterion has a significantly more 
complicated form. 

When one or both wave-vector mismatch parameters 
are large, Eqs. (1) may be reduced to a certain version of 
the model of competing nonlinearities [9]. For example, 
if |Afc2| > 1 and |Afci| ~ 1, then the second equation of 
the system (1) can be approximated by an algebraic rela- 
tion u x —xwv*/Ak2 which, in turn, helps to eliminate 
u from other equations of the system (1). However, in 
this and other limits, which are usually called cascading 
limits, the values of coefficients in the resulting equations 
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(3) 

differ significantly from the values for which a full-scale 
analysis has been conducted in the literature. 

To reduce the number of parameters of the system (1) 
it can be rescaled further. There are two alternative ways 
of doing this. In the first variant of the rescaling we 
use the transformation d = 0D (where d = v,u,w and 
D = V,U,W), z = Z/0, and x = X/y/fß], which leads 
to the system: 

.dV       82V 
ldz+sdx*~v + wv* + xWU* =0' 
.dU      d2U 
l- + s—2-1U + XWV*   =0, 

^.dw    d2w    TIT   v
2 

where s = sign(/3), a = 4 + 2Ak1/0, and 7 = 1 + (Afci - 
Ak2)/0. 

For the case of bright solitons ß > 0 so that we can 
put s = +1 and have only three parameters left in Eqs. 
(3). Because of this small number of parameters and be- 
cause of the rectangular shape of the soliton existence 
area (a > 0, 7 > 0) the system (3) is the best suited for 
numerical analysis. However this (a, 7) representation is 
not the most appropriate for detection of multistability. 
For this purpose we need to use another type of rescal- 
ing: d = \Ah\D (where d - v,u,w and D = V,Ü,W), 
z = Z/|Afci|, and x = X/^/\Aki\, which allows us to 
obtain the system: 

.dV     82V 

dZ     dX2 ■ 0V + WV* + xWÜ* = 0, 

dÜ     d2Ü 
*äz + äF-^ + A^ + ^w* = 0< (4) 
n.dw   d2w     ~      -    v2 

~d¥ + äF ~ ^4ß + 2r^w + Y + xUV = °' 
where 0 = ß/\Aki\, A = (Ah - Ak2)/\Ak1\, and 
r = sign(Afci). In this normalisation three cases (r = 
+1,0,-1) have to be analysed separately. However, if 
the solitons of Eqs. (3) are known, the solitons (and their 
integral characteristics) of Eqs. (4) can be obtained by 
simple rescaling transformations. Thus, below we mainly 
concentrate on the analysis of Eqs. (3). 

It is easy to show that Eqs.  (3) have two families of 
exact soliton solutions 

v = a sech2(|); u = b sech2(~); w = c sech2(~), 
2 2    (5) 

where a2 = [9(1 + 4X
2) ± Vl +4X

2}/[4X
2(1 + 4X

2)], 
c = 3a2/(9 - 4x2a2), and 6 = 2Xac/Z, which exist for 
a = 7 = 1. The other way to obtain more analyti- 
cal information about solitons of Eqs. (3) is to apply 
the variational approach (VA), see, e.g., [5,10,11]. To 
avoid excessive complexity of analysis we use the sim- 
ple form of trial functions ("ansatz") which comply with 
the linear asymptotics of Eqs.   (3):  v = u0exp(-|a;|), 

u = u0exp(-y7|a;|), and w = w0exp(-y/ä\x\). Note 
the difference between this type of ansatz and those used 
earlier based on sech [10] or Gaussian [11] functions. 

Although the formal range of applicability of such vari- 
ational trial functions is-limited to a ~ 7 ~ 1, we found 
that usually it gives qualitatively correct predictions in 
a much broader parameter range. For example, for the 
well-studied case of type II SHG soliton equations of Ref. 
[8], this version of VA has easily detected soliton multi- 
stability. The final result of variational analysis related 
to Eqs. (3) is given by: 

w0 = -(v/7^1 ± ^K! + ±K2^)I{2K2), 

v2 = 2woVä/(Kl + 2K2w0/Vi), (6) 

un = KzVoWo/^/y, 

where Kx = 1/(2 + y/S), K2 = x/{\ + ^07+^). This 
result again shows the existence of two distinct soliton 
families for all a > 0, 7 > 0. 

Numerical analysis (based on the relaxation technique) 
has confirmed VA predictions of the existence of two soli- 
ton families. However, direct propagation of solitons of 
the "upper" family [plus sign in Eqs. (6)] demonstrates 
that all of them are unstable. Solitons of the "lower" fam- 
ily can be either stable or unstable according to some 
renormalised version of the criterion dQ/dß > 0. Al- 
though the region of existence of stable solitons is very 
substantial (see Fig. 1), neither variational nor numeri- 
cal analysis could find soliton multistability, i.e. for any 
fixed value of soliton power at most one stable soliton so- 
lution may exist. This conclusion cannot be made from 
Fig. 1 itself, but is very easy to obtain by plotting stabil- 
ity/instability boundary for Eqs. (4) on (ß, A) param- 
eter plane (see, e.g., Fig. 2). Multistability may occur 
only if the boundary curve crosses a line of constant A 
at more than one point. We could never find a situation 
when this happens. At first glance the absence of mul- 
tistability looks strange, because although multistability 
does not occur for solitons due to type I SHG, it does 
occur for type II SHG solitons [8]. However, there is an 
important difference between our model and the type II 
SHG model. In the latter case there are two indepen- 
dent power-like invariants and two related 0 parameters 
(in contrast to just one in our model). We can conclude 
that the increase of the number of 0's rather than simple 
increase of system's complexity leads to multistability ef- 
fects in purely x(2) media. Also we note that for the dou- 
ble resonance model, solitons can become unstable when 
both wave-vector mismatches Aki and Ak2 are positive 
whereas all single resonance ^ solitons are stable for 
any non-negative wave-vector mismatches. 

The other important difference between our system 
and the single resonance x(2) systems is the presence of 
quasisolitons (see, e.g., [12] for the definition and exam- 
ples). In general, quasisolitons are weakly radiative qua- 
sistationary solitary waves.   They can be stable in the 
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sense that weak perturbations added to them do not grow 
exponentially fast, but, in principle, even stable quasisoli- 
tons always radiate and decay at z -¥ oo. We found that 
quasisolitons exist for large negative values of the pa- 
rameter 7. Quasisolitons are stable and are attractors 
for a range of initial conditions for Eqs. (3) at a « 1, 
when the amplitude of [/-component and the radiation 
rate are small (see Fig. 3). At larger values of a (a ~ 1), 
oscillations in [/-component tails become very large and 
quasisolitons eventually become unstable. The existence 
of two families of stable solitons/quasisolitons for double 
resonance x^ systems may be potentially important for 
switching applications based on spatial solitons. 

FIG. 1. Stability/instability domains for the fundamental 
solitons of Eqs. (3) in (a, 7) plane at x = 0.2. Inserts show 
blow-ups of the soliton stability boundaries at three charac- 
teristic values of the parameter x- 

FIG. 2. Stability/instability domains ploted for the funda- 
mental solitons of Eqs. (4) in (ß, A) plane at \ — 0-2 and 
r = 1. Insert shows a typical Q versus ß dependence for 
soliton/quasisoliton families of Eqs. (4) with Q defined sim- 
ilarly to Eq. (2). In the insert solid curve represents stable 
soliton family, dashed curves - unstable soliton families, and 
dashed-dotted curve - quasisolitons. (For quasisolitons Q is 
calculated on a finite interval around localised soliton core.) 

ivi 1 IUI 0.006 

FIG. 3. An example of stable quasisoliton genera- 
tion. Eqs. (4) are modelled with the initial conditions 
V = 1.5 exp(-x2/a2), a « 3.55, Ü = W = 0 for A = -10, 
r = +1 and x = 1-0- 

In conclusion, we have analysed a system describing 
double resonance (type-I plus type-II) wave mixing in 
quadratic nonlinear media. We found that double reso- 
nance interactions allow the existence of stable solitons in 
a broad parameter range. However no conventional soli- 
ton multistability has been detected. Our results show 
that for quadratic media soliton multistablity phenomena 
are more usual for the systems with two Manley-Rowe in- 
variants. Finally, we have shown that double resonance 
interactions can lead to stable quasisolitons and to mul- 
tistablity in the sense of the coexistence of two stable 
soliton/quasisoliton families. This may be potentially 
important for soliton-based optical switching. 
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Very soon after the first paper reporting the idea of op- 
tical self-focusing [1] was published, it was realised that 
a balance between beam diffraction and positive (self- 
focusing) nonlinearity corresponds to unstable states [2]. 
From the physical point of view, the instability means 
that all beams with power P below the critical value 
Pcr of the self-trapped state diffract, whereas all beams 
with higher power (P > P„) experience a catastrophic 
collapse - the beam width tends to zero and its ampli- 
tude grows to infinity at some finite propagation distance. 
This theoretical prediction is based on the rigourous anal- 
ysis [3] of the paraxial approximation model of the (2+1)- 
dimensional beam propagation in Kerr media, which is 
described by the Nonlinear Schrödinger (NLS) equation. 
Because of this catastrophic singularity, the NLS equa- 
tion is now believed to be an incomplete model for (2+1)- 
dimensional beam self-trapping and different types of 
physical effects (such as saturation, nonlocal response, 
dissipation, vectorial corrections, etc.) have been anal- 
ysed to describe its validity limits. Comprehensive anal- 
ysis of different mechanisms of the collapse arrest or sup- 
pression have been recently overviewed in Refs. [4,5]. 

The majority of the mechanisms for collapse suppres- 
sion discussed so far are based on some perturbations 
to NLS equation derivation procedure (e.g., nonparaxi- 
ality, vectorial corrections) or special assumptions about 
the properties of the nonlinear medium (e.g., nonlocal 
response, nonlinearity saturation, etc). However, one of 
the most crucial effects has been missed so far in all those 
studies. Indeed, the conventional multiple-scale asymp- 
totic derivation of the effective equation for an envelope 
of a monochromatic wave (see, e.g., [6]) neglects any cou- 
pling with higher order harmonics which are, in fact, 
always excited in a nonlinear medium. In sharp con- 
trast to previous beliefs, we have shown that even a far- 
detuned parametric coupling of the fundamental beam to 
its third-harmonic field can produce an effective mecha- 
nism for collapse suppression. 

To introduce the model, we follow the derivation pro- 
cedure presented in Refs. [7] assuming that the funda- 
mental (ui = w, h) and the third-harmonic (w2 = 3w, 

k2) beams have the same linear polarisation and interact 
resonantly. The normalised system of coupled equations 
describing such an interaction can be written in the fol- 
lowing form 

lTz+y2±u ~u+ G|u|2+2|w|2)u+\u*2w=°' 
ia Jz + V2±W ~aw + (9H2 + 2l"|2)w + -v3 = 0, (!) 

where u and w are envelopes of the fundamental and third 
harmonic beams, respectively, V^ = d2/dx2+d2/dy2, z 
is the propagation distance, a is the renormalised non- 
linear induced propagation constant (which is also de- 
pendent on the quality of wave-vector matching between 
the harmonics: a = 9 corresponds to the exact match- 
ing) and, for the spatial beam evolution, a — 3. Radially 
symmetric stationary beams are described by real func- 
tions, u(r) and w(r), where r = y/x2 +y2, defined as 
localised solutions of slightly modified Eqs. (1) [with the 
z-derivatives omitted and V^_ = d?/dr2 + (l/r)d/dr]. 
These localised solutions depend only on a single dimen- 
sionless parameter a. 

We follow the analysis of Ref. [7], and first obtain the 
structure of the soliton families of Eqs. (1). Analysis 
of asymptotics of stationary radially symmetric solutions 
of Eqs. (1) shows that radiationless bright solitons with 
exponentially decaying tails can exist only for a > 0. Us- 
ing a direct analogy with the theory of x{2) solitons, first 
we investigate the solitary waves of the so-called cascad- 
ing limit when |a| » 1. In this limit w « u3/(9a), and 
Eqs. (1) become the cubic-quintic NLS equation which 
supports a familiar class of fundamental solitons of a sim- 
ple bell-shape. This asymptotic solution has been used 
as a starting point in the search for families of stationary 
solitons, which we find with the help of a numerical re- 
laxation technique. To characterise different families of 
these solitons we use the normalised total power 

jr. (\u\2 +Za\w\2)dxdy, (2) 

which is one of the conserved quantities of the dynamical 
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system (1) 

In the right part of the central diagram of Fig 1 we 
show the normalised total power, Ptnt, vs. the normalised 
mismatch parameter a, for different types of two-wave lo- 
calised solutions of the system (1). The most important 
class of two-wave bright solitons is described by a family 
of localised solutions for coupled fundamental and third 
harmonic fields The distribution of power between the 
two components varies from being predominantly in the 
third harmonic, for smaller a, to being predominantly in 
the fundamental, at larger values of a, i.e. in the cascad- 
ing limit 

A simple analysis shows that the family of two- 
frequency solitary waves bifurcates from the one- 
frequency solution for the third harmonic, which exists 
for all a > 0 and represents scalar Kerr solitons This 
family of one-frequency solitary waves is characterised 
by the normalised power, Ptot = const « 11.70, and it is 
described by the standard (2+l)-dimensional cubic NLS 
equation which follows from the second equation of the 
system (1) at u = 0 It is clear that this type of solitary 
wave is possible only due to the self-phase modulation 
effect taken into account for the third harmonic. Be- 
cause an analytic form of this one-frequency soliton is 
unknown, numerical (or approximate variational) meth- 
ods should be used to find the position of the bifur- 
cation point, where two new families of two wave soli- 
tons appear Variational analysis based on the use of 
simple exponential trial functions gives o^it = 105.83 
which agrees reasonably well with the numerical result 
Q(nwm) _ io4 -^g jw0 representatives of this fundamen- 
tal family of two-frequency solitary waves are shown as 
the plots A and B in Fig   1. 

Stability of one-wave and two-wave solitons described 
above is an intriguing issue. Our analysis demonstrated 
that all two wave solitons of the bifurcated branch are un- 
stable Note, that one-wave «^-component solitons, for 
which dPtot/da — 0, are also unstable due to the usual 
critical collapse instability of a single NLS equation [8]. 

The third family of localised solutions shown in Fig. 1 
includes the simplest self similar solution, which was ear- 
lier discussed by Hayata et. al. [9]. This solution is 
marked by a filled point G in Fig 1. It exists only 
at Q = 1 having the following form 

(x,y) = a f(r) ,    ws(x,y) = bf(r), (3) 

where the parameters a and b can be found with a proce- 
dure described in Ref. [7] and f(r) is a radially symmetric 
stationary solution of the (2+1) dimensional NLS equa- 
tion. 

Similar to the (l+l)-dimensional case [7], the self- 
similar solution of the model (1) and the asymptotic solu- 
tion of the cascading limit, a > 1, do not belong to the 
same family Moreover, varying continuously the effec- 
tive mismatch parameter a along this family of localised 
solutions shows that this class of solitary waves corre- 

sponds to multi-hump solitary waves, as is shown in the 
plot C The point a = 1 is special: it separates two 
subfamilies of solitons with different numbers of humps 
in third harmonic. Thus, even though it is a one-hump 
solution itself, the self-similar soliton at a = 1 belongs 
to a higher order soliton family. It is not surprising that 
all solutions of this family are also unstable, a conclusion 
which we have verified by direct numerical simulations. 
Unfortunately, in Ref. [9], only solitons corresponding to 
our unstable solution (3) have been analysed and thus 
parametric collapse stabilisation has not been achieved. 
Note that the diagram presented in Fig. 1 does not show 
all possible soliton families, but only those containing the 
solitons of simple one-hump shape. Other (higher-order) 
soliton families also exist and they will be analysed else- 
where. 
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FIG. 1. Bifurcation diagram for localised solutions of Eqs. 
(1). Examples of quasisolitons and solitons are shown above 
and below the main diagram, including blow up plots of tails 
of the third-harmonic component. Point G represents the 
self-similar solution (3); O is the bifurcation point. 
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The physical explanation of observed collapse instabil- 
ity of all stationary solitons of Eqs. (1) is the following: 
at large positive values of a (cascading limit) the third 
harmonic adds additional self-focussing described by an 
effective positive quintic nonlinearity, which can only ac- 
celerate the collapse. Qualitatively this effect does not 
change even for small positive values of a. 
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FIG. 2. Examples of the evolution of maximum amplitude 
of the fundamental harmonic component for the initial condi- 
tion u = 5.0 exp [-1.39(x2 + y2)/2], w = 0 at different values 
of the parameter a. 

On the other hand, the similar physical argumentation 
suggests that the large negative a (i.e for large negative 
mismatch parameter A ~ 3fci - k2) the situation should 
be opposite and cascading mechanism could provide sta- 
bilisation via effective negative quintic nonlinearity. The 
problem is that such a stabilisation cannot lead to forma- 
tion of a stable stationary soliton because of unavoidable 
resonance with linear waves (see, e.g., Ref. [10] for a rele- 
vant discussion). However, only the third-harmonic com- 
ponent is in resonance and may radiate. The intensity 
of this radiation can be estimated [10] and is exponen- 
tially small for large values of a. Thus we can expect the 
existence of a family of weakly radiative (quasi-stable) 
solitons.   (For a discussion about this class of solitons, 

which are also called quasisolitons see, e.g., Ref. [11].) 
Numerical analysis has indeed detected a family of qua- 
sisolitons at all negative values of a. This family continu- 
ously transforms into a family of conventional stationary 
solitons as a changes its sign to become positive. The 
corresponding dependence is presented in the left part of 
the main diagram of Fig. 1. Note, that because of nonde- 
caying oscillatory tails in third-harmonic component (see 
the plots D and E in Fig. 1) we have to modify the def- 
inition of Ptot for the family of quasisolitons calculating 
power only for the soliton core. Our analysis confirms 
that quasisolitons are quasistable provided \a\ » 1. 

The existence of robust quasisolitons is an indication 
of a possibility of the collapse arrest. Indeed our numeri- 
cal modelling demonstrates that if we start from a single 
Gaussian beam of the fundamental harmonic, then at 
large negative values of a the collapse can be suppressed 
for very long propagation distances (see Fig. 2). 

Thus we reveal an effective physical mechanism for col- 
lapse suppression in a nonlinear Kerr medium based on 
parametric wave mixing and generation of a weak third- 
harmonic wave. We also demonstrate that even a far- 
detuned coupling between the fundamental beam and its 
generated harmonic field (for, e.g., a ~ 102) creates an ef- 
fective mechanism of radiative losses that suppresses the 
collapsing beam dynamics. We believe that this finding 
opens a new direction of research of the beam stabilisa- 
tion and stability in a bulk medium under the action of 
different types of parametric wave interactions. 
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Incoherent spatial solitons have attracted considerable attention recently [1], especially 
after the first experimental observation of partially incoherent solitons (PCS) was made 
by Mitchell el al. [2]. The notion of spatially and temporally incoherent solitons was 
introduced by Hasegawa in a series of papers [3], both for plasma waves and for nonlinear 
pulses in multimode fibers. However, the generation of incoherent solitons in optical fibers 
requires unrealistically high pulse energies. Photorefractive materials are probably the most 
suitable medium for experimental studies of incoherent solitons since they generally exhibit 
very strong nonlinear effects at extremely low optical powers [4]. 

Photorefractive materials usually have saturable nonlinearity. For the special case of the 
logarithmic nonlinearity which is an approximation of the saturable nonlinearity, the sym- 
metric solutions can be written in an analytic form [1]. The description of optical beams in 
nonlinear media in terms of a self-induced multimode waveguide has been especially fruit- 
ful. This idea has been used for incoherent solitons [1]. In this point of view, stationary 
soliton propagation is governed by a proper combination of various mutually incoherent 
linear modes of the self-induced waveguide. On the other hand, this approach has provided 
so far only symmetric solutions [1]. The diffraction-less ray-optics limit for treating spatial 
incoherent solitons has been proposed in Ref. [5]. This approach is accurate when the size 
of the PCS is much larger than the optical wavelength, in terms of a multimode waveguide, 
this limit is valid when the number of modes goes to infinity, so that the soliton becomes 
completely incoherent. It has been shown, in this limit, that solitons of arbitrary shape may 
exist. However, the question of existence of asymmetric solitons in media with saturable 
nonlinearity when the number of modes is finite is not obvious. 

Propagation of a partially coherent beam in nonlinear media can be represented by a set of 
equations for the mutually incoherent components constituting the beam [1]. For a beam 
consisting of N such components, the corresponding equations have the following form in 
case of saturable nonlinearity: 

Mi   ,   ld21>j   ,       al      , 
^ + 2-^ + TT777o^ = 0' (1) 
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where & denotes the amplitude, of i-th component of the beam (i = 1,2,...), a represents 
the strength of nonlinearity, /„ is the saturation parameter, x and z denote dimensionless 
transverse and propagation coordinates, respectively, and 

N 

' = £W2 (2) 
1=1 

is the total intensity created by all incoherent components of the light beam. The specific 
form (1 + IllQ)-

1 of the saturation of nonlinearity used in Eq. (1) holds, for instance, for 
a homogeneously broadened two-level system and biased photorefractive crystals; other 
functional forms should also exhibit similar qualitative behavior. The nonlinear medium is 
assumed to have slow response compared with the time scale over which the phases of the 
individual components change, so that the change of the refractive index is determined by 
the total intensity given by Eq. (2). It can be shown that the width of the spatial coherence 
function depends on the number of components included in the sum appearing in Eq. (2). 
For this reason, we refer to the beam with finite N as "partially coherent." 

We are interested in PCS solutions of Eq. (1) when N is finite and a relatively small 
number. Such solutions correspond to stationary waveguides self-induced by their own 
modes. However, the self-consistency condition, represented by Eq. (2), requires these 
solutions to be multi-soliton complexes, which are nonlinear superposition of fundamental 
solitons propagating in parallel and thus creating the waveguide. This complementary view 
is important for a physical understanding of the PCS. Stationary solutions of Eq. (1) can 
be written in the form 

i>i(x, z) = Ui(x) exp(iA,-*), (3) 

with real functions Ui{x) and real eigenvalues A,-. Then the set of Eqs. (1) reduces to a set 
of ordinary differential equations of the form 

d2u, 
Jx1 

N 

+ 2a = 2A;'U,- (4) 

Physically, A; is the propagation constant associated with the mode profile ut(x). 

Equation (4) can be solved numerically using either a shooting or an iteration technique. In 
the latter case, we first find the modes of a given (zero-oder approximation) waveguide, vary 
the amplitudes of different modes to modify the refractive index profile, and then use the 
self-consistency condition (2). Repeating these steps results in a convergence to a stationary 
beam profile. Using this iterative approach, we have found the intensity profiles of several 
different PCSs and their constituent linear modes. In our simulations, the propagation 
distance z is normalized to the diffraction length and we choose a = 2 and 10 = 2 in 
Eq. (1). In turns out that, in the case N = 2, the numerical procedure converges only 
to a symmetric solution, similar to those presented in previous works [1]. However, when 
A > 2 simulations result in both symmetric and asymmetric solutions. We should note 
that asymmetric solutions are generic and appear on the same basis as symmetric ones. 
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We should stress again, that in the case of a single NLSE or two coupled NLSE with constant 
coefficients stationary asymmetric solutions do not exist. The one-soliton (N = 1) solution 
is symmetric, and all higher-order soli tons are non-stationary solutions of the NLSE. In 
fact, it appears that only a coupled set of NLS's with A' > 2 admit stationary asymmetric 
solutions. Similar phenomenon happens in multi-core nonlinear fiber couplers [6]. Only 
when the number of fibers is higher than 2, asymmetric solutions appear (see Fig.3 of [6]). 
This happens only in the case of nonintegrable models. When the equations are integrable 
(Manakov model) asymmetric solutions exist even when A'' = 2. This difference is still 
mysterious and has to be explained. The integrable model is unique in a sense that solitons 
in it do not have binding energy. They can be located at any distance from each other and 
this distance does not change with propagation. Hence, asymmetric solution consisting of 
two unequal solitons when A = 2 appears naturally. If the model is non-integrable, binding 
energy is nonzero and two solitons cannot stay at fixed distance from each other. They will 
oscillate around their common "center of mass". Hence, stationary asymmetric solution 
cannot exist. 

When N = 3, three-soli ton asymmetric solution can become stationary again. It might 
happen that binding energy between three solitons at certain conditions reduces to zero. 
This requires specific soliton amplitudes and relative distances. In this case they may 
propagate parallel to each other. We have found several numerical examples of asymmetric 
solutions and checked that they are indeed stable solutions of Eq. (1) in the sense that 
they do not change their shape during propagation inside the nonlinear media. However, 
the shape of the PCS changes appreciably after collisions. Moreover, collisions transform 
stationary solutions into non-stationary beams which change their shape periodically. This 
means that binding energy also changes after collisions. 

Natalia M. Litchinitser thanks Aileen S. Andrew Foundation for a postdoctoral fellowship. 
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Self-guided optical beams, or spatial optical solitons, 
are the building blocks of all-optical switching devices 
where light itself guides and steers light without fabri- 
cated waveguides1. In the simplest case, a spatial soliton 
is created by one beam of a certain polarization and fre- 
quency, and it can be viewed as a self-trapped mode of 
an effective waveguide it induces in a medium-. When 
a spatial soliton is composed of two (or more) modes 
of the induced waveguide3, its structure becomes rather 
complicated, and the soliton intensity profile may display 
several peaks. Such solitary waves are usually referred to 
as multi-hump solitons; they have been found for various 
nonlinear models of coupled fields. 

In realistic (nonintegrable) physical models, solitary- 
waves can become unstable demonstrating self-focusing, 
decay, or a nonlinearity-driven transition to a stable 
state, if the latter exists4. All these scenarios of soliton 
evolution are initiated by exponentially growing pertur- 
bations and they are attributed to linear instability. It 
is usually believed that all types of multi-hump solitary 
waves are linearly unstable, except for the special case 
of neutrally stable solitons in the integrable JManakov 
model. On the contrary, recent experimental results5 in- 
dicate the possibility of observing stationary structures 
resembling multi-hump solitary waves. This naturally 
poses a question: Were those observations only possible 
because of short propagation distance and a small insta- 
bility growth i-ate? Here we present the results of a linear 
stability analysis indicating that stable multi-hump soli- 
tons do exist. 

In the experiments5, spatial multi-hump solitary 
waves were generated by incoherent interaction of 
two optical beams in a biased photorefractive crys- 
tal. The corresponding model has been derived by 
Christodoulides et al.6, and it is described by a system 
of two coupled nonlinear equations for the normalized 
beam envelopes, u(x,z) and w{x,z), which for the pur- 
pose of our current analysis can be written in the follow- 
ing form7: 

0, 
.du      ld2u 

dz      2dx2 

.dw      ld2w        w(\u\2 + \w\'2) 

u(W+\w\2) 

(1) 

dz      2dx2      I + s(\u\2 + \w\2) 

tively, Ld is a diffraction length, and k is the wavevector 
in the medium. The parameter A is a ratio of the non- 
linear propagation constants, and s is an effective satu- 
ration parameter. For s -> 0, the system (1) reduces to 
the integrable Manakov equations. 

where the transverse, x, and propagation, z, coordinates 
are measured in the units of (Ld/k)1'2 and Ld, respec- 

Fig. 1. Soliton bifurcation diagram for s = 0.8. Hori- 
zontal line - branch of the fundamental u-soliton. A-B-C 
- branch of |0,1) solitons. D-E-F - branch of |0, 2) solitons. 
Inset: Transverse profiles of u- (thin), w- (dashed) fields, and 
total intensity (thick), shown for marked points. 

We look for stationary, z-indepeiident, solutions of 
Eqs. (1) with both components u(x) and w(x) real and 
vanishing as |x| -* 00. Different types of such two- 
component localized solutions, existing for 0 < {A, s] < 
1, can be characterized by the total power, P(X,s) — 
Pu + Pw, where the partial powers, Pu = f™ \u\'zdx 

and Pw — j_oo \w\2dx, are integrals of motion. If one of 
the components is small, i.e. w/u ~ e, Eqs. (1) become 
decoupled and, in the leading order, the equation for the 
«-component has a solution u0(x) in the form of a fun- 
damental, sec/i-like, soliton with no nodes. The second 
equation can then be considered as an eigenvalue prob- 
lem for the "modes" w„(x) of a waveguide created by 
the soliton u0(x) with the effective refractive index pro- 
file ul(x)/[l + sul(x)]. Parameter s determines the total 
number of guided modes and the cut-off value for each 
mode, Xn(s). Therefore, a two-component vector soliton 
(uo,wn) consists of a fundamental soliton and an nth- 
order mode of the waveguide it induces in the medium. 
Henceforward we denote such a composite solitary wave 
by its "state vector": |0,n). 

On   the   P(X)   diagram   (for   fixed   s),   continuous 
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branches representing |0, n) solitons emerge at the points 
of bifurcations A„(s) of one-component solitons (see Fig. 
1). It is noteworthy that the first-order mode is in 
fact the lowest possible mode of the waveguide induced 
by the fundamental soliton uo(x). This is because the 
state |0,0), node-less in both components, can exist only 
in the degenerate case A = 1, when Eqs. (1) have 
a family of equal-width solutions UQ = A(x) sin 9 and 
tun = A(x) cos 9, with arbitrary 9, and amplitude A sat- 
isfying the scalar equation, dA/dx = ±s-1[log(l+syl2) — 
*(1 - s)A2]1'2. 

Additionally, indefinitely many families of vector soli- 
tons \m,n), where m ^ n ^ 0, can be formed as bound 
states of phase-locked |0,n) solitons8. Although such 
states do contribute to the rich variety of the multi-hump 
solitons existing in our model, we exclude them from our 
present consideration. 

Families of vector solitons can be found by numeri- 
cal relaxation technique. Some results of our calcula- 
tions are presented in Fig. 1, for |0,1) and |0,2) solitons 
found at s = 0.8. Observing the modification of soliton 
profiles with changing A (see inset in Fig. 1), one can 
see that the modal description of two-component soli- 
tons is valid only near bifurcation points. For A ^> An, 
the amplitude of an initially small tu-component grows 
and the soliton-induced waveguide deforms. It is this 
purely nonlinear effect that gives rise to the existence 
of multi-hump solitons. In particular, two- and three- 
hump solitons are members of the soliton families |0,1} 
(branch A-B-C) and |0,2) (branch D-E-F) originating 
at different bifurcation points. At A ~ A„(s), while the 
lü-component remains small, all |0, n) solitons are single- 
humped, as shown in Figs. l(a,d). As the amplitude of 
w grows with increasing A, the total intensity profile, 
I(x) = u2(x) + w2(x), develops (n + 1) humps [see Figs. 
l(b,e)], and at sufficiently large A the u-component it- 
self becomes multi-humped [Figs. l(c,f)]. Theseparation 
distance between the soliton humps tends to infinity as 
A->1. 

To analyze the linear stability of multi-hump solitons, 
we seek solutions of Eqs. (1) in the form of weakly per- 
turbed solitary waves: u(x,z) = UQ(X) + e[Fu(x,z) + 
iGu{x,z)] and w(x,z) = wn(x)+e[Fw(x, z) + iGw{x, z)], 
where e < 1. Setting FU)U, ~ fu,w(x)eez, Gu,w ~ 
9u,w{x)e^z, one can obtain the following eigenvalue prob- 
lem (EVP) 

£i£og = -kg, 

£0Cif= -A/- 

Here g = {gu,9w)T, f = (fu,fw)T, A = /?2, and 

(2) 

where a0 = c0 = 7/(1 + si), b0 = 0, oi = a0 + 2ug/(l + 
si)2, ex = c0+2w2/(l+s/)2, and 6j = -2u0wn/(l+sl)2. 

Because CICQ and £oA are adjoint operators with 
identical spectra, we can consider the spectrum of only 
one of these operators, e.g. £i£o- Considering the 
complex A-plane, it is straightforward to show that 
A € (-co, —A2) is a continuum part of the spectrum 
with unbounded eigenfunctions. Stable bounded eigen- 
modes of the discrete spectrum (the so-called soliton in- 
ternal modes9) can have eigenvalues only inside the gap, 
—A2 < A < 0. The presence of either positive or com- 
plex A implies soliton instability, because in this case 
there always exists at least one eigenvalue of the soliton 
spectrum with Re/? > 0. 

0.0 0.2 0.4 0.6 0.8 1.0 

Soliton parameter, X 

Fig. 2. Existence and stability 
three-hump solitons. Shown are 
olds Ai(s) and X2(s) for the |0,1} 
flies. Dashed - the line where 
two-humped. Shaded - analytically 
main for two-hump solitons. Squares 
obtained instability thresholds for |0, 
spectively. 

domains for two- and 
the existence thresh- 

and |0,2) soliton fam- 
|0,1) solitons become 

obtained instability do- 
and circles- numerically 
1) and |0, 2) solitons, re- 

£o,i = 2 dx- <■ + 1 - a0,i &0,1 
1   d     -L  \        r 

■'2'S*' + A_co,: 

Numerical solution of the EVP (2) shows that both 
|0,1) and |0,2) types of solitary wave solutions can be 
stable in a certain region of their existence domain, see 
Fig. 2. In the case of |0,1) solitons, the appearance 
of the instability is related to the fact that close to the 
curve where the total intensity I becomes two-humped 
[dashed line in Fig. 2], a pair of internal modes split 
from the continuum into the gap. As A grows, the corre- 
sponding, purely imaginary, eigenvalues ß = ±ii/|A(A)| 
tend to zero, and at a certain critical value A = Acr(s), 
they coincide at ß = 0. At this point, an eigenmode 
with positive eigenvalue A emerges, thus generating lin- 
ear instability (see Fig. 3) with the instability growth 
rate ß = y^A(A). For |0, 2) solutions, the dynamics of 
internal modes can not be related in any obvious way 
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with a change in the spatial solitary profiles, neverthe- 
less the scenario of the instability development is similar 
to that for two-hump solitons. The dependence of ß on 
A, for |0,1) and |0,2) soliton families giving rise to two- 
and three-hump solitary waves, is shown in Fig. 3 for 
s = 0.3 and s - 0.8, respectively. A decline in the insta- 
bility growth rate as A ->■ 1 (see Fig. 3) is caused by the 
fact that, in this limit, all multi-hump solitons decom- 
pose into a number of the neutrally stable |0,0} solitons 
separated by infinitely growing distance. 
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Fig. 3. Instability eigenvalues vs. A for |0,1) and |0,2) 
solitons; dashed line - liaß, bold line - Re/3. 

With the aid of analytical asymptotic technique10, it 
is possible to show that a perturbation mode with small 
but positive eigenvalue, and therefore the linear instabil- 
ity of a general localized solution (u, w), appears if the 
functional J(u,w), defined as 

PudPw      PwdPu  .  dPudP„,      3PwdPu 

|0,1> 
; 

:_                      »=0.3     

:   |0,3> : 
:   s=o.a 

\      \ 

, Vi 

J = 
2s  <9A 

PuLdPu     dPudP„ 

2s "Bx"    ~ds~ dX ds   8X ' 
(3) 

changes its sign.  The threshold condition J = 0 is, in 
fact, the Vakhitov-Kolokolov stability criterion11, gen- 

eralized for the case of two-parameter vector solitons. 
In this case, it does not necessarily give a threshold of 
leading instability and the presence of other instabilities 
(which are not associated with the condition J = 0 and 
can have stronger growth rates) is still possible. 

For two-hump solitons, we have been able to locate 
the critical curve in (A,s)-plane corresponding to the 
condition J = 0. Superimposing this curve onto the 
numerically calculated values Acr(s), we have found a 
remarkable agreement between the numerical and ana- 
lytical instability thresholds, as shown in Fig. 2. This 
gives us the first example of the generalized Vakhitov- 
Kolokolov criterion for the instability threshold of vector 
multi-hump solitary waves. For the whole family of |0,2} 
solutions, including three-hump solitons, it appears that 
J ^ 0 throughout the entire existence region. Thus, 
appearance of instability of three-hump solutions is not 
associated with the change of the sign of the functional 
J . 

To make a link between our stability analysis and ex- 
periment, we note that for the experiment5 the diffrac- 
tion length is defined as Ld = 2/sb and nonlinearity of 
the medium (SBN:60 crystal) is characterised by the pa- 
rameter 6 = fcreffnf £0, where reff is the effective electro- 
optic coefficient (= 280 pm/V), nb is the background 
refractive index (= 2.3), and £0 is the applied electric 
field (K 2X1 05 V/m). For strong saturation we have 
s ~ 1 and Ld ss 0.2mm. Now, the characteristic insta- 
bility length zcr can be defined through the maximum 
growth rate /?max and, as a result, for two-hump solitons 
at s = 0.3 we obtain zcr « 12.18 mm. These estimates 
indicate that the instability, if it exists, could be detected 
for two-hump solitons within the experimental setup of 
Ref.5 and therefore stable two-hump solitons have been 
indeed observed. 
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Solitons of the cubic Nonlinear Schrödinger Equation (NLSE) are probably the most studied 
solitons in nature. One of the reasons is the mathematical elegance and simplicity of this equation. 
But another more important reason is the vast number of physical systems that can be described by 
this equation. Single polarization envelope waves propagating in isotropic materials, when only 
the lowest order nonlinearity matters most often obey this equation. In optics, the cubic NLSE 
models temporal solitons in optical fibers, and low intensity solitons of all dimensions in any cen- 
trosymmetric media. Outside of optics, this equation often models envelope solitons in deep sea 
water, plasma, etc. Needless to say, physics of bright solitons that live in higher dimensions is 
much more interesting than the physics of solitons in (1+1)D. However, it was previously thought 
that all bright (2+l)D solitons of the cubic NLSE are unstable, and that they disintegrate within a 
few diffraction lengths (Lp). Here, we present numerical simulations demonstrating the existence 
of what is to the best of our knowledge the first ever described (2+l)D self-trapped family of stable 
bright beams in the (2+l)D cubic NLSE [1]. Furthermore, we obtain analytical solutions for some of 
our beams. Some additional analytical results enable us to predict and control the dynamics of the 
radius of any of our beams, so we know how to make beams which are almost stationary for very 
large distances, O(50Ln). 

The normalized self-focusing (2+l)D cubic NLSE is given by: 

where z is the direction of propagation, and x and y are the dimensions transverse to the direction 
of propagation. Cyllindrically symmetric solitons of Eq.(l) of all orders collapse or diffract after 
a few diffraction lengths (Lp). But, ignoring the 3rd term in Eq.(l) reduces it to the (1+1)D cubic 
NLSE, whose solitons are known to be stable; therefore, one can construct solutions of Eq.(l) which 
are solitons of the (1+1)D cubic NLSE in x and z, and that are uniform in y. However, these solu- 
tions suffer from Modulational Instability (MI); small perturbations of large wavelengths in y grow 
on top of the pulses as the pulses propagate, and the pulses eventually breaks up. One can arrest 
MI by modulating the tp sinusoidally in the y direction. This works if the period of the modulation 
is smaller than the smallest wavelength that would grow on top of the comparable pulse that is uni- 
form in y. Such solitons have been demonstrated experimentally [2] and they indeed exhibit stable 
self-trapping. Nevertheless, such a soliton is not completely satisfactory because no experimental 
beam can be infinite in y, so instabilities occur at the y ends of the pulse; furthermore, most physi- 
cally interesting properties of such a pulse are really those of a (1+1)D creature. This brings about 
an interesting question: can one construct stable (2+l)D structures, based on a topology similar to 
that of the intensity-modulated (1+1)D beam, in nonlinear Kerr media after all? 

Encouraged by Ref. 2, we take a pulse which is initially sinusoidally modulated in y and self- 
trapped in x, and wrap it around its own tail to form a ring like in Fig. 1. We make sure that the 
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Figure 1: Examples of evolution of necklace-ring beams. The input shape for all the plots was *8Z = 0) = 
a * sech((r - L)/w) * cos{m), where r is the radial, and 6 is the azimuthal variable; fi = 15, fi = 8 and fi = 4 in first 
second and third rows, respectively. In all the cases a = 1, w = 1, and L/n = 1.707. The axes are the same for all plots' 
Dark color indicates high intensity. In all figures in this paper, constrast is enhanced for better clarity. 

width of the pulse w is much smaller than its radius L. We call such pulses to be Necklace beams. 
Since the (1+1)D structure of Ref. 2 was stable, one does not expect the small amount of curvature to 
cause instability in Necklace beams. In fact, Necklace beams proved to be stable in our numerical 
simulations for O(100LD). Furthermore, we find that they remain stable even under fairly large 
perturbations (~ 5%) in the initial widths or powers, and in the presence of random noise (e.g., we 
have injected up to 1% of the total power of white noise in the Fourier space every LD.) In addition, 
we have tested the stability of Necklace beams under azimuthally-asymmetric variations in input 
conditions. We launched the input shapes of Fig. 1 but with a ~ 2% ellipticity, and found that these 
imperfect rings also exhibit stable self-trapping, yet they do not evolve into a circular shape. We 
thus conclude that, at least for small azimuthal perturbations, the necklace beam is stable, but its 
circular shape is not an " attractor". 

Depending on the initial parameters, Necklace beams can grow or shrink with the propagation 
distance, e.g. last row of Fig. 1. This dynamics does not destabilize our pulses because of the 
existence of a rescaling property of the (2+l)D cubic NLSE which does not change the total power 
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in the pulse. Nevertheless, by adding an appropriate phase front, (i.e. multiplying the whole pulse 
with elCiT, where r is the radial distance from the center, and a is an appropriate constant,) one can 
have significant control over the dynamics of Necklace beams; their dynamics can even be stopped 
for very long distances: O(50Lr>). Such a phase front is trivial to apply experimentally; a simple 
lens will do the job to a good approximation. For comparison, please note that if there was not for 
the nonlinear effects, our pulses would diffract within 0(1LD), like shown in Fig. 2. 
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Figure 2: Evolution of the same initial shape as in the third row of Fig. 1, with nonlinearity set to zero. The beam 
diffracts within 0{lLD). 

Finally, using the variational method, we found excellent approximate analytical solutions for 
the necklace shapes, as a function of the propagation distance, in a certain regime of necklace pa- 
rameters. Using this solution, one can understand and predict the dynamics of a necklace shape, 
and can also understand analytically what happens with the dynamics of a necklace when an ar- 
bitrary phase front is applied to it. This approximate solution works best when the thickness of 
the necklace is much smaller than its radius, and when the scale of azimuthal modulation is much 
smaller than the thickness of the necklace. Nevertheless, one would also like to understand the dy- 
namics of the necklaces that do not fall into this particular regime of parameters. We used another 
analytical approach in order to predict dynamics of a necklace of an arbitrary initial shape, even 
if this shape is not the equilibrium necklace shape. Although this approach tells us nothing about 
the true necklace shape as the necklace propagates, it gives us a pretty good analytical prediction 
for the necklace radius as a function of the propagation distance. Furthermore, this approach also 
allows us to predict what happens with the dynamics of the necklace radius once an arbitrary phase 
front is applied to it. We checked that the two analytical approaches agree in the appropriate limit. 

In conclusion, we have demonstrated the first bright (2+l)D self-trapped stable creatures in 
the (2+l)D cubic NLSE [1]; we got analytical solutions in some regimes of the parameters, and 
found a good way of predicting and controling the dynamics of the radius of an arbitrary necklace. 
The analytical framework we developed tells us how to design necklaces which are essentially 
stationary for very long distances: C(50LD). Our discovery is important because of the generality 
of the cubic NLSE which describes very many nonlinear wave systems in nature. 
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One of the most noted discoveries of modern soliton 
science is that solitons can be excited by an incandes- 
cent light bulb instead of a high power laser source [1]. 
This produces "incoherent solitons" [1-3]; they can exist 
in photorefractive materials which require amazingly low 
powers to observe highly nonlinear phenomena [4-6]. It 
is also remarkable that, in certain conditions, incoherent 
solitons in photorefractive materials can be studied using 
coupled nonlinear Schrödinger equations (NLSE) [3,7]. 

In general, coupled nonlinear Schrödinger equations 
(NLSE) can be applied to various phenomena. These 
include incoherent solitons in photo-refractive materi- 
als, plasma waves in random phase approximation [8], 
multicomponent Bose-Einstein condensate [9] and self- 
confinement of multimode optical pulses in a glass fiber 
[10]. Therefore its solutions arc of great interest for the- 
oretical physicists. In special cases these equations are 
found to be integrable [11]. Then, in analogy with single 
(scalar) NLSE (when the number of equations, M, is 1) 
[12] and the Manakov case [13] (M = 2), the total solu- 
tion consists of a finite number (N) of solitons and small 
amplitude radiation waves. The former is defined by the 
discrete spectrum of linear (L, A) operators [12,13] and 
the latter is defined by the continuous spectrum. Most 
applications deal with the soliton part of the solution as 
it contains the most important features of the problem. 
Moreover, a localized superposition of fundamental soli- 
tons can be called "multisoliton complex". An incoherent 
soliton is a particular example of a multisoliton complex 
[14]. 

The cases M = 1,2 have been extensively discussed 
in the literature [12,13]. On the other hand, results for 
general M are scarce. The linear (L.A) operators are 
important elements for the inverse scattering technique, 
which can be considered as a basis for integrability of M 
coupled NLSEs. Moreover, it has been shown [15] that 
iV-soliton solutions of M coupled NLSE can be found us- 
ing a simple technique which is an extension of the theory 
of reflectionless potentials [16]. In recent works [14,17] 
cases when each component has only one fundamental 
soliton have been considered. It was demonstrated that, 
in this configuration, the formation of stationary com- 
plexes may be observed, and corresponding solutions for 
M — N < 4 were presented in explicit form [17]. 

So far, only the case of complete mutual incoherence 
of the fundamental solitons has been considered. In this 
case the multisoliton complex can also be viewed as a 
self-induced multimode waveguide [14]. The general case, 
where fundamental solitons in the multisoliton complex 
interact both coherently and incoherently, has not been 

analyzed. Such interactions may be observed if N is 
larger than M, so that each component has not less than 
one fundamental soliton. In general, each fundamental 
soliton can be "spread out" among several components. 
We will refer to this effect as mixed "polarization" of 
fundamental solitons. However, in order to capture dis- 
tinctive features of coherent and incoherent soliton inter- 
actions, we will focus on a special case which is important 
for incoherent solitons. Specifically, we consider a situa- 
tion where all the fundamental soliton polarizations arc 
mutually parallel or orthogonal, and thus are conserved 
in collisions [14]. Due to the symmetry of the NLSE with 
respect to rotations in functional space, hereafter we as- 
sume that each fundamental soliton is polarized in one 
component only. It is for this case that we present new 
explicit W-soliton solutions of M coupled NLSEs, and we 
discuss the new physics which it brings into the theory. 

We consider propagation of an incoherent self-trapped 
beam in a slow Kerr-like medium and write the set of 
coupled NLSEs in the form [3,7,14]: 

■ dip* 

dz 
ld2lPm 
2 dx2 + 8n(I)j>m = 0, (1) 

where ipm denotes the m-th component, of the beam, z 
is the coordinate along the direction of propagation, x is 

the transverse coordinate, and Sn(I) = Em=iQm|^m|2 

is the change in refractive index profile created by all in- 
coherent components of the light beam, where the am 

(> 0) are the coefficients representing the strength of the 
nonlinearity, and M is the number of components. 

Solutions in the form of multisoliton complexes of 
Eq. (1) and their collisions can be obtained using the 
formalism of [15,18] with some refinements. First, we 
introduce functions Uj(x,z) as solutions of the following 
set of equations: 

N 

£ 
m=l 

D jmiLm (2) 

where N is a total number of fundamental solitons, 
ei ~ Xj exp (kjXj + ikpj/2), Sj ~x-Xj and £,■ = z-Zj 
are shifted coordinates, and Xj are arbitrary coefficients. 
The values Xj and Zj characterize the initial positions of 
fundamental solitons, but the actual beam trajectories 
may not follow the specified points due to mutual inter- 
actions between fundamental solitons. Each fundamental 
soliton is characterized by an eigenvalue kj = Tj + i/j.j. 
Its real part, TJ, determines the amplitude of the fun- 
damental soliton, while the imaginary part, y,j = tanOj, 
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accounts for the soliton velocity (i.e. motion in trans- 
verse direction). Here 9j is the angle of the fundamental 
soliton propagation relative to the z axis. 

To distinguish coherent and incoherent contributions 
to the multi-soliton complex, we use variables rij, which 
represent the number of the component where the j'-th 
soliton is located. Thus, two fundamental solitons with 
n,j = nm are coherent, and they are incoherent otherwise. 
Now we can write the expression for the matrix D: 

Ujm — 
e,-e„ 

kj + A* 
+ f l/(kj + *m) 

rij ^ n„ (3) 

Finally, the N-soliton solution of the original Eq. (1) 
can be obtained by adding up of all the v,j corresponding 
to a given component number m: 

Vrj £  «;A 'an 
j\ n j =m. 

Note that the number of terms in the sum is exactly the 
number of fundamental solitons polarized in this compo- 
nent, viz. Nm, and the total N is Y>m=\ N™- 

One of the features of this approach is that coherent 
fundamental solitons are "split" among all the Uj func- 
tions for a given component. However, when obtaining 
analytical solutions in explicit form, it is possible to sepa- 
rate fundamental solitons by combining terms with corre- 
sponding propagation constants. Consequently, we write 
the exact solutions for a different set of functions Uj, with 
each of them containing one fundamental soliton (at dis- 
tances where coherent interactions are small). These are 
combined into the original functions in the following way: 
^m =Ej;„J.=m'V\/5™' 

The coefficients Xj are arbitrary, and we can choose 
particular values for them: 

*= n 
T77; nm^7ij 

where bjm = (kj + k* )/(kj - km), and the square root 
value is taken on the branch with positive real part. This 
step significantly simplifies further analysis, as the result- 
ing solution will acquire a highly symmetric form. 

Finally, the explicit expressions for solutions can be 
found as sums over specific permutations: 

U-j = IT £ C{Fl(x,z), 
{\,...,j-\,j+l,...,N}^L 

(4) 

U=      J2      C,.FL(x,z) 
{1,...,IV}->£ 

Here L denotes four sets of indices (L\ ,L2,L3, L4). The 
summation is performed over all combinations in which 
the given set of soliton numbers (for example, {1,..., TV}) 
can be split among all the Lj. When performing permu- 
tations, L\, Li arc only filled with numbers of mutually 

coherent solitons (thus the number of elements in these 
sets is the same). 

The functions in (4) are determined for each realization 
of the permutation L: 

FL(x, z) = cos(Sg) cos(Sf) cosh(Sb) - 

sin(Sg) sin(Sf) sinh(Sb), 

F[(x, z) = cos(5g + S{) cos(Sf) cosh(5b + S3
b) - 

sin(Sg + Sj,) sin(Sf) sinh(Sh + SJ
h). 

Note that the F functions are written in the simplest 
form in terms of trigonometric and hyperbolic functions, 
due to the specific choice of coefficients Xj- The new 
variables are found as sums performed over the Lj sets: 
S

K   =    E lj ~ Lje/,27j> Sb  =    £ ßj - Y,je[jAßj. 

Here the real variables ßj and jj are determined as 
ßj + i*ij — kjäij + ik'jZj/2. All the other parameters 
do not depend on coordinates (x,z), and are expressed 
in terms of the wave numbers kj and shifts in positions 
(x,j, Zj) of the N fundamental solitons. As the total so- 
lution has translational symmetry, one of the shifts can 
be fixed, and the number of independent parameters con- 
trolling the multisoliton complex is 2N — 1. 

If an incoherent soliton consists only of orthogonally 
polarized fundamental solitons (n,j = j, N = M), and 
all are propagating in the same direction, then its trans- 
verse intensity profile remains stationary [17]. In this 
particular case, the general expressions can be simpli- 
fied: C. = T, C{ = 2rjXjT.. T = ni€,,a!m6,.JW, 
FL = cosh(Sb), F[ = cosh(SJ). 

FIG. 1. Stationary propagation of an incoherent soliton 
consisting of eight completely incoherent fundamental soli- 
tons (polarized in different components). 

Now we present numerical examples to illustrate these 
results. An example of a stationary incoherent soliton 
consisting of eight components (N = M = 8) is shown 
in Fig. 1. The profiles of the constituent fundamental 
solitons, and their superposition as a whole, are deter- 
mined by the wave numbers and relative shifts along the 
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x axis. In this configuration, the shifts in propagation di- 
rection, Zj, correspond to arbitrary phase changes of dif- 
ferent components, but these do not influence the evolu- 
tion due to the incoherent nature of the inter-component 
interactions. 

FIG. 2. Evolution of an incoherent soliton with multi-scale 
periodic "beating" due to internal coherent interactions (8 
fundamental solitons in 5 components). 

On the other hand, if N > M, two or more of the fun- 
damental solitons are polarized in the same components, 
and thus interact coherently. If the inclination angles of 
the fundamental solitons are all the same, the beam will 
remain localized upon propagation. Such a multi-soliton 
complex is an incoherent soliton with an intensity profile 
which evolves periodically or quasi-periodically, as shown 
in Fig. 2. These oscillations, appearing due to internal 
coherent intra-component interactions, are a general fea- 
ture of incoherent solitons, and can be eliminated only 
in specific cases, as discussed earlier. It follows that spa- 
tial "beating" always accompanies the interaction of fun- 
damental solitons of a single NLSE, which agrees with 
previous studies [19]. 

Our explicit solution (4) also describes collisions of in- 
coherent solitons. As mentioned earlier, the polarizations 
of the fundamental solitons are preserved in collisions 
(provided they are orthogonal or parallel), and thus the 
degree of internal coherence doesn't change. However, 
the shifts of the fundamental soliton trajectories differ, 
and this results in the incoherent solitons changing their 
shapes. These transformations can be seen clearly in 
Fig. 3. 

The shift of j-th fundamental soliton along the x axis 
due to collisions can be calculated by taking appropriate 
limits in Eq. (4): 

21n(|6jm|), rij =n. 
H\bj #n: 

mi 

Here the summation involves the fundamental solitons 
which feature in the collisions. The "+" sign corresponds 
to the case when colliding soliton number m comes from 
the right (i.e. has larger x coordinate before the impact), 
and the "-" sign when from the left. This is a general- 
ization of the expressions found in [17]. 

FIG. 3. Collision of a completely incoherent soliton (con- 
sisting of two orthogonally polarized fundamental solitons) 
and an incoherent soliton with internal coherent contributions 
(6 fundamental solitons in 5 components). 

The authors are part of the Australian Photonics CRC. 
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Recent progress in the study of cascading effects in 
optical materials with quadratic (second-order or x'2') 
nonlinear response has offered a broad spectrum of new 
opportunities for all-optical processing, optical commu- 
nications, and optical solitons [1,2]. Most of the stud- 
ies of cascading effects employ parametric wave mixing 
processes with a single phase-matching and, as a result, 
two-step cascading. For example, the two-step cascad- 
ing associated with type I second-harmonic generation 
(SHG) includes the generation of the second harmonic 
(to + ijj = 2u) followed by reconstruction of the funda- 
mental wave through down-conversion frequency mixing 
(DFM) process (2u> — u> = u). These two processes are 
governed by one phase-matched interaction and they dif- 
fer only in the direction of power conversion. 

The idea to explore more than one simultane- 
ous nearly phase-matched processes, or double-phase- 
rrmtched (DFM) wave interactions, became attractive 
only recently [3], for the purposes of all-optical transis- 
tor, enhanced nonlinearity-induced phase shift, and po- 
larization switching. More recently, it was shown [4] that 
multistep cascading can be achieved by two second-order 
nonlinear cascading processes, SHG and sum-frequency 
mixing (SFM), and these two processes can also support 
a novel class of multi-color parametric solitons [5]. 

Then, the important question is: Can we find para- 
metric processes which involve only two frequencies but 
allow to get all advantages of multistep cascading ? In 
this Letter, we answer positively this question introduc- 
ing the concept of two-color multistep cascading. In par- 
ticular, using one of the processes of the two-color mul- 
tistep cascading, we show how to introduce and explore 
the concept of light guiding light for quadratic spatial 
solitons, that has been analyzed earlier for nonresonant 
nonlinearities and Kerr-like spatial solitary waves [6] but 
seemed impossible for parametric interactions. 

To introduce more than one parametric process involv- 
ing only two frequencies, we consider waves with dif- 
ferent polarization. We denote two orthogonal polar- 
ization components of the fundamental wave (w) as A 
and B, and two orthogonal polarization of the second 
harmonic (2u), as S and T. Then, for an example, a 
simple multistep cascading process consists of the follow- 
ing steps. First, the fundamental wave A generates the 
second-harmonic wave S via type I SHG process. Then, 

by down-conversion SA-B, the orthogonal fundamental 
wave is generated. At last, the initial fundamental wave 
is reconstructed by the processes SB-A or AB-S, SA-A. 
The two principal second-order processes AA-S and AB-S 
correspond to two different components of the nonlinear 
second-order (or x(2') susceptibility tensor, thus intro- 
ducing additional degrees of freedom into the parametric 
processes. There exist different types of multistep cas- 
cading processes. The principal processes are: (a) (AA- 
S, AB-S), as described above; (b) (AA-S, AB-T), and 
(c) (AA-S, BB-S). 

To demonstrate some of the unique properties of the 
multistep cascading, we discuss here how it can be em- 
ployed for light-guiding-light effects and soliton-induced 
waveguides in quadratic media. For this purpose, we con- 
sider the principal DPM process (c) in the planar slab- 
waveguide geometry. Using the slowly varying envelope 
approximation with the assumption of zero absorption of 
all interacting waves, we obtain 

mf- + ~+X2SB'e-i^=0, 
oz      ox/ (1) 

= 0, 

where Xi,2 = 2fc]<7ii2, and the nonlinear coupling coeffi- 
cients ak are proportional to the elements of the second- 
order susceptibility tensor. In Eq. (1), A and B are two 
orthogonal polarization components of the fundamental 
wave, S is the second-harmonic wave, A&i and Afo are 
the corresponding wave-vector mismatch parameters. 

To simplify the system (1), we look for stationary 
solutions and introduce the normalized envelopes u, 
v, and w according to the following relations, A = 
7i?i exp(ißz — |Afc]z), B = 72U exp(z/3z - ^A^z), 
and S = 73W Qxr>(2iß). where 7,-1 = 2xi£o, 7Ö"1 = 
2XQ(XIX2)

1
^

2
 and 7J"1 = Xixo-. an<^ tne longitudinal 

and transverse coordinates are measured in the units of 
zo = (ß ~ A/ci/2)-1 and x0 = (z0/2fci)1/2, respectively. 
As a result, we finally obtain the system of coupled nor- 
malized equations, 
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.du d2u 

.dv 82v 

n.dw     d2w 1    2      , 

(2) 

where X = Üö/Xi), ßi = (/? - Ak2/2)(ß - Afci/2)"1, 
anda = 4/9(/3-AJfc1/2)-1. 

First of all, we notice that for v = 0 (or, similarly, 
w = 0), the dimensionless model (2) coincides with the 
corresponding model for two-step cascading due to type 
I SHG discussed earlier [1,2], and its stationary solutions 
are defined by the system of equations for real u and w, 

cPu 
dx2 -u + u*w = 0, 

<fw 1  , (3) 

that possesses a one-parameter family of two-wave lo- 
calized solutions (UO,WQ) found earlier numerically for 
any a ^ 1. and also known analytically for a = 1. 
u0(x) = (3/v/2)sech2(a;/2) = V2w0(x) (see Ref. [2]). 

Then, the equation for real orthogonally polarized fun- 
damental wave v can be treated as an eigenvalue prob- 
lem for an effective waveguide created by the second- 
harmonic field WQ(X), 

cPv 
^2 + VCWoix) - ai]v = 0. (4) 

Therefore, an additional parametric process allows to cre- 
ate an effective waveguide for the orthogonal polarization, 
the waveguide induced in a quadratic medium by a two- 
wave spatial soliton. However, this type of waveguides is 
different from what has been studied for Kerr-like solitons 
because it is coupled parametrically to the guided modes 
and, as a result, the physical picture of the guided modes 
is valid, rigorously speaking, only in the case of station- 
ary phase-matched beams. As a result, the stability of 
the corresponding waveguide and localized modes of the 
orthogonal polarization it guides is a key issue. In par- 
ticular, the waveguide itself (i.e. two-wave parametric 
soliton) becomes unstable for a < a„ « 0.2 [7]. 

In order to find all possible guided modes of the para- 
metric waveguide created by a two-wave quadratic soli- 
ton, we have to solve Eq. (4) where the solution w0(x) is 
known numerically only. These solutions have been also 
described by the variational method [8], but the differ- 
ent types of the variational ansatz used do not provide a 
good agreement for the soliton profiles for all x. For our 
eigenvalue problem (4). the function w0(x) defines the 
number and parameters of the guided modes and, in or- 
der to obtain accurate results, it should be calculated as 
close as possible to the exact solution found numerically. 

To resolve this difficulty, below we suggest a novel 'al- 
most exact' approximation that would allow to solve an- 
alytically many of the problems involving quadratic soli- 
tons, including the eigenvalue problem (4). First, we 
notice that from the exact results at a = 1 and the 
asymptotic results for large a, w « (l/2a)u2, it fol- 
lows that the second-harmonic field w0(x) of Eqs. (3) 
remains almost self-similar for a > 1. Thus, we are look- 
ing for the second-harmonic field in the form wo(x) = 
wmsech (x/p), where wm and p are unknown yet pa- 
rameters. The solution for uo(x) should be consistent 
with this choice of the shape for the second harmonic, 
and it is defined by the linear equation of the system (3). 
Therefore, we can take u in the form of the lowest guided 
mode, u0(x) = um sechp(x/p), that corresponds to an ef- 
fective waveguide w0(x). By matching the asymptotics 
of these trial functions with those defined directly from 
Eqs. (3) at small and large x, we obtain the following 
solution, 

wo(s) = umsechp(x/p),   w0(x) = wmsech2(x/p),    (5) 

where 

u2 = m 
awt, 

(wm -1)' 
a = 

4(wm - l)3 

(2- ■w, 0 p = K, -1)' (6) 

i.e. all the parameters are functions of a. For acr < a < 
oo, the SH amplitude varies in the region 1.3 < wm < 2, 
so that all the terms in Eq. (6) remain positive. 

Ö 2 

FIG. 1. Comparison between the numerical (continuous 
lines) and analytical (crosses) solutions for two-wave para- 
metric solitons: (a) Maximum amplitudes of the fundamental 
(dotted) and second (solid) harmonics; (b) Two-wave soliton 
profile at a = 4. 

It is really amazing that the analytical solution (5), 
(6) provides an excellent approximation for the profiles of 
the two-wave solitons found numerically. Figures l(a,b) 
show a comparison between the maximum amplitudes of 
the fundamental and second harmonics and selected pro- 
files (at a = 4), respectively. As a matter of fact, the 
numerical and analytical curves on these plots are not 
distinguishable. For a < 1, the SH profile changes, but 
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in the region acr < a approximate solution (5), (6) is still 
very close to the exact one: the relative error is less than 
1%, for the amplitudes, and it does not exceed 3%, for 
the power components. That is why we define the ana- 
lytical solution given by Eqs. (5), (6) as 'almost exact'. 
Details of the derivation, as well as the analysis of the 
case a < 1 will be presented elsewhere [9]. 

Now, the eigenvalue problem (4) can be readily solved 
analytically. The eigenmode cutoff is denned by the 
matching parameter a\ that takes one of the follow- 
ing discrete values, a^1' = (s - n)2/p2, where s = 
-(1/2) + [(1/4) + wmxp2]1/2. The number n defines the 
mode order (n = 0,1,...), and the localized solutions 
are possible provided n < s. The profiles of the guided 
modes are found analytically as 

vn{x) = Wsechs~n(x/p)H(-n, 2s - n + 1, s - n + 1,0, 

where £ = |[1 -tanh(z/p)], and H is the hypergeometric 
function. 

According to these results, the maximum number of 
the guided modes can be observed for smaller values of 
a. Figures 2(a,b) show the dependence of the mode cutoff 
values a\ vs. a, at fixed x, and vs. the coupling param- 
eter x, at fixed a, respectively. For the case x = 1> the 
dependence has a simple form: a[n' = [1 - n(wm — l)]2. 
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FIG. 2. Cutoff eigenvalues a\n' of the guided modes shown 
as (a) functions of a at x = 2, and (b) functions of x at a = 4. 
Dashed lines correspond to the intersection of the plots in the 
parameter space (a, x)- 

Because a two-wave soliton creates an induced waveg- 
uide parametrically coupled to the mode of the orthog- 
onal polarization it guides, the dynamics of the guided 
modes may differ drastically from that of conventional 
waveguides based on the Kerr-type nonlinearities. In par- 
ticular, the mode can be unstable being amplified due to 
parametric interaction with the waveguide. 

For a practical realization of the DPM processes and 
light-guiding-light effects described above, we mention 
two general methods. The first method is based on the use 

of two commensurable periods of the quasi-phase-matched 
(QPM) periodic grating. Indeed, to achieve DPM, we 
can employ the first-order QPM for one parametric pro- 
cess, and the third-order QPM, for the other paramet- 
ric process. Talcing, as an example, the parameters for 
LiNbC>3 and AA-S (xx - z) and BB-S (zz - z) processes, 
we find [11] two points for DPM at about 0.89 pm and 
1.25 pm. This means that a single QPM grating can 
provide simultaneous phase-matching for two parametric 
processes. For this configuration, we obtain % ta 1.92 or, 
by interchanging the polarization components, x K 0-52. 
The second method to achieve the conditions of DPM pro- 
cesses is based on the idea of quasi-periodic QPM grat- 
ing. As has been recently shown experimentally [12], 
Fibonacci optical super-lattices can provide an effective 
way to achieve quasi-phase-matching at several incom- 
mensurable periods allowing multi-frequency harmonic 
generation for the same type of the super-lattice QPM 
structure. 

[1] For a comprehensive overview of cascading, see G. Stege- 
man, D.J. Hagan, and L. Torner, Opt. Quantum Elec- 
tron. 28, 1691 (1996). 

[2] For an overview of quadratic spatial solitons, see L. 
Torner, in: Beam Shaping and Control with Nonlinear 
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It is now widely accepted that optical media with a quadratic, or x(2), nonlinearity exhibit 

interesting phenomena which can be exploited in all-optical signal processing (see [1,2] and 

references therein). In particular, different types of dichromatic solitary waves (mutually locked 

fundamental field (FF) and second harmonic (SH)) in conservative quadratic media have been 

identified and their potential use for signal routing and steering has been discussed [3,4]. In 

particular, double-hump solitary waves not existing in the Schrödinger limit have been identified 

and their stability behavior and decay scenarios have been discussed [5-7]. 

Recently taking loss and gain effects into account it was shown that rather stable 

dichromatic shock-like [8] and bright solitary [9] waves may exist in a quadratic environment. In 

this contribution we identify double-hump solitons in dissipative quadratic media and 

numerically prove their robustness. 

The system of equations describing pulse/beam propagation in a quadratically nonlinear 

medium with loss and gain has the form: 

^ + 0,^+2^ + 1^ = 0 (la) 

iBx + kB + D2BSS +A2+ iy2B = 0 (lb) 

where x is the propagation distance, s the transverse coordinate in the spatial or the retarded time 

in the temporal case, A and B are normalized envelopes of first and second harmonics, k is the 

phase mismatch,y1>2 are linear gain or loss coefficients, D12 =Dl2 +iD[2 are complex valued 
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coefficients, where   Dl2   account for dispersion/diffraction  and Dj^" for bandwidth-limited 

amplification or filtering. 

We have found that the system (1) has a double-hump chirped bright solitary wave 

solution 

A = a sinh(?is)[cosh(k s)T2+it ei(c*+<Pl),   B = tfcoshfl. s)]~2+2ie e2i{Qx+^], (2) 

where the amplitudes and the relative phase are given by 

a4=4b2^\D1\\4£4+l3£l+9),    b2 = X4|D,|V +13e2 +36)/4, (3) 

tan(q>2 - 2(p,) = (6 - £2 - 5d,e) l{dx (6 - e2) + 5e), (4) 

the chirp parameter e is a solution of the fourth order algedraic equation 

2{dx + d2 )(e4 - 20e2 + 9) +15(dxd2 -1)(£3 - 3e) = 0 (5) 

The widths and wave vectors are 

X2=y1/D'1(e2+2ed1-l),    Q = X2D[[dl(e2 -l)-2e], (6) 

where we have introduced dl2 = Dl2 IDl2. This exact solution exist if the constraints 

2YJZ>2 (1-£^2) = Y2-Di(e2+ 2Erf,-l),     k = 2X2[(l-E2)D'l+2eD[+D2+eD'2] (7) 

are satisfied. The first constraint ensures the balance between gain and loss which is necessary 

for solutions to exist. An analysis of the constraints reveals that solutions exist in different 

domains of parameter space. Both the shapes and the phases of the double hump solution (2) are 

shown in Fig. 1. We note a nonzero relative phase shift in the center of pulses which is described 

by formula (4). The stability of the solitary wave solution was numerically checked. The 

evolution of the FF component is displayed in Fig.2. In the parameter domain chosen the solitary 

wave propagates rather stable. The anticipated onset of the background instability is observed for 

large propagation distances. 
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Fig.l Amplitude and phase profiles of the 
solution (2), parameters: Yi = 0.07, y2= -0.05, 
dl = d1 = -2, D[ =-0.5, D; =-0.25, k = -0.06, 
resulting in: e= 1.03, A, = 0.18, a = 0.16, 
b=0.13, 9, = 0, tan(cp2) = -3.25. 

Fig.2 Evolution of the FF of the solution 

(2). The SH fields exhibit a similar 

behavior. Parameters are as in Fie.l. 
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INTRODUCTION 
The study of dark spatial solitons spans more than a decade [1]. Dark spatial solitons 
were found to guide light beams through various media such as liquids with defocussing 
Kerr effect [2,3], or photorefreactive crystals [4]. Their operation is based on the 
following principles. A (1+1)-dimensional dark spatial soliton (the optical fields vary in 
only one transverse direction and the longitudinal direction) results from nonlinear 
propagation of a light beam with 7t-step phase jump across its axis. The soliton induces 
a refractive index pattern in the medium where the near-axis region has high index and 
thus works as a guide for a relatively weak probe beam propagating along the main 
beam. By changing the intensity and the phase profile of the main beam one can alter 
the refractive index pattern and thus perform steering, splitting or combining the probe 
beam. This paper presents theoretical and experimental data and discusses a 
theoretical model developed to study optical beam splitting induced by photobleaching a 
dye-doped polymeric waveguide, where instant refractive index reaction to light intensity 
redistribution is replaced by permanent index decrease associated with dye 
photobleaching. 

MODEL THEORY 
The index response to an optical field amplitude E is given by the rate equation 

M|)=_cB!(n(E)-hs) (1) 
at 2 s 

for h = 0 at t = 0, where h(E) is the electric field dependent component of the refractive 
index h(E) = n(E) - n0, where n0 is the initial unperturbed refractive index; E is the 
electrical component of a TE mode propagating in a single mode slab waveguide; C is 
the efficiency of light induced index modification; and hs is the saturation index change. 
Equation (1) applies to nonstationary and nonuniform optical fields. According to 
experimental data the absorption coefficient and dependent on it propagation loss rate 
remain constant. The light propagation in a single mode slab waveguide is given by a 
two dimensional nonlinear Schrödinger type equation 

0.„8E    32E   .._   ß2n(E)    n 

-z'^+w"*E+%° (2> 
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where x and y are coordinates in the plane of the waveguide along and across the 
propagation direction respectively; ß is the mode wave number; and y is the propagation 
loss factor. The light beam injected into the waveguide was assumed to have a uniform 
phase plane wavefront and a Gaussian profile of the optical field given by E = E0 exp(- 
y /2a ) at x = 0, where E0 is the beam amplitude, and a is the beam width. Equations 1 
and 2 were solved numerically with two different methods: the split step Fast Fourier 
Transform (FTF), and the three-layer finite difference method, which is similar to the 
Crank-Nicholson scheme. 

RESULTS 

Figure 1 shows results obtained from numerical simulations of light with jc-step phase 
jump across its axis propagating in the waveguide at various times after the light was 
launched. The time scale shown in Figure 1 is based on a normalized time parameter 
given by x = t/CIE0l2/n0. One can see apparent primary beam splitting into two secondary 
beams with separation between them growing in time. This process can be understood 
qualitatively in terms of light escaping out of bleached regions with low refractive index 
to unbleached regions with high index of refraction. 

Figure 1. Numerical simulation showing the evolution of the transverse profile of the 
main beam at (1) the coupling point and at normalized distance u=6 5x105 from the 
coupling point for (2) x=0, (3) T=0.1, (4) x=0.2, (5) t=0.3, (6) T=0.4, (7) T=0.5, (8) x=0 6 
(9) x= 0.7, (10) x=0.8, (11) x=0.9, (12) t=1.0, (13) t=1.5,(14) x=2.0, (15) x=3.0 
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The experimental waveguide was fabricated by spin-coating preoxidized silicon wafer 
with Si02 layer with a thickness of 1.5 u,m and a refractive index of 1.46. The coat was 
made of poly(methyl methacrylate) (PMMA) solution in chlorobenzene doped with the 
dye 4-(Dicyanomethylene)-2-methyl-6-(p-dimethylaminostyryl)4H-pyran (DCM) and spin 
coated. This produced a dual mode slab waveguide with thickness of 1.2 jxm and a 
refractive index of 1.496 at 633 nm. The Gaussian beam width of 0.35 mm from a He- 
Ne cw laser (633 nm) with TE polarization was injected into the Waveguide using a 
prism coupler. Figure 2 shows the transverse intensity profiles of experimental results 
taken at different times. The features of the branch structures are similar to those 
predicted by the computer model. The appearance of the two central branches in Figure 
2 coincides with simulation results shown in Figure 1. In conclusion, optical branching 
has been modeled and experimentally observed with very close agreement between 
theory and experiment. 

300 

250 
3 
CO    _ _ _ ■- 200 

g 150 

B 
Z 100 

50 

0 

wYV  10 

V"        9 

\\           8 
A            7 
\            fi 
^              5 

V                 4 

3 
2 

1 
■            .            i            .           l 

-200                    0                    200 

DISTANCE rjdun 1 1 

Figure 2. Experimental measurements showing the evolution of the transverse profile of 
the main beam at a distance of 27 mm from the coupling point for (1) t=10 s, (2) t=32 s, 
(3) t=60 s, (4) t=90 s, (5) t=120 s, (6) t=168 s, (7) t=180 s, (8) t=260 s, (9) t=330 s, (10) 
t=420s, and(11)t=540s. 
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Recently, optical spatial solitons have been highly touted and tested for applications in 
optical interconnects, optical communications, and other areas. In this report, we demonstrate 
experimentally optical guidance of light beams using incoherent light. Such guidance is made 
possible by generating partially spatially incoherent self-trapped dark beams (dark incoherent 
solitons) in a non-instantaneous nonlinear medium. The incoherent solitons induce 1-D and 2-D 
waveguides that can guide other intense coherent light beams. In the 1-D case, we demonstrate 
single and Y-junction planar induced-waveguides, whereas in the 2-D case, we show circular 
induced-waveguides. These experiments introduce the possibility of controlling high-power laser 
beams with low-power incoherent light sources such as Light Emitting Diodes or light bulbs. 

For decades, solitons have been exclusively considered to be coherent entities, and optical 
solitons have been studied only with intense coherent light beams. Nature, however, is full of 
incoherent radiation sources. Can incoherent light also form a soliton and thus' induce a 
waveguide? This intriguing and challenging question has recently motivated several experiments 
[1, 2] on self-trapping of incoherent light. By now, a series of experimental and theoretical [3, 4] 
studies has clearly demonstrated that incoherent spatial solitons are indeed possible in slow 
responding nonlinear media such as biased photorefractives. It is now understood that an 
incoherent bright soliton can have many modes populating in its induced waveguide [3], whereas 
an incoherent dark soliton results from a combination of radiation modes and bound states [4]. In 
either case, the light-induced variation of the refractive index forms a waveguide structure in the 
self-trapped region. Such an induced waveguide allows optical guidance of other beams that may 
be coherent or incoherent. When the nonlinearity employed is of the photorefractive type, these 
guided beams can be very intense if they are at a less-photosensitive wavelength. In this 
particular case, even a weak incoherent light'beam can guide a strong coherent laser beam. 

In our experiments, we first convert a coherent beam from an argon ion laser (?l=514 nm) 
into a quasi-monochromatic spatially incoherent light source by passing it through a rotating 
diffuser [1, 2]. The laser beam is focused by a lens onto the diffuser, and the scattered light from 
the diffuser is collected by another lens. The rotating diffuser provides random phase 
fluctuations, thus turning the beam into partially spatially incoherent. The spatial degree of 
coherence of this beam is revealed by the average size of the speckles borne on it. One can 
actually trace the temporally varying speckles with a fast camera, or, as we do here, monitor the 
beam when the diffuser is stationary. We then launch the speckled beam onto a phase or an 
amplitude mask, and redirect the reflected dark beam onto the input face of a photorefractive 
crystal in a way similar to that previously followed in generating coherent dark screening 
solitons [5, 6]. The photorefractive crystal used here is a 12-mm-long-SBN grown at Stanford 
using the Bridgeman method. We first generate a 1-D incoherent dark stripe from a phase mask. 
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By providing an appropriate bias field, we obtain self-trapping of the incoherent dark stripe. We 
then launch a cylindrically focused probe beam from a red HeNe laser (k=633 nm) into the 
incoherent dark soliton to test its waveguide properties. Figure 1 shows typical experimental 
results. The incoherent dark soliton is 18 u.m (FWHM) wide, generated at a bias field of 950 
V/cm. This beam has a coherence length (estimated from the average speckle size) of 15 urn 
away from the dark stripe. In the absence of nonlinearity, the probe beam diffracts from 20 fim 
(Fig. la) to 68 (im (Fig. lb) after liner propagation through the crystal. Once the dark incoherent 
soliton has formed, guidance of the probe beam is observed (Fig. lc). For the above 
experimental parameters, about 80% of the input power of the probe beam are guided into the 
output of the waveguide channel induced by the incoherent dark soliton. 

(a) (b) (c) 

Fig.l: Photographs showing guidance of a probe beam (bottom) by an incoherent dark soliton (top) 
initiated from a phase mask, (a) input, (b) output with linear diffraction, and (c) output with nonlinearity. 

Next we generate a dark stripe from an amplitude mask. Such an amplitude mask can be a 
simple mirror crossed by a fine wire. This in turn provides the "even" input conditions (because 
the phase across the beam is uniform) necessary to excite the Y-junction dark soliton pair. Y- 
splitting of dark incoherent solitons was recently studied in Ref. [7]. Here we show that such a 
dark incoherent soliton Y-splitting also induces an Y-junction waveguide capable of guiding 
other light beams. We perform experiments similar to that depicted in Fig. 1, except that we 
replace the phase mask with an amplitude mask. Figure 2 depicts the generation of Y-junction 
incoherent dark solitons as well as the guidance of the probe beam by the Y-junction (beam- 
splitting) induced waveguide. As expected, when the coherence of the dark beam decreases, the 
grayness of the soliton pair increases. Interestingly enough, however, the spacing of the two 
incoherent gray solitons at the crystal output face remains nearly the same. This is due to a 
special "phase memory" effect as discussed in [7]. Thus, the structure of the beam-splitting 
waveguides remains almost the same when the Y-splitting is created by either incoherent or 
coherent dark solitons. 
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Fig.2: Photographs showing guidance of a probe beam (bottom) by an incoherent Y-junction dark soliton 
pair (top initiated from an amplitude mask, (a) input, (b) output with linear diffraction, and (c) output 
with nonhneanty. v '     v 

Finally, we replace the amplitude mask with a helicoidal phase mask [6]. A 2-D fiber-like 
waveguide induced by a self-trapped incoherent optical vortex (a 2-D incoherent dark soliton) is 
also observed. Although we have employed a quasi-monochromatic spatially incoherent light 
source, our experiments suggest that spatial solitons formed from "fully" (temporally and 
spatially) incoherent light sources (e.g., incoherent white light) can also induce waveguides 
capable of guiding other coherent and incoherent beams. 
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We report here the first experimental evidence of nonlinear beam displacement in a strip-loaded 
GaAs/AlGaAs multi-quantum-well (MQW) waveguide with an asymmetric nonlinear cladding. An 
intensity-dependent spatial displacement of ~ 2 u.m was observed for the guided mode at a wavelength of 
1.55 urn. The detailed theoretical and numerical analysis of this phenomenon is described in [1]. This 
device is closely related to a soliton coupler, a device proposed by Heatley, Wright, and Stegeman [2], 
where a nonlinear cladding region between two waveguides induces an exchange of power between the 
waveguides for a given intensity. The present device, which we call a soliton-emitting waveguide, is a 
single-waveguide version of the soliton coupler. As is described in [1], this device emits a spatial soliton in 
the nonlinear cladding region for a given input intensity. It is perhaps important to note that until now, there 
was no suitable material with which to build such a device that would function using an ultrafast (i. e. non- 
resonant) nonlinearity. 

Linear cladding region Waveguide region Nonlinear cladding region 

8 urn 

sfciÄil 

GaAs  Substrate 

Fig. 1: Waveguide and device structures. 

The device is based on a single-mode waveguide at 1.55 Jim wavelength. This wavelength is below 
half the band gap of the MQW waveguide material, so that the guided mode suffers little or no two-photon 
absorption. The wafer structure was grown on a SI GaAs substrate as can be seen in Fig. 1. The MQW 
region consists of 76 periods of 2.8 nm GaAs wells with 10 nm A^Ga^As barriers. The waveguide is 
defined by strip-loading the structure with 200 nm of Si02. In addition, the MQWs of the waveguide 
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together with one of the cladding regions are selectively disordered as illustrated in Fig. 1. The MQW 
structure yields a higher nonlinear coefficient n2 than the equivalent bulk composition from the quantum 
confinement and bandgap shift effects [3]. Disordering the structure thus lowers its nonlinear coefficient. 
Disordered MQWs were reported to have up to 64 % reduction in their n2 nonlinear coefficient [4]. 
Therefore, after the intermixing process we are left in essence with a linear waveguide having one nonlinear 
cladding region. Disordering is achieved through an impurity-free vacancy disordering technique [4], where 
dielectric caps are used during rapid thermal annealing to control the out-diffusion of Ga from the 
semiconductor. The Ga out-diffusion has a substantial impact on the interdiffusion rates of Al and Ga 
across the MQW heterostructures. The samples presented here used Si02 and Si02:P to enhance and inhibit 
intermixing respectively. Standard photolithography was used for patterning the dielectric caps and hence 
tailoring the waveguide nonlinear profile. 

In the low-power regime, the entire waveguide can be regarded as linear, and the guided mode 
propagates as the fundamental mode of the strip-loaded waveguide. At higher powers, however, the right- 
hand nonlinear cladding region, as seen in Figure 1, would exhibit an induced Kerr nonlinearity, which 
increases the refractive index with regard to the waveguide region. At a sufficiently high power densities, 
the nonlinear refractive index change can compensate the linear index step defining the waveguide, 
effectively eliminating the index boundary on one side. When the mode power exceeds this threshold 
power, the light propagating in the waveguide can escape in the nonlinear cladding region and would 
stabilize in the form of a spatial soliton, propagating at an angle with regard to the waveguide. 

Fig. 2: Images of the device output at low (top) and high (bottom) input power. The 
crosshairs indicate the position of the center of the beam at low power. 

A LBO-based OPG-OPA system pumped by a Q-switched, frequency-doubled YAG laser was used 
for testing the samples described above. The output pulses had energies of the order of 10 microjoules, with 
pulse width of 20 ps, at a repetition rate of 10 Hz and a wavelength of 1560 nm. A 40x microscope was 
used objective to couple-in a collimated beam of 2.5 mm diameter, which produces a 1.6 |nm spot The 
corresponding Rayleigh length for this setup is ~ 5 urn. The waveguide was 3 mm long, and the mode size 
of the waveguide was 10 x 0.8 um. The optimal overlap integral between the mode and the circular input 
beam would be ~ 0.3. The fluence at the focal point was sufficiently large to induce optical damage within 
the waveguide material. The beam had to be not optimally coupled into the waveguide to avoid optical- 
induced damage. Considering the overlap integral and reflection losses, the maximum coupled peak power 
would be 25 kW, corresponding to a peak intensity of 200 GW/cm2, which is the upper limit for this setup 
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For these conditions we have observed an intensity-dependent lateral shift of 2 _m, for a mode width of 10 
_m. In Figure 2, we have illustrated the images from the output face of the device, the top image 
corresponding to a low input intensity, and the bottom image corresponding to a high input intensity. These 
images are normalized to each of their peak intensity. It can be seen from the fixed crosshair that the lateral 
position of the high intensity output, at bottom, shifts to the left of the crosshair, which is placed on the 
center of the low intensity image, at top. In Figure 3, we have the corresponding intensity profiles of these 
output which quantify the displacement. 
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Fig. 3: Beam profiles at the device output face at low and high power. These correspond to 
the images seen in Figure 2. 

Although the simulations in [1] were made with realistic parameters, including linear and nonlinear 
losses, the locality of the disordering process and tolerance on waveguide dimensions, there are additional 
factors that we now have to consider. First, there was an angular difference of 1 mrad between the 
waveguides and the nonlinear pattern for this sample, resulting in a 3 |im translation the intermixing patterns 
with regard to the waveguides. This is due to the limited accuracy of optical lithography. The misalignment 
results in the waveguide linear/nonlinear interface moving into the guiding region as the beam propagates. 
Moreover, the intermixing of the MQW structure induces linear refractive index change in the sample. The 
refractive index of the intermixed regions would thus increase for the TM mode of the slab [5]. This would 
increase the index step at the linear/nonlinear interface, thus increasing the threshold switching power. Our 
recent simulations that take these factors into account are in agreement with the experimental results 
observed here. We will present these recent simulations. 

In conclusion, we have observed an intensity-dependent spatial displacement of a guided beam in a 
strip loaded asymmetric waveguide. The results are consistent with our numerical models. The device has 
the potential of providing the first soliton emission-based, ultrafast all-optical switch. 
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The perspective of all-optical switching and controlling light by light made a study of soliton interactions 
more exciting [1]. It is remarkable that interacting spatial solitons can be considered as particles [2,3]. 
Interactions of (1+1)-D quadratic solitons were studied numerically in [4,5] and (2+l)-D solitons in [6-8]. 
In the case of nonplanar interactions of (2+1) spatial solitons, one can observe spiraling of optical beams 
[6-9]. In this report we demonstrate the new features of quadratic soliton interactions: spiraling of 
cascaded solitons, relative displacement of FF and SH beams into interacting parametric solitons and 
inhomogeneous phase mismatching between inclined beams. 

The slowly varying complex amplitudes of the fundamental wave Ai and second harmonic A2 obey the 
coupled equations: 

where z is the propagation distance, />, are the diffraction coefficients, A± = d2/dx2 + 82/dy2(x and y 
are transverse coordinates), Y is the nonlinear coefficient, At-rfcj-2*, is the mismatch. 
We investigate nonplanar interaction of two spatial parametric solitons (Fig. 1). The incident FF and SH 
beam axes lie in the parallel planes d apart and oppositely inclined to z direction by the angle a. 
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Fig.l: The cross section of solitons. 

The nonplanar collisions of quadratic solitons have been investigated theoretically recently [6-8]. In this 
report we consider two-colour beams spiraling both with seeded and first non-seeded SH beams. 
In the case that only FF beams are launched into a crystal, there are two stages of soliton spiraling (Fig. 
2, the upper row). 

# * 
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Fig.2. Sequential positions of solitons at different distances for soliton spiraling (the upper row) with 
cascaded nonlinearity (^,(Q) = 15 9 = 0.3 , Akld = 0.125) and (the lower row) phase-matching 

(Yi4,(0) = 8.45, y^2(0) = 8.15, 6 = 0.33). 
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(2) 

In the first stage of propagation, the soliton trapping with cascaded nonlinearity takes place. The beams 
are so distant from each other that their attraction is very weak to the point of minimal separation at 
z = 361 d. Next becomes strong soliton interaction and the beams are curled into a spiral. After distance 
of length about Az = Zld, the soliton pair is turned through 90 degrees. 

The second stage of soliton spiraling have been examined on a basis of the effective particle approach in 
[6-8]. A system of equations for the soliton center coordinates can be derived using integrals of motion 
such as the energy invariant, the vector of momentum and Hamiltonian for interacting beams. They are 
evident from Eqs. 1. We develop a soliton-particle model by variation of Lagrangian 

7, = jjdxdyl2Dl\V±Ai\
2 + D2\V±A2\

2-Ak\A2\
2-y(A}

2A'2+A;2A2) . 

For weak interplay of solitons, the complex envelopes can be represented in the following form 

A^Bfa ±xnt,y ±yni)&qp{±ikt[<ix ±xni)Qi + (y ±y<u)QY]-iqiz + i&1}- (3) 

Here ß. is the soliton envelope as the exact solution of Eqs (1), j = 1,2, q . is the nonlinear shift of the 

propagation constant, q2=2gl-Ak, x0L^ are the transverse coordinates of the FF and SH beams, 

®x = dx^jdz, 8 y = dyaijdz are the angles of beam inclination or components of soliton transverse 

velocity, 0± is the phase shift of wave, d = 2rn is the separation between soliton centers. 

Although the positions of FF and SH beams of parametric soliton are not coincide to one another due to 
interaction, for simplicity assume that xai = xa2=xü and yai = yai = yQ. Then substituting of Eqs. (3) 

into Eq. (2), we represent Lagrangian as L =W-T, where T = 2£,Pto:Oo + yl) is the kinetic energy of 

moving soliton, P-m = ^lix^±Rl{x^dxdy_ is the total power of soliton. The potential energy of 
interacting soliton equals to 
W~~A,y jT(-sn-S22COS(t)) +2B1)BnBvcos$2)dxdy. (4) 

Here Bß = B1(x-xü,y-yü), BI1 = B1(x + xl),y +y0), 4>, =4ki(xXü +yyQ)+ 2A& , 

<|>2 = 2kl(xxQ + yya) + A0 , A0= 0U - 0i2. Note that the present approach takes into account the 

inhomogeneous distribution of phase mismatch <|>u between the separated oppositely inclined solitons. 
This effect proportional to spatial soliton tilt lowers a force of soliton interaction. The corresponding 
terms do not included in the ordinary consideration [6-8]. 

Minimizing Lagrangian i ^w-r,-we derive the system of dynamic equations for spatial separation 
between soliton centers in the form 

d xa       i dW d2yQ       l dW 
dz m 8ra dz1        m dr„ 

(5) 

Here we introduce the effective soliton mass as m = 4kiPlai and the polar coordinates (rQ,(p). According 
to Eqs. (5), solitons behave similar to classical particles. 

The results of direct numerical simulation of soliton spiraling with phase match are shown in Fig. 2, the 
lower row. The dependence of the spiral angle on the distance between solitons was obtained both by 
direct 
numerical solutions of Eqs. (1) and by calculations in the frame of the effective particle theory based on 
Eqs. (5). 
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Fig. 3: The soliton spiral angle 9 versus the separation between solitons d. The data were obtained from 
direct numerical simulations (open circles) and calculations of overlap integral (filled circles). 

Close examination of soliton interaction process shows that FF and SH beams of quadratic soliton 
slightly displaced relative to each other (Fig. 3). 

are 

(a) 

* 

y. 

Fig. 3: The FF and SH beams relative displacement due to interaction of quadratic solitons: (a) the 
displacement in spiraling soliton is A « 0.1 for d = 3, 0 = 0.33 and (b) the trajectories at soliton 
scattering for fundamental beam (solid line) and second harmonic (dashed line) with maximum 

A » 0.1 for the input parameters d = 6, B = l. 

Such an effect means that a force acting on FF part of the soliton differs from one on second harmonic. 
We observed first this new phenomena on numerical simulation of soliton spiraling and scattering. The 
closer are solitons, the greater is the beam displacement A . 

This research was supported by INTAS, RFBR and FUR. 
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The limiting levels of light energy concentration can be achieved by shortening of laser pulses (femto- and 
attosecond range) and by transverse squeezing of beams (sub-micrometer sizes). The latter approach can 
be realized in media with nonlinearity of refractive index of self-focusing type. 

The main theoretical investigations of the fundamental phenomenon of self-focusing and self-trapping 
[1,2] were performed in approximation of slowly varying envelope (paraxial equation) [3,4]. In Kerr me- 
dium this theory predicts collapse of the beam into a point, if the beam power exceeds the critical power 
of self-focusing P0. However, paraxial equation is not applicable to the case of beams with transverse size 
less than the light wavelength. In the vicinity of the nonlinear focus it is necessary to solve the full set of 
Maxwell's equations taking into account complex polarization structure of radiation. Few such attempts 
are known (see [4] and references therein), but they are applicable to unrealistic (transversely one- 
dimensional) geometry or to special types of beams with cylindrically symmetric intensity distribution, 
which are unstable. 

The goal of this report is to demonstrate that regimes of spatial solitons, or radiation self-trapping, with 
nontrivial polarization structure exist in transparent media with Kerr nonlinearity, if the beam power is 
larger than the critical power of self-focusing. A special case of these solitons, the "optical needles" char- 
acterized by width less than the radiation wavelength exists when the beam power is large enough. 

The initial equations are the Maxwell's equations for monochromatic radiation with frequency CO in a. 
medium with Kerr nonlinearity, when nonlinear part of the electric displacement Dn/ is cubic in the elec- 
tric field E: 

D„=A(E-E*)E + -(E-E)E\ (1) 

For the sake of simplicity we assume 5 = 0 which is valid for striction mechanism of nonlinearity in flu- 

ids. Then it is possible to introduce a nonlinear electric permittivity £ = £0 + £2 E   , where coefficient of 

nonlinearity £2 > 0. We assume also that magnetic permeability // = 1. The fields with multiple frequen- 
cies (e.g., 3 CO) are small because synchronism conditions are not fulfilled for them. To take into account a 
vector nature of the electromagnetic field, it is convenient to introduce, instead of electric E and magnetic 
H fields, the vector II and scalar 0 potentials, so that 

2 

H = -— rotn,   E = -grad<z>+—rn. (2) 
c c 

After choice of the scalar potential <p = — div II, we get the following equation for the vector potential 
£ 

2 
£CO 

AII + ——n-grading-div n = 0. (3) 
c 
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Then the electric field E = -rotrotH. Next we assume that the field dependence on the longitudinal co- 

ordinate z is exponential: Tl(x, y, z) = H(x, y) exp(iyZ), where y is a real propagation constant. The 

Maxwell's equations admit solution with the potential longitudinal component Uz = 0. The final form of 
equations for the potential transverse components is 

£0) A±nx-fnx+^n- 9(lng) 

dx 

c By 

(4) 

= 0. 
dx        dy 

Here A± = d2 /dx2 + d2 /dy2 is the transverse Laplacian. The radiation power P is determined as the 
integral over transverse section of time averaged z-component of Pointing vector. After scaling of the 

variables we use dimensionless coordinates (r->kr,k = (a>lc)JFQ ), power (P->P/P0), propagation 

constant (y -»\yl k) and assume e = 1 + |E|2. 

Approximate analytical solution of Eqs. (4) can be given for high power P, if we neglect the small terms 
with derivatives of       . It follows from this solution that there is a discrete set of regimes of self-trapping 
with different critical power. The fundamental spatial soliton has a minimum critical power and therefore 
seems to be most stable. Its field structure is universal, only its scales vary with variation of power Its 
width decreases with the power, and arbitrary narrow spatial solitons ("optical needles") exist if the ratio 
PIPQ is large enough. 

In numerical solution of Eqs. (4) we use iterative procedure for matching of transverse distributions of the 
potential, electric field, and dielectric permittivity. Results of the numerical solution are given in Figs 1-3 
They correlate well with the approximate analytics. 

P/Po   10 

Fig. 1. Radiation power P versus propagation constant y in the regime of steady state self-focusing in Kerr medium 
Power is scaled on the critical power of self-focusing in the parabolic approximation P0, and propagation constant y\ 

is scaled on the radiation wavenumber in a linear medium k. 
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Fig. 2. Effective width of the beam w versus radiation power P in the regime of steady state self-focusing. 
Width is scaled on radiation wavelength in the linear medium X, and power is scaled on the critical power 

of self-focusing in the parabolic approximation P0. 

a 

Fig. 3. Transverse profiles of radiation intensity in the regime of the "optical needles": (a) intensity of the field 
I       |2      l     2I I       |2 

transverse component IL = \EX\  + \Ey ; (b) intensity of the longitudinal component 1^ =\EZ\  ; the total power 

In conclusion, we have found for the first time solutions of the full system of the Maxwell's equations cor- 
responding to nontrivial polarization structure of radiation in a medium with Kerr nonlinearity. The spatial 
soliton field structure depends on the soliton power. For high power a universal field structure is formed 
where only scales depend on power. Extremely narrow (with width less than radiation wavelength) spatial 
solitons, or "optical needles", can be formed for sufficiently high soliton power. 
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Photorefractive screening solitons have attracted a lot of interest in the last years, because they 
can be created with very low laser power using a biasing DC electric field and a background 
illumination. Their anisotropic potential makes them unique among the different types of spatial 
optical solitons, like Kerr- or quadratic solitons [1-4]. Due to this anisotropy a lot of different 
interaction scenarios between them can be realized, as fusion [5, 6], creation [7], annihilation [8], 
rotation [9] and spiraling [10] of spatial solitons. These effects, combined with the simplicity of their 
generation, makes them very promising for waveguide applications, as e.g. all-optical switching, 
adaptive interconnects and logic operations [11-14]. 

Due to their anisotropic potential, different interaction scenarios between photorefractive (PR) 
solitons in the direction parallel (^-direction) and perpendicular (y-direction) to the applied electric 
field can be found. While these solitons always attract when aligned in y-plane, repulsion and 
attraction can appear in the plane parallel to the external electric field (x-plane), depending on their 
initial separation. This provides the possibility of realizing different waveguide interconnections, 
as eg. 2-to-l coupling or waveguide separation depending on the plane of incidence. Furthermore 
2-to-3 or 3-to-l coupling devices can be realized using coherent solitons  [7, 8]. 

These interaction effects have been described mostly in steady-state situations. However temporal 
effects become important when investigating the formation and interaction of 2D spatial solitons. 
Furthermore, resolving the temporal development is a suitable way to obtain a complete insight in 
spatial soliton physics, which is a necessity to gain control over the soliton interaction for waveguide 
applications. Here we focus on the anomalous anisotropic [15, 9] dynamical behaviour of the 
interaction of incoherent PR screening solitons when they are launched into the crystal under 
skewed geometry. These initial conditions lead to a mutual winding of the solitons and strong 
interaction in the noncentral potential they create. In terms of application the mutual winding of 
the solitons can be used to realize a device to swap positions of waveguides or to guide one beam 
to a different position by a second one (all-optical switch). 

The interaction of mutually incoherent spatial solitons was investigated experimentally in a stan- 
dard configuration [7-9]. A Cerium-doped Strontium Barium Niobate (SBN) crystal with a size of 
13.5 x 5 x 5 mm3 (axbxc) was biased with a DC voltage of 2-3 kV applied along its polar c-axis. 
Two circular beams derived from a frequency-doubled Nd:YAG laser (A = 532 nm) were directed 
by a system of mirrors and beam splitters on the entrance face (x, y) of the crystal. The relative 
angle of the interacting beams could be precisely adjusted by the external mirrors. The beams 
had Gaussian diameters of sa 15/zm, an intensity of 3/iW, and were polarized along the z-axis, to 
make use of the large r33 electrooptic coefficient. The process of screening of the photorefractive 
space charge field is determined by the degree of saturation Isat, which is defined as the ratio of the 
soliton peak intensity Is to the background illumination Ib. To control the degree of saturation, 
the crystal was illuminated by a wide beam derived from a white light source. The power of the 
background illumination was set to such a level that the degree of saturation was approximately 
equal to Ib/Is « 2 for all beams. The input and output light intensity distributions were recorded 
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with CCD cameras. 

Figure 1: Stationary state representation of spiraling of an incoherent soliton pair, (a) Beams at the 
entrance face of the crystal, indicating the direction of relative skewing of both beams, (b) at the exit face 
without interaction and (c) during spiraling due to the interaction when the external field is operating. The 
direction of the electric field is horizontal. 

Fig. 1 shows a typical scenario of two solitons propagating in a PR medium in the steady state. 
Fig. 1(a) shows the entrance face of the crystal and Fig. l(b und c) the exit face of the crystal 
without and with interaction of the two beams, respectively. When comparing the pictures (b) 
and (c) it seems that the solitons almost do not interact except a slight mutual rotation of only 
a few degree. Another interpretation of the situation can state a mutual rotation of the written 
waveguides of almost 1-K. 

When this situation is resolved in time, the insight into the interaction behaviour becomes much 
more transparent. Fig. 2 shows a temporally resolved series of the interaction of two PR solitons. 
Here, the second beam (B) is launched into the crystal when the first beam (A) already propagates 
in its steady state. In the first seconds the second soliton (B) forms at its launching position 
(fig. 2.2). Subsequently, both beams break up into different spatial components (fig. 2.3), until 
they reappear in a clockwise rotated position (fig. 2.6). During this stage, power exchange takes 
place between the two beams. Then beam B rotates counterclockwise around beam A, and reaches 
its steady state position (fig. 2.7-12). Note that the solitons turn around each other in an elliptical 
orbit, as it was found in [10]. The reason for the change in the rotation direction can be found in 
the anisotropic potential structure which provides regions of attraction as well as of repulsion 
Another possibility to investigate the interaction of two solitons in detail is a spatial shift of the 
initial ^-coordinate of one beam with respect to the other, while all other conditions are kept 
unchanged. In this case the length of mutual interaction of the two solitons in the PR material 
can be varied. In our experiments the beams were separated about « 10 /zm in y direction, and 
we changed the distance in x direction from -30 to 30 /im. We found that after a counterclockwise 
rotation of the beams of about « 90° the solitons start to exchange energy at a initial distance 
of the beams of « 5 /zm. When the beams are launched in a plane vertical to the electric field 
(distance in ^-direction = 0 /zm) the beam fuse to a single soliton at the exit face of the crystal. 
When shifting the initial beam position further and thus increasing the relative distance, the beams 
separate again with changed positions and the counterclockwise rotation proceeds about another 
« 80°. At a relative initial distance of more than 30 /zm the beams do not interact any longer and 
propagate undisturbed. 

In conclusion, temporally and spatially resolving the behaviour of soliton interaction may explain 
steady-state results of the interaction in a different light and gives a detailed insight into the 
complex interaction scenarios that take place during soliton propagation". This knowledge is an 
essential point to gain control of the interaction of solitons and will lead to a variety of practical 
applications in adaptive waveguiding. The realization of different adaptive waveguide interconnects, 
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Figure 2: Time-resolved complex rotation of a soliton pair. The sequence starts when a second beam is 
launched to a steady-state soliton. The time interval between consecutive frames is 0.36 s. 

as 2-to-l and 3-to-2 coupler, waveguide interchanging devices and all-optical switches is presently 
under investigation. The authors acknowledge kind support by Prof. Dr. T. Tschudi. 
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The recent spectral observations of a light beam propagated in a waveguide filled with CS2 

have shown than the phase modulation is not the only phenomenon explaining the spectral 

broadening[l]. The stimulated Rayleigh wing scattering (SRWS) has to be taken into account. 

This assumption has been permitted by the comparison with recent observations of SRWS in 

another guided propagation configuration due to Bessel beam excitation in bulk medium[2 - 3]. 

We show that in guided propagation the SRWS is mainly produced in cascade processes 

characterized by the presence of Stokes/anti-Stokes couplings. We analyse the intrication of 

these modulation and SRWS in the soliton propagation for different spatial sizes of the input 

beam. 

In bulk medium the SRWS is produced with a Bessel beam [2]. The Bessel beam can be 

considered as a superposition of planes waves, the wave vectors of which form a cone. The 

interaction domain in the material is confined to a narrow and long line along the cone axis[4]. 

The configuration allows the separation of non linear effects. The results show at the threshold 

either a sharp Stokes line with frequency shift Q. = 2.5 cm'1 or 7 cm"1 or a double structure 

consisting of the two sharp Stokes lines. Above the SRWS threshold a large Stokes spectrum 

appears composed of several lines without anti-Stokes components. 

The interpretation of these results is based on the role played by four photon processes 

coupling two exciting photons, one Stokes and one anti-Stokes scattered photons. The 

proccess is efficient near the wave vector matching condition, favourized by guided 

propagation. In the condition of Bessel beam experiments the Stokes line becomes exciting line 

for a new scattering four photon process. 
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In the case of a planar waveguide near the soliton threshold, a spatial soliton is obtained 

when the input power is : Ps =     n° 2 where d is the thickness of the waveguide and yin the 

size of the input beam. The soliton intensity Is and the SRWS threshold IT are of the same 

order in our experimental conditions. But contrary to Is, IT is independent of the dimension y^ 

Thus the study of the influence of yin on the output spectra will give informations on the 

role of SRWS in the soliton propagation. 

The output spectra have been observed for different values of the input power P around the 

soliton power Ps in the case of a TM input beam (fig. 1). 

Just above the soliton power (P/Ps = 1.2 to 1.4) all the spectra are broadened. However, their 

shapes differ stongly according to the values of yin. 

• for small yin (40 urn, 80 urn) - ie for large values of Is - a dip is observed at the laser 

wavelength. The intensity is maximum at the red end of the spectrum. Anti-Stokes wings are 

present. 

• for small yin (110 urn), anti-Stokes wings are absent. The intensity of the Stokes lines 

decrease from the laser wavelength to the red end of the spectrum This spectral behaviour 

presents a good reproducibility. 

These observations - together with those made at larger values of P - support the idea that 

the phase modulation process dominates in small size solitons, while the four photon SRWS 

process dominates in large size solitons. The choice of the spatial size of the soliton can thus 

help to control the role of SRWS in the soliton formation. 
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Recently reported experimental results on multi-color 
harmonic generation in quasiperiodic superlattices [1,2] 
allow the possibility of simultaneous phase-matching of 
different frequencies. Those results also open a door to 
a novel class of problems involving the propagation and 
dynamics of spatial optical solitons supported by para- 
metric wave mixing. In this paper we consider second- 
harmonic generation (SHG) and nonlinear beam prop- 
agation in Fibbonacci optical superlattices, and demon- 
strate numerically the possibility of spatial self-trapping 
of quasiperiodic waves whose envelope amplitude varies 
quasiperiodically, while still maintaining a stable, well- 
defined spatially localised structure, a quasiperiodic en- 
velope soliton. 

We consider the interaction of a fundamental wave 
(FW) with the frequency w and its second harmonic (SH) 
in a layered slab waveguide with quadratic (or x^) non- 
linear response. Assuming the nonlinear susceptibility to 
be modulated and the nonlinearity to be of the same or- 
der as diffraction, we write the dynamical equations in a 
general form 

dw 
8z 

I82w 
+ '2dx2 

dv 
Wz 

ld2v 
+ 'ldx2 

+ d(z)w*ve~ißz = 0, 

+ d(z)w2eißz = 0, 
(1) 

where w(fyz) and v(x, z) are the slowly varying envelopes 
of the FW and its SH, respectively. The parameter 
ß = &k\kw\xl is proportional to the phase mismatch 
Ak = 2ku - &2w, ku and &2w being the wave numbers 
at the two frequencies. The transverse coordinate x is 
measured in units of the input beam width x0, and the 
propagation distance z, in units of the diffraction length 
ld=x2

)\kU)\. The spatial modulation of the nonlinear sus- 
ceptibility x(2) is described by the quasi-phase-matching 
(QPM) grating function d(z). In the context of SHG the 
QPM technique is known as an effective way to achieve 
phase matching, and it has been studied intensively (see 
Ref. [3] for a review). 

Here, we consider a QPM grating produced by a 
quasiperiodic nonlinear optical superlattice. Quasiperi- 
odic optical superlattices, one-dimensional analogs of 
quasicrystals [4], are usually designed to study the ef- 

fect of Anderson localisation in the linear regime of light 
propagation. For QPM gratings, the nonlinear quasiperi- 
odic superlattice of LiTa03, in which two antiparallel 
ferro-electric domains are arranged in a Fibbonacci se- 
quence, was recently fabricated by Zhu et al. [1], who 
measured multi-colour SHG with energy conversion ef- 
ficiency of ~ 5% - 20%. This quasiperiodic optical su- 
perlattice in LiTaC-3 can also be used for efficient direct 
third harmonic generation [2]. 

FIG. 1. (a) QPM modulation coefficient d(z) for J=0.1 and 
77=0.34 with the building blocks A and B. (b) Numerically 
calculated Fourier spectrum of d(z) with the analytically pre- 
dicted position of the four largest peaks. 

The quasiperiodic QPM gratings we consider have two 
building blocks A and B of the length lA and lB, re- 
spectively, which are ordered in a Fibonacci sequence, 
as shown in Fig. 1(a). Each block has a domain of 
length lAl=l (lBl=l) with d=+l and a domain of length 
U2=l(l+v) (IB2=1(1-TIJ)) with d=-l. Inthecaseofx(2) 

nonlinear QPM superlattices this corresponds to positive 
and negative ferro-electric domains, respectively. The 
specific details of this type of Fibbonacci optical super- 
lattices can be found elsewhere (see, e.g., Ref. [1] and 
references therein). For our simulations presented be- 
low we have chosen ry=2(r - 1)/(1 + r2)=0.34, where 
r=(l + V5)/2 is the so-called golden ratio. This means 
that the ratio of length scales is also the golden ratio, 
IA/IB=T. Furthermore, we have chosen 1=0.1. 

The modulation coefficient d(z), which varies between 
+ 1 and -1 according to the Fibonacci sequence, can be 
expanded in a Fourier series 

d{z) = Yl dm,ne ,iG„ 
(2) 
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where the wavenumber components are 

Gm>n = 27i\D~1(m + nr), (3) 

and D=TIA + ZB=0.52 for the chosen parameter val- 
ues. Hence the Fourier spectrum is composed of sums 
and differences of the basic wavenumbers ki=2ir/D and 
k2=27rr/D. These components fill the whole Fourier 
space densely, since hi and k2 are incommensurate. Fig- 
ure 1 shows a part of the grating function d(z) and its 
corresponding numerically calculated Fourier spectrum 
Gm,n- The lowest-order "Fibonacci modes" are clearly 
the most intense. From Eq. (3) and the numerically 
found spectrum we identify the six most intense modes 
presented in Table 1. The corresponding Gm<n is in good 
agreement with Eq. (3). 

m 10        12        12 
n 112       3       0       4 
dm,n 31.42 19.42 50.83 82.25 12.00 101.66 

TABLE 1. The numerically found six most intense Fi- 
bonacci modes Gm,n- 

To analyse the beam propagation and SHG in a 
quasiperiodic QPM grating, one could apply the averag- 
ing theory developed for regular periodic QPM gratings 
[5]. This theory is applicable to the case of rapidly vary- 
ing QPM structures, such as those designed and anal- 
ysed in Ref. [1], where the domain length corresponds to 
I < 0.01. To lowest order this approach always yields a 
system of averaged equations with constant mean-value 
coefficients, which does not allow to describe oscillations 
of the beam amplitude and phase. However, here we 
wish to go beyond the averaged equations and consider 
the rapid large-amplitude variations of the envelope func- 
tions. This can be done analytically for periodic QPM 
gratings [5]. For the quasiperiodic gratings we consider 
here we have to resolve to numerical simulations. 

Thus we have solved Eqs. (1) numerically with a 
second-order split-step routine, in which the linear part 
is solved with the fast-Fourier-transform (FFT) method 
and the nonlinear part, with a fourth-order Runge-Kutta 
scheme. The step-length is adapting to the local domain 
length of the QPM grating. At the input of the crystal 
we excite only the fundamental beam (corresponding to 
unseeded SHG) with a Gaussian profile, 

w(x, 0) = Aw e~x2/1°,   v(x, 0) = 0. (4) 

As an example, we consider the quasiperiodic QPM 
grating with matching to the peak at <?2,3, i.e., 
/3=G2,3=82.25. First, we study the small-amplitude limit 
when a weak fundamental beam is injected with a low 
amplitude ^4^=0.25. Figures 2(a,b) show contour plots 
of the evolution of the FW and its SH in this effectively 
linear regime. As is clearly seem from Fig. 2(b) the SH 
is excited, but both beams eventually diffract. 

10 15 20 25 

FIG. 2. (a) Diffraction of a weak FW beam with amplitude 
Aw=0.25 for ß = 82.25. (b) Corresponding SH component. 
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FIG. 3. Excitation of quasiperiodic soliton by a FW beam 
with amplitude Aw=5 for /3=82.25. (a) FW component, (b) 
SH component. 

When the amplitude of the input beam exceeds a cer- 
tain threshold, self-focusing should be observed for both 
the FW and its SH. Figures 3(a,b) show an example 
of the evolution of a strong input FW beam with the 
amplitude Aw=5, and its corresponding SH. Again the 
SH component is generated, but now the nonlinearity is 
so strong that it leads to self-focusing and mutual self- 
trapping of the two fields, resulting in a spatially local- 
ized two-component solitary wave, despite the continuous 
scattering of the quasiperiodic QPM grating. 

25 

I" 
C15 
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FIG. 4. Amplitude oscillations of the quasiperiodic soli- 
ton excited in Fig. 3. (a),(b) Close-ups of the peak intensity 
K,z,0)|2 of the FW (black) and |v(0,«)|2 of the SH (grey). 
The Fibonacci building blocks A and B are indicated in (b) 
with d=l in grey regions, and d=-\ in white regions. 

It is important to notice that the formed two- 
component self-trapped beam is quasiperiodic itself. Af- 
ter an initial transient its amplitude oscillates in phase 
with the quasiperiodic QPM modulation d(z). This is 
illustrated in Fig. 4, where we show in more detail the 
peak intensities of both the components in an asymptotic 
regime of the evolution. 

Since the oscillations shown in Fig. 4 are in phase with 
the oscillations of d(z), their spectra should be similar. 
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This is confirmed by Fig. 5, which gives the spectrum of 
the peak intensity \w(z, 0)|2 of the FW. Superimposed on 
this spectrum is the positions of Fibonacci peaks <?„,„ 
of d(z). Note that the Fibonacci peak at &=82.25 is 
suppressed (or reduced) because the identical mismatch 
ß down-converts it to the dc-component. Sum and dif- 
ference wavenumbers between ß and Gm,n appear, which 
are generated by the nonlinearity. For example, the com- 
ponent at fc=62.8 is the difference between /3=82.25 and 
Go,i=19.42. 

Our numerical results show that such quasiperiodic 
solitons can be generated for a broad range of the phase- 
mismatch ß. The amplitude and width of the solitons 
depend on the effective mismatch, which is the separa- 
tion between ß and the nearest strong peak Gm,„ in the 
Fibbonacci QPM grating spectrum. Thus, low-amplitude 
broad solitons are excited for /3-values in between peaks, 
whereas high-amplitude narrow solitons are excited when 
ß is close to a strong peak, as shown in Fig. 3. 

This is of course a general phenomenon also observed in 
many nonlinear isotropic media. However, here the self- 
trapping occurs for quasiperiodic waves, and it is pre- 
served in the quasiperiodic variations of the amplitude of 
both components. 

Numerical simulations for other cases reveal the ba- 
sic properties of the quasiperiodic self-trapping: Spatial 
solitons are formed in Fibonacci quadratic nonlinear slab 
waveguides above a certain power threshold, and such 
solitons are always quasiperiodic, i.e. they exhibit large- 
amplitude oscillations along z, which are composed of 
mixing of the two incommensurate Fibonacci wavenum- 
bers. The amplitude and width of these solitons depend 
on the difference between the phase-mismatch parameter 
ß and the nearest peak Gm,n in the Fibonacci spectrum. 
When the domain length is sufficiently small, the effect 
of the amplitude oscillations become small, and the dy- 
namics can be described by averaged equations similar 
to those derived for periodic QPM gratings [5]. 

20 80 100 40 60 
k 

FIG. 5. Spectrum of the amplitude oscillations of the FW 
component of the quasiperiodic soliton, calculated from 2=90 
to 100 in Fig. 4(a). The peaks correspond to the Fibonacci 
peaks Gm,n in d(z) and sum and difference thereof with the 
mismatch /3=82.25. 

input peak intensity 
FIG. 6. Transmission \w(L,0)/w(0,0)\2 of the FW (solid) 

and \v(L,0)/w(0,0)\2 of the SH (dashed) vs. the input 
intensity |w(0,0)|2 of the FW. Crystal length: L=100. 
Phase-mismatch: /?=82.25. 

The existence of spatially localized self-trapped states 
in nonlinear quasiperiodic media should not depend on 
the particular kind of nonlinearity. The dependence on 
ß observed here for the x(2) gratings is simply due to the 
fact that the "real" strength of the quadratic nonlinear- 
ity is inversely proportional to the phase-mismatch. In 
fact, it is well-known that for large values of the mis- 
match parameter ß the quadratic nonlinearity becomes 
effectively cubic [6]. Thus, our findings are directly appli- 
cable to nonlinear optical superlattices in cubic (or x(3)) 
nonlinear media. 

To analyse in more detail the transition between the 
linear (diffraction) and nonlinear (self-trapping) regimes, 
we show in Fig. 6 the dependence of the beam amplitude 
at the output of a crystal of length 1=100, on the am- 
plitude of the FW input beam. This dependence clearly 
illustrates how the generation of a localized state depends 
on the strength of the nonlinearity, i.e. a quasiperiodic 
soliton is generated only for sufficiently high amplitudes. 
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The subject of incoherent (or partially coherent) spa- 
tial solitons has attracted lots of attention recently [1-12]. 
The light beam generated by the incoherent light source 
exhibits some level of randomness of phase between any 
two points. Additionally, its intensity has a speckle 
structure which prevents the "standard" uniform self- 
focusing observed in instantenous nonlinear media as the 
beam tends to form filaments. It turns out, however, 
that self-focusing and soliton formation are still possible 
provided the nonlinear medium is inertial and responds 
much slower than the time scale characterizing the ran- 
dom phase variation. 

Typically few different approaches are used in the de- 
scription of partially coherent beams in a slow nonlinear 
medium. The coherent density method is based on rep- 
resentation of the beam as a superposition of mutually 
incoherent components [3,4]. In case of stationary soli- 
ton propagation solution can be found using a multimode 
decomposition of the field [9,8]. Finally, in the diffrac- 
tionless limit, the geometric optics approach can be also 
used [11,12]. 

However, the most natural way of treating the partially 
coherent beam is to use the mutual coherence function 
[13]. Here we show that the evolution equation for the co- 
herence function in a logarithmically nonlinear medium 
has an exact analytical solution for partially coherent 
beams. We find conditions for the formation of station- 
ary solitons and show that they are only a special case of 
a much larger class of periodic solitons. 

The properties of the partially coherent beam with the 
amplitude ip(r) are described by the mutual coherence 
function r(fi,r2) defined as: 

r(n,f2) = <v>(f^(f2)> (i) 

where f— (x,y) and brackets denote temporal or ensem- 
ble averaging. In particular, the time averaged intensity 
is obtained as 1(f) = T(f, f). We take the refractive in- 
dex change Sn to be a logarithmic function of the average 
intensity 6n(I) = n2 In I. 

It can be shown that r(r"i,r2) satisfies the following 
differential equation (see also [12,14,15]) 

i--^ + VÄ-Vp-r12 + n2ln 
VW ri2 = o. (2) 

where R = (fx + f2)/2, p = fi - f-2 and Tij=T(fi,fj), 
t,j=(l,2). 

We assume that the incident beam possesses Gaussian 
statistics 

r(^^,^0)==exp(-!^ll-^ 
ZP0 rc 

(3) 

where po and rc denote the initial diameter and coherence 
radius of the beam, respectively. 

We will look for solutions to Eq. (2) using the Gaussian 
anzatz 

T(R,p,z) = 

Ar ^       (     R2 
A(z)exp ( --3— 

(?{Z) CT^Z) 
+ iR ■ pfj-{z) (4) 

where A(z) and p,(z) represent the amplitude and phase 
variation of the coherence function, and p(z) and o~(z) 
its diameter and coherence radius, respectively. Insert- 
ing Eq. (4) into Eq. (2) we obtain the equation describing 
the dynamics of the width p(z) of a partially coherent 
beam (with Gaussian statistics) in a logarithmic nonlin- 
ear medium 

o9p 
dz2 P3^ 

+ ^ = 0, (5) 

where the effective coherence radius 1/crg = 1/r2 + 
l/(4po)- Clearly, the dynamics is determined by a compe- 
tition between free spreading and nonlinearity. Choosing 
the initial condition such that (dp/dz)(z = 0)=0, and 
integrating Eq. (5) once, we find that the evolution of 
p(z) is described by Newton's equation for an effective 
particle, 

(dp/dz)2 + P(p) = 0, 

moving in the potential P(p), which is given by 

P(P) = H + 4n2 In 

(6) 

(7) 

This asymmetric potential is depicted in Fig. 1. 
Stationary soliton solutions with constant beam width 

(corresponding to the effective particle being located at 
the bottom of the potential well) are formed at zero de- 
tuning 

n2 = n2 
1 

2p2
0 

= 0. (8) 
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Physically, this condition means that soliton existence re- 
quires the nonlinearity-induced focusing to compensate 
for beam spreading due to both diffraction and incoher- 
ence. The diameter of the stationary partially coherent 
soliton is given by p2, = (2n2 - 4/r2)-1. For perfectly 
coherent beams, i.e. for rc=oo, we recover the known so- 
lution for coherent solitons in logarithmically nonlinear 
media [16,17]. On the other hand, it is also clear that a 
soliton cannot exist if the coherence radius of the input 
beam is lower than y/2/n2. This reproduces the earlier 
results obtained by using both a coherent density ap- 
proach [4] and modal decomposition [9] - and it indicates 
that all of these theoretical descriptions of the beam are 
equivalent. 

c 
V 
o 
a. 

0       1       2       3      4       S 
Beam width, />//>„ 

-0.2    0.0      0.2      0.4      0.6 
Normalized beam width, 6 

FIG. 1. (a) Potential P(p) (solid) and its third order Tay- 
lor expansion P3(p) (dashed) for an initial coherence radius 
of <70=1 and a focusing logarithmic nonlinear medium with 
ra2=1.8. (b) Zoom P{&) and P3(ö) near the bottom of the 
potential, with 6=p/po     1. 

For nonzero detuning, A ^ 0, the beam diameter (as 
well as the coherence radius) will undergo periodic oscil- 
lations [12], corresponding to the effective particle oscil- 
lating in the bottom of the potential well. We can find 
an approximate analytical expression for these oscillat- 
ing solutions when the detuning is small. In this case 
p(z) will remain close to the initial value p0 and can be 
expressed in terms of the Jacobi elliptic sn-function [18]. 

p(z)=po[l+0_sn2 . Vh<*2 
A> *)], 

6- 
m=—.     (9) 

Here a2 = n2/3 -4/<r§ while 0_ w -A/n2 and 9+ « 3/5. 
Thus the beam width will oscillate between p0 and an- 
other value, where the potential is negative. For positive 
detuning the nonlinear self-focusing dominates and the 
beam width decreases initially, i.e. it oscillates between 
po and a somewhat lower value. For negative detuning 
the diffraction dominates and the beam width increases 
initially, i.e. it oscillates between p0 and a somewhat 
larger value. 

The analysis presented above can easily be extended 
to the case of elliptical beams. If px0 and py0 are the ini- 
tial beam diameters along the x- and y-axes, respectively, 
and rcx,rcy are the corresponding initial coherence radii 
then, the dynamics of the beam radii can be described 
by the following equations: 

d2px 

dz2 

d2Py 
dz2 

44 + 222=0 
P% <?X0        PX 

4_ pyo     2n2 

P% tfo      Py 
(10) 

where 

T2
       r2" + 4O

2 
' ex       ^H: 'x0 xO 7y0 

= T2- + 772- (11) 
cy 4PyO 
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(c) 

FIG. 2. Nonstationary propagation of a cylindrical par- 
tially coherent beam in a logarithmic nonlinear medium, (a) 
beam diameter (dotted) and peak intensity (solid) as a func- 
tion of the propagation distance; (b) 3-dimensional view of the 
beam with an intensity isosurface at 10% of the peak value; 
(c) longitudinal crossection of the beam. 

It is evident from Eqs. (10) that the dynamics along 
both principal axes are completely uncoupled. In general, 
a partially coherent Gaussian beam of elliptical shape 
propagating in a logarithmic nonlinear medium will ex- 
perience periodic oscillations along both axes. Further, 
an elliptically shaped stationary soliton can be formed if 
the coherence parameters of the beam and its diameters 
are given by the following relations: 

Pxo = 2n2 ■4AL Pyo 2n2 - A/r\y (12) 
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FIG. 3. Nonstationary propagation of an elliptical partially 
coherent beam in a logarithmic nonlinear medium, (a) beam 
radii (dotted) and peak intensity (solid) as a function of prop- 
agation distance; (b) 3-dimensional view of the beam; (c-d) 
longitudinal crossections of the beam. 

In Fig. 2 and Fig. 3 we show the nonstationary prop- 
agation of two partially coherent beams. In Fig. 2, the 
initial parameters are chosen such that pxo = pyo = 1.0, 
fcx = rcy = 1.15, and 712 = 1. In the top graph we plot 
the beam radii (dotted lines) as well as the peak intensity 
of the beam (solid line) as functions of the propagation 
distance. To emphasize the 3-dimensional nature of the 
beam, Fig. 2(b) shows an isosurface of the beam inten- 
sity (thresholded at 10% of the peak value) along with 

two orthogonal cut planes whose intensity is displayed in 
Fig. 2(c). In this particular case, the circularly symmet- 
ric beam exhibits periodic contractions and expansions 
during propagation. 

Fig. 3 shows the nonstationary propagation of an el- 
liptical partially coherent beam. The initial conditions 
are the same as in Fig. 2 with the exception of the y-axis 
coherence whose value is changed to rcy = 2.3. Here the 
principal beam radii oscillate with incommensurate peri- 
ods and the peak intensity exhibits quasi-periodic oscilla- 
tions. The complexity of the overall intensity distribution 
is shown in Figs. 3 (b)-(d) where now the two orthogonal 
cut planes display differing intensity patterns. 

In conclusion, we have presented a rigorous analysis of 
the propagation of partially coherent beams with Gaus- 
sian statistics in a logarithmically nonlinear medium. 
Our approach is based on the evolution of the mutual 
coherence function and captures simultaneously the dy- 
namics of the beam diameter as well as its coherence 
properties. 
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Introduction 

In the past few years, spatial optical solitons at low (pW) power levels have been observed in 
photorefractive crystals [1]. Spatial solitons are light beams in nonlinear optical materials for which any 
possibility of diffraction has been eliminated by material nonlinearity. In the case of photorefractive 
crystals, the nonlinearity is due to a reversible variation of the refractive index induced by the spatial 
variation of the optical intensity. Originally, this effect was interpreted as an 'optical damage' of the 
crystal, provoked by the beam. 
This mechanism, compared to other nonlinear effects such as Kerr nonlinearity, is very slow. This is often 
seen as a major drawback of this effect, although ways to compensate the slow response time by increasing 
the beam power have been proposed. As shown in this paper, slow soliton formation or, more precisely, the 
solitary wave formation, can be used in a constructive manner to develop a time-dependent scanning device 
Finally, another important property of photorefractive solitary waves is their stability in bulk crystal, 
(2D+1) configurations. This property, common to all non-Kerr solitary waves such as quadratic x(2)' 
nonlinearity, promises an exciting extension to higher-dimensions beyond the work presented here. 

Mathematical development 

Unlike many numerical/theoretical publications in this field where the beam is assumed to evolve in a 
steady-state configuration, the approach taken here includes the time dependence in the wave equation. 
Using the -Kukhutarev-Vinetskü model- in the case of an electromagnetic wave propagating along z and 
diffracting only along the ferroelectric c axis, denoted x, it is possible to derive an expression for the time 
dependent space charge field E [2]. Assuming that the time dependent process of charge generation and 
recombinaison evolves on a time scale negligible to the current distribution time scale [3], the space charge 
field E is given by [2,4] & 

E = E0 exp 
eju nc 

«tö 
It 

where 

\ / 
+ 1-exp 

/ V 

tß nc 

In W, 
It (E-+B*)T-M (l) 

E is the electric field applied to the crystal and Eo is the initial (time=0) field 
Eph and Eext are, respectively, the photovoltaic and external applied fields. 
I is the intensity of the beam and I4 the dark irradiance. 
e is the charge of the electron 
eo and e, are, respectively, the electric permittivity of vacuum and the dielectric tensor 
M- and Kb are, respectively, the electric mobility and the Boltzman constant 
T and t are, respectively, the temperature and the time 

On the other hand, the evolution of the optical beam U(x,z,t) can be obtained using Maxwell's equations 
and assuming that U(x,z,t) is a slowly varying function, a nonlinear Schrodinger type equation is found 
where the nonlinear coefficient is directly proportional to the refractive index change caused by the beam. 
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This is  the well-known Pockels  effect.  Using  (1)  and renormalising the optical field amplitude 
U(x,z,t) 

U(x, z,t)—» j=—' me time-dependent refractive index change in the case of an incoherent 
/1^ 

interaction between two optical beams V(x,z,t) and W(x,z,t) is 

(An)v=--n3reffE = 
N' 

-exp 
id(i+r(|v|2+|w|2)) W 

r i+7(|v|2+|w|2) 

Ivp N' 

i+y(M2+lw|2)   Y 
■exp 

id(i+r(|v|2+|w|2)) 
(2) 

where (An)v should be understood as the refractive index change caused by the optical beam V(x,z,t). 

Similar expression (An) w is found for the second beam involved in the interaction, W(x,z,t). 

Note that the other variables appearing in equation (2) are 
n and reff respectively the refractive index and electro-optic coefficient of the crystal, 

N2 = 
k2n2reffxl\Eext+Eph) k2n2reffx0KBT 
  ; D = z  : the diffusion coefficient 

2e 

2 = -— and y, the saturation parameter 
e{Jti0 

Numerical experiments 

As seen from (2), the response time of the photorefractive materials clearly depends on the intensity of the 
optical beam. This property can be used in an interesting way to design time-dependent switches as 
illustrated in this publication. Let imagine the idealised configuration represented on figure 1 where two 
beams carrying different input powers are launched in a Bi^TiOio photorefractive crystal. 
This   is   a   stable   configuration     LOW intensity beam 
because beams with rather different (beam •) 
intensities are always 
simultaneously     allowed    in     a 
photorefractive medium because it, 
in essence, behaves as a saturable 
medium. In other terms, the system 

High intensity beam 
(beam 2) 

Photorefractive crystal 
Bi,,TiO,0 

Figure 1. Schematic represention of the time-dependent switch 

is bistable and the low and high intensity beams used in figure 1 are steady-state (t=°°) solitary waves 
belonging respectively to the low and high branches of the bistability diagram. It is clear that for each 
configuration, i.e. value of the saturation parameter y, a new set of two localised solutions must be found. 
The evolution of the beam interaction with time can be easily qualitatively understood. During the first few 
seconds, both beams evolve linearly. After a short while, the higher beam reaches its steady state whereas 
the lower beam is still linear; here no interaction occurs. When the lower beam reaches its steady state, 
interference occurs and the beams, in this particular configuration, repel. 
These predictions can be verified in figure 2 where a numerical simulation of the time dependent interaction 
is represented. The data used in figure 2 are as follows : Bi12TiO20 photorefractive crystal, n=2.25, N=l, 
Y=0.4 and the diffusion coefficient D is neglected in agreement with [2]. 
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The wavelength is A=850nm and an 
initial separation of 90(xm is chosen. 
The initial velocity of the beams is 
0.3, a larger value would make the 
beams cross each other in the steady 
state regime. The use of the device as 
a time-dependent switch is illustrated 
on figure 3 where the output position 
of the 'stronger' beam (i.e. beam 2 on 
figure 1) is seen to be strongly 
dependent on time. 
It is interesting to note that the lowest 
beam has a peak power to dark 
irradiance ratio r (i.e. normalised 
amplitude) of 1.78 and therefore the 
time to reach its steady state is 2TC 

where  T = —= 10s 
Id 

for Bi12TiO20 

11 

a-i 
S 
o 

>°       . 20 
Time in seconds 

[2]. Similarly, the high 
intensity beam has a response time of less than a second 
(r=18.5). Such response times are obviously too long for 
applications such as optical switching but are typical for 
photorefractive crystals and the design can be used for 
scanning purposes. Faster response times (|ls-ns) can be 
obtained, as it will be illustrated in the presentation. 
These numerical results can be confirm by means of an 
adiabatic perturbation approach where, using a beam 
splitting method, the perturbation term for the beam V, 
for example, is found to be 

f -     i—.2   \ 

Figure 2. Snapshots of the interaction at different times. Scale: 
x=20mm, z=9mm. Figure 3. Output position (x=30) of the high 
intensity beam versus time. 

-. i 
t = 50s ~?rZjm 

pv = (An) w + i+lw[: 

U+rlw|: 
0 

W (3) 
10 20 
Time in seconds 

30 

Figure 4. Beam trajectories found analytically (line) 
and numerically (circles) at different times t. 

Figure 4  shows  the  comparison  between  the beam 
trajectories found analytically (line) and numerically (circles) for three different times (t=0, 7 and 50s). 
Conclusion 
In this publication, the operation of a time-dependent switch or scanning device, based on the dependence of 
the crystal response time to the intensity of the optical beams has been shown numerically. An analytical 
approach based on the adiabatic perturbation method confirms the numerical predictions. Results for a 
large range of possible devices in (1D+1) will be given as well as preliminary results for the higher 
dimensions (2D+1) where exciting possibilities are expected. 
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Summary 

For a focusing Kerr medium, the process of light self-trapping is basically described by a (l+l)-dimensional 

nonlinear Schrödinger equation (NLS), whose solutions relax to robust sech-shaped solitons when optical beams only 

undergo anomalous group-velocity dispersion (GVD). Recent developments based on this model rapidly increased due 

to the possibility of making two wave components couple nonlinearly and propagate as mutually-trapped solitons.1-3 

However, these solitons were only recently detected in experiments,2 partly because of the difficulty in overcoming 

parametric four-wave mixing (FWM) processes which become relevant when the two orthogonal polarizations are not 

incoherently coupled. Besides FWM, the components moreover undergo linear convection, often termed as "walk-off', 

which can be either attached to the half-difference of their group velocity in birefringent media,3 or connected with 

the angle between the transverse and carrier wave vectors in, e.g., biased photorefractive crystals.4 In this scope, 

only one-dimensional dispersion was considered, whereas multi-dimensionality of the model, including diffraction 

in the transverse plane, can strongly affect the propagation of coupled waves. It is indeed well-known that NLS 

solutions can spread out or self-focus until collapse when transverse diffraction is no longer disregarded, which leads 

to deal with (D+l)-dimensional NLS equations with a number of spatio-temporal dimensions, D, at least equal to 

two.5 Even if the collapse singularity is ultimately arrested by saturation mechanisms, the dynamics preceding it is 

important and justifies to study the self-focusing of nonlinear waves when FWM and walk-off cannot be ignored. 

Therefore, in this contribution, we first review the interaction regimes characterizing two incoherently-coupled NLS 

waves, which can be classified into four distinct categories. Then, the influence of FWM and walk-off is investigated, 

with emphasis on their potential modifications of the power threshold for collapse when D=2. By means of analytical 

estimates and numerical verifications, we indeed show that FWM can contribute to self-focusing by lowering this 

threshold, whereas walk-off acts against the collapse. 

We consider the slowly-varying envelopes ui(f, z) and U2{f,z) of two waves copropagating along the 2-axis of a 

Kerr medium. Here f refers to the vector of a generalized D-dimensional transverse diffraction plane, which can also 
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include a retarded time variable when anomalous GVD is retained. The waves are assumed to undergo walk-off and 

FWM and their interaction is described by the generic model2-4'6 

i{dz + 4 • VxK - ßnun + Viu„ + (|un|
2 + A\u3-n?)un + Bul_nu*n = 0,   n = 1,2, (1) 

where * means complex conjugate, <$i = — 82 = S and ßx = —ß% = ß. In Eq.(l), standard notations have been 

used. In particular, the second term describes walk-off effects, such as linear spatial convection or a group-velocity 

difference due to GVD. The third term accounts for the mismatch in wave numbers between both components and 

the last term represents the contribution of FWM. The constants A and 5 are positive and they measure the strength 

of the nonlinear coupling between the two waves. Their values are determined by the symmetry of the medium and 

by the interaction geometry. In isotropic media, they satisfy A + 5=1 when u\ and «2 represent two orthogonal 

polarizations of a vector field (as, e.g., A=25=2/3 in birefringent fibers3), while they are linked by ^4=25=2 for two 

copropagating beams with scalar amplitudes ui and «2- For Eq.(l) the total power P = P1+P2 = /(|«i|2 + |u2|2)df 

is always conserved, and it keeps invariant each individual power Pn = f\un\2df when 5 = 0 only. Equations 

(1) also conserve the Hamiltonian integral related to the complete system. Furthermore, we can derive a virial 

identity describing the evolution of the total mean square radius of both waves along z. This relation governs 

the second-order z-derivative of the integral X(z) = j> f\r- (r)|2X)n=i lun|2^ which involves the total center of 

mass (r) = P-1 / f £n=1 \un\2dr. After employing a straightforward procedure,7 the virial identity yields the main 

properties in the wave dynamics: it allows us to predict either the full diffraction, or the total self-focusing (collapse) of 

both waves, in the basic configuration for which there is neither walk-off (Sn = 0) nor FWM (5 = 0). For Gaussian 

beams being well-separated initially, such waves are shown to undergo different evolutions by mutual coupling. 

Following their incident power and mutual separation, they can indeed disperse independently of each other, or fuse 

and disperse as a whole entity. At high power levels, they can alternatively fuse into a single collapsing structure, or 

self-focus individually, if the power in each component exceeds the collapse threshold of isolated Gaussians. 

Next, we identify the roles of FWM (5 ^ 0) and walk-off (Sn ^ 0), separately. 

For FWM alone (Sn - 0), virial arguments determine a critical power for collapse in the form P > 2PC/(1+A+B), 

where Pc ~ 11.7 denotes the critical power for self-focusing of one NLS wave.5 Confronted with direct numerical 

simulations, this condition is shown to apply with a reasonably-good agreement to Gaussian beams with equal powers 

and small mismatch parameter ß. Thus, in the limit ß ->■ 0, the FMW terms lower the power threshold for collapse 
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and thereby strengthens the self-focusing dynamics, compared with the case of incoherently-coupled waves (B = 0). 

Non-zero values of ß, however, are shown to slightly affect this property and increase to some extent the threshold 

power for collapse. 

When considering walk-off alone (5 = 0), the virial theory gives a critical power for self-focusing, which grows 

up with the walk-off length S. The main influence of walk-off is thus to delay, even arrest the collapse. It manifests 

by acting on the centroids of the waves and by detrapping them. We show that walk-off indeed competes with the 

collapse by modifying the trajectories of both components in the transverse plane. The wave centroids, initially 

located at the origin, are then shifted from 0 and further fuse again at this point, where collapse occurs. Reversely, 

when the two waves contain enough power for promoting individual collapses, walk-off can make them separate from 

each other and collapse on their own center of mass, far away from the origin. In the diffraction regime excluding 

the collapse, the two components can either undergo one or more crossings before decaying into noise, or continue 

to walk off away from each other while they both decouple and disperse. All these behaviors are explained through 

simple analytical descriptions. 
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Transverse Instability of Coupled Dark-Bright Solitons 

Z. H. Musslimani, M. Segev, A. Nepomnyashchy and Y. S. Kivshar 

Vector solitons are solitons that consist of two (or more) components that mutually self- 
trap m a nonlinear medium.  They were first suggested by Manakov [1] in the context of 
the Kerr nonlinearity, which leads to two cubic Non-Linear Schrödinger Equations (NLSEs) 
coupled through the nonlinear terms. These vector solitons were in a (1 +1)£> configuration, 
that is, one direction of self-trapping and one direction of propagation. Because it is very well 
established that both bright and dark scalar Kerr solitons (solutions of a single cubic NLSE) 
are unstable in a higher dimension [2,3], the commonly held belief was that vector solitons are 
not observable in a higher dimension either. In other words, if a vector soliton is narrow in 
the z-direction, uniform in y and is propagating along z, it suffers from instabilities in y that 
break the soliton and destroy it. As a result, attempts to observe vector solitons were limited 
to temporal solitons in birefringent fibers [4] and to spatial solitons in planar waveguides [5] , 
both inherently (1 + \)D systems. Following the discovery of photorefractive spatial solitons! 
vector (Manakov-like) solitons were suggested also in photorefractive media, in several forms! 
In contradistinction with the Kerr nonlinearity, the photorefractive nonlinearity is saturable 
[6]. One of these forms of vector solitons is of particular interest, because it applies to any 
non-instanteneous nonlinearity and allows more than two vector components: vector solitons 
based on mutual incoherence between the various constituents [7]. Indeed, observations of 
two-component vector pairs in three realizations: bright-bright, dark-dark and dark-bright 
coupled pairs, followed soon thereafter [8].   However, unlike all earlier experiments with 
vector solitons [4,5], these of [8] were in a ZD (bulk) nonlinear media, in sharp contrast 
with the early belief that transverse instability necessarily leads to destruction of (1 + 1)£ 
vector solitons in 3D nonlinear media.   Furthermore, a very recent paper has reported 
the observation of multi-mode vector solitons, also employing the photorefractive saturable 
nonlinearity [9].   These experimental observations raise a basic important question:   Can 
saturation arrest the transverse instability of solitons in a higher dimension [10]. For scalar 
(one component) solitons, the answer lies in [2] for bright solitons, and in [11] for dark 
solitons, but for vector solitons (of any type, including Manakov solitons [1]), the issue of 
transverse instability of solitons in a higher dimension has never been addressed. 

In this paper, we investigate the transverse instability of (1 + l)D dark-bright vector 
soliton in three dimensional nonlinear media. We find that for saturable media, it is the 
nonlinearity saturation which leads to the suppression of the transverse instability Fur- 
thermore, surprisingly, in the low intensity limit, i.e., Manakov limit, the nonlinear mode 
coupling leads to a strong transverse stabilization, that is, even in the absence of saturation 
In other words, the transverse instability of a single dark soliton in bulk Kerr media is sup- 
pressed solely due to the presence of a bright component. Moreover, the suppression of the 
transverse instability is enhanced when the amplitude of the bright component is increased. 
This is valid for transverse perturbations on scale larger than that of the soliton, which is 
the scale at which transverse instabilities occur for all (1 + l)D solitons. We start from the 
normalized equations [7] 

.dU       1     2 ■yU 
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■9V     l„2t, 
dz     2 

7y 

i + \u\2 + \v\2 = 0 (2) 

where U, V are the envelopes of the two interacting beams, 7 = ß(l + p) and p is the total 
intensity at infinity, ß is a constant proportional to the space-charge field at "infinity", 
and V2 = d2/dx2 + d2/dy2 is the transverse Laplacian. Equations (1) and (2) describe two 
coupled beams in a saturable optical medium with a refractive index change proportional to 
1/(1 + \U\2 + \V\2). Such an interaction can form vector solitons that consist of two (or more) 
components mutually self-trapped in a nonlinear medium. In the small-intensity (Kerr) limit, 
the governing equations describe the so-called Manakov solitons [1]. Consider the transverse 
instability of the dark-bright soliton pair. We look for the stationary solutions in the form 
of bright, Uo(z,x,y) = u(x)etfiZ, and dark, V0(z,x,y) = v(x)etl/z, components defined by the 
boundary conditions w(±oo) —>• 0 and u(±oo) —>• ±yfp, respectively. Following a standard 
multi-scale perturbation expansions we identify, in the long wave limit, two instability modes. 
First mode is related to the scalar case obtained in [2]. In this case, the perturbation 
frequency u> is expressed to leading order in q (perturbation wave number) as 

LO     =  — 
(dP/dp) ] (3) 

where P is the soliton power, P = J^ \u\2dx. The second instability mode gives 

u2 = £X(x) + vl(x)]dx 
V + 2plim[v2(x)T(x)-xY (4) 

where V is the complimentary power defined as V = /*~ dx[u2{x) + v2(x) — p] and T(x) 
is defined by the relation dT(x)/dx = l/v2(x). In a particular case (saturable media) 
discussed in Ref. [7], we can use an approximate analytic solution, u(x) = •v/rsech[(/?5)1/'2:c] 
and v(x) — yfp tanh[(^5)1/,2x], where 6 = (r - p)/(l + p) < 0; \8\ < 1 and the propagation 
constants are p ~ —ß(l — 8/2) and v = —ß. In this case, the condition (3) does not lead to 
instability because dP/dp < 0. However, applying the second condition (4), we obtain the 
instability growth rate UJ

2
 = ß8(r + 2p)/3(r — 2p). For the experimental parameters from 

Ref. [8], we find ß ~ 0.566, and show this result in the figure for different values of 8. 
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FIG. 1. Growth rate of the transverse instability of a dark-bright soliton pair for different values 
of a. 



WD22-3 / 123 

Another important example is the dark-bright Manakov solitons [12]. In this case the 
bright and dark components are given by the expressions [12]: u(x) = VT^?sech(ax) 
and v(x) = tanh(ax) with the propagation constant fi = -(1 - a

2/2) where a (a2 < 1) 
characterizes the amplitude of the bright component for the normalised background Again 
condition (3) does not lead to any instability because dP/d/x < 0. However from Eq (4) 
we obtain ' H'  v ' 

LC2_    a2(3-a2) 
3(a2 + 1) - (5) 

When a = 1, i.e., a single dark soliton, then we retrieve the result of [3] u2 = -1/3 
Moreover, the result (5) indicates an unexpected feature of the dark-bright soliton pairs-'a 
bright component, embedded in a defocusing media, leads to an effective suppression of the 
transverse instability of a dark soliton. This instability suppression results solely from the 
presence of the bright component and becomes stronger as we increase the bright soliton 
intensity. Finally, we also analyse the transverse instability of bright-bright and dark-dark 
coupled sohton pairs and map the problem to the scalar case if the nonlinearity is isotropic 
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Liquid crystals are very important materials in numerous technical applications. In the nematic phase, the 
correlation among liquid crystalline molecules is very strong because of the high anisotropy as well as 
the collective behavior of the molecules. This is responsible for the fact that liquid crystal molecules can 
easily reorient even with a very low applied field. The molecular reorientation due to interactions with 
the electric field of the light wave changes the local birefringence axis of liquid crystal and it is the basis 
of the optical orientational nonlinearity [1,2]. The orientational nonlinearity in liquid crystalline 
waveguides leads to numerous effects not observed in another types of nonlinearity. Among others there 
are obtained the threshold and optical bistable effects resulting in nonlinear refractive index changes, 
strong dependence on light polarisation as well as possibility of controlling the nonlinearity by external 
electric or magnetic fields. Theoretically analyzed unique properties of liquid crystalline nonlinear 
waveguides have been also confirmed in recently reported experiments with liquid crystalline 
waveguides [3-6]. 

glass plate 

nematic LC ^ 

glass  plate 

20- <          i          i          i i          i          i          i 

10- - 

0- ^r> ~^>          _.- 

10- 

?0-  1 i 1  

" 

incident 
light beam 

25   50   75   100   125   150   175   200 

(a) (b) 
Fig.l. (a) Schematic drawing of liquid crystalline planar waveguides and (b) theoretical simulation of the light beam 

propagation in the linear regime. Units in figure (b) are measured in microns 

In this paper the detailed analysis of the self-focusing effect in a planar waveguide filled with 
homeotropically aligned nematic liquid crystal (see Fig.l) is presented. Initially, the electromagnetic 
field with both TM polarization (with Ex component of the electric field) and TE polarization (with Ey 

component of the electric field) are taken into account. As a result in nonlinear regime the liquid crystal 
molecules are forced to reorient in the xy plane and consequently the electric permittivity tensor has the 
form: 

s = 

s±-i-Ascos 9 

Ae sin 9 cos 9 

0 

As sin 9 cos 9 
29 

0 

Sj_ + As sin 

0 

0 (1) 

where s± is an ordinary electric permittivity, As is an optical anisotropy and 9 is an orientation angle of 
the liquid crystalline molecules director measured according to the x axis. The TE-like field is assumed 
to be much weaker than the TM-like field. Therefore, the reorientation of the liquid crystal and obtained 
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electric permittivity changes are small enough to use a small nonlinearity approximation, i.e. to use an 
electric field in the form: 

Ex = A(y, %W exp(i(Df - ik0Nxz), (2) 

Ey = B(y, z)cp(x) exp(zco/ - ik0Nyz), (3) 

where v)/exp(icoM^xz) and cpexpftatf-iW) are modes of the planar waveguide with homeotropically 
aligned liquid crystal (for 9=0). Then the slowly varying complex amplitudes A and B fulfil equations: 

K,+ 
1 

-K2 + 

2k0Ny dy2    l dz 

1      d2     ., 
■-1- 

2kQNx dy2      dz 

B = -KuAexp(-ikQ(Nx-Ny)z), 

A = -K12Bexp(ik0(Nx-Ny)z), 

(4) 

(5) 

where nonlinear coefficients are defined as follows: iq = Ä:0As Jsin2 Q(p2dx/2Ny L
2dx, 

K2 = kQNxAe Jsin2 $\y2dx/lz^ ^j2dx, and K12 = k0A& Jsin 9 cos Q^dx/lNy fodx . The reorientation 

angle 9 is calculated from the Euler-Lagrange equation for the nematic liquid crystals in the form [5]: 

d2&    snAs 

dx: AK 
2|^LB|cpv);cosAacos29 + (J5(p|2 -|^vj;|2)sin29 =0, (6) 

where Aa is a phase difference between Ex and Ey field components and K is an elastic constant in the 
one-elastic constant approximation (with assumption of equal energies for splay and bend deformations). 
Additionally, the solution of equation (6) for strong anchoring conditions and homeotropical alignment 
requires fulfilling the boundary conditions for the orientation angle: 9(0)=9(rf)=0. 

50  100  150  200  250  300  350  400  450  500    0   50  100  150  200 250 300 350 400 450 500 

(a) (b) 
Fig.2. Theoretical simulation of nonlinear propagation of the light beam (a) with the TM polarization and (b) with 

the TE polarization. Units are measured in microns 

The set of equations (1-6) have been solved numerically to simulate the propagation of the light beam in 
a waveguide with 4-trans-4'-n-hexyl-cyclohexyl-isothiocyanatobenzene (6CHBT) nematic liquid crystal 
film with the thickness </=10um surrounded by glass plates. At the input the light beam with the width 
a«10um was assumed and with both polarization amplitudes ratio (^O=0)/5(y=0))2=20. In the linear 
limit, i.e. without reorientation of the liquid crystal molecules the light beam diffracts as it is shown in 
figure 1(b). However, for larger values of light power at the input, the reorientation is induced and the 
nonlinearity causes focusing of the light beam. Finally, for high enough input light power (approximately 
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P«30 mW) the light in the planar waveguide forms the beam with constant cross-section shape. This 
spatial soliton creation is shown in Fig.2. Note, that in the equation (5) the nonlinear coefficient K2 is 
responsible for the defocusing of the light beam but their influence is compensated by the coupling term 
connected with the coefficient K12. 

The self-focusing phenomena in liquid crystalline waveguide have been also obtained experimentally 
[6]. The figure 3 presents experimental results measured by the CCD camera placed at the top of the 
planar waveguide. Therefore, the intensity distribution of the scattered light shown in fig.3 represents the 
shape of the TE-like electromagnetic field. 

(a) (b) 
Fig.3. The cross section distribution of the light intensity of the laser beam guided in nonlinear liquid crystalline 
waveguide for (a) low intensities and (b) for 30 mW of light power at wavelength ^=842nm. Experimental results 
were obtained for the 6CHBT liquid crystal waveguide with a thickness d=10\im. 

In conclusions, the nematic liquid crystals allow to obtain the auto-collimated light beam for relatively 
low power (in our experiment P~30 mW). In the proposed theoretical model the self-focusing is caused 
by the nonlinear coupling between TM-like and TE-like fields. The experimental results are in perfect 
agreement wit the theoretical analysis. 

This work was partially supported by the Polish Committee of Scientific Research (KBN) under the grant 
No. 8T1 ID 01915. 
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The potential of QPM extends far beyond the efficient phase matching of a single wave-mixing 
process which takes place in a sample with a regular, periodic grating. More complicated grating 
patterns can be fabricated which results in media with unusual properties that can thus be en- 
gineered in a controllable fashion. This has been explored in a variety of devices that are based 
on creative grating designs. We have considered an array of narrow grating stripes as indicated in 
figure 1. Each stripe is composed of gratings with a narrow width, in the sense that the gratings are 
confined in the transverse direction to a width which is less than the beam width. Experimental 
setups usually require tightly focused beams with widths of 10 ~ 20 /jtm. Grating stripes with 
these widths can be implemented with the current state of the art lithographic QPM technology[1], 
but even smaller grating widths might be more challenging. There have so far not been attempts 
to fabricate such narrow gratings, so the feasibility is an open question and only an experimental 
trial can give the answer. In practice, it can be anticipated that inhomogeneities appear along the 
interfaces between grating stripes and grating-free regions[2]. 

Our aim is to make a construction with a lattice-like nature, in which each grating stripe plays 
the role of a site in the lattice. If the lattice features prevail, the beam evolution should essentially 
be governed by a discrete system, in close analogy to the beam evolution in an array of weakly 
coupled quadratic nonlinear waveguides[3]. Our investigation is based on numerical simulations of 
beam evolution in the grating structure of figure 1. Averaging in the longitudinal direction over 
one coherence length we find at the lowest order, that the dynamics of the scaled envelopes of a 
fundamental beam (Ai) and a second harmonic beam (A2) are governed by[4, 5] 

III III II 
rii 1111111111111 
■ llll Ill 

Figure 1: Schematic top-view of grating design of QPM structure. 
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Figure 2: Second harmonic part of stationary localized modes (solid lines) with ß = 1 and h = 1. 
Superimposed are profiles of continuous solitons with b = h (dotted lines) and discrete solitons 
with 6 = 0 (dashed lines). The shaded areas indicate the regions where g(s) = 1, i.e. the nonlinear 
regions, (a) 6=0.3, q = 0.25, (b) 6=0.7, q = 0.25, (c) 6=0.2, q = 1.5, (d) 6=0.7, q = 1.5. 

.dAl     ldMi     1^   , 
*^— + ^-^r + r 2^9{x ~ ZnMi^2 = 0, 

.dA2 

*^7 

2 dx2 

, ld2A2 

4 da:2 

(1) 

-jS^ + j £s(* - a;n)A2 = 0, 

where /? is the residual phase mismatch. For convenience, the envelopes have been scaled with the 
width, 6, of the grating lines. The comb-like transverse grating structure is composed of a sequence 
of "hat-functions", g(x-xn), which are each centered on xn = nh, g(x) = H(x -b/2) - H(x + b/2), 
where H(x) is Heaviside's function and h is the separation of the grating lines, following the method 
of Ref. [7], the system can be reduced to a set of discrete equations in the limit 6 -> 0, 

ABn       1   , l 
'"dT + 2h? {Bn+1 + Sn"1 " Wn) + hB'nDn = °' (2) 

4/i2 h 

Bn and Dn are the amplitudes on the n'th site of the fundamental and second harmonic, respectively. 
In deriving eqs. (2) we have assumed that the beam amplitudes are small. We expect that as 6 is 
increased from zero, the QPM structure will interpolate between a fully discrete system (6 = 0) 
to a continuous medium (6 = h), and refer to the structure as a quasi-lattice. In order to expose 
the interpolating character of the quasi-lattice we have numerically found the localized, stationary 
modes of the structure, i.e. we have inserted A\ = A(x) exp(iqz) and A2 = B(x)exp(i2qz) in eqs. 
(1) and solved the resulting boundary value problem. In figure 2 we plot the amplitude B(x) of 
the numerically found stationary modes with h = 1, ß = 1 and two different values of 6 and q. 
The corresponding profiles of the solitons in the limits 6 = 0 (discrete) and b = h (continuous) are 
superimposed on the plots as dashed and dotted lines, respectively. It should be clear that with 
small 6 the stationary modes resemble the discrete soliton, while with large 6 they resemble the 
continuous solitons. Also, we note that with large amplitudes (q large) a relatively small value of 
6 is required in order to obtain a good resemblance with the discrete solitons. 
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Figure 3: Output at z = 30. Stemplot (bullets on sticks) are results from discrete eqs. (2) and lines 
are from eqs. (1) with b = 0.25 (solid lines) and b = 0.5 (dashed lines), ß = 1, h = 1. Input position 
and velocity is x0 = -10 and v = 0.5, respectively, (a) Fundamental and (b) second harmonic. 

We have made a careful numerical study solving eqs. (1) with a variety of initial conditions 
and parameter values. We give here an example where the simple discrete system (2) predicts 
correctly the behavior of the beam dynamics in the original system. A mode with an initial phase 
tilt v = 0.5 is launched with an initial position x0 = -10, and the output position at z = 30 is 
shown in figure 3. The result from the discrete system (2), which are marked with bullets, show 
that the mode has been slowed down by the discreteness and is positioned at x = 5. The results 
from numerical simulations of eqs. (1) with b = 0.25 show that the mode moves in the quasi-lattice 
in agreement with (2), while the results with b = 0.5 show that the mode moves in agreement with 
the translational symmetry of a continuous system. Still, reminescent features of discreteness are 
visible in appearance of the profiles of the freely moving mode. We have here studied the simplest 
possible grating design with discrete features. However it should be remarked that more involved 
layouts can be envisioned with possible unique properties. For example, different lattices that each 
quasi phase match a particular wavelength may be interleaved to form a complex multi-wavelength 
discrete system. Inclusion of chirped, tilted, or dislocated gratings[8] in the region between the 
lattice sites could provide novel classes of nonlinear couplings between lattice sites. Furthermore, a 
lattice with competing nonlinearities may be constructed by exploiting the Kerr-like effects which 
are inherent to the QPM technique[4]. We are most grateful to M. M. Fejer for important discussions 
and remarks. 
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Parametric solitary waves result from a balance 
between energy exchanges and group velocity dif- 
ferences between waves interacting through a para- 
metric process. Apart from the group velocity dif- 
ferences, dispersion effects on the interacting waves 
have been systematically ignored in previous theoret- 
ical studies of parametric solitary waves [1-4]. This 
omission is usually justified by the fact that the non- 
linear effects take place over a length that is much 
shorter than the characteristic dispersion length of 
the interacting waves. We show here that this stan- 
dard criterion is not valid and that even very weak 
dispersion can drastically alter the parametric soli- 
tary waves dynamics. In particular, we show that 
dispersion induces a dynamical transition of the para- 
metric solitary waves that results in the formation of 
moving periodic patterns across their field envelopes. 

The periodic patterns consist of arrays of phase de- 
fects whose amplitude profiles result from a balance 
between dispersion and nonlinearity in a way simi- 
lar to what happens in symbiotic quadratic solitary 
waves [5]. The symbiotic solitary waves consist of 
another type of nonlinear waves sustained by a para- 
metric interaction. They result from a balance be- 
tween dispersion and nonlinearity in the absence of 
net energy exchanges and thus do not require walk- 
off, unlike parametric solitary waves. Both bright 
and dark optical symbiotic solitary waves have been 
predicted theoretically [5]. The new class of solitary 
wave that results from the dynamical transition can 
therefore be viewed as exhibiting a hybrid parametric 
and symbiotic nature : the envelope resulting from 
net parametric energy exchanges and walk-off is 
modulated by a moving periodic array of symbiotic 
dark solitons resulting from a balance between dis- 

persion and nonlinearity. The originating dynamical 
transition is described analytically through an exten- 
sion of the Kolmogorov-Petrovskii-Piskunov (KPP) 
conjecture. 

We consider the degenerate phase-matched three- 
wave parametric interaction that couples a funda- 
mental wave and its second harmonic in a quadratic 
nonlinear optical crystal. The slowly varying am- 
plitude envelopes u\ and u2 of the signal and pump 
waves of frequencies a>\ and u>2 = 2coi are ruled by 
the following equations: 

3«i 

IT — + Ml"l =«2"i 

du2        OU2 
-T- + -T— + ß2U2 at       ox 

—2H7 

ißv 

■ifo 

d2u. 
dx2 

d2u2 

dx2 

(la) 

(lb) 

where x and t are respectively the longitudinal space 
coordinate and the time in a reference frame trav- 
eling at the average velocity (vi + v2)/2. We nor- 
malize the fields amplitudes M,, the time t, the space 
variable x and the damping rate y; to the constant 
pump amplitude e0 at the input of the crystal and to 
the parametric coupling constant a, i.e., «,/eo ->■ Ui', 
taeo -*■ t; Yi{aeo)~x -*■ /Mi4, xaeo/8 —► x, where 
8 = (vi — v2)/2. ßi are the dispersion coefficients 
at frequency <y,, for simplicity we assume in the fol- 
lowing that ß = ß2 = ßi and v\ > v2. 

In the absence of dispersion effects {ß = 0), 
Eq. (1) has been extensively studied in the literature 
and analytical solitary waves solutions have been de- 
rived in the form of a sech-shaped envelope for the 
signal wave and a tanh-shaped envelope for the pump 
wave [1,2]. Our scope here is to study the influ- 
ence of dispersion on this solitary wave. To this end 
we numerically solve Eq. (1) with ß ■£ 0 and with 
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Figure 1: Evolution along the propagation of the in- 
teracting amplitudes K1I2 in the co-moving reference 
frame of the signal wave, (a) Classical parametric 
solitary wave, (b) Dynamical solitary wave. 

an initial condition given by a constant pump wave 
and a sech profile for the signal wave. The ampli- 
tude envelopes are shown in Fig. 1 in the reference 
frame traveling at the signal group velocity defined 
by z = x + t, x = t. 

As evidenced in Fig. 1, for a small value of the dis- 
persion parameter, the dispersion has no significant 
effects on the solitary wave profile. In particular, the 
expected envelope reshaping induced by dispersion 
is almost invisible. The scenario changes completely 
for a slightly larger value of the dispersion param- 
eter as illustrated in Fig. 1(b). We see that disper- 
sion is responsible for the formation of a dynami- 
cal periodic pattern in the solitary wave envelope. A 
detailed analysis shows that the pattern is generated 
from the drift of jr -phase shifts that appear periodi- 
cally in the leading front of the signal pulse. The drift 
of the phase defects can be easily explained physi- 

cally from the fact that these phase defects constitute 
symbiotic solitary waves of the dark type that prop- 
agate at the group velocity of the signal wave that is 
smaller than the velocity of the solitary wave (note 
that due to the energy transfer from the pump, the 
solitary wave envelope is superluminous for the case 
v\ > V2 assumed here). 

We described this dynamical transition through 
an original extension of the KPP conjecture which 
proved powerful in nonlinear diffusion problems and 
dynamical pattern selection [6, 7]. We generalize 
here the approach to include the description of the 
dynamical transition. The KPP approach consists in 
describing the properties of fronts propagating into 
un unstable state from a linear analysis of the leading 
edge of the front profile. The general solutions to the 
linearized Eq. (1) in a reference frame (f = x + Vt, 
x = t) traveling at the velocity of the solitary wave 
V has the form 

"i(|, T) = / u\(k) exp[y(fc) - kV]x exp(fc£) dk, 

(2) 

where ui(k) is obtained from the initial condition 
by inverting the expansion Eq. (2). Since we study 
the influence of dispersion on the profile of the 
parametric solitary wave that is characterized by a 
sech shape, we take as initial condition of the lin- 
earized problem the corresponding exponential front, 
"i(f, T = 0) = exp(fc0£). The function u\(k) then 
possesses a pole on the real axis in k = k0. On the 
other hand, the function f(k) - y(k) - kV has a 
saddle points ks. The integral Eq. (2) can be eas- 
ily evaluated by choosing the contour C as depicted 
in Fig. 2. The long term behavior of integral (2) is 
then ruled by the competing contributions of the pole 
and the saddle point. The signal amplitude takes the 
form: 

ui($,x)cxIpol + Isad, (3) 

where Ipot is given by the residue 

Ipoi oc exp[(y (k0) - fc0 V)T] exp(fc0f)      (4) 

while Isad is the saddle point contribution: 

had oc ux(ks) exp[(y(fc,) - ksV)x] exp(fc,f).  (5) 
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Figure 2: Contour (C) in the complex k plane. 

The long term behavior of the solution will then 
be dominated by the pole or the saddle depending on 
the relative value of Re [/(/:)] in ko and ks. This con- 
dition provides an analytical expression of the criti- 
cal value of the dispersion parameter ß for which the 
system bifurcates from the well-known continuous 
family of parametric solitary waves towards the dy- 
namical solitary wave. Indeed, when the saddle point 
dominates, the exponential leading front of the sig- 
nal amplitude [Eq. (5)] has a real part that describes 
the envelope solitary wave and an imaginary part that 
describes the array of kinks that modulates this en- 
velope. The periodicity of the kink array has been 
determined analytically following the description of 
Ref. [7]. 

Note that when the initial conditions do not in- 
clude an exponential front for the signal wave, the 
pole k0 no longer exists and the saddle point is iso- 
lated in the above analysis. Consequently, accord- 
ing to the KPP conjecture, dynamical solitary waves 
are unconditionally formed, even for arbitrarily small 
dispersion values. This has been verified numeri- 
cally by means of gaussian signal envelopes in the 
initial conditions. This result indicates that the dy- 
namical solitary wave constitutes a robust attractor 
of the system, which should make its experimental 
observation easy. Note however that, as ß increases, 
the dispersion effect becomes dominant with respect 
to the walk-off effect, which unavoidably leads to 
the modulational instability [4]. Therefore, in or- 
der to avoid this problem in practice we suggest a 
quasi-phase-matched backward configuration [8] for 
the experimental observation of the dynamical para- 
metric solitary waves. In this situation the simulation 

reported in Fig. 1(b) corresponds to realistic experi- 
mental conditions, for which, one may envisage the 
observation of the dynamical solitary waves in single 
pass configuration. 

In summary, by means of an original extension of 
the KPP approach to front propagation into unstable 
states, we described analytically the dynamical tran- 
sition that affects parametric solitary waves owing to 
the effects of dispersion on their constituent interact- 
ing waves. We can reasonably expect in a near future 
the experimental observation of the dynamical soli- 
tary wave in the context of nonlinear optics thanks 
to the recent progress made on quasi-phase-matched 
quadratic materials. 
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Despite the fantastic rate at which silicon-based technologies have been progressing, there are 
several fundamental limitations which suggest that this progress cannot continue without bound. 
Even within the next decade or two these factors may start to become a real hindrance, and so 
interest in alternative technologies, such as quantum and DNA computing, has been growing. Here 
we describe results which suggest that collisions of N-Manakov vector solitons can be used as a 
new medium for information processing and computation. N-Manakov like solitons can be found 
in optics [6]. Such an environment could support the new concept of gateless computing where 
there are no actual fabricated gates anywhere, but all general computing tasks are performed using 
soliton collisions. 

It is well known that solitons behave like particles in many ways, and that (at least in integrable 
systems) solitons can collide with one another without energy being lost to radiation. It is therefore 
tempting to visualize computation with solitons as in early proposals for particle machines. One 
problem is that many sorts of solitons are actually too robust and information cannot be transferred 
in collisions. In general, there exist some finite number of parameters with which one can fully 
describe a soliton collision. We define the parameters which can be altered by collisions to be the 
"state" of the soliton (see [1]). In order for information to be exchanged during such collisions, it 
is necessary that the resultant state of each soliton depend on the initial state of the other soliton. 
Not all solitons interact in this manner. For example, in Kerr media, a soliton remains intact after 
a collision, but the parameters are not altered in any way such that one can determine any useful 
information about the other soliton. This is not at all the case for vector solitons. The (1+1)D N- 
Manakov system is described by the N coupled equations, 

iqt + qxx + 2\q\2q = Q (1) 

where q(x, t) is an N component complex vector describing the evolution of the solution. A complex- 
valued state for solitons in 2-Manakov was defined in [2], where it was shown that collisions are 
described by explicit linear fractional transformations ofthat state, using the new two soliton solu- 
tions in [3]. We will show that the N-Manakov system can also be described in this way and offers 
significantly greater freedom and flexibility than the 2-Manakov system for computation. 

To illustrate these ideas, we briefly review one model for encoding a bit and performing a NOT 
operation in the 2-Manakov system described in [2]. In this system, the state of each soliton ,  p , 
is defined to be the ratio of the first component of the soliton over the second component. This is 
a single complex number, containing information about the energy distribution and relative phase 
between the components. A soliton followed by its inverse, --\-, is called an inverse pair. Any 2- 
Manakov soliton colliding sequentially with the members of an inverse pair will remain unchanged 
by the collision, the second soliton undoing any changes caused by the first. For example, a soliton 
with all of its energy in the first component (hereafter referred to as (A)) and a soliton with all of 
its energy in the second component (B) form one such inverse pair. To encode data, a "1" bit is 
represented by the sequence (AB) and a "0" bit by (BA). A NOT operator is then constructed by 
composing a sequence of four solitons which collide with the inverse pair and reverse their states. 
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Thus, (AB) would be changed to (BA) and vice-versa. That energy can be interchanged in this 
manner is a remarkable result in itself and follows from the findings in [3]. Jakubowski et al. also 
demonstrate that other physical quantities, such as relative phase, can be used to encode informa- 
tion. For example, in a 2-Manakov system that describes two orthogonally-polarized optical fields, 
such a NOT gate converts right circularly polarized light into left circularly polarized light. In ei- 
ther case, the NOT operator acts on an inverse pair, and thus both operator and data solitons are 
reusable in further calculations. 

In general, for any N, it can be readily verified that one set of solutions to Eq.(l) is: 

q(x, t) = ^ae-f+*■*'sech(r,R + |) (2) 

where 77 = k(x + ikt),eR = ^|L, aT*a = 1, and a and k are arbitrary complex parameters. Con- 
servation of energy and momentum require that the parameter k remain unchanged by collisions. 
Thus collisions between two such N-Manakov solitons may be described fully by changes in the 
complex vector a for each soliton. We note that Eq. (1) is symmetric under rotations of the SU(N) 
group, meaning, if q(x, t) is a solution of Eq. (1), then so is v{x, t) = Aq{x, i) provided ÄT* = Ä'1. 
This implies that collisions of two N-Manakov solitons of the form Eq.(2) may be reduced to colli- 
sions between two 2-Manakov solitons, because it is always possible to rotate to a basis in which 
only the first two components of the a vectors are non-zero. Since explicit asymptotic solutions to 
collisions of 2-Manakov solitons of this form have already been found, we can solve the N-Manakov 
problem by simply transforming to a 2-Manakov problem, solving it, and transforming back. Thus, 
state transformations of these N-Manakov solitons are completely understood. 

The N-Manakov system provides a medium for logic that is more versatile than 2-Manakov, and 
offers the possibility of implementing Turing-universal computation (a significant open problem). 
Each soliton has 2N-1 real parameters that can be controlled via collisions. Clearly many possible 
methods of encoding data in solitons exist, but a reasonable number of bits which can be encoded 
per soliton is 0(N). 

TRACK 1 

TRACK 2 

TRACK 3 

TRACK 4 

TRACK5 

switch 2-4                        NOT 1 
 1 | 1 | 1 

0 i io i r^ 11 L -> 
1 0   I 10    I > 

 > 1    I Ai- 11    | 11 
0 I em—|1 I 11 

0 i 10 i 10 
■> 

-> 
J L_ J L_ J 

Figure 1: Diagrammatic representation of one way data and operators can be organized in an N-Manakov system. 

The data encoding described above for the 2-Manakov system can be used also in the N-Manakov 
system, but with greater flexibility. The same principles that were used to create a NOT switch in 
2-Manakov can now be used to switch data between "tracks". Suppose any soliton contains all of 
its energy in only the ith component (we will represent this state by the ith letter of the alphabet). 
We then pair the components in "tracks", i.e. the 1st and 2nd components are track 1, the 3rd and 
4th track 2, and so on (see Fig.l). A simple data sequence like [1 0] (a 1 on the 1st track and a 0 
on the 2nd track) would be encoded as the four soliton sequence (ABDC). Then, with a little bit of 
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rearrangement, the construct above can be used as a switch. In our example it would take (ABDC) 
(CDBA) and we would now have [0 1] (a 1 on the 2nd track and a 0 on the 1st). Note that only the 
two tracks of choice are exchanged and that the other tracks remain oblivious to the event. The ad- 
vantage of using N-Manakov solitons over 2-Manakov solitons is clear: in the 2-Manakov system 
only 1 data track would be allowed. 

One particularly nice aspect of such a representation is that every data bit is an inverse pair. 
Thus, all operators are unchanged by the interactions, and both operator and data solitons are 
reusable. The discovery of designs for other controlled reversible operators, such as the Fredkin- 
Toffoli gate [4], together with sufficiently flexible routing operations, would lead to a system capa- 
ble of universal computation. 

Soliton computation is naturally suited to the idea of reconfigurable computing. In the conven- 
tional scheme, some logic architecture is permanently laid out on a chip, and data is routed to gates 
where computations are performed. This means that certain computational structures are inherent 
to the machine; for example, the number of bits used to represent numbers and the accuracy of 
arithmetic computations. In a soliton computer, there would be no real distinction between data 
and operators: all would be solitons. The input could determine how the computation would be 
performed, and the machine would "reconfigure" itself for every computation. This merging of 
hardware and software has been shown to lead to linear-time pipelined arithmetic algorithms in an 
abstract particle model [5]. 

In summary, using SU(N) transformations, we are able to describe explicitly state transforma- 
tions occurring due to collisions of N-Manakov solitons in the form of Eq.(2). We show that this 
makes it possible to switch data between "tracks" and possibly make general logical operators If a 
universal computer could be simulated in the N-Manakov system, it would open some potentially 
exciting alternatives to standard models of computation. 
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As is known, optical cascaded nonlinearities due to 
parametric wave mixing can lead to a large nonlin- 
ear phase shift and spatial solitary waves, resembling 
those for a Kerr medium [1]. However, solitary waves 
supported by cascaded nonlinearities demonstrate much 
richer dynamics due to nonintegrability of governing non- 
linear equations and, unlike solitons of the Kerr nonlin- 
earity, the quadratic solitons can become unstable in a 
certain parameter region [2]. 

In this contribution we introduce a novel class of para- 
metric spatial solitons supported simultaneously by two 
nonlinear quadratic (or x'2') optical processes: second- 
harmonic generation (SHG) and sum-frequency mixing 
(SFM). As has been recently shown by Koynov and 
Saltiel [3] for continuous waves, under the condition that 
the two wave-mixing processes are nearly phase matched, 
the presence of multistep cascading leads to a four fold re- 
duction of the input intensity required to achieve a large 
nonlinear phase shift. Here, we demonstrate that the 
multistep cascading can lead to a new type of parametric 
solitons. Introducing a third wave generated via a SFM 
process, we find that it can alter both the general prop- 
erties and stability of the two-wave x^2' spatial solitons. 
Moreover, we reveal the existence of a new type of the so- 
called quasi-soliton, that appear for a negative mismatch 
of the SFM process. 

To introduce the model of multistep cascading, we con- 
sider the fundamental beam with frequency w entering a 
noncentrosymmetric nonlinear medium with a x'2^ re- 
sponse. As a first step, the second-harmonic wave with 
frequency 2u> is generated via the SHG process. As a 
second step, we expect the generation of higher order 
harmonics due to SFM, for example, a third harmonic 
(w + 2UJ = 3w) or even fourth harmonic (2w + 2w = 4o>) 
[4]. When both such processes are nearly phase matched, 
they can lead, via down-conversion, to a large nonlinear 
phase shift of the fundamental wave [3]. Additionally, 
as we demonstrate in this paper, the multistep cascad- 
ing can support a novel type of three-wave spatial solitary 
waves in a diffractive x'2^ nonlinear medium, multistep 
cascading solitons. 

We start our analysis with the reduced equations de- 
rived in the slowly varying envelope approximation with 
the assumption of zero absorption of all interacting waves 

(see, e.g., Ref. [3]). Introducing the effect of diffraction 
in a slab waveguide geometry, we obtain 

dz       dx2 

X2A2A{e *0—iAk2Z 0, 

4ihlt~ + ^+ X*A>A're~iAk3Z + X*A\*"k1' = 0. 

«fc£ + ^ + »W*'=0, (1) 

where Xi,2 = 2fci<7i,2) X3 = 6fcicr3, and X4,5 = 4fciCT4,5, 
and the nonlinear coupling coefficients o> are propor- 
tional to the elements of the second-order susceptibility 
tensor which we assume to satisfy the following relations 
(no dispersion), 0-3 = 3<7i, cr2 = 05, and 04 = 2o\. 

InEqs. (1), A\,A% and A3 are the complex electric field 
envelopes of the fundamental harmonic (FH), SH, and 
the third harmonic (TH), respectively, Afc2 = 2&i — fc2 

is the wavevector mismatch for the SHG process, and 
A&3 = fci + fc2 — ^3 is the wavevector mismatch for the 
SFM process. The subscripts '1' denote the FH wave, the 
subscripts '2' denote the SH wave, and the subscripts '3', 
the TH wave. Following the technique earlier employed 
in Refs. [5], we look for stationary solutions of Eq. (1) 
and introduce the normalised envelope w(z,x), v(z,x), 
and u(z, x) according to the relations, 

etazw,   A2 - y^-"2i0z+iAk*z 

X2 

Xl%/X5 

le3ißz+iAkz 
(2) 

where Afc = Afc2 + Ak$. Renormalising the variables as 
z -¥ z/ß and x -¥ x/y/2ßki, we finally obtain a system 
of coupled equations, 

.dw     d2w „        » 
i-£- + -x-5 -w + w v + v u = 0, 

n.dv     d2v 1   ,       „ 
2i— + ^-j -av + -w' + w"u = 0, 

n.du     d2u 
d~ + IT2 ~ QlU + XVW = 

(3) 
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where a = 2(2/? + Ak2)/ß and on = 3(3/? + Ak)/ß 
are two dimensionless parameters that characterise the 
nonlinear phase matching between the parametrically 
interacting waves. Dimensionless material parameter 
X = XxXz/xl = 9(cri/cr2)

2 depends on the type of 
phase matching, and it can take different values of or- 
der of one. For example, when both SHG and SFM 
are due to quasi-phase matching (QPM), we have cj = 
(2/7rm)(Tr/X1n1)X^[uj; (4 - j>; -(3 - j)u], where j = 
1,2. Then, for the first-order (m = 1) QPM processes 
(see, e.g., Ref. [6]), we have <n = <r2, and therefore x = 9. 
When SFM is due to the third-order QPM process (see, 
e.g., Ref. [7]), we should take <xx = <r2/3, and therefore 
X = 1. At last, when SFM is the fifth-order QPM pro- 
cess, we have <7X = a2/5 and x = 9/25. 

Dimensionless equations (3) present a fundamental 
model for three-wave multistep cascading solitons in the 
absence of walk-off. Additionally to the type I SHG soli- 
tons (see, e.g., Refs [5]), the multistep cascading solitons 
involve the phase-matched SFM interaction (w + 2w = 
3w) that generates a third harmonic wave. If this latter 
process is not phase-matched, we should consider on as 
a large parameter, and then look for solutions of Eq. (3) 
in the form of an asymptotic series in ai. Substituting 
W - W- i~SWl +"'"' v ~ v* + £Vl + • ■ ■ and u = £Ul> where 

s = a1 , we find m « x™, and Eqs. (3) reduce to the 
model, 

. dw     d2w . 
l~dz~ + ~dx^~W + w v + £X^W = °' 

n.dv     d2v w2 , 
Tz + dx2 ~ av + T + £X^V = °- 

(4) 

In the limit e -» 0, Eqs. (4) coincide with the model of 
two-wave solitons analysed in Refs. [5]. 

For smaller an, the system (3) cannot be reduced to 
Eq. (4), and its two-parameter family of localised solu- 
tions consists of three mutually coupled waves. It is inter- 
esting to note that, similar to the case of nondegenerate 
three-wave mixing [8], Eqs. (3) possess an exact solution. 
To find it, we make a substitution w.= w0sech2(r)x), 
v = v0sech2(r)x) and u = u0 sech2 (TJX), and obtain un- 
known parameters from the following algebraic equations 
«o = 9v0/(3 + 4Xv0), 4XVo + 6«b = 9, u0 = fx^o 
valid for rj = | and a = on = 1. These equations 
have two solutions corresponding to positive and nega- 
tive values of the amplitude. This indicates a possibility 
of multivalued solutions, even within the class of exact 
solutions. 

In a general case, three-wave solitons of Eqs. (3) can 
be found only numerically. Figures 1(a) and 1(b) present 
two examples of solitary waves for different sets of the 
mismatch parameters a and ax. When Qi » 1 [see Fig. 
1(a)], which corresponds to an unmatched SFM process, 
the amplitude of the third harmonic is small, and it van- 
ishes for ax -»• 00 according to the asymptotic solution 
of Eq. (4) discussed above. 

To summarise different types of three-wave solitary 
waves, in Fig. 2 we plot the dependence of the total 
soliton power defined as 

P = f^dx(\w\2+4\v\2 + ?.\u\A, (5) 

on the mismatch parameter au for fixed a = 1. It is 
clearly seen that for some values of an (including the ex- 
act solution at on = 1 shown by two filled circles), there 
exist two different branches of three-wave solitary waves, 
and only one of those branches approaches, for large val- 
ues of £*!, a family of two-wave solitons of the cascading 
limit (Fig. 2, dashed). The slope of the branches changes 
from negative (for small c*i) to positive (for large c*i), in- 
dicating a possible change of the soliton stability. How- 
ever, the soliton stability should be defined in terms of 
physical parameters, and in the case of two-parameter 
solitons as we have here, the stability threshold is deter- 
mined by a certain integral determinant condition, simi- 
lar to that first derived for the three-wave mixing problem 
[9]. 

Ratios of the maximum amplitudes of the soliton com- 
ponents for the three-wave solitons of the lower branch 

FIG. 1. Examples of three-wave solitary waves of Eqs. (3) 
for (a) a = 0.05, ax = 5, and (b) a = 5, c*i = 0.35. 

300 

FIG. 2. Two branches of multistep cascading solitons 
shown as the total soliton power P vs. on for a = 1 and 
X = 1. Filled circles show the analytical solutions. The lower 
branch approaches a family of two-wave quadratic solitons 
(for ai -¥ 00) shown by a dashed line. 
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FIG. 3. Peak intensity ratios for the family of three-wave 
solitary waves (x = 1) at <*i = -10 (solid), ai = 10 (doted). 
Upper dashed curve shows the asymptotic limit of large ot\ 
corresponding to the two-wave quadratic solitons. 

12 
(b) 

■    Iwf 

y 
: 

'■« X 
\ y     1 
120 

(d) 

FIG. 4. Examples of (a) a three-wave quasi-soliton (a — 1, 
ax = -5) and (b) its instability-induced long-term evolution 
shown for the peak intensities (a = 1, cu = —10). (c,d) 
Evolution of the fundamental harmonic of a two-wave soliton 
owing to an unseeded unmatched SFM process with cu = +8 
and en = —8, respectively. 

in the model (3) are presented in Fig. 3, where the 
upper dashed curve is the asymptotic limit of two-wave 
solitons for cti -¥ oo. Soliton solutions of the second (up- 
per) branch in Fig. 2 correspond to large values of the 
total power and they have been verified numerically to 
be unstable. 

The analysis of the asymptotics for Eqs. (3) suggests 
that localised solutions should not occur for ai < 0. 
However, we reveal the existence of an extended class of 
relatively robust localised solutions which we classify as 
'quasi-solitons' [10], solitary waves with small-amplitude 
oscillating tails. In principle, such solitons are known in 
one-component models (see, e.g., Ref. [11]) but here the 
nonvanishing tails appear only due to a resonance with 

tne tnira-narmomc neia [see rig. 4(a;j. buch solitons 
are expected to be weakly unstable, and this is indeed 
demonstrated in Fig. 4(b) for rather long propagation 
distances. 

Existence of quasi-solitons for any value of negative 
phase-matching with a higher-order harmonic field in- 
dicates that all two-wave quadratic solitons can become 
unstable due to an additional SFM process. This is 
confirmed in Figs. 4(c,d) where we present the results 
of numerical simulations of the dynamics of an initially 
launched two-wave soliton for two cases, positive and neg- 
ative phase-matching of a SFM process. For ai > 0 [see 
Fig. 4(c)], a small harmonic (wmax ~ 0.1) is generated 
and the initial two-component beam converges to a three- 
wave soliton. In contrast, for ai < 0 [see Fig. 4(d)], the 
input beam decays rapidly into radiation and diffracting 
harmonic fields. 

In conclusion, we have investigated, analytically and 
numerically, multistep cascading and nonlinear beam 
propagation in a diffractive optical medium and intro- 
duced a novel type of three-wave parametric spatial opti- 
cal solitons, multistep cascading solitons. The detailed 
analysis of the soliton stability, the effect of walk-off, 
higher-dimensional and spatio-temporal effects are pos- 
sible directions of the future research. 

The authors are indebted to K. Koynov, R. Schiek, and 
E. Kuznetsov for useful discussions. The work has been 
partially supported by the Australian Photonics Cooper- 
ative Research Centre. 
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We consider regimes of a transversely distributed cavity, which is filled with a planar magneto-optic 
nonlinear waveguide and is driven by an external coherent radiation. Even without a cavity, nonlinear 
magneto-optic planar waveguides are promising for applications because of adequate combination of 
nonlinear optical and polarization magneto-optic effects and of feasibility of integration with lasers, 
detectors and so on; a theory of magneto-optic spatial solitons in such the waveguides was given in [1]. On 
the other hand, classical cavity bistability [2] and scalar spatial solitons in wide-aperture driven cavities [3- 
5] demonstrate the rich potential of these dissipative schemes. The goal of this report is a study of the 
schemes that combine the advantages of the two approaches and thus are promising for applications in 
optical  information  processing.   The  governing  equations   for  the  electric  field  envelopes   yrl2, 

corresponding to two circular polarisations inside the cavity filled with a medium with Kerr nonlinearity, in 
the mean-field approximation are 

dy/2      d
2ur, , 

~dT~il?~~2ia('1 ¥l    +ß'¥l' )¥i ~iQ¥* +^^2-Eia = 0. 

~dT~i~^"2i0C(} ¥l |2 +JU'¥l {2)¥i +iQ¥i +^¥' ~Eu =0' 

Here t is dimensionless time, x is a dimensionless transverse coordinate, parameter a = 1 or -1 for self- 
focusing or self-defocusing media. The parameter p = 2 for electronic nonlinearity, the value Q is the 

magneto-optic parameter, complex values £ 2 describe losses and detunings for the two polarizations, and 

Eil2 are dimensionless envelopes of external radiation with corresponding polarization. By scaling of time 

Qt -» t, coordinate Q1/2x -H> x, and so on, it is possible to assume Q = 1. In what follows we assume that 
frequencies of the external radiation for the two polarizations coincide (£ = £,), that intensities of these 
external waves are equal ( £u = Ei2), and a = 1. 

Intensities of steady-state homogeneous wave are determined from two coupled cubic algebraic equations. 
Thus there are from one to nine solutions. An interesting feature of the dependencies of intensities 
^i,2 =l Ei,2|2 on intensity of external plane wave /,. =1 E-t I2 is appearance of closed loops. 

Our next step is a linear stability analysis, when time-dependent transversely homogeneous small 
perturbations are introduced. The analysis indicates that, depending on parameters, there are mono-, bl- 
and multistability. It is important to distinguish the two types of loss of stability. First, if at the boundary of 
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stability we have a real root, and it changes its sign when we cross the boundary. This is a saddle-node 
bifurcation corresponding to edges of branches of intensity dependence I{ 2 (/,). More interesting is the 

case when there is a pair of complex-conjugated roots with nonzero imaginary part, and real part changes 
its sign crossing the boundary. In this case (a Hopf bifurcation) creation of stable periodic regime near 
unstable stationary regime is possible. By direct solution of the governing equations we demonstrate such 
the periodic regimes and transient to them. Note that we have here a generalized bistability (coexistence of 
stationary and periodic regimes). 

In more the general case the perturbations depend on the transverse coordinate x (modulation instability). 
Because the problem is linear for small perturbations, it is possible to use a Fourier transform with 
coordinate dependence of the elementary perturbation of the form exp(±/ct), where K is the perturbation 

spatial frequency. The time dependence of the elementary perturbation is exp(>f) where y = y(K) is the 

complex perturbation increment. Typically, modulation instability (Re JO 0) occurs for all the branches 

of the dependence of Il2 =1 El2 I2   on tne intensity of external plane wave /. =1 E-, I2 with one exception 

of the lower branch, which is stable against any small perturbations (Re y < 0). Perturbations grow only 

in some finite range of the spatial frequencies, K^n < K < K^«, K^,, > 0. Therefore, it is possible to suppress 
modulation instability by spatial filtering inside the cavity. The dependence y(rc) was calculated for some 
sets of parameters. Direct solution of the governing equations under conditions of modulation instability 
shows the following transverse patterns of radiation. 

First, for large enough intensity of the external radiation, when the lower branch does not exist, typical are 
spatio-temporal field distributions with deep modulation that seem to be chaotic. 

Second, within the wide range of intensity of the external radiation close to the range of coexistence of the 
lower and one of other branches (with modulation instability), the localized structures arise - the polarized 
dissipative solitons, or dissitons. For them, the transverse profiles of real and imaginary parts of the 
envelope have a bell-like shape on the constant background corresponding to the lower branch of 
homogeneous distributions. One of corresponding intensity profiles is given in Fig. 1. The dissiton nature is 
the same as for scalar dissitons, or "diffractive autosolitons" [3-5]. They are similar to the special type of 
the scalar dissitons, when one of the branches of homogeneous distributions exhibits modulation instability; 
this type of dissitons was first studied in [6,7] and later in [8]. The polarized dissitons exist even in a 
small range of intensities where the only homogeneous distribution is the lower branch (no "classical" 
bistability); the possibility of such situation for the scalar dissitons was pointed out in [9]. 

In conclusion, we have proposed for the first time a theory of a wide-aperture cavity filled with a planar 
magneto-optic waveguide with Kerr nonlinearity, driven by a coherent radiation (plane wave). For 
transversely homogeneous field distributions we have found conditions of mono-, bi- and multistability (up 
to nine solutions for fixed parameters of the scheme). Corresponding dependence of output intensities on 
intensity of incident wave includes closed loops (isolas). With a change of the scheme parameters, 
bifurcations occur, including Hopf bifurcation, when loss of stability of the steady-state regimes is 
accompanied by appearing of regimes periodic in time. In this case generalized bistability (coexistence of 
steady-state and periodic regimes) takes place. 

Optical patterns under conditions of modulation instability have been studied. The most important results 
concern to the polarized localized dissipative structures of radiation, or polarized (magneto-optic) dissitons. 
They are characterized by an extremely wide range of existence, which, in combination with hard 
(threshold-like) type of excitation and such an additional degree of freedom as polarisation, gives promise 
for various applications for optical information processing. 



WD28-3 / 141 

A 

0.5     1     L5     2     Z5 i.5     8     £.5     9     S.5 

Fig. 1. Transverse profile of amplitude I X//x I for the dissiton. 
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Summary: 

There has been in the last decade an increasing development in the field of Transverse Nonlinear 

Optics (TNO), mostly because the interplay of nonlinear light propagation with transverse mechanisms 

such as light diffraction or transverse diffusion of excited lead to self-organization. Recently, systems 

including a nonlinear resonator have been a subject for intense and fruitful theoretical work. If originally, 

only the transverse homogeneous response of plane resonators was considered1, the extension to the full 

account of transverse diffractive and eventually diffusive mechanisms, has introduced the ingredients 

necessary to a thorough description of patterns and localized (or solitonic) states2,3. In this approach, the 

cavity appears as a constitutive element of the complex mechanisms interacting within the system, in 

providing a feedback mechanism and thereby an additional contribution for stabilizing solitonic 

features4'5. 

Self-organizing properties of the optical response of resonators naturally point to applications in 

all-optical information processing domains, through the ability to form controlled arrays of optical 

information bits . Moreover, it proposes quite innovative processing schemes including reconfigurable 

arrays and operative modes of the cellular automaton type. Recent modeling schemes have introduced 

direct gap semiconductors as candidate materials for realizing the active part of a nonlinear 

microresonator . Indeed, III-V semiconductors display either purely dispersive or mixed absorptive- 

dispersive type of saturating nonlinearities. Moreover, due to their characteristic lifetime, at the 

nanosecond scale, semiconductor-based systems can serve high bit-rate processing. Stable localized states 

i.e. cavity solitons (CS) may exist, owing their existence to the destabilization by Modulational 

Instabilities (MI) of some section of the homogeneous lower or upper branches of the S-shaped 

transmission characteristic curve. In this respect, the defocusing case can yield the particular situation 

where the lower branch is unstable while the upper branch remains stable. 
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We report on the first experimental observation of such patterns in a passive resonator whose 

structure consists of a back mirror made of 23.5 pairs of a Ga^A^As/AlAs alternation of quarter-wave 

layers, a 3/2A.-thick nonlinear layer including 18 GaAs wells of 100 Ä thickness separated by 100 Ä-thick 

Gao.7Alo.3As barriers, and finally a front mirror comprizing 17 pairs of the same alternation as for the front 

mirror. The whole structure is grown by Metal-Organic Vapor Phase Epitaxy (MOVPE). The sample 

characterizes by its short-range thickness fluctuations and long-range uniformity fluctuations. 

Fig. 1 : Patterns observed in the reflective mode on a GaAlAs/GaAs MQW microcavity (a) 
Modulations instability of the low excitation branch (high reflectivity) gives rise to a quasi- 
hexagonal pattern. As intensity increases (b), spatial switching occurs bringing the central part 
solely into a high excitation (low reflectivity) state. 

The sample was excited in a regime corresponding to almost a purely dispersive saturable 

defocusing nonlinearity8 in the Urbach's tail of absorption. The intensity level of rectangular optical 

incident pulses allowed to set the system at arbitrary positions with respect to the switching point. We 

were able to observe the bistable regime and evidenced spatial switching in the reflective mode (fig. lb). 

Then the beam split radially into two parts : a central part above threshold with lower reflected intensity, 

and a peripheral part still below. The two parts are connected by a switching front followed by damped 

diffraction oscillations of the intensity. Below threshold patterns could be observed at arbitrary low 

intensities (fig.la) and seemed to owe their existence to a modulational instability of the high reflectivity 

branch. Surprisingly, when changing the intensity, no observable transition between an homogeneous and 

a patterned response could be detected. However, the transition was observed from an homogeneous 

response at larger wavelength detunings, to disordered and then regular patterns as the detuning was 

decreased. The contrast and regularity increased accordingly. 

Due to the high finesse of these microresonators, thickness fluctuations, even at the scale of a 

single atomic layer, are influencing pattern formation. Various shapes of patterns have been observed, 
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depending on the position of the excitation beam on the sample, and revealing the symmetry of underlying 

fluctuations or defects. Figure 2 shows a series of patterns as different as random, hexagonal or stripe-like. 

(a) (b) (c) 

Fig. 2 : Various patterns obtained at different locations on the sample. Underlying spatial fluctuations of the 
sample properties induced (a) randomly distributed, (b) hexagon-like, or (c) stripe-like patterns. 

In general one can consider two major contributions to the rise of patterns when the right domain 

of parameters is reached : field boundary conditions and fluctuations of the structure thickness. Then- 

action is translated in the reciprocal space by specific selection rules. Here, in the absence of observable 

MI threshold, boundaries do not introduce strong conditions. Conversely, transverse fluctuations of cavity 

resonance are imposing their own. They act as an additional criterion for pattern selection by defining 

spatial scales and symmetries. Similarly, the role of internal material defects are found to be an important 

additional mechanism of the patterning process. 
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Arrays of coherently coupled VCSELs were exhibited [1]. The VCSEL, which combines a 
nonlinear medium with a two dimensional optical resonator, enables the formation of complex 
optical field patterns. We present experimentally and theoretically coupled VCSEL arrays with 
novel emission patterns, in which each element is emitting an optical field vortex (or several 
vortices [3]). The nonlinearity of the laser oscillators enabled the locking of the emission from all 
the laser elements to form a single complex supermode of the array. This complex transverse 
pattern has a larger information content than the regular supermodes - namely the vortices 
"charge". The variety of supermodes exhibited by the vortex emitting arrays (compared to the 
regular supermodes) may contribute significantly to interconnection and free space optical 
information distribution [2]. 

We examined the transverse intensity patterns emerging from coherent arrays of proton 
implanted, medium area VCSELs (10-20nm in diameter each). The active layer consisted of three 
8nm Ino.2Gao.8As wells, emitting at ~0.95p.rn and the array was prepared by the mirror patterning 
method [1]. The near-field (NF), far-field (FF), spectral intensity patterns were examined at room 
temperature under pulsed operation. 

At low injection current - the arrays of coupled VCSELs emitted only the regular anti-phase 
supermodes which have a lower loss relative to the in-phase supermodes (due to their zero 
amplitude in the interlaser spacing). Cyclic arrays of an odd number of lasers could not emit an 
odd number of anti-phase lobs due to phase frustration. When the threshold current was reached 
in these structures, the array emitted an even number of anti-phase lobs, either by merging the 
emission of 2 adjacent lasers, or by a double lobe splitting the emission of one of the lasers[4]. 

When the injection current was increased, all the lasers in the array simultaneously switched 
to an identical pattern consisting of a single "black" optical vortex (Figs. 1-3), or a combination of 
several black vortices (to be presented at the meeting [3]). 

Thus the VCSELs arrays were emitting an overall optical field made of a multiple vortices 
array - each with absolute spin "charge 1" (Figs. 1-3). For this emission - each laser element of 
the array was carrying two independent "charge" types: 1. It's amplitude sign relative to the 
neighboring lasers (either in-phase or anti-phase), and 2. The vortex "spin" (±1). The interplay of 
the two charges enabled the VCSEL arrays to exhibit a rich variety of complex supermodes. 

The vortex spin and the relative amplitude signs of the lasers were determined experimentally 
by measuring the NF, FF and NF interference patterns. The vortices spins were determined by the 
NF interference pattern (e.g. Fig. 2). The image of the NF pattern and a plane wave were brought 
to interference. Due to the phase shift in the vortex, constructive interference on one side of the 
vortex became destructive on the other side, and one interference fringe disappeared. The 
direction of the disappearance depends on the sign of the spin. Fig. 2 shows the disappearance of 
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an interference fringe in each of the two vortices, in the same direction (the fringe exists on tne 
upper side of the vortex and disappears on the lower side). This pattern is therefore an emission of 
two coupled vortices having the same spin. 

The "amplitude sign" of the optical field emitted by each laser was determined by examining 
the FF pattern. The FF pattern of two identical sources is the same as the FF of one source 
multiplied by a sine (for anti-phase locking) or a cosine (for in-phase locking). If the sources are 
not identical, as in the case of opposite spin values, the FF pattern is more complex, but still 
clearly distinguishes between the in-phase and anti-phase locking. We calculated the FF 
distributions (see figures) and compared them to the experimental findings to resolve the 
amplitude signs. 

For linear VCSEL arrays - two types of locked vortices configurations were observed: 1. 
Anti-phase supermode, similar to the regular supermode observed previously. The spins in this 
supermode were identical (Fig. 2) 2. In-phase combination, with alternating spins (figure not 
presented here). 

Cyclic VCSEL arrays with an even number of lasers (Fig. 3b) exhibited the anti-phase 
supermode, with identical spins for all vortices. The coupled multi-vortices emission exhibited an 
odd number of "black" beams (Figs. 3 a, 3 c), which were locked in-phase, and with identical spins. 
However - the NF distribution is much more complicated than could be seen at first glance. This 
kind of locking essentially generates an optical vortex with an opposite spin in each interlaser 
spacing. For example, the array shown in fig. 5c consists of 5 vortices of spin 1 in the middle of 
each lob, 5 vortices of spin -1 in each interlaser spacing, and an additional vortex of spin 1 in the 
center of the array. The total number of vortices is 11, with a net charge of+1. The vortex in the 
interlaser spacing is accompanied by a zero amplitude value, which is responsible for this mode to 
experience small losses. 

Complex and rich combinations of coupled vortices beams emerged from medium size 
VCSELs arrays. In the presentation we will discuss the generation and coupling of vortex arrays 
in VCSEL nonlinear resonators, the selection rules for the exhibited supermodes, and the vortex 
charge conservation as a tool for tailoring desired far-field patterns. 
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Figure 2 - anti-phase coupled vortices with 
identical spin - NF and interference pattern 

Figure 1 - Coupled vortices in linear arrays 

Experimental NF Experimental FF Theoretical FF 
Figure 3 - vortices from cyclic coupled VCSELs. (a), (c) - 

20 Jim     3,5 elements in-phase. (b) 4 elements - anti phase. Injection 
currents ~ 130-150mA. 
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The ever increasing level of integration between light and electronics in information processing devices 
has recently benefitted from the microscale architecturing of semiconductor-based optical resonators. These 
have been widely implemented in order to realize light pixels which can in turn be the entity where the light 
signal is treated in an all-optical manner (amplification, commutation, see e.g. [1]), or interfaced to a 
micro-electronic circuitry stage for a hybrid processing of the signal (see e.g. [2]). By means of various 
etching techniques, arrays of vertical microresonators can be obtained, each of them being separately 
addressed by an external beam (or electrical current). While this approach has certainly exploited 
interesting features, there remain some problems concerning all-optical information treatment, linked e.g. to 
the accuracy needed in interfacing the addressing beam and/or the readout stage, or to the rigidity of the 
array with respect to reconfigurability, signal fan-in and fan-out, channel commutation. 

To this point, recent theoretical works ([3,4] and references quoted therein) predicted the stability of 
self-organized light peaks in broad area nonlinear resonators, which can be regarded as the result of a 
localization of a global morphogenic process occurring in the transverse profile of the coherent field emitted 
by such classes of resonators in presence of a modulational instability. The onset of pattern forming 
instabilities is strictly related to the coupling of diffractive and nonlinear phenomena in the light 
propagation process through the resonator, the feedback action of reflectors causing the structure to 
become self-sustained at regime and appear as a stationary modulation of the field profile. Experimental 
evidences have been provided about such light peaks (which are commonly called Cavity Solitons (CS)) 
demonstrated experimentally in liquid crystal light valves [5] and in lasers with saturable absorbers [6]. 

A significant progress towards application of the CS as a light pixel, has been set by the prediction of 
stable CS in microresonators based on a MQW GaAs/GaAlAs nonlinear layer [7,8]. CS appear stable for 
sizeable parametric domains and injected field intensities which fall within experimental feasibility, and can 
be found both in regimes of pure carrier photogeneration , and in presence of an electrical injection of 
carriers. An important feature is the stability of the CS even in presence of well known anti-patterning 
medium characters, as carrier diffusion and self-defocusing nonlinearity (see also [9]) which is the typical 
response of a MQW device when the injection occurs on the red side of the excitonic resonance. 

We obtained recently a significant progress in the theoretical description of these phenomena by 
formulating and analyzing a microscopic model which provides a much improved description of the optical 
nonlinearities in such microresonators. This approach applies, for the moment, to the case of bulk 
semiconductor media, this being a simpler device to grow in highly homogenous broad area samples, by 
means of epitaxial techniques [10]. 
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Fig. 1: The stationary curve for the intracavity field versus the input field in a bulk microresonator: the full line 
plots the homogeneous field intensity, the dashed portion thereof indicates the regime of injection where a 

modulational instability leads to pattern formation. Different symbols indicate the branch of different stable 
patterns obtained in the numerics. 

The two key features of the cavity soliton, which makes it an appealing bit-wise unit to encode and treat 
information, are the self-confinement and its mobility in the transverse section of the resonator. The first 
feature makes it possible to excite a soliton at a precise location of the device's section by shining a narrow 
pulse which can then be turned off. The self-sustaining feedback action of the resonator lets the CS live for 
an indefinite time in principle. Iterating the procedure, any number of pulses can excite an equivalent 
number of CS in different locations, provided that the CS at regime do not exceed a certain density which 
our models allow to interpret intuitively. The tolerance requirements on the pulse intensity, phase and 
duration are quite relaxed, due to the stability of the CS. 

The second feature is intrinsic in the diffractive-nonhnear confinement of the CS, at difference from 
what happens in arrays of microresonators [11] where the etched material confines the radiation. As it 
appears from simulations, CS shift quite robustly across the transverse section of the device, following 
phase or intensity gradients of the input beam. This not only means that we can bring bits to a controlled 
interaction, by acting on the external field profile, but also that the maxima of the profile are stable 
locations for CS, which are thus "trapped" against e.g. noise-induced Brownian motion. CS can be 
arranged in arrays which are in principle easily reconfigured, provided one can control the position of the 
maxima in the input field profile. 

On the basis of these fundamental properties of CS we have developed a theoretical/numerical 
investigation of the applicative aspects of these flexible pixels, contemplating schemes for signal 
amplification and commutation via CS, all-optical logic gates and processing [12]. 

Since the aforementioned predictions, an intense experimental activity was initiated within the 
framework of an ESPRIT European Programs and our theoretical activity has been focused towards the 
modelistic inclusion of the main features characterizing these devices on a more realistic point of view. 
Among the more significant issues, we have studied the role of Gaussian and super-Gaussian beam in 
influencing the appearance of patterns and changing the stability scenario of CS, another mainstream of 
activity was the analysis of the effect of the slow carrier dynamics in the pattern and soliton dynamics, and 
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an attentive investigation was performed about the relevance of the microcavity resonance fluctuations due 
to layer inhomogeneities, which are intrinsic in MOVPE growth of devices which have been obtained and 
studied at CNET Labs in Bagneux. We have evidences that the present experimental observations at CNET 
and PTB (Braunshcweig) are compatible with the prediction of our models, although a reliable validation is 
still on its way. 
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Summary 
Because of the recent advances in high-power diode lasers producing in certain 

cases over 50 Watts of CW power, solid state lasers have seen a renaissance. Achieving 
optimum efficiencies in spectral regions where no solid state laser material is known to 
operate and controlling the patterns produced by the laser system with nonlinear optical 
elements offers an array of new opportunities for nonlinear guided waves applications. 
We present here an example of such an application aimed at optically manipulating gas 
bubbles in out of space experiments. 

Due to the large absorption present in the near and mid-infrared in most liquids 
and in particular water, in order to manipulate large particles and bubbles we are forced 
to operate in the visible portion of the spectrum. Our experience has shown that laser 
beams at for example 1064nm produce thermal turbulence in most liquids making the 
optical stabilization of particles and bubbles and as a result their manipulation literally 
impossible under normal laboratory conditions. 

Furthermore, to the best of our knowledge, no diode laser or solid state laser is 
known to directly emit in the blue-green region of the spectrum with CW powers in 
excess of 1 Watt. As a result we have implemented an intracavity frequency-doubling 
scheme producing a "donut-like" laser pattern with over 5 Watts of CW power at 532nm 
near the absorption minimum of water. 

HR @ 2co  K 

f SH output 

15 Watts 
Figure 1: Intracavity frequency doubling geometry. The laser crystal is Neodymium doped Yttrium- 
Vanadate (Nd:YV04) and the frequency doubling crystal is a 2cm long, temperature tuned Lithium- 
TriBorate (LBO). We have modified an existing commercial laser to demonstrate that mode control is 
achievable in intracavity frequency doubling with an all-solid-state-laser-system. 
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A natural question then arises: How can we produce a "donut-like " mode pattern 
at 532 nm maintaining an optimum operation for the laser? The answer is relatively 
simple. Introducing intracavity losses has shown to be futile because of the large 
intracavity optical powers involved in the near JR. With intracavity powers in excess of 
200 Watts we have been able to melt for example thin metal wires. Extra cavity mode 
converters would add an additional degree of complexity in the system. We have thus 
chosen to obtain mode control with the intracavity second harmonic element. 

With our setup we have been able to produce a series of "donut-like" laser beam 
patterns with powers at 532nm in excess of 5 Watts. 

Figure 2:  Mode pattern generated by our intracavity SHG system. 

The above figures show our experimental setup and one of the mode patterns we 
have obtained with our intracavity frequency doubled laser. Note the two-fold symmetry 
in the laser pattern, indicative of the interference between the TEMoo mode and the 
TEM02* mode. We have obtained similar patterns with a four-fold symmetry, verifying 
that the cavity geometry allows us to chose higher order modes with azimuthal symmetry. 

Figure 3: Single and multiple bubble trapping with our laser 

We have been able to trap single and multiple bubbles with our setup. The above 
two figures show the intense scattering from air bubbles when they are trapped, in other 
words when buoyancy is counteracted by optical radiation pressure with a laser beam 
coming from the top of the figures. 
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We will present simple models based on mode expansions allowing qualitative 
and almost-quantitative estimates of the efficiency of intracavity frequency doubling. 
These models point to the physical mechanisms involved in the pattern generation we 
have observed. 

0    0 

Figure 4: Experimetnal 3D plot (left) of the optical and theoretical prediction (right) figure above. 

Figure 5: Experimental pattern (left) and theoretical prediction (right) 

We have been able to predict and demonstrate more complex optical patterns with higher 
degrees of symmetry. The above figure shows for example what we call the "8 pattern". 
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Cavity solitons (CS) supported by the quadratic non- 
linearity have recently been predicted in both optical 
parametric oscillator (OPO) [1] and second harmonic 
generation [2] configurations. The large values of the 
effective x^2' accessible in artificially phase-matched ma- 
terials and the instantaneous electronic response are im- 
portant practical advantages of using CS in the x'2^- 
cavity in future all-optical schemes of the information 
processing. 

Experimental observation of x'2^-CS remains a chal- 
lenge. However, an intensive work of the last years in the 
direction to achieve an efficient frequency conversion in 
the semiconductor microcavities, ongoing wave of the ex- 
perimental results on transverse instabilities and recent 
observations of the plane wave bistability [5] in the quad- 
ratically nonlinear cavities pave the way towards this 
goal. Thereby, stability of x'2^-CS becomes an interest- 
ing and important problem not only from fundamental 
but also from practical points of view. 

Quadraticaly nonlinear media also support solitons 
propagating free in a bulk [7]. An important point is that 
the soliton instabilities in free propagation schemes are 
convective ones, i.e. perturbations grow with propaga- 
tion, therefore even if a soliton is actually unstable in a 
particular range of parameters, the stable trapping still 
can be observed over the short length of a nonlinear 
sample. Contrary, in the most of the cavity schemes sta- 
bility and instability are absolute ones, i.e. perturbations 
decay or grow in time at a fixed spatial point, therefore 
unstable CS transform into some other stable solutions 
on the time scale of the characteristic cavity photon life 
time. Thus CS stability with respect to the small disturb- 
ances is an essential prerequisite for their experimental 
observation. 

One of the main objectives of this work is to study 
CS instabilities in the doubly resonant degenerate OPO 
starting from a limit situation when CS formally become 
free propagating solitons. The latter ones are known to 
possess so called internal modes causing longlived pulsa- 
tions of the soliton width [8] and playing the crucial role 
in its convective instability [9]. We will show below that 
dynamics of the x'2^ solitons in a cavity significantly 
underlined by the fact of the presence of these internal 
modes. Such a look at the problem allows to make certain 
predictions about stability of other dissipative localised 
structures which have their conservative counterparts. 

We start from the dimensionless mean-field equations 
for OPO given in Ref. [1] and describing the interac- 
tion of the signal and pump envelopes. It can be shown 
that these equations can be presented in the 'quasi- 

Hamiltonian' form 

5H 
(dt+jm)Em=ij^r, m = l,2, (1) 

where H is the following functional: H = 
Jdxi-a^E,]2 - a2\dxE2\

2 + fcl^l2 + <52|£2|
2 + 

\{ElE2 + fiEl + ex.)] and am - 1/m. Here Ex and 
(E2 + ß) are the signal and pump fields, respectively, at 
frequencies v and 2w. /u characterizes strength of the 
external pump field and without restriction of generality 
can be assumed positive, t is the time describing evol- 
ution of the envelopes on the scale of the cavity photon 
life-time. 7m and 6m characterize, respectively, cavity 
losses and detunings from its resonances. 

Among the variety of the bright and dark localized 
structures observed in the numerical modelings of OPO 
we choose the bright CS seating on zero background field 
[1], as more relevant for the practical implementation. It 
was numerically demonstrated that a continuous family 
of the solitary solutions exists within the following range 
of the pump values m < /i < PR providing that 6m < 0, 
here pR = v^f+Ti and Mi = |7i*2 + 72<Wv/<5I + ll- 

The exact analytical expressions for the single-hump 
upper- (u) and low- (I) branch CS can be found 
for 72 = 0 and 5i = 52 - (J,cos2(j)u>1, where 
2<f>1 = arcsm(7i//i) and 4>u = 7r/2 — <f>1, then 
A%' = l.5\82\sech2[\62\x/2] exp(im(f>u'1), where Am(x) = 
Em(x, t). Thus CS become progressively narrower for the 
larger \Sm\. Numerically build graphs of the energy of the 
signal field vs pump for two different parameter sets are 
presented in Fig. 1 and typical transverse profiles in Fig. 
2. One can see that close to the /IR upper branch of the 
single-hump CS bifurcates back into a sequence of the 
higher order multi-hump CS. While the existence of the 
single- and two-hump branches was numerically demon- 
strated before [1] their link with each other and with the 
higher-order solitons as well as the analytic expressions 
for Am are novel features. Note, that for 72 = 0 sta- 
tionary problem for the CS transverse profiles formally 
reduces to the equivalent problem for the free propagat- 
ing solitons, thus CS can be considered as their continu- 
ations. 

Now we turn our attention to the main problem we 
want to address here, i.e. to the stability of CS families 
with respect to the small perturbations. We seek solu- 
tions of the Eqs. (1) in the form Am(x) + e(Um(x,t) + 
iWm{x,t)). Here £«1 and Um,Wm are real perturba- 
tions. After the standard linearization and substitutions 
Um = um(x)ext, Wm = wm(x)eu we derive an eigenvalue 
problem (EVP) A£ = £f, where f = {VJI,W2,UI,U2)

T
 and 
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£ is the linearisation of (1) near a soliton. The discrete 
spectrum of the nonselfadjoint operator £ has been found 
numerically using second-order finite differences. 

<S 40- 

FIG. 1. Energy of the soliton signal field, Qi = fdx\Ai\2, 
vs pump p. (a) 7l>2 = 0.1, <5i,2 = -2; (b) 7l = 1, y2 = 0.8, 
ft = -1-8> ft = -4- Bold and thin lines mark, respectively, 
stable and unstable solitons. 

: i M   . 

: i 1 : 
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FIG. 2. Transverse profiles of \Ai\ (full lines) and \A2\ 
(dashed lines) for single-, two- and three-hump solitons 
marked by rohmds in Fig. 1(b). 

We start the discussion of the stability properties fo- 
cusing on the single-hump CS. To understand an origin 
of their instability we consider a limit situation when 
Eqs. (1) become Hamiltonian, i.e. 7m = 0. It ap- 
pears that CS do exist under these conditions. However, 
they are still very different from x(2) solitons in the free 
propagation geometry [7-9]. This is because the total 
energy f dx(\Ei\2 + 2\E2\

2) is not a conserved quantity. 
It becomes conserved and CS become equivalent to the 
free propagating solitons only when pump photons are 
not injected into a cavity any more, i.e. p = 0. Then, 
in accord with Noether's theorem, Eqs. (1) acquire the 
phase symmetry, Em -»• £meim*, which generates the ei- 
genmode |*0 = {ReAu2ReA2,-ImAu-2ImA2)T with 
double zero eigenvalues, C{0 = 0. Note that considering 
an all-fiber ring cavity the limit p ->• 0, 7m -»■ 0 corres- 
ponds to the lossless fiber loop supporting solitons due 
to the balanced action of the nonlinearity and group ve- 
locity dispersion. For 7m = 0 the left existence boundary 
of the CS is p = pL = 0. Once we deviate p from the 
zero moving along the low soliton branch a pair of zero 
eigenvalues associated with & split and move along the 
real axis, ImX = 0, of the (ReX, JmA)-plane in the op- 
posite directions, see the dashed lines in Fig. 3 (a). Thus, 
the low branch is unstable. Contrary, moving along the 

upper soliton branch we have found that the eigenval- 
ues move in the opposite directions along the imaginary 
axis, ReX = 0. Thus the upper soliton branch remains 
stable at least for small p. However at some p = pHH 

these imaginary eigenvalues meet the pair of other ei- 
genvalues which are the direct continuation of the ei- 
genvalues corresponding to the internal eigenmodes of 
the free propagating quadratic solitons [8]. This collision 
gives onset to the Hamiltonian-Hopf instability of the CS, 
see full lines in Fig. 3(a). The situation when the free 
propagating solitons are themselves unstable will not be 
considered here. 

FIG. 3. Real (bold lines) and imaginary (thin lines) parts 
of the eigenvalues governing stability of the upper (full lines) 
and low (dashed lines) branches of the single-hump solitons 
vs pump p for S1<2 = -2. (a) 7l,2 = 0, (b) 7i>2 = 0.1. 

Introducing linear losses, which are unavoidable in a 
real cavity, and keeping them equal for the both har- 
monics one will find that the bifurcation diagram simply 
becomes shifted down along the axis ImX = 0 by the 
value equal to 7m, see Fig. 3(b). This fact can also be 
deduced from the explicit form of £. Non-Hamiltonian 
corrections transform Hamiltonian-Hopf bifurcation into 
the standard Hopf bifurcation (HHH -* PH), see Fig. 3 
(b), well known for the dissipative systems. Considering 
stability of the multi-hump CS it has been found that 
they are Hopf unstable if losses are small enough. How- 
ever, the large dissipation has stabilizing effect and coex- 
istent stable single- and two-hump CS have been found, 
see Fig. 1(b). 

To study dynamics of the unstable CS an extensive 
series of the numerical simulations has been performed. 
Inside the instability region, but close to the critical 
boundary, a stable attractor in form of an oscillating 
CS has been found, see Fig. 4(a),(b). Deeper inside 
the instability region we have observed two scenarios of 
the soliton destruction. For some intermediate region of 
p the growing amplitude of the oscillations leads to the 
switching into the trivial solution, see Fig. 4(c),(d). For 
p close enough to pR the pulsating soliton easily excites 
a chaotic pattern which quikly fills the entire computa- 
tional window, see Fig. 4(e),(f). 
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FIG. 4. Dynamics of the upper-branch single-hump soliton 
in the region of its Hopf instability, (a) Stable pulsations, 
fi = 0.8; (b) Switching into stable trivial solution, /j. = 1; (c) 
Switching into the regime of spatio-temporal chaos, p = 1.5. 
Other parameters as for Fig. 1(a). Full/doted lines in Figs, 
(a), (c), (e) mark, respectively, |2?i(t)| and |2?2(t)| at x = 0. 
Figs, (b), (d), (f) show \Ei{x,t)\. 

A possible interpretation of the last scenario is that 
the radiation escaping from the oscillating soliton along 
its tails, which are weakly damped when \i is close to 
/Ltfl, locally produces the parametric gain greater than 
pit thus making the background unstable and a chaotic 
pattern existing near the upper branch of the homogen- 
eous solution is excited. Initialising Eqs. (1) with the 
homogeneous solutions results in the similar chaotic pat- 
tern. Two spatially localized periodic attractors have 
been found taking multi-hump CS as initial conditions. 
One of them corresponds to the Hopf unstable two-hump 
CS, see Fig. 5(a), and another one to the Hopf-unstable 
three- or four-hump CS, see Fig. 5(b). The dynamical 
regimes shown in Figs. 4, 5 also serve as attractors for 
a wide range of the experimentally relevant initial con- 
ditions in the form of the gaussian pulses of the pump 
radiation with suitable width, height and duration. 

the energy conservation and losses destroy Hamiltonian 
structure in a manner similar to the described in the 
present context. However this symmetry breaking is suf- 
ficient only for an appearence of the stable upper and 
unstable low CS branches, but it is not sufficient for the 
Hopf instability of the upper branch. Another important 
ingredient, which practically guaranties this instability, 
is a presence of the internal soliton modes in the limit 
when pump and loss are negligible. These modes have 
already been demonstrated for large variety of models de- 
scribing free propagating optical solitons, see e.g. [8,10], 
and admitting their cavity generalizations. Let us point 
out, that recently reported oscillating bright [4] and dark 
[3] localized structures in dissipative models with satur- 
able or quintic-qubic nonlinearities echo complex internal 
dynamics of their counterparts in the free propagation 
schemes [10,11]. From the other hand Hopf instability 
of the bright solitary waves found in the one-dimensional 
cubic NLS equation with loss and driving [6] can not 
be linked with internal or unstable modes of the NLS 
soliton because neither of them exist. In such a case in- 
stabilities may appear due to non-Hamiltonian and/or 
non-conservative corrections resulting in the splitting of 
additional eigenmodes from the continuum. 

In summary: Stability, multistability and instability of 
the single- and multi-hump cavity solitons in the degen- 
erate optical parametric oscillators have been examined 
by means of the linear stability analysis and numerical 
simulation of the dynamical and stationary equations. 
It is demonstrated that Hopf instability leading to the 
complex spatially localized dynamics originates from the 
presence of the internal modes of the free propagating 
quadratic solitons. 

150   200 

FIG. 5. Spatio-temporal evolution of |I5i| resulting from 
the Hopf instability of the two-hump (a) and four-hump (b) 
solitons. (a) \x = 1.8, (b) n = 1.9. Other parameters as for 
Fig. 1(b). 

Considering extension of our results to other externally 
driven nonlinear optical cavities and generally to other 
dissipative systems we have to say that assuming that in 
the absence of the external driving and losses a model 
has solitary solutions one can expect similar bifurcation 
scenarios. One of the reasons for this is that an external 
pump always breaks the phase symmetry associated with 
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Localized structures or cavity solitons in resonators 
with a nonlinear response attracted some interest re- 
cently [1]. One of the basic and most intensively stud- 
ied configurations is the degenerate parametric oscil- 
lator where two types of cavity solitons were shown 
to exist [2]. The aim here is to show where in param- 
eter space (two-dimensional) cavity solitons exist, to 
demonstrate the existence of higher order structures 
and to perform a linear stability analysis. 

Considering a Fabry-Perot resonator with a 
quadratically nonlinear medium the mean field equa- 
tions of the optical parametric oscillator for the trans- 
mitted fields A and B of the fundamental and second 
harmonics are 

.8 A      d2A      d2 A 
8T 

+ d-X2 + QY2+(Al + i)A + A*B = 0> 

(1) 
.8B fd2B      d2B\ 

18T + " [ dip + dYl) + (Az + iT)B + A = E' 

where T denotes the time, X and Y the transverse 
coordinates, A1 and A2 are the detunings of the fields 
from the corresponding resonances, 7 is the ratio of 
the photon lifetimes and a half the ratio of the refrac- 
tive indices corresponding to the fundamental and 
second harmonics. We assume a = 1/2 which is a 
reasonable approximation for realistic configurations. 
The input field of the second harmonic is E. 

The homogeneous steady state or plane wave so- 
lutions of Eqs.(l) and their stability behaviour with 
respect to homogeneous perturbations are well known 
(see for example [3]). Equating the derivatives in 
Eqs.(l) to zero the moduli of the fields of the plane 
wave solutions are 

A0 = 0, 
E2 

Al+72 (2) 

B     4.5 

Figure 1: Bifurcation diagram displaying branches of 
plane wave solutions (thin lines) and cavity solitons 
(bold lines) for Ax = -1, A2 = -3 and 7 = 0.5. 
Solid lines refer to stable (homogeneously stable for 
plane wave solutions) and dashed lines to unstable 
solutions. 

Mol2 = AiA2 - T ± y/& - (7A1 + A2)2 , 

(3) 
= A2+1. 

The solution of Eq. (3) is doubly degenerate with 
phase difference v [4] and the stationary critical 
points can be derived from this equation. At EB = 
V/(A'i + 1)(A2+T2) this solution bifurcates from the 
branch of solutions of Eq. (2), that is supercritically 
if AiA2 - 7 < 0 and subcritically if AxA2 - 7 > 0. 
In the subcritical case Eq. (3) describes two branches 



158 / WD34-2 

of solutions with a limit point at EL = I7A1 + A2I 
where the solution with the upper sign in Eq. (3) sta- 
bilizes. We refer to the branch of solutions of Eq. (2) 
as trivial solution and to the branches of solutions of 
Eq. (3) as nontrivial lower (negative sign) and upper 
branches (positive sign). For A1A2 < 0 which is not 
considered here the bifurcation is always supercriti- 
cal. In this case the branch of Eq. (3) can destabilize 
via a Hopf bifurcation. 

Figure 2: Decay of a higher order cavity soliton (fun- 
damental) into a pattern with a fivefold symmetry for 
Ax = -1, A2 = -3, 7 = 0.5 and E = 4.17. 

Cavity solitons are calculated as rotationally sym- 
metric stationary solutions of Eq. (1). They 
are localized solutions on a plane wave back- 
ground and were found for A1A2 > 0. To de- 
termine the stability of cavity solitons we sep- 
arate Eqs. (1) into real and imaginary parts 
A = AT + iA{, B = Br + iBi, substitute 
ATO,io{R) + SAr,i{R)exp(im4)txp{XT), BTO,io{R) + 
SBr^{R)exp{imcj>)txp(XT) where A0{R) = ATo{R) + 
iAi0{R), B0(R) = Br0(R) + iBi0{R) is a localized 
structure and linearize with respect to the deviations. 
This leads to a one-dimensional eigenvalue problem 
in terms of 6Ar<i(R), 6BT>i(R) for A which can be 
solved numerically for the different values of TO. 

For negative detunings and A1A2 > 7 there is 
a branch of cavity solitons emanating subcritically 
from the bifurcation point Ejg (Fig. 1), i.e., they are 
on a trivial plane wave background. The cavity soli- 
tons stabilize at a limit point. If the nontrivial upper 
branch is modulationally unstable, i.e. with respect 
to spatially inhomogeneous perturbations more and 

<     5 

<     5- 

Figure 3: Bifurcation diagrams displaying branches 
of plane wave solutions (thin lines) and cavity soli- 
tons (bold lines) for Ai = 1, A2 = 0 and 7 = 0.5. 
Solid lines refer to stable (homogeneously stable for 
plane wave solutions) and dashed lines to unstable 
solutions. 

<   4 

Figure 4: Oscillating cavity soliton for Ai = 1, A2 = 
0, 7 = 0.5 and E = 4 (maximum solid, minimum 
dashed). 
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more limit points develop leading to higher order cav- 
ity solitons (Fig. 1). They seem not to stabilize again 
rather being unstable through A > 0 with increas- 
ing values of TO going to higher order cavity solitons. 
An example for m = 5 is displayed in Fig. 2 where 
eventually a pattern of cavity solitons with a fivefold 
symmetry develops. 

<   1.0- 

1.95 EL    2.05 2.15 2.25 

Figure 5: Bifurcation diagram displaying branches of 
plane wave solutions (thin lines) and cavity solitons 
(bold lines) for Ax = 1, A2 = 1.5 and 7 = 0.5. Solid 
lines refer to stable and dashed lines to unstable so- 
lutions. 

Figure 6: Cavity soliton on the first stable branch 
of Fig. 5 for E = 2.05 (fundamental solid, second 
harmonic dashed). 

For positive detunings two cases were considered. 
In either case the cavity solitons have a nontriv- 
ial plane wave background which is due the trivial 

branch being modulationally unstable for E < EB- 

In Fig. 3 the modulational instability terminates on 
the nontrivial branch. From this point we have cavity 
solitons emanating subcritically. The branch seems 
to extend to infinity. This is also true for the other 
branches which we identified (Fig. 3). Since they are 
not emanating from a plane wave solution they must 
be connected by limit points. We found one stable 
branch of cavity solitons (Fig. 3a). In Fig. 3b there is 
no entirely stable branch. One branch of cavity soli- 
tons is unstable with a real A > 0 for m = 3 and a pair 
of complex conjugate A with ReA > 0. Using the ra- 
dial version of Eqs. (1) we could confirm numerically 
the existence of oscillating cavity solitons (Fig. 4). 
Propagating these oscillating cavity solitons (starting 
for instance from an unperturbed unstable stationary 
cavity soliton) by means of a two-dimensional beam 
propagation method, for smaller values of E the oscil- 
lating cavity solitons decay developing a pattern with 
a threefold symmetry. For higher values of the con- 
trol parameter E these oscillations seem to be stable 
as far as numerics can tell. 

In Fig. 5 the upper nontrivial branch is stable and 
there are cavity solitons emanating from the limit 
point EL- They stabilize at a limit point and there 
are alternating stable and unstable branches of cavity 
solitons displaying multistability. These cavity soli- 
tons may be regarded as another type not indentified 
in [2]. They are hole-like structures (Fig. 6). 

To sum up we identified stable and unstable cav- 
ity solitons on a stable plane wave background. The 
unstable structures may decay developping symmet- 
ric patterns or oscillating cavity solitons which are 
remarkably pronounced. For positive detunings mul- 
tistability of cavity solitons is possible. 
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Although gap solitons, since their discovery by Chen and Mills [1] attracted a great deal 
of attention, mathematical aspects of their existence have not been addressed, so far. This 
problem is naturally related to the role of high harmonics in the gap soliton evolution especially 
in the cases when there are no small parameters in the problem. Namely the high harmonics 
may play a prominent role in destruction of the gap solitons. One can easily predict the 
respective mechanism. A stop gap prevents dissipation of the energy of a wave packet at the 
carrier wave frequency. At the same time the nonlinearity results in higher harmonic generation. 
In a generic situation these new harmonics do not fall into stop gaps and hence represnt a 
channel of the energy transmission from the localized mode to quasi-linear (i.e. delocalized) 
modes. This rises a natural question: Is the gap soliton indeed a mathematical object (i. e. 
periodic in time and localized in space solution of the nonlinear wave equation with periodic 
coefficients)? If not, then what is the role of higher harmonics in the gap soliton evolution? In 
the present work we address to these questions. In particular, we develop an approach allowing 
one to take into account the contribution of higher harmonics (up to any order) to the gap 
soliton evolution. Next, we study in detail the field evolution in the approximation of only 
one principal harmonic and estimate numerically the contribution of higher harmonics. We 
show that shock waves appear on the tails of envelope solitons. Finally, we report the results 
of direct numerical simulation of gap soliton evolution on the basis of nonlinear wave equation 
(rather than of the equation appearing in the parabolic approximation). 

We start with the one-dimensional equation for the TE field in a general form 

d2E      1 d2D _ 
dx2     c2 dt2  ~ W 

where D = e(x)E + 4nP is the induction and P is the polarization which consists of linear and 
nonlinear components: P = Pi + Pn;. We write down them in the form 

Pi = £(*)/X{1)^i)E(x,U!)e "«dun (2) 

Pm = X(x) jjj x(3Vi^2,w3)£(x,wi)£(x,u;2)£(z,u;3)e i^+^+^tcL;1duJ2dw3 (3) 

where E(x,u) is the Fourier transform of the electric field: 

1    f°° 
E(x,t) = —        eluJtE{x,u)duj. 

2ir J oo 

Our approach is based on possibility of expansion of a periodic solution in a Fourier series. 
In a particular case of "even"solution one has 

1  °° 
E(x,tüi) = -Y,E2n   l(x)[S(iJi       fi2nl)+^(Wl+fl2n   l)] (4) 

1 n=\ 
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1 Z"2*' 
X(ft, fij, Q2,fis) = 2^x(fli, n2' fi3) /    cos(^) cos(ßit)cos(ft2i) cos(ft3i) rft (7) 

where the coefficients of the Fourier expansion solve the equation 

d J^2rn   1 i 
-^2— +72m ie(x)E2m i+4ntqm ^2m ^E^Es,...) = 0 (5) 

With 72m  i = ü2m  1 (l + 47TX(1)(^2m  i)), 

$2m   l(£l,£3,-) =       5]       X(02m   ljftam,   l,^2m2   l,fi2m3   O-^rm+l^mz+l^ms+l       (6) 

and 

10 

being the nonlinear susceptibility describing contribution of processes of four wave mixing. 

It can be shown that the most favorable situation for the gap soliton existence occurs when 
the Kerr type medium does not have material dispersion. To simplify mathematics we represnt 
the results for this particular case. The proof of nonexistence of the gap soliton solutions as 
mathematical objects is based on the fact that if not all the fequencies (2n + l)u belong to 
stop gaps, then imposing zero boundary conditions on (5) and matching condition at x = 0 
results on overdetermined system of equations for the constants of integration. The fact that 
in a generic case not all frequencies belong to stop gaps follows from the Fedoryuk theorem 
determining distribution of stop gaps at large values of the wave vectors [2]. 

For purposes of numerical study of the gap soliton structure we use the multimode ap- 
proximation which is the trancation of (5) at some m = M, i.e. on the assumption that all 
harmonics at n > M have zero amplitude. Then there are two quantities to be computed: (i) 
the convergence of the procedure at M -» oo and (ii) the matching condition at x = 0 for 
the third and higher harmonics (subject to supposition that the carrier wave satisfies all the 
assumptions). 

Considering the soliton dynamics we discuss two physical reasons for the gap soliton decay. 
First the presence of non-localized harmonics allows one to suppose that the gap soliton "death" 
can be caused by emission of some radiation which propagates outward along x axis and results 
in breaking of localization and, at last, in decay of the GSE. Another scenario is consistent 
with breaking of continuity of solutions of the nonlinear wave equation which can be rewritten 
in the form 

d2A(x,E) _d2E 
dt2      ~ dx2 (8) 

with 

A(x,E)=e(x)E + E3 (9) 

It is well known that (8) can describe shock wave formation. We study the characteristics of 
Eq. (8) numerically and show that indeed there exist characteristics which cross each other in 
some point where the field becomes not uniquely defined. At this moment gradient catastrophe 
occurs and both partial derivatives of E become infinite. Since this moment the lowest order 
approximation to the nonlinear wave equation (1) is not valid any more and additional terms 
(corresponding to dissipation, higher dispersion, etc.) should be taken into account. 

The predictions of the theory developed are verified by means of the direct numerical 
simulations of the nonlinear wave equation with the periodic dielectric permittivity.   It is 
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confirmed, in particular, that only one of the gap edges there exists long-leaving solitonic 
solution (this situation corresponds to the slow envelope solitons described by de Sterke and 
Sipe [3]). We indeed observe that the detuning towards the center of the gap results in a 
rapid destructuion of gap solitons. The distruction has two different origins depending on 
the frequency detuning towards the stop gap. At small values of the frequency detuning gap 
solitons dissappear due to radiation, i.e. energy transfer to higher harmonics. Another scenario 
is found for the case of strong detuding. Then discontinuity of the solution obtained withing the 
framework of M-mode approximation, which can be associated with the gradient catastrophe. 
Moments of the gradient catastrophe for various initial data are computed numerically. 
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It is well known and widely accepted by now that soliton pulses are the most promising 

'bits' for information-carrying optical fiber due to their stability and particle-like behavior. 

This stability allows a wide variety of perturbations and manipulations. Solitons can be 

attenuated and amplified again, get filtered, can collide with other solitons etc. without 

being destroyed. 

It is also well known that nonlinear feedback systems provide an enormous wealth of 

nontrivial dynamic behavior. This applies not just to optics, but to many other fields in 

nature and technology as well. Here we deal with a combination of soliton propagation 

and nonlinear feedback system. The complex processes encountered may contribute fresh 

insights into soliton dynamics. 

We consider an optical ring resonator mainly consisting of a length of single-mode optical 

fiber. The resonator is driven with a train of picosecond pulses from a modelocked laser 

source. The repetition time of the drive pulses is brought into synchronism with the resonator 

round trip time. The resulting interplay of linear (dispersive) and nonlinear (Kerr) distortion 

of the pulses with the repetitive interference at the input port has been shown previously to 

give rise to many interesting phenomena, among them the formation of a turbulent ensemble 

of solitons which has been called a soliton gas1. 

It also has recently been shown that a reduction in the power of the drive pulses leads to 

a transition to a different state of the soliton ensemble in which the solitons sit on a regular 

lattice2'3. In keeping with the thermodynamic analogy, this may be called a soliton crystal. 
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A phase transition from fluid to solid is normally obtained by reducing the temperature 

i.e. reducing the influx of thermal energy. One might thus speculate that the drive pulse 

energy is the equivalent of a heat source. Resonator losses would then represent a heat sink, 

and the system operates in a balanced state of energy flow, if far from thermal equilibrium. 

It might then be possible to reduce the fluid to the solid state not by reducing the heat 

input, but by increasing the heat output. We ventured to determine whether just that could 

be done by some optical means more elegant than simply increasing losses. 

The hottest particles in a gas have the highest velocity. In the soliton gas, solitons 

with the highest relative velocity (referred to the center-of-mass of the ensemble) must have 

optical frequencies that are most off center. Application of a selective filter should then 

allow to cool the soliton gas. This is the equivalent to evaporative cooling which is well 

known to be equally effective for a Bose-Einstein condensate and for a hot cup of coffee. 

In numerical simulations we demonstrate the effect of a filter in cooling the soliton gas 

such that the phase transition is reached without reduction of the energy flow into the 

system. 

1. A. Schwache and F. Mitschke, Phys. Rev. E 55, 7720 (1997). 

2. B. Malomed, A. Schwache, and F. Mitschke, Fiber and Integrated Optics 17, 267 (1998). 

3. F. Mitschke, I. Halama, and A. Schwache, Chaos, Solitons and Fractals 10, 913 (1999). 
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Optical waveguide structures allow to light beams for some interaction effects having no analogs in bulk 
media. These are, for example, interactions of guided modes with the same polarization but with different 
mode indices. The one of such effects is the longitudinal intermode interference of light beams It was 
observed and studied in planar glass waveguides and in Ti - diffused LiNb03 waveguide In this work we 
investigate and discuss some features of such an effect in a case of the spatial self - action of light beams 
due to the photorefractive effect in Fe - doped LiNb03 planar optical waveguide. 

The strong photorefractive nonlinearity of LiNb03 doped by suitable impurity originates the formation of 
light - induced negative lens under light beam influence. In a waveguide with nonuniform distribution of an 
active dopant near its surface the photovoltaic constant ß the photoconductivity o"ph, and the dark 
conductivity ad are considerably changed over waveguide depth. It results in the significant difference of 
the temporal characteristics of the space - charge electric field for different guided modes Thus the 
parameters of light - induced lenses may differ for these modes as well. It is the main reason to distinctions 
of an mtermode interference in the nonlinear case when compared with the linear one. 

In analysis the optical field in a waveguide was described by the expression Eopt(x,z,t)=A(x,z)exp(ikz- 
iwr)+c.c. In the paraxial approximation the slowly varying amplitude, A{x,z) is determined by the parabolic 
equation 

where An is the nonlinear change of the refractive index, neff is the effective refractive index, and k is the 
optical wave number in the material, k=2nneS/A, where A is the wavelength. In lithium niobate An is related 
to the light intensity / (x,z) = |4(x,z)|2 by [1] 

An{x,z) = -±nlff r33 ß33l(x,z)[crd + aph -l(x,z)Y, (2) 

where r33 is electrooptic constant, ß33 is photovoltaic constant. If the value of <rd within the waveguide 
sagnificantly exceeds the aph value then the term related to <rph can be neglected. Thus the equation 2 can be 
rewritten as 

An{x,z) = -\n^I^\A{x,Z)\\ (3) 

Put in the consideration the parameter 6=-0.5 n\ff ^2.. As it was mentioned above, the values of ß, crph, 

<7i are changed over the waveguide depth and different guided modes are characterized by their own 6 
value. The ratio of £/4n-i where m is a mode order can reach the values up to 10. 
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To get a distribution of light field at intermode interference the parameters of real waveguide sample on 
LiNb03 must be used. For numerical calculations the following values of r33, /?33 and aä for TE3 mode was 
taken from [2]: 
o-d = 1.24xlO-9Q"W, 
^33 = (0.7-1.1)xl0"10 AAV, 
r33 = 3.3x10-" m/V. 
For this waveguide formed by the Ti diffusion in a doped sample of X cut LiNb03:Fe (0.03% by weight), 
the effective refractive indices of TE modes at the light wavelength /i=0.63 urn were n0*=2.213, /ii*=2.206, 
and n2*=2.204. 

Using such parameters, we evaluated lvalue as <M.6-10'5 mmVw. It corresponds to nonlinear change of 
refractive index An=-M0"* that is obtained at the light intensity 7(x,z)=6.25 W/ mm2. We consider in the 

input area of a waveguide the focused light beam of a Gaussian shape with the magnitude -Jlix^z) and the 

dimension close to its waist. Replacing in Eq.l An with the Eq.3 and making a numerical calculation of 
Eq. 1 with given values of all parameters, the distribution of light field along the waveguide mode path can 
be obtained. A sum of light fields of two guided modes gives a picture represented in Fig.la. This 
distribution was calculated for TE! and TE2 modes with initial aperture a=20 Urn and with effective 
refractive indices of «['=2.206 and n2*=2.204. The following values of <5were taken: <J=-M0"5 mm2/W for 
TE! mode and £=-5-10"5 mm2AV for TE2 mode. If the values of nonlinearity for neighbouring waveguide 
modes will be equel to each other ($=<%), we obtain usual interference picture (Fig.lb). 
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Fig. 1: Numerically calculated interference images in waveguide mode track 

In experiments we used the LiNb03 waveguide with characteristics similar to discussed above. The sample 
tested was formed upon a Z-cut wafer of LiNb03 in two steps. The dimensions of the wafer were 16x20x3 
mm along X, Y and Z axes of a crystal. The first step included the titanium indiffusion from Ti film -40 
nm thick at a temperature of 1000° C in an air atmosphere. In the second step the photorefractive 
properties of this waveguide were enhanced through the additional Fe-diffusion from a Fe film -50 nm 
thick at the same diffusion conditions. Because this sample was formed in X cut wafer, not in z-cut as was 
supposed in calculations, all experiments on the intermode interference were performed using guided TM 
modes. 
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The photorefractive properties of the waveguide were tested at the same wavelength in two-beam coupling 
scheme. It has been found, that the dark conductivity of a crystal within waveguide region considerebly 
exceeded its photoconductivity for light intenisity 1 W/cm2. The dark decay of a photorefractive grating 
formed by TM0 modes was -1 s and it increased considerably for such gratings formed by TM modes of 
higher order. Such a behavior of a dark decay time is the result of the nonuniform Fe distribution by the 
waveguide depth. The defocusing capability of this sample was also observed. 

The experimental setup is shown in Fig.2. The light beam of He-Ne laser (L) was collimated by a 
collimator (C). Then it was focused by cylindrical lens (CL) with focal length of 100 mm. The focused 
beam was coupled in the waveguide (W) by the prism element (PE). The position of a light beam waist 
within the waveguide could be changed by a variation of a distance between a lens (CL) and prism- 
coupling element. The image of a light beam track within the waveguide was inspected visually with an 
optical microscope (M). 

CL 

4- 

Fig.2: Experimental setup for observation of nonlinear intermode interference 

The next effects were observed at light excitation within waveguide and beam waist position in the in- 
coupling region. First, the light beam divergence in the waveguide plane considerably increased from the 
initial up to some steady-state value for the time period of ~1 s for TM0 mode. Second, simultaneous 
excitation of two neighbouring TM modes could be observed for the single exciting light beam. Such effect 
took place only at using in experimental setup the focusing lens with focal tenth of less than 100 mm. In a 
case when two TM modes were excited in the waveguide simultaneously we observed the interference 
image like that represented in the Fig.la. The shapes of the interference fringes were almost identical for 
the experiment and calculation. Pictures of such type were observed in steady state on each of TM modes. 

In conclusion, we experimentally observed the nonlinear interference of collinear guided modes of 
photorefractive optical waveguide in LiNb03 in conditions of significant spatial self - action of light beams 
The numerical simulations show the good accordance between theoretical predictions and experimental 
results. This effect may be useful for the measurements of nonlinear parameters of optical waveguides and 
for some applications in photonic elements. 

1. V. Shandarov, S. Shandarov, SPIE Vol. 2969, 158 
2. G. Glazov, I. Itkin, V. Shandarov, E. Shandarov, and S. Shandarov, J. Opt. Soc. Am. B 7(1990), 2279 



168 / WD38-1 

Curvature Dynamics and Fronts in the Optical 
Parametric Oscillator 

J. N. Kutz 

Department of Applied Mathematics, University of Washington, Seattle, Washington 98105 
kutz@amath.washington.edu 

T. Erneux 

Optique Nonlineaire Theorique, Universite Libre de Bruxelles, CP 231, Bruxelles 1050, Belgium 

S. Trillo 

Dipartimento di Ingegneria, University of Ferrara, Via Saragat 1, 44100, Ferrara, Italy 

M. Haelterman 

Service d'Optique et Acoustique, Universite Libre de Bruxelles, CP 194/5, B-1050 Bruxelles, 
Belgium 

Frequency conversion via optical parametric oscillation in nonlinear %(2) materials is a well-known 
phenomena whose effects were demonstrated at the inception of the study of nonlinear optics. How- 
ever, only through recent efforts has this frequency conversion mechanism allowed optical parametric 
oscillators (OPOs) to be regarded as promising sources of broadly tunable coherent radiation [1]. 
As a consequence, much research has been devoted towards theoretical and computational studies 
of the nontrivial spatial structures which arise in the transverse electric field due to the paramet- 
ric interactions between signal and pump fields in the presence of diffraction. These electric field 
structures, or patterns, arise in ID, 2D, and 3D geometries and are a hallmark feature of a broader 
class of spatially extended nonlinear systems driven from equilibrium (see [3] and references therein). 
We present the first analytic verification of the stability of front structures (topological solitons) 
of the optical parametric oscillator when driven beyond equilibrium. Front solutions are shown to 
be exponentially stable with any perturbation to the ideal system simply acting to shift the center 
position of the front through a translational invariance. Although the stability results are derived 
for ID, it can be applied to the 2D case for which it is shown that the front curvature is governed by 
the heat equation. Thus only stripes can be supported in the long time behavior provided we are be- 
low threshold for any Turing instabilities. These analytic results, which support previous numerical 
observations [3, 4, 5, 6, 7], are crucial in determining whether topological solitons can be observed 
experimentally in the increasingly important and rapidly developing field of x^ OPO systems. 

We consider the mean-field model of a degenerate optical parametric oscillator where the di- 
mensionless signal (U) and pump (V) field envelopes at the fundamental and second harmonic are 
governed by [3]: 

Ut=
l-Uxx + VU*-(l+iA1)U + Fu (la) 

Vt=
t-pVxx-U2-(a + iA2)V + S + Fv (lb) 

where t is time, x is the spatial transverse coordinate, Ai and A2 are the cavity detuning parameters, 
p is the diffraction ratio between signal and pump fields, a is the pump-to-signal loss ratio, S 
represents the pumping term, and Fu (Fv) <C 1 are physically realizable perturbations to the signal 
(pump) field. 

The onset of instability of the uniform solution U = 0 and V = S/(a+iA2) can be explored using 
an order parameter approach [2]. In particular, by utilizing an iterative procedure and orthogonality 
conditions, we find the long-time evolution to be governed by the Fisher-Kolmogorov equation [8]: 

<Pr-<f>cc + <f>3-^<f> = F. (2) 
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Figure 1: Numerical solution to Eq. (1) in 1-D depicting the formation of the steady-state front 
solution of the signal field. Here we have taken Ai = 1, A2 = 1, p = 0.5, and S = Sc + 0 5 and 
demonstrated stability of the front starting with two arbitrary initial conditions. 

Here u = {{o? + Aft/(a - AiA2))^<f>, f = (Ai/2) V*«^ and 27 = C(l + A?) > 0 so that C = 1, and 
we have a supercritical bifurcation. The perturbation F = F(FU,FV) incorporates perturbations to 
both the signal and pump fields explicitly. We note that this equation supports front solutions when 
A1 = O(l)>0 and a-AiA2 = O(l)>0: 

For F = 0, we find a front (kink) steady-state solution whose linear stability can be determined 
exactly Specifically, we find the front solution to be neutrally stable due to a translational invari- 
ance. However, small perturbations decay exponentially to the steady-state. Thus, arbitrary initial 
conditions settle quickly to a steady-state solution with a decay rate which is in good agreement with 
the linearized theory (see Fig. 1). We note that a split-step, pseudo-spectral algorithm with periodic 
boundary conditions was utilized in solving Eq. (1) so that pairs of fronts arise in the simulations 

To explore the front curvature dynamics, we consider an initial front which is nearly uniform in 
a single variable. We then seek a front solution of Eq. (2) of the form <f>(r,C,v) = <t>(r z) where 
z = C - C (r, 77) is a coordinate attached to the front and C° is the position of the front which is now 
a function of r and slowly varying in 77. Here the variable 77 arises from our perturbation F = <bm 

where 77 is the second transverse variable. With the boundary conditions 6(T, ±00 77) = ±J^ we 
obtain the solution 

4> = \/27tanh 7 
1 + (C°)2' (3) 

provided that the position of the front satisfies the heat equation given by 

(4) 

Equation (4) suggests that the evolution of the front curvature is purely diffusive Indeed the 
predicted ^ law for the curvature decay can be verified numerically by solving Eq (1) ' The 
diffusive behavior of the front explains the progressive evolution to straight and steady fronts shown 
m b ig. 2. As a result of the periodic boundaries, only an even number of stripes are capable of being 
supported, whereas for no flux boundary conditions an odd number of fronts may arise. The actual 
number is determined by the initial conditions. 

To summarize, the first analytic proof that front solutions for Ax > 0 are exponentially stable 
above threshold is given.   Physical perturbations to the ID OPO system which do not preserve 
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(a) t=0 (c) t=10 (e) t=50 

(b) t=5 (d) t=20 (f) t-100 

Figure 2: Numerical solution to Eq. (1) depicting the formation of a uniform solution to the signal 
field intensity with two stripes (fronts). We begin initially with white-noise and notice that the 
complicated structures slowly straighten out and form the uniform state with the straight fronts 
depicted at time £=100. The grid size is x, y € [-20,20] 

certain symmetries simply give rise to a drift in the front position. This does not, however, effect the 
underlying stability of the fronts. These results have important implications for the 2D problem. In 
particular, the curvature of a front is governed by a heat equation so that the only stable structures 
supported must be stripes. These results, which are verified via numerical simulations, suggest that 
fronts are indeed observable in experimental OPO systems. 
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Interaction of the 1-st and 2-nd harmonics in Bragg gratings with quadratic nonlinearity can support 
parametric gap solitons [1-6]. The properties of slow and immobile gap solitons are apprehensible at 
present [1-5]. The study of gap soliton trapping and interaction was begun recently [5,6]. 

Here we discuss numerical simulation of nonlinear tunneling of optical coupled harmonics in quadratic 
gratings, slow and immobile gap quadratic soliton trapping and interactions. For envelopes of two 
harmonics i?, 2 one writes: 

3B\ 
dt 

d2B\ 

dB 

OZ\ 

d2B, 
dt 

Z- = iD2 ^^2. _ {Q2B2 + ^B2 
dz' 0) 

where t is the time, z is the propagation coordinate, Dj (D ,£> 2> 0) are the dispersion coefficients 

of gratings at cutoff frequencies CD        ß   describe quadratic nonlinearity, terms 0   = CO   - 0) 
J j c,j 

express frequency detunings; j = 1,2. The set (1) has been solved numerically with different boundary 

conditions. The evolution of CW input impulses consisted of FF and SH is of interest. We simulated the 
effect of CW wave splitting into train of slightly-oscillating slow gap quadratic solitons. The variations 
of SH input intensity don't critically affect soliton formation. Moreover, it is possible to generate slow 
gap soliton series by irradiating the system with the FF wave only (Fig. 1). 
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Fig. 1: Generation of slow gap quadratic soliton train by input cw FF signal. 
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Generated SH accumulates near the crystal edge, then starts to interact with FF pulse and forms a train of 
gap solitons. This effect is very important for the experiments in the future. 

2 
The interactions between two parametric sech   solitons, injected into the medium from the bound were 
simulated (Fig. 2a). At the first stage two solitons without phase mismatch propagate almost in a parallel 
way, but end up with fusing. In a contrary, same solitons with nil phase shift with respect to FF 
propagate through the gratings without interaction. A collision of slow and immobile soliton (Fig. 2b) 
leads to distracting of immobile state. 
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Fig. 2: Collisions of two parametric slow solitons in-phase (a) and slow- immobile solitons (b). 

The fusion effect allows to decrease the peak intensity of input sech   solitons and obtain non-propagating 
underthreshold impulses, while the pair of these can fuse and generate propagating signal. This regime 
was observed in numerical simulations. The fusion occurs near the entrance of the system. 

The set of equations (1) is known to have the following integrals of motion: /, = l/J-ß,    dz, 

I2 = j^Bj[dBj/dz)dz, and 

4=j 24 + ZX 
dB, 

- ßB$Bl - ßB?B2 + 20,|412 + 02|4| dz. Notice, that /-, 

could become negative for powerful immobile waves, which guarantees localization. For slow impulses 
13 possesses additional positive term. Obviously, the condition of self-trapping remains the same, so we 

should modify 73, with the help of other integrals: /, and I2. For the case of equal phase velocity 

(.Dj = 2 D2), we obtain: ^ = ^3 "" 4r2 /^A • This modification is useful for evolution prediction of 

a slow signal. Similar approach can be applied to inclined spatial solitons. The same modification could 
be made for qubic nonlinearity [5]. 
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It has been demonstrated theoretically and experimentally [1-2] in Bragg gratings written in fibers with 
Kerr nonlinearity that the propagation of nondispersive bell-shaped pulses or gap solitons (GS) is 
possible at frequencies within the photonic band-gap (PBG) originated by the periodicity. Given the 
interest recently devoted to optical media with quadratic nonlinearities, we investigated the case of a 
Bragg grating in a structure yielding efficient second harmonic generation (SHG). Various theoretical 
papers [3-5] have demonstrated that, in this case, GS still exist as two colors (or "parametric") solitary 
waves formed by a fundamental frequency (FF) wave and its second harmonic (SH). They travel in the 
structure locked together at a velocity V much lower than the linear group velocity. 
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Fig.l. Snapshot of the process of excitation of a parametric gap soliton, by launching an FF input 
pulse (space=0 is the interface with the Bragg grating). For space>0 the FF locks to the SH to form 

the forward moving two-color GS, and the SH linear wave freely propagates to the end. 

As in the Kerr case, such simultaneous propagation takes place even if the FF is within the PBG, with the 
SH in or out its own band-gap. In this communication we will focus our attention on the latter case (i.e. a 
"singly resonant structure"), and numerically investigate the generation of gap solitons trying to establish 
a link between the excitation process and the velocity of the generated nondispersive two-colors pulse. In 
order to study numerically the non-trivial boundary value problem modelling this system, we developed 
an algorithm for the integration of the hyperbolic system of PDEs resulting from the Maxwell equations 
[6] and based on a pseudo-spectral approach with Chebichev polynomials. [8] 

The nearly Bragg-resonant counterpropagating FF fields uf coupled with the SH fields u\ are described 
by the four normalized equations [7] 

±1 —+l L"+81Mf +uf +KJ (Wf )* =0, 
3^       di 

, ,du$    .1 dui 

^     v dx 
+^i=0 
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where % (l£l<L/2, L is the length of the Bragg grating) and x (t>0) normalized space and time 
coordinates. The fields' evolution depends on three normalized parameters: the detuning from FF Bragg 
resonance öx (FF inside the PBG for 1^ kl), the SHG wavevector mismatch 52, and the linear group 
velocity ratio v. Hereafter, in order to consider a typical situation, we will assume Sj =-0.9, 82 = 5, and 
v*=0.5. Launching an FF gaussian pulse Ki+(-L/2,T) = G]+exp(-T2/W2), with G+ and W normalized 
pulse amplitude and width, respectively, and the bounds ul2{LI\2,t) = 0 (no input from the other side 
of the structure), the SH generated inside the grating is partially reflected, partially locked with the FF to 
form a forward moving two-color GS, and partially transmitted as a linear wave which freely propagates 
in the singly resonant grating (Fig.l). [6] Although in a previous publication [7] we showed that the 
velocity of the generated nonlinear wave does not change appreciably by varying G?, the theoretical 
analysis revealed the existence of solitons with different V for the same parameters. Hereby we 
numerically demonstrate that overlapping a small SH gaussian pulse 
Mj(-L/2,ri) = G2

+exp(zA^)exp(-T!2/W2) to the FF input pulse can give rise to solitons with different 
velocities and shapes depending on the SH amplitude G2

+ and on the relative phase A<p; between the two 
harmonic fields. Notice that the employed input peak intensity of the SH pulse \G2\

2 is about two order 
of magnitude smaller than the FF's. As a representative result, we choose G? = V12,W =5, (these 
parameters correspond to a realistic input FF pulse of lOOps duration and peak intensities of the order of 
100MW/cm2 for a typical Bragg grating in a KNb03 waveguide) and vary G2

+ for different values of 
Acp. As a rule of thumb, more intense solitary waves travel faster; so one could expect that by increasing 
the input SH amplitude the velocity of the excited soliton increases as well. However, in this case the 
locking between the generated SH and the FF in the GS formation plays an important role: when A(p = n 
it is favoured and, indeed, V increases with G2 ; conversely, when A<p = 0 the opposite happens (Fig.2). 
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Fig.2. Soliton (a) velocity, (b) peak intensity and (c) duration vs. SH amplitude for three values of phase. 

While the energy of the FF component of the soliton is about the same in all cases, what changes is the 
amount of SH locked with the FF and the GS width. When A9 = n the peak intensities at FF and SH 
(lui+ P+lwfl2 and \u2 P+Iwjl2) and V increases with the amplitude of the input control pulse, while the 
duration (calculated at the 10% of the peak value) decreases. On the contrary, when Acp = 0 an increase 
in SH amplitude makes solitons longer, with lower peak intensity and group velocity. Similar results 
were obtained for different values of Sh2 and SH amplitudes G2 . 
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The previous analysis suggests the possibility of controlling V by varying the relative phase Acp between 

the two harmonics, given a sufficient amount of SH seed at the input. For example, for G$ = 0.3, and 
varying Acp from -n to 7t, we calculated velocity, peak intensity and duration of the solitons (Fig. 3.). 
Consistently with the previous analysis, V exhibits a minimum when Acp = 0 and maxima when 
Acp = ±7i. It is interesting to note that, by acting on Acp, a range of values can be obtained wider than by 
varying the SH amplitude. Moreover this range is determined by the amplitude of the SH control pulse. 

-3.14 3.14 3.14 

Fig. 3. Soliton (a) velocity, (b) peak intensity at FF and SH, and (c) duration vs 
phase when G$ = 0.3. 

-3.14 

In summary, we investigated the possibility of controlling the velocity of parametric gap solitons using a 
small coherent second harmonic seed. Potential applications in switching devices, delay lines and 
optically-controlled memories are envisaged in the framework of all-optical communication systems. 
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It has been shown that quadratic nonlinearities can support spatial optical solitons1 

and also different types of gap solitons 4in periodic Bragg gratings with a quadratic [or 
X[>) nonlinear response2. Importantly, when an input electromagnetic wave E at frequency 
a ij laun?ef ™to a noncentrosymmetric material, it generates also a quasi-static electric 
held (or dc field) at frequency zero. This effect is known as optical rectification3. Recently 
Bosshard et al. have shown4 that the combined processes of optical rectification and the 
linear electro-optic effect lead to an additional, nonresonant contribution into an effective 
nonlinear refractive index of noncentrosymmetric materials due to cascading processes. 

The effect of optical rectification is usually neglected in the theory of quadratic solitons 
because the equation for the dc field can be integrated explicitly, leading to a nonreso- 
nant contribution into the effective cubic nonlinearity of the nonlinear Schrödinger (NLS) 
equation . However, for the propagation of spatio-temporal multi-dimensional optical pulses 
m nonresonant quadratic media, such a reduction is no longer possible and, as a result the 
multi-dimensional NLS equation becomes coupled to a dc field* similarly to the inteerable 
case of the Dawey-Stewartson equation". 

In the present paper we shall show that the dc wave plays an important role in quadrat- 
lcally nonlinear optical gratings. We consider propagations of light in a periodic medium 
with a quadratic x

{2) nonlinear response. Let us start from Maxwell's equation, 

c^2E-^2[e(z,idt)+x^E}E = 0, (1) 

where V2 stands for the Laplacian, c is the speed of light in vacuum, E is the z-element of 
the electric field E = E(z,t)ex, and the quadratic nonlinearty is represented by a tensor 
element x{2) = x£L ■ We assume that e(z, ui) is a periodic function of z, so it can be presented 
in a general form as a Fourier series, e(z, u>) = e(u) (l + Y,%i 6je2ikz + jy^Li e*e~2ikz), where 
d = Tr/k is the period of the Bragg-grating structure. Deriving the couple-mode equations 
below we assume the case of a shallow grating, i.e. that the condition e,- < 1 holds For a 
periodic structure, the Bragg reflection leads to a strong interaction between the forward and 
backward waves at the Bragg wavenumber kB « k. Therefore, we consider the asymptotic 
expansion for the electric field in the form, 

En = (E+eikz + E.e~ikz) e~iult + c.c. 

+£(0,0) + E(0,2)e2ikz + E(0,-2)e-2ikz + ^(2,0)+ E(2,2)e2ikz+ E(2,-2)e~2ikz\ &-2iu>t+ QQ^       ^ 

where E± = E±(z,t) are slowly varying envelopes of the forward(+) and bakward(-) waves. 
The frequency u satisfies the dispersion relation for linear waves, c2k2 = u2e(u)) Slowly 
varying functions £(».*"> = E^m\z,t) are defined as nonlinear amplitudes of the (n,re- 
order harmonics e-

trMteimkz. 
We introduce a small parameter e so that we assume E± ~ 0(e), dE±/dt ~ dE±/dz ~ 

0(e ) and €j ~ 0(e2). Then, substituting the expansion (2) into Eq. (1), we compare the 
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terms of the same order in front of the coefficients e-
inwVmfcz. At the orders (2,0), (2, ±2) 

and (0, ±2) we respectively obtain, 

Em=-SWB- £<2'±2)=- s&s4 *(0'±2' - -w (E±E*) ■ 
where we have assumed condition for the non-resonant interaction, i.e. e(u) ^ e(2uj). Note 
that E™ and E^±2^ are of 0(e2) and £(°>±2) is of 0(e6). 

At the orders (1, ±1) and (0,0) we obtained a system of coupled nonlinear equations, 

i   jt+vg-^jE+ + KE_ + {A\E+\2 + B\E_\2 + CE^)E+ = 0, (3) 

i   ~-V9-^]E_ + K*E+ + (B\E+\
2
 + A\E_\

2
 + CE^)E_ = 0, (4) 

&-^MEm+D^E+?+iE-v=o- (5) 

where vg(u) = dw/dk, vQ = vg{0), K = uh^ej-1^), A = 2(X
(2))2uj4{f(u){c2k2 - 

w2e(2w)]}-\ B = -4(x(2))V[/(o;)e(2a;)]-1
) C = 2u>2

X
{2) f-\u), and D = -2X

{2)/<? with 
f(u;) = [uj2e(uj)]'. System (3)-(5) describes the interaction between the forward and back- 
ward waves coupled to a dc wave induced via the rectification effect. 

Important issue is a link between our new model (3)-(5) and the previous studies of gap 
solitons in a periodic media with a nonlinear quadratic resonance. In spite of the fact that 
the dc wave Z?(°'°) itself is of a higher order{~ e2) in comparison with the main waves, it 
becomes coupled to the fields E+ and E_ in the main order. As a result, the model (3)- 
(5) reduces to a particular form of the conventional model of X^ gap solitons2 valid for a 
nonresonant limit of a large mismatch. 

Next, we look for spatially localized solutions of Eqs. (3)-(5) for bright gap solitons in 
the form, 

E+ = A_1/2/(C)ei[ei(c)_m+ff/21,        E- = A1/2/(e)ei[Ö2(c)"n<~5/2]. (6) 

where £ = z — Vt; functions /(£) and #ii2(C), and the parameters Q, V, A are assumed 
to be real and K = |«|els. Substitution the ansatz (6) into Eq. (5) gives, i?(0,0)(C) = 
-vlV2D(vl - V2)-2 (A + A"1) /2(C), and therefore the contribution of the dc field should 
vanish at V = 0. We must set the parameter A as J(vg — V)/(vg + V), and then obtain a 
system of coupled ODEs for /, 6_ = d\ — 82 and 6+= 61 + 62- We obtain a solution 

f(n = I     T(^/ö)[l-(u/2„)2]      } 
AU      \ cosh(C Jii?~=v1) =F W2/a) J 

1/2 

where the ± stands for the 5 > 0 and 8 < 0, respectively. 9\ and 62 are obtained as 

e..^-2^{^^ ^cf I (7) 

Vq 0 1\i =F v 2        s + C±, (8) 
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where C± are integration constants. Constants //, v, 6, and 77 are denned as n = \K\/(V
2
 - 

V*)W u = -(2v9ü)/(vl ~ V% * = -2(«J - V>)-1/2 ($%A + B), and r, = -4(t$ - 

F2)-3/%Vi, respectively, with Ä = A- g^ and S = B - -g^. 

The solution obtained from Eq. (7) describes a two-parameter family of gap solitons, 
spatially localized waves in the Bragg gratings, which are similar to the gap solitons of the 
conventional couple-mode theory. Actually, by an renormalization we can demonstrate that 
the solution is essentially the same as that earlier obtained8. 

The recent stability analysis of the conventional gap solitons9 revealed the existence of 
two types of instabilities, oscillatory and translational. The most important, translational 
instability appears for large V, so that the induced dc field is expected to have a strong 
effect on the soliton stability. However, the detailed discussion of the stability is bevond the 
scope of the present study. 

Our new model (3)-(5) is a Hamiltonian system which means that it has an conserved 
quantity which correspond to the energy. Other than the energy the we can derive 3 integrals 
of motion, which correspond to the field momentum, the total number of the forward and 
backward waves, and an independently conserved number of the dc waves. Therefore, in a 
sharp contrast to the conventional coupled-mode theory of gap solitons, the model (3)-(5) 
possesses one additional integral of motion, and it has no analogy with other soliton-bearing 
nonmtegrable models where the soliton stability has been investigated so far. 

In conclusion, we have demonstrated the importance of optical rectification effect in 
the theory of quadratic gratings. We have derived, for the first time to our knowledge a 
novel model of the coupled-mode theory for optical gap solitons that describes a coupling of 
the forward and backward modes to an induced dc field, and we have found the analytical 
solutions forn solitons. 
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The formation of a variety of stable complex transverse light patterns in nonlinear optical 
cavities was studied both in one and two dimensions [1-3]. A laser, which is based on a 
nonlinear resonator, can emit spontaneously some of these patterns [3,4]. A ring shaped laser 
is a special case of a two dimensional structure that imposes periodic boundary conditions in 
the azimuthal coordinate and therefore may emit interesting and complex patterns. Vertical 
cavity surface emitting lasers (VCSELs) are unique within the family of semiconductor 
lasers by having a 2-dimensional resonator and may serve as an ideal tool for the exploration 
and exploitation of complex electrical fields. Previous research on pattern formation in 
nonlinear active cavities [5-7] explained the on-switching of higher order lasing modes and 
of complex patterns by the gain-loss balance modified by the gain saturation (spatial hole 
burning). Here we show that the switching of patterns is caused mainly by a dynamic effect - 
the Modulation Instability (MI) of the self consistent field patterns and present the threshold 
conditions for the formation of the patterns. 

We modeled the evolution of the electrical field in the semiconductor laser medium 
using the ID wave equation which is applicable for large enough ring shaped lasers. The 
paraxial wave equation, which is valid for the VCSEL geometry, is written for the electrical 
field: 

(XL i       <?2E     ., 1^12 „      lr 1  ^    knn?    I~I2. 
-ik0n2-|E| E=-[g0-aJ-E--2-2--|E| E (1) 

dz    2k0n0 dx. 2 R 
where ko is the wave number, no - the linear index of refraction, R - the anti-guiding factor 
andcctot-the loses, go is the unsaturated gain defined as g0(Np)=ra-(Np -N0) where T is 

the confinement factor, a - the differential gain, Np - the carrier density due to the pump and 
No - the carrier density for transparency. n2 the effective nonlinear refraction index is given 

by n2 = —, where 1*1 is the saturation energy - 1« = hv/Sfar^ ). 
2K0Isat 

For simplicity we introduce the following variables - x'=kox, z'=koz/2no and 
E(x,z) = A/l/n0n2 -A(x',z'). Substituting them into (1) and dropping the primes, yields the 

normalized field equation: 

-—i—T-2i\A\2A = y-A-—\A\7A where/ = n0R-(g0 -am)/k0 (2) 
oz      ox R 

Equation (2) has soliton like solutions [9] but also uniform Tilted Wave (TW) 
solutions, ^ = A0e

i(kx"'7z): 

'A°' = VT; k = ^"n; 7=k2'R;  n=0-1'2- 
L is the ring's perimeter. The quantization of k is caused by the cyclic boundary conditions 
imposed by the ring geometry. In order to explore the existence range of each solution we 
analyzed its stability to small spatial harmonic perturbation. When the examining the nth 
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order solution, a field component (noise) with a spatial frequency k+Q will experience 
exponential growth if it is larger than k and lower than a certain frequency kmax: 

k < k + Q < yjk2 + 2yR (3) 

The MI range depends on the pumping, the laser parameters and the specific steady state 
solution. For a given net gain (y), higher order solutions have smaller MI range and are 
therefore more stable. Pattern switching will occur when the positive MI gain curve of the 
actually lasing pattern could excite the next order solution, which is (for the same pump rate) 
stable. From the perturbation analysis we can derive a threshold gain for the lasing of the 
(n+l)* solution: 

r = Tj2(2n+i) (4) 
Thus, a necessary condition for achieving thresholds for the higher multiple soliton solutions 
is R>0, satisfied by all semiconductor lasers, however may be not satisfied for other types of 
lasers. Further more, the threshold gains are smaller for larger rings and thus the appearance 
of complex pattern will require lower injection currents in larger lasers. The ring shaped 
VCSEL has, therefore, many threshold currents. The first one is the conventional uniform 
field lasing threshold (corresponds to net gain y=0) The other threshold levels, derived from 
the MI consideration and not from gain-loss balance, correspond to the thresholds of the 
emergence of multiple lobed emission. 
Another two important conclusions that rise from the perturbation analysis are: 1) The MI 
mechanism is unidirectional in the sense that it enables energy transfer only from lower 
order solutions to higher order solutions. This explains the increase of spatial frequency of 
the formed patterns with the pumping parameter.    2) A TW solution is unstable to 
perturbation of it's complex conjugate TW (solution n is basically unstable in the presence of 
solution -n). The lasing of the n* TW solution excites its complex conjugate and as a result a 
standing wave azimuthal pattern would emerge. Again this explanation is stemming from the 
fundamental phenomena of the MI and does not require any inhomogeneities and 
imperfections that are conventionally used to explain this counter rotating wave coupling. 
Figure 1 shows BPM simulation of Eq. (1) when the current is below the second (n=l) 
threshold. The perturbed electric field reached a uniform steady state distribution and in Fig. 
2 - the BPM simulation above the third (n=2) threshold evolved into four-lobed solution. 
All the above predictions were tested and verified experimentally. The near-field intensity 
pattern emerging from a proton implanted ring shaped VCSELs (20-40um in diameter) with 
three 8nm Ino.2Gao.8As QW, emitting at -0.95 urn [8] were monitored. The near-field 
patterns were examined at room temperature under pulsed operation. 
A uniform near-field was registered until the injected current was increased to -1.5 times the 
threshold current. Then the pattern switched to an azimuthal standing pattern. As the current 
was increased, the number of light lobes increased, but not monotonically - probably due to 
defects and the inhomogeneous nature of the laser. 
Fig. 3 shows the near-field intensity pattern of 40um and 28um diameter lasers at various 
currents. 
The semi-analytical solutions of eq. (1) based on the perturbation analysis will be presented 
and compared with the experimentally measured near-fields and the BPM simulation results. 
It should be emphasized that the theory presented here is in principle valid for every 
semiconductor laser structure with cylindrical symmetry (disks, coupled rings etc.) [3]. The 
pattern selection mechanism shown here is, therefore, a general rule that applies for every 
cylindrical symmetric problem. 
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The vectorial nature of light is often ignored in the discussions of optical solitons because typically it does 
not drastically alter the behavior of solitons. When a soliton propagates in homogeneously birefringent fiber 
polarization effects have to be taken into account [1,2]. In some systems such as long-haul transmission 
polarization effects need to be considered even in the case of random birefringence [3]. On the other hand' 
when the soliton propagates in the randomly birefringent fiber, it maintains the shape and the same state 
of polarization accross the pulse [3]. Passively mode-locked fiber lasers [4,5] are unique sources of ultrashort 
optical pulses for telecommunications and other applications. The pulses which they generate can typically 
be viewed as solitons independent of the method of the passive mode-locking. The vectorial nature of these 
pulses becomes important if birefringent elements are included in the cavity [6]. Moreover, the presence of 
both birefringence and gain/loss in the system can give rise to new phenomena. 

Phase locking of the two orthogonal polarization components of a soliton, due to nonlinear coupling over- 
coming the linear beating in a weakly birefringent, lossless fiber, has been theoretically predicted [7 8] It 
has been shown that in addition to "scalar" solitons with a single polarization component along the fast or 
slow axis, there are vector soliton solutions which are elliptically polarized and bifurcate from the branch 
of the fast axis soliton. We note that these solitons are single solitons distributed between the two axes in 
contrast to vector solitons found in Refs. [9-11], which are, in effect, two soliton solutions [12]. In this sense 
elliptically polarized solitons are ground state nonlinear modes of the birefringent fiber although they require 
some threshold energy for their existence. The evolution of the state of polarization of solitons in a weakly 
birefringent fiber has been studied experimentally [13]. The total state of polarization of a soliton has been 
found to evolve as a unit and that solitons polarized along the fast axis are unstable. Also, the evolution 
of the state of polarization of solitons in a homogeneous birefringent fiber is mapped onto periodic orbits 
on the Poincare sphere m accordance with the approximation of average profile [14]. However, stationary 
elliptically polarized solitons have not been observed experimentally. Placing the birefringent fiber inside a 
cavity removes many of the difficulties which plagued prior experiments. The laser is a self-regulated system 
and it generates high-energy pulses defined by the parameters of the cavity, including the value of birefrin- 
gence Hence the pulses should be the nonlinear modes of this combined system. Polarization locking effects 
have been experimentally discovered by Cundiff, Collings and Knox [6] in a laser with weakly birefringent 
fiber m the cavity They found that at certain values of the parameters, the two polarization components of 
the pulse were locked in phase. These pulses which are stationary elliptically polarized soliton were called 
"polarization locked vector solitons" (PLVS) [17]. 
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In this work, we investigate the state of polarization of pulses in a mode locked fiber laser with linearly 
birefringent fiber inside the cavity. Earlier [15] we found that such laser systems reveal a multiplicity 
of various phenomena related to the soliton generation with two polarization components. Here we are 
interested only in elliptically polarized solitons. These are formed in the laser as a result of the balance 
between nonlinearity, birefringence and dispersion on the one hand and gain and loss on the other. We 
observe that essentially the former balance determines the soliton profile and the relation between its 
polarization components. The latter balance primarily fixes the energy of the soliton, selecting one from the 
whole family of elliptically polarized solutions of the conservative case. This whole family is investigated in 
our experiment by externally changing the average linear birefringence, which is determined by a sequence 
of three pieces of birefringent fiber with variable angles between their principal axes. We used the model 
described in Ref. [15] with some modifications: 

D '    " "" '■•-•'-           5i-S,(\4>\2)}<l> + iß<fitt, i** + vt> + fttt + \<t>?4> + AW24> + Bip24>- = ifc(Qi) - Si 

i4>z -rl>+ g-V-« + M V + A\<ß\2tl> + B<?i>' = i[g{Q2) ■6,-6,{\rl>\2)]il> + iß1>tt, (1) 

where z is normalized to the cavity length Zo, t — [T— (z/(VgZo)]/To, (T0 = \fZ~o\fa\), fa is the intracavity 
group velocity dispersion, ij) and <p are the normalized envelopes of the two optical field components, 7 is 
the half-difference between the propagation constants of these two components, D = ß2/\fa\ (— — 1 in our 
case) , A is the cross-phase modulation coefficient, B is the coefficient of the energy-exchange term (four- 
wave-mixing), ß represents the spectral filtering or bandwidth limited gain (ß > 0). g{Q%) is the gain in the 

00 00 

cavity, which depends on the energy, Q\ =  J (|<?i|2) dt, Q2 =  f (W2) dt, Si is the linear loss term and 53 
—00 —00 

represents the loss due of the semiconductor saturable absorber. 

The gain term, g{Qi), in (1) describes an active medium with a recovery time much longer than the round- 
trip time of the cavity and therefore does not depend explicitly on t. It describes depletion of the gain 
medium and depends on the partial pulse energy g(Qi) = 1+iV, , where #0 is the small signal gain and 
EL is the saturation energy. The absorption of the saturable absorber is described by the rate equation: 
•—' = — ■l—a- — U- 8S, where T\ is the recovery time of the saturable absorber, So is the loss in absence of 
pulses, T refers to ip or <j>, and EA is the saturation energy of the absorber. 
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Figure I. 
(a) Total pulse energy vs. birefringence 
for the stable elliptically polarized solitons 
(b) Energy difference between components 
vs. birefringence. 
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Figure 2. Comparison between the energy difference vs birefringence for the solutions of the conservative case (solid circles) and our laser 
system with gain and loss using the anisotropic (continuous line) and isotropic (doited line) models with the proper gain to keep Q constant. 

We numerically seek elliptically polarized solitons following the method described in Ref. [19]. We start with 
7 = 0, and find the numerical soliton solution for this case. Then using this solution as an initial condition, 
we increase the birefringence until the solution converges. Above a certain value of the birefringence the 
polarization does not lock. For 7 = 0, we always find a stable solution with both amplitude components 
equal and 7r/2 radians out of phase. The energy Q for this solution depends on the gain/loss parameters. 
Different values for this set of parameters can produce the same solution. Fig.l shows (a) Q versus birefrin- 
gence and (b) energy difference versus birefringence, for four values of the gain/loss parameters. Namely 
{ES0,Ti,EA,ß,go) are: (1) (0.5,0.12,0.5,0.4,0.02,0.327); (2) (0.4,0.07,0.5,0.04,0.04,0.145); (3) (0.5,0.08,0.3, 
0.018, 0.1, 0.137); (4) (0.5,0.08,0.5,0.04,0.02,0.115). The other parameters are common: Si = 0.01, A = 2/3, 
and   B = 1/3. This choice of parameters produces the same stable circularly polarized pulselike solution 
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with Q - 2 for 7 = 0. The isotropy of the gain/loss has been introduced into equations (1) numerically by 
simply evaluating the gain/loss terms uniformly along all possible directions. The procedure is equivalent 
to the randomization of the anisotropy in the location of erbium atoms in a glass host matrix. The gain 
and loss are locally anisotropic but isotropic in average. 

In Fig. 1, when 7 increases, the two components of the solution diverge. The gain/loss terms influence them 
differently depending on the values of the parameters. The energy (Q) decreases with 7 and the functions 
y(7) are different for the four sets of parameters even if for all Q(0) = 2. The energy distribution between 
the components also changes with 7 but differently in the four cases. The main difference between the curves 
is that each has a different upper limit, implying that the solution loses its stability at different values of 7 
This means that the gam/loss terms play a crucial role in the stability of these solutions. 

In the laser system, the nonconservative terms are small and serve mainly to fix the soliton amplitude 
The rest of the soliton parameters are determined by the conservative terms: nonlinearity, dispersion and 
the birefringence. This suggests that the comparison with the conservative case [7,8] should be done on 
the following basis. In the case of the above cited Hamiltonian system ( i.e. that described by the l.h.s 
of Eqs.l set to zero), the elliptically polarized soli tons comprise a one-parameter family of solutions The 
parameter of the family is the propagation constant q. The energy Q, the energy ratio and any other 
pulse characteristics depend on this parameter. On the other hand, because of the scaling properties of 
this Hamiltonian system, if we fix the energy, then the energy ratio will depend on 7. Let us recall that 
Q/yJ depends exclusively on 9/7 (see Fig.l(b) in Ref. [8]). In the experiment, the pulse energy does not 
significantly depend on 7, providing the basis for comparison with those solutions found in Refs. [7,8]. 

As stated above, the pulse energy Q is not experimentally observed to depend on 7 while the remainder of 
the laser parameters are fixed. In the simulations, we fix the value of Q by varying the small signal gain 
(go), while fixing the rest of parameters. The gain must be increased only slightly with increasing 7 in order 
to obtain an elliptically polarized soliton of constant energy. Fig.2 shows the energy difference versus 7 for 
solutions with Q = 2. The solid line corresponds to the anisotropic case and the dotted line to the isotropic 
model described above. As we can see, the only difference between the anisotropic and isotropic case is 
that the isotropic case keeps the elliptically polarized soliton stable over a larger interval of 7 The filled 
circles correspond to the conservative solutions obtained in Refs. [7,8]. The agreement of these three curves 
is excellent. The similarities among the solutions are not only in the energy difference between components 
but also in the rest of the pulse characteristics. 
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1. Introduction 

Multi-pulse operation of soliton lasers has been reported sporadically over the last decade. The break-up 
of single pulses into double or multiple pulses was observed in both Kerr-lens mode-locked (KLM) [1] 
and semiconductor saturable absorber mirror (SESAM) [2] mode-locked solid-state lasers when the pump 
power was increased. The pulse spacings were irregular in these cases. The appearance of regularly 
spaced multiple pulses within a laser cavity is of significance to the production of GHz repetition rate 
soliton pulse sources for optical fiber communications. Recent advances in this area have led to a 
refinement of harmonic mode-locking in both Er-doped fiber lasers [3] as well as CnYAG bulk lasers 
[4]. In our experiments we have used a SESAM to induce soliton mode-locking in a Ti:sapphire laser. By 
decreasing the negative dispersion or increasing the small signal gain we observed transition to multiple 
pulse operation with the separation between pulses not reproducible. Apart from far separated pulse 
pairs, triplets and quadruplets we could also generate closely spaced multiple pulse states which could 
possess various relative inter-pulse phase relationships. We explain our observations within the 
framework of the generalized complex Ginzburg-Landau equation (GCGLE) as the master equation of 
the laser. Conditions for the stability of single as well as multiple solitons are given and the mechanisms 
responsible for the transitions between pulse states are explained. Results from numerical simulations of 
the GCGLE are in good agreement with the various double pulse states observed experimentally. The 
regions for existence of single and multiple pulses in the parameter space of dispersion and small signal 
gain are given. The simulations also show that there are regions wherein the laser operates in permanent 
nonequilibrium, also in agreement with the experiments. We believe that the mechanisms concerning the 
switching between soliton states identified in this work are general and valid for all soliton lasers. 
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2. Experiment 

A schematic of the standard femtosecond cavity used in the experiments is shown in Fig. 1. The SESAMs 
had their absorption recovery times tailored using ion-implantation [5] which resulted in recovery times 
T<1 ps (see inset). The typical reflectivity modulation from the SESAMs was dR<0.5%. Mode-locking 
was self-starting with the SESAMs present whilst it could not be initiated without, indicating negligible 
KLM due to gain-guiding effects. 

SESAM response with fit: 

T.„ = 200fs... 1ps 

ROCs = 100 

*£- 

M5 

R = 86% 

BRF Ti:Sapph 

= 23mm 

Fig. 1: Ti:sapphire laser cavity. M's mirrors, R reflectivity, P's prisms, BRF birefringent tuning filter, 
ROC radius of curvature. The inset shows the response of various SESAMs. 

Starting from single-pulse operation, decreasing the negative dispersion in the cavity through insertion of 
P2 (or increasing the small signal gain) led to the appearance of double pulses. Fig. 2 shows some 
examples of the observed autocorrelation and averaged spectra. Further decrease in dispersion resulted in 
a transition to triple pulses and finally, depending on the small signal gain, in irregular chaos-like 
behaviour followed by the generation of chirped ps-pulses after crossing to positive dispersion. 
Increasing the dispersion reversed this trend, generally with hysteresis. 

10 farsep3ra|ftri,rioi|hlPt. 

0.8 

824  828   832   836   840 
wavelength (nm) 

830       840      850 
wavelength (nm) 

■0.8    -0.4    0.0     0.4     0.8 
time (ps) 

860        870 
wavelength (nm) 

860       870 
wavelength (nm) 

Fig. 2: Example traces of autocorrelation and averaged spectra of double pulses. Far separated as well as 
closely spaced doublets are shown which have their relative phase either rotating, or closer to = 0 or « %. 
The two far separated solitons do not interact coherently nor through the absorption recovery tail. 
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3. Theory 

We have used the GCGLE as master equation to analyse the multi-pulse behaviour of the laser. Fig. 3 
shows the modulation background line g -10 - qo obtained from a numerical simulation of the GCGLE. 
Here, g is the saturated laser gain, 10 is the linear loss and q0 is the maximum amplitude modulation of the 
SESAM. The inset shows the energy balance for the laser in equilibrium with 8 and a being the energy 
losses due to the filter and the absorber respectively; lc is the loss experienced by the dispersive 
continuum and e is a margin that depends on the absorber recovery time T (e-»0 for x—»0). Fig. 3 
illustrates that the stability of a single soliton is impaired only if the modulation background line 
approaches or crosses zero (depending on 8), i. e. if the total dynamic losses exceed the maximum 
possible SESAM modulation, [ax + 5x + e]01 ^#o- Then, the continuum shed by the soliton can grow 

and a second stable and well separated soliton is formed if [aj-t-Sj]-. >[a2+82]02. A further 

decrease in dispersion p2 causes the appearance of a third soliton and so forth. On the other hand, 
increasing the dispersion switches back to a single soliton with hysteresis. This is despite the fact that the 
laser apparently switches to a state with higher loss. A stability analysis shows that this switch occurs 
when AS < -Aa, i. e. a change in the filter loss, for instance due to an energy imbalance, is outweighed 
by the negative change in the absorber loss. 

P0Ut = 514mW 

o 
cr 
■ 

■ 

-3x10" 

single pulses 

P0Ul = 537mW double pulses 

-1600 -1400 -1200 

(fs2) 

-1000 

Fig. 3: Modulation background line obtained from a simulation of the GCGLE. The inset shows the 
graphical representation of the energy balance in the laser. The symbols are explained in the text. 

Further simulations have confirmed the existence of closely spaced pulses and the possibility of 
operation with permanent nonequilibrium in the framework of the GCGLE, both in reasonable agreement 
with the experiment, and have identified the regions of existence of single and multiple pulses. 
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Feedback in the presence of a nonlinear response can lead to optical hysteresis and bistability (OB) in 
numerous configurations.^] OB and limiting have also been predicted through backward second- 
harmonic generation (B-SHG) via short-period or higher order quasi-phase matching (QPM) gratings, and 
the development of reliable technologies for QPM in ferroelectrics has recently lead to the demonstration 
of backward second harmonic generation (B-SHG) in Lithium Niobate.[2-3] Hereby we consider the 
nonlinear feedback provided by B-SHG in the presence of gain at the input fundamental frequency (FF). 
The presence of nonlinear phase-mismatch in B-SHG can introduce feedback via successive up- and 
down-conversion processes, thereby forming a nonlinearly induced resonator in an otherwise reflection- 
less structure and leading to a strong enhancement of the effective amplification. Such phenomenology is 
investigated numerically. In this Communication we refer to the realistic case of LiNb03 waveguides 
realized by Titanium indiffusion or proton exchange in crystals doped with Erbium ions in order to 
exhibit amplification of several dB at (FF) 1.55um.[4] Defining e, and e2 as the counterpropagating FF 
and SH slowly-varying field envelopes, normalized such that their square-moduli are powers, vgU the 
corresponding group velocities and Ak the SHG wavevector mismatch (including the QPM momentum), 
the model of a backward second harmonic generator with FF gain can be cast in the form: [5-6] 

3ei     1 9ei        .      71 
—+ —- = Keie2+—d 
dz    Vgi 9t 2 Q\ 

3e2     1  de2        ,   . Al 
—— —- = Kef-iAke2 
dZ Vg!2 dt 

Our results refer to single mode waveguides at 1.55nm with lst-order QPM, equivalent cross section 
SEFF=47 um2, nonlinear strength J^SEFF =6X10"

4
 W"1/2, (effective) propagation length L=3cm. We 

consider the case of a single FF input (i.e. e2(z=L,t)=0) with power P* = I e, (0, t|)| \\ and evaluate the 
transmitted FF power P"? = I e,(L, t!)P, the reflected SH power P0

S» =le2(0,t|)P, the transmittance 
T^ = P^/Pif and the trans-reflectance is Rs" =P|"/P*F. Focusing on the stationary behavior (3, =0), 
in the absence of gain these are multivalued functions which can be described by Jacobian elliptic 
functions. Each state of the system is characterized by a certain number of humps in the distribution of the 
fields (see Figure 1). These humps can be interpreted as photon loops, where FF photons are up-converted 
to SH, travel backward until they are down converted to FF. The number of photon loops identifies the 
longitudinal mode of a nonlinear resonator with feedback provided by the B-SHG, and determines the 
output power at both harmonics. Such description in terms of photon loops is convenient when FF gain is 
included, because the amplification can be enhanced by the re-circulation of energy (i.e. photons) in a 
"loop". Figure 2a displays the outputs versus gain for various excitations. The dashed lines are real 
exponentials corresponding to FF transmission in the absence of nonlinearity. 
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B C 

Figure 1: Stationary response of the system in absence of gain when: AkL=2 
(diamonds), AkL=12 (thick line), AkL=20 (thin line). The fields profile (a.u., thick 
line: FF le/, thin line: SH Ie2l2) are also shown to illustrate the concept of photon 

loop. 

a 40 

5        Gain (dB)        15 20 

Figure 2: Response of the system in the presence of gain: a) vs gain for different input powers (the 
exponentials are the response in absence of nonlinearity); b) vs nonlinear mismatch, with 13dB gain, 

when Pin=70mW (thick line) and Pin=280mW (thin line). 

In specific intervals the B-SHG (solid lines) enhances the resulting amplification: SHG acts as a loss for 
the FF until, for large enough gain, the system switches from zero to one photon-loop and the SH output 
power becomes comparable to that transmitted at FF. In the example in Fig. 2 the system has only two 
states (zero and one photon-loop) independent on gain, due to the low Ak. Figure 2b shows the spectral 
response (symmetric around the origin as expected from equations (1)), for given excitation and gain. A 
range of enhanced gain is apparent between the regions of high mismatches where neither SHG nor 
nonlinear-resonator are in effect, and the region of satisfactory phase-matching where the power is 
substantially up-converted. Clearly, a slight phase-mismatch is needed to allow the formation of photon- 
loops. 
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Figure 3 Self-pulsing of the system (thin line SH, thick line FF, steplike waveform FF input; here 

AkL=l2 and the gain is 8.7dB) 

Moreover, the maximum number of photon loops in the system is strictly related to Ak and determines the 
multi-valued behavior visible in Fig. 2b. Notice that the highest-output state corresponds to a single 
photon-loop such that all the available length (i.e. waveguide volume) can contribute to the enhancement 
or. gain Finally, m the non-stationary regime, integrating Eqs. (1) with a pseudo-spectral approach, we 
found that the system exhibits three different temporal regimes in response to an asymptotically constant 
FF excitation. For a relatively low gain, the structure behaves like the conservative one, settling down 
(after a transient) to the lowest branch of the multistage output characteristic (see Fig. 2) When the gain 
increases (for a fixed input intensity) the system begins to exhibit a robust self-pulsing as shown in Fig 3 
(for typical values of the parameters). The mean value of the oscillatory output (after the transient) equals 
that obtained from the stationary analysis. Such behavior suggests the periodic creation and annihilation 
of an unstable photon-loop. This self-pulsing destabilizes at much larger gains, eventually giving rise to' 
the chaotic emission of temporal bursts, even in the absence of an SH seed as employed in [6] A detailed 
temporal stability analysis will be carried out in order to underline the relevant dynamics. In conclusion 
we propose a novel application of a parametric nonlinearity in the presence of gain in a nonlinear periodic 
medium: a cavity-less parametric oscillator with outputs at FF and SH. The phenomenon, described in 
terms of photon-loops through up-and-down conversion in backward SHG, could open the way to an 
entirely new generation of oscillating devices in ferroelectric materials subject to periodic domain 
orientation. An experimental demonstration is envisaged in the near future. 
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Singular light beams, that contain topological wave front dislocations, are ubiquitous entities 
that display fascinating properties with widespread important applications.1-3 Screw dislo- 
cations, or vortices, are a common dislocation type. They are spiral phase-ramps around 
a singularity where the phase of the wave is undefined and its amplitude vanishes. The 
order of the screw dislocation multiplied by its sign is referred to as the winding number, or 
topological charge of the dislocation. 

Vortices appear spontaneously in several settings, including in speckle-fields, in opti- 
cal cavities and in the doughnut laser modes, and otherwise they can be generated with 
phase masks, or with astigmatic optical components. Vortices also form by self-wave front 
modulation in nonlinear optical media.4'5 In this context, parametric wave mixing of mul- 
tiple waves propagating in quadratic nonlinear media constitutes a fascinating scenario. 
Charge-doubling in second-harmonic generation schemes,6'7 and sum- and difference-charge 
arithmetic operations in three-wave mixing processes,8 have been demonstrated with mod- 
erate light intensities and wide pump beams. Spontaneous vortex pair nucleation in seeded 
up-conversion schemes,9 and vortex excitation in parametric amplification from quantum 
noise,10 constitute two additional examples of the phenomena that have been discovered 
and observed recently. The spontaneous nucleation of multiple vortex twins whose subse- 
quent explosion under appropriate conditions yields quasi-aligned patterns of single-charge 
vortices in walking parametric wave mixing has been also recently predicted numerically.11 

With intense, tightly focused beams the so-called cascading effects offer a new rich variety 
of phenomena.12 Cascading modifies drastically the dynamics of the beam evolution, in par- 
ticular by yielding the formation of optical solitons. In this regime, pump beams containing 
optical vortices nested exhibit azimuthal modulational instability (AMI).13 On theoretical 
grounds, the self-breaking of the beams is mediated by the AMI of the fiat top of higher- 
order, ring-shaped bright vortex solitary-wave solutions of the evolution equations.14-16 As 
a consequence, the light beams self-break inside the crystal into sets of stable, bright spatial 
solitons, a phenomenon that has been observed recently in up-conversion second-harmonic 
generation schemes in bulk potassium titanyl phosphate cut for type II phase-matching at 
A = 1.064 //m.17 The far-field evolution of the solitons is critically impacted by the orbital 
angular momentum carried by the light signals due to the presence of the vortices. Such a 
phenomenon defines the principle of operation of a new class of optical devices that can po- 
tentially process information by mixing topological wave front charges and producing certain 
patterns of bright spatial solitons spots.18-19 

In this paper, a review of the progress in the above mentioned topics will be presented, 
with emphasis on latest theoretical predictions open for experimental exploration. 
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Figure Caption : Above: experimentally observed SH light pattern output of the KTP 
crystal for low and high fundamental input powers. Below: output soliton pattern predicted 
numerically for different combinations of the topological charges of the input signals. 
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In the last years, second order nonlinear effects have attracted a great deal of interest in the 
scientific community; in particular solitons sustained by second order nonlinearity have been 
extensively studied after the first experimental demonstration of soliton propagation in a KTP 
crystal [1]. 
Until now, however, the intensity required to obtain self-trapping of a beam of about 20 microns 
radius remained of the order of 10 GW/cm2. This has been due to the lack of nonlinear crystals 
which combine the attributes of a large nonlinearity and phase-matching capability at 
experimentally convenient wavelengths. However, the technique of quasi-phase matching (QPM) 
offers a simple and attractive solution [2,3]. The technology is particularly mature with regard to 
lithium niobate whose material properties may be readily customised in PPLN [4,5]. 
Although spatial solitary waves in PPLN have been predicted theoretically and simulated 
numerically [6,7], this paper reports their first experimental observation and characterization. 
The PPLN in our experiments was fabricated using the electric-field poling technique. The grating 
had a period of 6.58 microns which was designed for QPM frequency doubling of 1064nm. The 
crystal was mounted in a temperature-controlled oven. The experiments were carried out using a Q- 
switched mode-locked Nd :YAG laser which delivered 45 ps (FWHMI) pulses of up to 10 mJ 
energy at 1064nm. The input beam was focused onto the entrance face of the uncoated PPLN 
sample to a spot of 22 [im diameter (FWHMI). The beam had a Gaussian transverse profile and 
was polarised parallel to the c-axis of the PPLN to access the material's largest quadratic nonlinear 
coefficient, d33. The 14.5 mm propagation distance through the PPLN crystal represented, for the 
fundamental wave, approximately 6.5 diffraction lengths of the Gaussian input beam. 
Initial measurements were made with the PPLN crystal tuned to almost perfect SHG phase- 
matching (T =162°C). For sufficiently high fundamental input powers, a significant reduction of 
both the fundamental and the second harmonic output beam diameters was clearly observed Figure 
1 shows the measured beam profiles of the fundamental comparing (a) the input, (b) the output at 
low input intensity and (c) the output at high input intensity (above the threshold for soliton 
waveguiding). 
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a) 

c) 

b) 

Figure 1 : Experimental beam profiles to 
outline the observed self-trapping: input 
pattern (a); output pattern in the low intensity 
regime (diffraction dominates) (b); output 
pattern at high intensity showing a 2D Spatial 
Solitary Wave (c) 

The output beam width versus the input intensity for an input of 22|im full width at half maximum 
in intensity is shown in Figure 2. It can be seen that the fundamental wave begins to self-focus at 
moderate intensities (0.4 GW/cm2) and becomes self-trapped for intensities greater than 
1.35 GW/cm2. The experiments were repeated for different phase-matching situations by 
examining QSS for a range of temperatures between 140 and 170°C. This temperature range 
allowed us to vary the AkL product from +20TC to -107t ( Ak = k2cD - 2^ ). Results are shown in 
Figure 3, where the output fundamental spot diameter is plotted versus temperature for four values 
of the input intensity. 

The data clearly confirm that the stronger self-focusing is obtained close to perfect phase-matching. 
The self-focusing strength decreases smoothly when temperature decreases, i.e. going toward 
larger positive phase-mismatch. On the contrary, when going on the negative side of the phase- 
mismatch (i.e. increasing the temperature) the focusing evolves abruptly and quickly disappears. 
From Figure 3 one can see that for an intensity of 1.9 GW/cm2, QSS propagation can be 
maintained over a broad range of positive phase-mismatches, and may even be observed when the 
phase mismatch is slightly negative. For a fixed temperature in the range T<Tpm, the variation of 
the output spot-size with respect to the input intensity was qualitatively similar to that shown on 
Figure 2. For T>Tpm (negative phase-mismatch) the behaviour can be seen to be rather more 
complex. When the input power is increased, for a fixed detuning in temperature, the fundamental 
field first undergoes a self-defocusing effect that broadens the output pattern. On increasing the 
intensity still further the field evolution turns self-focusing until soliton propagation is reached. 
The trends are consistent with similar observations reported for QSS in KTP [1]. Numerical 
integration of the 2D+1 coupled wave equations was carried out using an implicit finite difference 
scheme. The results of our computations modelling are in optimum agreement with the 
experimental observations. The intensities chosen to get theoretical curves that are comparable in 
shape with the experimental data are about one half of their experimental counterparts, due to the 
fact that simulations assumed a continous radiation on the contrary to experiments carried with 
short pulses and time integrated recording of the spatial beam profile. 
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Figure 2: Dependence of the output beam 
diameter versus the input intensity. 

Figure 3: Dependence of the output beam width 
with respect to temperature variations for 
internal input intensity of 0.35 GW/cm2 

(diamond), 0.7 GW/cm2 (square), 1.3 GW/cm2 

(triangle) 1.9 GW/cm2 (cross). Perfect phase 
matching is at 161.5°C. 

In conclusion 
nonlinearities 

soliton  formation  using  cascaded  second  order 
was designed and fabricated for QPM frequency 

we have observed  spatial 
in PPLN. The PPLN crystal 

doubling of 1064 nm, and quadratic spatial solitons were propagated over more than six diffraction 
lengths. The results confirm that PPLN is one of the most promising materials for all-optical 
processing using quadratic nonlinearities. 

The authors aknowledge the financial support of the European Commission in the frame of 
the ESPRTT Open LTR research program. 
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The most unique application proposed for photorefractive solitons is to utilize the waveguides 

induced by them for nonlinear frequency conversion.1 Photorefractive solitons induce 2D waveguides, 

that are "fixable" (can be permanently impressed into the crystalline lattice),3 and are wavelength- 

sensitive in the sense that a waveguide can be induced by very weak soliton and guide in it an intense 

beam of a non-sensitive wavelength.4 Because these waveguides are induced by "real-time" solitons, they 

offer another important property: a large degree of tuning of all waveguide parameters. Thus, a 

waveguide can be induced by very weak soliton and guide in it two (or three) intense beams of longer 

wavelengths, which interact via x(2)- Phase matching can be achieved with crystalline birefringence or by 

periodic poling. Because solitons can be launched at a broad range of angles (with respect to the 

crystalline axes), wavelength tunability can be achieved by simply rotating the crystal and launching a 

soliton at a new direction. Finally, the propagation constants of the guided modes in the waveguides are 

also tunable by varying the intensity ratio, allowing tuning with no mechanical movements. We 

demonstrate all of that theoretically and experimentally. 

We use a photorefractive KNb03 crystal, and launch all beams along b-axis. Phase-matching occurs 

between a-polarized 982nm and c-polarized 491nm beams, in which the waveguide-related electro-optic 

coefficient is r[3. First we measure the SHG conversion efficiency in the bulk KNb03 crystal. We launch a 

15mW, 22|im (FWHM) circular ~982-nm a-polarized cw beam. We obtain phase-matching at ^=982.6- 

nm, and output power at A,=491.3-nm of 350nW, with a conversion efficiency of 0.15%/W. 

Then we pursue an active method, in which a separate beam is used to build the soliton. We use a 

488-nm c-polarized laser beam to generate the soliton and a uniform 488nm a-polarized beam as the 

background illumination. We focus the 488-nm beam to a 9um x 9um input spot (Fig. la) with an 

intensity ratio of 15. At the output the beam diffracts to a 103nmxll8 (im (Fig. lb). When we apply a 

voltage of 2,600 volts, the beam self-traps into a 6|xmXl0um output (Fig. lc). Then we launch the 982- 

nm a-polarized beam into this soliton- induced waveguide. At the input, the TR beam is 22um X 22|am 

FWHM (Fig. Id). With 2,600 volts applied and after the soliton has formed, the 982-nm beam is guided 

by the induced waveguide and attains an output of 24um x 36um (Fig. If)- Fig. 2 displays the temporal 
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Figure 1: Experimental results with the active method, (a) The input 488-nm beam; (b) The output 488-nm 
beam without voltage; (c) The output 488-nm soliton; (d) The input 982-nm beam; (e) The output 982-nm beam 
without voltage; (f) The output 982-nm beam guided by the soliton. 

response of the output SH power during soliton formation after the voltage is turned on. When we just 

apply the voltage (t=0), the SH power is very low, because the field across the crystal changes the 

refractive indices, taking the process out of phase matching. As the space charge field builds up, it forms 

the waveguide and traps the fundamental and SH beams, and also establishes phase matching. At steady 

state, the SH output power stays at 2240nW, with a conversion efficiency of 0.996%/W,  6.4 times higher 

than that in a bulk hase-matched crystal. 

In our case the SH is at a photorefractively-active wavelength, so one can use the SH beam to 

generate a soliton to guide itself and the fundamental beam.  This is a fully passive method. 

Experimentally, we use the cw Et beam as an input (Fig. 3a). Through SHG, a 57^mx61nm FWHM spot 

of 491-nm light emerges at the output (Fig. 3d), with a 350nW power. Then we apply a voltage of 2,600 
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Figure 2 Temporal response of the SH power after the voltage is turned on (dotted). The dashed line is the 

SH power in a bulk crystal without voltage. 
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volts. As the waveguide forms, the SH output width shrinks very quickly and reaches its minimum size 

10umXl3nm (Fig. 3c). The size of the output fundamental beam is 25u.mx38jim under guidance (Fig. 

3e). At this moment, the SH output power is 810nW: 2.3 times of the SH power in a bulk crystal. 

Fundamental 
Beam 
982nm 

Second 
Harmonic 

491 nm 

Figure 3 Experimental results with the passive method, (a) The input fundamental beam; (b) The output 
fundamental beam without voltage; (c) The output fundamental beam a few seconds after the voltage is on; (d) 
The output SH beam without voltage ; (e) the output of the SH beam a few seconds after the voltage is on. 

To summarize, we have demonstrated SHG in soliton-induced waveguides, in both active and 

passive methods and observed an improvement of the conversion efficiency in both. We expect much 

higher improvement with a longer crystal and a narrower soliton: an 8nm guided beam in a 1cm long 

crystal will give a 425 improvement factor. Frequency conversion in soliton-induced waveguides offers a 

broad range of wavelength tunability by launching the soliton and the SHG in a range of phase-matchable 

crystalline orientations, as done with plane waves in a bulk crystal. Such tunability is non-existent with 

"conventional" fabricated waveguides. This research at Princeton University was supported by the US 

Army Research Office. 
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Solitons are general non-linear phenomena, appearing in a myriad of nonlinear wave systems 
in nature. Many of these systems support self-similar solitons, where a simple scaling relation 
exists for their sizes and intensities that maps all the solitons onto each other. Self-similar solitons 
occur when the underlying equation describing the system does not have any natural scale. A good 
example of such a system is the cubic nonlinear Schrödinger equation (NLSE): 

dib     1   „ „ 
*äJ + 2Vr^ + MV = 0, (1) 

where z is the direction of propagation, and V£ is the laplacian in the directions transverse to the 
direction of propagation, (or else the second order time derivative.) This equation describes optical 
temporal envelope solitons in fibers, optical spatial Kerr solitons, envelope solitons in plasma, deep 
sea water waves, etc. 

Unlike the cubic NLSE, most wave equations describing physical systems do have natural 
scales. Nevertheless, these scales are often invisible over a wide parameter range of solitons. As 
long as all the solitons of interest are in one of the regions of parameters where all the natural scales 
built into the underlying equation are invisible, these solitons are almost perfectly self-similar to 
one another. For example, the saturable NLSE, which describes, e.g., (1+1)D photorefractive screen- 
ing solitons and spatial solitons in atomic vapor: 

*^ + 2V^ + TTW = °. (2) 

has a natural scale given by the factor 1 in the denominator of the nonlinear term. However, solitons 
that satisfy |^|2 « 1 over the whole soliton profile are all self-similar to each other since the Eq.(2) 
reduces to Eq.(l) in that case. Similarly for Eq.(2), one can show that if most of the energy of all 
solitons in a given system is contained in the regions where |^|2 » 1, the intensity profiles of the 
solitons are all self-similar to each other, an the deep saturation regime, the difference between the 
intensity profiles is minute and appears only in the margins of the beam, where |V>|2 < 1.) 

If solitons of a wave equation that are all self-similar to each other are present simultaneously 
in a physical system, then the system supports self-similarity This self-similarity property is trans- 
lated into a fractal structure, if, in addition, a group of solitons on ever smaller scales exists within 
each soliton on a larger scale, such that the same generic structure (in this case, of solitons) is re- 
peated on an ever decreasing scale. 

In the cases of Eq.(l) and Eq.(2), this can be done by starting with a localized pulse whose di- 
mensions are such that its nonlinear cohesive forces are much stronger than its tendency to diffract 
or disperse. (This is in contradistinction with a "conventional" soliton pulse, in which the self- 
acting exactly balances the diffraction.) In our simulations of the (1+1)D cubic self-focusing NLSE, 
such a pulse (or a beam in space) naturally breaks up into a few smaller solitons. In systems with 
considerable noise this breakup occurs due to modulational instability, whereas in systems with 
little noise, it occurs due to the dynamics-driven breakup. For examples, see the second row of 
Fig. 1, in which no noise was present; in the cases presented in Fig. 1, all the products of the first 
breakups are of the same sizes for each case, although this might not be easy to achieve in a typical 
experiment. 
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Figure 1: The two columns of the figure represent Cantor set fractal generation for two particular cases in the (1+1) D 
cubic self-focusing NLSE. In each case, we started with a sech-shaped pulse that was significantly higher than the soliton 
of the same width, as seen is the first row of the figure. The pulses started breaking up, as seen in the second row of 
the figure. When pulses looked as they appear in the second row, we abruptly significantly decreased the diffraction 
coefficients in the underlying equations, thereby inducing the second stage of the breakup, as seen in the third row of 
the figure. When pulses looked as they appear in the third row, we decreased the diffraction coefficient abruptly again, 
which resulted in the final stage of the breakup as seen in the fourth row of the figure. In some cases, the pulses were too 
tiny to see at the given magnification, so the insets in the plots show magnified details of their corresponding plots. 

We can build on this idea in order to describe a general principle of creating fractals in any soli- 
tonic system [1,2]. Once the original pulse broke up into smaller solitons, one alters the "daughter- 
solitons" in such a way so that their self-acting is much stronger than the diffraction tendencies. 
This can be done either by altering the intensity of the pulses abruptly, or by changing the mag- 
nitude of the nonlinearity, or else by changing the diffraction (or dispersion) coefficient abruptly. 
It is important that the change in the equation is abrupt, so that the change forces the breakup of 
every "daughter-soliton" into even smaller pulses (beams); an adiabatic change does not cause the 
required breakup. Consequently, each of the pulses undergoes a self-similar breakup. This process 
can be repeated, in principle, an infinite number of times, thereby creating a fractal structure. Of 
course, care must be taken to ensure that the system always operates in the regimes of parameters 
where all its underlying natural scales are indeed invisible. For some examples of fractal generation 
processes, please see Fig. 1. 

We emphasize another characteristic of the particular fractals we present in Fig. 1. Namely, all 
fractals we are aware of in physical systems in nature are statistical fractals; that is, they look the 
same on all scales of magnification only statistically. The principle we described will generically 
result in a statistical fractal also, especially in the presence of noise. However, as shown in Fig. 2, 
our principle also allows us to create exact fractals. This is achieved when the initial stage (when 
properly rescaled) can be mapped on each of the final products almost exactly, and this rescaling 
factor is almost the same for each of the final products. This particular exact fractal is called Cantor 
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Figure 2: This illustrates the fact that the fractals we generated in Figure 1 are indeed exact. We took the shapes of the 
second row of Figure 1, shifted the shapes, rescaled them with the right factors, and superimposed them on the insets 
of the last row of Figure 1. The doted-lines represent the rescaled versions of the shapes of the second row of Figure 1 
while the full-lines represent the shapes of the insets of the last row of Figure 1. The overlap in the left plot is so excellent 
that the two curves can hardly be distinguished. 

Set fractal. Mathematically, a Cantor set can be generated in the following manner: one starts with 
a line, divides it into three equal parts, deletes the middle part, and repeats the procedure on each 
of the two remaining smaller lines, and then repeats this procedure recursively an infinite number 
of times. Of course, there is nothing special about dividing line into three equal parts. Instead, one 
could divide it into any number of arbitrarily sized parts and delete some of them; one would be 
left with what is called the motif of this particular Cantor set. Then, one would take this motif and 
apply it (properly rescaled) on each of the remaining lines, and continue the procedure recursively. 
Clearly, the full width half maxima of the solitons in the successive stages of Fig. 1 obey exactly the 
process of generating a Cantor set. The example in Fig. 1 can be designed with physical parameters 
of Spatial Kerr Solitons, or, perhaps even more promising, with the parameters of Temporal Kerr 
Solitons in fibers. To our knowledge, these are the first Exact fractals ever proposed in any physical 
system (outside of math) in nature. 

Since the fractals of the kind we propose are always described by a known wave equation, the 
principle we propose yields one of very few fractal systems in nature for which one can actually 
write down and study all the dynamical equations describing it. (Recall that most other natural 
fractals rely on mean field theories and other statistical or Monte-Carlo approaches). At the same 
time, one can perform accurate experiments that can feed back into the theory. In contrast, for most 
fractal systems studied experimentally the equations describing the fractal creation are unknown, 
and most fractal systems studied mathematically are not associated with any physical system. This 
gives additional importance to the principle we described: besides proposing the first fractal system 
in optics, we suggest a way to experimentally and theoretically study fractals in almost any system 
in nature that supports solitons. In addition, the procedure we described allows one to create 
exact fractals (as opposed to most common statistical fractals) in some clean physical systems with 
suitable dynamical properties. Finally, we note that we are currently pursuing experiments to verify 
the described ideas using temporal fiber solitons. 
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Waveguide arrays are well known as basic 
components of high power semiconductor lasers 
or as promising candidates for ultra fast signal 
processing. Solitons can exist in this discrete 
environment [1], but their dynamical behavior is 
modified considerably. Inhomogenities add a 
further degree of freedom to the beam 
evolution. In a slab waveguide the high index 
regions attract the field. However the dynamics 
in inhomogeneous arrays are different. If the 
effective indices of the individual waveguides 
differ by a constant amount the field does not 
constantly move towards the higher indices, but 
oscillates around the initial guide [2]. These so- 
called B loch-oscillations are found in other 
discrete systems as e.g. semiconductor super 
lattices. 
Here we use arrays of AlGaAs waveguides to 
demonstrate the occurrence of B loch- 
oscillations. Besides the test of the linear 
properties this material system enables us to 
investigate the influence of a nonlinearity on the 
field evolution. The sample under investigation 
consisted of 25 ridge waveguides. It was etched 
1.2jxm deep on top of an AlGaAs slab 
waveguide composed by a guiding layer of 
Alo.i8Gao.82As, l.5\im thick, sandwiched 
between two layers of Alo.24Gao.76As. These 
upper and lower claddings were 1.5|im and 4.0 
urn thick, respectively. To obtain a linear 
increase of the effective index the rib width was 
varied from 2 to 3.4u.m, corresponding to an 

index difference of 8n = 1.275 * 10 between 
adjacent guides. To ensure constant coupling the 
spacing between the guides was also varied 
from 6.6 down to 3.3|im (see Fig.l). Finally the 
sample was cleaved into pieces of different 
length varying from 3 to 18mm to allow for an 
insight into the field evolution. 

To measure the optical response of the sample 
we used 180 fs long pulses at a wavelength of 
X=1.53 um, which is well below half the band 
gap resulting in the suppression of two photon 
absorption. We used an elliptically shaped input 
beam with a width varying from 3 to 20 |Xm. 
The image of the output field was recorded with 
an infrared camera. 
Numerical simulations were performed using 
coupled mode theory. Under ideal conditions 
(cw without losses) the system can be modeled 
with the following set of equations 

i-jL + ^nan+^an\ an +C{an_x +an+1)=0 

■*— 
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Fig.l Experimental set-up 

where an accounts for the amplitudes of the 
individual guides. In our case the wavenumber 
difference between adjacent guides amounts to 
8ß=520m'' and the coupling constant was about 
C=1240m'1. The nonlinear coefficient was 
determined to be Y^öin'W1. Although linear 
losses (2dB/cm) were present and although the 
transient behavior influences the field evolution 
the qualitative behavior was not effected. 
Fig. 2 shows the field evolution for a narrow 
input beam (3nm), which excited the central 
waveguide only. In the low power case (see 
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Waveguide 
Fig.2 Field evolution for the excitation of 
the central waveguide (dotted line: input 
guide, bold line: array boundaries, arrow: 
direction of growing potential). 
a) experimental data for low power, 
b) experimental data for high power, 
c) simulation of the linear field evolution 

Fig.2a and c) the field first spreads into both 
directions as it does in an homogenous array. 
The action of the linear potential results in a 
subsequent     refocusing     of     the     beam. 

E 
E 
c 

-50 0 50 

Position in urn 

-5 0 5 10 

Waveguide 
Fig.3 Field evolution for a broad incident 
beam (20u.m = 2 guides) centered on the 
central guide (dotted line: guide of excitation, 
bold line: array boundaries, arrow: direction 
of growing potential). 
a) experimental data for low power, 
b) experimental data for high power, 
c) simulation of the linear field evolution 

Consequently a periodic breathing or Bloch- 
oscillations are observed. The main reason for 
this   somehow   unexpected   behavior   is   the 
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discreteness of the system. In contrast to a 
continuous system the linear eigenmodes of the 
array with a linear index gradient have a limited 
extension and equally spaced discrete 
propagation constants - the so-called Wannier- 
Stark-ladder. Hence after a certain propagation 
length (in our case 12mm) every initial 
distribution is recovered because the phase 
differences between the modes have reached 
multiples of 2K. In between a considerable 
spreading may occur which is defined by the 
extension of the linear modes of the array. But 
in the linear case the power distribution stays 
symmetric all the time, where adjacent 
waveguides on the low/high index side have 
opposite/equal phases. For increased power 
levels these phase relations are disturbed 
resulting in symmetry breaking and incomplete 
recovery (see Fig.2b). 
In case of a wider beam and for still low power 
levels (see Fig.3 a and c and 4) the field 
evolution is still periodic, but almost no 
spreading occurs. Because several guides are 
excited the field at the low index side is 
eliminated due to destructive interference and 
the beam keeps confined. As far as the 
boundaries of the array are not touched this 
behavior is the same for any input condition 
(compare Fig.3a and 4). Again the action of the 
nonlinearity (see Fig. 3b) disturbs the phase 
relations, which are vital for the confinement of 
the beam. Now the field starts to spread due to 
the action of the focusing nonlinearity. These 
strong power induced changes of the field 
distribution (see Fig.5) might be useful for 
signal steering and switching applications. In 
contrast to previously proposed switching 
schemes an initial beam tilt is not required to a 
sharp beam scanning. 
In conclusions we investigated an array of 
coupled waveguides with linearly increasing 
wavenumbers. We observed a periodic motion 
of the low power field similar to Bloch- 
oscillations known from e.g. semiconductor 
physics. The field evolution is very sensitive to 
the beam width. Any action of the focusing Kerr 
nonlinearity disturbs this behavior. In particular 
a previously confined beam starts to spread. 

-50 0 

Position in jim 

Fig.4 Experimentally determined field 
evolution for a broad incident beam (20|im 
= 2 guides) centered around the 8th 

waveguide counted from the central guide 
(dotted line: guide of excitation, bold line: 
array boundaries, arrow: direction of 
growing potential). 

500 1000        1500 

Incoupled Power in W 
2000 

Fig.5 Output field distribution of a 9mm 
long sample for varying input power levels 
(same parameters as Fig.3). 
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More than ten years ago it was realized that an array 
of nearest-neighbor coupled guides can support localized 
structures [1]. Nonlinear waveguide arrays on AlGaAs 
basis have been recently fabricated and localized modes, 
or discrete solitons (DSs), have been experimentally ob- 
served [2]. There are various ideas to exploit DSs for all- 
optical applications [3]. For instance, one can take advan- 
tage of the ability of a relatively wide DS to move across 
the array provided that the initial excitation exhibits a 
small phase gradient. The collision between a moving 
and a trapped DSs can be exploited to steer the output 
position of the DS. Alternatively, beam steering may be 
achieved either by a local change of the linear coupling or 
by a varying coupling strength across the whole array [3]. 
However, for the very realization of switching concepts it 
is important to minimize the operating power and the op- 
eration complexity. Besides the high peak power required 
due to the weak nonresonant cubic nonlinearity another 
difficulty in above mentioned schemes is that all-optical 
phase control is difficult to achieve. 

It is now commonly believed that switching operations 
exploiting a quadratic (x(2)) nonlinearity may require less 
power [4]. In this respect, established fabrication tech- 
nologies for LiNb03 waveguide configurations feed the 
anticipation that the implementation of quadratic non- 
linear arrays is feasible. Intensity-dependent switching 
in Ti:LiNbÜ3 coupled channel waveguides has been al- 
ready performed experimentally [5]. The extention of 
a recently suggested switching strategy that relies on 
the exploitation of the controllable DS's instability [6] 
toward a quadratic nonlinearity could result in poten- 
tially more efficient all-optical operations. However, the 
X(2) DSs found previously [7] occurred to be either al- 
ways (un)stable or transforming into long-living oscilla- 
tory states. 

In this contribution we identify new families of 
quadratic DSs and prove that these DSs possess pecu- 
liar stability properties that can be exploited for digital 
applications. 

The propagation of the fundamental wave (FW) an 

and the second harmonic (SH) bn in the nth waveguide of 
the array is described by a set of dimensionless difference- 
differential equations [7] 

\dan/dz + ca(an^1 + an+l) + 2ja*nbn = 0, 
idbn/dz + Cb^.j + 6n+1) + ßbn + jal = 0, 

where the normalized amplitudes an,bn are related to 
the square root of the maximum SH guided power 
5max as an=V2An/Bmax, bn=Bn exp(-fAfez)/.Bmax; 
ca,b=zLo/2LAtB and 7=wdeffL0£maxtf■/\/2^nln2u 

characterize the linear (LA,B - half-beat length) and non- 
linear coupling, respectively, nu and n2w are the effective 
indices of the guided modes, L0 is some characteristic 
length, e.g. the waveguide length, used for normalization 
Z = ZLQ, ß = —AkLo denotes the normalized wave vec- 
tor mismatch, where Ak = 2kw - k2u, and tf stands for 
the nonlinear overlap integral of the guided modes. Then 
the product (5max\P)2 is an effective intensity. 

In what follows we are interested in stationary so- 
lutions to (1) in the form an = aunexp{ikz), bn = 
bvn exp(i2Az). Assuming a strong localization of the ini- 
tial excitation u„, vn we find a family of discrete domain 
walls 

un « (..., 1,1,1, uu u2, u3, u4,0,0,0,...), 

»»I «(.», 1. 1, 1, »1, V2l W8.W4, 0,0,0,...), 

(2) 

where the peak FW and SH amplitudes are related by 
a = b(2k - 2cb - ß)/y > 0 and the nonlinear dispersion 
relation reads as k = 2 (76 + ca). The nontrivial ampli- 
tudes UJ, VJ (j = 1..4) can be expressed in terms of the 
ratios between linear coupling and nonlinearity 

x = cj{2-fb),     y=cb/(4jb-ß) (3) 

being likewise inverse proportional to the degree of local- 
ization and are supposed to be small, viz. \x\, \y\ < 1. 
Calculated with second-order accuracy with respect to x 
and y the excitations UJ, Vj have the following form 

«1 = 1- x2/4 - 3ary/4,     Vl = 1 - x2/2 - xy/2, 

ui = 1 + (x + y)/2 - 3*78 + (1 - v)xy/{2 - v) - 3y2/8, 
v2 = 1 + x - x2/2 + xy/2, (4) 

u3 = x- Zx2/2 + Zxy/2,     v3 = y+x2- vxy/{2 - v), 
U4 = x V* = y2, 

(1) 

where v = ß/föb) is an effective mismatch. 

A propagation of the discrete domain wall (2),(4) is 
shown in Fig. la. We have also found that two do- 
main walls of opposite polarity may form a bound state 
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(Fig. lb). Such a quasirectangular, or II-DS, can be 
viewed as a discrete plane wave u„ = vn = 1 sandwiched 
between two fronts. The existence of domain wall solu- 
tions and their respective bound states is a consequence 
of the discreteness and has no analogs in continuous x(2) 

media. 

FIG. 1. Propagation of a discrete domain wall and a II-DS 
waveguide array.   Parameters: b = —1, ß = —27, in a x'2' 

ca = 2cb = O.27.   The amplitude of the FW component is 
shown, while the SH component has a similar form. 

To study the stability of II-DSs we split the solution 
into three parts: the weakly excited guides, the transition 
(front) regions, and the "plane wave". We assume that 
the weakly excited part, being in fact a linear system, is 
stable. Thus it is left to derive criteria for the front in- 
stability (FI) as well as the modulational instability (MI) 
of the "plane wave". Later we will confirm the validity 
of this approach by direct numerical integration of (1). 

First we identify regions of FI. We impose a complex 
perturbation 6?,b{z)= S^ + iSjf on each nontrivially ex- 

cited waveguide, insert the perturbed profiles into (1) and 
solve the linearized eigenvalue problem for the real-valued 
components of the perturbation vector S(z) (for details of 
the stability analysis of two-component localized modes 
see [6]). To study MI we substitute the perturbed in- 
phase plane wave solutions an — {a + pn(z))exp(ikz), 
bn - (b + nn(z))exp{2ikz) into (1). The subsequent 
linearization and separation of real and imaginary parts 
yields a fourth-order eigenvalue problem [7]. For x > 0 
(zero phase of the SH) both FI and MI occurs. However, 
for a: < 0 [n phase of the SH) the domain of FI and MI 
do not overlap. For-small ß the FI domain typically lies 
inside the MI domain. 

We found explicit MI criteria for nonlinear plane waves 
and n-DSs from the approximate analytical solution of 
the corresponding eigenvalue problem to be x > 0 and 

x < 0,    KfM/«2[3+ vM2 + *)] * + 2,       (5) 

where s = ca/cb. A negative nonlinearity 7 (x < 0) can 
be mimicked by a 7r-phase shift of the SH. The maxi- 
mum MI gain near the stability boundaries occurs for an 
out-of-phase perturbation. 

Hence, two types of short-term instability, viz. II-DS's 

decay due to MI and front spreading due to FI can be 
distinguished. Both types of instability are controllable 
by varying x (i.e. the nonlinearity 7) near the respective 
boundary. Typically, MI gain exceeds FI gain near the 
boundary. Hence, the controlled U-DS decay due to MI 
requires less power and is more appropriate for all-optical 
applications. It is a genuine feature of the x^ nonlin- 
earity that the onset of MI can be controlled by power. 
As can be inferred from (3,4) ü-DSs do also exist in the 
cascading limit {\ß\ » 1), i.e. they may be observed in 
strongly phase mismatched quadratic as well as in cu- 
bic arrays. However, only the weaker FI can be induced 
by power variation. The passage of the other instabil- 
ity boundary x — 0 is phase-controlled, i.e. requires to 
revert the sign of b. 

FWTEoo 
field profile 

SH TEoo 
field profile 

SH TE10 
3 field profile 

FIG. 2. Scheme of a QPM LiNb03 waveguide array with 
the index profile induced by indiffusion of Ti stripes of width 
Ws = lO^im and separation Dg = 20fim. The calculated field 
profiles of the TEJ'o, TEJft, and TE?o modes show strong 
coupling for the FW and negligible coupling for the SH. 

The II-DSs discussed above can be observed in an array 
of waveguides fabricated by titanium indiffusion into a 
LiNb03 substrate (Fig. 2). To estimate the required pow- 
ers we have taken parameters from an established fabrica- 
tion process [5]. The titanium-diffusion process itself and 
the induced increase in the refractive index was modeled 
with effective diffusion depths in X and Y direction being 
£>x = 10 /xm and D\ = 5 ^m, respectively. We used a 
vectorial finite-element method (FEM) to calculate mode 
profiles, propagation constants, coupling coefficients, and 
overlap integrals for the FW and SH modes. To exploit 
the highest nonlinear tensor component c/33 we consid- 
ered a TEQ0 <rf TEQQ interaction in a first order quasi- 
phase-matched (QPM) waveguide. A peculiarity of the 
geometry used is that strong coupling of guided modes 



in adjacent waveguides can only be achieved for the FW 
(cb -» 0). Because of the slower evanescent decay of the 
field the modes sink deeper into the substrate for a longer 
wavelength (Da > Dh in Fig. 2), which leads to a weaker 
transverse confinement and therefore stronger coupling 
of the FW modes. 

Versatile power-controlled switching requires that II- 
DSs can be excited by a finite, homogeneous beam a„ = 
a, bn = b. Propagation of a II-DS in this case is shown in 
Fig. 3. A rectangular initial exciation which corresponds 
to a stable II-DS maintains its form over large distances 
(Fig. 3a). A transition to a modulationally unstable II- 
DS (<z„ = 1.05 -» an = 0.9) drastically change the evolu- 
tion of the whole mode by evoking strong oscillations of 
the intensity in the initially excited waveguides. Subse- 
quently, the mode becomes delocalized and spreads over 
the whole array (Fig. 3b). The SH component has a sim- 
ilar structure, however, it is subject to less pronounced 
changes for the lack of coupling. 

10 20 
n 

30 10    20    30 
n 

FIG. 3. Propagation of the FW amplitude of a "rectangu- 
lar" excitation comprising N=1A waveguides in a waveguide 
array with the decoupled SH (cb=0, Fig. 2), 6 = -1, ß = -27: 
(a) c = O.227, (b) c» = O.37. 

To estimate power levels required to observe a tran- 
sition from a stable to an unstable n-DSs we have as- 
sumed a 2=6.5 cm long LiNb03 waveguide array with 
Dg = 17.1 fim that corresponds to a FW half-beat length 
LA=10.5 mm. Then the corresponding overlap integral 
amounts to * = 7.25 x 104 m"1. For 7*=20, where a 
mode destabilization can be observed (Fig. 3b), we get 
\A\2 ta \B\2 K 100 W with 4ff = 31.8 x (2/JT) pm/V for 
A=1.32 fim. The required grating period for first-order 
QPM is then A = 14.4 fim. 

Another peculiarity of the array considered is that the 
higher order SH mode TE^ (Fig. 2) can come into play. 
This situation has been studied for a single waveguide 
in [8]. Here the corresponding overlap integral compares 
to that of the primary process (^ & 0.7#).   However, 
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the QPM grating compensates only_partially for the mis- 
match in TE£0 *-> TE?£ process (/? w -3/?). Thus the 
secondary process remains moderately phase mismatched 
and acts as an additional perturbation for the launched 
n-DS. In Fig. 4 all fields involved are displayed. Even in 
this case the stable II-DS survives and propagates quite 
robustly. The weak secondary SH field, which is not 
present at the input, exhibits small oscillations (Fig. 4). 

SH jfä=s| 

So 

C3S 

10   20   30 

FIG. 4. Propagation of a II-DS shown in Fig. 3a. account- 
ing for an additional mode mixing process TEQ0 ** TE?o. 

In conclusion the existence of novel optical frontlike 
and quasirectangular modes in discrete systems with 
quadratic nonlinearity has been proved. Parameters of 
a typical waveguide array made from Ti:LiNb03 are cal- 
culated. 
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Introduction 

Nonlinear pulse-to-pulse interaction is one of the main limiting factors in high-bit-rate 
transmission systems. The fiber nonlinearity shifts the frequencies of the interacting pulses which, 
in turn, results in timing jitter and intersymbol interference. The important parameter which deter- 
mines the strength of the interaction is the ratio x/T, where x is the pulse width (FWHM) and T is 
the spacing between adjacent pulses (1/T is the transmission bit rate). To avoid interaction- 
induced penalties in classical soliton transmission systems, the pulses should not overlap 
significantly with each other: x/T should be less than 0.2- 0.3 [1]. Similarly, for the case of 
dispersion-managed (D- M) soliton systems, when the pulse width oscillates with the distance, 
the current thinking suggests that the maximally stretched pulse should be (considerably) less 
than T (see, for example, [2,3]). In this paper, we describe a new type of transmission with 
reduced pulse-to- pulse interaction - the 'pulse-overlapped dispersion- managed transmission' (it 
can be soliton or non-soliton). We also classify the dispersion-managed systems and determine 
the influence of the pulse-to-pulse interaction on different types of D-M systems. 

XPM-induced pulse-to pulse interaction. 
Nonlinear interaction between adjacent pulses in dispersion-managed systems can be 

described in terms of the cross-phase modulation (XPM) effect since the interacting pulses are 
highly chirped when they start to overlap with each other. XPM shifts the leading pulse to the 
'red' spectral region, and the trailing pulse - to the 'blue' spectral region. Figure 1 shows the 
XPM-induced frequency shift as a function of the x/T parameter. One can see that the interaction 
is very small when x/T is smaller than 0.4, i.e. when the pulses barely overlap, which is a well- 
known fact from the classical soliton and classical D-M soliton theory. The new and unexpected 
conclusion is that the interaction is also 

1 2        3        4        5        6        7        8 

normalized pulsewidth, X/T 

Figure 1. XPM-induced frequency shift of two interacting gaussian pulses as a function of the 
pulse width normalized to the pulse separation. Pulse energy is constant. 

very small when the pulses overlap nearly completely (x/T »1), and the strongest interaction 
occurs when the pulses are partially overlapped (x/7"=l). The reason for such an interesting 
behavior is as follows. The XPM-induced frequency shift per unit distance is proportional to the 

,....,. . ,   ,   .        .      d(a(t)       „ 271      dl(t)   ,,n „,     ,  , 
time derivative of the interacting pulse s intensity:  = 2-r— n? —;—• When x/T «1 the 

dz A, dt 
slope is the highest, but the pulse overlap is small, so the interaction is weak. When x/T~ 1 the 
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pulses begin to overlap and the pulse derivative is still high in the overlapping region. That results 
in a very strong interaction. For the case of nearly complete overlap (x/T» 1), there are two rea- 
sons for a weak interaction. First, the pulse derivative reduces with the pulse broadening 
Secondly, the sign of the derivative changes across the region of overlap so that the net effect 
tends to be canceled out. The described effect of reduction of pulse-to-pulse interaction provides 

Figure 2. Input and output signals of pulse- overlapped D-M transmission shown on a logarithmic 
scale. Average signal power is 6 dbm. 

the basis for the 'pulse-overlapped D-M' transmission systems. In such a system, the minimum 
unchirped pulse width x^ is smaller that the bit slot T . At the same time, the length of the 
dispersion map (or the dispersion compensation period) is much greater than the local dispersive 
length of the pulses^^»!^, where 

L, = TIC tmin 
and D is the fiber's 

CO- 
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ML 
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Figure 3. Spectrum of the data shown on Fig.2. 

2 Inl X1 \D\ 
dispersion. As a result, the pulse width 
breathes over a wide range, so that the max- 
imum pulse width is much greater than the 
bit slot: Tmax/2»1. Under these condi- 
tions, the pulses spend only a small fraction 
(approximately xmax/T) of the total 
transmission distance in the strong interac- 
tion regime (when T is around T), so that 
the interaction is greatly reduced. As an 
example of such a transmission, consider a 
40 Gbit/s D-M soliton system with T^ =5 
ps based on standard and dispersion compensating fibers. The dispersion map length equals the 
amplifier spacing, =80 km. In this system, the pulse width oscillates from 5 ps to xmax which is 
more than 700 ps, while the bit slot is only 25 ps. It means that the pulses are strongly overlapped 
during most of the transmission. As a result the XPM-induced pulse-to-pulse interaction is 
reduced, which manifests itself in a small timing jitter at the output of the transmission (see fig 2) 
The eye diagram of the output signal is clearly open, which shows the capability of the pulse- 
overlapped D-M transmission. The described theory explains the success of the recent experi- 
ments on high-bit-rate RZ transmission with strong dispersion management [4,5]. 

Intra-channel four-wave mixing. 
The next question is: what limits the maximum error-free distance of the pulse-overlapped 

transmission? By looking closely at the output signal shown on Fig.2 on a logarithmic scale one 
can see some amplitude jitter in the 'ones', and small 'ghost' pulses beginning to appear in the 
zeros^. This effect becomes more pronounced at longer distances. The interesting fact is that 

these^ ghost' pulses are not the usual dispersive waves, they appear exactly in the middle of the 
zero   slots. We explain this effect as a consequence of a special case of four-wave mixing 
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(FWM) between spectral components in a single channel. The spectrum of an RZ data stream at a 
bit rate of 1/T contains strong components separated by 1/T from each other (see fig.3), and these 
components play an important role in the FWM process. The following processes can generate 
light at the carrier frequency Coo : co+ + co_-»2co0, 2co+-co++->co0, 2co_-co__-Xü0. 
The phase mismatch for these processes is Ak = 2TZDX

2/(T2
C). We will illustrate the 'intra chan- 

nel' FWM effect in an example of the first of the above mentioned processes. One can define the 

Figure 4. Qualitative description of the 
'ghost' pulse generation in 'zeros' and of 
the amplitude jitter in 'ones'. See text. 

FWM coherence length as 
L2iz = 2n/Ak. When the pulses are 
unchirped, all the spectral components 
are in phase. Qualitatively, in the time 
domain, this means the spectral com- 

T ™E ponents overlap in time and 'sit' on 
top of each other within the pulses (see 

fig.4). When the pulses start to propagate in the D-M system, the dispersion broadens and chirps 
the pulses: the 'blue' spectral components propagate faster than the 'red' ones (for D>0). After an 
integral number of coherence lengths Z^ the 'blue' components co+ of one pulse meet (collide) 
with the 'red' components (u_ of another pulse exactly in the middle of a bit slot (this slot could 
be a 'zero' or 'one'). Note that this stems from the fact that, as we mentioned above, the separa- 
tion of the spectral components under consideration and the temporal separation between the 
pulses are related to each other. As a result, the FWM process generates a field at C0Q in the mid- 
dle of the bit slots. If the slot is a 'zero', it means the generation of a 'ghost' pulse. In the case of 
slots with 'ones', the interference between the 'ones' and the FWM-generated field leads to the 
amplitude jitter (see fig.4). Another source of an amplitude jitter in 'ones' is the energy transfer 
from 'ones' to the 'ghost' pulses through the described FWM process. 

Conclusions. 
In conclusion, we determined three main regimes of XPM-induced interaction of (chirped) 

pulses. The strongest interaction occurs in the regime with partially overlapped pulses (x/T~l), 
while the interaction is weak in the regimes of non-overlapped pulses (z/T« 1) and nearly com- 
pletely overlapped pulses (i/T» 1). Based on these results, we can determine three regimes of 
dispersion-managed data transmission and predict their behavior. In the first, 'non-pulse- 
overlapped' , regime, adjacent pulses barely overlap during most of the transmission, so that the 
pulse interaction is not a problem in this case. In the 'partially-pulse-overlapped' regime, the adja- 
cent pulses spend a considerable portion of the transmission being partially overlapped (x(z) 
being around T). Cross-phase modulation causes the frequency and timing jitter in this case. In 
the third, 'pulse-overlapped', regime, the adjacent pulses are almost completely overlapped with 
each other during most of the transmission. The XPM-induced pulse-to-pulse interaction is 
greatly reduced in this case in comparison with the previous one. The main limiting factor for this 
regime of transmission is the amplitude fluctuations and 'ghost' pulse generation caused by the 
described above intra-channel four-wave mixing. 
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One of the major limitations on transmission speed per single-channel in dispersion-managed 
soliton (DMS) systems is soliton interactions between neighboring pulses induced by large pulse 
breathing within one dispersion-management period [1]. To overcome this limitation, densely 
dispersion-managed soliton (DDMS) system was recently proposed, and it is numerically demon- 
strated that 80 Gb/s soliton transmission over 9,000 km may be possible without any active 
controls [2]. 

For further increase of bit-rate per single-channel up to 160 Gb/s, however, it is indispens- 
able to assess the impact of dispersion slope and polarization mode dispersion (PMD), which 
may deteriorate transmission characteristic significantly in such ultra high-speed transmission. 
Furthermore, one should assume large variation of group-velocity dispersion (GVD) for practical 
dispersion flattened fibers. 

In dispersion-managed systems schematically shown in Fig. 1, soliton interaction between 
neighboring pulses can be minimized by satisfying the condition 5 ~ 1.6 in a lossless case [1], 
where S is defined as S = \ßlZl -ß2Z2\/ts and t3 is FWHM of DMS when it is transform-limited. 
Given the amplifier spacing za and the value of both anomalous and normal dispersion, this 
condition is satisfied by a proper choice of the number of DM period n within one amplification 
period (n = za/(zi + z2)). For instance, when za = 40 km, dx = 2.5 ps/nm/km and d2 = 
-2.49 ps/nm/km, n becomes 20. Fig. 2 shows dependence of collision distance on n (and 
corresponding 5). The interaction forces become stronger for n > 20 (n < 20), since the 
stationary pulse approach to sech solitons [3,4] (the pulse width oscillates too much.). 

Based on this observation, it is expected that even when fiber GVD varies owing to the 
fabrication of dispersion flattening, soliton interaction may be minimized by arranging dispersion 
profile such that it satisfies the condition S = 1.6. As one approach, given a pair of fibers having 
anomalous and normal dispersion d\ and d2 respectively, the length of each section zy and z2 

may be determined so that S becomes 1.6 and the average dispersion is constant along the 
line. Fig. 3 shows an example of dispersion profile based on this method, where we assume 
fibers having Gaussian distribution in GVD with the average of 0 and the variance of 3.0, and 
total average dispersion is kept 0.005 ps/nm/km. Propagation of DDMS in this line is shown in 
Fig. 4. Transmission characteristic may further be improved by connecting fibers in descending 
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value of GVD [5]. Fig. 5 shows the arrangement of dispersion profile based on this using the 
same pieces of fibers as in Fig. 3. In Fig. 6, propagation of a DMS in this profile is plotted, 
where we note that solitons suffer less from fluctuation of amplitude in this arrangement. 

To test bit-error rate, we performed numerical simulations of transmission of 32 bit sequence 
of 160 Gb/s on the dispersion map shown in Fig. 5. We assumed fibers having loss of 0.2 dB/km, 
a Kerr nonlinearity of 2.3 W-1km-1, PMD of 0.1 ps/Vlcm, and residual dispersion slope of 0.005 
ps/nm2/km. Amplifiers are assumed to have noise figure of 5.0 dB. To reduce soliton interaction, 
in-line optical filters with a bandwidth of 1,800 GHz are inserted at every amplifier location 
(45 km interval). Fig. 7 shows the received eye diagram at 2,500 km. This result demonstrates 
successful transmission on a terrestrial scale. 

In summary, we have investigated feasibility of ultra-fast single-channel soliton transmission 
in a densely dispersion-managed fiber. Thanks to a large tolerance of DMS to random distribu- 
tion of GVD, 160 Gb/s single-channel soliton transmission is possible on a terrestrial scale by 
reducing dispersion slope down to minimum and by proper arrangement of dispersion profile. 
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1. Introduction 

Dispersion management has proven to be an 
effective way of reducing detrimental effects, 
such as four-wave mixing and Gordon-Haus tim- 
ing jitter, in long-haul RZ transmission. Re- 
cently, much work has been done on opti- 
mization of simple two-step dispersion maps 
for use with single-channel and wavelength-di- 
vision-multiplexed (WDM) transmission1-3. It 
has been discovered that by properly locating 
the amplifier in the map, one can substantially 
improve system performance1'2. Optimization 
of WDM systems involves many practical con- 
straints and is a rather complicated issue that re- 
quires long-term, time-consuming numerical sim- 
ulations. As a result, analytical results can be 
extremely useful. 

In this paper, we extend previous work in 
which a multiple-scale averaging method was 
used to obtain so-called 'magic' dispersion maps 
that simultaneously reduce dispersive radiation 
in multiple channels by determining an optimal 
launch point for unchirped pulses that is inde- 
pendent of carrier frequency5,4. This means that 
the detrimental effect of the dispersion slope in 
WDM systems can be reduced, not with expen- 
sive per-channel compensation, but rather by 
using proper system design. Numerical simu- 
lations have confirmed that minimized energy 
shedding from the input signal into radiation can 
be achieved. In Ref. 5, the only case considered 
was the one in which an amplifier is deployed at 
the same location as a change in dispersion in a 
two-step map. In the present paper, we extend 
the results of Ref. 5 and consider the location 
of the amplifier to be at an arbitrary point in 

the dispersion map. This new degree of freedom 
can be advantageously used for additional system 
performance optimization. The result of this ex- 
tra parameter is an interesting class of dispersion 
maps in which one fiber segment can be reduced 
to infinitesimal length (i.e., a point device). This 
compensation scheme can be realized in practice 
by the use of a fiber Bragg grating which effec- 
tively imparts a large aggregate dispersion. 

Here we present the main theoretical results 
and numerical simulations that demonstrate the 
effectiveness of these 'magic' maps for reducing 
transient behavior in the pulse evolution. In 
our numerical simulations, systems with differ- 
ent group velocity dispersion parameters do ap- 
pear to have nearly the same chirp-free locations 
in the case of these magic configurations, as the 
theory predicts. 

2. Finding Magic Maps 

Optical pulse propagation in a system with dis- 
persion management and amplification is de- 
scribed by the nonlinear Schrödinger equation 
(NLS) with distance-dependent dispersion and 
nonlinear coefficients, 

iuz + d(z)utt + c(z)\u\2u = 0 

where 

d(z) = 

c(z) = 
LX2

0\{D)\\ fGlnG 
2TTCT0

2 AGTT 
-aLz 

(1) 

(2) 

(3) 
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In Eq. (3), c(z) is specified for 0 < z < 1, and is 
taken to be periodic such that c(z + 1) = c(z). 
The piecewise constant function D(z) specifies 
the dispersions and lengths of the fiber segments 
in the dispersion map (see Fig. 1), and the path- 
average dispersion is given by \{D)\. The length 
of the map is given by L, and we assume one 
amplifier per map period. The power \u\2 has 
been scaled by the characteristic value Po = 
^O\(

D
)\/^CT^J. Other parameters are A0, the 

operating wavelength; c, the speed of light; a, the 
dB/km fiber loss; 7, the fiber's nonlinear coeffi- 
cient; and r0, a characteristic time. The amplifier 
gain G = exp(aL). Note that we have scaled z 
by the length of a map so that z = 0,1,2,... 
correspond to the locations of the amplifiers. 

-H K 

•> 
■>■ 

1-e -aZ/2 

aL2 ■)}■ (5) 

For Li/L < z* < (Li + L2)/L, we have, implic- 
itly, 

l-aLz*\L2 

aL L+Z 

G 

eaLl - 

(G-l)lnG 

Li *aLi 

(6) 

Finally, for the case {Lx + L2)/L < z* < 1, we 
have 

Ll        1   , 

1 

aL 
l + at- atz* 
-aL 

G 
G-l 

OLL<2 
(7) 

Combining the results from these three equations 
describes all possible configurations of two-step 
magic maps for given values of a and L. Note 
that it makes sense to only consider cases in 
which Lx € (0, L) and L2 € (0, L - Lx). We plot 
these curves for a=0.2 dB/km and L=60 km in 
Fig. 2. 

Fig. 1. One period of a dispersion map between 
two amplifiers. The piece-wise constant dispersion 
values are given by Di~D2—Di. The 'X' denotes 
the launch point, and the '>' denotes an amplifier. 

We consider (as shown in Fig. 1) a two-step 
dispersion map offset relative to the amplifiers 
consisting of dispersions Dx—D2—D\. Thus, 

{£>!, 0 < zL < Lx 
D2, Lx<zL<Lx+L2 

Dx, Lx + L2<zL<L 
(4) 

We assume Dx and the path-average dispersion 
(D) are given. The second dispersion, D2, can 
then be determined in terms of these quantities. 

Formulas similar to those given in Ref. 5 al- 
low calculation of the chirp-free points as a func- 
tion of the various parameters. 'Magic' maps are 
found by requiring the chirp-free points z* to be 
independent of group velocity dispersion. The 
configuration of the fiber segments can then be 
described by the following set of equations. 

For 0 < z* < Lx/L, we have 

Lx 
L --U 

aL 
aL 
aLz* G-l 

Fig. 2. Curves indicating configuration of magic 
maps. These are generated assuming a loss of 
Q=0.2 dB/km and L=60 km. The solid line denotes 
the magic maps corresponding to the launch point 
z*=42.7879 km, and the dashed line corresponds to 
the launch point z*=8.5829 km. 

There are several points worth noting in Fig. 2. 
Firstly, the curves intersecting the line L2 = 
L - Lx join continuously with those intersect- 
ing the £2-axis (the identities of Lx and L2 are 
interchanged between the two cases, however). 
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Secondly, there are two configurations for each 
value of the launch point z* for which L2 van- 
ishes. For one of these configurations, the launch 
point appears within the long fiber segment. This 
is useful in that, in an existing system that does 
not employ dispersion management (such as one 
using standard single-mode fiber), a dispersion- 
compensating fiber grating can be placed as spec- 
ified in the above configuration. An RZ signal 
then launched at the chirp-free point would re- 
duce energy shedding into radiation while mak- 
ing use of WDM, because the launch point is 
the same for all channels. The lighter contours 
shown in Fig. 2 correspond to the power enhance- 
ment provided by the map as determined in the 
multiple-scale averaging.5,4 These are given for 
initially 12 ps FWHM sech pulses and |(D)|=0.16 
ps/nm-km and Z?i=1.6 ps/nm-km. 

path-average dispersion is |(Z))|=0.16 ps/nm-km. 
In this simulation, we assumed initially 12 ps 
FHWM sech pulses. The total propagation dis- 
tance in Fig. 3 is 160x60 km = 9600 km. Note 
that oscillations in the amplitude are significantly 
reduced in the case of the 'magic' configuration 
simultaneously for both channels. This demon- 
strates the advantage for WDM transmission. 

In conclusion, we have identified a class of ad- 
vantageous two-step dispersion maps (with arbi- 
trary location of the amplifier within the map) 
that simultaneously minimizes dispersive radia- 
tion in many channels for WDM. The specific 
choice of amplifier placement can lead to two-step 
maps in which the dispersion compensator acts 
as a point device. This dispersion map configu- 
ration is appropriate for the use of in-line fiber 
Bragg gratings in massive WDM. 

Fig. 3. Plots of the stroboscopic chirp and peak 
amplitude for numerical simulations of pulse evolu- 
tion in a magic map using two different values of the 
GVD parameter. 
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In Fig. 3, we show the result of a full numer- 
ical simulation using such a dispersion map for 
two channels near the central operating wave- 
length Ao=1550 nm. The figure shows the evo- 
lution of the chirp and peak amplitude of a sin- 
gle pulse once per map period (stroboscopically). 
The solid and dotted curves correspond to a 
'magic' configuration in which L2=10 m with 
L=60 km. For comparison, the short-dashed 
and long-dashed curves correspond to a (non- 
'magic') configuration in which the compensator 
is placed directly before the amplifier and the 
launch point is the midpoint between the ampli- 
fiers. The solid and short-dashed curves are for 
Z?i=2.4 ps/nm-km while the dotted and long- 
dashed curves are for Z)i=1.6 ps/nm-km.   The 
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Wavelength-division-multiplexed (WDM) op- 
tical soliton transmission system is one of the 

most promising candidates for a transoceanic and 

high bit rate communication in the next genera- 

tion. The most serious problem in such a system 

is the collision induced frequency shift!1] which 

results in undesirable timing jitter of the signal 
pulse. 

Recently, several analyses of timing jitter for a 

strongly dispersion managed soliton in a WDM 

system were performed in Refs.[2-5]. In such a 

system, the collision induced residual frequency 
shift, that is, the shift of the frequency separa- 

tions of the colliding pulses measured at before 
and after a complete collision process, can be re- 

duced as compared with traditional soliton in a 

constant dispersion line!2-4]. However, due to a 

long overlapping distance of colliding pulses, a 

collision induced position shift which is directly 

arising from the collision and a residual frequency 

shift induced by an incomplete collision cause 
dominant timing shift for a narrow channel spac- 

ing in such a systemt5l. On the other hand, dis- 
persion management is also effective for reducing 

Gordon-Haus (GH) jitter!6-8! that induced by in- 
teraction between signal and amplifier noise. In 

this paper, we analyze the collision induced tim- 
ing shift in a two-channel WDM system with a 

practical dispersion map and propose an opti- 

mal path averaged dispersion (PAD) of the map 

with respect to the minimum timing jitter in- 
duced both by collision and amplifier noise. We 

also comment a timing jitter for a multi-channel 
WDM system and discuss the maximum number 
of channels. 

The variational analysis!9] with Gaussian 

ansatzt10] for the pulse is used below. In a dis- 

persion managed line, since a group velocity of a 

pulse depends on fiber dispersion and pulse's car- 

rier frequency, a pulse zigzags in a frame moving 

with averaged group velocity and many collisions 

occur throughout a collision process. Therefore 

in such a system having a long overlapping dis- 

tance, a collision induced position shift and resid- 

ual frequency shift by an incomplete collision may 

give dominant contribution for timing shift espe- 

cially for small PAD and/or narrow channel spac- 

ing. On the other hand, GH jitter becomes large 

as increasing PADt8]. This predicts that a sys- 

tem may have an optimal PAD which gives the 
minimum timing jitter. 

As a simple but practical example, we con- 
sider a two-step dispersion managed line com- 

posed by two equal length fibers, that is, stan- 

dard telecommunication fiber (STF) with disper- 

sion 17 + £>ot,e[ps/nm/km] and reversed disper- 

sion fiber (RDF) with -17+DaOT[ps/nm/km] are 

concatenated with this order!11]. Here Dave rep- 

resents the PAD of the line. We take the period 
of dispersion management zd - 40[km], which 

equals to the period of lumped amplifier com- 
pensating 0.2[dB/km] fiber loss. Since the timing 

shift induced by the frequency shift depends on 
the pulse energy, we fix its initial value to 0.1[pJ]. 

We first analyze a single channel case and ob- 

tain particular parameters of initial pulse, for 
which the solution is periodic with the period 

zd. Using the stable periodic solution, we then 
analyze a WDM case and calculate the tim- 

ing shift.   Figure 1 shows the timing shift af- 
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Figure 1: Timing shift after 9[Mm] propagation.    Figure 2: RMS timing jitter versus PAD after 3 
and 9[Mm] propagation. 

ter 9[Mm] propagation versus initial separation 

(täCp[ps]) of pulses in different channels with 

channel spacing A A = 0.8[nm]. The solid and 

dashed line represent the case with Dave = 0.01 

and 0.1[ps/nm/km], respectively. Circles are ob- 

tained by direct numerical simulations of non- 

linear Schrödinger equation (NLSE). For small 

initial pulse separation, the colliding pulse are 

initially close to each other and there remains 

a large frequency shift after collision process is 

completed. 

Using this numerically obtained timing shift as 

a function of initial pulse separation 6t(tsep), we 

can obtain a total timing shift between neighbor- 

ing pulses (the interval between them is k times 

bit slot ts) Atk for a certain bit stream bn = 0 or 

1 (n :integer) with!12) 

00 

Aft =   Y^  (bn+k _ 6«)l5i(f«p,o + nts),     (1) 
Tl=—OO 

where £sep,o is the initial separation of interchan- 

nel pulses which can take 0 < t3eP)o < ts- Using 
sufficient patterns of bit, stream, we obtain the 

root-mean-square (RMS) timing shifts with 

<(A*)2) = 2-fc£<(^-)2}- (2) 
fc=i 

Figure 2 shows the root-mean-square timing jit- 

ter versus PAD for 20[Gbit/s/channel] after 3 and 

9[Mm] propagation. Here we take £sep,o = 25[ps] 
for ts = 50[ps], i.e. pulses in one channel are allo- 

cated at the center of pulses in another channel. 

We have also calculated other cases of tsePio and 

confirmed that the RMS timing jitter has almost 

no dependency on isep,o- As predicted previously, 

the collision induced timing jitter becomes large 

as decreasing the PAD. 

Since the collision induced timing jitter and 

GH jitter are independent process and their prob- 

ability density functions are both Gaussian, we 

can evaluate the total variance of jitter by sum- 
ming up both variances. Since average of those 

jitters are zero, the variances equal to RMS tim- 

ing jitter which have been shown in Fig.2. Here 

we estimate the bit-error-rate (BER) by'13! 

BER = erfc 
'2<72 

tFWHM    ln{A/Ath)2 

ln2 
(3) 

where (Ath/A)2 represents the ratio between 

threshold power and peak power and cr2 is the 

total variance. Figure 3 shows the BER and the 

FWHM width at a receiver versus the PAD af- 

ter 9[Mm] propagation. While BER degrades for 

an extremely small or large PAD, the safe re- 

gion of the PAD which gives error free 9[Mm] 

propagation is obtained for 0.03 < Dave < 

0.13[ps/nm/km]. We also find that the improve- 

ment of BER for Dave > 0.2[ps/nm/km]. It is 

because the FWHM width is large in such a re- 

gion. However it cause large pulse- pulse interac- 

tion and we may not use this region. 
We here comment on a timing jitter for a 

multi-channel WDM system. Assuming that only 
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Figure 3: BER and FWHM width after 9[Mm] 
propagation. 

cross-phase modulation contributes to the timing 

shift, the shift in one channel is the sum of the 

shifts independently caused by the other chan- 

nels. Therefore the relative timing shift for chan- 
nel j can be expressed as, 

*4 = E ^ (4) 
>'=i,«W 

where N is the total number of channels and Atfj 

represents the timing shift of channel j caused by 

channel i, which has been given in Eq.(l). We 
here also assume only a binary (i.e. two chan- 

nel) collision. Since bn+k - bn in Eq.(l) is inde- 

pendent in each channel, all the cross-products 

in right-hand-side of Eq.(4) has no correlation. 

Therefore, the total variance of collision induced 

timing jitter equals to the sum of the variances 
resulting from the other channels. This has been 

obtained also for constant dispersion and weak 
dispersion managed easel12). 

Using Eqs.(4) and (2), we obtain the total 

timing jitter for the three-channel WDM system 
with adjacent channel spacing AA = 0.8[nm] and 

Dave = 0.07[ps/nm/km]. For the central (out- 
side) channel, {(A*)2) = 41.34[ps2] (22.00[ps2]), 

that is almost the same with the sum of the pre- 

viously obtained variances for two-channel case 

; i.e., ((At)2) = 20.70[ps2] for AA = 0.8[nm] 
and ((At)2) = 1.30[ps2] for AA = 1.6[nm]. Since 

BER > 10~^ for the central channel, we can not 

achieve error-free-transmission for three-channel 
WDM. The timing jitter can be reduced for 

smaller pulse energy. For 0.05[pJ] which is suf- 

ficient to keep SN ratio, the total timing jitter 

for a central channel after 9[Mm] transmission is 

less than 5[ps] by using an optimal PAD (shown 

as the safe region in Fig.3) and the BER is much 
smaller than 10~9. 

In conclusion, we have analyzed the collision 

induced timing shift in a two-channel WDM sys- 

tem with a practical dispersion map and pro- 
posed an optimal PAD of the map. We have 

also discussed a timing jitter for a multi-channel 

WDM system. Ultra-long massive WDM soliton 

transmission may be realized by using an opti- 

mally designed dispersion management. 
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Introduction 

Dispersion-managed (DM) solitons have recently demonstrated their potential in high-capacity terrestrial 
and transoceanic systems at 10-20Gbit/s line-rate 11-21. An expected development to further increase system 
capacity is the introduction of 40Gbit/s granularity. However, analytical descriptions of DM soliton propagation 
based upon Lagrangian formalism have shown that, at that line-rate, interactions between adjacent pulses appear 
to be a major limitation /3-4/, hence forbidding a potential use of the 40Gbit/s granularity in long-haul 
transmission systems. 

In this paper, after incorporating both in-line filtering and synchronous intensity modulation (IM) in the 
aforementioned analytical model /3-4/, we investigate the impact of combined use of in-line filtering and IM on 
interactions in a transoceanic 40Gbit/s dispersion-managed system. Numerical simulations have also been 
computed as a matter of comparison with the analytical model. 

Modeling interactions with in-line filtering and IM. 

Propagation of a pulse u(z,t)= ^]a(z)q(z,t) in a line with dispersion D(z) and energy evolution a(z) with 
distance z is described by the non-linear Schrödinger equation (NLSE): 

,|+iDfe)|i+^v.o 
In order to reduce the number of parameters and for sake of clarity, adjacent solitons are supposed to have 

the same energy, temporal pulse width and chirp during propagation. By a proper choice of time and frequency 
origin, the normalized field of the pulses is modeled by : 

q(z,t)=4ß exp - (1 + iby       ' +i& + mt 
2W2 

where the subscripts + and - are related to the position and frequency shift of the first and second pulse, 
respectively. The temporal pulse width W and chirp parameter b are related to the parameters y and C by : 

W^I-K/C
2 b=-yC 

where y is equal to twice the square of the quadratic bandwidth and C corresponds to a non-linear extension of 
the cumulative dispersion. The pulse energy evolution with propagation distance z is expressed by : 

a(z)E = a(zSJqq'dt = a{z)ßw4n 

In the model, lumped filtering is characterized by a Gaussian transfer function T/co)=exp(-ß2C02) 151. 
Parameters ß2 and kj (filtering strength) are related by: 

Zf An2 Av) 

where AVy is the filter bandwidth, Z/the filtering period and y0 the value of y at the end of the dispersion map. 
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Lumped IM is defined by its temporal response Tm(t)=l-amcos2(amt) where IM depth am, modulation 
frequency am and regeneration periodicity Zm are related to intensity modulation strength km through the 
expression: 

Along the propagation, the pulse parameters follow: 

a, =-Da+kf(üC—s-a r 
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where y0 and C0 are values of y and C, respectively, at the end of the dispersion map. AT is equal to 2 for pulses of 
same polarization state. 

Impact of combined use of in-line filtering and IM on interactions 

We consider a dispersion-managed link made of an arrangement of 20.5km of anomalous dispersion fiber 
(D=+2ps/nm/km) and 19.5km of normal dispersion fiber (D=-2ps/nm/km), yielding a dispersion compensation 
ratio of 95%. The fiber span is followed by a filter, an intensity modulator and an amplifier of gain G 
compensating for the losses (fiber, filter and modulator). We now investigate the propagation of two 
co-polarized Gaussian pulses of 0.08pJ energy, temporally spaced by 25ps (bit duration at 40Gbit/s) in the 
aforementioned system. 

Figure 1 shows the (y,Q parameters evolution with distance with and without in-line filtering and IM (i e 
Ä:m-*,=0, km=kj=0.73, respectively) in a 4000km transmission line (100 unit cells). Launching conditions are 
given by the fixed point ßl found in absence of interactions, filtering and IM and are defined by y=3.654 and 
C-0.238 resulting in initial temporal pulsewidth and prechirp of 11.54ps and-18.68ps/nm, respectively. 

Fig 1: Phase diagram of the propagation in the plan (y,C) for 100 unit cells 

It is seen from Fig.l that without in-line filtering and IM, pulse propagation is rapidly affected by 
interaction with adjacent pulse, resulting in a destabilization of the propagation. On the contrary, when filterin« 
and IM are incorporated, pulses reach a stable propagation regime and are no longer affected by interaction" 
Note that the fixed point reached with filtering and IM is slightly different from that found without in-line 
control techniques. 
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Figure 2a shows the evolution of the temporal separation between the two pulses as a function of distance 
with and without filtering and IM. This evolution is analytically predicted using the previously described model 
and numerically assessed by simulations based on the resolution of the NLSE with the split-step Fourier method. 

Fig 2:    (a) Evolution of temporal separation between the two pulses as a function of transmission distance 

(b) Evolution of frequency shift of pulses as a function of transmission distance 
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(a) (b) 
In absence of filters and IM, the temporal separation of the pulses is found to decrease with propagation 

distance, as an illustration of the effect of interactions. Similar evolutions are predicted using either analytical or 
numerical model except for the collision distance (3000 and 1700km, respectively). The difference is attributed 
to the incomplete modeling of interaction for very closely spaced pulses in the analytical model. When in-line 
filtering and IM are incorporated in the link, the temporal separation decreases with distance but its value 
stabilizes near 24ps after 1500km, demonstrating the efficient control provided by the association of in-line 
filtering and IM on interactions. Note the good agreement between analytical and numerical predictions, 
validating the analytical model. 

Figure 2b shows the evolution of the pulse frequency shift as a function of distance with and without 
filtering and IM as predicted analytically or numerically. It is seen from figure 2b that without in-line control, 
pulse frequency shift is an ever-increasing function of distance. When filtering and IM are added, the frequency 
shift still increases with distance but reaches a 3GHz asymptotic value after 3000km, as predicted both 
analytically and numerically. 

Conclusion 

In this paper, we have incorporated both filtering and synchronous modulation in the analytical model of 
DM soliton propagation and validated it through numerical simulations. We also demonstrate both analytically 
and numerically the efficiency of combined use of in-line filtering and synchronous intensity modulation in 
limiting the detrimental effects of pulse-to-pulse interaction in 40Gbit/s dispersion-managed long-haul systems. 
These results are of very high interest for the design of very high capacity transoceanic systems. 
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The first response to the demand for capacity in transoceanic transmission systems is the technique of 
wavelength-division-multiplexing (WDM), which allows a substantial increase in system capacity 
without constraints in the terminal's electronics bandwidth. Considering next the transmission format in 
transoceanic applications (6-12Mm distances), one of the main advantage of RZ-soliton over linear-NRZ 
is the possibility to use substantially higher line rates such as 10, 20 or 40 Gbit/s with possibly longer 
amplifier spacing (60-200 km). However, two main impairments of long-haul soliton transmission, i.e. 
the Gordon-Haus and the WDM-collision timing jitter, ultimately require in-line control in the frequency 
and/or time domain. Among these is "3R" optical regeneration based on synchronous modulation (SM). 
The principle makes possible unlimited-distance propagation [1]. More specifically, intensity modulation 
(IM) combined with narrowband filtering suppresses timing jitter and blocks noise accumulation [1], 
while pure phase modulation (PM) reduces jitter without suppressing noise [2]. Actually, efficient 
jitter/noise control was shown to require both IM and PM [3]. 

Because "3R" regeneration potentially addresses the terabit/s submarine system market, the current 
challenge is to further increase the capacity. A key requirement is that it could operate at 40Gbit/s both 
for WDM granularity and SONET/SDH layer considerations; 40Gbit/s granularity minimizes the number 
of WDM channels to transmit (hence, of parallel in-line modulators), which reduces both system 
complexity and cost. In order to further reduce the number of regenerators in WDM systems 
simultaneous regeneration of WDM channels in a single modulator is also possible [4]. This last solution 
points towards a potential superiority of 'optical' over 'electronic' regeneration. It has been studied 
through various numerical simulations [4], and experimentally implemented at 20Gbit/s [5-6]. 

Up to now, only single-channel 40Gbit/s experiments have been demonstrated [7-9] but Nx40Gbit/s 
WDM upgrade of such systems could be rapidly requested. For that, it is required to operate optical 
regenerators with adequate specifications. It should first operate at 40GHz and provide both IM and PM 
with independent control of their depths. Practical device implementation in WDM systems will require 
long-term stability as well as polarization insensitivity, hence excluding the use of LiNb03 materials [7]. 
Simultaneous WDM implementation (multiple channels passing through a single regenerator), should 
require immunity to crosstalk and wavelength insensitivity, excluding electro-absorption modulators [8]. 

Recently, we have reported a newly developed 40GHz InP Mach-Zehnder (MZ) modulator meeting these 
requirements. It combines both polarization and wavelength-independence and provides adjustable 
IM/PM response through a dual-electrode, push-pull configuration [9]. Figure 1 shows an ESM picture of 
the modulator (top left) and the schematic of a dual-electrode Mach-Zehnder modulator (bottom left) 
along with two graphs showing polarization and wavelength-insensitive response of the modulator. 
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Figure 1: ESM picture (top left) and schematic of dual-electrode Mach-Zehnder modulator (bottom left) along with 
transmission vs. bias voltage graphs for TE/TM polarization modes of input light at 1555.8nm (middle) and for 
1545-1560nm wavelengths with TE polarization mode (right). 

This component was also found immune from WDM crosstalk [9], which makes it amenable to 
simultaneous regeneration of WDM channels. In order to validate its properties, this new modulator was 
inserted into a recirculating loop and made it possible to demonstrate a single-channel regenerated 
transmission at 40Gbit/s over more than 20,000km. In addition, asymptotic stabilization of bit-error-rate 
(BER) at low levels (<1012) over transmission distance was experimentally shown for the first time 
through Q-factor measurements. 

10GHz 
Galn-mwhdMd 

DFIUnAr 
lnf*gnit«d SI-SO, 

optical time-domain 
muhfpl«K*r 
(orfiUrMZ) 

_L11_ 

JULL 

Figure 2: Experimental Q-factor vs. transmission distance with single-electrode (open circles) and push-pull (full 
squares) configurations. Insets shows lOMm eye diagrams at 40Gbit/s and lOGbit/s monitored on 45GHz photodiode 
before and after time-domain demultiplexing. 

Figure 2 shows the 40Gbit/s experimental recirculating loop along with emitter/receiver experimental 
setup. Pulses at 10GHz repetition rate (20ps width) generated from a gain-switched DFB laser at 
1555.75nm are first compressed to 6ps through a 30ps/nm, in-fiber Bragg grating. The output is then 
modulated by a 10Gbit/s, 27-l PRBS sequence before time-interleaving through an integrated Si-Si02 

double-MZ multiplexer, yielding a single-polarization 40Gbit/s signal. The loop consists of two 
45km-long spans (0.24dB/km loss) and three 1480nm-pumped EDFAs (NF=2nsp/r|in=7dB). The span 
dispersion is D=0.15ps/(nm'km), corresponding to a mean soliton power of 5±ldBm at the EDFA output. 
The RF clock, which is locally recovered at 40GHz through a Q=300 filter, is split with independent 
phase adjustments to drive the MZ in either single-electrode or push-pull operation. An optical bandpass 
filter of 0.7nm optimized width is inserted before the MZ for further jitter/noise control [1]. Bit-error-rate 
(BER) measurements are made at 10Gbit/s after demultiplexing through a PI electro-absorption 
modulator electrically driven by 20 and 10GHz RF sines, yielding a temporal switching window of 17ps. 
Error-counting is made by random sampling of the four 10Gbit/s tributaries. The evolution of amplitude 
Q-factor with distance was measured when operating the modulator in push-pull mode, which permits to 
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adjust the effective PM. For the optimum operating point, corresponding insertion loss and IM depth are 
measured to be 16.3dB and 7.2dB, respectively. 

With these experimental system parameters, we have computed numerical simulations of this 40Gbit/s 
regenerated transmission experiment using the vector nonlinear Schrödinger equation with temporal and 
spectral resolution of 0.391ps/78MHz, resp. We took into account both 10 to 40Gbit/s OTDM and 40 to 
10Gbit/s demultiplexing and incorporated polarization effects occurring in recirculating loops such as 
signal repolarization [10] and its effect when associated to fiber PMD. Theoretical Q-factors result from 
the concatenation of 3 runs with random noise/polarization seeds. Like in the experiment, the 
performance is set by the minima of amplitude and timing Qs between the four lOGbit/s tributaries. ' 
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Figure 3: Theoretical and experimental Q-factor vs. transmission distance 

Figure 3 shows both experimental measurements and numerical predictions of Q-factors with distance. 
Experimental Q-factors (smooth curve) are seen to rapidly reach an asymptotic value of 7.2 (BER<10"12), 
thus demonstrating the efficiency of 3R regeneration; these measurements represent the first 
experimental confirmation of this type of evolution. Theoretical Q-factors (broken curve) also evolves 
towards an asymptotic value near 8 at 20Mm. Note the good agreement between experimental and 
numerically estimated values of Q-factors, confirming the possibility to model and predict SM systems 
performance. The slight difference among theses values can be explained by the incomplete estimation of 
full noise/polarization statistics in the simulations. 

Optical 3R regeneration is a attractive candidate for achieving Terabit/s capacity over transoceanic 
distances with 40Gbit/s WDM granularity. In order to experimentally assess its potential, we have 
developed a new type of 40GHz, polarization-insensitive and wavelength-independent regenerator, and 
demonstrated an 40Gbit/s error-free transmission over more than 20,000km without measuring any signal 
degradation. Immunity to WDM crosstalk was also observed [9], showing the potential of this component 
for simultaneous WDM regeneration. Further improvement of the regenerator characteristics (modulator 
insertion loss, filtering) associated with numerical optimization of the system configuration (dispersion 
map, channel spacing) should, in the near future, lead to the first experimental investigation of 
Nx40Gbit/s regenerated transmission. 
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SUMMARY 

Photonic band gap (PBG) materials are a new class of dielectric materials which exhibit a complete three-dimensional gap 
to electromagnetic wave propagation. These materials facilitate two novel and fundamental optical principles, namely (i) 
the coherent localization of light and (ii) the control and inhibition of spontaneous emission of light from atoms and 
molecules. The simultaneous realization of these two effects leads to a variety of theoretical predictions for novel quantum 
and nonlinear optical effects involving photons and atoms within a PBG. These include photon-atom bound states, non- 
Markovian band edge lasing effects, collective atomic switching, and coherently controlled, phase sensitive single-atom 
optical memory. Although the photonic band gap is impervious to linear electromagnetic wave propagation, it is quite rich 
in nonlinear wave propagation phenomena. These take the form of classical and quantum gap solitons. I review these 
effects, their possible experimental realization, as well recent progress in the microfabrication of 3-d PBG materials on the 
optical scale using self-assembly methods. 
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Light-matter interaction in photonic crystals has been at the heart of scientific interest and 
research in the last years [1]. The photonic crystals (PC) are one-, two-, or three-dimensional 
structures with a periodically modulated dielectric function, and what is more, the period of 
modulation is about optical wavelength. In the case of linear interaction and a weak periodicity, a 
light propagation in PC is similar to x-ray diffraction in traditional crystal [2]. Specific distinctions of 
electromagnetic field dynamics in PC are displayed when a nonlinearity of light-matter interaction is 
taken into account. First of all, this is the existence of a novel kind of nonlinear solitary waves which 
are propagated at Bragg frequency within the linear forbidden gap band of the periodic medium, so 
called gap solitons. It has been shown before that gap solitons and oscillating gap solitary waves 
appear in periodic structures with coherent resonant, Kerr, and quadratic types of nonlinearity [3]. 
These waves are formed by two counterpropagating coupled Bragg modes in one-dimensional (ID) 
PC. The progress in technology allows now to fabricate a multidimensional PC [1]. In comparison 
with the studies of linear and nonlinear light diffraction in ID PC which were the subject of variety of 
theoretical and experimental studies, the nonlinear field dynamics in multidimensional PC still remain 
an uncovered area in the optics of PC. Several recently investigations exhibited a laser action from 
optically pumped dye-molecules in solution filled in air-rods of 2D PC [4] and second harmonic 
generation in 3D colloidal PC [5]. 

Here we study theoretically the dynamics of formation and propagation of nonlinear solitary 
waves in the general case of two-wave Bragg diffraction problem in multidimensional resonant 
photonic crystals. The vector Bragg condition for the wave vectors of the incident and diffracted 
waves and the reciprocal lattice vector is to be satisfied in this case. The equations of two-wave 
nonlinear dynamic diffraction have been derived from the semiclassical Maxwell-Bloch equations 
describing the coherent light-matter interaction under Bragg condition. By means of analytical and 
numerical integration of the equations we investigated the process of formation and propagation of 
Bragg solitary waves for the different geometric schemes of diffraction. It has been shown that 
nonlinear solitary waves appear both in the case of Bragg geometry of diffraction like gap solitons 
and in the case of Laue geometry of diffraction like, so called, two-wave Laue solitons of self-induced 
transparency. The Laue soliton propagates in the direction of the normal to reciprocal lattice vector. 
The numerical simulation of diffraction process has given the possibility to study the wave dynamics 
in a finite medium under different boundary conditions. 

The periodically distributed clusters containing resonant two-level atoms in our model form 
three-dimensional PC. The period of the lattice is about wave length X and the cluster size is assumed 
to be less than X. Corresponding reciprocal lattice of the crystal is also three-dimensional, but if two 
diffracted wave vectors k0h and reciprocal lattice vector H exact satisfy the Bragg condition 

kh = k0 + H, we are able to replace three-dimensional problem of diffraction by two-dimensional 
problem using two-wave approximation and taking into account only two strong Bragg modes 
-^O.AC'V) of quasimonochromatic field E{r,t) within the structure 

E(r,t) = -[E0(r,t)exp(ik0r-io)t) + Eh(r,t)exp(ikhr-i(ot)] + c.c. 

To describe the coherent interaction of light with resonant two-level medium the 
semiclassical approach has been used. Generalizing the Maxwell-Bloch equations of diffraction 
problem for ID structure [3] we have derived the following main equations of nonlinear two-wave 
dynamic Bragg diffraction in resonant 3D photonic crystals: 
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slowly-varying envelope of complex electric field amplitudes of the incident and diffracted waves, P 
is the dimensionless characteristic of complex atomic polarization, n is the inverse population of 

atoms, cooperative time is given by rc
2 = 8;r7] / 3c/?A2, p is the density of resonant atoms, // is the 

matrix element of the projection of the transition dipole moment, c is the light velocity. 
Analytical and numerical solutions of Eqs. (1) describing the spatial-temporal dynamics of 

field and atomic inverse population for different schemes of diffraction geometry are studied in this 
paper. Figure 1 shows the Laue scheme of diffraction. The incident field does not feel the total Bragg 
reflection near the boundary, because there is not the Bragg band gap for a field propagating in the x- 
direction. Two diffracted modes are coupled due to reflection on the crystallographic planes within 
the structure. We have obtained exact expression for novel kind of coupled-mode soliton: Laue 
soliton. Computer simulation allows to investigate the process of Laue soliton formation from 
incident field, and furthermore, the possibility of arising of so called "0-field". This field consists of 
two coupled diffracted modes with opposite singes of amplitudes, so the sum of the mode amplitudes 
is equal to zero. As a result, the total 0-field with large partial mode amplitudes propagates through 
the resonant structure like linear field without nonlinear interaction with two-level atoms. 

Let the symmetrical diffraction 
scheme be realized, and fields are 
homogeneous with respect to the y coordinate 
do. o,h'& = <>■ 
Then Eqs. (1) has two different solutions. The 
first one is realized if field sum 
Cl = Q0+Q.h is not equal to zero but the 
difference is zero 
fi" = Q0 - Q.h = 0,   O = 0, * 0. 
It means that amplitudes of two modes are 
equal each other and we obtain the following 
solutions for both waves: 

Fig.l. The Laue scheme of diffraction on 
crystallographic planes of photonic crystal. ßn 

1         1        (t-xlv 
Q, = —i2 = — sech   

*        2 T ^        T 

This is two-wave Laue soliton, or Laue 27t-pulse, which propagates at the velocity v = 
c cosip 

1 + 2T
2
 ITC

2 

coupling two diffracted modes with equal amplitudes. Another case is realized when the field sum is 
zero but the difference is not equal to zero: 
Q = Q0+QA=0,   0 = 0, Q- =n0-nh*o, 
hence 
Q.0=-Q.h, 0=0,    v = ccos^>. 
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We have called this linear solution "O-fleld" because it is characterized by the sum of fields Q = 0. 
Propagating through the structure, it does not interact with resonant atoms (0=0 ), even if the 
amplitude of each diffracted mode is rather large. 

Figure 2 illustrates the result of numerical simulation of nonlinear Laue diffraction of the 
incident pulse in finite photon crystal when pulse amplitude Q0'=2 1013 s'1, pulse duration r0=0.3rc 

T-3 10 s, and angle of diffraction ^30°. The Laue soliton and 0-field are formed within the 
structure. Their parameters (the sign and the value of mode amplitudes, velocity and duration) agree 
with analytical results. Fast 0-field outstrips the slow Laue soliton and does not excite resonant atoms 

0-field 

Laue soliton 
n0(x,y) nh(x,y) 

Q(x,y)=n+n. 
o      n 

Fig. 2. The Laue soliton and 0-field pulse. Spatial distribution of two diffracted modes of field and 
inverse population of atoms in the structure. 

The developed theory of nonlinear two-wave Bragg diffraction of coherent light in a resonant 
multidimensional photonic crystal allows to predict a number of novel kinds of nonlinear solitary 
waves: the Laue soliton, propagating and standing gap solitary waves, as well linear 0-field waves 
These phenomena could be observed experimentally , for instance, in an opal photonic crystal with 
embedded dye molecules [6] or in a structure of air-rods filled with dye solution [4] 
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Foundation. 
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Introduction 

Interest in optical devices based on the properties of nonlinear Bragg gratings has steadily increased in 
recent years as potential applications within future optical network systems become more apparent. 
Suggested device applications include optical pulse filtering, shaping, multiplexing, power limiting and all- 
optical switching. Nonlinear propagation effects in periodic structures have been experimentally explored 
in many material systems including colloidal crystals1, InSb planar devices2, optical fibers3"5, MQW 
material6 and more recently, by our group, in bulk AlGaAs . 

To date the emphasis in both experimental and theoretical studies of nonlinear Bragg gratings has 
concentrated on the temporal characteristics of pulses travelling within such periodic structures1'. As a 
result, no information regarding the spectral evolution of pulse propagation in Bragg filters has been 
reported, despite the fact that knowledge of the spectral shape of the propagating pulse is essential in order 
to understand the pulse formation process leading to, for example, nonlinear pulse compression. Therefore, 
in this paper, we aim to redress this imbalance by presenting experimental nonlinear spectral broadening 
results obtained using a Bragg grating written in an integrated AlGaAs waveguide. The nonlinear spectral 
broadening achieved in this device was associated with the compression of a pulse from 400 ps to 80 ps. 
The data presented shows that in the nonlinear regime; interesting features appear in the output spectrum of 
a pulse tuned initially to lie within the grating stopband. 

Fabrication 

A high quality AlGaAs wafer was used to fabricate the integrated grating filters. The wafer was grown by 
molecular beam expitaxy and had the following structure. The lower cladding layer was 4 urn thick and 
contained 24% Al, the guiding layer was 1.5 um thick and contained 18% Al and finally the upper cladding 
layer was 1 um thick containing 18% Al. AlGaAs was chosen as the device material as the fabrication 
technology is well developed. In addition, AlGaAs has an enhanced nonresonant nonlinearity when 
operating at a wavelength below the half-band gap region, which can be tailored to lie within the 1.55 urn 
low loss telecommunications window. At this wavelength the detrimental effects of two- and three- photon 
absorption can minimised through wafer design. The nonlinear refractive index was measured to be ~ 1.5 x 
10"13 cm2/W which is 3 orders of magnitude greater than that of silica. Therefore the peak powers required 
to observe nonlinear effects in this material are considerably lower than for comparable structures in optical 
fibres. In addition, AlGaAs waveguides provide good optical power confinement over long interaction 
lengths with sufficient power handling capabilities to perform this type of nonlinear experiment. For 
example in this experiment upto 1.2 kW of power (660 W launched) was steered into the guides without 
optical damage occurring. Furthermore, the high nonlinearity of the AlGaAs guides allow a high rep rate 
sources to be used which enabled spectral measurements to be made with ease. Fig.l is a schematic of the 
waveguide filter. The grating filters were based on a weak grating on a strip-loaded waveguide, to minimise 
excess scattering losses. A one step electron beam lithography process was used to define the grating and 
the ridge guides simultaneously. Gratings, 8 mm long were written on 1 cm long single moded waveguides, 
5 urn wide. A grating period of 235 nm was selected to position the grating stopband around the maximum 
power range of the laser at ~ 1533 nm.. The waveguides were etched using Reactive ion etch down to a 
depth of 0.9 um. Due to reactive ion etching lag the grating etch depth was approximately 0.3 urn, resulting 
in an effective index modulation of-4.4 x 10"*. 
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5 um 

Figure 1: Schematic of the integrated Bragg waveguide filter. 

Experimental Set-up 

We used light pulses from an externally modulated DFB laser, amplified by a large mode area erbium 
doped fibre amplifier cascade which generated linearly polarised 415 ps (spectral bandwidth of- 3GHz), 
rectangular shaped pulses with a repetition rate of 100 kHz. The wavelength range of this laser system was 
1.52-1.56 urn. The pulses were coupled into and out of the waveguides using an endfire rig with x40 
objective lenses. The output pulse was incident alternatively, via an optical fibre, onto a high resolution 
commercial spectrum analyser and fast optical detector/sampling scope, which had a temporal resolution of 
50 ps. Hence both the spectral and temporal characteristics of the transmitted pulse were measured. The 
average input power was monitored before the input coupling lens, using a pyroelectric meter and the pulse 
peak power calculated using measurements from a fast photodiode and oscilloscope. A lambda/2 plate 
before the input lens was used to control the input polarisation. The peak input power launched into the 
guides was estimated to be 50% of the peak power from the laser. 

Experimental results 

The grating transmission spectrum is shown in fig. 2. The maximum reflectivity was ~ 99%.The width of 
the stopband was ~ 0.2 nm. The grating spectrum appears in this figure to be asymmetric this is partly due 
to the fact that it was measured using the amplified spontaneous emission from the amplifier stage. Fig. 2 
also shows the transmitted pulse spectrum of a pulse tuned to lie at the centre of the gap at 1533.873 nm, 
for a low input peak power of 60 W (light launched into guide). The input pulse width was 415 ps. A 
comparison was made between the input pulse spectrum and the transmitted pulse spectrum. No change in 
the spectral shape of the pulse was observed in the linear regime. The incident power was then increased to 
385 W. Fig. 3 (a) shows the high power output pulse spectrum superimposed on the gratings transmission 
spectrum. Figure 3 (b) shows the temporal shape of the output pulse for input peak powers of 60 W, 200 W 
and 350 W. Comparing fig. 2 to fig. 3 (a) it is obvious that significant pulse shaping and spectral 
broadening occurs at high powers. Figure 3(b), shows that the pulse was compressed from 400 ps to 80 ps 
at high input powers, confirming that spectral broadening does occur as the transformed limited pulse has 
been compressed by a factor of 5. To confirm that the nonlinear spectral broadening was due to the grating 
itself, we repeated the experiment again with a pulse tuned to lie outside the grating stopband, on the long 
wavelength side, at 1534.429 nm. We found that no significant spectral broadening occurred at high input 
powers and the pulses temporal width increased slightly from 415 ps in the linear regime to 420 ps in the 
nonlinear regime. As shown in fig.3 (a), the output pulse spectrum is doubly peak with one peak at the 
centre wavelength and another shifted to the short wavelength side. Also, a considerable amount of power 
is now outwith the grating stopband. The temporal characteristics of this transmitted pulse also had a 2 
peak characteristic with a delay of 250 ps between each peak. 
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Figure 2: Grating transmission spectrum (solid line) and output spectral pulse shape in linear 
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Figure 3(a) :Graph showing the output spectral pulse shape (solid line) for high input peak power of 
385 W and the gratings spectrum, b) Transmitted temporal pulse shape for input power of 350 W 
(solid line), 200 W (long dashed line) and for an input power of 60 W (short dashed line). 

Conclusion 

We presented spectral measurements which demonstrate that nonlinear spectral broadening, due to pulse 
compression, within an AlGaAs Bragg filter is asymmetric in nature with the majority of the broadening 
occurring on the short wavelength side of the stopband. At high input peak powers several distinct peaks 
appeared in the transmitted pulse spectrum and temporal pulse shape. We are currently modeling the 
system and have so far obtained qualitative agreement with the experimental results and expect to obtain 
better agreement in the near future. 
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Optical time division multiplexing at high speeds (> 40 Gbit/s) is currently of great relevance to the next 
generation of optical communication systems. This requires ultrafest all-optical components such as short 
pulse sources. As an example we will consider optical pulse compressors and high repetition rate pulse 
train generators. Recently, it was shown that decreasing the dispersion adiabatically along the propagation 
path of a soliton in optical fiber is equivalent to adding gain to the propagation medium. If this effective 
gain is applied adiabatically, the optical soliton will follow and self-adjust by reducing its pulsewidth and 
remaining a fundamental soliton [1, 2]. Using standard fiber as the propagation medium has two 
drawbacks: 1) producing a fiber with a prescribed dispersion map may require specialty fiber and/or 
splicing fibers with different dispersive characteristics. 2) The typical lengths of fiber required for 
compression are large due to the small magnitude of the quadratic dispersion in optical fiber. On the other 
hand, fiber Bragg gratings (FBG's) have none of these constraints; virtually arbitrary grating profiles (and 
therefore corresponding dispersion maps) can be made and because of the very large dispersion close to 
the optical band edge of the grating, very small devices are possible. This reduction in size requires the 
scaling down of the peak power or equivalently an increase in the Kerr nonlinearity of the fiber. 
Chalcogenide fibers and FBG's with Kerr nonlinearity almost 100 times that of silica (corresponding to a 
reduction of 100 times in peak power) have been demonstrated [3]. In this paper we will present theory 
and numerical simulations of FBG-based pulse compressors in chalcogenide fibers. These devices can 
also be operated as pulse train generators (depending on their input). We will also present measurements 
of even larger Kerr nonlinearity of a number of additional different chalcogenide materials and discuss 
their suitability for this application. 

The condition for the fundamental soliton in an optical fiber (solution of the nonlinear Schrödinger 
equation (NLSE)) is written as follows: 

where E is the pulse energy, n2 the nonlinear index, A the wavelength, Ae[f the effective mode area, rthe 
pulsewidth and fr the quadratic dispersion at the center wavelength. If the dispersion is decreased slowly 
enough and in the absence of radiative loss, the soliton may self-adjust by decreasing its pulsewidth r 
such that condition (1) is maintained. This turns out to be also true if AeS decreases or n2 increases 
adiabatically (or any combination of the above). In FBG's optical solitons are known as Bragg solitons 
and have been studied theoretically as well as experimentally [4]. In an apodized FBG the quadratic 
dispersion is given by [5]: 



242 / ThB4-2 

A     UJ «[i-cy^f (2) 

where A: is the coupling constant and is related to the bandwidth of the stop band, <5"is the frequency 
detuning relative to the center of the stop band, n is the average effective refractive index and c the speed 
of light. Typical numbers yield a dispersion of a few ps2/cm (or approximately 5 orders of magnitude 
larger than standard fiber). By going to a non-uniform FBG (i.e., one in which either *"or <?or both vary 
along the propagation direction in the grating) we can get a monotonically increasing or decreasing 
dispersion. An adiabatic decrease in dispersion requires [6] 

2|/?2(0)L| 

r aln[A(0)/AW] 
>1 (3) 

When this adiabatic condition is satisfied the input soliton will evolve into a soliton shorter by the factor 
A (0)/$(£) • Here ßi (0) and ß2 (L) are the dispersion at the input and output of the FBG (i.e., at z = 0 
and z = L) and L is the grating length. Figure 1 shows a numerical simulation of a 10 ps soliton being 
compressed by a factor of 4 in a 100 cm long grating. For a grating fabricated in standard fiber, assuming 
Aeff = 20 n.m2 and n2 = 2.3x10"16 cm2/W, the launched soliton peak power would need to be -1.2 kW, 
whereas with a chalcogenide FBG the required peak power would be less than 1W. 

When the launched field into such a device is a beat signal of amplitude A0 created from two CW lasers 
and given by, 

A0sin(7rAvr) (4) 

the resulting output is a soliton pulse train at a repetition rate of A v (the frequency separation between the 
CW laser lines)[7]. Figure 2 shows the 40 GHz sinusoidal input intensity and the pulse train output con- 
sisting of 2.6 ps solitons. This numerical example required a 70 cm apodized FBG with a launch peak 
power of ~ 1.4 kW. In both of these cases the coupling constant AT was varied linearly along the grating 
resulting in an adiabatically decreasing dispersion (for a more detailed theoretical investigation see [6, 7]). 
The result is a compact (~ 1 m long) all-fiber compressor which requires ~ 1 kW of peak power . To make 
this device useful for more modest peak power would require a medium with a larger nonlinear 
coefficient (nj' A^ff) such as a chalcogenide FBG which would require peak powers of less than 1W. 

Recently, we have embarked on a systematic study of the Kerr nonlinearity in chalcogenide glasses. The 
goal of this study is to optimize these glasses for a maximum n2 at a wavelength of 1.55 Jim, while keep- 
ing the nonlinear absorption to a minimum. To this end bulk glass samples were produced and Z-scan 
measurements [8] were performed using a tunable, high-energy, femtosecond source. Measurements of 
both «2 and the two-photon absorption were performed at a number of wavelengths around 1.55 urn. Our 
theoretical model predicts the possibility of n2 of - 1000 times that of silica. Initial experimental results 
on bulk As2Se3 indicate n2 ~ 500 times silica at a wavelength of 1.55 (im and this material may be 
produced in fiber form. We are currently investigating the photosensitivity properties of this and other 
chalcogenide glasses, allowing the fabrication of FBG's (FBG's in As2S3 fiber were demonstrated in [3]). 
Using these numbers and accounting for the smaller Aeff in these high linear refractive index materials, the 
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peak powers may be scaled down to the ~ 1 W level, as mentioned earlier.    Further details and 
experimental as well as theoretical results of this material study will be reported. 

In summary, chalcogenide FBG's are promising devices for nonlinear picosecond pulse compression and 
pulse train generation. These devices are short, versatile all-fiber devices requiring low peak powers. 
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Figure 1: Adiabatic soliton compression in an 
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During the last years large effort has been devoted to studies of light-matter interaction in 

an artificial multi-dimensional structures with the periodic modulation of the dielectric function 

so called photonic crystals (PC) [1,2]. Fundamental property of PC is an existence of photonic 

band gaps (PBG) where the propagation of light in the case of linear interaction is forbidden [1]. 

Despite the appearance of the newest directions of research, such as the possible existence of 

soliton-like pulse propagation at the Bragg frequency within the PBG [3], the traditional 

directions of nonlinear optics such as harmonics generation [4], are the subject of particular 

interest in PC. Recently, it was shown theoretically that the enhancement of the second-harmonic 

signal in PBG structure can be determined by the increasing of the density of electromagnetic 

field modes within the structure when the frequency of fundamental field is near the photonic 

band edge [5]. In [6] we investigated the properties of second-harmonic signal in one- 

dimensional PBG structure versus the angle of incidence, where the wavelength of the 

fundamental radiation was fixed near the photonic band edge. We concluded that the 

enhancement mechanism related with increasing of field energy inside the PBG structure was 

realized in our experiments. 

Here we present and discuss results of experiments on second-harmonic generation 

(SHG) and sum-frequency generation (SFG) with femtosecond laser pulses. We have measured 

the efficiency of SHG and SFG processes versus the angle of incidence of p- and s-polarized 

incoming beam and shown that the shape of the angular distributions is in a good agreement with 

calculated one from [6]. Moreover, we have shown that the shape of the SH spectra is strongly 

depended on chirp parameters of the incident femtosecond pulses. 
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The ZnS/SrF2 periodical structure used in the experiments consists of 7 pairs of alternate 

layers of high (ZnS, n,=2.29) and low (SrF2, n2=1.52) refraction index layers. The X-ray 

diffraction analysis of the structure has shown that the ZnS in the layers is presented mainly in 

the ß-ZnS poly-crystalline form and the SrF2 structure is the amorphous one. This periodic 

structure reflects light strongly at the normal incidence in the wavelength range of 745-830 nm. 

Our experimental setup for SHG was 

based on Ti:Sapphire laser with a wavelength 

centered on 780 nm, pulse duration 100 fs, and 

the pulse repetition rate of 100 MHz. In our 

experiments on SFG we used setup based on 

Coherent Inc. femtosecond laser system: 

Mira-900, regenerative amplifier RegA-9000 and 

optical parametric amplifier OPA-9400. The PMT 

and the lock-in-amplifier technique was used for 

detection of the SH and SF signal. The sample 

was mounted on the rotary part of the goniometer 

in order to vary and align incident angles. 

Experimental fundamental and SH 

intensities reflected from the structure as a 

function of the incident angle are presented in 

Fig.l by solid lines. The fundamental wavelength 

is turned in the PBG for the normal incidence, 

and the SH frequency is away from either Bragg 

or absorbing resonance. The dashed curves are 

calculated from the theory developed in [6]. 

The linear reflection curves for p- and 

s-polarized incoming field in the Fig.l (a, c) 

exhibit the angular shift of the photonic band 

edge. There are sharp maxima corresponding to 

enhancement of SHG in Fig.l (curves b, d) at the 

angle of around 33 deg for p-incident polarization 

20 30 40 50 

Angle of incidence, deg. 
60 

Fig.l. The angular tuning curves of 
linear Bragg-reflection (a, c) and 
reflected SH signal (b, d) for different 
sets of input and output polarizations 
(p-p, p-s, s-s, s-p). All curves are 
normalized. The angle is given 
relatively to the normal to the 
multilayer structure. 
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and at the angle of around 37 deg for s-incident polarization. The maxima are localized near the 

middle of photonic band edge. Moreover, we observed the angular shift of both the SH maximum 

and the photonic band edge depending on the polarization of incident field also for transmitted 

signal. 

We would like to point out that there is the real enhancement of the SH signal in the PBG 

structure. The enhancement can be estimated as more than 330 times relative to the single ZnS 

layer (with the same di= 3X7411; thickness at X = 780 run) deposited on the same glass substrate. 

In conclusion, we have observed the enhancement of second-harmonic and sum- 

frequency generation with femtosecond laser pulses in one-dimensional photonic crystal near the 

photonic band edge. The mechanism of enhancement is the increasing of the field on the 

fundamental frequency within the structure near the band edge. It leads to the strong dependence 

of the SH and SF signal intensity shapes and the peak positions for different incoming light 

polarizations on the incident angle. 
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In optical fibers, the interplay of the optical Kerr effect and chromatic dispersion leads to 
modulational instability (MI) [1]: a continuous wave undergoes a modulation of its amplitude or 
phase in the presence of quantum noise or a frequency shifted signal wave (induced-MI). MI can be 
induced into a normally dispersive optical fiber by cross-phase modulation between two 
copropagating pumps [2]. This CPM-induced MI is also called vector modulational instability. In the 
temporal domain, induced-MI leads to the break-up of uniform disturbances into modulated 
structures and can be used to generate soliton-like pulse trains with a high repetition rate fixed by 
the pump-signal frequency detuning. This process is associated, in the spectral domain, with the 
frequency conversion of a pump beam into a cascade of sidebands. 

Another interesting application of vector MI is the frequency conversion of a pump into a single 
sideband pair. In this case, the MI mechanism may be directly viewed in the frequency domain as the 
parametric interaction of a central-frequency wave with a pair of Stokes and anti-Stokes sidebands. 
In the first stage of the propagation of the pump wave, and for sufficiently weak input signal the 
momentum conservation leads to the usual nonlinear phase-matching condition which in turn 
determines the peak gain modulation frequency. However, for longer fiber lengths, a substantial 
fraction of pump energy is transferred into the sidebands. This may occur at frequency detunings 
which may strongly deviate from the usual MI small-signal predictions even for relatively weak (i.e., 
a few percents of the pump power) input signals. Clearly, a model which takes into account the pump 
depletion is necessary to describe the strong frequency conversion regime of MI. Such a model was 
developed for vector MI [3-4] and later succesfully applied for the analysis of experimental results 
on the strong depleted regime of polarization modulational instability (PMI) in a low-birefringence 
fiber [5]. This model is based on a three fourier modes truncation of the coupled nonlinear 
Schrödinger equations (CNLE's) : the resulting system of ODE's describes well the nonlinear 
evolution of the field in each mode. 

In this work we present the observation of strong frequency conversion by vector MI in the normal 
dispersion regime of a highly birefringent fiber. Modulational instability is induced by mixing a 
pump beam with a copropagating Stokes signal wave. The pump is polarized at 45° from the 
birefringence fiber axes and the Stokes signal wave is polarized along the slow axis. The anti-Stokes 
sideband is parametrically generated from noise on the fast axis. 

The experimental setup that we employed for the observation of induced vector MI in a highly 
birefringent fiber consists of two different laser sources producing nanosecond pulses. With such 
pulse durations, the two waves can be considered as quasi-cw in comparison with the MI period 
(hundreds of femtoseconds). The pump pulses were delivered by a cw tunable ring dye laser, 
pumped by a cw argon laser and amplified by a three-stage dye amplifier. The dye amplifier was 
pumped by a frequency-doubled, injection-seeded, and Q-switched Nd:YAG laser operating at a 
repetition rate of 25Hz. Vector MI was induced by a weak signal beam from the Nd:YAG laser that 
was Raman-shifted in a multiple-pass carbon dioxide cell. The pump and signal pulse widths were 
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4ns and 2ns, respectively In all of our experiments, the pump wavelength was tuned around 
Ap=572nm and the signal wavelength was fixed to a.s=574.72nm. Pump and signal beams were 
mTÄmed sy ? ^eom splitter' and focused with a 20x microscope objective in a hi-bi fiber 
(HB600 Fibercore) of 1.8m. The short length of fiber led to negligible Raman-induced pump 
depletion. At the fiber output, ligth was analyzed with a spectrometer and with a second-harmonic 
generation autocorrelator. 

o 
Time (ps) 

Fig. 2. Theoretical time dependence of output 
powers (solid curves) and phases (dashed 
curves) of cw dark soliton trains in the slow 
(a) and fast (b) fiber axis. 

-5 2 2.5 3 3.5 4 
Modulational frequency (THz) 

Fig. 1. Comparison between measured (star) 
and calculated (solid line) generated idler 
energy vs. signal frequency. The parametric 
gain (dashed line) is reported with an 
arbitrary vertical scale. 

In order to observe the frequency conversion of a single Stokes signal into the conjugated idler the 
pump power and pump-signal frequency detuning were carefully chosen such that the unstable 
frequency band was relatively narrow. Therefore, all the intensities of high-order harmonics were 
weak, except for the first sideband pair as observed in the experiment. Figure 1 compares the 
variation of the experimental idler conversion (stars) versus pump signal detuning with the theoretical 
gain curves obtained from the linear stability analysis (dashed line) and from our three-wave model 
(solid line) The pump and signal powers are 56W and 6.2W respectively. The idler conversion is 
maximum (14%) at frequency detuning just above the highest bound of the small-signal gain 
bandwidth, that is for a initially phase-mismatched process. This experimental data are in good 
agreement with the three-wave model taking into account the asymetric seed of MI and the pulsed 
profile of pump and signal waves. The corresponding signal fraction is equal to 24% which 
corresponds to a total frequency conversion from the pump towards the first sideband pair of 38% 
A total energy conversion of about 60% was obtained for a pump (signal) power of 112W (5 9W) 
We also observed that, for a suitable fiber length, a strong transfer of energy between the pump and 
the signal-idler sidebands at the fiber output was induced by a small variation of the input signal 
power. r       6 

On the other hand, we shall report on experimental observations of frequency conversion from the 
pump beam into a cascade of sidebands which, in the time-domain, represent a periodic train of 
vector dark sohtons. The two polarization components of the vector dark soliton train exhibit a cross- 
trapping that maintains the polarization state of the total field unchanged upon propagation This 
interaction was analytically studied with a variational approach [6], whereas the connection between 
MI and the vector dark soliton was investigated by numerical solutions of the CNLE's as in Fig 2 
Here the pump power is P=112W, the signal power is 2W, and the frequency detuning is 2 5THz As 
can be seen, the output temporal profiles of the pulse train generated on both axes are a periodic 
tram of dark sohtons. This statement is confirmed by the phase profile of the generated pulse trains 
which are flat across each pulse, with a n phase change in the dip, which is a characteristic property of 
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dark solitons. Figure 3 shows the observed spectra at the fiber output for slow and fast axes. The 
simulations, which take into account the pulsed nature of the beams show a good agreement with the 
experimental results. An excellent agreement is also obtained between the theoretical and observed 
auto-correlation traces on each axis (see Fig. 4). 

A detailed comparison with earlier results on frequency conversion in a low-birefringence fiber will 
also be presented. 
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Fig. 3. Theoretical pulse averaged (a)-(b) and 
experimental (c)-(d) spectra from (top) slow 
and (bottom) fast axis. 
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Fig. 4. Theoretical (a)-(b) and experimental 
(c)-(d) autocorrelation traces from the slow 
(top) and fast (bottom) fiber axis 
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Nondegenerate four-wave mixing (NDFWM) in semiconductor gain materials has been extensively 
studied. High speed wavelength converters and phase-conjugate wave converters can be realized using this 

phenomenon. Semiconductor optical amplifiers (SO As) are widely used for experiments. A lot of excellent 

results have been obtained using SOAs [1]. Semiconductor laser diodes (LDs) are another devices in which 

NDFWM occurs. Because the lasing waves in themselves can be used as the pump beams, we can realize the 

wavelength converters without external pump sources[2]. In this talk, we introduce our experimental results 

of NDFWM in distributed feedback (DFB) LDs and an application for the compensation of the chromatic 
dispersion in optical fibers. 

Figure 1 shows the device structure for experiments. We used A./4-shifted DFB-LDs. When the 

wavelengths of the input signal wave and the output conjugate wave are outside the stop-band, the waves do 

not interact with the corrugation. The LDs function as traveling-wave SOAs for the signal and conjugate 

waves. Due to the ^4-shifted structure, the lasing wave is stable at the middle of the stop-band even if the 

signal wave is injected. The conjugate is generated by the interaction between the signal wave and the lasing 

wave traveling toward the same direction with the signal. The conjugate wave generated by the interaction 

between the signal wave and the lasing wave traveling toward the opposite direction does not grow, because 

the phase-match condition is not satisfied. Figure 2 a) and b) show the spectra from rear facet of a DFB laser 

when a signal is put into the front facet. In addition to the lasing wave functioning as pumps and the amplified 
signals, the third wave is observed, which is the conjugate wave. 

The conversion efficiencies from the input signal to the output conjugate are shown in Figure 3. The 

conversion efficiency increases when the detuning between the pump and the signal decreases. The conversion 

efficiencies of the positive detuning are always larger than those of the negative detuning. These detuning 
dependence of the conversion efficiencies are similar to the FWM in SOAs. 

The basic mechanisms of NDFWM in LDs are the same with those in SOAs. The carrier density 

pulsation (CDP) effect, the carrier heating (CH) effect, and the spectral hole burning (SHB) effect contribute 

to the NDFWM in LDs. The interference of these three effects enhances the conversion efficiencies of the 
positive detuning and suppresses the efficiencies of the negative detuning. 

The differences between the FWM in DFB-LDs and that in SOAs are the clamping of the linear gain 

and the existence of the lasing-wave traveling toward the opposite direction of the signal. In the DFB-LDs 

with a KL of nearly 1.25, the saturated gain and the carrier concentration are almost uniform along the 



252 / ThC2-2 

cavity. 

Because the linear gain is clamped at a small level, the conversion efficiencies of the DFB lasers are 

smaller than those of the SOAs. To overcome the small gain, we have proposed and demonstrated the in-line 

integration of two SOAs and a DFB laser[3]. Because of the increase of the linear gain due to the integration 

of SOAs and the increase of %(3) due to the adoption of compressively strained QWs, a high conversion 

efficiency of+5 dB at the detuning of 300 GHz has been demonstrated using the structure^]. 

A polarization-insensitive phase-conjugate wave converter by using bi-directional FWM in a DFB- 

LD has been proposed and demonstrated [4]. Figure 4 shows the configuration of the converter. The signal 

light is insident on an optical circulator followed by a polarization beam splitter (PBS) through which the 

signal is divided into two orthogonally polarized components. A x-component (counterclockwise), which is 

the same polarization as that of the DFB-LD, is incident on the first facet of the DFB-LD and converted to 

a conjugate wave. The polarization state of a y-component (clockwise) is converted to the same polarization 

with the x-component by using 90° twisted poarization maintaining fiber, and then incident on the second 

facet of the DFB-LD. The wave is converted to a conjugate wave in the LD. The two converted waves are 

coupled through the PBS and output from the third port of the optical circulator. When the injection currents 

in three electrodes are controlled to give the same conversion efficiencies for the x-component and the y- 

component, polarization-insensitive conversion can be realized. 

The chromatic dispersion of optical fibers was compensated by the phase-conjugate wave generator. 

The signal light was intensity-modulated with a 10 Gbit/s NRZ data stream (PN: 2"-l). At the receiver, the 

optical signal was amplified and detected by a pin photo-detector after passing through an optical filter with 

a 1 nm bandwidth. The receiver sensitivity at a bit error rate (BER) of 10~9 for back-to-back measurement 

was -33.4 dBm. The observed power penalty for the generated conjugate was 0.8dB for a signal with 0° 

polarization. There was little dependence of the penalty on the polarization of the signal. The penalty was 

mainly due to S/N degradation through the conversion. The BERs before and after 100 km transmission 

using the phase conjugate generator are shown in Figure 5. In this experiment, the signal was transmitted 

through the first standard fiber (50 km) with a dispersion of+18.2ps/nm/km before input to the converter. 

The phase-conjugate wave was then transmitted through the second fiber (50km) with a dispersion of +17.8 

ps/nm/km. The input power into two fibers was set to +3 dBm. The waveform distortion was compensated 

for with a power penalty of 1.1 dB. This penalty can be decreased by increasing the conversion efficiency. 

Detected eye patterns, given in Figure 6, show good eye-opening and waveform recovery. 

In summary, a phase-conjugate wave converter without external pump sources has been realized by 

using NDFWM in a DFB-LD. 
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In communications systems an all-optical device capable to frequency shift a signal is essential 
in order to perform optical routing and space switching, thus allowing the network to be 
completely transparent to signal format and bit rate [1]. The most investigated methods exploit 
the nonlinearities of semiconductor optical amplifiers (SOA) [1]. However, it's worth 
considering alternative techniques based on nonlinear processes of second-order, namely 
difference-frequency generation (DFG) [2] and cascading of two second-order processes [3,4]. In 
DFG the pump beam frequency is quite different from that of the signal; this is not convenient 
from a technological point of view and makes difficult the spatial mode matching in waveguide 
devices. On the contrary, in the cascaded process a pump field with frequency close to cos is used: 
the second-harmonic (SH) of p, which is generated in the same crystal, acts as driving field for 
the parametric interaction [3,4]. Our group recently demonstrated that an efficient wavelength 
shifting can be attained by a cascading technique with pump intensities as low as a few MW/cm2 

[5]. The efficiency should be markedly improved when going from bulk to waveguide as the 
optical confinement and modal propagation provide a larger interaction length. Preliminary 
results are reported in ref. [6]. 

In this paper we describe a wavelength shifting experiment at wavelengths about 1100 nm based 
on cascading in a lithium niobate x-cut channel waveguide. The waveguide was manufactured by 
Pirelli Cables & Systems, Milano, Italy and it is 58 mm long and 6 |im wide. It has excellent 
optical quality: the estimated linear losses in the infrared amount to 0.2 dB/cm. At 1100 nm, the 
wavelength used in our experiment, the channel waveguide is nearly monomodal, with an 
effective mode section around 80 (xm2. The sample is housed in a copper block temperature- 
controlled to better than 0.1° C. End-fire coupling was used to insert the optical pulses into the 
guide. Type I phase-matching for second harmonic (SH) generation of the pump can be obtained 
by an appropriate choice of either temperature or wavelength. The pulses p and s are provided by 
two BBO-based optical parametric oscillators (OPO), synchronously pumped by the SH of the 
output of a Nd:YAG active-passive mode-locked laser with 10 Hz repetition rate. The OPOs 
deliver trains of 5 - 6 pulses, each of = 20 ps time duration, separated by 10 ns intervals. The 
FWHM spectral width of p at 1100 nm is 0.3 nm and that of s is sligthly larger. The TM 
polarization of both incident beams is parallel to the x-axis of the crystal. At the output, SH is 
easily discriminated from the IR by using color filters, while the energies of J and/are 
separately assessed by employing a monochromator equipped with an SI photomultiplier and/or 
a commercial optical spectrum analyzer (ANDO, AQ-6315). We denote by W the energy of a 
single pulse. From the energy measurements we derive the following quantities: Wp (Ws), the 
energy the pump (signal) pulse would have at the output in absence of nonlinear conversion, Wss, 
the energy of the amplified signal pulse at the output, Wf, the energy of the frequency-shifted 
pulse at the output, and WSH , the energy of the second-harmonic pulse at the output. 
We first tested the waveguide for SH generation. At fixed pulse energy and temperature, we measured WSH 

versus Xp. The results are shown in Fig.la. The maximum conversion is observed at Xp = 1103 nm. 
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The spectral peak structure is due to the interaction of the fundamental mode of p (TM00) to 
the several guided modes of SH (TE00, TE01, TE02,TE10 ) and to the presence of a weakly 
excited second mode of p. In Fig. Lb are reported the calculated effective mode indices of p 
and SH as a function of Xp; the results appear in good agreement with experiment. The 
dominant contribution is given by the interaction TM00 (Q>) ^TE10(2CO) that corresponds to 
the peak at \ = 1103 nm, while the interaction TM00((0) ->TE01(2a>) is not effective as the 
overlap integral of the spatial modal distributions can be considered as zero. Our calculations 
suggest that the low power SH generated about 1125 nm could be attributed to the interaction 
of TM01 mode of p with the modes of SH. 

By simultaneously coupling inside the waveguide the pump p with Xp « 1103 nm and the signal s 
with K a 1107 mm a new beam is generated at lt = 1099 nm. Although we did not investigate 
systematically the dependence of r\ on AX, we have data showing no reduction in efficiency when 
AX is increased up to AX = 7 nm. 

When n becomes appreciable, it is also possible to measure independently the parametric 
amplification of s, defined as p = Wss /Ws. A plot of both p and T| versus pump energy is 
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■n.p 
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Fig.2 Conversion efficiency r\ ( • ) and amplification of signal p ( ■ ) as a function of W 
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reported in Fig.2. The data have been taken with a signal energy Ws = 10 pJ. We see that the 
measured values of p and r\ are fully consistent. One can notice, in particular, that T| = 1 is 
obtained with Wp ~ 250 pJ. To compare the data of Fig.2 with the predictions of a simple model 
dealing with stationary fields we considered the propagation equations for the fields p, s, SH and 
/, by including the overlapping factor between the fundamental modes of p and SH . The 
equations have been solved under the following assumptions: monochromatic pump, Ak = 0 (Ak 
denotes the mismatch for SH generation: Ak = kSH - 2kp), d31 = 4.6 pm/V, linear losses of the 
waveguide: 0.2 dB/cm at 1100 nm and 0.4 dB/cm at 550 nm. Spatial overlap integrals of the 
interacting fields are taken into account. The calculated dependence of r\ and p on the pump 
power P (the P values are shown on the upper abscissa scale) is given by the solid lines in Fig.2. 
The trend is fully consistent, but in order to fit quantitatively the calculations to the experimental 
data, we had to scale down by a factor 5 the experimental pump energy. It should be noted that 
describing our experimental situation with a stationary model is a crude simplification. In fact, 
for the 58 mm propagation length in the lithium niobate crystal, we calculate the spectral 
acceptance for SH generation to be 0.06 nm, which is about 5 times smaller than the spectral 
width of the pump in the experiment. One can conjecture that the conversion process can use 
only 1/5 of the pump power. Such a consideration can explain the origin of the scaling factor 
that was applied in order to fit theory to experiment. 

As a conclusion, we have shown that an efficient generation of a wavelength shifted pulse of 
20 ps duration can be obtained in a 58-mm LN channel waveguide, at a wavelength around 
1100 nm, through a cascaded second-order process by employing a pump pulse of about 250 
pJ. A straigthforward improvement to 50 pJ pulse energy (or 1 W pump power) is expected 
when using transform limited pulses. It should be recalled that the present trend is to use 
PPLN, where one can benefit at the same time of a considerably larger deff and of an easy 
phase-matching at the desired wavelength. The data presented here put on a sounder basis our 
earlier prediction [5] indicating that, by using a PPLN channel waveguide of good optical 
quality [7], it should be possible to generate frequency-shifted 10 ps pulses at unit efficiency 
by using 1 pJ of pump energy (or 0.2 W of pump power). 
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Pulse compression is a well-established technique for generating optical pulses 
shorter than those produced directly by lasers or amplifiers. Most commonly, 
additional bandwidth is generated by self-phase modulation as the pulse propagates 
nonlinearly in an optical fiber. Compressors based on single-mode fibers are limited 
to nanojoule pulse energies by higher-order nonlinear effects and ultimately 
damage to the fiber. Thus, new approaches are needed for compression of the high- 
energy pulses that are now readily-available from regenerative amplifiers, for 
example. 

One possible approach to this problem was reported by Nisoli et al. [1]. These 
workers achieved large spectral broadening by propagating pulses through a high- 
pressure noble gas confined in a novel hollow-core waveguide of fused silica. 
Excellent results were obtained, including compression from 140 to 10 fs. Although 
the compressed pulse energy is a substantial improvement on that achievable with 
single-mode fibers, these results do point out a limitation of this approach: the 
waveguide is lossy. Additional drawbacks include the susceptibility of the 
waveguide to optical damage, the size and compelxity of the apparatus, and a lack of 
commercial availability. 

Bulk materials can conceivably be used for high-energy pulse compression [2]. As a 
practical matter, several third-order nonlinear-optical processes occur when high- 
energy femtosecond-duration pulses interact with a medium. The output beam 
typically has different frequencies propagating in significantly different directions, 
and is difficult to control. As a consequence, the use of bulk materials for pulse 
compression has not found significant use. 

Here we show that the effective refractive nonlinearity that arises from the 
cascading of second-order processes [3] can be exploited for effective pulse 
compression. We demonstrate pulse compression based on both positive and 
negative nonlinear phase shifts. In each case 120-fs pulses are compressed by a factor 
of 3 while maintaining 85% of the input-pulse energy, and higher compression 
ratios should be possible. Scaling to higher energies will be straightforward, and a 
practical benefit is that the compressor can consist of simply a frequency-doubling 
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crystal and a suitably-chosen piece of transparent material. 

The phase shift arising from the Kerr nonlinearity is always positive. Therefore, 
materials with small nonlinear indices are desired for the generation of net negative 
phase shifts via the cascade process.   We chose to use a barium metaborate (BBO) 
crystal 1.7 cm long. Input pulses of duration 120 fs and energy up to 200 |ij at 795 nm 
were produced by a Ti:sapphire regenerative amplifier. The 6-mm-diameter beam 
from the regenerative amplifier was compressed to 0.4 mm in one dimension with 
a cylindrical telescope before passing through the BBO crystal. Typical intensities 
incident on the crystal were 10 - 80 GW/cm2. 

With phase mismatch AkL ~ 300TC (Ak = k2© - 2k©) the spectrum broadens by a factor 
of 2 - 3 and develops a multiply-peaked structure due to the negative nonlinear 
phase shift. Positive group-velocity dispersion (GVD) is required to compensate the 
negative phase shift, and this greatly simplifies the compressor - once the optimum 
dispersion is known, a piece of transparent material can supply the GVD. We used a 
1-cm piece of L1IO3, which supplies approximately the desired dispersion. This 
succeeded in compressing the pulses to 45 fs (Figure 1(a)). The experimental results 
agree with numerical solutions of the coupled wave equations (Figure 1(b)). In this 
case the pulse energy is 85% of the input-pulse energy. Most of the loss is due to 
Fresnel reflections and could be eliminated by anti-reflection coatings on the 
crystals. 
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Figure 1. Measured (a) and calculated (b) pulses compressed using negative nonlinear 
phase shift.   The input pulse is indicated by the dashed lines. 

A similar compression ratio was achieved using positive nonlinear phase shifts, 
obtained using a L1IO3 crystal with AkL = -3007t.  In this case a prism sequence was 
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used to provide negative GVD, and the compressed pulse energy was reduced owing 
to 2-photon absorption at the harmonic frequency in LilOß. 

The quadratic compressor based on negative nonlinear phase shifts offers 
substantial advantages. The compressor is extremely simple, the insertion loss can 
be well under 10%, and 100-fs pulses can be compressed by a factor of 3 with 
immediately-available materials. It is reasonable to expect that higher compression 
ratios will be possible through the use of materials with larger values of %(2) than 
LÜO3 and BBO. To illustrate this point, we performed simulations of pulse 
compression at 1550 nm, a wavelength for which periodically-poled LiNbOß is 
already commercially available. The results (Figure 2) demonstrate a compression 
ratio of 10 and compressed pulse duration of -10 fs, obtained with input intensity of 
less than 10 GW/cm2. 
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High repetition-rate pulsed fibre lasers are very important for future ultra-high-speed communication 
networks. One of the most promising approaches to fabricate such devices is to take advantage of the effect 
of modulational instability (MI) in optical fibres [1]. The potential of this method to generate pulse trains 
up to terahertz repetition rates was demonstrated already in the late 80's [2, 3]. In these experiments the 
non-linear pulse shaping took place in a fibre externally pumped by a mode-locked laser source. Recently, 
continuous pulse train generation at more than 100 GHz was demonstrated by Franco et al. and Yoshida et 
al. by including a non-linear fibre into the laser cavity [4, 5]. Intracavity pulse shaping reduces the 
requirement for high pumping power of the device and makes cw pumping feasible. In the experiment by 
Yoshida et al, a Fabry-Perot (FP) filter was introduced in the cavity in order to control the repetition rate 
and reduce the threshold for pulsation. The latter approach is very promising, because the device can be 
operated with a moderate pump power and the design makes generation of a stationary train of soliton-like 
transform-limited pulses with a low duty cycle possible. In this paper, we theoretically investigate the 
dynamics of the MI laser with intracavity FP filter. 

The laser ring cavity (see ref. [5]) consists of an amplifying section, a long span of passive fibre, an output 
coupler, an optical isolator, a band-pass (BP) filter and a FP filter. To model this system, we used the 
complex Ginzburg-Landau equation [6] in the following form: 

dA..,d2A 

dz 
+ id—r + iÄA\ A = A° an l+W/Wsal   -° 

where the distance of field propagation z has been normalised to the total cavity length. The coefficient d 
accounts for the group velocity dispersion, 8 for the Kerr nonlinearity, g0 for the small signal gain, a0 for 

T+T„ 

the losses and b for the loss dispersion introduced by the BP filter.   W(z) -  j|A(z,r)| dr is the field 
r 

energy within a time period corresponding to-the free spectral range of the FP filter TR = 1/ AfFP, and 

Wsal is the energy saturation parameter of the gain medium. 

In our consideration we assume that the FP filter has a high finesse. In combination with optical isolator it 
results in spectral selection of frequency components that are confined to maximums of the FP-filter 
transmission. Therefore, the FP filter can be accounted for in the first approximation by considering only 
solutions with a discrete and equidistant Fourier spectrum. As a result of the spectral filtering, the intensity 
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profile of the complex field A(z,t) will always be periodic with the round-trip time of the FP filter, 

\A(z,rf=\A(z,r+TR)\2. 

To investigate the dynamics of pulse-train formation inside the laser cavity, we numerically solved Eq (1) 
by a split-step Fourier method for different frequency detunings between FP- and BP-filter transmission 
peaks Af = fFP- fBp and for different values of the energy saturation parameter Wsal. The laser cavity 
parameters in our simulations were close to the experiment of Yoshida et al. [5]: fibre cavity length is 1.5 
km, d = 1.16 ps1, S= 6.66 W~l, g0 = 3.45, a0 = 0.23, b = 0.25 ps2, and AfFP = 1 \5GHz. 

First, let us consider the influence of the frequency detuning between the FP and the BP filter on the 
operation of the laser. The power profile of stationary pulse trains for different frequency detunings is 
shown in Fig. 1 (a). The laser is operated just above the MI instability threshold when A/" = 0. The optical 
pulse train in this case is generated on a cw wave background. When the frequency detuning between the 
filters mcreases the contribution of cw background becomes smaller. The optimum configuration is when 
the centre of BP-filter transmission falls in between FP-filter transmission peaks, i.e. A/ = AfFP/2. In 
this case the MI threshold for pulsation takes on its minimum value, and the pulse train is generated 
without any cw background. 

120 

«1 

20 10 
Time (ps) 

(b) 
Fig. 1 

o to 
Time (ps) 

(a) 
Optical power profile of stationary pulse train for (a) Wsal =0.03pJ and 1) Af=0,2) 

Af = AfFP/4 = 28J5GHz, 3) A/ = 6f„ 12 = 51.5GHz; (b) Wsal=0ApJ and 
Af = 57.5GHz ■ All other laser parameters are defined in the text. 

When the energy saturation parameter is increased the average generated optical power in the cavity also 
mcreases. The optical pulses, which form a periodical wave, become shorter and eventually form a train of 
well separated soliton-like pulses as shown in Fig. 1 (b). The shape of each pulse in this case is well 
described by the analytical soliton-like solution of Eq. (1), A(z,t) = A,,^'1^^/T0)exp(ihZ) [6]. 
Since the group velocity dispersion in the cavity is much higher than the loss dispersion, the pulses 
presented in Fig. 1 (b) are nearly transform limited. 

The fact that the soliton-like pulses show stable propagation inside the laser cavity is actually remarkable 
One can see that, in the absence of the FP filter, single soliton-like pulse propagation is not stable, because 
the zero field background experience positive linear net gain [6]. Any small field perturbation outside the 
soliton-like pulse will grow when it propagates. In our case, when equidistant spectral filtering is used 
pulses form a periodic wave where they interact with each other and suppress any increase of zero field 
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fluctuations. It follows from this explanation that the pulse train should become unstable when the 

saturation energy is larger than a certain critical value Wsa,   and the pulses are very short. Above the 

critical value, the separation between the pulses is so large compare to the pulsewidth that small field 
perturbations can grow up before they will be suppressed by bulk soliton-like pulses. In our numerical 

calculation, the critical value of the saturation energy was Wsal   = 0.1 pj . At this point, the duty cycle of 

the pulse train reached its minimum value TFWHM ITR ~ 0.17 . This number gives the theoretical limit for 

the duty cycle that can be obtained from this laser and shows a good agreement with experimentally 
obtained data [5]. 

The results of the numerical simulation that are presented in Fig. 2 demonstrate the presence of a power 

limit for stationary pulse train generation. In the left plot, Wsat < Wsa*. After a short transient process, the 

laser field evolves into a stationary train of soliton-like pulses. In the right plot Wsal > Wsa, . Even after a 

long distance of propagation, the amplitudes and the temporal position of the pulses do not approach any 
steady state. 

*■ »*^ 

Fig. 2 Evolution of the intracavity laser field (only one period of the pulse train is shown) for 
Wsa, = 0.08/?/ (left) and Wsat = 0.15/?/ (right). All other laser parameters are the 

same as on Fig. 1 (b). 

In conclusion, we considered the dynamics of pulse train generation in MI lasers with an intracavity FP 
filter. We found that the most advantageous alignment of the system is when the BP-filter transmission 
peak falls in between two adjacent FP-filter transmission peaks. In this case the stationary pulse train is 
generated without any cw background. The pulses become shorter with increasing power, but the generated 
pulse train remains stationary only up to some critical value of the power. Above this power level, the 
pulses show big amplitude and timing jitter. At the critical value, the duty cycle of the pulse train reaches 
its minimum. The knowledge about the dynamics of the pulse train generation obtained in this work will be 
very useful in the future development of this type of high-repetition rate fibre lasers. 
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Ever-increasing capacity needs in long-haul optical communications, particularly in dense and high 
spectral efficiency WDM systems at 40Gbit/s, require the exploration of novel and high-performance 
transmission schemes. It is therefore of potential interest to associate two promising technologies such as 
dispersion management (DM) in soliton propagation III and optical regeneration by synchronous 
modulation and filtering 111. However, it is known that filters do not provide efficient amplitude control 
of DM solitons, as opposed to the "classical" Schrödinger solitons 131. To remove this limitation, we 
proposed in IAI a new "black-box" optical regenerator (BBOR) scheme. The basic idea is to periodically 
convert the DM soliton into a Schrödinger soliton, the filter recovering its efficiency, then apply soliton 
regeneration ; upon transmission through the line, the output pulse converts itself back into a DM soliton 
before it reaches the next regenerator. We have shown the feasibility of a transoceanic 4x40Gbit/s DM 
soliton transmission system owing to this new regeneration scheme IAI. In this work, we show the 
compatibility between new BBOR and DM soliton propagation on a 16x40Gbit/s dense-WDM and high- 
spectral-efficiency transmission system. "Classical" soliton regeneration, as achieved by 
modulation/filtering of DM solitons, is shown to be comparatively less efficient. 

Figure la shows the basic BBOR layout. The principle of BBOR is based on the conversion of DM 
soliton into Schrödinger soliton through propagation in High Dispersion Fibre (HDF)(cf. table 1) with 
adequate mean power. Then, soliton regeneration by narrow band filtering and intensity modulation is 
applied. Since narrowband filtering is applied to Schrödinger solitons, it is possible to take full advantage 
of the filter for stabilisation of amplitude fluctuations. Phase modulation (PM) is first used to reduce 
timing jitter through propagation in HDF. All simulations take into account realistic component loss, as 
indicated in the figure. PM/IM depths are set to 8078dB. 

Figure 1: (a) BBOR layout and (b) transmission line scheme 

Bai Box Cfrkd Otgrmlvr 

Figure lb shows the system configuration. The dispersion map is 320km long, corresponding to the 
regeneration period. The eight DSF+ /DSF- spans are 40km-long while the DCF spans are lkm-long (cf. 
table 1). The average dispersion and dispersion slope over the dispersion map are, 0.02ps/nm.km and 
0.03ps/nm2.km at X=1550nm (centre channel 8), respectively. Guiding Fabry-Perot filters are periodically 
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inserted along the transmission line with 160km periodicity. In order to ensure stable DM propagation, 
required pre-/post-chirp for each WDM channel is achieved through optimised lengths of DCFi and 
DCF2. Optical amplifiers are assumed to be flat-gain with 4.5dB noise figure. 

Table 1 : Fibres characteristics (D values given at 1550nm) 

Fibre D (ps/nm.km) D' (ps/nm2.km) Loss (dB/km) Seff(um2) 
DSF+ 2.25 0.05 0.2 60 
DSF- -4 -0.06 0.2 40 
DCF -80 -80 0.6 20 
HDF +5 0.05 0.2 60 

Every 320km, WDM channels are separately regenerated via a DMux-Mux containing BBORs. In 
previous work, we showed that the location of the BBORs in the dispersion map is very important to 
obtain an homogeneous and maximum performance for all WDM channels IAI, resulting, in our system, 
in individualised DCF2 and DCFj lengths before and after the regenerators. Within the DMux-Mux array, 
dispersion slope compensation (DSC) is achieved through different fibre spans, matching the cumulative 
dispersion of each WDM channel to that of channel 8. 

Numerical simulations are performed using the scalar non-linear Schrödinger equation. We used 64-bit 
PRBS sequences with 12.5ps raised-sine. System performance is then evaluated from both timing jitter 
and amplitude Q-factor measurements on received data, using 3 noise seeds. 

We first investigate the 16x40Gbit/s DM soliton system performances and the adequation between 
BBOR and weak channel spacings compulsory for high spectral efficiency. Centre channel 8 wavelength 
is set to 1550nm and we proceed to a set of simulations for a channel spacing varying from 1.2nm to 
2nm. The optimised EDFA output power is lldBm (-ldBm/channel). Figure 2 shows the maximum 
achievable transmission distance (Q=6, BER=10"9) as a function of channel spacing AX,. 

Figure 3: Evolution of the maximum transmission distance (km) vs. channel spacing (nm) 

The error-free distance is seen to rapidly decrease for channel spacings smaller than 1.6nm. This can be 
explained by the increased impairment from nonlinear WDM effects such as XPM and four-wave mixing 
(FWM), which are enhanced at smaller channel spacing. The slight reduction in transmission distance 
observed for values of AÄ, greater than 1.6nm is attributed to the effect of dispersion slope. This 
simulation demonstrates that regeneration through BBORs makes possible a 16x40Gbit/s DM soliton 
transmission system over transoceanic distances with a channel spacing down to 1.3nm (0.26bit/s/Hz). 
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an Next, we proceed to a comparison between BBOR and "classical" regenerator performances taking as _. 
example a 1.4nm channel spacing. Figure 3 shows the result of this comparison. Q-factor evolution of all 
16 channels is represented as a function of DSF transmission distance in both case. 

Figure 3: Evolution of Q-factor vs. transmission distance (AX=1.4nm) with implementation of 
(a) BBOR regenerator, (b) "classical" regenerator 
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When regeneration through BBOR is applied (a), Q-factors are found to slowly decrease with distance, 
but to reach asymptotic values greater than 6 at 10,000km which is clearly not the case with "classical"' 
regeneration (b) ; indeed, in this case, the error-free achievable distance is limited to less than 3,000km. 
The stabilisation of Q-factors with distance is clearly due to the efficient control of pulses provided by 
optical regeneration through BBORs. The only source of degradation of the output signals is observed to 
be amplitude fluctuations resulting from timing jitter conversion through IM 151, while timing jitter 
remains at a stable 0.2ps level at each regenerator output. 

In this paper, we have shown that the combination of dispersion management and new "black box" 
optical regeneration provides dramatic improvement of transmission quality and distance in dense WDM 
systems. The feasibility of high spectral efficiencies (0.26bit/s/Hz) for 640Gbit/s (16x40Gbit/s) 
transoceanic systems is demonstrated. The proposed scheme is therefore of great interest for Tbit/s long- 
haul transmission design. 
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Non-return-to-zero (NRZ) pulse is the most 
widely used modulation format in optical com- 
munication systems. However, the distortion of 
NRZ pulse due to the group velocity dispersion 
and the nonlinearity has been theoretically ana- 
lyzed in few papers'1'. It is an emphatic contrast 
to many successful experimental and numerical 
demonstrations([2] and references therein). 
Kodama and Wabnitz developed an analytical 
description of NRZ pulse by means of the WKB 
approximation of the nonlinear Schrödinger equa- 
tion'1', but dispersion and nonlinearity of the 
fiber should be uniform along the transmission 
line in their analysis. In this paper, we show 
that the variational method with a properly cho- 
sen ansatz provides us with a detailed analysis 
of NRZ pulse propagation in an optical trans- 
mission line. It can be directly applicable for 
a dispersion-managed line along which the dis- 
persion and/or the nonlinearity change'3''I4'. We 
also examine the effect of initial frequency chirp 
for suppressing the pulse distortion. 

The pulse propagation in a transmission line 
having a varying dispersion, nonlinearity, and 
gain/loss can be described by 

i%-d-^^-2 + s{zUq = ^z)q,   (1) 

in normalized units. The normalized quantities, 
q, T, Z, d(Z), s(Z), and g(Z) express respec- 
tively the complex envelope amplitude of electric 
field E, the retarded time t, the propagation dis- 
tance z, the group velocity dispersion k"(z), the 
Kerr nonlinearity v(z), and the gain/loss j(z), 
through q = E/yfifc, T = t/*o, Z = z/z^L, d{Z) 
= k"(Z)zNh/tl s(Z) = u{Z)Q0zNh, and g(Z) = 
J{Z)ZXL with properly fixed time *o> power <3o, 
and nonlinear distance zNL = 1/(VQQO). V$ rep- 
resents a Kerr nonlinearity for normalization and 

defined by 27rn2o/(Acfr0A) with properly fixed non- 
linear coefficient of the fiber 7120, effective fiber 
core area AcS0, and wavelength of the carrier A. 
Using the transformation q(Z,T) = a(Z)u(Z,T), 
we can rewrite Eq.(l) as 

. du 
ldZ 

d(Z) d2u        .„,.., -Yg^2+a(Z)\u\2u = 0 (2) 

where a(Z) = s(Z)a2(Z) and a(Z) = o(0) 
•z 

exp / g{z')dz' 
Jo 

In the Lagrangian variational method'5', a care- 
ful choice of proper ansatz for the solution is 
quite important to ensure the validity of the anal- 
ysis. We here consider an even NRZ pulse shape. 
Since the evolution of nonlinear chirp is observed 
in NRZ pulse propagation'1', we then assume the 
following solution u in Eq.(2) as a trial function 
of the variational method, 

u(Z,T) 
A(Z) 

{tanh(r+) — tanh(7 -)}expM . 

(3) 

=   p(Z){T±Tp(Z)}, 

(4) 

where A(Z), p(Z), TP(Z), E(Z), C{Z), and 9{Z) 
represent the amplitude, slope of pulse edge, pulse 
width, nonlinear chirp, linear chirp, and phase 
respectively. Substituting Eq.(3) into the La- 
grangian density of Eq.(2) and applying the vari- 
ational method, we have 
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( dA 

dZ 

dr_ 

dZ 

dE 
dZ 

dC 
dZ 

where 

Mr) 
fE,(r) 

fE2{r) 

fE3(r) 

fcAr) 

fc2{r) 

fc3(r) 

D(T) 

with 

d{Z)A 
2 

d{Z)E 
Zbp2 

'c-Jr*fA 140p2 

fr, 

=     d(Z) 
5E2 

320pD/£, + —^fE2 + 4EC 
14p 

+40a(Z)AYfE> , 

=   d(Z) Sp4fCl + 
E2 

U2p' ;fc2 

+a{Z)AYfCt , 

(5) 

[50/6(/o/£ - 3/2/6) 
+7/4(5/4/^ -fofi)]/D(T), 
/o(25/2/6 - 7/2)/D(r) , 
[fs(foti-2f2f()) 
+f'sfof2)/D(r) , 
[/e(-3/o/^ +2/2/5) 
+f*hhVD{T) , 
[ftifoft - 5/2/5) 
+2///o/2]/i?(r) , 
[A(3/4/6-/o/i) 
-V'sfoh}/D(r) , 
[/e(-/4/5 + 3/o/i) 
-2tifof4)/D(T) , 

UtQhfi-fofi) 
-4///o/4]/-D(r) , 
/2(/o/J + /4/6)-2/£/o/4, 

(6) 

1 + 3cosech2r(l — r cothr) , 
4-3cothr{3r 
+5cothr(l-r cothr)} , 
r coth r - 1 , 
T (TT

2
 + T2) coth r - (TT

2
 + 3r2) , 

r (7TT
4
 + IOTTV + 3r4) cothr 

-(77r4 + 307T2r2 + 15T4) , 
/6(T)   S   T (31TT

6
 + 49TT

4
T

2 

+2l7T2r4 + 3r6) cothr 
-(3l7T6 + 1477r4r2 

+1057r2r4 + 21r6) . 

(7) 

fs(r) = 
Mr) = 

Mr) = 
Mr) = 
Mr) = 

/oo 
|w|2 dT = A2f0(r)/p is the to- 

-00 

tal energy of the pulse and a conserved quan- 
tity. The function T(Z) is defined by r = 2pTp. 
f- represents the r-derivative of /,- , (i = s,t,0, 
2,4,6). 

Now we examine the validity of the analysis 
by camparing the results with those obtained 
by direct numerical simulation of Eq.(l). The 
system parameters are follows ; fiber dispersion 
d(Z) = 0.393 (-0.05 [ps/(nm-km)]), fiber nonlin- 
earity s{Z) = 1 (n20/Affo = 0.4 x 10"9 [1/W]), 
fiber loss g(Z) = -14.2 (0.2[dB/km]), carrier 
wavelength A = 1.55[^m], pulse width 2TP = 20 
(200[ps] which corresponds to the narrowest pulse 
in 5 [Gbit/s] system), slope of pulse edge p = 2, 
initial chirp E = C = 0 (chirp free), initial peak 
power A = 1 (1 [mW]), amplifier spacing Za = 
0.081 (50[km]). In Figure 1, we compare the 
waveforms of different pulses observed at 0, 5000, 
and 10000 [km]. The solid fines are obtained by 
numerical simulations of Eq.(l) while the dashed 
ones by the variational method of Eqs.(5). One 
can see the good agreement between numerical 
and variational results. 
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Fig.l : Comparison of waveforms. 

Figure 2 shows the variation of the relative 
root-mean-square (RMS) pulse widths, Trms(z)/ 
7rms(0), along the line. The solid line is ob- 
tained by numerical simulations, the filled circles 
by the variational method, the dashed and dot- 
ted fines by analytical expressions, Eq.(6) in [1] 
and Eq.(26) in [6]. This shows that the varia- 
tional analysis gives better results than the con- 
ventional analysis. 



270 / ThD3-3 

•5 L 

O 
CO 

1.6 

1.4 

u   1.2 - 
> 
cs 

0< 

Variational 

♦-•■= 

Numerical 

Eq.(6) 
in [1] 

\ 
Eq.(26) 
in [6]   , 

0   2000  4000  6000  8000  10000 

Distance [km] 
Fig.2 : Variation of the relative RMS pulse 

widths in a constant dispersion line. 

Figure 3 shows the variation of the relative 
RMS pulse widths in a dispersion-managed line 
in which d(Z) = 7.86 (-1 [ps/(nm-km)]) for 
0[km] < z < 40[km] and d(Z) = -29.475 (3.75 
[ps/(nm-km)]) for 40[km] < z < 50[km] among 
each amplifier spacing. The average dispersion 
of this line is the same as the above and the 
other system parameters are also the same. The 
solid line is obtained by numerical simulations, 
while the dotted line by the variational method. 
This also gives a pretty good agreement between 
numerical and variational results and shows the 
applicability of the variational method for ana- 
lyzing the dispersion-managed line. 
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Fig.3 : Variation of the relative RMS pulse 
widths in a dispersion-managed line. 

Proper initial phase modulation is effective to 
suppress the NRZ pulse broadening!']. In Fig- 
ure 4 we campare the variations of the relative 
RMS pulse widths in the line as the same as 

that used in Fig.2 for various initial linear chirps, 
C = 0,±TT/50 (0, ± 0.1 [GHz/ps]). The solid 
lines and filled circles represent the same in Fig.2. 
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Fig.4 : Variation of the relative RMS pulse 
widths for various initial linear chirps. 

In conclusion, we showed that the NRZ pulse 
evolution in optical transmission lines can be well 
explained in the framework of the variational 
analysis with a properly chosen ansatz for the 
pulse. This analysis can be easily extended to 
incorporate perturbation terms and useful to de- 
sign the optimal line and pulse controller like 
nonlinear gain'8' or optical filters. 
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Dispersion-management offers several advantages for the design of high-speed optical com- 
munication systems based on solitons [1], In particular, the energy of the dispersion man- 
aged (DM) soliton can be enhanced by appropriate design of the dispersion map, giving 
rise to improved performance in systems where timing jitter and signal-to-noise ratio are 
limiting factors [2]. In addition, for weak dispersion management, the DM soliton inter- 
action is reduced because overlapping portions of the interacting pulse tails are chirped 
[3]. For stronger dispersion management, however, pulse stretching becomes significant 
and pulse overlap is substantially increased, leading to strongly increased interaction and 
reduced collapse distance [4]. Therefore, for practical applications with typical interpulse 
separations of about five pulse widths, the dispersion management strength is constrained 
to moderate values below about S = 4. 

Recently, the DM soliton interaction was studied in simple two-stage dispersion maps 
to determine the effect of amplifier positioning within the dispersion map [5, 6]. In the 
theoretical study [5], the collapse distance was shown to depend strongly on the amplifier 
position and, for the symmetric map considered, a strong correlation between energy 
enhancement and the DM soliton collapse distance was established. On the other hand, 
the experimental study [6], which was performed using an asymmetric dispersion map, 
showed only a weak dependence of the stable DM pulse energy on amplifier position, and 
yet substantial variations in the error-free distances were observed. In both cases, the 
dispersion map strength, S, was relatively high (S « 5 and S « 8 respectively) giving rise 
to significant pulse breathing in each case. 

In this paper, we analyse numerically the DM soliton interaction for the practically 
important case of moderate strong dispersion management (S < 4). We consider three 
different map configurations corresponding to both symmetric and non-symmetric disper- 
sion maps, made up of varying proportions of anomalous and normal fibre (1:1, 1:9 and 
9:1). We show that for these moderate strength maps, the detailed pulse dynamics play 
the dominant role in determining the collapse distance of DM solitons, irrespective of the 
dispersion map configuration. In each case, the collapse distance is maximised by locating 
the amplifier at positions where the pulse evolution is symmetrised within the dispersion 
map. 

To determine the soliton collapse distance we use the variational model presented in 
Ref. [5]. The evolution equations for the amplitude ai, width rx chirp m, frequency m, 
and position £i, of the pulses, are given by, 

a\i\ =   if = const. (1) 
dr\ 

dz 
=   2CT(Z)TI/Z1 (2) 

dfii 
dz Wz)*. +   2r4        2v,-r3   1    y-T3 U2" -11 exp [   (2£i21 

(3) 

dn,\ 

dz 
=   2\/2c(z)772^ exp 

'   2£2" 
(4) 

dz 
=   — U{Z)K\ (5) 
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Figure 1: Collapse distance and power enhancement versus amplifier location for S = 2 
and L\ — 5km. The amplifier position is measured from the start of the normal fibre 
section. 

Here, a(z) and c(z) describe the periodic dispersion map and the gain/loss function, re- 
spectively. The energy enhancement factor r)2 is chosen to give periodically stable solutions 
in the absence of a perturbing puslse. We assume that a pair of interacting pulses are a 
distance 2£i apart such that a-i = a\, r-i = T\, H2 = ßi, «2 = — «i and £2 = —£i- 

The dispersion managed fibre is made up of alternating lengths, L\ and L2, of normal 
and anomalous dispersion fibre, with dispersion coefficients ß'{ and ß2' respectively, and 
characterised by two parameters: the average dispersion, ßa = {ß'{L\ + /^'I^VC^i + £2) 
and the dispersion map strength, S = {ß'^L-z — /3"Li)/T0

2, where T0 is the pulse FWHM 
at its minimum point. 

As an example of our calculations, Figure 1 shows the collapse distance as a function 
of amplifier position for a L\ = 45km, L2 = 5km, ßa = —0.127ps2/km and 5 = 2. 
The amplifier spacing is 50km, the fibre loss 0.2dB/km, and To = 20ps. The position 
of the amplifier, La, is measured from the beginning of the section of normal dispersion 
fibre. Figure 1 shows a strong variation in the collapse distance over the region La — 
5 — 30km, even though the power enhancement factor (shown dashed) remains almost 
constant. This behaviour can be explained by examining the evolution of the pulse width 
in this region. Figure 2 shows the pulse dynamics corresponding to points 1 — 3 in Fig. 1. It 
is clear that the greatest collapse distance, achieved when La « 18km, corresponds to the 
amplifier position which symmetrises the pulse propagation. Thus, the pulses experiencing 
more asymmetric behaviour also experience greater overlap and consequently stronger 
interaction. 

We have confirmed that the general observations made in Figures 1 and 2 hold true for 
moderate strength dispersion management, for all three map symmetries. For 5 = 2, the 
correlation between maximum collapse distance and propagation symmetry is absolutely 
clear. For 5 = 4, however, the correlation remains good for the asymmetric dispersion 
maps only, and for the symmetric map, it is necessary to compromise between symmetris- 
ing the pulse breathing and minimising the power enhancement to give the greatest col- 
lapse distance. For strong dispersion management, 5 > 4, the importance of the pulse 
breathing symmetry diminishes and power enhancement becomes the dominant factor in 
determining collapse distance for all map symmetries. 

In conclusion, we have shown that for moderate strength dispersion management, the 
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Figure 2: Pulse width versus propagation distance within the map for amplifier positions 
at La = 12km, La = 18km, and La = 24.0km, corresponding to points 1 - 3 in Fig. 1 

detailed dynamics of the pulse propagation play an important role in determining the 
soliton interaction, and that the collapse distance is maximised when the pulse breathing 
is symmetric. The benefit of symmetrising pulsewidth breathing in DM soliton systems has 
been reported recently [7], and can be achieved by appropriate tailoring of the transmission 
fibre dispersion, or by the introduction of guiding filters. Here, we have shown that such 
symmetry can also be achieved by appropriate positioning of the amplifier within the 
dispersion map. 
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Semiconductor Optical Amplifiers (SOA) are potential candidates for high bit rate optical fiber communication 
systems at 1300 nm because of their efficiency and compactness. A major drawback is the Amplified 
Spontaneous Emission (ASE) that has to be reduced in order to further upgrade these systems'1,2'. Saturation of 
amplification by the signal leads to a net gain for ASE. Introducing a saturable absorber (SA) into the line one 
can achieve an opposite saturation behaviour where saturated amplification (signal) exceeds the unsaturated gain 
entailing suppression of ASE. In this contribution we aim at the optimization of such an SOA-SA module for 
stable, high-bit rate RZ signal transmission in an optical fibber where our studies rely on the well-established 
model of Agrawal and 01sson<3>. 
The energy gain of an amplifier (absorber) 

M<), Gh==^=\p{t)e'^;dt 

Es, 
Ei 

\ + eh+(e' 

(1) 

is providing direct access to its amplification (absorption) properties. Here Ei and EQ, are the input and output 
energy, respectively, E$ is the SOA/SA saturation energy. The quantity h+ measures the transmission function 

h(t) before saturation sets in. The energy balance of the transmission line, consisting of a SOA (Gg), a SA 

( GE ) and a fiber (L = e  ), only exhibiting losses, is 

G = GEXGEXL 

G = ea-log|l + e^ (1 + Ä)1/V •1 
(2) 

Dispersion and nonlinearity of the fiber can be neglected because we are operating the system near the zero 
dispersion wavelength (ZDW) and at low powers. Here e is the input pulse energy normalized to the saturation 
energy of the amplifier, v represents the ratio v = Es /E* of the saturation energies of absorber and amplifier, 

e marks the fiber losses for one round trip  and finally h* (hi ) are the SOA (SA) transmission functions 

before saturation sets in. There are two cases of principal interest, viz. i) hl=h^, hl=h^ for pulses after a set 
of zeros and ii) pulses in a regular train. In order to maintain the regularity in the latter situation periodicity of 

the transmission function is required. This condition permits to numerically determine A+ ( hi ). Introducing T 
as pulse spacing and tR as the recovery time this condition reads as 

fc(0 = äoHfco+log i-O-Ay**0 1 J f o fexp   
J 1 M 

(3) 

h(t) = h+=h(t + T) (4) 

This approximation works well for not too short pulses and recovery times, cases for which more involved 
models have to be applied (4). The time dependent energy e(r) belongs to the part of the pulse having already 
entered SOA/SA and is normalized with the saturation energy: 

e(t)=—jp(t')dt' (5) 



ThD5-2 / 275 

l.i 
G(e) 

1.05 

0.95 

<1.25 Gb/s 

l>-~—*-^ --, 
'-"',         \. 

f\'/,'             \ \5Gb/s "\. 
i V//           \ 10 Gb/s 

I  /Ä 40 Gb/s 
. 1     i    / '   1   .                   .     .                         .     \.    _ N. 

0        0.002     0.004    0.006    0.008     0.01     0.012 
£ 

Fig. 1: Dependence of net energy gain on 
pulse energy for a regular pulse train. 

♦ - stable ooints. 

6     8    10   12   14   16   18   20 
Bit rate in Gb/s 

Fig. 2: Bit rate dependent 
energy of stable and un- 
stable points 

In Fig. 1 the energy gain as a function of the normalized input energy is displayed for different bit rates. The 
fiber losses are chosen to exceed the small signal amplification so ASE is always damped while the signal still 
experiences net gain. This condition is not met for a 40 Gb/s signal. This result implies that there is a maximum 
bit rate where net gain can be achieved. Beyond this bit rate the difference between small signal and saturated 
gam at the amplifier exceeds the small signal absorption. Below this limit there are two points of unit gain, the 
one at higher energy being stable (♦). Pulses with input energies above the unstable point will converge to 
stable energies while pulses with too low energy will be damped away. In Fig. 2 the bit rate dependence of the 
stable points is shown. The dashed line marks the limit above which no stable points exist. Since the location of 
stable points depends on bit rate one may expect that the pulses will attain discrete energy levels depending on 
the leading zeros. 

The net gain is strongly influenced by the ratio v of the saturation energies. In Fig. 3 the energy gain is plotted 
1.8r- .   , .      0.025r  

Fig. 3: G(e) for A0
a = 5, h'0 = -1, o=-4.1, 

(a) v=0.15, (b) v=0.20, (c) v=0.25 

Fig. 4: Dependence of the energy at stable 
points on the ratio v of the SAO/SA satu- 
ration 

for different values v. Only below an definite upper limit a net amplification can be achieved at saturation (see 
Fig. 4). This limit depends on both the small signal values for amplification and absorption. 

In Fig. 5 the joint SOA/SA transmission function for different ratios of the SOA/SA recovery times is shown 
The pulses are situated at t = -200ps, 200 ps. Obviously there is no sufficient net gain compared to the 

background for XR /XR = A > 1, i.e., when the recovery time of the absorber exceeds that of the amplifier. The 

pulse energy leading to stable pulse propagation depends on A (see Fig. 6). Obviously there is a threshold for 
the recovery time of the absorber. Therefore there is a trade off to be accounted for in fixing the respective 
recovery times. 

The gain function being narrower than the pulse indicates that there will be a considerable pulse shortening. 
Because of the competition between amplifier and absorber there can be a walk off in either direction, 
depending on the energy of the pulse. This bi-directional walk off does not occur without S A. 
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pulse propagation vs. ratio 
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Knowing the time derivative of the joint transmission function at the point of maximum peak power tf one can 
estimate the direction of the walk off. The sign of the time derivative shows the relative position of maximum 
amplification and pulse peak: 

f(*'"> + h\t) 
P{t¥)e h'(h) Li ( 

1- 
V \ 

V 
1- 

l-expHQ 

(l + eexpfc:)1/(2v) f 

(6) 

P(t?) is the peak power of the input pulse, 

saturation energy of the amplifier. Eq. (6) was 
assuming that the  walk  off per round trip 
compared to the pulse width. For the energy 

e0 =f[(exp(-Ä;)-l)(l/v-l)fv -iy*: 

El  the 

derived 
is  small 

(7) 

IS 20 
Bit rate Gb/s 

Fig. 7: Bit rate dependence of zero 
walk off energy EQ 

the transmission function at t=t? is at maximum and no 

walk off will take place. For energies smaller than Eo the 
walk off is positive, at Eo the situation is reverted. The 
actual pulse walk off depends on the preceding bit pattern. 

In Fig. 7 the bit rate dependence of Eo is shown 
Because    of   the    connection    between    phase    and 
transmission   function'3'   eq.   (6)   leads   to   an   energy 
dependent spectral walk off as well. The latter one can be 
suppressed by applying a filter, which also limits the spectral broadening originating from pulse shortening. 
In conclusion, we have shown that an appropriate combination of SOA and SA can be used to achieve net 
amplification of the signal compared to the ASE. The dependence on the bit rate, the ratio of saturation energies 
and the input energy was investigated and stable transmission could be predicted. The maximum bit rate 
depends on the parameters chosen but values higher 10 Gb/s are theoretically possible. 
Our recent experiments carried out have shown that the ASE could be suppressed between the pulses as well as 
in the marks. The existence of bit rate dependent points of stable energy could be qualitatively verified. 
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Coherent propagation of trains of optical pulses through a two-level absorber has been 
investigated, from a theoretical viewpoint, by many researchers. These investigations have been 
based on the self-induced transparency (SIT) equations.1 both with2-5 and without6 the 
assumption of zero relaxation. Recently, theoretical predictions have been supported by 
experimental observations of the Jacobi elliptic dn solution7. In particular, experiments 
demonstrated the evolution of an arbitrarily shaped input optical pulse train into the analytic 
shape-preserving Jacobi elliptic pulse train solution to the Maxwell-Bloch equations. A special 
feature of the solution observed was that the chirp was zero. In this paper we report the 
demonstration of the evolution of a continuous wave (c.w.) laser beam into a analytic shape- 
preserving pulse train solution. In this case, the analytic solution is not a Jacobi elliptic function, 
but rather a sinusoidal function. In our talk, we will present experimental, analytical, and 
numerical evidence for the existence of this new sinusoidal pulse train solution to the Maxwell- 
Bloch equations. 

The interaction of a plane-wave optical field with an inhomogeneously broadened two- 
level absorber can be described by two sets of equations that are known as the reduced Maxwell- 
Bloch equations. For circularly polarized light traveling in the z-direction, the electric field at 
the position of the atom is: 

E(t,z) = E0(t,z)[ei{tot-k2+^t» + c.c] 

Where <|>(t), the phase, is a function of time. The instantaneous field frequency may be defined 
as: 

co(t) = a)+ — 
dt 

The "reduced Maxwell-Bloch equations" in this case are: 

3u      ,.       .,      _      u_ 

r2 

— =-(Aco-(|))v-E2w— 
at 2   T 

dv v 
— = (Aco-<t>)u + E.w— 
at ' T2 

^=-Elv + E2u^±^ 
at T, 

3E,/9z   =   a/27tg(0)Jv(t,z,Aco)g(Aco) dAro 
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9E2/8z   =   -cc/27ig(0) Ju(t,z,Aco)g(Aco) dAco 

where Ei = ? E0 cosf, E2 = ? E0 sinf, Tj is the relaxation rate of u and v, T, is the relaxation 
rate of w, g(? ?) is the line shape function, and ? ? = ? 0 - ? , the difference between the atom 
resonance frequency and the frequency of the optical field. In this study df (t)/dt is given by: 

df (t)/dt = f o sin dt,   or  f (t) = - (f o/d) cos dt, 

where f 0 is a constant that determines the amplitude of the phase modulation, i.e., frequency 
shift from the atom resonance frequency, and d the frequency of the phase modulation. 

The experimental apparatus is shown in Figure 1. An Argon laser was used to pump a 
single-mode fast scanning tunable c.w. dye laser with Rhodamine 6G as the gain medium. The 
output of the c.w. dye laser was chirped by using an electro-optic crystal. The chirped c.w. laser 
light was directed through a quarter-wave plate to produce (s +) circularly polarized light and 
focused by a lens (Li) into the sodium cell, which is housed in an oven inside a magnet. Another 
lens (L2) was used between the sodium cell and a detector to image the output laser from the 
sodium cell onto an aperture (Ai). This was done in order to select only the uniform plane-wave 
region from the output signal for observation. A third lens (L3) was used to focus the output 
from the aperture onto a fast detector. The mode structure of the dye laser was continuously 
monitored by two Fabry-Perot interferometers. 

In this work the frequency of the power amplifier which we used to drive the phase 
modulator was 31.5 MHz. This frequency is, therefore, the frequency of the phase modulation of 
our laser light. It dictates the cycle time of the phase modulation to be 1/f = 32 nanosecond. The 
applied voltage on the phase modulator determines the amplitude of the phase modulation. Then, 
by applying a magnetic field the laser beam is brought on resonance with the sodium atomic line. 
The sodium cell was kept at temperature of 190°C which makes a/ = 5. 

Figure 2 shows the input c.w. laser light signal into the sodium cell and the intensity of 
the laser beam coming through the sodium cell, while a phase modulation of frequency 31.25 
MHz and amplitude of 20 MHz is applied to the laser beam. These curves show a modulation in 
the intensity of the laser beam corresponding to a period of 16 nanoseconds or a frequency of 63 
MHz, which is twice the frequency of modulation of the laser beam. The solid line shows the 
computer simulation intensity of the laser beam after a/ = 5. Figure 3 (the dotted line) shows the 
intensity of the laser beam coming through the sodium cell, while a phase modulation of 
frequency 31.25 MHz and amplitude of 50 MHz is applied to the laser beam. In this case, we 
observe 4p behavior. 
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Being possible sources of cross-talks in wavelength-division-multiplexed (WDM) systems, 
four-wave-mixing (FWM) processes in single-mode optical fibers have attracted considerable 
attention.1-5 Previous studies have been focussed on the generation of new optical frequencies 
in fibers that are operated near the zero-dispersion frequency or in the anomalous dispersion 
region. In this paper, we report our study on a new FWM process in a single-mode fiber, which 
involves the cross-polarization mixing of a laser beam and a spectrum of light. This process 
could have significant effects on the performance of WDM systems. 

Recently, we observed a new FWM process in a birefringent fiber, where a distinct frequency- 
shifted beam was generated as a result of mixing a laser beam and a spectrum of superfluorescent 
light.6 The frequency-shifted beam and the laser beam were found to be always in the two 
polarized modes of the fiber, respectively.6 To explain the experiment results, we have analyzed 
the process of mixing two pump waves at different frequencies, which are launched into the two 
polarized modes of a birefringent fiber, respectively.7 We find that two new frequency-shifted 
beams can indeed be generated and their polarization states are orthogonal to those of the 
respective pump waves.7 The frequency shift is proportional to the polarization-mode dispersion 
in the fiber, and insensitive to the difference between the two pump frequencies.7,8 This explains 
why a laser beam can mix with the individual components in a spectrum of light to generate a 
distinct new frequency,7 as shown in Fig.1(a). 
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Figure 1: Mixing of a laser beam at w\ and a spectrum of light at u^ (a) in a birefringent 
fiber, where new frequency-shifted waves at W3 and 0J4 are generated, and (b) in a single-mode 
fiber, where no new frequencies are generated but the polarization states of the new waves are 
orthogonal to those of the pump waves. 
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Figure 2: Measured output spectra when the linearly polarized laser beam and the same po- 
larization of the superfluorescent light were launched into the fiber: (a) the analyzer was set at 
an angle to maximize the laser output from the fiber; (b) the analyzer was rotated by 90° from 
that in (a) to minimize the laser output from the fiber. 

The same process is expected to take place in a single-mode fiber. In an ideal single-mode 
fiber, there is no polarization-mode dispersion, and, therefore, the frequency shift must be zero. 
This means that the new waves generated must be at the pump frequencies and their polarization 
states must be orthogonal to those of the pump waves, as shown in Fig.l(b). As a result, the 
polarization states of the pump waves are modified by the process. This process is different 
from the well-known FWM processes, whether due to same-polarization mixing1'4'5 or cross- 
polarization mixing,2'3 that involve the generation of new frequencies. It is also different from 
the process of cross-phase modulation, which does not involve the generation of new waves. 

In our experiments, the light source used was a nitrogen-gas laser pumped dye laser, which 
generated 3-ns pulses with a peak power up to several hundred watts at a rate up to 20 pulses 
per second. The dye used was Rhodamin 590, which covered wavelengths from 560 nm to 630 
nm. The laser wavelength was set at around 610 nm. At this wavelength, the laser output also 
contained a broad spectrum (575 - 600 nm) of strong superfluorescent light. The laser beam 
was linearly polarized, whereas the superfluorescent light was nearly unpolarized. The output 
light from the laser was launched into a 1-m long single-mode fiber (Fibrecore SM600) with a 
lOx microscope objective lens. The fiber was laid as straight as possible to reduce bend-induced 
birefringence. A polarization analyzer was placed at the output end of the fiber and the spectrum 
of the output light was measured with a spectrometer. We first placed a broadband (400 - 700 
nm) polarizer at the input end of the fiber and adjusted its axis to maximize the laser input 
to the fiber. The analyzer at the output end was then adjusted to maximize the laser output 
from the fiber. The output spectrum with this setting is shown in Fig.2(a). When the analyzer 
was rotated by 90°, the laser output from the fiber was minimized, as shown in Fig.2(b). The 
weak output light shown in Fig.2(b) is due to the residual and induced birefringence in the fiber 
and the finite extinction ratios of the polarizers. With the present setting, the laser beam and 
the superfluorescent light launched into the fiber had the same linear polarization state, and no 
wave mixing should have taken place. We next took away the input polarizer to allow the full 
unpolarized superfluoresent light to be launched into the fiber together with the laser beam. The 
output spectra obtained by setting the analyzer at the same angles as those for Figs.2(a) and (b) 
are shown in Figs.3(a) and (b), respectively. It should be noted that the same vertical scale is 
used for all the figures shown in Figs.2 and 3, so that the spectra in these figures can be compared 
on a relative basis. It can be seen that the light spectrum shown in Fig.3(a) is comparable to 
that shown in Fig.2(a), while the intensity in the spectrum shown in Fig.3(b) is significantly 
higher than that shown in Fig.2(b). The increase in the intensity of the superfluorescent light 
shown in Fig.3(b) in relation to Fig.2(b) is, of course, the result of launching the full unpolarized 
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Figure 3: Measured output spectra when the linearly polarized laser beam and the unpolarized 
superfluorescent light were launched into the fiber: (a) the analyzer was set at the angle as for 
Fig.2(a); (b) the analyzer was set at the angle as for Fig.2(b). 

superfluorescent light into the fiber. The large increase in the intensity at the laser frequency, 
however, can only be explained by either Raman amplification or the generation of a new wave. 
To check whether the beam at the laser wavelength shown in Fig.3(b) was produced by Raman 
amplification of the weak laser beam in Fig.2(b) by the full unpolarized superfluoresent light, 
we launched the full unpolarized superfluorescent light and the laser beam at a significantly 
reduced intensity (by adjusting the launching condition) into the fiber. We then adjusted the 
intensity of the superfluorescent light launched into the fiber by using a variable aperture placed 
in front of the laser. We found no obvious change in the intensity of the output beam at the 
laser wavelength when the intensity of the superfluorescent light was changed. This indicates 
that Raman amplification had negligible effects. We therefore believe that the beam at the laser 
wavelength shown in Fig.3(b) is the result of the FWM process, as illustrated in Fig.1(b). It 
can be seen that the linewidth of the laser beam in Fig.3(b) is slightly broadened, compared 
with that in Fig.2(b). This can be explained by the residual and induced birefringence in the 
fiber. By comparing Fig.2(a) and Fig.3(a) carefully, we find that the superfluorescent spectrum 
in Fig.3(a) is slightly stronger than that in Fig.2(a), in agreement with the prediction that the 
FWM process should also generate a new spectrum that coincides with the original spectrum 
but has an orthogonal polarization state, as shown in Fig.1(b). 

We have demonstrated that a laser beam and a spectrum of light can mix in a single-mode 
fiber to generate new waves to modify the polarization states of the mixing waves. This FWM 
process, which can take place in both normal and anomalous dispersion regions, could introduce 
cross-talks in WDM systems by mixing various channels among themselves or with the amplified 
spontaneous emissions of erbium-doped fiber amplifiers. 
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One of the noteworthy features of the dispersion-managed (DM) soliton is the fact that, in contrast with the 
conventional NLS soliton, it can sustain stable propagation not only in the anomalous average dispersion 
regime but also at zero or normal average dispersion [1]. In absence of filtering, the only condition to be 
satisfied concerns the map strength parameter which should exceed a critical value S > So- « 3.9, 
according to numerical simulations [1]. In this work, we revisit the problem of dispersion management at 
zero-average dispersion. This regime can be viewed as a frontier for a wavelength-division multiplexing 
communication system that is expected to operate under both the anomalous and normal dispersion 
conditions. As such, it deserves a particular attention. Thanks to an appropriate change of variables, we 
show how a standard perturbative analysis allows an extension to the next order of previous results 
obtained using either a multiple scales analysis [2] or some other kind of averaging [3]. This extension 
reveals a quasi-invariance property related to the pulse shape at the fiber junction. The analysis also 
suggests an alternative for the determination of the critical parameter Scr. 

We consider a periodic two-step dispersion map consisting of fiber segments of length L. (/=1,2) and 
dispersion parameters ßy (ß21 < 0 , ß^ > 0)- Assuming zero-average dispersion (ß^L, = - $nU\ the 
propagation in the anomalous (first) and normal (second) fiber segments is described by the nonlinear 
Schrödinger (NLS) equation: 

'^f+2^ + N2^=0 
(1 a,b) 

.dU2       1 d2U? ,    ,2 
&2        2   ST

2 '    ' 

The propagation distances zj= Zj/L^ have been scaled to the local dispersion lengthsLrv =T2 / ß2 - » with 

T0 being a characteristic time scale; this scaling implies 0 < zj < /, where / = £. /£_ =£_ /£    . The 

time r is in units of T„ and the fields are expressed in conventional NLS soliton units associated with the 
anomalous fiber. The ratio r = (y2L2 ) /{yxLx) has been introduced, where yu is the nonlinear parameter 
of the fibers. We restrict the present analysis to the lossless case and also concentrate on the symmetric 
case r-1. 

In the stationary regime here considered, except for a residual uniform nonlinear phase shift 6, the pulse 
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profile is perfectly reproduced after each period of the map. Moreover, without loss of generality, the field 
can be considered as real at the midpoint of the anomalous fiber. This implies, according to eqs (la,b), that 
the   following   continuity   and   periodicity   conditions   must   be   satisfied:    U\{zx = 0,r)= UQ(T), 

UI(Z1=1,T)=   UQ(T),     U2(Z2=0,T) = U1(Z1=1,T) = UQ(T)     and     u2(z2 =l,r)= exp(/<9) Ufa^z) 
=  exp(/0) U0(T). 

In the linear limit (0= 0) the fields in each fiber are simply related by u\(z2=z,t) = Ux (z1 =z,r) ; we 

then introduce, with a perturbative treatment in mind, the following substitution: 

y±(z,T)= 2K ' J (2) 

This substitution can be given an alternative interpretation as it is strictly equivalent to a folding of the first 
half of the map onto the second half, thus evoking a similar technique used for analyzing quantum impurity 
problems [4]. 

In the regime of strong dispersion management, the dispersion dominates (locally) over the nonlinearity. 
This suggests a perturbative analysis in terms of a small parameter, e.g. s « \U0 „df. We then define 
y/+=4sV+ and t/0 = -Je V0, with V± and V0 of order unity. The new fields V± are now coupled over the 
common domain 0 < z < I: 

i 

In this framework, the problem is particularly well suited for a standard perturbative anah/sis. A regular 
perturbation expansion of the fields V± and the phase shift ^yields a hierarchy of linear equations that can 
be easily solved in the spectral domain. As will be shown, a proper consideration of the boundary 
conditions allows the determination of the fields Uii2 anywhere along the map. In particular, one finds, in 
the spectral domain and in keeping the first two orders of perturbation, the following expression for the 
field in the middle of the first (anomalous) fiber segment: 

f/1(z,=//2,v)sO(v)+;M (4) 

where the spectral distribution 3>(v), which represents the leading order solution, is given as the solution of 
the following integral equation: 

2 

ITdvx dv2 ——^—iLLL 0(v+vj) 0(v+v2) 0(v+vx+v2) = X O(v) . (5) 
2n:lvxv2 

The eigenvalue X is directly related to the phase shift 0 incurred over one period of the map. Eq.(5) has 
been obtained elsewhere using either a multiple scales analysis [2] or another averaging method [3]. This 
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stmgfatforward perturbative analysis allows an extension of the latter work as it easily includes the next 
order ot perturbation which is given here in terms of the function J(v): 

J{v) m- jjdVldv2
l-cos[^ lyM <P(K+v0<I>(y+y2)O(v+y1+v2) 

In /viv2 
(6) 

As wdlbe discussed, this order of perturbation also shows, in contrast with previous work, the asymmetry 
observed m numenca simulations when comparing the pulse profile at the midpoint of the two fiber 
segments. It also reveals an interesting quasi-invariance property of the pulse shape at the fiber junction. 

As a check of the accuracy of the present results, Fig, 1 compares the amplitude distribution at the middle 
of the anomalous fiber, as predicted by eqs (4>(6), with exact numerical results obtained by solving eq (1) 
directfy, usmg the split step Fourier method. The parameters are: 9 = 0.24 rod, U=L?= SO hn, fa=-fa = 

10 pS2/bn. T0 =11.35 ps, implying that a conventional NLS soUton sech r in the anomalous fiber would 
have a FWHM = 1.763 TG = 20 ps. The normalized length is then equal to / = 6.21. The excellent 
agreement revealed by Fig.l demonstrates the accuracy of this perturbative treatment Further examples 
will be presented. F 
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Figure 1. Stationary pulse profile at the midpoint of the anomalous fiber. Comparison between the perturbative 
analysis (squares) and the exact numerical results (solid line). See text for the system parameters. 

This analysis also suggests an alternative (and presumably more accurate) method for detennining the 
value of the crrtical parameter S« . As will also be discussed, eq.(5) also admits a solution of odd parity 
thus implying the existence of an antisymmetric DM soliton. ' 
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Dispersion managed (DM) solitons, or RZ-pulses propagating in a fibre link with periodic dis- 
persion compensation, provides an attractive means for propagating high bit-rate signals over large 
distances. Compared to standard solitons in fibres with uniform dispersion the power of DM solitons 
is enhanced [1] and they can propagate at zero and normal path-average dispersion [2,3] resulting 
in a reduction of the Gordon-Haus timing jitter [4]. Successful propagation of DM solitons have 
been demonstrated in both single-channel [5] and WDM [6] systems. In this work we investigate 
the evolution of pulses with shapes deviating from the shape of a DM soliton. We have found that 
for strong dispersion maps (map strength, S > 3 — 4, with S defined as in [3]) these perturbed 
pulses do not radiate and the pulse dynamics induceed by the perturbation show no sign of decay. 
The absence of radiation, which is in contrast to the behaviour of standard solitons, is important in 
communication systems where radiation adds to the noise floor and can cause interaction between 
subsequent pulses [7]. 

We have studied a loss-less two-stage map where the dispersion alternates between normal and 
anomalous. DM solitons (i e pulses that replicate themselves with the period of the disperion map) 
were calculated numerically using the method of [3]. The DM solitons were first perturbed by ap- 
plying a chirp. The resulting pulse evolution is illustrated in Fig 1 which shows the chirp as function 
of the width of the pulse. Fig 1 shows only the slow dynamics, i e the changes from one dispersion 
period to the next. This is achieved by calculating the chirp and the width at the same point (mid- 
point of the anomalous fibre segment) in every dispersion period. Each calculation of the chirp and 
the width generates a point in Fig 1 and points representing subsequent dispersion periods are then 
joined by a line. (A DM soliton which replicates itself periodically would be represented by a single 
point in Fig 1). Fig la-b show that for low map strength there is a spiraling towards the centre, 
a process involving radiation and reduction of the slow dynamics. The lower the map strength the 
closer to the fixpoint in the centre the spiral reaches. For S=0, corresponding to uniform dispersion, 
the spiral would reach the fixpoint in the centre, meaning that a soliton has emerged. For S > 0 
(Fig 1) the spiraling is stopped before reaching the fixpoint so the pulse will have some residual 
dynamics. For strong maps, Fig lc, no radiation or inward spiraling could be detected (for the sake 
of clarity single points are plotted in Fig lc instead of the line joining subsequent points). Although 
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Figure 1: Chirp as function of pulse width for a DM soliton perturbed by a chirp, S=0.75 (top left), 
S=1.5 (top right) and S=3 (bottom). 

many points in Fig lc end up close to the fixpoint there is no trend that the points approach the 
fixpoint after longer propagation distance. 

We also investigated the evolution of Gaussian pulses, see Fig 2 which shows the same quantities as 
in Fig 1. The input amplitude, width and chirp were chosen from the corresponding values of the 
numerically calculated DM soliton. Compared to Fig 1 the starting point in Fig 2 lies closer to the 
fixpoint. The perturbation also induces more dynamics in this case. However, the main conclusions 
concerning the radiation and the dynamics remain unchanged. 

In conclusion we have shown how the dynamics of optical pulses change gradually from the case 
of uniform dispersion (S=0) to the case of strong dispersion management. As the map stength is 
increased the asymptotic pulse dynamics increases but the radiation from the pulse decreases. For 
strong maps, S > 3 - 4, no radiation could be detected. 
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Figure 2: Chirp as function of pulse width for a Gaussian pulses with the same width, chirp and 
amplitude as the corresponding DM soliton, S=0.75 (top left), S=1.5 (top right) and S=3 (bottom) 
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Thus far, the work on the use of dispersion management (DM) for pulse transmission in optical- 
fiber communication networks has been focused on tranmission lines where the dispersion alternates 
exactly periodically between normal and anomalous. However, real communication systems exist 
in the form of patchwork webs, which include links with very different lengths. Assuming the dis- 
tribution of the lengths random, the DM upgrade of the patchwork systems makes it necessary to 
consider transmission of pulses in the lines subject to random DM. Besides its significance for the 
applications, this issue if also of considerable interest in the context of the soliton propagation in 
strongly inhomogeneous random media. In this work, semianalytical and direct numerical investi- 
gation of the pulse's dynamics in random-DM models is carried out. The semianalytical approach 
is based on the variational approximation (VA), which has become a widely accepted tool for the 
theoretical consideration of the DM solitons, demonstrating a fairly good agreement with numerical 
simulations [1-5]. In this short summary, results obtained by means of VA are presented. Direct 
simulations produce quite similar results, which will be presented in detail elsewhere. General in- 
ferences that are formulated on the basis of the semianalytical results are supported by the direct 
simulations as well. 

Two different models of random DM are considered. In a two-lengths model, the lengths I^ of 
the alternating normal- and anomalous-dispersion pieces are selected randomly from a certain in- 
terval independently from each other. In the one-length model, equal lengths inside each DM cell, 
ZA+) = !,(), are selected randomly from the same interval. In the former model, the path-average 
dispersion (PAD) ß is defined for the whole line, while in the latter model ß is PAD inside each 
cell. The final results turn out to be similar for both models. 

The pulse evolition is modelled by the lossless NLS equation. The analysis can be readily extended 
to include losses and gain, but the first necessary step is to understand fundamental features of 
random DM in the lossless model. In the case of strong DM, the shape of the pulse is well-known 
to be close to a Gaussian, and, accordingly, VA is based on the Gaussian ansatz 

U = T°\I— ■TiK(z)exp 
r2 

+ icf> (1) T0
2
 - 2iA(z) 

here A(z) = A0 + /^ ß{z')dz' is the accumulated dispersion defined inside the n-th DM cell, A0 and 
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<p being real constants. The width T of the pulse is related to the ansatz's parameters as follows: 

T(z) = v/r0
2 + 4A2(z)/r0

2. (2) 

A version of the Gaussian-based VA developed in [5], with normalizations L(~) + l/+) = 1, 
|/L|l/~) = ß+L^ = 1, is used here. To remain close to the normalizations, the random lengths 
L^ are picked up from the interval 0.1 < L^ < 1 (the minimum length 0.1 is introduced because, 
in reality, the segment length is not smaller than, say, 20 km), and it is set \ß±\ = 2. 

Using the technique of VA, one can derive equations for the nonlinearity-induced evolution of 
the parameters in z: PTQ = E is constant, and d,T0/dz = y/2EroW~3A(z), dAo/dz = ß — 
E (y/2W)~3[4A2(z) — TQ]. The changes of the parameters TO and Ao per one DM cell are small, 
hence they may be calculated as <5TO = § (dro/dz) dz, SAo = § (dAo/dz) dz, where § is the integral 
over a cell, and only the rapid variation of A(z) is taken into regard inside the integrals, while TQ 

and Ao are treated as constants. The evolution of the pulse from a cell to a cell is described by a 
map, To -> TO + <5TO, AO —i Ao + SAo- After may dispersion periods the evolution of the parameters 
may be approximated by the differential equations 

dTQ \/2ET0 

dz 

4 

8[L(-)+L(+)]lV? + 4Ä?     ^ + 4[Ao + 2L(-)-2L(+)]a 

~   , 2        =—}, (3) 
^/T0

4
+4[A0 + 2L(-)]

2 

dAp    =      -s V2ET$ 2AQ 2 [A0 + 2L^ - 2L^} 
dz 8[L(-)+LM}{S$T4Ä$     x/T4 + 4[A0 + 2L(-)-2L(+)]2 

4[A0 + 2L(-)1 i     / r- -\ 
~   ^—- L—-rln   2A0 + ^ + 4A2 

1/T0
4
 + 4[A0 + 2L(-)]

2
     

2     V ; 

-i In (2 [A0 + 2L(-) - 2L(+)] + ^/T
4
 + 4 [Ao + 2£(~) - 2L(+)}2\ 

+ In ^2 [A0 + 2i(->] + \/T4
+4[AO + 2L(-)]

2X
) } . (4) 

Eqs. (3) and (4) with the randomly varying I^' were numerically integrated in the interval 
0 < z < 835, which corresponds to ss 750 DM cells. The most essential characteristic of the 
pulse propagation at given values of ß and E is the mean width T, obtained by averaging the width 
(2) over a DM cell. Note that the difference of T from the formal width parameter TO (Eq. (1)) is 
important, as these two variables are found to evolve in very different ways. 

Typical results are displayed in Fig. 1, which pertains to slightly anomalous PAD, ß = —0.05, 
in the two-lengths model. The main part of Fig. 1 shows the case E = 1 (tantamount to the 
physical energy ~ 0.5 pJ, in the typical case). In this case, the pulse demonstrates large-amplitude 



ThDlO-3 / 291 

Figure 1: The cell-average width ofthe pulse vs. the propagation distance in the random-DM model 
with two independent lengths and ß = -0.05. In the main figure, E = 1; in the inset, E = 10. 

random oscillations of its width and shape, but, nevertheless, it remains fairly robust over a finite 
propagation distance. An irreversible degradation (decay) of the pulse commences at a very large 
propagation distance, the stable-propagation length being « 1200 average lengths of the DM cell, 
which implies the real distance to be > 100,000 km. However, the same model predicts that, at 
essentially larger values of the energy, for instance, at E = 10 (inset to Fig. 1), the degradation of 
the pulse commences immediately, hence the pulses with the energy > 5 pj are completely unusable. 
These results are not sensitive to the choice of the initial point, and are nearly the same in the one- 
length model. They also keep their character in the case of zero or slightly normal PAD (which has 
recently attracted a great deal of attention [5-9]). The same inferences follow from direct numerical 
simulations of Eq. (1) (not shown here): the pulse remains stable over a finite but large propagation 
distance, provided that its energy is small or moderate, but it quickly decays if the energy is too large. 

Lastly, it is interesting to note that the qualitative picture of the sudden decay of the pulse after 
many random oscillations (Fig. 1) strongly resembles what was found earlier in a model with a 
periodic sinusoidal (rather than the usually assumed piecewise constant [1-9]) modulation of the 
local dispersion coefficient [10,11]. 
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Introduction. The problems of soliton stability and 
instability induced dynamics in nonintegrable Hamilto- 
nian models have paramount importance for understand- 
ing of a wide range of nonlinear optical phenomena. Gen- 
erally, stability of the solitary solutions of the Hamilto- 
nian equations can be lost due to bifurcations involving 
appearance of a positive eigenvalue (stationary instabil- 
ity [1-7]) in the soliton spectrum or a pair of complex 
conjugate eigenvalues with positive real parts (oscillat- 
ory instability [6-8]). 

A threshold of the stationary instability of the multi- 
parameter solitons is given in many cases by the zero of 
the determinant of the Jacoby matrix Jij = dKjQi, where 
Kj are the soliton parameters and Qi are the associated 
integrals of motions [1-5]. The condition det(Jij) = 0 is, 
in fact, the compatibility condition of the problem arising 
in the leading (zero) order of the asymptotic solution of 
the eigenvalue problem governing stability of the soliton 
[3-5]. To find expressions for the eigenvalues it is ne- 
cessary to proceed further and solve problems arising in 
the higher (at least first) orders. Up to now it was done 
only for the specific class of the model equations hav- 
ing single parameter soliton families [1,3]. Considering 
stationary bifurcations of the two-parameter solitons the 
method of the adiabatically varying soliton parameters 
has been applied in Refs. [4,6], see also discussion below 
for more details. No criterion indicating transition to the 
oscillatory instability has been suggested till now. 

The purposes of this work are to formulate general 
asymptotic approach to stability of the multi-parameter 
solitons in Hamiltonian models, to show how it can be 
used to find expressions for the instability growth rates 
with an arbitrary accuracy and to demonstrate that un- 
der the certain conditions the first order approximation 
of this approach describes novel stationary and oscillat- 
ory instabilities of the solitons. 

Model and symmetries. We will consider Hamilto- 
nian equations in the general form 

.dEn 6H_ 
SE* 

n = l,2...JV, (1) 

which describes a wide range of physical phenomena re- 
lated with self-action and interaction of the slowly vary- 
ing along z wave envelopes in variety of nonlinear media, 
for physical examples, see, [1,3-8]. Here En are the com- 
plex fields, z is the propagation direction of the interact- 
ing waves, x is the coordinate characterizing dispersion or 
diffraction, H = H(dxEn,En,dxE^,En) is the Hamilto- 
nian and * means complex conjugation. We will assume 

that H is invariant with respect to the set of (L - 1) 
phase transformations: 

En -4 En exp(i7n^i), I = 1,2,... (L - 1), (2) 

<j>i are the arbitrary real phases and -yni are some con- 
stants. Because H does not depend from x explicitly, 
Eqs. (1) are invariant with respect to the arbitrary trans- 
lations along x: 

En(x,z) -4 En(x-x0,z). (3) 

Symmetry properties (2), (3) together with Hamilto- 
nian nature of our problem imply presence of L conserved 
quantities, which are (L — 1) energy invariants 

r     N 

Q,=       dxY,lnl\En\\   J = 1,2,...(I-1), (4) 
J n=l 

and momentum 

1   r      N 

QL = YiJ dx E(£n^£n ~ EndxE*n). (5) 

Solitary solutions of Eqs. (1) can be sought in the form 

i-i 

En(x, z) = an(x - KLZ) exp(i ^ 7mKjz), (6) 
i=i 

where KI are the real parameters characterizing phase ve- 
locities and angle of propagation with respect to z axis, 
and |an| -4 0 for x — KLZ = T —> ±00. 

Asymptotic stability analysis. To study stability 
of the solitons we seek solutions of the Eqs. (1) in the 
form 

£-1 

En = (O„(T) + £„(T, Z)) exp(i ^ iniKiz), (7) 
1=1 

where en(T, z) are the small complex perturbations. Lin- 
earizing Eqs. (1) and assuming that en(r, z) = £n(r)eXz, 
e* (T, Z) = £n+jv (r)eXz we get the following nonselfadjoint 
eigenvalue problem (EVP) 

i\t = CZ, (8) 

where £ = (£1,... £N, £N+I ■ ■ ■ (,2N)
T
 and C is the linear- 

isation (1) near the soliton. 
To solve EVP (8) we will apply the asymptotic ap- 

proach.   This approach relies on the expansion of the 
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unknown eigenvector |* into an asymptotic series near 
neutral eigenmodes of the soliton spectrum, i.e. zero- 
eigenvalue modes. The neutral modes can be generated 
by the infinitesimal variations of the free parameters of 
the soliton and thus they always can be presented as ex- 
plicit functions of the soliton solution. However, as any 
approximate method, the asymptotic approach has a cer- 
tain restriction. Namely, it describes only soliton spec- 
trum corresponding to a specific class of the perturba- 
tions which in the zero approximation can be expressed as 
a linear superposition of the neutral eigenmodes. Thus, 
generally speaking, on the basis of this approach one can 
get only sufficient conditions for soliton instability or, in 
other words, necessary condition for the soliton stability. 

By the infinitesimal variations of 4>i and xo it can be 
shown that 

da 

jfr' 
n = (nfuai,. ..jmciN, -lual,... - ima*N)

T, uz. = 

a = (oi,...aN,al,...a*N)
T, l=l,...(L-l) 

are neutral modes of £, i.e. tüi - 0 (/ = 1,.. ,L). Op- 
erator £ also has L associated vectors Ui = da/'dm such 
that CUt = -uh l = l,...L. 

It is straightforward to see that any solution of EVP 
(8) must obey L solvability conditions 

(wt\XO = 0, l = l,...L, (9) 

where (y\z) = £^ Jdxy*iZi and wi are the neutral 
modes of the operator Ö. 

Close to instability threshold it is naturally to assume 
that |A| ~ e < 1. We seek an asymptotic solution of 
EVP (8) in the following form 

|* = Y, *mZm{x),   & = £<7|ffz (10) 
m=0 1=1 

where constants d and vector-functions (m>o have to be 
defined. Here and below 1 = 1,2, ...L. Substitution (10) 
intoJSVP (8) gives a recurrent system of the equations 
forfm 

£m>0 — 
iX^ 

fo- ul) 

Substituting (10), (11) into conditions (9) one will find 
the homogeneous system of the L linear algebraic equa- 
tions 

00 L 

A2(^| J2(-\2)mC-2mJ2CtÜt) = 0 (12) 
m=0 1=1 

for L unknown constants Q. System (12) has a nontrivial 
solution providing that the corresponding determinant is 
equal to zero, This determinant is an infinite-order poly- 
nomial with respect to A2. Zeros of this polynomial define 

the spectrum of the solitary wave linked with the chosen 
class of the perturbations. Thus the equation specifying 
soliton spectrum is 

A2L£(-A2)^ = O, (13) 

where Dj are the real constants. 
To write the explicit expressions for Dj it will be con- 

venient to introduce vectors M/m) = (M^ .M^), 
where, 

M™ = {tii}£-2mUl,),m = 0,l,. .oo 

Now each Dj can be presented as 

D, £ V{M[mi\ ■M^), (14) 
n»i+ . 77i£= j 

where V{M[mi), .M{
L
mL)) is the determinant of the 

L x L matrix consisting from the raws M/ro,) and sum 
is taken over all such combinations of (mi,. .mi,) that 

Xw=i mi = j MJ°' can be readily expressed via de- 
rivatives of the conserved quantities with respect to the 
soliton parameters: 

(15) 

and practical calculation of M^ for m > 0 can be sim- 

plified: AfJ"0 = -(pPil^1-2"»)^,). 
Because |A| was assumed to be small, Eq. (13) has an 

asymptotic character. Therefore to make it work some 
additional assumptions must be made about orders of 
Dj. In the case if these assumptions are satisfied then 
Eq. (13) describes correctly the soliton spectrum and 
predicts bifurcations of the soliton. The corresponding 
eigenvalues can be found using Eq. (13) with any degree 
of accuracy. For example, let us assume that D0 ~ e2 

and Dj>0 ~ 0(1). Then, presenting A2 as 

A2 = e2£o,o~e 
J=0 

2j (16) 

in the first order Eq. (13) gives linear equation for (0, 

D0 - e2CoD1 = 0, (17) 

which indicates threshold of the stationary bifurcation at 
Do = 0- Continuing calculations into the next order one 
obtains 
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If Di ~ e2 then the asymptotic expression (18) fails. To 
have balanced equation for £o, we must now assume that 
Do ~ £4- However, in such a case the equation for £o 
changes from the linear to the quadratic one: 

Do-e2CoDi+e4^D2=0. (19) 

Eq. (19) gives two threshold conditions D0 = 0 and 
D\ = 4D0D2, see Fig. 1. The latter condition indicates 
onset of an oscillatory instability for D\ < 4.DoD2- It is 
also clear that the point Z?o,i = 0 is a source for the novel 
stationary instability, see region D\ > 4DQD2, Di > 0 in 
Fig. 1, where the eigenvalue which is positive throughout 
this region can not be predicted by Eq. (18). 

1 
\       • • 

D0       ID ]2=4D0D2 

\      • • / . 

 ^-\ 

y 
1 

1 1 

Dl 

1 1 

FIG. 1. Soliton bifurcation diagram in the neighbourhood 
of the point Do = Di = 0 for Z)2 > 0. Insets show 
(ÄeA, JmA)-plane with horizontal/vertical axes corresponding 
to ReX/ImX and dots marking soliton eigenvalues described 
by Eq. (19). 

A> = 
§9x  §9x 
9*1         dK2 

§9.i  §9.i 
OKI        ÖK2 

•) 

2?i = 
§9.L      §9x 
9/Cl           ÖK-2 + §9.i    §9.i ? 

D2 = 
M«  M<2> 

+ 
§9x    §9x 
9KI        9K2 + M<2> M$ 

§9.i    §9.i 
9KI        9K2 

Comparing the first order approximation for the eigen- 
values close to the stationary instability threshold, see 
Eqs (18), and eigenvalues which can be calculated from 
the effective particle Hamiltonians presented in [4,6] one 
will discover significant difference in the resulting formu- 
lae. Mapping the presented theory to the method used in 
[4,6], it becomes clear that the results of Refs. [4,6] can 
be recovered if one will try to calculate A2 in order e2 us 
ing ratio C1/C2 obtained from the solvability conditions 
(9) in the order 0(1), see Eqs. (7), (10) in [4] 

Summary General form of the asymptotic approach 
to the stability problem of the multi-parameter solitons 
in Hamiltonian systems has been developed It has been 
shown that the asymptotic study of the soliton stability 
reduces to the calculation of a certain sequence of the de- 
terminants, where the famous determinant of the matrix 
consisting from the derivatives of the system invariants 
with respect to the soliton parameters is just the first in 
the series. The most important result is that the presen- 
ted approach gives criteria for the oscillatory and novel 
stationary instabilities. 

It is straightforward to see by recurrence that if 
Dji>Q  ~ e2 then, to have balanced equation for £0, 

we must assume that Z?,< •< ~ e2(1+J ). Other words 
asymptotic expansion near the neutral modes can de- 
scribe soliton spectrum in such regions of the parameter 
space which are close to the codimension-(j + 1) bifurc- 
ation. If j =0 then only one condition must be sat- 
isfied and our asymptotic approach predicts presence of 
either two purely imaginary or two purely real eigenval- 
ues, which can collide at zero. If j =1 then two condi- 
tions must be satisfied and asymptotic approach predicts 
presence of two pairs of the eigenvalues which can be real, 
imaginary or complex. In this situation soliton becomes 
oscillatory unstable providing that two pairs of imagin- 
ary eigenvalues collided. For each further j two new 
eigenvalues come into play. 

It is instructive now to consider two simplest situations 
of the one- and two-parameter solitons. For the one 
parameter solitons: Do = dKlQi, Di = — (Wi|£~lr7i), 
D2 = -{Wi\C~3Ui). For the two-parameter solitons: 
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Dispersion management is increasingly being used for the transmission of data at 40Gbit/s [1,2]. In the 
case of standard fibre this leads to dispersion map strengths that are well outside the range where stable 
propagation of dispersion managed solitons has been successful [3]. In this paper we numerically 
investigate the effect of varying the pulse width in a dispersion map that has been successfully used 
experimentally to transmit data over more than 1000km of standard fibre. It is found that changing the 
pulse width does not have a large effect on the total propagation distance, however some improvement in 
system performance can be gained by optimising the pulse width. The dispersion length of the pulses is 
also dependent of the pulse width that is used. As the dispersion length is reduced the level of pulse 
breathing increases and so it becomes more important to take the output near to the point in the 
dispersion map where the pulses are unchirped. The pulses used in these simulations also demonstrate 
reduced power when compared to the expected energy of a dispersion managed solitons [6]. 

input 
14.2km 

Standard 
fibre Amplifier 23nm 

Filter 

6.8km 
DCF 

32.3km 
Standard 

Fibre 

Figure 1: Schematic of the dispersion map used in this model. 

The dispersion map used in these simulations is given in figure 1. It consists of 32.3km of standard fibre 
with dispersion of 16.012ps/(nm km) and third order dispersion of 0.06ps/(nm2km). This fibre was taken 
to have loss of 0.22dB/km and an effective area of 70.0|im2 The compensating fibre was of length 6.8km 
and had dispersion of -76.0ps/(nm km) and third order dispersion of -0.09ps/(nm2km).. The effective area 
of this fibre was taken to be 30.0[im2 and it was assumed to have loss of 6.5dB/km. The amplifier gain 
was ~10dB although it had to be increased for the shorter pulses as more excess gain was required to 
overcome the loss from the filter, the amplifier was taken to have a noise figure of 4.5dB. The filter had a 
2.3nm passband and had a Gaussian profile. It has been found both experimentally and numerically that 
the optimum position of the compensating fibre, if it is in a single section, is immediately after the 
amplifier. This maximises the nonlinear effects in the compensating fibre [4,5,6]. 

Firstly the experiment in reference [2] was modeled using the experimental parameters. The input pulse 
was Gaussian in shape and had a pulse width of 7.0ps.. The pulse used had energy of 1 lfl which is less 
than the expected energy for a dispersion managed soliton for a map of this strength (S=25). The pulse 
width used here is greater than would be normally used in a soliton system where a mark to space ratio of 
at least 1:5 is normally used to limit soliton-soliton interactions. Due to the short dispersion length of the 
pulses used here (< 1km) the pulse breathing means that the pulses overlap during most of their 
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propagation. The results of this simulation are given in figure 2. These show that transmission over 
1300km is possible with Q values of more than 6 (equivalent to a bit error rate of 10'9). This compares to 
the experimentally found transmission distance of 1220km 

50.0 

0.0 
500.0 1000.0 

Distance/km 

1500.0 

Figure 2. Numerical results for pulse width of 7ps. 

The same simulations were also carried out for a range of pulse widths between 2 and 7ps. These results 
Ln A ~ Laßa are given in Figure 3. This is equivalent to the dispersion map strength (given by; S =   "   —2 ) 

T 
varying from 25 to 300. With this wide range of dispersion map strengths it would be expected that the 
transmission distance would also vary considerably. Figure 3 shows that while there is some variation in 
total propagation distance it is only 2 or 3 passes through the dispersion map. The change in dispersion 
map strength would also be expected to considerably change the required pulse energy, however in this 
case the same pulse energy was used in each simulation. The dispersion map strength is still significant 
in that it describes the amount of breathing the pulses undergo. 

1500.0 

1400.0 

1300.0 

1200.0 
2.0 3.0 4.0 5.0 

Pulsewidth/ps 

6.0 7.0 

Figure 3. Maximum propagation distance for a range of pulse widths 

Figure 4 shows the Q-values around the point in the dispersion map where the pulses are unchirped. It is 
clear that as the pulses reach the point where they are unchirped the Q-values reach the maximum value. 
The variation of the Q-value with output position is less for the 7ps pulse than it is for the 2ps pulse. The 
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reason for this can clearly be seen by comparing the dispersion lengths for the two pulses. A 2ps 
Gaussian pulse in standard fibre has a dispersion length of 75m while a 7ps pulse has a dispersion length 
of 900m. The 2ps pulse has broadened to 26ps after propagating through 1km of standard fibre and so 
has started to interfere with the neighbouring bit, the 7ps pulse has only broadened to 10.5ps in the same 
length of fibre. It is clear from this that it is less important to take the output at the correct position when 
broader pulse are used. 
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40.0 

£   30.0 

i   20.0 

10.0 

0.0 
-5.0 -3.0 -1.0 1.0 

Distance/km 
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Figure 4. Q-values in the region of the unchirped point for 2ps and 7ps pulses. 

In conclusion numerical simulations have been used to examine the effect of varying the pulse width in a 
dispersion managed standard fibre transmission line operating at 40Gbit/s using RZ pulses. It was found 
that the total transmission distance is not significantly changed despite the large change in the dispersion 
map strength. The increased pulse breathing that is observed with shorter pulses means that the output 
has to be taken closer to the point where the pulses are chirp free when shorter pulse widths are used. 
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It is well-known that intense quasi-CW fields injected into optical fibers can evolve into ultrafast 
periodic pulse trains at THz repetition rates as a result of the interplay between nonlinear and 
dispersive effects. This was first demonstrated in standard optical fiber in the anomalous dispersion 
regime via the effect of scalar modulational instability (MI) where a 0.5 THz intensity modulation 
was observed [1]. For standard fiber in the normal dispersion regime, MI for an incident scalar field 
is inhibited, but 0.6 THz trains of dark soliton-like pulses have been observed for a dual-frequency 
input signal as a result of multiple four wave mixing processes [2]. On the other hand, the use of 
birefringent fibers in the normal dispersion regime has resulted in the observation of the vector form 
of MI, which has led to the generation of vector dark soliton trains at repetition rates of 2.5 THz [3], 
and sinusoidal beating signals at repetition rates up to 16 THz [4]. In addition, for propagation in 
both the normal and anamolous dispersion regimes, THz trains of almost independent solitons can be 
generated by the adiabatic amplification of a scalar beating signal in a fiber with constant dispersion, 
or by the propagation of such a signal in a fiber with decreasing dispersion [5]. 

Aside from their fundamental scientific interest, the generation of THz pulse trains in optical fibers is 
also of significant applied interest since the development of THz-modulated light sources is an 
emerging key technology for high capacity optical communications systems and far-infrared 
spectroscopy [6]. However, a major difficulty with experimental studies of THz pulse trains is that 
the sub-picosecond temporal structure of the pulse train cannot be directly resolved using 
photodiodes or streak cameras. Instead, the pulse train characterization is usually performed only 
indirectly using measurements of the optical spectrum and autocorrelation function [1-4, 6]. As far 
as the characterisation of sub-picosecond ultrashort pulses is concerned, however, autocorrelation and 
spectral analysis are now routinely replaced by the technique of frequency-resolved optical gating 
(FROG) which can provide complete intensity and phase characterization on sub-picosecond 
timescales [6]. In this paper we show that FROG can also be used to characterize arbitrary periodic 
pulse trains at THz frequencies. We demonstrate the success of FROG for this purpose by 
considering the characterization of both bright and dark soliton-like THz pulse trains which have 
fundamentally different intensity and phase characteristics but which lead to qualitatively similar 
autocorrelation functions and spectra. 

The FROG characterization of an arbitrary ultrashort pulse consists of two steps. The first step is to 
measure a two dimensional time-frequency spectrogram (or FROG trace) of the pulse, often achieved 
using a modified second-harmonic generation (SHG) autocorrelator. In this case, the SHG signal 
which varies as a function of the delay X between the autocorrelator arms is spectrally resolved to 
yield a FROG trace which is a function of frequency 0) and delay x. The second step involves 
applying an iterative algorithm to this FROG trace to retrieve the best estimate of the incident pulse. 
In versions of the FROG retrieval algorithm developed for ultrashort pulses, it has been considered 
that successful retrieval requires a FROG trace that is vanishingly small for large values of a> and x. 
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However, we show in this report that this is not at all a necessary requirement, and successful retrieval 
is also possible for functions that are periodic in time, even if they contain a non-zero background 
everywhere. Although this may seem surprising, it is a natural consequence of the fact that the 
numerical Fourier transform operations that are used in the retrieval algorithm can be applied equally 
well on functions that are periodic in time as for ultrashort pulses. Indeed, we have found that 
existing FROG retrieval algorithms can be adapted for the retrieval of periodic functions by 
introducing two straightforward modifications: (i) the introduction of a cyclic time-window to ensure 
that any temporal structure that leaves one edge of the computation window re-enters at the other 
edge, and (n) the removal of any filtering effects used for pulsed data to force the edges of the trace 
to be identically zero. The cyclic time window preserves any periodic structure present in the 
measured FROG trace, allowing the successful retrieval of periodic intensity and phase structure in the 
underlying electric field E(t). 

To illustrate the FROG characterization of THz pulse trains generated in optical fibers, Figure 1 shows 
two different pulse trains obtained from numerical simulations of the scalar or vector nonlinear 
Schrodinger equation. The top curves in Fig. 1 (a)-(c) correspond to a 2.5 THz train of vector dark 
sohtons generated on the slow axis of a birefringent fiber in the normal dispersion regime [3] Fig 
1(a) shows the pulse train intensity and phase, clearly illustrating the 100% modulation associated 
with the dark sohtons and the n phase difference between adjacent solitons. Fig. 1(b) and (c) show 
conventional spectrum and autocorrelation function respectively, with the result of the dark soliton 
tram generation being the appearance of a set of discrete spectral components separated by 2.5 THz 
and an associated temporally-modulated autocorrelation function. The bottom curves in Fig 1 (d)- 
(e) show the equivalent results obtained for a 0.5 THz pulse train generated in standard fiber in the 
anomalous dispersion regime at an intermediate stage in the evolution of an initial sinusoidally 
modulated field into a train of bright solitons. 
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Figure 1. Top (a)-(c): Results for a 2.5 THz dark soliton train in the normal dispersion regime (a) 
Intensity (solid line, left axis) and phase (dashed line, right axis), (b) spectrum, and (c) autocorrelation. 
Bottom (d)-(f): Corresponding results for a 0.5 THz pulse train in the anamalous dispersion regime. 

The important feature of the results in Figure 1 is that even though the intensity and phase of the 
pulse trains in the normal and anamalous dispersion regimes are significantly different this 
difference is not clearly manifested in the measurements  of the spectrum  and  autocorrelation 
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function. Figure 2, however, shows how the use of FROG allows the exact retrieval of the intensity and 
phase characteristics of the pulse train in both of these cases. 
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Figure 2: Top: (a)-(b) Results for a 2.5 THz dark soliton train, (a) SHG FROG trace, (b) retrieved 
intensity and phase (circles) compared with expected results (solid line). Bottom: (c)-(d) Corresponding 
results for a 0.5 THz pulse train. 

The SHG-FROG traces for the 2.5 THz and 0.5 THz pulse trains are shown in Fig. 2 (a) and (c) 
respectively. The FROG traces contain significantly more information than the separate spectral and 
autocorrelation measurements because, as well as spectral bands at SHG frequencies corresponding to 
each component in the fundamental spectrum, they also shows spectral bands at frequencies 
corresponding to the mixing between these components. This leads to a complex modulation pattern 
at each SHG frequency component which depends on the exact intensity and phase of the incident 
pulse train. To simulate experimental conditions, 10% multiplicative noise was added to these FROG 
traces, and retrieval was then carried out using the adapted FROG algorithm described above. The 
retrieved intensity and phase are shown as the circles in Fig. 2 (b) and (d) and compared with the 
corresponding expected intensity and phase from simulations. It is clear that there is excellent 
agreement. 

These results confirm the ability of an adapted-FROG technique to accurately retrieve the intensity 
and phase of periodic pulse trains at THz frequencies generated in optical fibers. The use of this 
technique should find wide application in nonlinear fiber optics, and should allow the direct 
comparison between experiments and theories of THz pulse train generation in fibers. 
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Dispersion compensation is a widely applied technique employed in long distance propagation at high data 
rates removing the effects of dispersion. For purely linear systems it is of no consequence where or how 
often within the transmission line the compensation is applied (at the start, end or an intermediate point in 
the system). For systems where there is any degree of nonlinearity this is not the case and the position and 
frequency of the compensation is a vital consideration. This is particularly so for soliton and RZ 
transmission format but is also an important consideration for NRZ systems. In this paper we aim to show 
from elementary symmetry arguments that stable evolution of the signal requires a chirp free point at the 
mid point of the dispersive sections. 
It is now well known from extensive numerical and appropriate analytical models of nonlinear dispersion 
propagation that ideal periodic pulses can be obtained for a range of strengths of two stage dispersion 
maps. These solutions are conveniently labeUed as solitons since they retain many familiar soliton 
properties and can be traced back to the 'conventional' solitons in the limit of weak dispersion 
management. In all cases the observation is that by considering a periodic dispersive structure with two 
sections of opposite sign of dispersion (with arbitrary different physical lengths) the solution requires that 
the pulses are unchirped at the mid point in either section. This is a profoundly important observation. It 
shows that the naive application of dispersion compensation with initially unchirped source pulses with 
exact dispersion compensation either periodically or at the end of the system is as far removed from the 
ideal solution as it is possible to get! The concept of prechirping the source pulses to match the stable chirp 
needed at the start of the transmission fibre is of course one clear way to deal with this problem. It is worth 
re-emphasising that if the systems were linear then the initial waveform is immaterial since exact 
compensation guarantees restortion of whatever waveform is launched. For nonlinear systems this is not 
the case and only small nonlinearity is sufficient to destroy the perfect reproducability. We consider the 
fundamental lossless, dispersive nonlinear propagation model [1,2] (which is the limit of the dispersion 
compensation period L being much larger than the amplification distance Zfl): 

i^ + d(z)Att+a\A\2A=0, (l) 

Here d(z) is the dispersion (see [3] for notations), periodic with the period L. The dispersion-managed 
soliton solution to Eq. (1) is given (see e.g. [3]) by A(z,t) = F(z,t,k)cxp(ikz) with a periodic function 
F(z+L,t)=F(z,t).   The soliton shape is given by 

i—-kF + d(z)Ftt+a\F\2F = 0. (2) 

In the most of practical dispersion map, the parameter k (wavenumber or quasi-momentum in terms of the 
theory of the Bloch functions) completely and uniquely characterizes DM soliton solution of Eq. (1). In 
practical terms, the parameter k uniquely determines the pulse width and the energy of DM soliton is 
unambiguously deduced by the pulse width. We do not consider here the degeneracy corresponding to the 
two branches of the solutions existing in the strong enough map with zero or normal average dispersion and 
having different energies for the same pulse width [3]. In general, for some maps it could happen that two 
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stable periodic solutions do exist with the same pulse width (an example will be presented below). 
However, for most of practical maps we can conclude that it is established on the physical level of 
accuracy that the parameter k uniquely determines the DM soliton solution of Eq. (2). Based on this 
statement, we now prove that the chirp-free points in such systems are always located at the points of 
symmetry of the function d(z), in particular, for the two-step map, in the middle of each fibres. Equation 

(2) possesses the following symmetry: if F(z,t,k) is a solution of Eq. (2) then F*(-z,t,k) is also a 
solution providing that the periodic dispersion map obeys the symmetry condition d(-z)=d(z). Because the 
function F(z,t,k) describes the DM soliton with the same wavenumber k (and consequently the same 

pulse width) as F(- z,t,k) it must satisfy condition (extra factors like exp(/a) are not important due to 

gauge invariance of Eq. (1)): F*{-z,t,k) =F(z,t,k). This condition immediately gives that at the 

origin of any symmetrical map z = 0,ImF(0,r) = -ImF(0,r) = 0. Evidently this means that DM 
soliton uniquely determined by the parameter k, has no chirp at the points of the symmetry of the dispersion 
map. For two-step map, in particular, such points are always in the middle of the fibre spans for any 
signal power. 
It is already known (see e.g. [2-5] that fitting (even if approximate) of the input signal with the true 
periodic wave form for a given map can be realized either with prechirping technique [4] using additional 
fiber or launching the transform-limited pulse at the specific chirp-free points [5]. The appropriate input 
chirp can be calculated using two basic ordinary differential equations (ODEs) for the 
RZ signal width and chirp. It is interesting to address the following question: what is the optimal point 
along the map to launch an input signal with parameters found using this approximate ODEs model ? Is 
there any difference between launching transform-limited signal at chirp-free point or appropriately chirped 
pulse at any other point along the dispersion map ? In other words, this is a question about sensitivity of 
the signal evolution to small deviations of input pulse from the true periodic wave form. 
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Figure 1. Slow (stroboscopic) evolution of two input Gaussian pulses (with parameters found from ODEs model) launched at 
chirp-free point (solid lines) and at the junction between fibers (dashed lines). 

Fig. 1 shows slow (stroboscopic) evolution of the pulse peak power (top left) and RMS pulse width 
(bottom left) of the Gaussian pulses with parameters found from the ODEs model, launched either in the 
chirp-free point (solid lines) or at the junction between two fibers (dashed lines). In the second case pulse 
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has appropriate chirp. Here d(z) is 5.15 in the first fiber and -4.85 in the second fiber a = 1 other 
parameters are shown in the figure. The right picture shows the slow (stroboscopical) dynamics as a 
mapping in the plane pulse width (FWHM), chirp (starting from 30-th section to remove first large 
amplitude transition trajectories). Input signal launched at chirp-free point during many periods evolves 
around some circle (DM soliton presents a fixed point in this picture). It is seen that the ODEs 
approximation of the input signal works much better when the pulse is launched at the chirp-free points 
This result has the following qualitative explanation. Near the chirp-free points the changes of the signal 
parameters are slower compared with a rather fast change near the junction between two fibers It is 
natural to expect that the same small initial deviations from periodic solution lead to larger deflections in 
the corresponding trajectories as it is seen in Fig. 1. 
For completeness of the presentation, we point out that developed analysis does not apply to the case of 
bistability, when two or more stable solutions exist with the same pulse width. There are dispersion maps 
for which a symmetry breaking occurs, in particular when the dispersion is small near the boundary For 
instance, for a dispersion map shown in Fig. 2 with segments of identical lengths and dispersions of-1, -2, - 
1,1, 2, and 1, respectively, has two solutions, that are complex conjugate in the midpoints of the fibres. In 
this case, chirp-free points are not in the middle of fibers, even in the lossless case. 

dispersion 

0-2 0.4 0.6 O.B 

Figure 2. Effect of bistability. Two stable periodic solutions (pulse widths evolution is shown) do exist in the map shown 
below. In this case the chirp-free points corresponding to the minima of the pulse width are not in the centers of the symmetry. 

This paper has shown from an elementary symmetry analysis that in dispersion compensated systems 
where a "lossless" model is valid, both RZ and NRZ, that nonlinearity requires a chirp free point at the 
centre of each section. 
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Introduction Manipulation of optical pulses using cross phase modulation by a control pulse is a well 
established technique for e.g. compression and switching of optical pulses in time and or frequency. Mostly analysis 
and applications have been concentrated to situations where the nonlinearity is of the focusing type, c.f. e.g.[l]. 
However, some interest has also been given to situations involving a defocusing Kerr nonlinearity. In some of the 
numerical simulations of this situation, it can be seen that for a copropagating pump-probe pair of pulses, the signal 
pulse tends to change form in the sense that it begins to broaden and start to develop "ears" in the outer parts of the 
intensity profile, cf e.g. [2]. 

In the present work we consider in more detail, both analytically and numerically, the effects of cross phase 
modulation in a situation involving a pump-probe configuration in a nonlinear defocusing Kerr medium. In particular 
it is shown that the previously observed deformation of the probe pulse is only the first stage of a new pulse splitting 
phenomenon where the pump pulse splits the probe pulse into two smaller (frequency shifted) pulse fragments which 
separate - a phenomenon suitably named the optical axe. 

The analytical analysis consists of two steps: First a perturbative analysis is made which clearly indicates the initial 
behaviour of the probe pulse for the cases of focusing and defocusing nonlinearity respectively. For the focusing case 
the pulse starts to compress as expected and for the defocusing case the pulse first broadens, then starts to develop 
ears and finally splits down the middle. Numerical simulations confirm the splitting, but also show that the two parts 
acquire symmetrical frequency shifts and start to separate. 

A more elaborate analysis, in terms of the variational approach, is then made to analyze the effect of cross phase 
modulation of a strong pump pulse on a weak probe pulse. The result of this analysis can be summarized in terms of 
a two dimensional Hamiltonian system for the variation of the pulse width and (for the defocusing case) the 
separation of the probe fragments. In the case of a focusing nonlinearity, the pulse does not split and the system 
reduces to a single equation, which can easily be solved to find the dynamical evolution and in particular the 
compression ratio of the probe pulse. In the defocusing case and for high pump amplitudes, the major effect is the 
splitting of the probe pulse rather than the internal dynamics of the separating parts. This implies that again the full 
Hamiltonian system reduces, but this time into a single equation for the separation dynamics. The corresponding 
equation can easily be solved to find the asymptotic separation velocity (i.e. also the asymptotic frequency shifts) of 
the pulse fragments. 

Finally a numerical analysis is made of the system of coupled nonlinear Schroedinger equations describing the full 
cross phase modulation induced interaction of the two pulses. The numerical results are also shown to be in good 
agreement with the variational predictions. 

Analytical analysis In the limit of a strong pump and a weak probe pulse, the coupled nonlinear Schroedinger 
equations can be decoupled into a single nonlinear Schroedinger equation for the pump and a linear Schroedinger 
equation (including an "external" potential generated by the pump) for the probe. In conventional normalized 
coordinates, the equation for the slowly varying envelope function of the probe can be written 

WX+-VTT+V(X,T)V=0 

where the potential U\(x, X) is proportional to the pump intensity and the sign of U is determined by the relative 
sign of the linear dispersion and the nonlinear refractive index change. For a focusing medium U > 0 whereas for a 
defocusing medium U < 0. We will consider the pump and probe pulses to be Gaussian in time, which implies that a 
suitable choice of trial function to be used in the variational approach is 
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[T—M(X)]
2 

Wix, T) = A(x)exp{ 2 + i[D(x) + C(x)(r- M(x) + E(x)(r- M(x))2]} 
2a (x) 

where the evolution of the pulse is determined by the evolution of the parameter functions, a, A, C, D, E and M. This 
ansatz function is flexible enough to describe the phenomena which we want to analyze. For the focusing case, M = 
0, and the ansatz describes the focusing and subsequent defocusing of the whole probe pulse whereas in the 
defocusing case we will assume a symmetric situation and the ansatz describes one of the symmetrically separating 
pulses. 

Going through the conventional steps in the variational approach we find that the variational equations with respect 
to the parameter functions can be reduced to two coupled equations for pulse width, a(x), and pulse separation, M(x) 
viz. 

axx+k=° *** 2Mxx + ^- = 0 

We will here, for simplicity, concentrate on the case when the pump dynamics and walk-off effects can be neglected, 

which implies that, without loss of generality, we can write U= Nexpi-T2), where the sign of N is determined 
by the relative sign of dispersion and nonlinearity and the potential function 7lt = TL, (a, M) is given by 

^ ^        l 2N ,     M2   s 
20       Vl + a2 1+0 

Two limiting cases are particularly interesting: 

(i) The focusing case (N>0). In this case, no pulse splitting or pulse displacement occurs and we can assume M = 0. 
The corresponding equation for a(x) can then easily be integrated once and the compressed pulse width can be found 
in terms of N (assuming ax(0)=0). For strong compression we find 

 1 1 
am~2jN   I 1 

{ V1+fl0 
where a<, and am denote the initial and minimum pulse widths respectively. 

(ii) The defocusing case (N<0). In this case, the main dynamics will be a splitting of the pulse into two fragment 
pulse which are shot out of the interaction region without much "internal" dynamics. Thus this situation is 
complementary to the first situation in the sense that the internal pulse dynamics involving changes in amplitude and 
width are less important than the separating motion of the pulses. We can then consider the pulse width, a, as 
approximately constant, which reduces the system into a single equation for M. This equation is trivially integrated 
once to yield the asymptotic separation velocity Mx as follows 

Mx =J2\N\ as   x —> 00 
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Numerical simulations The full set of coupled nonlinear Schroedinger equations for the pump and probe has 
been solved without any simplifying assumptions about the relative amplitudes of the pulses and the results have also 
been copmpared with the theoretical predictions. Two examples of the numerical results are given in figures 1 and 2. 
Figure 1 shows the action of the optical axe as it splits the probe pulse into two separating pulses which travel out of 
the interaction region and then settle into straight line trajectories in (x,t) space. Fig.2 shows a comparison between 
the numerical results and the variational predictions for the asymptotic separation velocity. The agreement is seen to 
be good. 

Fig. 1: Numerical simulation result showing the splitting action of the optical axe.. 
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Fig. 2: Comparison between numerical results and variational predictions for the asymptotic separation velocity of 
the pulse fragments 
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Introduction. In long amplified links, high bit rate optical NRZ signals may suffer from the Modulation 
Instabilty (MI) effect, as it enhances noise impairments if fiber dispersion is anomalous [1]. We refer to 
MI as to spontaneous amplification of a small modulation superimposed to a signal wave, mathematically 
described by linear expansion of the Nonlinear Schrödinger Equation (NLSE) for a slight perturbation 
with a CW pump signal [2]. When dispersion is uniform, this analysis shows that MI originates two gain 
bands in the frequency domain, that are symmetric with respect to the signal carrier and can be 
characterized by the peak gain GMI and peak frequency detuning Avm [3,4]. Noteworthy AvMI depends on 
the dispersion coefficient D, but GM1 is just determined by the Kerr coefficient /and the pump power P. 
Today, most of the installed links use conventional Single Mode Fibers (SMFs), exhibiting a large 
chromatic dispersion coefficient D in the operating Optical Fiber Amplifier (OFA) bandwidth: to support 
high bit rate signals (>10 Gbit/s), those SMF links will most likely use passive components for chromatic 
Dispersion Compensation (DC) at each amplifier site. Hence, as compensator spacing LDC coincides with 
OFA spacing LA, interplay between periodic amplification and dispersion variations will not be negligible, 
and a lossless approximation can not be applied [5]. In that case it is not yet clear how MI features would 
be affected: although nonlinear propagation would still occur just in each SMF section, DC may alter 
phase matching conditions between consecutive spans. 
Here we present a detailed analysis of MI in long amplified links with amplifiers and DC, obtained by 
means of the analytical solution of the exact governing equations. When a typical compensation scheme is 
used, MI is much different than in uniform fibers, and it produces far lower system impairments. This can 
have high potential impact on system design. 

Results. We considered N span links with LDC=LA as in Fig.l. In each SMF section the evolution of the 
field U(z,i) is described by the well known NLSE [2]: 

.dU     1 0 d2U      ,  |2 <-^ = -2ßllF-r\u\u-iau (1) 

where $ is the chromatic dispersion in ps2/km and a is the fiber loss coefficient. On the other hand, the 
linear propagation in each lumped compensator and OFA at z=nLA (n=l, 2....N) is given in the frequency 
domain by: 

U(nLA+,a>) = G e-iB"'2U(nLA-,w) (2) 

where the OFA gain exactly compensates for fiber loss G=exp(aLA), and B is the compensator dispersion. 
We studied MI assuming an input (z=0) signal consisting of a CW pump with a small perturbation given 
by a single tone at (O=27uvixom the carrier: 

U(0,t)=jp{l + ay°") (3) 

In this case Eqn. 1 is linearized and then can be solved using generalized Bessel functions [4]. MI 
evolution is obtained by iterating N times this solution and that of Eqn. 2. However the overall solution 
for long links is too involved to be put into an analytical form. We thus implemented a software tool that 
numerically computes the field solution (this also contains the conjugate spectral component at -#): 

U(NLA,t)= -Jp(l + a+eia" + aj10" ) (4) 

The results agree very well with those of usual split step simulations, but are obtained in a much shorter 
(about 3 orders of magnitude less) computing time and are almost free from numerical noise. 
We first investigated the MI dependence on the DC amount. To this aim we denoted by fractional residual 
dispersion S, the fraction of the SMF dispersion which is not fully compensated for {S=l-BlßL   ). 



308 / ThD16-2 

SMF DC OFA 

oO^M> o> 

25 

20 

£•15 
•a 
O 10 

5 

0 
0 

(a)      (b) 

£\*. ■ 

■■:.-. w~: ..:;./X. 
15 20 

Fig. 2. Li«/: scheme. Each span consists of a 100 km long 
SMF, a linear dispersion compensator (DC) 

and an optical amplifier (OFA). 

5 10 
o)/2it (GHz) 

Fig. 2. DC effect on MI band in N=8 span links with input 
power P=10mW. Curves a, b, andc, indicate respectively 

5=1 (no DC), S=0.4, and 3=0.05. 

In Fig. 2 we report three examples of one side of the symmetric spectral gain curves, showing the power 
gain experienced by the seed (G=\a+\2Aa+°\2) versus a/2a. Results were obtained for input power 
P=10 mW'm aN=8 span link without compensation {5=1, curve a), with significant DC (5=0.4, curve b) 
and with almost complete DC (5=0.05, curve c). Typical parameters were assumed for the SMF (¥=1.7 
(W km)'', 0.22 dB/km loss coefficient, D=16 ps/nm/km). As is also obtained by split-step simulations, 
besides the usual MI band, other instability peaks arise because of the periodic structure of the link [6]. 
Noteworthy, for moderate compensation, MI is essentially determined by the average span dispersion. 
This can be seen in curve b, obtained for 5=0.4: here compensation does increase the AVMI value 
compared to curve a, but the gain spectrum is almost the same we obtain for an equivalent link with 
uniform dispersion coefficient 5D. As also typical for uniform dispersion fibers, GMi value is not much 
affected. On the other hand, as ^approaches zero, MI deviates from this average behavior: as illustrated 
in curve c, the peak frequency for 5=0.05 does not increase further; moreover, the peak gain is quite 
lowered. Clearly in this case phase matching variations are so strong that MI is no more just sensitive to 
the average dispersion, and therefore originates gain bands exhibiting quite different features. 
We give a simple criterion to explain when MI in dispersion compensated links behaves according to the 
"average dispersion". MI peak position and gain could be estimated by using an average model if no 
significant phase matching variation occurred over a fiber effective length (LeJf=20 km for previous 
parameters). For a seed at the MI peak frequency detuning, this gives the condition: 

-l/U(2*A02L, <1 (5) 

where fa is the chromatic dispersion coefficient in ps /km (-20.5 ps /km, in this case) [2]. If an average 
dispersion behavior held, Avm = 11'2n*j2yPI(-Sß2) (to this estimate level we neglect its dependence on 
fiber loss [3]), thus the condition to consistently apply an average dispersion regime will be: 

S> yPLtff (6) 

In the previous case this gives 5>0.35, in good agreement with the obtained results. 
It has to be noted that in typical transmission systems almost complete DC will take place: as an example, 
to get 1 ps/nm/km average residual dispersion, we would have &0.06. Much higher Rvalues are quite 
unlikely. In this condition, we find that other MI features are indeed quite peculiar, and could be of 
relevant interest for system applications. In uniform fibers it is indeed well established that MI originates 
essentially a mixed Amplitude (AM) and Phase Modulation (PM), whose modulation depths are given by 
\a++a*.\ and \a+-a'.\, respectively [1]: the relative amounts of AM and PM vary in the spectral band, as 
they depend on the co value of the injected seed and, particularly, at the MI peak they are almost 
balanced [1]. This behavior is still obtained for quite limited DC amounts: in Fig. 3 (a) we report MI gains 
for the AM noise (continuous line) and PM noise (dashed line) calculated after N=4, 8, 16 and 32 spans in 
a link with 5=0.4 (other parameters are the same as in the previous case), here the asymptotic behavior is 
almost reached after 8 spans, and is clearly composed of the usual mixed AM-PM modulation [1]. 
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Noteworthy, when strong DC is applied, different results are obtained, as MI tends to generate a 
modulation that is essentially composed of PM, with quite lower AM noise. This is shown in Fig. 3 (b), 
where we report the evolution of the AM and PM gain for S=0.05 (average dispersion: 0.8ps/nm/km). We 
note that in a realistic condition (JV<8) the asymptotic features of AM and PM are not yet established, 
moreover in this case the AM noise could be depleted as it experiences a negative gain (in dB). This has 
an high potential impact on system design, as in the conventional IM-DD systems much lower MI 
impairments would arise [1], It might be noted that the negative AM gain is not an asymptotic feature, 
indeed for low 8 values the longitudinal dynamics of MI bands is much slower, so that the asymptotic 
behavior is obtained after a much larger number of spans. In this case, there is a positive gain for AM, but 
the PM component still dominates. We point out that the number of spans in real system is typically 
limited to lower values, thus for system applications the analysis of transients behavior will have much 
greater implications than the asymptotic treatment. 

(a) 

5=0.4 

(b) 

£=0.05 

Fig. 3. 
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AM (solid) and PM (dashed line) gain after N=4, 8,16, 32 spans, with limited DC (5=0.4) and almost complete DC 
(5=0.05). Each amplified span contains a 100 km SMFplus a compensator. 

Conclusions. MI bands are investigated in long amplified links made of conventional single mode fibers 
with periodic linear Dispersion Compensation (DC) and optical amplification. If DC is limited to a 
moderate percentage, MI bands are essentially determined by the average residual span dispersion. 
Noteworthy, in the highly realistic assumption that DC is almost complete, peak value and shape of MI 
bands are much more different, and evolve along the link according to a complex dynamics. In that case, 
MI essentially affects PM noise, so that the actual amplification of the AM noise is much lower. 
Moreover, for usual link features, the AM noise can even be attenuated. 
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Since the discovery of a new type of solitary waves in optical fiber links with a stepwise dis- 
persion map [1], so called dispersion-managed (DM) solitons, there has been significant advance in 
understanding their basic properties. DM solitons turned out to be less susceptible to Gordon-Haus 
timing jitter, provide more dense packing in optical transmission lines and demonstrate extremely 
stable long distance propagation. The advantages of DM solitons come from the fact, that they 
possess higher pulse energy compared with that of conventional solitons in a uniform fiber with 
the same path averaged dispersion. Due to these features DM solitons are now being considered as 
most perspective information bit carriers in long-haul optical communication systems [2]. 

An optical transmission line, based on the dispersion compensation technique represents a 
chain of periodically linked pieces of fibers with alternating anomalous and normal group velocity 
dispersion. It is reasonable to suggest, that in practical situations corresponding fiber pieces will 
not be identical both with respect to dispersion magnitudes and lengths. Most likely there will be 
a random distribution of these parameters over certain mean values. As a result of breaking of the 
periodicity, DM soliton suffers random perturbations along its path, and eventually disintigrates 
after some propagation distance. 

Main objective of this study is the investigation of DM soliton dynamics in optical transmission 
lines with a random dispersion map (Fig.l). The propagation of DM soliton is governed by the 
nonlinear Schrödinger equation (NLSE) for a dimensionless envelope of the electric field 

d(z) ,o 
iuz + -y-utt+ | u |2 u = 0, (1) 

where d(z) is a stepwise function describing the dispersion map, which in its turn may be represented 
as consisting of periodic and random parts 

d{z) = d0{z) + d1{z). (2) 

In the absence of the randomness it would be a periodic function do(z) = do(z + z++z_), where z+ 

and z- are the fiber segment lengths. In our study we will be concerned with the Gaussian white 
noise model for d\{z), namely 

<o?i>=0,    < di(z1)d2{z2) >=2a25{zi-z2). (3) 

We employ the variational approach developed by Anderson [3] to reduce the underlying NLSE to 
a system of ODE's for DM soliton parameters. With this purpose we will search for the solution 
to eq.(l) as a localized waveform 

u(z,t) = A(z)F[-L-]exp(i<j>{z) + ib(z)t*), (4) 
a[z) 

where A, a, b, 4> are the complex amplitude, width, chirp parameter and phase respectively, F(z) is 
the localized function. Here the conserving quantity is the "energy" 

/oo 
\u\2dx = A2a = l. (5) 

-oo 
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Random dispersion magnitudes Random span lengths 

Figure 1: Sketch of the random dispersion map (solid line). Dashed line corresponds to the regular map. 

Performing standard calculations we arrive to the following variational equations, describing the 
evolution of the soliton parameters 

az   =   2d(z)ab, 

, dd{z)     C2     nJ. Nt2 

where 

01 —  roo  ^iPiüJii °2 — TTÖÖ  sr^iFpdt' ^w* 

(6) 

(7) 

(8) 

For the Gaussian ansatz F(t) = exp(-t2) one obtains Cx = 2, C2 = 1/V2, and for F(t) = sech(t) 
corresponding values are Ci = C2 = 2/TT

2
.     We performed numerical simulations of the pulse 

a) b) c) 

0,12 

Figure 2: Pulse shape evolution in optical communication line based on the dispersion-management tech- 
nique, a) within a unit cell; b) long distance propagation in the case of a regular map; c) pulse disintegration 
in the case of a random map when dispersion magnitudes are randomly deviated by 8 %. In b) and c) pulse 
shapes correspond to the beginning of each 15th unit cell. Obtained by numerical solution of the full NLSE 
d+ = 30, d_ = -28; z+ = z_ = 0.078; u{0,t) = 1.52ezp(-0.446i2) 

propagation in optical fiber links with a dispersion map as in Fig.l using both the full NLS eq.(l) 
and corresponding variational equations eq.(6), eq.(7). The results are presented in Fig.2 and Fig.3 
respectively. As follows from Fig3.a, the random modulation of dispersion magnitudes leads to 
higher growth rate of the pulse width compared to that of modulation of span lenthgs for the same 
value of a. Consequently, in the former case DM soliton disintegrates at shorter distance. 
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When the dimensionless fiber span lengths are small compared to dispersion magnitudes, the 
averaged dynamics approach is valid [4]. In this approach a real map with the fiber segments of 
alternating anomalous and normal dispersions is replaced by a uniform fiber with the path averaged 
dispersion d = (d+z+ + d-Z-)/(z+ + z_). In this formulation the problem can be considered as a 
particular case of the random Kepler problem in optical solitons context, recently reported in Ref. [5]. 
In this work an explicit analytical expression has been derived for the mean soliton disintegration 
time when it propagates in a fiber with randomly varying dispersion. 

td 

A(J) 

~    a2 Jo 
J 

A(J) 
dJ 

1.68 

J(TTJ + 4) (128 + 448TTJ + 448TT
2
J

2
 + 168TT

3
J

3
 + 21TT

4
J

4
) 

87T3(7T J + 2)3 

(9) 

(10) 
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Figure 3: Growth of the pulse width (a) and the mean decay time (b) for DM soliton according to variational 
equations. Parameters are the same as in Fig.2. Averaged over 400 realizations. 

Comparison of our numerial simulation results with the prediction of the above theory is shown 
in Fig.3 (b). 

In conclusion, we have performed numerical simulations of the DM solitons propagation in 
fiber links with randomly varying map parameters. Soliton disintegration due to randomness is 
shown to occur in such an optical communication line. Numerical calculation results are in good 
agreement with the theoretical prediction in the averaged dynamics approach. 
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The theory of dispersion-managed (DM) solitons is rather well established and is capable of explaining 
all observed features of the evolution of a single DM pulse [1]. Path-average or variational methods can 
systematically describe families of DM solitons [1] when the characteristic nonlinear length is much larger 
than the dispersion compensation period. In the numerical experiments, however, it was observed that DM 
solitons can exist even for large amplitudes, when the path-average theory formally is not valid. In this 
paper we apply the inverse scattering transform (1ST) method [2] (similar approaches have been considered 
in [3,4]), which allows us to describe DM soliton properties beyond the limitations of the path-average 
theory. We will consider a two-step lossless dispersion map. At the boundary between the fibres we will 
consider the direct scattering problem in both fibres and we discover the condition which should be satisfied 
by the scattering data for the potential to be a DM soliton. We will show that the symmetries of the DM 
soliton imply symmetries in the scattering data. 

We begin with a recapitulation of the direct scattering problem, mostly following [2]. Consider the nonlinear 
Schrödinger equation with piecewise constant coefficients, 

iuz-^"utt + y\u\2u = 0. (1) 

Because we are interested in the boundary, where there are two scattering problems to consider (one for the 
anomalous fibre and one for the normal fibre), we will not normalise (1), since that would probably require 
a different rescaling of u, z and t for the different fibres. Instead, let a = VIY/M and a = sign(-y/ß") 
then (1) is equivalent to the compatibility condition Uz-V, + [U, V] = 0 of the following system: 

Xt = U% 
iX    ioccM* 

iau     —iX X   and   Xz = V% = ~-i$"X2-iiy|M|2   ca^"{-iXu*-\u*t) 
p$"{-iXu + \ut)      ißU2+iiY|«|2 X-      (2) 

If X(a) = fci,X2]r is a solution of (2), then % = [-ox$(t,X*),xt(t,X*)}T is another solution. Let Mt,X) 
and y(t,X) be the solutions that tend to [0,e-*]T for t -> «, and to [e^,0]r for t -► -~ respectively. 
Then <)>, $, v|/ and ipr are linearly dependent, and they are related by the scattering coefficients a(X),b(X) 
via <t> = a(X)y + b{X)y. The field u(t) is completely determined by the scattering data, which consists of 
a solitonic part {KKK)/ci{K)} at the zeros of a(X) and a continuous part {a(X),b(ty} for X € R The 
evolution over z of a{X,z) and b(X,z) is simple: a(X,z) = a(X,0) and b(X,z) = b{X,0)exp-2i$"zX2. Via 
inverse scattering one could now find u(z,t) from the scattering data. 
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Consider the DM soliton solutions for a two stage dispersion map consisting of an anomalous fibre of 
length la and dispersion ß" = ß^ < 0 and a normal fibre of length la and dispersion ß" = ßj,' > 0, with 
equal nonlinear coefficients y. Choose the origin of the z axis at the midpoint of an anomalous segment, so 
that z = la/2 is a boundary. Numerically, dispersion-managed solitons of this map are found to be even in r, 
u(z,t) = u(z,—t), and totally unchirped in the midpoints of the fibres: in these points, u(t) = uo(t)expiB 
with «o(0 G E for all t. It also seems that the periodic solutions do not have a soliton part (that can be proved 
if at any z the pulse area is small enough [2]). In the following we assume that there are no solitons in the 
scattering data, so that u is completely determined by a(X) and b(X) on the real axis. 

The above mentioned symmetries of u imply symmetries in a(X) and b(X). If u is even in t, then S[%(f, X)] = 
[Xi(-/,-X,),-X2(-?,-^)]r preserves (2). By applying 5 to <J) etc., one finds that this symmetry implies 
that a(-X) = a*(X*) and b(-X) = b{X). Similarly, if u{t) = u0(t)e

iQ with u0(t) G E for all t, we find that 
a(-X) = a*(X*) and b(-X) — -b*(X*)e~2lQ. At the midpoints of the fibres u has both symmetries, so there 
the scattering data must satisfy a(-X) = a*{X*) and b{X) = b{-X) = -b*{X*)e~2i&. So for X G E, the 
argument of b(X) must be constant modulo jt: b(X) = ie~ie£>o(^) with bo(X) G R. 

Now look at the boundary between the fibres at z = 4/2. There, there are two sets of scattering data: 
{aa(X),ba(X)} for the anomalous fibre, where a = aa = y/—y/ßa, and {an(X),bn(X)} for the normal fibre, 
where a = a„ = \/y7ßn- aa,n{X) will satisfy aaj„(-X) = aan(X*) and ba<n(X) will satisfy 

ba(X)=iboa(X)e-iB°-Wl°x2       and       bn(X) = ib0n(X)e-iQ"+^1"12 (3) 

with boa,n(X) G R, i.e. aigbat„(X) = | - 6ai„ + |ßain|/a,n^
2 mod n. Conversely, if u(la/2,t) is even in t and 

u(la/2,t) is such that ba and bn satisfy (3), then u(z,t) is a periodic solutionof (1), for which the nonlinear 
phase shift over one dispersion map is 2(0„ - 0a). 

Given u(t), a(X) and b(X) can be found easily from two coupled integral equations for T|i and T|2, where 
T\i(t,X) =§i(t,X)e.xp— iXt andT|2(?,X,) =§2{t,X)expiXt. They are given by 

MtM^iOttfLSity-W^t'^dt'   and   T]2(t,X) = l+iajLu(t')e^'r]l(t',X)dt'      (4) 

and b(X) = Tii^A,) and a(X) = Ti2(°°,X,). If u (or a) is small, one can "solve" this by Picard iteration (see 
also [4]): start from T|i(r) = 0, integrate (4) with this T|i, yielding T|2 = 1, integrate (4) with this T|2, etc. 
After integrating each equation once, one finds that 

b{X) «icaJ^u*(t)e-2ÜJdt = iaaü*(2X). (5) 

So apart from a constant factor, b* (X) is approximately equal to the Fourier transform of u at frequency 
CO = 2X. Since we know that at the boundary, the phase of b(X) is quadratic in X, that implies that the phase 
of the Fourier transform of u is quadratic in (0. And the coefficient is exactly the one which accumulated 
linear dispersion would give: arg u(co, la/2) = 7t/2+Qa + \ß£(la/2)CO2 (mod n). Note that in the limit of the 
small amplitudes the Poincare mapping (transform of initial field into the field at the output of the section) 
found by 1ST will effectively lead to the same result as obtained by averaging in the spectral domain [5]. 
Obviously, when the nonlinear phase shift is unequal to zero, or when |ßo'/a| # |ß^n|.me Fourier transform 
of u*(2X) cannot be equal to both — iba(X)/aa and to +i£>„(^)/a„. If the fibre lengths are the same and the 
absolute value of the dispersion in both fibres are equal, then obvious next guess is 

{u\la/2,2X)f « ba(X)bn(X)/aaan. (6) 
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Figure 1: (a) A polar diagram of u*(2X)2 (drawn with dots), ba(X)bn(X) (drawn), aan{X) (dashed) and 
batn{X) (dotted), (b). \u*{2X)\2 (drawn) and \ba(X)bn{X)\ (dashed) versus X. \y\ = |ß£„| = 1, so ccc = cc„ = 1; 
la = ln = 2, and the map strength is 5.3. The nonlinear phase shift over one map period is 1.7. 

Figure 1 shows a polar diagram for the scattering data and u*(X)2, as well as a comparison between 
\ba(X)bn(X)\ and |«(2^)|2. Both the amplitude and the phase match very well. Equation (6) must be mod- 
ified if aa ^ cx„, by weighing the contributions of ba and bn; in the extreme case where one of the fibres is 
linear (y = a = 0), in that fibre b{X) is exactly equal to u*(2X), in which case u is independent of b(X) in the 
other fibre. 

In conclusion, using symmetries of DM soliton in the two-step lossless map we have found that a necessary 
and sufficient condition on the scattering data to provide for DM soliton potential is that the phase of the 
coefficient b(X) has a quadratic dependence on X in both fibers. We demonstrate that periodic solutions can 
be constructed beyond the limitations on the soliton amplitude that have been imposed in the previously 
developed path-average theory. The b coefficients can be related to the spectrum of the pulse, and at the 
boundary, the pulse is almost exactly linearly chirped, even though the shape of the spectrum might differ 
considerably between the boundary and the midpoints of the fibres. 
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Since the advent of dispersion-slope compensating devices, such as fiber gratings or reversed 
dispersion-slope fibers [1], techniques of dispersion-slope compensation have been extensively stud- 
ied in terms of wavelength division multiplexing [2,3]. 

The effectiveness of dispersion-slope compensation in high speed single channel systems has also 
been experimentally demonstrated [4,5]. The dispersion-slope, or third order dispersion, destroys 
the symmetry of transmitted pulses [6]. This results in an increase of bit errors. Dispersion-slope 
compensation effectively prevents the deformation. 

In soliton transmission systems over several tens of Gb/s, the width of the transmitted pulses 
must be less than lOps to avoid soliton-soliton interaction. [7] For this range of pulse width, the 
effect of the dispersion-slope cannot be neglected. Therefore, the effect of dispersion-slope in 
soliton-based systems is much more serious than that in linear transmission systems of the same 
bit rate. 

In this paper, we numerically study trans- 
mission characteristics of a 50Gb/s soli- 
ton transmission system using dispersion-slope 
compensation technique, and show that the 
technique can drastically improve the maximum 
transmission distance. 

Fig. 1 shows the idea of dispersion-slope 
compensation using a reversed dispersion-slope 
fiber (RDF). Total dispersion within a compen- 
sation period is flattened by an RDF connected 
after a dispersion shifted fiber (DSF). The re- 
quired dispersion-slope of the RDF dDzjdX is 
related to that of the DSF dDj./dX and length 
of DSF h and that of RDF l2 by 

-Compensation period- 

 h  
Dispersion 

shifted 
fiber 

n. 
-h-A 

Reversed 
dispersion 

fiber 

302/3JKO 

Fig.l. Schematic of dispersion-slope compensation. 

dD2 

dX h dX (1) 

We numerically solved the following equa- 
tion using split-step fourier method [6]: 

du(z,t) d2u(z,t) dzu(z,t) 
dz + 02 at2 + 03 at3 + y\u(z,t)\2u(z,t) = -iTu(z,t), (2) 

where u(z,t) is the amplitude of fight field in a rotating frame, T is fiber loss, 02 and 03 are second 
and third order dispersion, respectively, and 7 is the nonlinear coupling constant. The dispersions 
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(a) Without compensation 
at 350km 

10 
Time[ps] 

Fig.2. Calculated eye patterns after 350km transmission, (a)without compensation, (b)with compensation 
(period 25km with reversed dispersion-slope fiber of 1km). 

02 and /?3 are related with conventional parameters by 

A2 

2-KC 

ßz = 
A4 

(2xc)2 

dD_ 
dX ß2 

x4   dp 
(2TTC)

2
 dX ' 

(3) 

(4) 

where c is light speed in a fiber, A is the center wavelength of transmitted pulses, and D is the 
wavelength dispersion. All effects of birefringence, including polarization dispersion, polarization 
dependent loss, are neglected. Higher order effects other than the dispersion-slope are also ne- 
glected. 

We assume a 50Gb/s single channel trans- 
mission system, in which ideal sech pulses, 
whose width is 5ps FWHM, are launching into 
the transmission line at the transmitter. The 
center wavelength of the signal is 1552nm, 
and dispersion and dispersion-slope of fibers 
at this wavelength are assumed 0.2ps/km/nm, 
0.07ps/km/nm, respectively. For these pa- 
rameters, dispersion length and the third or- 
der dispersion length are calculated as 31.6km 
and 200km, respectively. Fiber loss, amplifier 
spacing, and nonlinear coupling constant 7 are 
0.25dB/km, 25km, and 1.73W-lknri, respec- 
tively. Spontaneous emission factor of each am- 
plifier is assumed to be 2, and an optical band- 
pass filter to reduce ASE noise is inserted at 
the output of every amplifier.   Soliton control 

schemes such as sliding filters [8-10] or synchronous modulation [11-13] are not considered. 
Incident pulse stream is pseudo-random bit stream of 26-l, whose eye pattern after transmission 

are used for calculating Q values. The availability of transmission are determined by Q to be larger 
than 7 that corresponds to bit error rate of 10~12. The transmitted power is optimized to maximize 
the transmission distance. 

400 800 
Transmission distance [ km ] 

1200 

Fig.3. Q values as a function of transmission distance. 
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Fig. 2 shows eye patterns of calculated results, where Fig. 2(a) is at 350km without compen- 
sation, and Fig. 2(b) is at 350km with compensation, whose compensation period is 25km with a 
RDF length of 1km. While the eye of the uncompensated system shows a sign of deformation of 
pulses, that of the compensated system shows no sign of deformation. The jitter of the compensated 
system is mainly due to the soliton-soliton interaction. 

Fig. 3 shows Q values as a function of transmission distance. The compensation period is 25km, 
and the length of RDFs is varied from 10km to 1km. It is interesting that the length of RDF does 
not alter the Q values. This can be attributed to relatively short compensation period compared 
with the third order dispersion length. 

Because of high cost of RDFs, long compen- 
sation period and short RDF length are pre- 
ferred. To investigate the longest compensa- 
tion period, we show in Fig. 4 the change of the 
maximum transmission distance as a function 
of the compensation period. To maintain trans- 
mission over 1000km, compensation period can 
be extended to 80km, which is about 0.4 times 
the third order dispersion length. 

In conclusion, we have investigated charac- 
teristics of a soliton transmission system em- 
ploying dispersion-slope compensation. It is re- 
vealed that the compensation within 0.4 times 
the third order dispersion length can effectively 
improve the system performance. Further im- 
provement would be available by employing 
soliton control schemes. 

■a 
•a 

1000 ■ 

900 ■ 
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40 60 80 
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Fig.4. Dependence of the maximum transmission dis- 
tance on compensation period 

References 

[1] Y. Akasaka et al., Proc. ECOC '96 2, 221-224 (1996). 
[2] I. Morita et al., J. Lightwave Technol 17, 80 (1999). 
[3] F. Favre et al., Electron. Lett. 33, 2135 (1997). 
[4] E. Yoshida, T. Yamamoto, A. Sahara, and M. Nakazawa, Electron. Lett. 34, 1004 (1998). 
[5] S. Kawanishi et al., Electron. Lett. 32, 916 (1996). 
[6] G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, San Diego, 1989). 
[7] A. Hasegawa and Y. Kodama, Solitons in optical communications (Oxford University Press, 

New York, 1995). 
[8] L. F. Mollenauer, J. P. Gordon, and S. G. Evangelides, Opt. Lett. 17, 1575 (1992). 
[9] Y. Kodama and S. Wabnitz, Opt. Lett. 19, 162 (1994). 

[10] L. F. Mollenauer, P. V. Mamyshev, and M. J. Neubelt, Opt. Lett. 19, 704 (1994). 
[11] H. Kubota and M. Nakazawa, IEEE J. Quantum Electron. 29, 2189 (1993). 
[12] Y. Kodama, M. Romagnoli, and S. Wabnitz, Electron. Lett. 30, 261 (1994). 
[13] M. Nakazawa, K. Suzuki, H. Kubota, and E. Yamada, Electron. Lett. 32, 1686 (1996). 



ThD20-l / 319 

Theoretical and numerical methods for dispersion managed solitons 

Vincent Cautaerts, Akihiro Maruta and Yuji Kodama 

Graduate School of Engineering, Osaka University, 2-1 Yamada-Oka, Suita, Osaka 565-0871, Japan 
Phone:+81-6-6879-7728, Fax:+81-6-6879-7774, e-mail:vincent@comf5.comm.eng.osaka-u.ac.jp 

1 Introduction 

We present here recent results on dispersion management for non-linear return-to-zero pulse 
propagation in optical fibers. The main purpose of dispersion management is to reduce several 
effects such as radiation from the pulse due to lumped amplifiers compensating dispersion loss, 
modulational instability, jitters caused by the collisions between signals in different channels of 
wavelength-division-multiplexed (WDM) systems, the Gordon-Haus effect resulting from the in- 
teraction with noise, and to set a desired average value of dispersion. Additionally, dispersion 
managed (DM) solitons present a possibility of upgrading installed systems (see for example the 
UPGRADE project [1]). 

The so-called DM soliton can be studied by different methods, which are numerically compared 
in the present paper. Although they are more general, we applied them to a two-step dispersion 
map of average dispersion Dav, dispersion difference AD and of period Zd. The point Z = 
0 is fixed at the center of the positive (anomalous) dispersion fiber. Our model equation is 
iuz+D(Z)uTT/2+S(Z)\u\2u - 0, the nonlinear Schrödinger equation (NLSE). It can incorporate 
loss and amplification through S(Z) (see for example [2]). 

This NLSE admits some conservation laws: three trivial ones being the energy / \u\2dT the 
moment ifuu*TdT and the "Hamiltonian" H = 1/2 f[S\u\4 - D\uT\2]dT, this last one being only 
valid when both the dispersion and the non-linearities are constants (in which case there are an 
infinite number of conserved quantities). A test of validity of the different methods exposed here 
is to see how they conserve, or don't, those quantities. 

2 (Numerical) averaging method 

Stationary solutions to the propagation problem in a two-step dispersion map have been found 
numerically [3]. We have found numerically that a pulse looking like the stationary solution will 
emit radiation when propagated to get back to this shape. This process gives the exact same pulse 
shape (to the exception of noise trapped inside the pulse) than the averaging method used in [3] 
which, by repetitive averaging of the pulse shape, damps the quasi-random phase radiation but 
doesn't affect the pulse-wide regular phase core solution. Such solutions can be found not only in 
the positive (anomalous) dispersion region, but also in the negative (normal) dispersion region. For 
a given dispersion map, they form a correspondance between pulse energy and pulse shape (and 
hence e.g. RMS width). However this all-numeric process does not provide an explanation of the 
inner mechanism leading to the existence of this pulse; hence the use of the other developments. 

3 Lagrangian theory 

Since the short-scale variations of the pulse are essentially linear, with the non-linear effects 
appearing in the long-scale, we make a change of variable to absorb the former a least partially: 

u(Z, T) = y/p(Z)v(Z, T) exp[iC(Z)r2/2]       with r = p(Z)T. (1) 
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The usual Lagrangian method assumes the function V(Z,T) to depend on a finite number of 
parameters, to get, if the ansatz is properly chosen, a finite dimensional approximate solution of 
the original problem. 

Gaussian ansatz: The simpler ansatz giving interesting results possesses two degrees of 
freedom, the pulse width l/p(Z) and the chirp C(Z). In addition, the pulse has a third parameter, 
its phase <f>(Z) as in v(Z, r) = /(r) exp[i0(Z)], but since it, is decoupled from the others, we don't, 
treat it here. 

Whatever the localized function /(T), the results obtained by the Lagrangian method will be 
qualitatively the same, up to some scaling factor. A Gaussian ansatz /(r) = exp[—r2/2] is often 
chosen since the central lobe of the core solution "looks" Gaussian. Since the pulses representable 
by this ansatz conserve the same shape during propagation, they are called "self-similar" [4]. 

An unexpected result is that for the case of normal average dispersion a second solution, of 
lower energy, is present. This solution appears to be unstable, explaining that it is not observed 
with the averaging method. It is to be noted that such a solution is not just an artifact from our 
Lagrangian method: the propagation of initially Gaussian pulses of different widths or energies in 
such a dispersion map shows a longer destruction-free propagation distance in the vicinity of those 
parameters. A development at small energy gives the critical value of the dispersion difference 
AjDcr required to have a solution in the normal average dispersion region (normal dispersion) [5]. 

The three trivial conservation laws are satisfied locally by the resulting equations, on each 
segment of constant dispersion fiber. 

Extended Hermite-Gaussian ansatz: By allowing more degrees of freedom to the 
function v, one can get a solution nearer to the exact one. This can be done by interpreting the 
Gaussian ansatz as the first term in a development in a series of Hermite-Gaussian functions. A 
second term can be included, and introduces 2 new parameters (amplitude and relative phase of 
the new component). 

The ansatz become v(r,Z) = exp(id(Z))[A0(Z)h0(T) + j44(Z)exp(i0(r))/i4(T)]exp(-r2/2), 
where hi is the ith normalized Hermite function. We considered the hi term to be a perturbation, 
and develop the equations for the case A4/A0 = Q<1. One has to be careful that this introduces 
a singularity into the d<j>/dz equation, <fi having no physical meaning when A4 = 0. It is removed 
by working with the variables a = a sin <j> and K = a cos <f>. 
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Figure 1: Comparison between the results of the averaging method and Lagrangian methods (Gaussian 
and Hermite Gaussian) for Z& = 1,E = 15 and AD = 100 in our reduced units. The left graph represents 
the pulses at their chirp free point for Dau — 1. The right graph represents the RMS pulse width as a 
function of the average dispersion, as well at the position of the first zero in the pulse shape. 
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Noting £ := E0/V2TT where E0 is the pulse energy, we get 

dZ 
p = -p3DC ■ 

vVs 

—C = p2D(l + C2)-pS£ 

£a d -V6pS 
dZ 

dZ 
;K = — a 
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Figure 1 shows the improvement of the solution, relative to the simpler Gaussian ansatz. 

4    Multiscale theory 

The multiscale pulse dynamics [6] theory is valid for the strong dispersion management case. 
Its hypotheses are that Zd <£l,AD = 0(1/Zd), Dav = 0(1). A first order development on this 
base gives a pulse whose (power) spectrum is constant along propagation. This spectrum is given 
by ü(w) = exp(i<f>(Z, u)/2)F(u) where <j>{ui) is the phase given by u2 f D(s)ds, as for the linear 
case, and F{w) is a real function solution of (A2 + Davu

2)F(u) = 2jf du-i.du)2F(u + Wl)F(w + 
u2)F(u> + UJ1+ u2)r(umj2). The kernel r(x) is given by a simple Sine function in the case of a 
two-step dispersion map. (r(x) = sin(swiw2)/(suiu2) where s is the map strength s = ZdAD/8) 

More, this method does give re- 
sults for some region of the parame- 
ters where the convergence of the av- 
eraging method is extremely poorly. 

Figure 2 shows the comparison 
between the 4 methods of this paper 
for different settings. The Hermite- 
Gaussian ansatz appear to be nearer 
to the true DM soliton, given by the 
averaging method, than the simpler 
Gaussian ansatz, for most parame- 
ters. Note that the pulse shape, as 
shown figure 1 is far better, even if 
the RMS width is not. The multi- 
scale method, mathematically very 
simple, has a range of applicability 
much more restricted, but improves 
as AD increases. It does also give 
the better solution for very small en- 
ergies when the pulse width is the 
bigger (and Dav = 1). In this case, 
the averaging converge to a sech-like 
solution, and hence taking a sech "■" ^^ vc» ai-e iur uav 
ansatz in the Lagrangian method should improve the results. 

0.5 

Energy 

Figure 2: Comparison between the results of the four methods 
of this paper: averaging (A), multiscale (M), Lagrangian with a 
Gaussian ansatz (G) and Lagrangian with a Hermite-Gaussian 
ansatz (H). The main figure is the inverse of the RMS width vs. 
the energy for different values of AD, and the inset represents 
the ratio between the RMS of the different methods to the one 
obtained by the averaging technique for a value of AD = 10. 
All curves are for Dav = 1 and Zd = 1 
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Signal transmission with semiconductor optical 
amplifiers (SOA) in 1300 nm fiber communi- 
cation systems is one opportunity for upgrading 
the European standard fiber network. Recently 
experimental progress was reported [1,2]. How- 
ever, the performance of RZ transmission is 
essentially constrained by such SOA features as 
low saturation energy, strong nonlinear phase 
modulation, and gain recovery time comparable 
with the bit period. An alternative modulation 
format could consist in a phase modulated con- 
tinuous wave (CW) where the above mentioned 
problems are expected to be relaxed due to the 
constant power level. We studied the transmis- 
sion characteristic of this modulation format 
experimentally. To this end we used a re- 
circulating fiber loop set up [2]. It consisted of a 
25 km standard optical fiber and a MQW - SOA 
followed by a 0.7 nm in-line bandpass optical 
filter. It turned out that a CW signal can pro- 
pagate without significant degradation up to 
several thousands kilometers, while being ini- 
tially phase modulated it quickly develops a 
detrimental amplitude modulation (AM). To 
study this effect a phase modulated ' 010101...'- 
pattern at 10 GHz was used as the worst case. 
The operation wavelength was close to 
1306.4 nm - the zero dispersion wavelength 
(ZDW) of the fiber. 
The AM frequency amounted to twice the phase 
modulation frequency. The modulation depth 
was found to be only slightly intensity- 
dependent, but nevertheless AM increased with 
signal power (up to 15 mW). It was also ex- 
perimentally found, that AM depends strongly 
on the in-line filter detuning and its bandwidth, 
i.e. an improved system performance (lower AM 
depth) was achieved with a 3 nm in-line filter. 
However, even in this case it was necessary to 
adjust the filter very carefully. The use of an in- 
line optical filter is unavoidable because usually 
the amplifier peak gain wavelength does not 
coincide with the operation wavelength and the 
necessity to cut the power of broadband ampli- 
fied spontaneous emission. Deviations of the 
carrier wavelength from the ZDW also led to a 

considerable system performance degradation in 
the experiment. 
These particular features can be understood in 
studying the corresponding evolution equation 
for the averaged field envelope A(z,t) 

.dA v*. dt2 
+ X\A\ A 

= i8A-p(a + i)A\\A(z,t'J exp 
r-r' 

(1) 

dt' 

where ß,, ß2=2 ln[2] / (r0 ACOF)
2
, %, 8 = ho/2 - yz*, 

p = alPQt0 /(2£sat), rr, a are coefficients related 

to fiber dispersion, inverse filter bandwidth, 
fiber nonlinearity, net gain, saturated amplifica- 
tion, gain recovery time and linewidth enhance- 
ment factor, respectively. 
Equation (1) was normalized by using normal- 
izing quantities typical for our experiment, i.e., 
the amplifier/filter spacing za=25 km, the time 
fo=3.73 ps and the power Po=12.9 mW. Then the 
parameters in (1) are ßi=±l at wavelengths 
shifted ± 5 nm from the zero-dispersion wave- 
length, respectively, and the Kerr coefficient is 
Z=l. The filter bandwidth ACOF corresponds to 
0.7 nm so that ß2=0.163. The saturation energy 
of SOA were assumed to be Eat = 2 pJ so that 
the saturation coefficient becomes p = 0.0308 
where the power enhancement factor 
ao =2-yza /(l-exp[-2yz(i])=2.56 was taken 

into account (fiber loss y=0.046 km'1). 
The CW solution to (1) is A(z,t)=A0 exp[i (I> 
G>f)] with the dispersion relation r = ßiC02/2 
+ (%+pocfr) A0

2 and the energy balance 
5=ß2 co2 + pMo2- C*=C0O-COF designates the devia- 
tion of the carrier frequency (Bo from the central 
filter frequency OF. A phase modulation 
A(0,0 = A0 exp[i(O(?)-C0?)] at input causes 
changes in the field evolution A(z,t). In first 
order approximation we found at ZDW (ßj = 0) 
that the phase modulated signal, 
^(O^EmSinfcoM?], evokes an amplitude modu- 
lation with frequency 2(0M- Within this ap- 
proximation  the  modulation  depth  reads   as 
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lAmax/Ami/ = 1+2 ß2z (lsmo>Ml+la)l)2. The com- 
parison between experimental data, direct nu- 
merical calculations and first order approxi- 
mation shows a good agreement. 
However, to obtain a general picture of the sta- 
bility of a CW solution against small complex- 
valued modulations in the above system we 
perform a linear stability analysis. Modulational 
instability (MI) is a well-investigated phenome- 
non in fibers exhibiting a Kerr nonlinearity [3] 
but was not addressed up to now in fiber sys- 
tems with SOAs and filters. We show that de- 
pending on the dispersion regime stable periodi- 
cal patterns as well as CW solutions may 
emerge. In particular, it will turn out that narrow 
in-line filters evoke MI. 
Inserting the perturbed solution A(z,t) = (A0 

+£(z,f)) exp[i(Tz-coO] into (1) and linearizing it 
in e(z,f) one obtains 

.3e ßi -iß2 
32e   0.   3e 

+ 5CA2(e + e*)+p(a + i)A0
2 

x j(e(z,t')+£*(z,t'))exp 

(2) 

t-t' 

t. 
dt'=0 

Separating real and imaginary parts as e = v + iw 
we found the increment X of spectral compo- 
nents v, w ~ exp[Xz] from det[L]=0 where 

L = 

with 

X + a + - 
2pA2

0tt 

l-2i<oMrr 

-b-2lAl- 
2poA0

2fr 
X + a 

(3) 

a = ißiGXÖM + ß2ö)M2   and   b=-$l(öM
2/2 + 

2iß2(öQ)M. Consequently, X is obtained from 

(X + af + 2p^^ + ^ 

+b 

l-i°V- 

b + 2-xAi + 
2pcxAp2fr 

l-ioo„f 

(4) 
= 0 

Eq. (4) exhibits conventional MI [3] for %=ßx =1 
or -1 and p=0, 8=0, ß2=0. Our primary concern 
is to identify the role that play the SOA and the 
filter with respect to MI, so we set the fiber 
nonlinearity and the fiber dispersion to zero for 
a moment. It is evident from (4) that the CW 
solution is stable if the carrier frequency is 
identical to the center frequency of the filter 
(üö=0). However depending on the filter offset 
(Icol > 0) there are modulationally unstable do- 
mains 5R|X|>0 in oo-cöM-parameter space as 
shown in Fig.l, where the displayed range 
fi=cof0 corresponds to a wavelength detuning of 

±0.2 nm. Without SOA the instability may start 
at very small filter detuning and should arise for 
modulational frequencies 2a>>(öM>0. The 
maximum MI gain occurs at ö)=ü)M because that 
sideband is located at the filter transmission 
maximum. However, the SOA modifies the 
situation. The gap coc< co < 0 appearing between 
both regions increases with the CW power. The 
stable region at the red filter edge is more pro- 
nounced than the region at the blue edge. This is 
due to the increasing MI gain caused by the AM 
induced red shift of SOA. 

-0.8       -0.4        0.0        0.4        0.8-0.8       -0.4        0.0        0.4        0.8 

Fig.l: MI gain in dB/(25 km) at ZDW without Kerr 
nonlinearity for ß2=0.163, p=0.0308, a=5, f,=53.7. 

Accounting also for Kerr nonlinearity and fiber 
dispersion additional effects may appear due to 
conventional MI [3]. Fig. 2 shows how the 
situation changes in the normal and anomalous 
dispersion regime as well as at ZDW for two 
different values of the input power (1 mW and 
10 mW). 

Fig.2: MI gain as in Fig.l, but with Kerr-nonlinearity 
at normal dispersion (ßi=-l), ZDW (ßi = 0) and 
anomalous dispersion (ßi= 1) for input power 1 mW 
and 10 mW. 

In the anomalous dispersion regime conven- 
tional MI dominates for large input powers. At 
normal dispersion as well as at ZDW MI is 
mainly evoked by the filter when the input 
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power is small. A higher input power changes 
the characteristic due to a combined action of 
Kerr and SOA nonlinearity (see Fig. 2). 
However, the location of the gap at the red filter 
edge in the normal dispersion regime depends 
on the power which might be important in ex- 
periments. Increasing the power stable domains 
can become unstable (compare the two plots on 
top of Fig.2). In the case under consideration 
this happens, e.g., for a 0.03 nm red shifted in- 
put signal at about 4 mW. 
Using a beam propagation method we per- 
formed a numerical experiment with A(0,f) = A0 

[1 + 0.05 COS(CöM0] exp(-icor) where the modula- 
tional frequency 0)M corresponds to the maxi- 
mum of the increment 9t[X.(co,cöM)]. These nu- 
merical calculations show that the spectral evo- 
lution is primarily governed by an interplay of a 
finite number of harmonic waves caused by 
four-wave-mixing and dispersion. They are 
separated by the modulational frequency ©M SO 

that we assume A(z,r)=Z,-c/z) exp[-iy COM t]. We 
obtain from (1) the evolution of the spectral 
amplitudes as 

0 = i- ■dCn, 

dz 
i5 + m(dMf 

X + 
j.kj:       K 

, 2       2 

p(q+j)r 

l-i(m-j)aMtr 

(5) 

It is evident that the solution of (5) is much eas- 
ier than that of (1). An obvious consequence of 
(5) is that for COM U » 1 the effective nonlinear- 
ity depends only marginally on the linewidth en- 
hancement factor a. We compared the BPM cal- 
culations with the solution of (5) and obtained a 
good agreement provided that the high fre- 
quency components are sufficiently small. 
Fig. 3 shows the evolution of a modulated CW 
solution at anomalous dispersion for Q = 0 and 
QM~ 0.7 for small (a) and high peak power (b). 
For small powers the initial modulation is 
washed out whereas if the power increases an 
instability is induced - the modulation increases 
and a stationary periodic field distribution ap- 
pears. Because of this instability the CW solu- 
tion A = A0 exp[i(rz-C0M?)] where gain balance 
holds is not attained. An interesting behavior 
can be observed in the normal dispersion do- 
main. Selecting a modulation frequency and a 
power that apply to an unstable region but are 
close to the boundary of instability the instabil- 
ity manifests itself in the formation of a stable 
pattern (see Fig.4a). Increasing the power the 
solution moves into the stable region. Because it 
is close to the boundary of instability the modu- 

lation is only weakly damped. So, a new side- 
band with a frequency being located in the un- 
stable region can be generated and a pattern at 
frequency 2O»M is created (see Fig.4b). 
We studied the influence of third-order disper- 
sion (i ß393A/3r3) on MI. We found a purely 
imaginary shift of the increment A, + a -> X + a - 
iß3CöM (C0M

2
+3Cö

2
) and a correction for the effec- 

tive dispersion in b -» b + 3ß3ü) ((DM)
2
 in equa- 

tions (3) and (4). However we observed only a 
minor influence on <R[X]. 

Fig.3. Propagation of AM CW-signal at anomalous 
dispersion, to = 0, (0^/(211) = 30 GHz for input power 
LVol2 = 1 mW (a) and \A0 a0\2= 10 mW (b) 

i/t„ 

200  400  600  800 (a) 0 

Z/z 

100 

ill 
>(b) 

Fig.4. Propagation of AM CW-signal at normal dis- 
persion, (0 = 0, C0M/(27C) = 4.5 GHz for fiber input 
power L40 a0\2= 1 mW (a) and \A0 a0\2= 10 mW (b) 

In conclusion, we analyzed the MI of CW solu- 
tions in transmission lines with SOA and filters. 
A stable region in the anomalous dispersion 
domain could be identified. Transitions to am- 
plitude modulated structures were observed both 
numerically and experimentally. 
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With the advent of disperion-managed communications systems, the practice of pre-chirping 
pulses is becoming increasingly commonplace. The dynamics of chirped pulses is much richer than the 
unchirped case and leads to new and unexpected behaviors. Understanding how pre-chirping affects 
pulse propagation in fiber optic systems is of significant theoretical and practical importance. Recent 
analytic [2], computational [3], and experimental [4] evidence suggests that a strongly chirped N- 
soliton pulse which is injected into an anomalous optical fiber will break-up into a train of fundamental 
(iV - 1) sohtons which are ordered by height and propagate away from the initial chirped pulse shape 
m such a way that the taller ejected fundamental solitons move faster than those of smaller amplitude 
Previous findings [5, 6] have shown N-soliton breakup due to asymmetric perturbations such as third 
order dispersion, Raman effect, filtering, and asymmetric pre-chirp. The effect we describe is more 
subtle, occurmg even for symmetric pre-chirp, and is an example of symmetry breaking. Thus it has 
the possibility of fundamentally limiting systems which rely on chirped pulse propagation 

The propagation of the electric field envelope in an anomalous dispersion fiber in the presence of 
the Kerr nonlmearity is given by the normalized nonlinear Schrödinger equation: 

4140 + 1^° <» 
where for our purposes e « 1. Here Q represents the electric field envelope normalized by the initial 
peak held power \E0\ , T represents the physical time normalized by T0/1.76 where T0 is the FWHM 
of the pulse, and the variable Z is the physical distance multiplied by the parameter e and divided by 
the nonlinear length ZNL = (A0J4eff)/(27rn2|£0|

2). The parameters n2=2.6 x lO"16 cm2/W, Ap* An 
and c correspond to the nonlinear index coefficient, effective cross-section area, free-space wavelength 
and speed of light respectively. Epsilon is a nondimensional parameter which measures the relative 
strength of the nonlmearity versus dispersion and is given by: 

e2 = [A^eff]/[47r2
Cn2|£o|2(T0/1.76)2] (2) 

where D is the chromatic dispersion (in ps/(km-nm)) in the optical fiber. We note that the condition 
e «: 1 can be met by propagating in a low dispersion fiber with high intensities since e oc DI\EQ\2 

Numerical simulations begin at Z = 0 with the strongly chirped, symmetric pulse profile: 

Q(0, T) = sech(T) exp (2t sech(T)/e) . (3) 

We note that in the absence of chirp the solution will, in general, consist of an N-soliton bound 
state. A typical realization of the pulse dynamics is presented in Fig. 1 where we depict the dynamic 
evolution of the pulse breakup with an initial strong chirp and e = 0.1. The evolution is as predicted 
trom theory: pairs of fundamental solitons are ejected symmetrically away from the middle region 
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Figure 1:   Numerical simulation showing ejection of solitons from an initial, strongly pre-chirped 
soliton pulse of the hyperbolic secant form. 

with their pulse speeds being determined by their amplitude [2, 3]. After an initially (Z = 4) strong 
oscillatory structure develops, an ordered ejection of fundamental soliton pulses occurs. By Z = 10, 
the fundamental solitons are well-separated, distinct and continue to move away from T = 0. 

We verify the theoretical and numerical predictions by performing experiments (see Fig. 2) in 
which strongly pre-chirped pulses are propagated in anomalous dispersion fiber. A Spectra-Physics 
Opal optical parametric oscillator (OPO) provides a train of 160-fs (FWHM) transform limited op- 
tical pulses at a repetition rate of 82MHz and centered at a wavelength of Ao=1550nm. The light 
is coupled into an erbium-doped amplifier (EDFA) that is 20m long and has a normal dispersion 
parameter D =-25ps/(nm-km). By starting with low average powers of several milliWatts and then 
amplifying the signal in the EDFA, we are able to keep the spectral width of the pulses essentially 
unchanged while providing significant chirp. The EDFA used saturates near 70mW, giving an ade- 
quate range of powers to perform the experiment. The optical pulses that emerge from the amplifier 
have a temporal width of 6ps (FWHM) and a spectral (3dB) bandwidth of 20nm, indicating that 
they are strongly chirped with the linear chirp parameter C on the order of 35 [7]. The pulses are 
then sent to a 400m section of Corning LEAF dispersion-shifted fiber (DSF) which has a dispersion 
zero at 1520nm (D=3.0 ps/(nm-km) at 1550nm) and a core of 10/xm. 

Since the breakup produces ultra-short pulses, the time-domain behavior is measured via an 
auto-correlation. In Fig. 3, we depict the experimental results for input powers of 8, 11, and 14 mW. 
As the power is increased, we see the break-up into M=2, 3, and 4 pulses respectively since the auto- 
correlator produces (2M-1) peaks. This demonstrates clearly the phenomena of the pulse break-up 
due to chirp.   It is the dominant effect in the pulse propagation.   Of course, once the break-up 
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OPO 

fAS^ 2L ?chemfic of experimental configuration which includes an optical parametric oscillator 
(UFO), Erbium-doped fiber amplifier (EDFA), and dispersion-shifted fiber (DSF). 
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Figure 3: Autocorrelations demonstrating pulse break-up into two (left), three (center), and four 
(ngnt) pulses. The corresponding input powers are 8, 11, and 14mW respectively. 

and ejection have occurred, we expect that the effects due to third-order dispersion and the Raman 
self-frequency shift will act to modify the pulse shapes. However, the basic phenomena of the pulse 
breakup m the N-soliton limit remains unaffected and dominated by pre-chirp. 

This behavior has important consequences for optical fiber applications since it implies that 
an intense, strongly chirped pulse which is inserted into a low-dispersion, anomalous fiber will be- 
gin breaking up over a fairly short distance. This is demonstrated both numerically (Fig 1) and 
experimentally (Fig. 3) and implies that pre-chirped, N-soliton pulses undergo an irreversible pulse 
breakup where a number of fundamental solitons are symmetrically ejected away from the pulse with 
the tallest solitons moving faster than the smaller ones. This phenomena can occur over hundreds 
of meters of fiber and should be avoided in implementations of dispersion-managed transmission 
systems which rely on chirped solitons [1]. 
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Near future optical networks are likely to exploit both time and wavelength division multiplexing (TDM 

and WDM) of data. These networks will require a number of basic functional features to effect both 

add/drop multiplexing and the demultiplexing of all TDM channels simultaneously. A number of 

techniques have been used to effect the simultaneous isolation of all TDM channels [1,2]. Perhaps one of 

the more elegant approaches was by Uchiyama et al [1] who used a linearly chirped clock pulse and an all- 

fibre nonlinear loop mirror (NOLM) to demultiplex 10 Gbit/s channels from a 100 Gbit/s TDM 

datastream. 

Here we use an SOA-NOLM (nonlinear loop mirror which uses a semiconductor optical amplifier as the 

switching nonlinearity) [3]. The clock pulses are obtained by spectrally slicing supercontinuum pulses 

using Bragg gratings. The experimental set-up is used to simultaneously demultiplex four 2.5 Gbit/s 

channels (each output at a different wavelength) from a 10 Gbit/s TDM datastream. 
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The experimental set-up is shown in Figure 1 below. The supercontinuum pulses are generated by 

propagating narrow high power pulses (~2 ps FWHM and -12 dBm average power) at a wavelength of 

1548 nm through 16 km of dispersion shifted fibre (Ao=1548 nm). These pulses are spectrally sliced to 

yield four wavelengths between 1550 and 1554 nm with 100 GHz channel spacing using the four serial 

Bragg gratings. Each Bragg grating reflects one specified wavelength and transmits all other wavelengths. 

The gratings are physically spaced so that reflections from successive gratings are temporally spaced by 

100 ps and each temporal slot contains a different wavelength. The 10 Gbit/s TDM (four channels) control 

data is at a wavelength of 1534 nm and switches all four channels to four different wavelengths 

simultaneously. 

SOA 

Bragg 
gratings 

Supercontinuum 
pulses at 
2.5 Gbit/s 

TDM control 
Data in at 
10 Gbit/s 

c 
Circulator 

Control Data 
out 

2.5 Gbit/s channels at 4 
different wavelengths in 10 
Gbit/s TDM format 

Figure 1: Experimental set-up for TDM-WDM interface 
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Each demultiplexed channel is isolated at output using a narrow bandpass filter and bit error rates (BER) 

measured. The bit error rates are also measured for the cases when only one of the four channels is 

demultiplexed. These results are compared and overall power penalty determined. 

The switching rate of the SOA-NOLM is limited by the gain recovery time of the semiconductor amplifier. 

The amplifier used in the current set-up has a recovery time of 100 ps which restricts the operation to 

demultiplexing a 2.5 Gbit/s channel from a 10 Gbit/s TDM datastream. Amplifiers with shorter gain 

recovery times could be used to increase the switching rate of the SOA-NOLM. The above set-up could 

then be used to either demultiplex more channels or a four channels at higher bitrates. 
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Girardi R.: 'Full 40 Gbit/s OTDM to WDM conversion: Simultaneous four channel 40:10 Gbit/s all- 

optical demultiplexing and wavelength conversion to individual wavelengths', Tech. Dig. Optical Fiber 

Communication Conference (OFC'99), paper PD17-1 

[3]        Sokoloff J.P., Prucnal P.R., Glesk I. and Kane M.: 'A terahertz optical asymmetric demultiplexer 

(TOAD)', IEEE Phot. Tech. Lett., 5, pp. 787-790 (1993) 
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/. Introduction 

Transfer of light between different 
waveguides is one of the crucial functions of the 
integrated optics systems. The power exchange 
between waveguides, placed in a closed 
proximity to form a directional coupler, is 
efficient when the light propagates in them with 
the same velocity. In case of different 
propagation constants the coupling can be 
obtained by means of a diffraction grating formed 
by periodic changes of the refractive index along 
the propagation direction [1-3]. The grating 
constant K=2n/A (where A is the length of the 
grating period) should be equal to the difference 
between propagation constants of coupled modes 
(K=ßA-ßB). Such systems, called Grating 
Assisted Couplers (GACs) are used as narrow 
frequency filters and demultiplexing elements. 
The grating in the traditional GAC has constant, 
immutable parameters, what limits the operation 
of the coupler to one, strictly defined frequency. 
A tuneable coupler can be realised when the 
grating is created by two external beams 
interfering in a nonlinear medium [4]. Parameters 
of such a grating depend on the external waves 
properties and can be tuned during the work of 
the device. 

Here we propose a new type of the 
directional coupler which is controlled by the 
photorefractive grating. The grating is created by 
a short pulse of the external waves and lasts until 
the arrival of the next pulse which can amplify or 
erase it. Guided modes being the subject of 
switching have lower frequencies and their 
influence on the grating can be neglected. 

2. Performance of the coupler 

The coupler consists of two different 
channel waveguides parallel to the z-axis of the 
co-ordinate system. Parameters of the channels 
differ enough to avoid power exchange between 
them. The grating required to mediate coupling, 

is created by two external waves forming an 
interference pattern along the z axis. 

I = Io(x,z,t) exp(-0CeXy) [1 + m cos(Kz)] 

where Io denotes the intensity of the external 
beams at the surface of the coupler, o^ describes 
the absorption coefficient, m is the modulation 
depth and K the grating constant. For strongly 
absorbed external waves the interference pattern 
is created only in a thin surface layer of a depth 
about 1/otx. A high frequency light excites free 
carriers and by the photorefractive effect leads to 
the modulation of refractive index. Coupling 
between two different modes in the presence of 
the grating are described by equations [4,5]: 

i dA,/dz = dz A2 exp[ i(ßi-ß2)z] exp(-iKz) 

i dA2/dz = G2jAi exp[-i(ß, - ß2)z] exp(iKz), 

where ßv are propagation constants and Av 

amplitudes of modes. The coupling coefficients 
for TE modes G„v = (coe/N) jj AeG E^E/dxdy, 

with N=(N,NV)
1/2 and Nv=(2p\ /ap0) Jf E, E/dxdy 

AEG describes the amplitude of the dielectric 
constant changes within the grating and Ev is a 
transverse distribution of the vth mode electric 
field. The amplitude of the refractive index 
grating necessary to obtain transfer of light can 
be estimated from the relation G^v = n/2L, where 
L denotes the length of the coupler [1]. 

3. Photorefractive material 

As a photorefractive material we chose 
semi-insulating multiple quantum wells (MOW) 
structure operated with an external electric field 
which is applied parallely to the layer planes and 
to the K vector of the grating [6]. The detail 
calculations were performed for the coupler with 
a guiding slab consisting of 75Ä GaAs wells and 
100Ä Alo.3Gao.7As barriers. The MQW structure, 
in accordance with previous studies [7,8] was 
simulated by a strongly anisotropic homogeneous 
semiconductor with the parallel mobilities of the 
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carriers much higher then the perpendicular ones. 
An efficient operation of the coupler is possible 
with high frequency external waves writing the 
grating and lower frequency guided modes 
reading it. The wavelengths (kex = 630 nm and Xg 

= 845nm) were chosen from the spectral 
dependence of the absorption and electro- 
refraction coefficients presented in Fig.l. 
Absorption curves consist from Gaussian peaks 
for light hole and heavy hole absorption and 
continuum contributions from absorption to free 
electron-hole pairs [9,10] ((XE(X,) - in the presence 
of an external electric field and Oo(A,) - without 
the field). The change of the refractive index, 
AnE(A,), due to the absorption changes caused by 
the quantum confined Franz-Keldysh effect was 
calculated using Kramers-Krönig relations [11]. 
The parameters of the approximation were taken 
from the paper of Wang et al. [12]. 

0,83 0,84 0,85 0,86 

Mum] 

Fig. 7. Spectral dependence of absorption and 
electro-refraction. 

The propagation constants and field profiles of 
the modes for the chosen Xs were determined 
using the effective index method and the transfer 
matrix approach [5]. The resulting grating 
amplitude and fringes spacing necessary for 
transfer signals between the waveguides in the 
designed coupler (consisting of two 0.4 \im high 
rib Alo.5Gao.5As waveguides of widths 0.4 \im and 
0.7 um separated by 0.6 p.m strip of AlAs and 
placed on MQW layer) are An = 2.25X10"4 per 1 
cm of the device length and A = 84.5 fim. 

4. Dynamics of the grating. 

For high frequency external waves the main 
photorefractive mechanism in MQW layer relays 
on the interband excitation of electrons and holes, 

their movement due to the drift and diffusion and 
finally a recombination to the donor traps. The 
resulting space-charge electric field causes the 
change of the refractive index due to the electro- 
optic effect. Such a model leads to the following 
equations based on a classical Kukhtarev- 
Vinetskii model [7]: 

J   ne a     r »r+ 
l   J Je 

nv e a z d t 

d t      hv 

j. =efieneE + fiekBT 

h =efihnhE-ßhkBT 

e d 2 

ins. 
d z 

dt 
dE 
dz 

d z 

7hnh(ND-N+
D)-yeneN

+
D 

££c 

-(N+
D+nh-ne-NA) 

The symbols in above equations are: ne - the free 
electron and nh - the free hole concentrations, No 

- donors, N£ - ionised donors and NA - acceptors 
concentrations, je- the electronic andj'A- the hole 
current densities, E - the total electric field (E=Eo 
+ Esc, where Esc is a space-charge fields and Eo is 
an external field), / - the light intensity, ye and yh - 
the constants describing recombination of 
electrons and holes, /4 - electron and //h - hole 
mobilities along the quantum wells, eo - the 
permittivity of the vacuum £ - the effective 
dielectric constant of MQW structure, e - the 
absolute value of the elementary charge, ka - the 
Boltzmann constant and T - the absolute 
temperature. Thermal excitation of the carriers 
and transverse carrier mobility are not included in 
the above set of equations. The later condition is 
fulfilled due to the high difference between 
longitudinal and transverse carrier mobilities. 

The set of equations was solved numerically 

for the initial conditions Eo = 10 V/m and JV^ (0) 

= NA = ND/2, trap density ND = 1023 m"3, 
absorption coefficient cc„ =105 m"1 and other 
parameters as in [7]. The time evolution of the 
space-charge field presented in Fig.2 exhibits the 
same    saturation    value    for    different    light 
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intensities and a strong influence of intensity on 
the response time of the device. 
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Fig.2. Time evolution of the first five Fourier 
components of space-charge field for different 
external waves intensities. 

The evolution of the space-charge field 
generated by the short pulse of light is presented 
in Fig.3. 

I0= 0.1 W/cm2 

t= 0.1 MS        .•■•,'C) 

Fig.3. The time evolution of the first three 
Fourier components of the space-charge field for 
I = Ioexp(-(t-t0f/2z2). 

The grating life-time depends mainly on the 
materials dark conductivity and in the absence of 
free carriers which is assumed here can be very 
long. 

The refractive index changes in the semi- 
insulating MQW structures An(E) = (-1/2) no3 sE2, 

where s is a quadratic electrooptic coefficient [6]. 
According to our calculations s coefficient due to 
the Franz-Keldysh effect for A,g=845 nm is in the 
range of 7xl0"13 cm2/V2. Hence the achieved 
electric field causes index change about 3x10^ 
and can provide switching in 0.8 cm long device. 

5. Conclusions 

It has been shown that a thin photorefractive 
grating in semi-insulating MQW material can be 
used to control an asymmetric directional 
coupler. A choice of the output guide and the 
wavelength of the switched signals depends on 
the grating parameters and can be varied during 
the work of the device. The grating does not 
require a permanent presence of the external 
waves. Pump pulses are necessary only for 
writing, refreshing or erasing of the grating. 
Signal waves at low frequency do not destroy the 
grating which makes a potential application of 
the system as an all-optical switching element 
with memory possible. The switching time of the 
coupler depends on the intensity of the external 
waves and can be below 0.1 Us what allows 
potential applications for routing groups of 
signals. 
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Quasi-phase-matching (QPM) is now a well- 
established technique for achieving walk-off free broad- 
band phase-matching at room temperature in any mate- 
rial, and thus allow efficient second-harmonic-generation 
(SHG) (see [1] for a review). In particular, QPM through 
photolithographically controlled electric-field poling in 
ferro-electric materials, such as LiNb03, is promising 
due to the possibilities of engineering the mask, and thus 
the QPM grating [2,3]. 

Lately interest has thus turned towards engineering the 
QPM grating. Changing the grating in the direction of 
propagation one can achieve SHG at several wavelength 
[4], compressing optical pulses without introducing phase 
distortions [5,3], or enhancing the cascaded phase shift of 
the fundamental [6]. A fan-out design (i.e. change in the 
transverse direction) can be used to obtain broad spectral 
coverage of the SHG phase-matching wavelength [2,7] 

It has also been shown that solitons can exist in QPM 
quadratic nonlinear media [8,9], even under the influence 
of a random domain length [10,9]. Introducing a weak 
chirp of the domain length in the propagation direction 
allows for adiabatic shaping of solitons [11]. With lateral 
paterning the profile of the solitons can be engineered 
[12] and with local distortions such as steps and impuri- 
ties [13] or tilts and dislocations [14], the solitons can be 
steered in the transverse direction. 

In all these works the nonlinearity was always purely 
quadratic. However, it was recently shown that QPM in- 
duces cubic nonlinear terms, such as self- and cross-phase 
modulation (SPM and XPM), in the equations describ- 
ing the evolution of the averaged fields [8]. This induced 
cubic nonlinarity affects the amplitude and phase modu- 
lation of cw waves'[15], while still supporting solitons [8], 
and thus it offers the possibility of enginering the prop- 
erties of QPM quadratic (or x'2') nonlinear materials. 

The induced Kerr nonlinearity, which is an unavoid- 
able result of incoherent or non phase-matched coupling 
between modes [17], is of a fundamentally different na- 
ture than the inherent material Kerr nonlinearity. Con- 
sequently, its effect can be significantly different from the 
known results for competing x^ and inherent x(3' non- 
linearities, both in the case of SHG [16] and solitons (see 
[17] for a review). It is interesting that the induced cubic 

nonlinearity is equivalent to the additional nonlinearity 
experienced by the guided center soliton in dispersion 
managed optical fibre systems. 

As we will show, the induced cubic nonlinearity in a 
typical QPM LiNbC-3 crystal is more than an order of 
magnitude weaker than the inherent material cubic non- 
linearity. This leaves an important question if we want 
to make use of the induced cubic nonlinearity: Can the 
QPM grating be engineered to make the induced SPM 
coefficient comparable to the inherent material one, and 
if so, what effect does this have on the x'2^ nonlinearity? 
In this letter we try to answer this question. 

We consider a linearly polarized electric field E = 
e[Ei (z) exp(ikiz — iwt) + E2 (z) exp(ik2z — i2ojt) + c.c.]/2, 
propagating in a lossless QPM x^ medium, where only 
the nonlinear susceptibility is modulated. When both 
frequencies u> and 2w are far from material resonances, 
the dynamical equations take the form 

idzE1+G(z)xiE;E2e -iAkz = 0, 

idzE2 + G(z)x2E2
1e

t^ = 0, 
(1) 
(2) 

where dz=d/dz, Xj=u}des/(njc), Ei(z) is the slowly 
varying envelope of the fundamental wave (FW) with 
frequency u> and wavevector &i, and E2(z) is the cor- 
responding second harmonic (SH) with wavevector k2. 
The effective nonlinearity coeffient <feff=|x^|/2 is given 
in MKS units, and Ak=2ki - k2=2u>(ni - n2)/c is the 
wavevector mismatch, where rij=n(juj) is the refrac- 
tive index at the frequency JLJ (j=l,2). The total in- 
tensity J=77o(ni|Ei|2 + n2|i?2|2)/2 is conserved, where 
J?o=\/eo/Mo is the specific admittance of vacuum. 

The periodic modulation of the x'2' susceptibility is 
described by the periodic grating function G(z) with am- 
plitude 1. For the most efficient first order QPM with 
the typical square grating with constant domain length 
Z,0=7T/KO, the dynamical equations for the average am- 
plitudes w={Ei) and v=i{E2), 

idzw + r}iw"ve~i0oz + (72M2 - li\v\2)w = 0,       (3) 
idzv + f]2w

2e-i0oZ - 2j2\w\2v = 0, (4) 

were derived in [8] assuming that the domain length is 
much shorter than the length L of the crystal, LQ <£ L, 
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and close to the coherence length Lc=w/Ak, correspond- 
ing to a small residual mismatch, ß0 = Ak - K0 < K0- 

Here Vj=2Xj/n and -y^xiXjO- - 8/T
2
)/KO. The system 

(3-4) is easily extended to incorporate higher order QPM 
and diffraction in the transverse x and/or y direction [8]. 

Consider LiNb03 and a fundamental wavelength of 
Ai=1.064/zm, for which <233=32pm/V. The nonlinear re- 
fractive index has been measured to nref=48 • 10-14esu, 
for ni=2.2 and n2=2.23 [18], giving the SPM coef- 
ficient 7sPm=nrefw/c=0.04pm/V2. In comparison, for 
perfect matching, L0=Lc=X1/4(n2 - ni)«9/mi, the in- 
duced Kerr nonlinearity is an order of magnitude lower, 
72=4(7T2 - 8)<^ffZ0/(7rnin2A2)=0.004pm/V2. Generally 
the coherence length is shorter than 9^m and thus the 
cubic nonlinearity induced by single period QPM will be 
even weaker. 

S   -0.5 

FIG. 1. 
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Modulated QPM grating function G(z) (left, dot- 
ted) with the corresponding domain length Ld(z) (right, solid) 
for L2=WLo=40/j.m and €2=1.2. 

Let us instead consider weakly modulated QPM grat- 
ings with Fourier series of the form 

G(z) = Y,9nexp[inf(z)], (5) 

where #„=0 for n even and gn=2/(iwn) for n odd, are 
the coefficients of the unperturbed square grating. Un- 
less otherwise indicated the sum is from n=-oo to n=oo. 
We take f(z)=K0z + e2sin(/c2z), where the modulation 
period L2=2-K/K2 is long compared to the unperturbed 
domain length, L0 < L2. This corresponds to a square 
grating with a slowly varying domain length given by 

Ld(z) « n/dzf = TT/[K0 + e2/c2 COS(K2.Z)], (6) 

in the limit when the domain length is much shorter than 
the crystal length, Ld < L. The modulation is illus- 
trated in Fig. 1 for a typical unperturbed domain length 
of L0=4/mi, with e2=1.2 and L2/L0=10. The ratio is 
here chosen to be relatively small in order to be able to 
see the modulation of G(z) with the eye. 

First we assume a first order QPM with a slow vari- 
ation of the short domain length, i.e., L0 ~ Lc <£ L 
and L0 -C L2. Then we expand Ej(z) in Fourier 
series of harmonics of the wavenumber «o, I?i = 
Enwn(z)exp(m/c0z) and E2 = *£,nvn(z)exp(inK0z), 
where the coefficients are slowly varying compared with 

the domain length L0, i.e., \dzwn\ <C |K0U)„| and \dzvn\ <C 
\novn\. Following the approach outlined in [8] we obtain 
the equations for the average fields w=wo and v=ivo on 
the Lo-scale 

idzw + rtiDiw"ve-ißaZ + (72H2 - 7i|ü|2)tü = 0,     (7) 
idzv + ThD-xtfe-100* - 2>y2\w\2v = 0. (8) 

where the quadratic nonlinearity now is multiplied by the 
periodic function D±=D±(z)=exp[±ie2sin(K2z)], com- 
pared to Eqs. (3-4). Since D±(z) is periodic it can be 
expanded in a Fourier series, 

D±(z) = ^2d±nexp(inK2z), dn = J„(e2), (9) 

where Jn(e2) is the Bessel function of the first kind of 
order n. Thus d-n=(-l)ndn. 

There are two different cases in which an analyti- 
cal treatment is possible: In the adiabatic limit when 
D±(z) varies much slower than w(z) and v(z) the field 
can be assumed to adiabatically follow the variation of 
D±(z). This was studied theoretically (using the unde- 
pleted pump approximation) [5] and later observed ex- 
perimentally [3] for pulses in aperiodic chirped QPM 
gratings in LiNb03. In similar weakly chirped QPM 
gratings it has been shown theoretically that spatial soli- 
tons adiabatically adjust their shape to the local domain 
length through a slowly varying phase-mismatch [11]. 

Here we consider the opposite case when the modula- 
tion period is short compared to the length of the crystal, 
L2 < L. The spectrum of G(z) for such a grating with 
L2=20Lo=100/mi and e2=1.2 is shown in Fig. 2. The 
blocks of peaks around the K0 and 3/c0 peaks of the un- 
perturbed grating are clearly distinguishable. 

Mismatch order, m 
3   -2   -10      12 

1 2 3 
Wavenumber, K/K, 

0.7   0.6   0.9   1.0   1.1    1.2   1.3 
Wavenumber, */*,, 

PIG. 2. Left: Amplitude spectrum of the grating function 
G(z) for L2=20io=100/im and e2=1.2. Right: The detailed 
structure around the first order peak at K=K0 with indication 
of the order m of the effective mismatch ßm. 

We now expand w(z) and v{z) in a Fourier se- 
ries o f harmonics of the wavenumber «2, w = 
T,nwn(z)exp(iriK2z) and ü = E„ün(z)exp(m/c2.z), 
where the coefficients are slowly varying on the L2-scale, 
\dzwn\ < n2wn and \dzwn\ < K2vn. Following again the 
approach of [8] we obtain the equations for the average 
fields w=wo and v=vo 

idzw + rtlmw*ve-it3mZ + (72mM2 - -yim\v\2)w = 0,   (10) 
idzv + rt2mw2e-i0mZ - 2j2m\w\2v = 0, (11) 
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where ßm=ßo — m,K2=Ak - no — m.K2 -C «2 is the ef- 
fective mismatch for matching to the mth peak next to 
the «o peak, as illustrated in the close-up in Fig. 2. The 
nonlinearity coefficients are given by 

Vim=Xi[2Jm(62)/ir], (12) 

lim = XiXAtf ~ 8)/«o - 4Sm(e2)/K2]/7r2,        (13) 

where Sm=-S-m=J2niio
JZ+m/n- For m=° we ob- 

tain 5o=0 and thus 7jo=7j of the unperturbed grat- 
ing, as it should be. Using the well-known recurrence 
and addition formulas for Bessel functions we calculate 
Si=-2Jo(e2)Ji(e2)/e2- Closed form analytical expres- 
sions for Sm becomes progressively more difficult to ob- 
tain for higher orders m > 2. 

-     1.0 ' 
^ *■-.. m=0 (a) 
J    0.8 . 
E- 

S    0-6 m=l 
m=2 

%    °-4 
s                 +*~ 

o 
!T        0.2 \ 
X /            " * 
6 -o.o /  - *■ " 

u 
0 
Z  -0.2 **.  , 

1 2 3 
Modulation strength e2 

a factor of 23 (to 48-103 pm2/V2 in LiNb03) by choosing 
a sufficiently weak modulation (e2 <& 1)- In comparison, 
the inherent material cubic nonlineaity in bulk LiNbC-3 
is 40-103 pm2/V2, and thus the induced cubic nonlinear- 
ity can actually be made dominant by the modulation. 
However, for weak modulations the effective quadratic 
nonlinearity is reduced to nearly zero for m > 1. Choos- 
ing the right modulation is thus a matter of optimization. 
For example, considering again the m=l peak, the opti- 
mum value would be around €2=1, which gives a factor of 
18 increase of the induced cubic nonlinearity, while only 
reducing the quadratic nonlinearity by a factor of 0.4. 

The induced cubic nonlinearity could be important 
for control and shaping of solitons [8]. An important 
issue is that the modulation allows to achieve phase 
matching at several wavelengths with equidistant separa- 
tion, thus allowing for wavelength-division-multiplexing 
(WDM) with solitons in x^2' materials. In this case 
£2 should be chosen auch as to maximize the effective 
quadratic nonlinearity at the individual peaks, i.e. choos- 
ing £2 around 1.5, where all the m=0,1, and 2 peaks have 
approximately the same strength. 

In any case, introducing a modulation of the QPM 
grating, as we have proposed here, allows to engineer the 
quadratic and cubic nonlinearities and thus to optimize 
their competition according to predefined wishes. 

« 24 
<; (b) " 

1 20 
?- " 
*i 16 
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FIG. 3. Normalized effective quadratic nonlinearity f/im/^i 
(a) and induced cubic nonlinearity 72m/72 (b) versus the mod- 
ulation strength ti for Z/2=20Lo=100/zm. The right ordinate 
axis shows the actual strength for a bulk LiNbC>3 crystal. 

In Fig. 3 we show the normalized average QPM 
nonlinearity coefficients r]lm/rji and 72m/72 versus 
the modulation strength e2 for different orders of 
phase matching. The grating is the same as in 
Fig. 2 with I2=20Lo=100//m. On the right ordi- 
nate are the corresponding values for bulk LiNbC-3 of 
the effective quadratic nonlinearity 1^3m, defined as 
r)im=cjd^mI(nie), and the effective cubic nonlinearity 

Xqpm, defined as Xqpm=8n1C72m/(3w). From Fig. 3 we 
see that by matching to for example the m=l peak we can 
increase the strength of the induced cubic nonlinearity by 
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Recently the quasi-phase-matching (QPM) technique has attracted much attention in connection with 
self-trapping of light in quadratic media1-4. The QPM technique is based on the periodic modulation 
of the nonlinear susceptibility and/or refractive index, by which the additional grating wave vector is 
introduced. This grating wave vector can be used for compensation of the mismatch between the wave 
vectors of the fundamental and second harmonic waves. The QPM technique in bulk samples leads to an 
effective cubic nonlinearity in the form of self- and cross-phase modulation terms2 which strongly influence 
on the properties of the cascaded solitons. Here we consider the QPM technique implementation in the 
waveguide geometry. 

As was shown in Ref.5, the cascaded surface solitons can exist even on the surface of the medium with 
the bulk inversion symmetry centre due to the contribution of the surface terms with spatial derivatives 
of the fields to the nonlinear response. Such a surface nonlinearity can be enhanced by the x{2) nonlinear 
film placed on the plane waveguide surface. The effective boundary condition for the electric field E = 
(Ex ,0,EZ) of the TM waveguide modes at the surface with thin nonlinear layer placed on it contains the 
derivative along the direction x of the wave propagation6 

where e is the dielectric constant just above the nonlinear layer.   If the nonlinear susceptibility x is 
modulated along the x axis, 

X = X(a0, (2) 

we arrive at the waveguide QPM implementation convenient for applications. The corresponding equa- 
tions governing the evolution of the envelopes A and B of two modes — the fundamental with frequency 
u and the second harmonic with frequency 2w — have the form 

' (s + fc»l«) - f w+-•-*■■■! («*""-"') - °. 
<f^f)-f^— |(^-,=o, (3) 

where Qi and a2 are the coefficients depending on the dispersion laws of two modes, 

ku = Au(w),        k2ui = fcs(2w), m 
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and t denotes time in the case of temporal solitons or scaled transverse coordinate in the case of spatial 
solitons. 

The periodically modulated nonlinear susceptibility x(x) °f the layer can be expanded in a Fourier 
series 

X(x) = Y,dneinKX (5) 
n 

with 

K ~ 2ku, - k2u,, (6) 

as well as the amplitudes, 

A = Y, aneinKX,       B = e0x ]£ bneinKX, (7) 
n n 

where 

ß = 2ku - k2u - K (8) 

is the effective phase-matching parameter (\ß\ < ku, k^,*)  Then the slowly varying Fourier amplitudes 
ao and 6o obey the average equations 

i 
db0     ,,   db0\     k'Ld2bQ     - ,     f.,      2    d(a2

0)\     n ,    l2.      n 

The effective cubic nonlinearities with coupling constants 7, p, 77 are similar to those in the quadratic bulk 
media2. In addition in the waveguide geometry we obtain new nonlinear terms with derivatives with 
respect to the propagation coordinate x These derivative nonlinearities can dominate over the cubic 
nonlinearity and they are the only corrections in the case of sinusoidal grating 

X{x) = 2(1IC0S(KX),        d-i = d\, (10) 

when the cubic terms vanish identically We have investigated the influence of these derivative nonlinear- 
ities on the properties of the cascaded x^ solitons in plane waveguides with quasi phase-matched film 
placed on its surface. 
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I. INTRODUCTION 
Nonlinear wave propagation along microwave transmission lines has been previously inves- 

tigated [1, 2]. The structures under consideration were metal-insulator-semiconductor (MIS) or 
Schottky contact transmission lines. In this case nonlinearities arise from the voltage dependent 
depletion layer between metal and semiconductor producing a large nonlinear capacitance. The 
theoretical models are based on equivalent circuits leading to the well-known KdV equation (or 
expanded versions). Although pulse compression has been demonstrated in these structures [3], 
the inherent losses due to free carrier absorption and their slow response make exploitation of 
these nonlinearities challenging. 

In this paper we show that electrical transmission lines on GaAs can exhibit nonlinear pulse 
propagation without introducing additional nonlinear capacities. The effect we describe here 
arises from the inherent second order nonlinearity of GaAs, x^z, that is the nonlinear polarisa- 
tion induced by the transverse field distribution of the guided mode. In contrast to the structures 
mentioned above no additional losses occur. The nonlinearity is instantaneous, so that transi- 
tion time effects do not limit the pulse width. In the following we derive a KdV equation from 
Maxwell's equation and investigate possible soliton propagation on a microstrip and a coplanar 
transmission line. 

II. THEORETICAL MODEL 
The structures investigated and the underlying coordinate system are sketched in Fig. 1. 

The 2-axis is defined to be parallel to the propagation direction. Since the nonlinearity is weak 
the induced polarisation does not perturb the transversal mode profile E'(x, y) of the guided 
mode and we can write the electric field in the waveguide as 

E{x,y,z,u) = u{u,z)E'(x,y)    . (1) 

In the following we neglect field componentsjn z-direction. The field evolution in Fourier space 
under influence of a nonlinear polarisation P can be described as [4] 

|-;«) «(-,*) = g 
// 

E'*-Pdxdy (2) 

Figure 1: Geometry of the investigated structures: (a) microstrip line and (b) coplanar trans- 
mission line. For the examples presented here w = h = s = 4/zm and eT = 12.9. 
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where ß(u>) and Po are the phase constant and the power of the unperturbed mode respectively. 
For a transformation of the equation into the time domain we expand ß(u) in a Taylor series 
around zero frequency u = 0. Taking into account the symmetry property ß(-oj) = -ß*(u>) we 
get 

ß(oj)=ja+--u + ja"co2+T^üJ3    , (3) 

where vo is the group velocity of the microwave, Tm;c is the third-order dispersion coefficient 
and a and a" are the frequency-independent and -dependent loss coefficients respectively. The 
induced polarisation P depends critically on the orientation of the crystal axes in the GaAs 
substrate. Here we initially examine the case of the usual orientation of transmission lines on 
GaAs, where growth is parallel to the [100] crystallographic direction and the microstrips are 
perpendicular to a cleaved facet [Oil]. However, other orientations are possible (e.g. growth 
parallel to [111] or [110]) and our model can be easily extended to these cases. The cubic 
symmetry of GaAs provides only one non-zero tensor element for the second-order susceptibility 
and we obtain for the nonlinear polarisation 

-*oX (2) 

lp'2   \ 

KE'y 
o    / 

(4) 

After inserting eq. (3) and (4) into eq. (2) and performing the inverse Fourier transform we come 
up with the following equation, which has the KdV form in the lossless case: 

9 (I „,     s d_ 
dt 

d3 

a 
dt2 6   dt6 U(t,z) = 0 

Here we have defined the effective susceptibility Xeff as 

XeS = \io-^j-2j jx(2)E'y
2E'xdxdy 

(5) 

(6) 

and rescaled the amplitude in terms of guided wave power U(t,z) = u(t, z)/y/P^. Obviously the 
overlap integral is different from zero for mixed polarized modes only. 

III. RESULTS 
The transversal field components E'(x,y) were calculated from electrostatics by solving 

the Laplace equation.   As the dimensions of the transmission lines considered are small in 

Xeff in sm  1W 1/2 At in ps Ps inW Vmic in V 

microstrip 5.2 *10"14 
100 
10 
1 

3.4 *10~2 

165 
1.65 *106 

0.834 
83.4 

8.34 * 103 

coplanar 3.4 *10"14 
100 
10 
1 

3.98 * 10-'2 

398 
3.98 * 106 

1.45 
145 

14.5 * 103 

Table 1: Effective susceptibility Xeff for microstrip and coplanar transmission line {XQIAS 
= 

200pmV-1 [6]); peak power Ps and voltage Vmjc for solitons of different FWHM pulse 
widths    At. 
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Figure 2: Intensity plot of propagating 
pulse without nonlinear term along mi- 
crostrip line; initial pulse width At = 1 ps. 

10     15     20     25     30 
time in ps 

Figure 3: Intensity plot of propagating 
soliton along microstrip line; pulse width 
At = 1 ps. 

comparison to the wavelength the calculated mode profiles are also a good approximation at 
higher frequencies. If we neglect losses the soliton solution of eq. (5) is [5]: 

U(t,z) = Asech2 

^ J- m.i.n 

1/2 

(t - rjz) With     T)= -XeffA 
VQ     3 (7) 

where A is an arbitrary amplitude. The effective susceptibilities xeff, peak power Ps = A2 and 
voltages Vmic for different FWHM pulse widths At of a soliton are shown in Table 1. The 
proportionality Ps oc Ai~4 leads to fairly high powers for pulses shorter than 10 ps. However, 
it should be noted that in the cases considered here mostly fringing fields induce the nonlinear 
polarisation. This drawback could be overcome by other orientations of the crystal axes leading 
to higher effective susceptibilies. For example, a [I10]-grown sample can provide TE polarisa- 
tion parallel to [111] crystalline direction and the effective susceptibility only contains the E' 
component. In Fig. 2 and 3 we show intensity plots of pulse propagation with and without 
induced nonlinearity respectively. Pulse broadening and radiation are clearly shown for linear 
propagation which are absent in the soliton. 
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The past few years have witnessed an intense renewal of interest in the concept of optical parametric 
solitary-wave that was discovered in the early 1970's. Most of the attention in this field of research has 
been devoted to the class of solitary waves that result from the mutual trapping of two or three-frequency 
envelopes due to an exact balance between nonlinearity and diffraction (or dispersion) [1]. This class of 
symbiotic solitary-waves has recently been investigated experimentally both in the spatial and temporal do- 
mains. As is well known, another class of symbiotic solitary-waves exists in optical quadratic media that 
is characterized by a balance between energy exchanges and group-velocity differences between the con- 
stituent waves [2-5]. These solitary-waves play a fundamental role in many areas of research [2] such as 
plasma physics, acoustics, hydrodynamics or nonlinear optics where they have been investigated experi- 
mentally in stimulated Raman and Brillouin scattering [6,7]. Nevertheless, due to their rather complex 
structures, this class of symbiotic solitary-waves has never been observed in quadratic optical materials. 

We show here that new symbiotic solitary-waves of this class can be generated spontaneously in dis- 
sipative quadratic media provided that the parametric interaction is quasi-phase matched in a backward 
configuration [8]. In the parametric amplifier configuration, we show that the velocity of the solitary-wave 
can be easily controlled by the injected pump intensity and can take any subluminous value, either positive 
or negative. As a particular case, we show a new mechanism of energy localization through a zero-velocity 
solitary-wave. Moreover, when the quadratic material is placed inside a singly resonant cavity, the solitary 
waves are spontaneously generated from noise fluctuations. 

We consider a quadratic material in which nondegenerate three-wave interaction takes place through 
backward quasi-phase matching. The governing equations are given by the following set 

1 3A{      8A{ d2Ax •--— —- + lp1-— + y1A1    =   alA3A2 (la) 
Vi   at        dx dt2 

■    \dA2       8A2 d2A2 
—^r + €~r~ +l^~^r + yzA2 = °2A^A\ (ib) v2  dt dx dt2 

1 8A3      8A3 d2A3 
■ T7 + -T- +lPl-^T + YlAl     =     -O3A2A1 (lc) V3   dt dx dt2 

For definiteness we call A\, A2, A3 the signal, idler and pump waves respectively, a,-, v;, y,- and p,- = 
(d2k/dco2)i/2 are the coupling constants, the velocities, the damping rates and the dispersion coefficients of 
the crystal at frequency COJ . The dispersion effect is not at the origin of the new symbiotic solitary waves, 
however its effect is taken into account in order to verify the robustness of these structures with respect to 
modulational instabilities. 

We first consider the amplifier configuration of the parametric interaction in the case where only the 
signal wave propagates backward with respect to the pump [e = +1 in Eqs. (1)]. In order to show the 
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existence of solitary-wave attractors in Eqs. (1), we investigate numerically the basic propagation problem 
of an initially localized signal in the presence of the counterpropagating continuous pump wave [5]. 

A typical result is illustrated in Fig. 1 that shows the evolution of the three interacting field envelopes 
in the signal reference frame defined by (z = x + vt, r = t). After a complex transient (t < 70ps), we 
observe that the three fields self-structurate in the form of a symbiotic solitary-wave (t > 0.5ns) where the 
signal and the idler components are spatially localized while the pump has a kink shape. The same solitary- 
wave is reached starting from any profile of the initially localized signal wave allowing to conclude that the 
three-wave structure is a strong attractor of the backward parametric process in quadratic media. 

It is remarkable that the symbiotic solitary-wave does not propagate at the velocity of light in the crystal, 
but rather with a specific subluminous velocity: the three-wave steady structure drifts to the right in the 
signal reference frame [Fig. 1]. In a similar way as for stimulated Brillouin scattering [3], we determine 
analytically the selected velocity through the Kolmogorov-Petrovskii-Piskunov (K.P.P.) conjecture which 
proved powerful in nonlinear diffusion problems and dynamical pattern selection [9]. The main outcome of 
this analysis is that the velocity of the solitary-wave can be controlled by the intensity of the injected pump. 
This is illustrated in Fig. 2 where the selected velocity V* is plotted versus the continuous pump intensity. 
The remarkable and unexpected result is that the new symbiotic solitary-wave even exits for zero-velocity 
V* = 0, a feature that has been verified by direct numerical simulation of Eqs. (1) [5]. The zero-velocity 
solution makes the new symbiotic solitary-wave attractors interesting for potential applications to all-optical 
buffers and memories. Besides these applications, this standing solution is also attractive in that it offers a 
simple way to observe a fundamental phenomenon of nonlinear energy localization. 

The pump power required for the experimental observation of the new symbiotic solitary waves is quite 
large. On the basis of a previous work on Brillouin fiber-resonators, we will show that the same type of 
symbiotic solitary waves may be also spontaneously generated in the ring-cavity configuration [7]. For 
this purpose, it is more convenient to consider the parametric configuration where both the signal and idler 
components propagate backward with respect to the pump [e = -1 in Eqs. (1)], otherwize, no pulse are 
formed. For the sake of simplicity we investigate here the singly resonant parametric oscillator (SOPO) 
where only the signal circulates in the cavity [4]. A typical numerical result is illustrated in Fig. 3 that 
shows the evolution of the three interacting envelopes in the crystal of length L = 3 cm, for a pump 
intensity of 27 kW/cm2 and a reflection coefficient of R = 0.99. After a long transient, the envelopes take 
the form of the symbiotic solitary wave that is of the same nature as those described above. This result is 
quite general. It has been observed in a wide parameter range including, in particular, reflection coefficients 
as small as R = 0.01. The generated pulses are in the picosecond range, which makes this SOPO interesting 
for applications to high-repetition-rate ultrashort pulse train generation. 

In summary, a new phenomenon of spontaneous energy localization in the form of a zero-velocity soli- 
tary wave has been reported. The advantage of these new solitary-waves with respect to the similar energy 
localization phenomenon called "gap soliton" in periodic nonlinear media is that they can be generated spon- 
taneously from quantum noise. Moreover, these solitary waves constitute a stable and robust attractor for 
the three waves interacting inside a singly resonant parametric oscillator. 
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The application of cascaded second-order nonlinearities for all-optical signal processing has been a field of 
intense research during the past few years. The potential of cascaded quadratic nonlinearties is based on 
their ability to mimic third-order nonlinear effects at reduced power, as well as on the direct applicability 
of the inherent amplitude and phase modulation of the wave mixing (e.g. [1, 2] and references therein). 
An interesting application belonging to the second alternative is the modulation of a strong pump wave 
by a weak control signal (all-optical transistor action). Different schemes have been developed for this 
purpose, which are based on type I, double type I or type II interactions, where also a phase independent 

control is possible with type II configurations [2, 3]. In this paper, all-optical modulation using a second- 
order nonlinear directional coupler is shown theoretically by numerical integration of the governing coupled 
mode equations. The principle of operation is based on the down conversion of a strong second-harmonic 
(SH) pump wave seeded by a weak control signal at the fundamental frequency (FF), but with no direct SH 
field being launched at the input. 

The directional coupler at hand consists of two parallel waveguides in a second-order nonlinear ferroelectric 
crystal, which is periodically poled in the region of waveguide "b" as sketched in Fig. 1. Then the effective 
second-order susceptibility is sign-inverted periodically in x > 0, x{2\r) = X(2) • 9{z) with the grating 
function g(z) = J^ZX g{ cos(i K z). The periodic poling is assumed to end at the symmetry plane, so that 

X(2) (r) = X(2) in x < 0. Considering type I second-harmonic generation (SHG), the description of the field 
in terms of the co-propagating lowest-order modes of the single waveguides at both frequencies results in 
the second-order nonlinear coupled mode equations (1) [2], which imply negligible linear coupling of the 

SH modes. The guided mode powers are given by Pk,ß(z) = \Ck,ß{z)\2> where k = a, b and /* = u, 2w, 
due to proper scaling. 

domain inverted 
regions 

optical waveguides 

Fig. 1. Directional coupler in a periodically 
poled second-order nonlinear crystal 

jd-^f=K C^e+m"z + r° C*V c'&eJAßa z 

(1) 
with the linear mismatch 5ßu = ßa>tJJ - ßbt„, the wave- 
vector mismatches in both waveguides Aß„ = 2ßUyU - 
ßv,iw, v = a,b, and the coupling coefficients V.. and K. 
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Quasi-phase-matching (QPM) of the SHG in waveguide "b" is achieved by a proper choice of the spatial 
grating frequency K with a single harmonic of K being relevant only, resulting in a small residual mismatch 
Skb — Aßb - nK. The nonlinear interaction in channel "a" is still strongly mismatched and, therefore, the 
conversion efficiency is extremely low. Hence, no SH wave is excited in that waveguide, since there is also 
no linear coupling to the SH mode in guide "b". If on the other hand the SH-mode in waveguide "a" is ex- 

cited initially, it is for the reason mentioned above not coupled to the other modes. Therefore, the amplitude 
Ca,2w can be neglected in (1), resulting in the reduced coupled mode equations 

j^ = K c^ e~i5ß" z + gir» °^ cwej5kb z 
(2) 

Except the linear detuning, equ.'s (2) are identical to those for a coupler with waveguide "b" being linear, 
which has been proposed in [4] for all-optical switching by the total input power. The objective here is 

the modulation of a strong pump wave by a weak control signal with input fields at the FF only. For this 
purpose, the device must operate in the vicinity of an unstable eigenmode, which can be perturbed by a weak 
optical signal. A simple eigenmode of (2) is obviously given by Ca,w = Cb,w = 0 at an arbitrary Cb^ # 0, 
which is, due to the vanishing linear directional coupling at 2w, identical with the respective eigenmode in 
an isolated waveguide [5, 6]. It is unstable if \{2Skb)/(gnTb-^/P^)\ < 2 [5], which is fulfilled at any 
power if 5kb -> 0. Therefore, the desired modulation can be realized via down-conversion of a strong SH 
pump in channel "b", seeded by a weak signal at u. The configuration at hand is nearly identical to one of 
the schemes proposed in [2, 3] in the case when the SH pump is directly excited at input "b", except the 
linear directional coupling, which can be used to combine SH pump and FF seed. 

For the purpose of designing an all-optical device based on the above principle, but with FF input only and 
without a pre-switched SH generator, the present structure can be viewed as an SH generator integrated 
together with a beam combiner and a down-converter. This is possible when almost ideal QPM is adjusted 
in waveguide "b" to realize a strong up-conversion of the FF pump wave launched via input "b", whereas 
the weak FF control wave is excited at input "a" (see inset of Fig. 2.a). This operation is shown below by 
the aid of numerical solutions of (1) for the special case of a coupler without linear mismatch (5ßu = 0) 
and with ideal QPM (6kb = 0). 

Fig. 2.a depicts the evolution of the mode powers when only the pump is launched, Pc<u = 0. The pump 
power is chosen large enough to cause strong SHG over a propagation distance smaller than the linear half 
beat length Lc = 7T/(2K). Then the up-conversion is similar to the phase-matched SHG in an isolated 
waveguide, given by Pbi2u = Pp<u tanh2(^ Tb y/PPJUz), and a small fraction of the pump power is cou- 
pled to waveguide "a" only. The present parameters are selected to give ^ Tb y/Pp,u, Lc — 7. If a weak 
FF control wave is excited at input "a", it is coupled into guide "b", where it serves as a FF seed. This 
seed reaches significant powers at those propagation distances, at which the pump power in "b" is almost 
completely up-converted. It thus induces a strong down-conversion as shown in Fig. 2.b and, thereby, the 
FF output power of guide "b" is switched from zero to 80% of the input power. This down-conversion is 
sensitive to the power PCA, of the control signal as well as to the phase difference between control and pump 
¥>c,w - Vp,u«- It, therefore, permits the power and phase controlled modulation shown in Fig.'s 3.a and 3.b, 
respectively. The fraction of the pump power, which is coupled to guide "a" (cross-state) is lost for the de- 
sired modulation of the FF power in the bar-state. Compared to a scheme with pre-switched SH-generator, 
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these losses are the price to be paid for the integration of the SH-generator together with the combining and 

the interaction devices for the SH pump and the FF seed. 
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Introduction 
Compact and robust solid state devices emitting short and coherent wavelengths in the mid infra red are a cost 
effective way of obtaining new wavelengths which are important in data storage, laser printing, wavelength division 
multiplexing and all-optical switching applications. Due to the maturity of the fabrication technology, LiNbO, 
having a natural birefringence, has proved to be an important material to use in optical systems in the search for new 
wavelengths. Semiconductor laser in GaAs is a reliable source of high power infrared wavelength, and having a high 
nonlinear susceptibility tensor and providing good confinement of the waveguide modes and this could also provide 
a useful source of second harmonic power. However it also suffers from high absorption loss, with the loss factor 
strongly dependent on wavelength. On the other hand, although GaAlAs has a smaller nonlinear susceptibility value 
than GaAs, to compensate that it has a much lower loss factor. It also offers the possibility of monolithic device 
integration involving a high power laser source with the second harmonic generator. In integrated optical 
semiconductor waveguides the high index difference between the substrate and the core leads to tightly confined 
modes, which enhances the second harmonic generation. In materials where this happens, because of normal 
dispersion, the phase matching conditions cannot be satisfied since the refractive index is frequency dependent [1]. 
It is therefore necessary to correct the phase mismatch at regular intervals. One technique used to achieve this is 
known as quasi-phase matching (QPM), where the phase difference between the two interacting waves is corrected 
at regular intervals by means of a structural periodicity built into the nonlinear material at the stage of fabrication 
[2]. Among the suggested methods for phase matching are domain inversion, domain disordering and wafer 
bonding. In wafer bonding of GaAs material, wafers grown by organometallic chemical vapour deposition are 
bonded such that the neighbouring wafers are parallel to each other [2]. 
The role of numerical simulation in the study, development and evaluation of such GaAs based systems, particularly 
the effect of material loss, can be immensely valuable for design optimisation. The powerful, accurate and versatile 
finite element method with the vector H-fidd [3] has previously been used to find modal solutions for optical 
waveguides with a diffused index profile and arbitrary guide parameters [4]. It has also proved useful in obtaining 
the modal fields for modelling of second harmonic generation in LiNbO^ waveguides, and subsequently to study of 
the evolution of the harmonic field, a finite element-based beam propagation method (BPM) [5,6] has been used. 
Given the characteristics of these materials, it is important to evaluate numerically the opportunity and scope 
provided by devices built on such material systems. For such an analysis, a rigorous model is required. In this paper 
the use of the numerically efficient finite element-based BPM to model second harmonic generation in a waveguide 
of practical interest is reported. In particular, using this modelling approach, the effect of loss on the overall 
efficiency of the generated second harmonic power is reported. It is also shown that a better efficiency is achieved 
by used of Ga Al, As as the core material rather than GaAs. J X       1-x 

Numerical Method 
Following from Maxwell's equations, the propagation of an optical field in a given material can be deduced as [5] 

V^-^+^'^P^ 0) 
Where,  P    ,  .,  R   k   are the non-linear polarisation, the modal field profile, the propagation constant and 

NL     <p     H' "'o 

wavenumber respectively, and „ and p. relate to the refractive index of the guide, y2 is the Laplacian operator in 3- 

dimensions. Applying the FEM to equation (1) above will yield the following matrix equation for the propagation 
model: 

-MBjf+([Aj-^[Bj){^{Pj (2) 

This equation may be solved using a split-step procedure; the propagation step in which the finite difference method 
is applied within a short interval and the nonlinear step where the effect of the nonlinear term is considered [5]. 

Results 
In the following, a rib waveguide is considered, with an air cladding, where the substrate is made of AlAs and a core 
of GaxAlj xAs is used. The guide dimensions are as follows: guide width, yy= \.0/um, height of the rib, h = lä/m 
and the height of the waveguide slab, / = 0.2^. Other guide parameters are as given in the work of Whitbread and 
Robson [7]. The input power is 20 Watts. In Fig. 1, second harmonic generation in a lossless perfectly quasi phase 
matched GaAs device is compared with that of Ga Al,_xAs.  It can be observed from Fig. 1 that in the absence of 
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absorption losses, the efficiency of GaAlAs is very high due to its high nonlinear coefficient, thereby implying that 
it is more suitable material for second harmonic generation than GaAs. It will be shown later that high absorption 
losses reduce the efficiency of GaAs to such a level that GaAl^As based device becomes more efficient. 
Next, the effect of material loss has being taken into consideration and a simulated result is shown in Fig. 2 for 
GaAs. For the purpose of comparison, Fig. 2 shows the simulated results for second harmonic generation in GaAs 
without loss and without QPM, as a solid line. The broken line shows the curve obtained when the device is 
simulated without QPM, but taking into consideration the effect of loss. As can be observed, with no QPM, the 
generated second harmonic power builds up until the first coherence length /c, slowly dissipates and then settles 
down to a constant value with a small damped oscillation. The maximum efficiency attained is just about 2.8xl0-3% 
as compared to the lossless case where efficiency of up to about 8.4 x 1(H% was obtained. The inability to obtain 
high output power can be attributed entirely to the very high loss of GaAs. The dotted line shows the curve for the 
power generated when the device is QPM and simulated taking into account the effect of loss. An attempt at 
introducing QPM does not lead to any appreciable increase in the efficiency of the generated second harmonic 
power. As can be seen from Fig. 2, the efficiency curve of the generated second harmonic power assumes a periodic 
nature after the first coherence length. The maximum efficiency obtained is only 4 x 10-3%. As seen in the figure, 
without QPM the power generated is attenuated very rapidly. With the introduction of QPM however, some form of 
periodicity is maintained. This periodicity can be directly attributed to the absorption loss, which effectively nullifies 
the effect of QPM. In Fig. 3 quasi-phase matched second harmonic generation in a lossy GaAlAs based device is 
compared with that of the lossless case. The results show that over very short distances, hardly any differences are 
observed. Provided accurate phase matching can be maintained over the device length, the generated power is 
shown to be increasing. However, perfectly phase matched domain structures are difficult, if not impossible to 
fabricate. In a perfectly QPM structure, the sign reversal occurs after a length defined by /   the coherence length. 
Assuming an error A/c = /-/^ during fabrication, where />c is the actual designed value and /£. is the desired value 
and assuming also that the device is of yy domains, then over the entire device length, the accumulated error is given 
bv N'MC- If the device is sufficiently long, then there comes a point when the accumulated error N'A./ =/. Here w 
(not equal to N) is an integral number of domain length after which this condition is obtained. At this point, sign 
reversal is actually offset by the accumulated error and beyond this point a gradual reduction in the generated power 
will start. This situation is clearly illustrated in Fig. 4. As can be seen, the domain inversion beyond a certain length 
does not occur after an integer number of coherence lengths. The simulated results for such a waveguide are 
illustrated in Fig. 5, where two cases are compared to that of the ideal case. As will be observed from the figure, 
even a 1% error in the fabrication of the domain length could lead to a considerable reduction in the generated 
second harmonic power. This result is quite informative about the length over which to operate a device. As Fig. 5 
also suggests, operating the device at 50 um could result in nearly zero efficiency if the error in the domain length is 
just 2%, instead of the predicted 8% efficiency for the ideal case. On the other hand, designing the device to operate 
at 20 ^m will although reduce power, however, the output is reasonably stable with the fabrication error even at 2%. 
Fig. 6 shows the dependence of the harmonic output on the input power for various assumed fabrication errors. It is 
well known that increasing the input power could increase the efficiency of the output second harmonic power. The 
comparison is over a fixed device length of 10 um. It can be seen that the efficiency is directly proportional to the 
input power. 

Conclusion 
An accurate and efficient numerical method has been described for the study of second harmonic generation in 
semiconductor waveguides. In this paper, numerically simulated results have been presented for second harmonic 
generation after considering the loss factor. These results show that for the reported values of the nonlinear 
susceptibility tensor and loss factor, Ga^Al^As appears to be a better material. Results are also presented for 
fabrication errors in the domain and if pha'se matching can be obtained with less than 1% error, appreciable output 
power can be achieved. 
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Quasi-phase-matched (QPM) [1], [2] second-order nonlinear effects in optical 
waveguides have extensive applications because of their versatile and efficient frequency 
conversion abilities. Recently, QPM devices have been successfully fabricated on many 
materials such as LiNb03, LiTa03, KTP and AlGaAs. Theoretical analyses of the QPM 
nonlinear effects have also increasing importance for the purpose of understanding the 
performance of the QPM devices especially when optimal conditions can not be achieved. 
pi [4] Precise analytical modeling of those QPM devices is quite difficult when large or 
irregular geometrical variations exist and the depletion or the noise of the pump wave is not 
negligible. For a general and accurate analysis, numerical methods are necessary. In this 
paper, we use the IFD-BPM [5] to investigate the influences of nonideal implementation and 
pumping noise on the parametric interactions in the optical waveguide. 

Fig. 1 shows a schematic of the waveguide configuration for the simulation, where w, 
ng, ric, and A are the width of the waveguide, the refractive indices of the waveguide and its 
neighboring regions, and the period of the modulated %a) grating, respectively. The ideal 

grating period  A  is chosen as  A= — , where kp,  ks, and  k{  are the 
k    -k   -k- 

wavevectors of the quasi-phase-matched modes of the pump, the signal, and the idler waves, 

respectively. The duty cycle of the #(2) grating is defined as4- The values of those 
A 

parameters for the simulation are listed in Table 1. 
We first simulate the influence of the period variation. The QPM period varies from A 

to 1.05 A. The departure of the period from the ideal value results in less efficient energy 
transfer. Fig. 2 shows the powers of the pump and the signal waves vs. the propagation 
distance for the period equal to A and 1.005 A. For the small phase mismatch, e.g., 
period=1.005A the energy transfer from the pump wave to the signal and the idler waves is 
delayed to a longer distance, compared to the case of the ideal period. In addition, the peak 
transfer efficiency decreases from nearly 100 % to only 40 %. As the QPM period increases 
to be more than 1.01 A the energy transfer becomes oscillatory and the transfer efficiency 
decreases to less than 0.01 %. The oscillation period from the simulation is different from the 
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2K 
value, — , calculated from the plane-wave approximation with non- 

kp -kj -ks -kqPM 

phase-matched components ignored.[2] Because the non-phase-matched terms are ignored 
in the plane-wave approximation, the oscillation periods predicted by two methods are 
different. Simulation also shows that the difference of the oscillation period increases as the 
QPM period variation decreases, indicating that the non-phase-matched components have 
important influences on the parametric interactions in the QPM condition. These influences 
are, however, ignored by analytical analyses using the plane-wave approximation. 

The influence of duty cycles of the QPM grating is also studied. As the duty cycle is 
reduced, the energy transfer is delayed, while the peak transfer efficiency remains the same. 
If the duty cycle continues to decrease to zero, the energy transfer is delayed to a distance 
approaching infinity. On the other hand, the FWHM distance also expands as the duty cycle 
is reduced. The FWHM distance is defined as the full width of the distance in which the 
parametric interaction has its energy transfer beyond half of the maximum. The deviation of 
the duty cycle from the optimal value of 50% results in a lower effective nonlinear 
coefficient and so requires a longer device length. However, the FWHM distance is 
increased, indicating that the smaller duty cycle does not always cause adverse effects. The 
detail will be further discussed in the presentation. 

In addition to the nonideal implementation of the QPM grating structure, the power 
variation is also found to be influential. For example, the initial power of the pump wave is 
found to have influences not only on the transfer efficiency, but also on the transfer behavior 
along the propagation distance. Also, as the initial powers of the signal and the idler waves 
are reduced simultaneously, the energy transfer is significantly delayed. The peak transfer 
distance exponentially decreases with the initial signal and idler powers. In addition, the 
nonzero initial phase of the signal wave is found to cause the energy transfer to be delayed, 
while the FWHM distance remains the same. The phase influence is significant even when 
both the initial powers of the signal and the idler waves are simultaneously reduced to only 1 
pW. On the other hand, if the signal wave remains at 1 mW, while the power of the idler 
wave is reduced, the influence of the initial idler power becomes negligible for its power less 
than 1 u\V. 

The noise in the pumping wave is also found to have important influence on the 
parametric interaction. The amplitude and phase noises are studied separately. Noise of 
sinusoidal modulation on either the amplitude or the phase is simulated. Fig. 3 shows the 
influence of the amplitude modulation on the power transfer. The pump energy drops faster 
for the modulation at higher frequencies. The reason is because the higher-frequency noise 
escapes from the waveguide faster, leading to a fast decrease of the pumping energy. The 
influence of the phase modulation on the power transfer is shown in Fig. 4. The pump energy 
also drops faster for the modulation at higher frequencies because of a similar reason. 

Detailed discussions of the influences in many aspects will be given in the presentation. 
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The successful implementation of the quasi-phase-matching (QPM) technique [1] makes 
second-order nonlinearities have increasing importance in areas such as optical commucation, 
data storage, spectroscopy, environmental monitoring, and so on. However, exact analytical 
analyses of these interactions are usually difficult in cases of efficient coversion and 
waveguide with irregularities. Therefore, numerical techniques based on beam propagation 
method (BPM) had been proposed by many places to model QPM second-order nonlinear 
effects. In this work, iterative schemes are proposed and compared with published methods. 
Without loss of generality, the formulations are given in the second-harmonic generation 
(SHG) case. The extension to the general three-frequency situation is straightforward. 

The wave equation in the presence of nonlinear polarization could be described as 
follows in the paraxial approximation: 

2AA^ = ^+C(»/ -«/)*, + y2hhme-i^EfEf 

VKf*f ^ = ^=f + K/ (»/ - n/)Ef + K/X
(2)e^ !Eß/ 

where n, k0, x(2) and E are the effective index of the guided mode, the wave vector in 
free space, the nonlinear coefficient, and the slowly varying envelope of the field, respectively. 
Subscripts, 5 and f, represent the second harmonic and the fumdamental waves. 
Akz =2nfkof -nskos. Propagation along the z direction is assumed. For concise purpose of 
expressions, the following finite difference operators are defined: 

LxEr=-V^r1-* - Mr+*ru)»   4,r=*<,2(»r2 - «,2) > «=*,/ 
Ax 

Note that Em's represents the electric field at the point (x,z) = (m-Ax,s-Az). With these 
definitions, the schemes to be compared can be expressed as follows: 
EFD-BPM (Explicit Finite Difference Beam Propagation Method) [2] 

J   os   s f T? m,s+\        r> m,s-\ \      s r      ,    T m,s \ 77 m,s   ,   77 «,s zr w,s T? m.s 
^      (&s -&s ) = (Ac+ Los)ts      + ^5      &f    Kf 

—j^-(b,f      -tf     )-{Lx+Lof)tf    + Ff   Es   Ef 
m,s 

EFD-BPM (Iterative Finite Difference Beam Propagation Method) [this work] 
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l^gLiPp+W - E?°) = l[(Lx + L^XE'/ + £;-+l(,)) + (F;-ErE^ + F;^;^-»*;.«*-»')"] 

where t is the iteration count and Em is the t-th iteration field. Em can be derived by 
various means. In this study, it is obtained by assuming £H) = E"^. 
SS-BPM (Split-Step Beam Propagation Method) [3] 

step 1: ^^.(£,»-*+,</)-£**) = i(zlt + zj*+ix£r* + ^r'+I</)) 

^^(E^+]a)-E^) = ^(Lx + L:;+h(E^ + EJ^a)) 

Step 2 :   £-•»' = cos(Az ■ f^)£f*+l(/) - jjfcr» sin(Az • ^)E^i(I) 

^^osiAz.^Er^-j^UHAz-^Er"0 

where *"=«-/*« ^/[^| and £(i) is the intermediate field. In the split-step methods, the linear 
propagation and the nonlinear couplings are taken into account successively. When dealing 
with the nonlinear terms, it is assumed in SS-BPM that the coupling between frequencies is 
constant within each propagation step, which reduces the order of accuracy. 
ISS-BPM (Iterative Split-Step Beam Propagation Method) [this work] 

step 1: exactly the same as in SS-BPM 

Step 2:     2AA /^m.^lC) _ gm.sV)^ _ X(pm^£">V{/)gmjV)        prnj+lgmj+lO-V ■rm,j+lC->). 

oftl/ (jr"-"lW -£"v(/)) = ±(Fm'*EmjU)E"','i')' + Fm-*+*Emj+li'~1)Emj+l0~1)m} 

The iteration is performed in step 2, which is similar to IFD-BPM but without linear terms. 
The QPM-SHG in a LiNb03 waveguide is considered first. The wavelengths and the 

refractive indices of the fundamental and the second harmonic waves are 0.808 ßm, 0.404/im, 
2.17503, and 2.32679, respectively. The width of the waveguide is 4/im and %m is 68.8 
pm/V. The initial power levels of the fundamental and the SH waves are 4W//im and 0. The 
transverse grid size, Ax, is 0.2^m. In order to have EFD-BPM stable, Az is chosen to be 
0.08/im for all schemes. An additional simulation with Az = 0.01/im is also performed for 
EFD-BPM. As shown in Fig. 1(a), the power variations obtained by IFD-BPM, SS-BPM and 
ISS-BPM are identical in the scale used. However, the result obtained by EFD-BPM with 
Az = 0.08/im is highly oscillatory and, therefore, only the power variation calculated with 
Az = 0.01/imis shown in Fig. 1(b). It is obvious that, even with a much smaller Az, EFD- 
BPM still significantly violates the power conversation law after 15000/im of propagation. 
Therefore, the convergence of EFD-BPM with respect to the stepsize is much worse than the 
other schemes. 

Next, a birefringently phase-matched SHG is studied to investigate the convergence rate 
with respect to the stepsize for different schemes. The waveguide geometry is the same as the 
previous case but the refractive indices are artificially adjusted to meet the phase-matching 
condition. It is clear in Fig. 2(a) that with Az = 0.1/im the three schemes agree with each 
other. When Az is increased to 15/im, the power variation obtained by SS-BPM gradually 
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deviates from the converged result while the one calculated by ISS-BPM departs frenetically 
at some point. However, the result computed by IFD-BPM is essentially the same as the 
converged result. 

The comparisons indicate that iterative methods are more suitable for the simulation of 
second-order nonlinearities. This study also indicates that only one iteration is sufficient for 
good simulations, which assures the efficiency of these iterative schemes. Furthermore, ISS- 
BPM has better efficiency than IFD-BPM. 

In summary, the results of the comparisons among the various BPMs designed to model 
second-order nonlinearities can be briefly tabled as follows: 

EFD-BPM IFD-BPM SS-BPM ISS-BPM 
cateeorv explicit implicit partlv implicit implicit 
accuracy second order second order first order first order 
time ratio 1 >3C4> 2.4 >2 

convergence © ©© © © 

Note that the time required by iterative schemes depends on the way Em is obtained. If 
EFD-BPM is used for this purpose, the minimal time ratio is 3 for IFD-BPM. 
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Parametric wave-mixing in dielectric media have been intensively investigated for both its 
fundamental and applied interests [1]. The areas of application of parametric processes include all- 
optical wavelength conversion, parametric amplification, or the generation of new optical frequencies 
[1]. In particular, wavelength conversion between close-spaced channels, by four-wave mixing in a 
fiber, has been demonstrated for WDM (wavelength division multiplexing) in the spectral band of 
erbium amplifiers [2j. Besides, for network applications, there is also a strong interest for network 
operations in wavelength conversion between the two transmission windows of silica fibers, around 
1.3\xm and 1.5\im [3, 4]. Parametric wave-mixing has been used for such a wide range conversion. 
For example, a wavelength conversion between 1.3 \im and 1.5 \im bands using quasi-phase-matched 
difference-frequency generation was demonstrated in periodically poled LiNb03 waveguides [5]. On 
thet>ther hand, it was recently demonstrated that the 1.3 urn -» 1.5 fim wavelength conversion can 
be achieved by use of the combined effects of Raman scattering and four-wave mixing in an optical 
fiber [6]. However, the achievement of efficiency for the above mentioned wavelength converters 
requires the fulfilment of phase-matching conditions, which impose strict limitations in the spectral 
bandwidth that can be used, and in the operating conditions [5, 6]. Here we theoretically analyse a 
wavelength conversion from 1.32 /xm to 1.52/xm by means of a Raman-assisted three-wave mixing 
(RATWM) process in a single-mode optical fiber. This process yields, through the Raman gain, 
a significant energy transfer from a weak anti-Stokes signal to a Stokes idler (within the Raman 
gain band), although the TWM that seeds the idler is highly phase-mismatched [7]. The interest 
here is to overcome the constraints imposed by phase-matching conditions, and to obtain frequency 
conversion over a large bandwidth, given by the Raman gain curve. 

Coupled-mode analysis 
Here we consider parametric wave mixing of three collinearly polarised waves with frequencies 

w0, u>i = UQ - ttc, and u>2 = w0 + ftc, which correspond to a pump at wavelength A0 = 1.413 /j,m, an 
anti-Stokes signal at A2 = 1.32/im, and the Stokes idler at Ai = 1.52 pm, respectively, with Qc = 
14.9 THz. Note that for pump power levels which are accessible in an optical fiber (less that lkW), 
the TWM interaction under consideration is highly mismatched (Qc » üpm = ^/-2j0P0/ß2, 
where ß2 = -0.0078 ps2/m is the group-velocity dispersion of a standard single-mode silica fiber, 
and 7o = 0.28 W^km'1 is the nonlinear coefficient) Consequently, an idler wave can not be 
generated through this ordinary TWM process, in the absence of any other nonlinear process. 
This situation is illustrated in Fig. 1 (a), which shows the spatial evolution of the normalised 
powers obtained from coupled-mode equations[7], ^(z) - ^(0), Tfj(z) = Pj(z)/EPj(0), when the - 
Raman gain is not taken into account. As Fig. 1 (a) shows, a highly mismatched TWM leads 
to a relatively small periodic power flow between the pump and the two sidebands, which leads 
to a zero mean power gain for both sidebands. On the other hand, SRS (stimulated Raman 
scattering) induces a unilateral transfer of energy from higher to lower-frequency waves, which 
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destroys the spatial periodicity of the parametric energy-exchange process. This Raman effect is 
clearly visible in Fig. 1 (b), which we obtained by mixing the 1.413(im pump [PQ(Z = 0) = 60 W] 
with a 1.32\xm signal [^(O) = 5 VF], though the combined effects of SRS and TWM interaction 
are not sufficient to generate the idler above the noise level for such pump powers. For higher 
pump powers, the Raman gain becomes stronger. TWM induces, over each coherence length, a 
relatively small but non-negligible energy transfer from the pump to the idler, which can ultimately 
be amplified by the Raman process above the noise level. Fig. 1 (c) demonstrates the generation 
of the idler, with a strong pump [P0 = 120 W], in a pure Si02 fiber. In a Ge02-doped fiber, the 
peak Raman gain is several times higher than in a a pure S1O2 fiber. Figs. 1 (d)-(e) exhibit the 
same general features as for a pure SiC>2 fiber but with the major difference that the pump power 
level required to generate the idler is much lower for the GeCVdoped fiber [compare Fig. 1 (e) 
with 1 (c)]. It should be noticed that the coupled-mode analysis does not take into account SRS 
or MI (modulational instability) which may spontaneously grow from quantum noise, and which 
may alter the wavelength conversion. These nonlinear processes are fully taken into account when 
solving the nonlinear Schrödinger equations, as we show below. 
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Figure l: Normalized powers T]J(Z) - Vj(0) versus propagation coordinate z for P2{0) = 5W and 
different pump powers, j = 0 (pump), j = l (idler), j = 2 (signal). 

Nonlinear Schrödinger equation 
The amplitude A of the electric field, in the whole spectral domain, is found to satisfy the 

following nonlinear Schrödinger equation (NLSE): 

dA 
dz i-tf-Qp + 7'7o(l - p)\A\2A + i-iQpA F Jo 

Xr{s)\A\2{t-s)dSt, (I) 

where we assume hereafter that the parameter p (which measures the fractional contribution of 
the Raman susceptibility to the total nonlinear index) is p = 0.18 for a pure silica fiber, whereas 
we take p = 0.36 for a fiber with Germania doping. We have performed the full solution of the 
NLSE (1) with picosecond pulses, by the split-step Fourier method [1]. For each type of fiber, 
the propagation length was chosen to be approximately the effective walk-off length between the 
pump and the idler. Figures 2 (a), (b) and (c), which we obtained by mixing a 100ps pump 
pulse [P0{z = 0) = UOW] with a 100ps signal pulse [P2{z = 0) = 5W]ina Ge02-doped fiber, 
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demonstrate the effectiveness of the 1.32pm -» 1.52pm wavelength conversion. They also show a 
spontaneous generation of two MI sidebands, which result from phase-matched TWM interactions 
in the anomalous dispersion regime. The power imbalance of the two MI sidebands is due to 
the asymmetric nature of the Raman susceptibility, which amplifies (depletes) the Stokes (anti- 
Stokes) side of the MI spectrum. Thus, although the wavelength conversion is obtainable in the 
presence of a spontaneous MI process, Fig 2 (c) shows that MI causes a pump depletion that may 
increase the power level required for the wavelength conversion in optical fibers with 1.32 pm zero- 
dispersion wavelength. The use of a dispersion-shifted fiber allows to achieve the 1.32pm -* 1.52pm 
wavelength conversion in modulationally stable operating conditions, as Fig. 2 (d), (e) and (f) show. 
An interesting feature is that the conversion efficiency can be high, and even greater than OdB. 
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Figure 2: Numerical solution of the NLSE showing the 1.3 pm -» 1.5 pm wavelength conversion. 

In conclusion we have demonstrated, by means of theoretical analysis and numerical simula- 
tions, that the combined effects of a highly mismatched TWM interaction and Raman amplification 
may be exploited for performing all-optical 1.3 pm -> 1.5 pm ultrafast wavelength conversion. Some 
fiber design considerations, such as the dispersion curves, the type and amount of dopants (Ge02, 

P2O5), have t0 be carefully examined for setting up a highly efficient Raman-assisted TWM-based 
wavelength converter. 
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A considerable activity focused on the study of the phenomena associated with the prop- 
agation of electromagnetic waves in periodic nonlinear systems provided bulk of evidence that 
photonic bandgap (PBG) structures possesing nonlinearity host many interesting and useful phe- 
nomena. On the other hand one of the problems traditionally of great interest is the resonant 
wave interactions, in particular, second (SHG) and third-harmonic (THG) generation. In present 
communication we report the simultaneous SHG and THG in a stratified nonlinear medium . 

We illustrate the phenomenon on the example of a multilayer stack which consists of the 
alternating layers of dielectric materials of thicknesses a and b. The volume filhng fraction is 
therefore f = a/(a + b). By varying both the dielectric constants and FF we demonstrate 
the possibility of simultaneous SHG and THG i.e. the possibility to satisfy simultaneously the 
follwing resonant conditions qi = 2q\ + Q\, u>2 = 2UJ\, and q$ = 3<ji + Q%, 0J3 = 3wi where 
uij = oj(qj) (j = 1,2,3) is the frequency of the modes with the wave vector qj and Qj (j = 1,2) 
is a vector of the reciprocal lattice. It is important that the layers can possess different nonlinear 
properties either of x^ or x® type. 

Mathematically the phenomenon is described within the framework of the envelope function 
approach and the dynamical problem is reduced to the system of equations for slowly varying 
amplitudes 

— ~ + 73^3 + 271IU2 + (Aiml^il2 + A1122IA2P + AU33|A3|
2)Ai 

UJ\  at 

+A1223^3 + 3Am3Ä?A3 = 0 (1) 

— ~ + 73^1^3 + Tl^i + (A1122IA1I2 + A2222I42I2 + A2233IA3IV2 + 2A1223AlJ42J43 = 0    (2) 
u>2  at 

— ~ + 73A1A2 + (Aussei I2 + A2233IA2I2 + \zwz\AZ\2)AZ + AIH3J4? + A1223Äi^ = 0     (3) 
üj$ at 

where the coefficients 7 and A depend on physical properties of the layers. This system possess 
two integrals of motion 

iV=|A1|
2 + 2^|A2|

2 + 3^|^3|
2 (4) 

0>2 W3 

which can be associated with the energy of the electromagnetic field and 

H = 7i(A2Ä2 + Ä\A2) + 73(AiA2Ä3 + Ä1Ä2A3) 

+Alll3(Ä?A3 + A\ÄZ) + Ai223(il^2^3 + AÜJAs) 

+i(Aim|Ai|4 + A2222|A2|
4 + A3333IA3I4 + 2Ai122|^i|2|A2|

2 

+2A1133|.41|V3|2 + 2A2233IA2IV3I2) (5) 
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which is the energy in terms of the dynamical system characterized by Eqs. (1) - (3). However, 
in a generic case the system is governed by the Eqs.(l) - (3) seems to be not integrable and 
we examine its behaviour by using numerical analysis. In order to represent some characteristic 
features of the problem we have chosen the structure where the slabs a and b are taken to be 
GaAs and ß - BaB204 with / = 0.03. 

We studied the evolution of the intensities | A,f (j = 1,2,3) for four particular initial condi- 
tions which correspond to various initial distributions of the energy among the individual modes. 
The evolution of the intensities of the modes reveal two interesting features. Namely, when the 
energy is distributed to the second harmonic, all amplitudes display nearly harmonic behavior, 
while in the cases when the input energy into the second harmonic is zero leads to more irregular 
behaviour of all the modes. Then as a characteristic feature common to all cases considered for 
the system we observe that there is no total energy transfer from the fundamental mode into 
the higher harmonics (as it would happen, say, in the case of SHG when the input energy is 
concentrated in the fundamental mode). Moreover, nonzero energy input of the second or the 
third harmonic results in decreasing the amount of the energy transferred to the modes. The 
highest rate of the energy transfer from the fundamental mode to the second and third one is 
observed in the case when neither second nor third harmonic are initially excited. 

In a particular case, when the Kerr nonlinearty is negligible (l)-(3) has an interesting partic- 
ular solution as follows 

Ai = iaisech(rjt),     A2 = ia2ta.nh(r)t),     Az = isech(r)t) (6) 

where 77 = 3jiaia2 and coefficients <x,- are expressed through -jj. This solution describes energy 
transfer from the first and third harmonic to the second one. 

More generally, when all A are equal to zero we sutudy the stationary points of the respective 
dynamical system and prove that they exist only at H = 0. Such points corresponds to situation 
where the energy of the electromagnetic field is either distributed among modes or concentrated 
in one of them and energy exchange among modes does not occur any more. In this case it is 
possible to arrange the "fractional" frequency conversion w -> §«. If H ^ 0 the dynamics is 
characterized by permanent energy exchange among modes. 

The solution (6) is a counterpart of the localised wave (soliton) solution which is described 
by the system of equation 

i  (dAi        dAx\ 
^\df + Vl~d^)+ lzMM + 2^i^2 = 0 (7) 

(dA2        8A2\ _ . 
{'m' + V2~d^)+l3AlA3 + ^==0 (8) 

I 

U)2 

where Vj are the group velocities. This system admits coupled mode solution in a form of coupled 
bright and dark solliton solution which properties are investigated. 
WK is supported by FEDER and Program PRAXIS XXI, grant N° PRAXIS/2/2.1/FIS/176/94. 
The work has been partially supported by the bilateral agreement JNICT - Czech Academy of 
Sciences. 
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It is commonly held that a necessary condition for the existence of solitons in various nonlinear- 
Schrödinger-type models is that the soliton's frequency (spatial or temporal) must not fall into the 
continuous spectrum of radiation modes. The aim of this work is to show that this is not true. We 
demonstrate that several nonlinear optical models support a new class of codimension-one solitons 
(i.e. existing at isolated frequency values) that are embedded into the continuous spectrum. This 
is possible if the spectrum of the linearized system has (at least) two branches, one corresponding 
to exponentially localized solutions, and the other to radiation modes. For embedded soliton (ES) 
the latter component should exactly vanish, at some discrete values of the frequency. 

In a recent work [1], the first examples of embedded solitons were found in the generalized 
Thirring model (GTM) [2] of a nonlinear optical fiber with a Bragg grating, to which second-order 
spatial dispersion or diffraction terms are added as a singular perturbation. Actually, this extended 
GTM has a broader physical meaning than was assumed in [2]; the second-order terms appear if 
one derives GTM from Maxwell's equations, taking into account the wave terms at next order. 

The study of ES carried out in [1] gives rise to several questions. First, can ES be stable? 
Second, since only quiescent ES were found in [1], can moving ES occur, as these would appear 
more feasible to observe in practice [3]? Finally, since the nonlinearity in GTM is cubic, can ES be 
supported by pure quadratic (x^) nonlinearities. Very recently [5], the first question was partially 
answered in a model [4] with competing x^/x^ nonlinearities. There by an argument applicable 
to a class of ES-systems, the solitons were found to be semi-stable (see below). In this work, we 
answer positively the second and third questions, by finding moving solitons in GTM, and many 
distinct ES in a simple three-wave model with pure x^ nonlinearity [6] (note that in [5] no ES 
were found without cubic terms). These results, along with those in [1] and [5], clearly show the 
ubiquity of ES in nonlinear-optical models. 

We start with the GTM with wave terms (with carrier wavenumber k): 

iut + iux + (2k)-1 (uxx - utt) + [(l/2)\u\2 + \v\2]u + v   =   0, (1) 

ivt - ivx + (2k)-1 (vxx - vtt) + [(l/2)\v\2 + \u\2]v + u   =   0. (2) 

u(x,t)/v(x,t) are right-/left- traveling waves coupled by resonant reflection on a grating.   Eqs. 
(1),(2) conserve three integrals: a Hamiltonian, and energy and momentum 

|u(x)|2 + |v(x)|2 \dx    and   P = i (u*xu + v*v)dx. (3) 
-oo    I J J—00 
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Figure 1: The branch of the moving embedded solitons: the velocity (a), momentum (b), and energy (c) 
vs. D, with insets showing the shape of the solitons at labeled points. The quiescent-soliton branch from 
which the moving solitons bifurcate is also shown. 

Solitons solutions take the form u(x,t) = exp(-iAwi) U(£), v(x,t) = exp(-iAwf) V(£), where 
£ = x - ct and c and Aw are velocity and frequency shift. U(£) and V(£) satisfy 

XU + i(l-C)U' + DU"+[(l/2)\U\2 + \V\2]+V   =   0, 

xV-i(l + C)V' + DV"+[(l/2)\V\2 + \U\2]v + U   =   0, 

(4) 

(5) 

where x = Aw + (Aw)2 /2k, the effective velocity is C = (1 + Aw/k)c, and an effective dispersion 
coefficient is D = (l - c2) /2k. The same equations were derived in [1] for: (i) a nonlinear fiber 
grating including spatial dispersion effects; and (ii) a planar waveguide with a Bragg grating of 
parallel scores, taking diffraction into regard, and t replaced by a propagation coordinate z. 

Quiescent (c = 0) ES in the present model were found by numerical continuation in [1]. We 
present here, for the first time in any model, results on moving ES. Theoretical analysis and numer- 
ical solution show that quiescent ES cannot be directly continued into moving ones. Nevertheless 
moving ES exist but they are codimension-two solutions, being isolated in both energy and mo- 
mentum, i.e. described by curves E(D) and P{D) (or C(D) and x(D)). Out of the three bands of 
quiescent ES found in [1], only one, corresponding to the smallest values of D gives rise, through a 
bifurcation, to branches of moving ES. These branches are shown, in various forms, in Fig.l. They 
terminate where ES pass into the parameter regions of ordinary (non-embedded) solitons. Note 
that the momentum of the moving ES vanishes at a nonzero velocity where the branches terminate. 

The energy plays a crucial role in the general analysis of ES stability [5], given that ES exist 
at isolated values of energy. Hence, any small perturbation which slightly increases energy, is safe, 
while energy-decreasing perturbations trigger slow (sub-exponential) decay into radiation. In fact 
ES are semi-stable [5], i.e., stable to linear approximation, but subject to a weakly growing (power- 
law) one-sided instability. Physically this suggests that ES may be observed in experiments, as 
their existence time/propagation distance is large. 

In the light of these stability ideas, one implication from Fig. 1 is that this is, essentially, 
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Figure 2: (a) The (k,q) parameter plane of the three-wave model (6),(7) where the linear analysis (sum- 
marized in the inset boxes) show that ES can occur only in the region inside the bold lines. The bundle of 
curves emanating from the point (k = l,q = -4) are branches of embedded-soliton solutions with c = 0. 
(b)-(e) depict solutions at the labeled points. 

a tri-stable system, with transitions possible from moving to quiescent ES. Hence the system has 
potential for use in optical memory. If an incoming ES represents a bit of information, its transition 
into a quiescent ES implies the incoming bit could be captured and stored in the memory. Estimates 
of the physical values for experimental observation of these ES in Bragg-grating fibers shows that, 
at carrier wavelength A ~ 1.5 /tm one needs extremely narrow ~ 10 fs pulses, which can be created 
in principle. The velocity of the moving ES would be < 1/10 of the normal light speed. 

Finally, we report on the easy observation of ES as spatial solitons in a planar waveguide model 
with x^ nonlinearity [6], in which two components of a fundamental harmonic «1,2 are coupled by 
Bragg reflection on a grating of scores parallel to the propagation direction z: 

i(vifl)z ± i(«l,2)a: + «2,1 + «3«2,1     =     °> 
2i{v3)z - qv3 + D(v3)xx + «i«2   =   0, 

(6) 

(7) 

Here v3 is the second-harmonic field, x is the normalized transverse coordinate, q is a mismatch 
parameter, and D is an effective diffraction coefficient. Solutions to Eqs. (6) and (7) are sought 
for in the form vifl(x, z) = exp(ikz) «i,2(£), v3(x, z) — exp(2iA:.z) u3, with £ = x - cz, c being the 
slope of the soliton's axis relative to the propagation direction z. 

In this model, we have found many ES branches. A bundle of the c = 0 branches is displayed 
in Fig. 2. Solutions with c ^ 0 have been found too, and their properties studied in full detail. 
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Optical second harmonic generation (SHG) in a waveguide structure has opened the possibility to make 
compact short wavelength coherent sources. Phase matching in waveguides can be realised by different 
methods like anomalous dispersion (ADPM)1, quasi-phase-matching (QPM)2, counter propagating 
phase-matching (CPPM), and modal dispersion phase-matching (MDPM)3. Here we report on the the 
preparation and optical characterization of composite waveguides for efficient modal phase-matching. 
These guides are composed of an ion-exchanged glass substrate top-coated with a layer of nonlinear 
optical (NLO) polymer. The high-index planar guides are formed by Tl ion-exchange process in KF3 
glass substrate. There are two advantages in using Tl ion-exchange: First, the high index variation of the 
order of An=0.05 which makes the structure relatively insensitive to the fluctuations of the polymer 
index. Second, these types of waveguides present low propagation losses (< O.ldB/cm). The modes that 
propagate through the structure have part of their intensity in the polymer and part in the ion exchanged 
glass substrate. The advantage is to reduce the propagation losses and to maximize the overlap integral. 
The active layer have been produced with Para-nitroaniline/poly(methyl methacrylate)(PNA-PMMA) 
side-chain polymer (molar ratio 50:50). The absorption maxima and the cutoff wavelength were 
measured as 392 nm and 480 nm respectively. Therefore, there is a weak absorption in the short 
wavelength region, so it is useful for manufacturing a coherent short wavelength source. 

A thin film (PNA-PMMA) was deposited by spin coating. The speed of rotation determines the 
thickness of the polymer. The thickness and the effective indices of the polymer were measured using 
the m-line technique. Directly following the spinning step the polymer layer is hard-backed in an oven, 
held at 120 °C for about one hour to eliminate the residual solvent. The glass transition temperature 
(Tg) of the host polymer is 98°C. The film is poled by a corona discharge just below the Tg of the host 
polymer to align the dipole moment perpendicularly to the substrate. The high voltage (7 kV) was 
applied by means of a tungsten needle located at about 1.5 cm from the substrate for 5 minutes. The 
samples were allowed to cool down to room temperature with the poling field on. 
The refractive effective indices of the composite wave-guide were measured with TM polarized light 
using the prism coupling technique. The refractive index data were fitted with a three term Sellmeier 
equation. 

Modal dispersion phase matching (MDPM) can be realized by adjusting the waveguide thickness and 
the time of ion-exchange. So, we have 

n™°(co) = n™2(2(D) (1) 

in our case. The efficiency of the harmonic generation process is proportional to the spatial overlap of 
the fundamental and (SH) waves. This integral is given by: 
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K2    = 
j/active   layer (Em)   En  dzj 

(2) 
»\2, J (Ef )Mz  J(E» )2dz 

where E™ is the electric component of the m"1 mode at the pump frequency CD. Our numerical 

calculation of the overlap integral for TMQ -» TM2co gives K^2 = 0.84xl04m"\ 

The refractive index profile and the optical mode profiles in function of Z (Z is the poling axis 
perpendicular to the direction of propagation) are shown in Figure 2. We see that this structure allows 
the positive contribution of both fields. This leads to a significant improvement of the overlap integral in 
Equation (2). 
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FIG.2. Refractive index profile and normahzed electric field profiles of TM" - TM^ modes. From 0 

to 0.98 |Am is the polymer layer. Beginning at Z>0.98 um: glass substrate and ion-exchange guide. 

Frequency doubling was studied by prism coupling the beam delivered by a tunable optical-parametric- 
oscillator pumped by the third harmonic (355 nm) of Q-switched Nd-YAG laser. This laser has a pulse 
duration of 10 ns and repetition rate of 10 Hz. The second harmonic power is measured versus the angle 
of incidence for a given pump wavelength X,=1.018|im. We obtain a peak which occurs for 8=-4.494°. 
However this maximum does not correspond to phase matching. Indeed, it corresponds to the excitation 
of the guided mode at the fundamental wavelength, phase-matched excitation of guided mode at 
harmonic wavelength is only satisfied if the phase matching condition in Eq.(l) is fulfilled. Resonance 
curves have been shown for different wavelength. The obtained maximum of conversion efficiency is 
plotted versus the second harmonic wavelength in Figure 3. As a result the maximum which appears in 
Figure 3. corresponds to the phase matching condition. 

The second-harmonic conversion efficiency generated in a waveguide of length L for TM fundamental 
and TM harmonic is given by 

Tl = P2to/Po,= 
CO %33 

2e0c   (rigff m) rigff n 
•xsinc(Aßm/n^)P"L2KL 

2' 
(3) 

where superscripts 2co and co correspond to the harmonic and fundamental frequencies, respectively, 
neff = ß/k  is the effective refractive index,   %33J is the nonlinear optical coefficient, L is the 

propagation length, P is the power and Aßm    = ß2cü - ß£, is the phase mismatch. 
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FIG. 3. SHG tuning curves: experimental data and theoretical fitting curves. 

Figure 3 displays the experimental points and the theoretical fit according to Eq.(3). It shows phase- 
matching profile as a function of the SH wavelength. The measured phase-matched SH wavelength is 
estimated to be 0.516 p.m. The measured polymer thickness is equal to 0.98 |im. The measured value of 
phase matching n^ is 1.5642. These values are in close agreement with the numerical simulation. The 
propagating mode of the harmonic wave in this nonlinear waveguide was confirmed to be TM2, whereas 
that of the fundamental was TM0. 

The spot size of the incident beam is 0.73mm(H)xl.lmm(V). We have obtained a conversion efficiency 
of 0.45% for an incident average power of 4 kW. This value is in close agreement with the one 
calculated from Eq.(2), if we assume %33 = 3pm / V for the polymeric film. 

In conclusion, we have presented a new method for efficient second harmonic generation. The 
conversion efficiency was r\ = 4.5 x 10-3. Larger conversion efficiencies can be obtained by confining 
light into a composite channel guide. In theses guides, the light is confined almost entirely into the 
polymer layer, allowing the most efficient use of the optical nonlinearity. Therefore, we can quite easily 
increase the efficiency by a factor of 1000. Using more efficient nonlinear polymers with higher 
nonlinearities could further increase the efficiency. The most important feature is that we can monitor 
the SH wavelength by adjusting the parameters of the ion exchange and the thickness of the polymer 
layer. 
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Introduction. 
Photosensitive organic polymers have potential wide-range applications in novel high-performance and 
low-cost optoelectronic devices. These materials present interesting features on the reversible control of 
the refractive index and the birefringence which can be applied not only for optical storage, dynamic 
holographic recording [1] but also for optical control of integrated optical devices. One of the major 
advantages of these photochromic materials are the large refractive index variations wich can been 
obtained (up to An=0.1) as compared to what is reached by electro-optical Pockels effect. 

In this work we report on measurements of photoinduced optical anisotropy in thin-films of poly(methyl 
methacrylate) (PMMA) functionalized with Disperse Red 1 (DR1). Under uniform ilumination anisotropy 
is studied both on the refractive index and on the absorption. We have independently measured the time 
evolution of the two indices, nn and n±, parallel and perpendicular to pump light polarization. The 

results of experimental data are in agreement with the ones of ref. [2] where the birefringence was studied 
as the difference of the two indices, An = n/l-n1. However, in contradiction with what is usually 

admitted, we found experimental evidence that molecular orientation is not able to explain all of the 
observed results and that it is necessary to invoke a strong contribution from trapped molecular states. 
This property open new possibilities of applications of such molecular systems. 

Experimental set-up and procedure. 
Refractive index measurements have been carried out from the study of the grating coupler version of the 
ATR setup [3]. In this configuration, shown on fig. 1, the polymer guiding film (functionalized with DR1 
at 35% molar concentration) is deposited by the spin-coating technique on a silica substrate in which a 
grating has been previously etched. The grating of period A=0.7UMTI and of depth 0.15p.m allows the 
guided mode excitation on the first order. The film is thick enough (e = 0.635//m) to support two TE 
and two TM modes at the probe wavelength. From the measurements of the effective indices of these 4 
modes, it is possible to deduce the refractive indices nx, ny, nz of the polymer film as well as its 

thickness e. 
The four effective indices are recorded using the experimental set-up shown on fig. 2. A probe beam, 
coming from a low intensity cw He-Ne laser (IOUAV) at the wavelength of Xs=632.8 nm, is focused on the 
sample with the correct angle of incidence to excite guided modes. Birefringence is photo-induced by a 
pump beam emitted from the green line (Xp=514nm) of an argon laser linearly polarized along y which is 
normally to the sample. The emergent resonance dark lines associated with the excited modes are 
automatically recorded as a function of the incident intensity and of the angle of incidence with a 
computer-controlled CCD acquisition system wich allows us to monitor polymer film refractive indices 
variations. 
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Fig. 1. Schematic representation of the grating coupler 
configuration. 

Fig. 2. Experimental set up used for the measurement of the 
effective indices in the PMMA/ DR1 sample. M1,M2: mirrors; 
F: filters; L: lens; P: linear polarizers; R: quarter-wave plate; C: 
CCD camera; D: dispersive plate; O: objective. 

Experimental results and analysis. 
The results presented on figure 3 were obtained using a y-polarized incident pump beam which is sent for 
300s approximately, starting at t=0. with an incident irradiance of 20.1 mW/cm2. Variations of ny and nx 

are respectively plotted on left and right graphs. During pump illumination, we observe a strong decrease 
(An ~ -0.04) of the refractive index ny along the pump polarization. At the same time the refractive 
index along the axis perpendicular to the pump polarization is only decreased by 0.002. After pumping, 
the refractive index relaxes to a stationary level and does not return to its initial state even after a long 
stay in dark period. As a result, a memory effect is obtained. 

After relaxation, the average refractive index n = (nx+ny+ nz )/3 = (ny + 2nx )/3 does not return to its 

initial value. A net variation An ~ -0.025 is observed. 
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Fig. 3. Evolution of the photoinduced birefringence in a polymeric thin film, PMMA/DRlat 35% molar concentration of 
thickness e=0,635 um: (1) under the pump-on period, (2) under relaxation period, (a) photoinduced birefringence along the 

pump beam polarization .(b) photoinduced birefringence along the axis perpendicular to the pump beam polarization. 

The long term stability of the refractive index change has been tested over 24 hours after pumping. On 
figure 4, starting at point (A), ny decreases till (B) during parallel pumping. Then stopping the pump in 
(C), it quickly recovers at the beginning with a characteristic time of the order of 30s and reaches after 
several minutes a quasi-stationary state which represents 57% of the maximum refractive index change. 
At the end of this 24 hour period, the material is far from recovered its initial state, and a strong 
birefringence remains (39% of the maximum refractive index change) as well as a strong decrease of n is 
noticed. 



370 / ThD37-3 

Based on the observed experimental results, we assume that during the pump-on period, the photoinduced 
birefringence is principally caused by the angular hole burning. Even after the pump-on period the 
molecular reorientation seems not to play an important role. Currently admitted model assume that all 
optically excited molecules rapidly relaxes to the fundamental "trans" state [4]. According to this model, 
molecular reorientation should be the only physical mechanism at the origin of photo-induced 
birefringence. But, molecular rotation can not modify the average index of the material and in this case n 
should return to its initial value. So, this is in contradiction with what we observe experimentally. As 
result, we prove that a permanent change of molecular state is the main phenomenon at the origin of the 
observed photo-induced birefringence. However, we can not exclude that some molecular reorientation 
process may exist in addition to permanent molecular modification. 

Birefringence measurementes were confirmed by absorption spectrums that were recorded under parallel 
and perpendicular polarization of the probe and pump beams. As in the case of photoinduced 
birefringence, the anisotropy in polarization dichroism remains after a long stay of the device in darkness. 
Both refractive index and absorption anisotropies have been found in good agreement through Kramers- 
Krönig relations. 

The persistent induced anisotropy does not correspond to an irreversible bleaching of the sample. This is 
proved by the experimental results presented on figure 5. This plot shows the change of optical absorption 
of a probe linearly polarized along y. The record shows the response to a sequence of 13 pumping 
conditions, alternatively "relax" (darkness) and y/z pumping polarizations. The change of absorption is 
fully reversible and no molecular destruction or permanent irreversible change is noticed. 
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Fig. 4.Stability of the photoinduced birefringence. 

Conclusions. 

Fig. 5. Reversal of the photoinduced anisotropy in a spin- 
coated polymeric film: (Y) pump beam parallel to the probe 

beam. (Z) pump beam perpendicular to the probe beam. 

We have reported the photoinduced memory effect in polymeric thin-films of PMMA functionalized with 
DRI. We have showed the stability and the reversibility of the induced anisotropy. 
The experimental results allows us to derive new results which give a new insight on the underlying 
physical mechanisms responsible for photo-induced anisotropy. In particular, according to the results 
shown in this paper, we can predict that a circularly polarized pump erases birefringence as already 
observed but should induce a decrease of both nr and nv. 
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All-optical switching is considered one of the key technologies for future high-speed optical communication 
networks. Many different schemes for all-optical switching have been demonstrated in silica fibers 
exploiting the fiber Kerr nonlinearity. Since the nonlinear refractive index being is small (n2=2.8xl0"16 

cm2/W in silica), either high power levels or long device lengths are required for switching applications. 
Compact and low-threshold nonlinear photonic circuits will require novel nonlinear materials combining 
low losses with ultrafast Kerr nonlinearities at least several hundred times that of silica at the 
communication wavelength A,=1.55 |xm. 

Promising candidates for novel switching materials are chalcogenide glasses. Nonlinear refractive indices 
up to 80 times higher than in silica glass have been reported in chalcogenide glasses1. Bandgap engineering 
is expected to yield even higher values in n2, while keeping two photon absorption and the corresponding 
figure of merit (which is defined as n2/(ß?i) where ß is the two-photon absorption coefficient) at acceptable 
levels2. When the optical bandgap energy is tuned to twice the photon energy (1.6 eV for an operation 
wavelength at 1.55 mm) the nonlinear refractive index is expected to be maximized while two photon 
absorption is minimized yielding a large figure of merit. Beside high Kerr nonlinearities, chalcogenide 
glasses offer high optical transparency in the 1-10 um wavelength region. High quality thin films are easily 
formed by pulsed laser deposition. Furthermore, chalcogenide glasses exhibit significant photodarkening 
when exposed to wavelengths corresponding to energies above the bandgap energy3. Photodarkening is a 
photo-induced redshift of the optical absorption edge and is accompanied by an increase in the linear index 
of refraction in the transparent spectral range. This latter property makes them attractive for patterning of 
photonic integrated circuits into thin chalcogenide films4. 

Here we report on linear and nonlinear optical properties of three different compounds in the 
Geo.25Seo.75.xTex system (x = 0, 0.02, 0.08) as well as the demonstration of singlemode waveguides in one of 
these compounds. 

Initially experiments were carried out on polished bulk samples typically 1-2 mm thick. Linear absorption 
measurements of a 1 mm thick sample Ge.25Se.75 showed the typical exponential Urbach edge with a slope 
of dE/d(ln a) = 11.5 eV"1, down to a level of a few cm"1. At a wavelength of 1.55 Jim the absorption was 
determined to be less than 1 cm"1 (limited by dynamic range of the measurement). Next we performed Z- 
scan measurements to determine the Kerr nonlinearity and the two-photon absorption. Using a 
femtosecond, high-energy, tunable source measurements were performed at wavelengths 1.2 - 1.55 (im. At 
1.55 \im the nonlinear refractive index was found to be ~ 100 times that of silica with a corresponding 
figure of merit of ~ 2, making it an attractive material for ultrafast all-optical switching. At 1.2 |xm close to 
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the half-gap of this material the Kerr nonlinearity was approximately 400 times that of silica with a slightly 
larger figure of merit. This indicates that Te can be used to vary the bandgap to a wavelength range that 
will result in a larger nonlinearity and reasonable figure of merit. We are currently investigating whether 
the absorption edge can be modified and impurities reduced in order to improve the figure of merit 
(presumably these mechanisms contribute significantly to the two-photon absorption). 

Thin films of thickness 0.5-1 |xm were deposited by pulsed laser deposition (PLD) on microscope slides, 
Hipox silica glass and 10 (im wide silica rib waveguides spaced by 10 \lm from targets of bulk 
Geo.25Seo.75.xTex glass. By AFM measurements, the surface roughness of the chalcogenide films was 
determined to be as small as 4 nm (rms) for the Hipox silica as well as the rib waveguide substrates. After 
rapid thermal annealing of the films at 230°C, the optical absorption was measured using a Perkin-Elmer 
UV-VIS spectrophotometer. Fig. 1 shows the absorption for the three different investigated compositions. 
The data are represented in the so-called Tauc-form5 (hv cto)"2 x hv-Eg such that the value of the optical 
bandgap is given by the intercept with the Oo= 0 axis. Clearly, the bandgap shifts to lower bandgap 
energies by increasing the Te concentration in the compounds demonstrating the ability of bandgap 
engineering in this particular chalcogenide system. 
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Fig. 1: Absorption of thin chalcogenide films after rapid thermal annealing. The optical bandgap energy 
corresponds to the intersection with the x-axis. 

Next, photodarkening of the films was investigated as a function of exposure time. The results are 
displayed in Fig. 2. With an exposure wavelength of 532 nm, a bandgap shift of more than 1 % was 
observed for Geo.25Seo.67Teo.08 while for Geo.25Seo.75 the shift was 3.5%. A slightly higher bandgap shift was 
found, when the Geo.25Seo.67Teo.08 sample was exposed to 647 nm radiation (although the intensity was 
lower by a factor of about 2). The better efficiency for exposure with 647 nm is expected since about 10% 
of the light is transmitted through the 1 fim thin film in contrast to less than 0.1 % in the case of exposure 
with 532 nm radiation. 

In agreement with numerical simulations, the 1 |im thin chalcogenide films deposited on top of silica glass 
rib waveguides exihibit multimode behaviour at a wavelength of 1.55 p.m. The index shift corresponding to 
the photodarkening-induced bandgap shift was used to write singlemode channel waveguides into a planar 
chalcogenide film. The film was exposed for 210 min at 647 nm through an amplitude mask with 3 (xm 
wide open channels. Sub-picosecond pulses centered at 1.55 p.m were coupled into one of the waveguides 
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and the waveguide output facet was imaged onto a vidicon camera. The intensity profile of the mode is 
shown in Fig. 3. The well guided mode demonstrates the high quality of the waveguides. 
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Fig. 2: Shift of the bandgap energy as a function of exposure time for 1 um thin films 
of (a) Geo.25Seo.67Teo.08 and (b) Geo.25Seo.75. 
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Fig. 3: Single mode pattern at the output facet of a 5 um x 1 urn waveguide. 

Investigations of nonlinear pulse propagation in the photodarkened channels are currently under way. 
Future directions include the fabrication of Bragg gratings in singlemode chalcogenide waveguides. 
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Summary 

Photoinduced effects in glasses have been widely studied for fabrication of Bragg grating and 
three-dimensional optical data storage. Recent publications have pointed out the possibility of 
refractive index change by femtosecond laser exposure of glasses in the transparent spectral 
region [1,2]. Controlled writing of waveguide in condensed media based on modification of the 
optical material properties by laser irradiation may have important implications for example in 
optical interconnects for high data-rate optical communications systems and integrated optical 
elements. The ability to arbitrary write permanent waveguides into bulk structure could be very 
promising in terms of fabrication of integrated optical devices and three-dimensional architecture 
of such devices. 
Chalcogenide glasses are well known to exhibit reversible photo-induced effects to band gap light 
and sub band gap exposure [3, 4, 5, 6]. The low optical band gap of chalcogenide glasses make 
them highly sensitive to visible exposure. An exposition to band gap wavelength induces in AS2S3 
glasses a photodarkening, a reduction of the glass band gap, which is, according to Kramers- 
Kroenig relation, related to the refraction index change in the exposed region. A correlation 
between reversible photo-induced effects and structural change has been discussed by different 
authors [7, 8, 9] for bulk and well annealed thin film materials. The increase of As-As homopolar 
bonds has been demonstrated for an exposure at wavelengths below the band gap. 
We report permanent waveguide writing in AS2S3 bulk glasses by train of femtosecond laser 
pulses. The diameter of the waveguides was determined not only by the spot size of the focused 
beam and the energy, but also by the speed of the sample motion during writing. Waveguide with 
diameters from 1 urn up to 40 urn were written. In Figure 1 are reported micrographs of 
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waveguide observed by optical microscope. The laser could be used in a stable CW mode with 
the same average power but in this condition of operation, the waveguide recording ceased even 
when the average power was increased to nearly 1 Watt. 
Indeed the photoinduced structure disappears after a thermal treatment of 2 hours at 25°C below 
the glass transition temperature, the channel were no longer visible by the optical microscope. 
The determination of the aperture angle for guiding allowed us to estimate the variation of index 
An between the waveguide and the cladding about 10"3. 
A photodarkening of the exposed area was demonstrated. The transmission spectra corresponding 
to the core of a waveguide (exposed region) of 10 urn diameter and to the cladding (unexposed 
region) are reported on the figure 2. The measurement indicate a red shift of 15 nm of the band 
gap that should corresponds to the refraction index variation observed. 
Using micro-Raman spectroscopy we propose a description of the chemical mechanism 
responsible for the index variation and the photodarkening by breakage of As-S chemical bonds 
and formation of As-As and S-S bonds. The figure 3 shows the increase of the normalized 
intensity of the vibration band characteristic of As-As chemical bonds (centered at 236 cm"1) on 
the section of a photo-induced waveguide. 
On the basis of these results a two photon absorption origin has been proposed. Similarities 
between band gap exposure and high intensity sub band gap exposure has been shown. The 
chemical change produced is very promising for the control and the optimization of the 
waveguide writing procedure. 
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(a) (b) (c) 

Figl    Micrographs of the waveguide structure, (a) lateral view of waveguide, 
diameter ~ 32 urn; (b) lateral view of waveguide, diameter ~ 9 um; (c) front 

view of waveguide, diameter ~ 32 urn. 
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Fig2    Absorption coefficient of the AS40S60 of the core of the waveguide (exposed region) 
and of the cladding (unexposed region) 
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Fig3    Cartography of the evolution of the bands characteristic of As-As chemical bonds 
(centered at 236 cm"1) of the section of a 5 urn diameter waveguide. 
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Summary 

Non-linear optical properties of transparent materials axe the focus of growing interest for 
elaboration of all-optical devices, such as photonic modulators, optical data storage and 
telecommunication, or for the spectral extension of laser sources. Basically, the nonlinear 
optical properties of materials under an electromagnetic field E result from the generation of 
a polarisation P, which can be expressed as a power series in E: 

P = X(1) + X(2) E.E + x(3) E.E.E + .... 
where x(1), X(2) and x(3) respectively are the linear, second and third order nonlinear 
susceptibilities. As x(2) = 0 in glasses, Second Harmonic Generation (SHG) is naturally 
forbidden. Nevertheless, (SHG) was observed in bulk glasses submitted to a thermal poling 
treatment [1]. The materials reportedly involved are mainly SiC<2- and TeC<2- based bulk 
oxide glasses. According to Myers et al. two different mechanisms can account for the 
induced second order susceptibility [1-2]. The first one is due to the coupling between the 
residual electric field after poling and the glass third-order nonlinearity. The second one is 
the macroscopic second-order nonlinearity resulting from preferential orientations of polar 
bonds during poling. 
Oxide glasses have been widely investigated for their flexibility of composition, high damage 
threshold and large transparency regions in the context of high nonlinear indices devices 
realization [3]. We previously reported a large enhancement of the nonlinear index or x(3) 

susceptibility when introducing large proportions of niobium oxide in a borophosphate glass 
matrix [4, 5]. According to the first mechanism proposed by Myers et al., glasses with 
comparable compositions could be good candidates for SHG after poling. 
We report on the SHG efficiency and structural characterization of the poled oxide glass of 
composition 0.7 [0.9 Ca(P03)2, 0.1 CaB407] 0.3 Nb2Os. The 2 mm thick glass plate was 
heated at 300 °C while applying a dc bias of 3 kV during one hour [5]. The homogeneity and 
intensity of the SHG signal after poling was then controlled by the use of a Q switched (10Hz 
repetition rate, 10 ns FWHM, 30 mj) Nd:YAG laser pulses at 1064 nm. A lens (50cm focal 
length) focused on the anodic surface the pump laser beam polarised in the plane of 
incidence. The angle of incidence was chosen to be equal to 45°. The SHG signal was 
measured in transmission through the poled glasses [6 ]. A 1064 nm high reflector, coloured 
glass filter and a monochromator removed the fundamental radiation. The SHG signal was 



378 / ThD40-2 

Tablel-Linear index*, nonlinear x(3) susceptibilities* and SHG efficiency 

Glasses(mol.%) 

Vitreosil SiÜ2 glass 
0.7[0.9Ca(PO3)2)0.1CaB4O7]0.3NbO5 

no' 
at 1.5jx 

1.42+0.03 
1.72+0.03 

Xw (Vz/m")10" 
atl.5n 

■21 

0.046+0.005 
0.91±0.09 

SHG (a. u.) 
at 1.064 p. 

12+1 
1+0.1 

"Measurements have been described in ref 7; % ß> values are Siven here in reference to a 
standard value of 2.82.1(f2IV2/m2 for the commercial SF59 glass. 

l/lo 
(a.u.) 

2366 2368 2370 2372 2374 2376 2378 2380 2382 2384 

Energy (eV) 

Fig. 1 LIII Nb-edge spectra of the niobium borophosphate glass achieved on the anodic 
surface 

Resulting       0,1 
signal (a. u.) 

«00 1000 1200 

-h Wavenumber (cm") 

Fig 2 Substraction of the.IR reflectance signal of poled anode or cathode surface from the 
corresponding unpoled surface signal for the niobium borophosphate glass. 
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recorded with a photomultiplier coupled to a photon counting system. A Vitreosil silica glass 
reference which was poled under the same experimental conditions was simultaneously 
measured for comparison. As previously published, the SHG signal was localized close to the 
surfaces in contact with the electrodes during poling [5]. Measured linear indices, second and 
third order susceptibilities are given in table 1. 
Unexpectedly, SHG measurements do not demonstrate a larger efficiency for the 
borophosphate glass when compared to the silica glass, though a larger % (3) value. 
Nevertheless, experimental conditions of poling have not yet been optimized for the 
borophosphate glass. They are effectively depending on electrical conduction properties of 
the glass which are highly correlated with the structure of the glass network. 
Structural modifications in the poled glass network near the poled borophosphate glass 
surfaces were studied by Nb Llll-edge XANES and IR reflectance spectroscopies. 
XANES measurements for different angles of the incident polarized beam light with the 
anode surface of the material are presented on figure 1. Spectra were recorded at LURE 
(Orsay, France) using the 300mA positron injection current in the SUPERACO storage ring 
operating at 800MeV. No difference for various angles are observed indicating that no 
preferential orientation of the niobium oxygenated sites can be evidenced on the anode 
surface of this glass [6]. 
IR reflectance experiments were performed using an external reflection attachment (Grosegy, 
Specoc) at an angle of incidence of 12°. The extinction coefficient can be calculated from the 
reflectance spectra by the Kramers-Kronig analysis. Structural modifications after poling can 
be evidenced by calculating the substraction between the poled anode or cathode face 
reflectance signal and the corresponding unpoled face signal(figure 2). A slight but significant 
difference appear between 960 and 1150cm"1. The corresponding transitions are attributed to 
symmetrical and antisymmetrical vibration modes of terminal [P03"] groups on phosphate 
chains constituting the glass network. The decrease of the signal in this domain can be 
explained by an orientation of these groups perpendicularly to the anodic surface if the glass. 
On the basis of these results, the breakdown of isotropy induced by poling is evidenced. 
Whether such alterations can account for the measured SHG efficiency in niobium 
borophosphate glasses needs to be clarified. Ab-initio calculations under investigation could 
provide promising information. 
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The behavior of compact coherent light sources lasing at wavelengths from 600 ran down to green or blue 
light has already been extensively investigated since 1970s (see e.g. [1,2,3,4]). In this contribution, the 
coupled mode analysis of second harmonic generation in Cerenkov Regime is presented and the 

fundamental properties of the SHG conversion efficiency are pointed out. Only TE® — TElco conversion 
is considered, because the results relating to TM modes may be deduced similarly as the corresponding 
results for TE modes. 

The second harmonic power P2a) generated in the Cerenkov SHG regime may be written under a non- 

depleted pump approximation as follows [5] 

where 7] [1/W] is the normalized SHG conversion efficiency, L is the interaction length and Pm is the 

power of the fundamental (pump) radiation. The conversion efficiency 7] obeys the following expression 

[5,6] 

T1=2nelco1^fdl\l\\ (2) 

where d33 is the nonlinear coefficient in the substrate (the only substrate is assumed to be nonlinear), pZ,^ 

is the propagation constant of the second harmonic radiation and p is defined as 

P=2k^nl2ü)-N2 <3) 

where ns lco is the refractive index of substrate at the frequency 7.0), k = Iff IA, and N is the effective 

index of the guided mode at the frequency 0). The quantity I is known as an overlap integral defined as 
-h 

I= JX2,Ä*A> (4) 
where Ey a (Q. = 0),20)) is the normalized y-component of the electric field of the modes. Since the 

substrate only is considered to be nonlinear, the integration is carried out over the interval (—°°,—h); h is 

the thickness of the guiding layer [7]. It was shown [6,8,9], that the conversion efficiency exhibits a 
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sharp maximum. The detailed study reveals, that the position of the maximum can be determined as 
follows. The conversion efficiency maximum occurs if p -> 0, i.e. when ns2ca = N. But, assuming 

p -» 0, the overlap integral gives a nonzero value under the validity of [8] 

crsin(öft) - A cos(öfe) = 0, (5) 

with a= 2k^ng2ü) -ns2ü), A = Ik^Jn2^ -n2
2a) , where ng2ü)is the refractive index of the guiding 

layer, and nc2ea is the refractive index of the cladding, both at the frequency 2co. The condition (5) results 

from the normalization constant of the radiation mode at 2ci) which appears in overlap integral (4). This 
normalization constant may be written of the form (according to [7]) 

Ar(p) = 
7tß 

[crcos(oh) + Asin(oft)]2    [asin(oh) - A cos(öft)]2 ^ 
—— 1 .  

P o2 
(6) 

It can be seen that for p -> 0 also Ar -> 0 except for cases close to that obeying (5). An inspection of 

the behavior of Ar(p) shows that the value of this normalization constant also continuously differs from 

zero at a very close vicinity of the values which obey Eq. (5). This fact causes the existence of a very sharp 
peak of the conversion efficiency (see also [9]). On the other hand from (5), if the thickness of the guiding 
layer obeys the expression 

arctan(A I' <f) + x n\ 
h =  v ' 

a 
{.7Z appears in (6) due to the ambiguity of the function arctan), the position of the peak obeys the modified 
dispersion equation 

arctan(<?/ K) + arctan(^7 AT)    ^+arctan(A/gr) 

*■  a = °' (8) 

where, K=k^n\m-n)la) , S= k^n^-n2^ and y= kjnj^-n2^ (according to [7] and putting 
N = ns,ia>)- Tne subscripts g, s, c describe guiding layer, substrate and clad, respectively. Solving this 

equation one can find that there is only one suitable wavelength which can be converted with the highest 
conversion efficiency for given indices. This can be done only for a particular thickness of the guiding 
layer, i.e. 

arctan(<$7 r) + arctan(// K) 

K ■ (9) 
A detailed study shows [6] that the position of the peak is just at the transition between Cerenkov SHG type 
and guided-guided SHG type. Therefore the position of the peak can be understood as the cut-off of the 
TE° - TE2a> guided SHG. 

Fig. 1 depicts the position of the peak of the conversion efficiency for two waveguide configurations as a 
function of the pump wavelength and the thickness of the guiding layer. The set of points on the left side 
relates the structure KTP/TazCV'cladding" whilst the points on the right represents the structure 
KTP/Si3N/'clad" (approximately nTa0 «2.1 and nSiN »2; actually, the refractive indices were 

determined exactly using Sellmeir's relation). It is seen from Fig. 1 that the pair substrate-guiding layer 
determines the region (in Fig. 1 in the wavelength-thickness plane) of the efficient conversion. It can be said 
that the higher the refractive index of the guiding layer is, the shorter wavelength is efficiently converted 
and the thinner guiding layer is needed. Further, the cladding has proved to be very important 
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for the position of the peak. The digits in the Fig. 1 describe the assumed cladding; namely 1 - air, 2 - Si02 

(n ~ 1.46), and 3 - SiON (n ~ 1.7). The line connecting the points (1-3) exhibits nearly linear dependence 
between the wavelength and the thickness. Thus, having any cladding of arbitrary refractive index from the 
required interval, one can design a device efficiently converting any wavelength within the region 
determined by the lowest and the highest refractive index of the cladding (between 1 and 3), respectively. 
An analogous analysis can be performed for the guiding layer except that only particular values of the 
refractive indices are technically available. This problem can be solved by a suitable combination of two 
materials for the cladding when one of these materials is assumed to be a "new" cladding. Changing the 
thickness of the second cladding, so-called idler, the peak can be moved continuously along the line 
connecting those two sets of points (within 1-3). Moreover, the refractive index of the idler may be higher 
than N. Utilizing this, one can easily convert wavelength out of reach for any three-layered waveguide (see 
points "4a-d" for which nidler ~ 1.92). Of course, Eqs. (5), (7), (8) and (9) must be accordingly rewritten 

for a four-layered system. 

1200 

~ 1100 

S> 1000 

Peak Positions 

KTP/SiNTclad" 

KTP/TaO/"clad" 

300 400 

Guide Thickness [nm] 

500 600 

Fig. 1: The peak positions of several waveguide configurations. The digits 1-3 refer to the 3-layered 
waveguide (see text). The peaks described by 4d-a are relating to the idler configuration 
KTP/"guide'7Y203/Si02. The thickness of the idler is given as follows a - 50 nm, b - 100 nm, c - 150 
nm, d - 200 nm. 
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In recent years all-optical logic has been successfully demonstrated in a regenerative 

mode. The data is synchronous with a local clock and the result of the optical logic is 

always transferred to the clock. In this way, regeneration is achieved at every optical 

switch and this gives the system a great deal of stability. A regenerative optical memory 

[1] can be made which is stable for many hours. We have also demonstrated an all-optical 

pseudo-random number generator [2] capable of generating sequences with repeat 

periods longer than the age of the universe and of pipelining multiple copies of shorter 

tapped shift registers which can be checked using standard electronic bit error rate test 

sets. Although the use of regenerative logic has many benefits it also incurs the cost of 

providing sources which can be distributed to each logic gate. Here we will show that, in 

principle, it is possible to process bit serial data streams asynchronously by which we 

mean that no local clock is required. The logic architecture will be bit serial so that the bit 

rate of the data must be matched, within certain limits determined by the length of the 

packet and the switching window, to the delays in the optical circuits. The regeneration 

function can then be performed more sparsely with the consequent saving in optical 

sources. 

To be specific, we consider an incoming optical packet where the first bit is defined to be 

always a 'one'. Marking packets in this way has been considered before e.g. [3] where 

the first pulse is distinguished through some physical property such as polarisation, 

intensity or wavelength. In our case this is not necessary and the first pulse will be the 

same as all the others in the packet thus reducing the transmitter complexity. The 

simplest function we would want is to produce a single marker pulse that signals the 

arrival of a packet and can be used to provide subsequent timing information. In figure 1 

we show such a circuit. 



384 / ThD42-2 

data 

5 
2 4 

First Gate 

1 3 

1 bit delay" 1 

Second 
Gate 

SYNC 

Figure 1 

The input packet is split into two and one is used as the switching input (port 5) to the 

optical gate and the other is supplied as the data to input port 2. In the absence of a 

switching pulse the gate is configured to be in the bar state and changes to the cross state 

when a switching pulse arrives. Thus the first 'one' switches a copy of itself into the 

recirculating loop connecting output 3 to input 1. In each successive time slot either a 

'zero' or a 'one' is present. If a 'zero' is applied to the switching input then the gate is left 

in the bar state and the 'one' in the memory loop continues to circulate. If a 'one' is 

applied to the switching gate then a one is also applied to input 1. All that happens in this 

case is that the 'one' initially in the memory loop is exchanged for the 'one' from the data 

steam. In either case the memory loop remains at a logical 'one' irrespective of the 

subsequent contents of the packet. Thus output 4 of the first gate goes high on the arrival 

of the first 'one' and remains in that state. We will discuss the resetting of this circuit 

later. 

The second half of the circuit in Figure 1 detects the transition from 'zero' to 'one'. The 

output from the first gate is again split into two but now a single time slot delay is 

introduced between the two copies. The delayed copy is supplied as the switching pulse 

to input 5 to the second gate and the undelayed copy is supplied to input 2 of the second 

gate. When the first pulse arrives at input 2 there is nothing at the switching input and the 

pulse passes to the output at 4. In subsequent time slots a pulse arrives simultaneously at 

input 2 and the switching input 5 which directs the pulse to output 3 (not shown). Thus 



ThD42-3 / 385 

only the first pulse to arrive at the second gate appears at output 4 and this constitutes the 

synchronisation pulse labelled SYNC in figure 1. 

The final question remaining is how to rest the circuit so that the next packet can be 

recognised. We define our packets to be a fixed number of bits N. The sync pulse can be 

delayed by N+l time slots and returned to the switching input of the first gate. Since the 

packet is of length N time slots the SYNC pulse will arrive after the packet has passed 

through gate 1 and when the gate changes to the cross state the memory will unload the 

single 'one' it contains thus resetting the circuit to its initial state. 

The major problem with this approach is the use of the recirculating loop around the first 

gate. The lack of regeneration will lead to cumulative pulse degradation that will place an 

upper limit on the packet length N. Also, the loop will have to run with less than unity 

gain in order to avoid lasing. In figure 2 we show the number of consecutive zeros 

between two pulses which can be tolerated for an amplifier without gain saturation. A 

relatively small amount of line coding would be required to avoid this possibility. 

Figure 2 

1 AJ.Poustie, KJ.Blow and R.J.Manning, Optics Communications, 140 184 (1997) 

2 AJ.Poustie, KJ.Blow, R.J.Manning and A.E.Kelly, Optics Communications 159 208 

(1999) 

3 D.Cotter, M.C.Tatham, IK.Lucek, M.Shabeer, K.Smith, D.Nesset, D.C.Rogers and 

P.Gunning, in: G.Prati (Ed.), Photonic Networks and Technologies, Springer-Verlag, 

Berlin, 401-413, (1997) 
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Summary 

Optical loss (OL) is a fundamental and essential parameter of optical materials. It is 
defined as 10 times the logarithm of light transmittance I/Io, i.e., 

OL = 10 Log — (dB) (1) 
h 

where Io and I are the intensities of the incident and transmitted light. 
In general, OL includes coupling loss ( loss that occurs between the butt-joining of 

waveguide and optical fiber) and propagation (waveguide) loss. Absorption loss is the 
primary propagation loss, and is mainly a material intrinsic property. 

There are several optical methods for measuring OL, for example, image streak analysis 
method (ISA or WLS)1, photothermal deflection spectroscopy(PDS) method 2^, and so on. 
However, various light sources are needed in these measurements,. In addition, the technique 
and the equipment required are usually not familiar to or available for organic material 
scientists. In order to facilitate the selection of optimal polymer-chromophore systems among 
vast amount of possibilities, it would be very helpful for material scientists if they could have 
an approach for OL determination where the techniques and equipment involved are familiar 
and available to them. 

Equation (1) for evaluating absorption related OL can be written as : 

OL (dB / cm) = -10E = -lOsC (2) 

Where E and e, c are the optical absorption (optical density), the molar extinction 
coefficient, and the molar concentration of the solute, respectively. Eq. (2) indicates that the 
absorptive OL equals ten times that of the absorption of the system. It is important to mention 
that for OL determination in solid film, the "E" value in Eq. (2) is the absorption in the 
transverse direction along the film surface. However, it is not suitable to get a perpendicular 
absorption value directly from a film and then convert to a value corresponding to the 
thickness of 1.0 cm, i.e., the E value cannot simply be extrapolated from a few micrometers 
to a centimeter. This is due to the error in extrapolation and the complexity related with 
surface effect in thin solid film. However, as Eq. (2) indicates, when s and C are known, OL 
is measurable. It is known that e is a material intrinsic property, and can be determined in UV 
cell and does not necessary be measured in film form. The molar concentration of a 
chromophore in polymer film can also be determined by spectroscopic method before the 
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coating procedure of polymer film. In this paper, we report the details of a simple approach 
for the determination of OL in solid film by UV-VIS-IR method and its comparison with 
conventional optical method. 

The OL values for the two polyimide polymers determined by the UV-VIS-IR and ISA 
methods and related experimental data are shown in Table 1. 

Table 1 The OL values and related data* 

No of 
the film 
sample 

1 

The 
"m" 

value 

0.4 
0.7 

Chromophore 
concentration  in 
the 
polymer(Mol/L) 
0.65 
1.08 

: £750nm ~ 1.63 and S^oOnm = 0.30 

OL (dB/cm) at I (run) = 
By UV-VIS-IR method 
750 nm 

10.60 
17.60 

1300 nm 

1.95 
3.24 

By ISA method 
750 nm 

8.0 
16 

1300 nm 

(1-47) 
12,951 

As shown in Table 1, the OL values at 750 nm were calibrated by ISA optical 
measurements. The values in the parentheses in Table 1 were obtained from OL values at 750 
nm by multiplying a ratio of ei3oonm/ £750 nm- 

As indicated in Table 1, the OL values obtained by the UV-VIS-Near-IR method are 
consistent with the corresponding data determined by conventional optical measurements. 
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Fig.1 Wavelength dependence of optical loss for a 
solid film (Sample 2)made from polyimide polymer 

According to Eq.(2), OL value at any wavelength can be obtained, as long as the s value 
at corresponding wavelength is known. Fig.l is a plot of a set of OL values at different 
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wavelengths for a polyimide polymer film. 

In conclusion, a simple approach for measuring absorption loss, in organic thin solid 
films has been proposed and demonstrated. The method is applicable to other active or 
passivity polymer systems. This approach is convenient to material scientists and greatly 
simplifies the procedure of OL determination, particularly for evaluation OL dispersion 
performance. 
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A theorem guaranteeing the existence of stable "light bullets", i.e., fully localized spatiotemporal 
solitons, in two- and three-dimensional (2D and 3D) second-harmonic-generation (SHG) media, 
was proved long ago [1]. However, detailed studies of these solitons have started only recently 
[2,3]. A variational approximation (VA) for an analytical description of the bullet was developed 
in [2], and direct simulations have confirmed that stable solitons, close in their shape to the VA 
prediction, exist indeed [2,3]. 

In the works [1-3], only nonspinning "bullets" were considered. Spinning spatiotemporal solitons 
in the 3D SHG medium is a subject of this work. Note that (2+l)D spatial cylindrical solitons 
with an internal vorticity (which are not equivalent to spinning bullets) were recently considered, 
and it has been found theoretically [4] and experimentally [5] that they are subject to a strong 
azimuthal instability, exploding into several zero-vorticity solitons. However, cylindrical solitons 
of the same type with spin 1 were numerically found to be stable in a model with the cubic-quintic 
nonlinearity [6]. 

The starting point is the system of equations for the fundamental- and second-harmonic (FH and 
SH) amplitudes u and v [2], 

iuz + uTT + V\u - u + vu* = 0, 2iuz + 6uTT + V2
±u -ju+ (l/2)v2 = 0, (1) 

where z and r are the propagation distance and reduced time, the 2D Laplacian V^_ acts in the 
transverse plane, 5 < 1 is a relative SH/FH dispersion coefficient, and 7 is the phase-velocity 
mismatch. Spinning-bullet solutions are looked for in the form 

u = U(r, r, z) exp {imff), v = V(r, r, z) exp (2im9), (2) 

where r and 6 are polar coordinates in the transverse plane, and m is an integer spin. This 
transforms Eqs. (1) into 

iUz + UTT + Urr + r~lUr - (l + m2r-2) U + VU* = 0, 

2iVz + 6VTT + V„ + r-lVr - (7 + 4m2r~2) V + (l/2)*72 = 0. (3) 

The nonspinning bullets studied in [2,3] correspond to m = 0. We will concentrate on the case 
m = 1, as the bullets with m > 1 can scarcely be stable. Note that a specific spatiotemporal 
isotropy, existing in the particular case 5 = 1 (identical FH and SH dispersions) for the m = 0 
bullets [2], does not hold in the case m^0. 

The first objective is to find stationary solutions to Eqs. (3), which are real and ^-independent. 
To get an initial approximation to the solutions, we apply VA based on the Gaussian ansatz 
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Figure 1: The stationary shape of an m — 1 spinning "bullet" at 7 = 5 = 1. 

U (r, T) = Ar exp (—ar2 — ar2), V (r, r) = Br2 exp (—ar2 — ßr2), with the variational parameters 
A, B, a, /?, and a (the previous results for m = 0 [2] suggest to take a single spatial-width parameter 
a for FH and SH). The substitution of the ansatz into the Lagrangian of Eqs. (3) and performing 
the variation yield an algebraic system, that was solved numerically in the general case, although 
an explicit analytical solution is sometimes available too. For instance, in a physically interesting 
case 5 = 0, when SH is at the zero-dispersion point, we obtain (for m = 1) ß = 2a = (2/3)(l + 4a), 
a = (l/36)(4 + 7X^/36/(4 + 7) - 1). In all the cases considered (in the intervals 0 < 7 < 10, 
0 <S < 1, and even for m = 2), VA produces exactly one physical solution. 

The next step was to solve numerically Eqs. (3) which yield the shape of the stationary bullet. 
The numerical solution used, as an initial guess, the VA-predicted shape. It was found that, in 
accord with the VA prediction, there always exists exactly one solution which vanishes at r = 0 
and r = 00. Generally, the numerically found soliton's shape was quite close to the variational 
result, except for the fact that the Gaussian ansatz chops off the (exponentially decaying) tails 
of the soliton at r -*■ 00 and |r| -> 00. An example of the numerical solution is shown in Fig. 1 
(only the FH component U(r, r) is shown, the shape of the SH one being quite similar). 

The second step is to analyze the stability of the bullets. This is crucially important, especially in 
view of the above-mentioned instability of the spinning cylindrical solitons [4]. A relatively simple 
part of the analysis is to test the stability against perturbations that do not break the simple 
^-dependence postulated in Eqs. (2). We solved the corresponding z-dependent Eqs. (3) for the 
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complex functions U and V, by means of the 4th-order Runge-Kutta method and using the sta- 
tionary solution as an initial configuration. The result is that the bullet appears to be stable, 
at least for moderate values of z for which the simulations were run. Note that the stability 
of this type (not involving azimuthal perturbations) can be tested too by means of the known 
Vakhitov-Kolokolov criterion [7]. The criterion has not detected any instability. 

The most important part of the stability analysis is to consider azimuthal perturbations, which 
break the ^-dependence postulated in (2). Direct simulations of Eqs. (1) with four independent 
variables are to be completed. However, another approach is possible, based on the numerical 
solution of the linearized version of Eqs. (1), looking for possible unstable perturbation eigenmodes 
(cf. a similar approach adopted in [4]). To this end, assuming the unperturbed solution (u0,v0) 
in the form obtained above with m = 1, one can look for a general eigenmode as 

u(r,r,z,6)-u0 = [Uu(r,r) exp (in$) + U12(r,r) exp (i(2 - n)9)] exp(Az), 

v(r, T, z, 6)-v0 = [Vn(r,r) exp (i(n + 1)0) + *712(r, r) exp (i(3 - n)6)] exp(Az), (4) 

where n is an arbitrary integer azimuthal "quantum number" of the perturbation, A is the insta- 
bility growth rate sought for, and the functions Un through Vu are, generally, complex. It is easy 
to see that the substitution (4) indeed provides for a closed-form eigenmode. 

The eigenvalues A, determined by the condition that the eigenmode must be everywhere nonsingu- 
lar, were looked for on a discrete set of parameter values, 6 = 0 and 1 (these two opposite cases are 
most interesting ones), and 7 = 0,1, and 2. The perturbation azimuthal numbers n = 0, -1, ±2, 
and ±3 were considered (the value n = +1 is trivial), as it is unlikely to get an instability at 
\n\ > 3 (note that the instability of the m = 1 spinning cylindrical soliton was numerically found 
at \n\ = 3 [4]). 

First, an instability accounted for by purely real positive eigenvalues A in (4) was searched for. 
Assuming A real, a finite result was that it was always imaginary (neutrally stable). Thus, this 
type of the instability does not occur in the cases considered. 

It is more technically difficult to look for complex eigenvalues with A > 0. This possibility was 
investigated in detail at a few points, e.g., 6 = 7 = 1, admitting the same values of n as above. 
The eigenvalue was sought for, treating ImA/ReA as an independent parameter that was given 
values 2^, with N = 0, ±1, ±2, ...,±10. No unstable eigenvalue has been found this way. Thus, 
the conclusion is that, at least at some values of the parameters, the m = 1 spinning 3D soliton 
has a chance to be stable in the SHG medium. 
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Temporal solitons in a x^ medium have been recently observed for the first time [1]. They were 
extremely narrow (58 fs)r which made it possible to. observe them in a small sample of BBO 
crystal. The use of the solitons in applications will require to place the crystal into a cavity [2]. 
For so narrow solitons circulating in the cavityTthe filtering losses are important. In this workr 
we introduce a realistic x^ model including the losses and compensating gainrthat gives rise 
tostable temporal solitons (the action of losses [3] and amplification [4] on the x^ solitons was 
earlier considered in a straightforward way). 

It is natural to assume that losses are dominating at the second harmonic (SH)rwhile bandwidth- 
limited amplification (that we assume to be integrated into the nonlinear crystal as in [5]) operates 
at the fundamental harmonic (FH). Solitons in models of this type are unstable because the linear 
gain makes their background unstable. A general way to suppress the background instability was 
proposed in [6]: the waveguide has to be linearly coupled to a parallel lossy core. In the present 
contextrit is sufficient to take into regard only the coupling in the FH component. ThenlTthe 
stabilized model (whichFin factris a version of a system of Ginzburg-Landau equations for the 
X^ medium [7]) takes the form: 

%AZ + {1/2)ATT + A* B   =   i^A + i^iArr + A', (1) 
iBz + {a/2)BTT - ßB + 2A2   =   -iT0B + iVlBTT , (2) 

iqA'z + (ia + v)A   -A. (3) 

Here AT i?rand A' arerrespectivelyrthe FH and SH amplitudes in the main core and the FH 
amplitude in the added lossy onerz and r are the propagation distance and reduced timer a is 
the relative SH/FH dispersion coefficientr/? is the phase-velocity mismatcH^yo is the FH gainF7i 
accounts for the finite size of the gain bandrFo and Ti control the losses at SHr^rqFand a being 
the mismatchFpropagationrand loss constants in the added core. The FH (anomalous) dispersion 
and coupling coefficients are set to be = 1; a and ß may have any signFwhile the parameters on 
r.h.s. are positive (Fi may be zero). The model assumes that the dispersion and nonlinearity in 
the added core are much weaker than the losses. We also neglect the group-velocity difference c 
between FH and SH and mismatch Aw between the FH gain maximum and SH loss minimum. 
An estimate shows thatrin the real case [ljrthey are negligible if \c\ <?C 500 km/s and Aw <C 10 
THz. 
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Figure 1: The stable-background domain for q = ITa = 2rr0 = 0.2rTi = O.irand 71 = 0.15 (a)r 
or 7x = 0.3 (b). 

Nontrivial solitons in a dual-core system may exist if the corresponding coupling length is com- 
parable to the soliton's dispersion length. In the experiment [l]]?the latter was few mmTand it is 
easy to fabricate a dual-core waveguide whose coupling length is a few mm. 
The first condition necessary for stability of solitons is the stability of their backgroundlM = B = 
A' = 0. A corresponding algebraic condition can be easily derived from the linearized equations 
and analyzed numerically. Typical resultsIViz.rthe background-stability region on the parametric 
plane (aFy0) at fixed values of the other parametersrare shown in Fig. 1. A corollary of the 
stability condition is a > 70n.e.rthe loss in the added core must be stronger than the gain in the 
main one. 

Eqs. (l)-(3) admit particular exact solitary-pulse solutions in a form which follows the pattern of 
the recently found exact solutions to a system of stabilized complex Ginzburg-Landau equations 
with a cubic nonlinearity in the main component [6] (see also [7]): 

A = a [sech(Ar)]2+^ eikz, B = b [sech(Ar)]2+2^ e2ikz, A' = a' [sech(Ar)]2+i" eikz.        (4) 

Hererthe inverse width AlTchirp yuFand wavenumber shift k are realTwhile the amplitudes aTa' and 
b may be complex. Substituting (4) into Eqs. (l)-(3)l?one eventually arrives at ten real equations 
for eight real unknowns. Obviouslyra solution may exist if two constraints are imposed on the 
eight real parameters of the model. We have studied the exact soliton solutions (4) in detail. 
Because the background stability is not sufficient for the full dynamical stability of the solitary 
pulsesrwe have numerically tested the stability of the exact solitons. The results are drastically 
different from those for the similar model with the cubic nonlinearity obtained in [6]: the exact 
(4) solitons are unstable in all the cases considered!? but other stable localized pulses exist in 
all the casesrincluding those when the exact solution is not available (recall it is not generic). 
In particularrwe observed in the simulations that the unstable exact pulse did not decayrbutr 
insteadralways reshaped itself into a new stable pulse. The same stable pulse can also be generated 
usingr instead of the exact solutionran input in the form of sufficiently arbitrary Gaussians: 
A = 00 exp(-\2

0T
2)TB = b0 exp(-A^T2)rand A' = a'0 exp(-A^r2)rwith some a0r&0lV0 and A0. 

ThusIVe conclude that the stable pulsesr whose analytical form is unknownTare very robust 
attractors. It is noteworthy that the rearrangement of the initial Gaussian into the stable pulse 
is much more violent than in the case of the exact initial solitonTi.e.rthe exact solitonralthough 
being unstableHs quite close in shape to the stable pulse. 
Thusrthe present model is bistableHts two coexisting attractors being the nontrivial pulse and 
the stable trivial solution.  According to the general principles!^ separatrixT in the form of an 
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Figure 2: The real and imaginary parts (full and dashed lines) of the stable-pulse solution. Only 
FH is shown. 

unstable stationary solutionTmust exist between two attractors. It is obvious that the unstable 
exact soliton is exactly the separatrix. 

We have studied in detail the structure of the nontrivial stable pulseHooking for it as a numerical 
stationary solution to Eqs. (l)r(2) and (3). As well as in the case of the exact unstable pulseHt 
is an even functions of 7Tand it is strongly chirpedrsee a typical example in Fig. 2. 

We have performed another series of numerical experimentsFwhich clearly show that the stable 
pulse can also be generated by initially seeding a Gaussian solely in the FH componentrtwo other 
ones being empty. Because of the bistabilityrthere is a threshold to generate the stable pulse this 
wayrin terms of the intensity of the initial seed. Exactly the same stable pulse is generated with 
very different initial intensitiesrprovided that they are above the threshold. On the other handr 
with an insufficient initial intensityTi.e.rbelow the threshokLTthe input Gaussian quickly decays 
into the trivial solution. The remarkable robustness of the stable pulse and its insensitivity to 
details of the input make it attractive for the experiment and applications. 

[1] P. DiTrapani et o/TPhys. Rev. Lett. 8ir570 (1998). 
[2] P.S. Jian et o/TOpt. Lett. 24F400 (1999). 
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[5] R. Brinkmann et al.TJEEE J. Quantum Electron. QE-30F2356 (1994). 
[6] B.A. Malomed and H.G. WinfuirPhys. Rev. E 53F5365 (1996); J. Atai and B.A. Malomedr 
Phys. Lett. A 244F412 (1998). 
[7] L.-C. CrasovanrD. MihalacherB. Malomedrand F. LedererrPhys. Rev. Erin press. 
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AlGaAs waveguides have proven to be ideal testing grounds for new concepts in Kerr spatial solitons. 
They exhibit a combination of a high nonlinear refractive index (n2=l.5x10*13 cm^/W) and low linear 
(waveguide losses 0.1-0.15cm"l) and nonlinear loss in the 1.55/im communications band, together with 
the possibility to integrate optical and electronic devices and a mature growth and processing technology. 
Here we report two new experiments, one dealing with basic soliton physics and the second an 
application to reconfigurable interconnects. In the first, solitons were used as steerable waveguides in 
order to realize a 1x4 reconfigurable interconnect. In the second project we studied the evolution of the 
polarization state of vector solitons with power and found evidence for the existence of a bifurcation, 
predicted earlier by numerical simulations.fi] 

The idea to use solitons as steerable waveguides in optical routing and switching devices is intriguing as 
this reconfigurable optical circuitry offers solutions to many problems (such as optical cross- and 
interconnects) with a simple architecture, potentially low crosstalk and high switching speed. [2,3] 

A schematic of the soliton steering sample used in the presented experiments is given in fig. 1. The 
sample consisted of an AlGaAs slab waveguide with a lum thick core region (n=3.336), sandwiched 
between 1.5u.m of upper cladding (n=3.29) and 4.0um of lower cladding (n=3.22) on top of a GaAs 
substrate. The upper cladding was, except for a 0.5um layer directly adjacent to the core, p-doped, 
whereas the lower cladding was n-doped (again with the exception of the 0.5um next to the core). The 
waveguide core was undoped. Thus the device could be used as a PIN diode in the direction 
perpendicular to the waveguiding film. On top of the device a heavily p-doped layer of 0.1 um thickness 
was formed and photolithographically processed so that only wedge-shaped regions of it remained. By 
contacting these electrode regions and injecting carriers in the forward-bias regime of the above 
mentioned diode, the index of the AlGaAs was lowered, thus creating a low index prism in the material. 

The soliton is launched so that it passes underneath the wedge-shaped electrode. The resulting spatially 
anisotropic phase change causes the soliton to be deflected. In the case where the whole width of the 
soliton is experiencing the phase change, the deflection is correctly predicted by Snell's law. [4] Because 
the index change in the material is proportional to the injected current, the soliton can be steered 
dynamically by simply adjusting the current. 

*full address:    4000 Central Florida Blvd., P. O. Box 162700, Orlando FL 32816, U.S.A. 
ph. 1 (407) 823 6915, fax 1 (407) 823 6955, email george@mail.creol.ucf.edu 



ThEl-2 / 397 

Soliton Steering 

cd 
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Fig. 1: Schematic of the steering 
electrode (gray) and the soliton with 
steering current on (solid line) and off 
(dashed line). 

distance in microns 

Fig. 2: Linescan image of the end face of the soliton 
steering sample with soliton deviation sufficient for a 1x4 
interconnect. The inset shows an example of soliton 
steering for a sample with near perfect end faces. 

An additively pulse modelocked color center laser operating at a wavelength of 1.55um, a pulsewidth of 
500fs and a repetition rate of 76MHz was used for the experiments. The laser beam was shaped to an 
elliptical spot using a cylindrical telescope. This allowed efficient coupling to the waveguide while 
simultaneously reducing diffraction in the unconfined dimension, thus reducing the power required for 
soliton formation. The l/e2-halfwidth of the in-coupling spot in the plane of the waveguide where 
diffraction occurred was 20um, the sample was 2.5 diffraction lengths long. This results in a cw soliton 
power of about 300W. Soliton beam deflection was achieved by injecting a current via the top electrodes 
in the forward biased regime. The current consumption of a single device was on the order of 15mA. The 
soliton remained intact while being deflected as verified by monitoring the beam shape at the output 
facet. A maximum lateral deflection of about lOOjam was obtained at the output face for the current 
sample design, which corresponds to a deflection angle of 0.3° and an index change of -3x10"4 in the 
prism and provides enough separation for a 1x4 interconnect. A weak signal beam (power ratio 
signal/soliton=0.03) of the opposite polarization (i.e. TM) but the same wavelength was guided and 
deflected within the soliton. As it can be seen from Fig. 2, the transmission drops for increased injection 
current due to free carrier absorption. This mechanism eventually limits the maximal achievable steering 
angle. Due to imperfections of the end faces of this particular sample, significant scattering occurred, 
resulting in higher cross-talk between channels than possible with perfect end faces. The inset in Fig. 2 
shows the intensity profile for a soliton generated and steered in another sample without end face 
imperfections. 

We also investigated the results of bifurcation in the soliton dispersion with increasing intensity. In 
vector solitons, the two polarization components are coupled by four-wave mixing (FWM) and cross- 
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Fig. 4 a) and b): Evolution of the orthogonal polarization component 
with total soliton power for TE (a) and TM (b) solitons for power 
levels well above the critical power for bifurcation. 

phase modulation (XPM) and can exchange energy with propagation distance via the FWM effect. As 
shown in fig. 3, at low powers TE and TM solitons are both stable eigensolutions of the system. At high 
powers, when the waveguide birefringence and the effects of FWM and XPM become comparable, it has 
been predicted theoretically that a bifurcation occurs in both polarizations. Only the one having the lower 
value of the Hamiltonian for a given power is stable for a given branch. [1] Hence only TE polarized 
solitons are stable where-as a pure TM soliton is unstable and the stable part of that branch consists of a 
linearly polarized vector soliton with both TE and TM polarizations.  These predictions were tested. 

Experimentally, above the bifurcation point a TE soliton should stay TE-polarized during propagation, 
whereas a TM soliton should acquire a TE component as the stable branch of the solution is linearly 
polarized, but not purely TM. As the critical power for the bifurcation scales as the inverse of the 
birefringence, we measured the birefringence of the AlGaAs waveguide and found An=(5.5±1.0)xl0~4, 
resulting in a critical power of about 1300W and a beat length of 2mm (sample length was 25mm). 

The experiments were performed using an OPG/OPA system at a wavelength of 1.57/xm, with 10Hz 
repetition rate and 20ps pulse duration. Solitons were launched with an elliptical beam similar to that 
described earlier. Maximum power levels were well above the critical power. As shown in fig. 4 a), a TE 
soliton exhibited a constant portion of TM-polarized light with increasing intensity, mainly due to 
polarizer imperfections. For a TM soliton, however, the portion of TE light increased with power, i.e. the 
soliton was linearly polarized, but not purely TM, thus confirming the result of the simulations. 

In conclusion, we have carried out experiments that demonstrated the dynamic steering of spatial solitons 
by electronically induced index changes with sufficient separation for a 1x4 switch. We also investigated 
the polarization behavior of vector solitons and found evidence for the existence of a bifurcation of the 
TM branch, causing the polarization state of the soliton to rotate with power. 
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Interactions between two vector solitons can be described by two coupled nonlinear wave eqs: 

.dA     1 d2A 
i —+ -—T + An(IM = 0 (la) 

dz     2ax2 

. dB     1 d2B 
i — + -^r + An(I)B = 0 (lb) 

dz     2^2 

where A and B are the two optical fields and An is the change in the index of refraction [1]. Consider two 

generic types of nonlinearity: the Kerr: An = (\ä\ + |ß|2), and the saturable (which occurs, e.g., in 

photorefractives): An = 1/(|A| + \ß\ ) . In the Kerr case eqs (1) constitute an integrable system and 

when two such solitons collide they conserve their total intensity and shape. On the other hand, the 
saturable system is no longer integrable and the colliding solitons can undergo fusion and fission, and 
radiate small amounts of energy. Another way to understand collisions is from a waveguide analogy [2]. 
A Kerr soliton induces a sech2(x) waveguide which can guide only a single mode, and it has a 
(complementary) critical angle of zero (the angle with the propagation axis below which total internal 
reflection occurs is zero). Therefore, two interacting Kerr solitons at non-zero collision angle can never 
couple light into each other's induced waveguide, and each one of them conserves its energy and linear 
momentum. In the saturable case the critical angle is nonzero but at large collision angles the solitons 
remain unaffected after the collision, as in the Kerr regime [3]. 

Here we demonstrate, theoretically and experimentally, energy exchange between vector 
solitons takes place at large angles for both the Saturable and the Kerr regimes [4, 5]: an interaction 
which is unique to vector solitons and does not exist for scalar solitons. Consider collisions between two 
vector solitons, in which one soliton (soliton 1) initially (at z = 0 ) has two field components (Aj and Bj) 
and the other soliton (soliton 2) starts with one field component only (A2), i.e., B2 = 0. The total intensity 
for each soliton, remains constant as shown in Fig. la, but the components that make up that soliton 
exchange energy. In Fig. lb, the 5-field initially (at the input) has only a Bj component but after the 
collision it gives half of its energy to B2. An equal amount of energy is given from A2 to A,. 
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Fig.1.   (a) Soliton 1 and 2 maintain their total energy.     B-field as a result 
of collision for three cases:   In the Kerr regime with A-|, A2 coherent (b), 
A-] and Ag are incoherent (c), and for the saturable regime and A-j, A2 
being coherent. 

To understand this, we draw on a direct analogy between vector soliton collision and the four- 
wave-mixing in nonlinear optics: A/ and A2 form an interference grating, which is translated (via the 
nonlinearity) into a periodic index modulation with a grating vector K = kr k2, ki and k2 corresponding 
to the propagation directions of A; and A2. If the third input beam, Bj, travels in the ki direction (as it 
does, because A; and Bi form soliton 1), then it should Bragg-diffract in the k2 direction and form a non- 
zero B2. But k2 is the direction of A2, so B2 and A2 together form soliton 2. 

Based on this intuition, if Aj and A2 are made incoherent with one another, the optical 
interference pattern phase-fluctuates (due to the mutual incoherence) much faster than the response time 
of the nonlinearity, and thus does not give rise to the index grating. As a result, no energy exchange takes 
place, as shown in Fig. lc [figure lc simulates eqs. similar to eqs. 1, but with 3 fully independent field 
components]. The Saturable (photorefractive) nonlinearity gives similar results as the Kerr, showing 
coupling in Fig. Id. Again, no energy is coupled if A; is made incoherent with A2. 

We performed our experiment in SBN for angles at which scalar solitons do not interact. Bj is 
made incoherent with Aj and A2 by having the optical length difference (1 m) exceeding the coherence 
length of the laser (10 cm) [3]. Since the phase of Bj is varying much faster than the response time of the 
crystal (Zd ~ 1 sec), the A and B fields are incoherent with each other with respect to the crystal [5]. 
The input and output faces of the crystal are imaged on a CCD camera. The slow response of the crystal 
enables us to view each beam individually by blocking one beam (with a mechanical shutter) and 
sampling the other within a time interval (~1 msec) shorter than xä. 

We launch 15 |im FWHM solitons colliding at an angle of 0.7° [inside the crystal] with a total 

intensity ratio of 2 (normalized to the background intensity) for each soliton, \Al I   = 3\B} I  , and 

A A A 
Rig. 2. B  Riold  Output sifter collision.    Energy ©xchang© takes place 
if A.,   and  XKZ are coherent (a), but not if they are incoherent (to). 
(c)When the X\. field  remains blocked then the coupling shown  in  (a) 
disappears after a few seconds. 



ThE2-3 / 401 

\B2\ - 0. In Fig. 2a we see the B field at the output exhibits two peaks which correspond to B, and B2: 

clearly showing the expected energy switching. When we make Aj incoherent with A2 and repeat the 
experiment, as expected, there is no coupling of energy as shown in Fig. 2b. For energy switching to take 
place, it is necessary to have A; coherent with A2, and both of them present so as to form the index 
grating that drives the interaction. For example, if we block the A field long enough, the energy exchange 
shown in (a) decays (because the index grating decays), and after a time longer than the response time of 
the nonlinearity the grating is washed out and the energy exchange disappears, as shown in (c). 

We then increase the collision angle to 0.9°. As expected from our simulations, at larger angles 
the energy switching decrease, as shown in Fig. 3(a) 

Finally, recalling the analogy with four-wave mixing, we realize that the modulation depth of the 
grating is proportional to the visibility of the interference, that is, to A,A2*/7 where I is the total 
intensity. Therefore, keeping the total intensity fixed, the visibility (and thus the energy switching 

efficiency) should depend on the ratio |i4,|2/|B,|2. We investigate this by comparing results with 

collision angle of 0.55 ° and two different ratios: |A,|2 =5|Bj|2and 5|Aj|2 =|£,|2, shown in Fig. 3(b) 

and 3(c) respectively.  Comparing (b) to (c) we notice that indeed the energy switching is much larger 
when Ai is stronger than B, because the visibility is much larger. 

B field output 

0.2r 

N  190 u,m        —»I 
Fig.   3.     B-fiold after collision    (a) At a collision angle of 0.9° B shows 
less coupling,   (b)   (c) Same as (a) at an angle of 0.55°, and different 
ratios I A, lz=5ie112   and 5lyA-, I2 = IS-, |2 , respectively, while the total 
intensity is kept constant. 
We see more coupling when A^ is stronger than B-f. 

In conclusion, we have demonstrated, four-wave-mixing interaction of vector solitons which is a 
unique interaction property of vector solitons and cannot exist for scalar solitons. In this vein, this work 
suggests the possibility of generating phase-conjugation of solitons, by having the field Bj propagating 
counter to Ah This leads to many other ideas, but we would like to end with just one: this four-wave- 
mixing interaction of vector solitons lays the experimental foundations for computation with solitons [4] 
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The expected outcome of the use of magnetooptics is the introduction of a new degree of freedom into the kind of guided-wave 

processes now used routinely in integrated optics [1-5]. In view of this possibility, it is particularly exciting to investigate 

integrated optical device possibilities that use not only magnetooptic interactions but spatial solitons as well [4,5]. The key issues 

in promoting the success of this approach are 

♦ the selection of magnetooptic materials 

♦ the creation of optimised magnetooptic waveguides 

♦ the choice of nonlinear process 

♦ the prospect of the soliton dynamics being used to engage in switching, or other forms of soliton channel manipulation. 

Two possibilities are considered in this report. The first involves the propagation of TM waves in the structure sketched in fig.l. 

_.    ., Current strip line 
Fig-1 ^ 

.-T 

Magnetooptic substrate 

Here a magnetic field H is created by a current I flowing in a stripline along the surface of the device. There is a component of H 

perpendicular to the propagation direction z and the magnetic material, which could be Bi-doped YIG, or a material like 

lutetium. I is ~60mA, producing H~400e, which is enough to saturate the magnetisation. 

The second application concerns TE-TM coupling in the so-called longitudinal configuration. For the arbitrary magnetic field 

direction, shown in fig. 2, there are general magnetooptic contributions to the dielectric tensor e. 

Fig. 2 

e =n 

1 -iQ cos 6 

iQcosO 1 

-z'ßsin#sin0     i'ö sin ^cos ^ 1 

The coordinate system 
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Taking the simplest Kerr nonlinearity permits coupled equations for the amplitudes of the TE and TM waves to be derived in a 

tractable form. For example, writing the electric field components as 

z'     ,.,      ^ r     ..      \ f     _      s 

exp(ia>t) 4&«P -i—faz ) A2^exp| -i-ß2z) A2£zexp[-i-ß2z 

This means that the parabolic equation for A2 is 

2i^ 
a2 A, 

2--i{exy-i£xz)exp i-yz Ax + 2eyzA1 -iaA2 +z[A\Aif + A2\A2\2] 
CO dz      6)2ß2   dx2 

and similarly for A,. etj are the elements of the magnetooptic tensor displayed in fig.2,    ä is an absorption coefficient, J| is a 

nonlinear susceptibility. All these quantities are averaged over the selected waveguide, which here is of the form given by fig.l 

[with or without the current stripline]. 

The phase mismatch between the TE and TM waves is y = ßTC - ßTO, where ßTC and ß™ are effective indices. For TE-TM 

coupling there is clearly a need to deal with the exp .0) 
i — yz 

c 
factor to prevent it from averaging to zero along z. Hence the 

structure needs to be optimised, if a magnetooptic influence is to be apparent in this application. Returning to the first 

application  ex y =0, £x z =0, leaving only £y z and so no phase problem exists for this case. Indeed, if £ ? is constant it causes 

only a simple phase shift. Here, however, £yz=  syz (x) and this creates a current-driven potential well that may capture a 

soliton. Only the ideal case, in which the current line is infinitely thin will be discussed here. This case is very instructive but 

the consequences of using a finite width stripline will be outlined during the presentation. For a soliton beam width D0, it is a 

ca1 

parameter    v = 2ßm — D^ey z   that really determines the well characteristics and a simple Lagrangian analysis will be used 

to reveal all the properties of the well that are required to make an application. This analysis yields the simple well shape 

U{x0) = v0 tanh £--x„ |+tanh\— + xt 

where v is now (realistically) approximated to   *>=0 [x> ^or <-^] and   =-K0for   -£<x <?-. pis a measure of the well 
2 2 2 2 

width determined from a detailed calculation of the magnetic field distribution. x0 is the initial position of the soliton on the x- 

axis. The application is beautifully simple but powerful. The current I creates an x-dependent magnetic field distribution and a 

potential barrier, or well, is created depending upon the current flow direction or soliton propagation direction..  Solitons with 

large angles of incidence to the barrier, and a small kinetic energy, are reflected. The total power is (c/coD0)
2(4 D0/ß2 Jj) so both 

power P and the magnetooptic parameter change as D0 changes. In fact, D0 T =>vT, Pi and D04 =>vi, PT. The effects can be 

seen in fig.3. 

TM SOLITONS IN 
CURRENT-CREATED WELL 

D0=6.12jim 
v=-0.6 Fig.3 
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Also the sketch in fig.4 shows that the soliton can now be routed to make a soliton circulator. This and other applications will be 

discussed in some depth. 

SOLITION    ▲   \ \,' (    ▲ 
CIRCULATOR '  y}y\\ ' 

Fig.4 

For the longitudinal case Eq.(l) can be transformed to 

Wi+k 
c dVi l _ 3Vl       - -[    I      |2 I      |2 

a dz     a>2/30 dz2 

where \j/1>2 is related to A1-2 in such a way as to bring the phase factor, y onto the line. 

If the phase mismatch y»£xy then magnetooptic effects will be suppressed, so it is important to be able to optimise the 

structure. This optimisation will be discussed in detail but the general principle is to seek refractive a index variation through Bi- 

doping of iron garnet layers and also to vary the quantities averaged over the guiding structure by changing the guide thickness. 

This will achieve both a reduction in y and remarkable enhancements of both the magnetooptical and the nonlinear effects. Fig.5 

shows a TE polarised spatial soliton in a planar waveguide structure (like AlGaAs) before and after enhancement and it is clear 

that energy transfer from TE to the TM wave (and vice-versa) is achieved. D is optimised to 1.3 |im and Lu3.x Bix Fe5.y Gay Oi2 is 

used at x=1.4, y=1.5. The diffraction length is - mm so absorption is not a problem. Power levels are a function of the nonlinear 

material but in this application are -100W. 

PRE-OPTIMISATION OPTIMISED 
STRUCTURE SHOWING 
TE-TM COUPLING OF 
soLrnoNS IN A 
NONLINEAR LAYER 
SITTING ON A 
MAGNETOOPTIC 
SUBSTRATE 

TE SOLITION 

Fig.5 

These applications and other more complex interactions will be presented together with an assessment of currently available 

magnetooptic materials and the prospects for (2+1) solitons. 
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Solitons have been studied extensively in the last 
few years [1-3]. Recently, it has been shown exper- 
imentally that partially coherent beams can prop- 
agate as spatial solitons [4]. A partially coherent 
beam diverges more rapidly than the correspond- 
ing coherent beam of the same transversal extent, 
with the divergence becoming greater as the co- 
herence becomes weaker. In addition, the nonuni- 
formity of the beam phase causes the intensity of 
the beam to exhibit speckle structure. In order 
to form a spatial soliton, the medium has to re- 
spond on a time scale which is slower than that of 
the fast variation of beam phase. Under such cir- 
cumstances, the medium will "see" a time-averaged 
light intensity which is a smooth function of spa- 
tial coordinates. Then, the beam will be trapped 
and will propagate in the form of a superposition 
of many spatial modes. Interestingly, instead of us- 
ing an incoherent light source, one can generate a 
partially coherent soliton by superimposing mutu- 
ally incoherent cw wave packets in such a way that 
they represent different modes of the self-induced 
waveguide. 

As far as the theoretical description of spatial par- 
tially coherent solitons (PCS) is concerned, there 
are a few possible approaches. The most natural 
one involves the use of a mutual coherence func- 
tion [5]. However, this leads to an analytically in- 
tractable problem which can only be solved numer- 
ically. A theoretical description of spatial incoher- 
ent solitons based on the so-called 'coherent den- 
sity approach', where the partially coherent beam 
is represented as a superposition of mutually in- 
coherent components, has been developed in [6,7]. 
The description of a partially coherent soliton as a 
multimode self-induced waveguide [8] has been es- 
pecially fruitful. The idea comes from the concept 
of a vector soliton as multimoded waveguide which 
is self-induced by its linear modes [9]. Stationary 
soliton propagation is obtained by using the cor- 

rect proportions of various mutually incoherent lin- 
ear modes of the self-induced waveguide. Incoher- 
ent solitons can also be treated in the diffraction- 
less ray optics limit [10]. In terms of a multimode 
waveguide, this limit is valid when the number of 
modes goes to infinity, so that the soliton becomes 
completely incoherent. 

If the number of modes is finite, then accurate 
analysis can be done using N coupled nonlinear 
Schrödinger equations [11]. It has been shown that 
propagation of partially coherent wave packets in 
a nonlinear Kerr medium with a slow nonlinear re- 
sponse can be represented by the following set of 
equations [7]: 

where ipi denotes the amplitude of the i-th com- 
ponent of the beam, a is a coefficient representing 
the strength of the nonlinearity, x is the transverse 
co-ordinate, z is the co-ordinate along the direc- 

N 
tion of propagation, and Sn(I) = £ IV'il2 is the 

»=1 
change in refractive index profile created by all the 
incoherent components of the light beam. 

Stationary solutions of Eq.(l) are given by 

ipi{x,z) = -^- m(x)exp (i^-z) , with real func- 

tions Ui(x) and real eigenvalues Xf. Then the set 
of Eqs.(l) reduces to the set of ODEs: 

dx2 + 2 
N 

E«2 
= X2jUj. (2) 

This set of equations is also completely integrable 
for an arbitrary set of real nondegenerate Xj. Using 
the results of [13], it can be shown that its solutions 
can be found from the set of algebraic equations: 

N 

E exp[A,-äf] exp[Xjx] 

Aj -j- Aj 
Ui(x) + Uj(x) = —exp[\jx], 
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where x = x — Xi and x,- is a parameter giving the 
spatial shift of each soliton component. 

The analysis gives us N propagation constants Aj 
providing the eigenvalues of the problem. These 
are parameters which nontrivially contribute to the 
shape of the PCS. Moreover, the solution is actu- 
ally a (2JV — 1) - parameter family. It contains N 
soliton parameters, A,-, as well as N relative shifts 
Xi. Admitting translational symmetry of the solu- 
tion as a whole, we can define all shifts relative to 
one of them, so that the total solution then con- 
tains 2N — 1 free parameters. 

2 
A A 

w 

0 — t   

-? 
V 

-4 0 i 

FIG. 1. (a) The intensity profile of a 3-mode inco- 
herent soliton and the amplitude profiles of its three 
linear components: (a) zero-th, (b) first, and (c) sec- 
ond. 

The constants Aj have a dual physical meaning. 
First, the incoherent soliton can be considered as 
a nonlinear superposition of N fundamental soli- 
tons. Then the Aj are the amplitudes of the par- 
tial fundamental solitons in the multisoliton com- 
plex. Secondly, if we consider the sum of the mode 
intensities as a given self-induced refractive index 
change, then each Aj gives an eigenvalue (propa- 
gation constant) relating to a certain mode of this 
waveguide. 

The abovementioned (2N — 1) parameters give a 
wide variety of PCS shapes which, in general, are 
asymmetric and can have either a single or multi- 
peak structure. In Fig.l we give an example of a 
partially coherent soliton consisting of three inco- 
herent components (N = 3). The intensity pro- 
file of these solitons is in general asymmetric (see 
Fig.la). It is also clear that the components u, v, w 

correspond to the fundamental, first and second 
modes of the waveguide self-induced by the soli- 
ton. As the number of constituent components in- 
creases, the possible range of profiles of the par- 
tially coherent soliton also increases. In the limit 
of an infinite number of components, the profile of 
the soliton can be arbitrary. 

If the ability of partially coherent solitons to as- 
sume a variety of profiles is an unusual novel fea- 
ture in itself, then the collision properties of these 
solitons are even more amazing. In Fig.2 we show 
the collision of two partially coherent solitons con- 
sisting of six mutually incoherent modes of a self- 
induced waveguide. It is clear that the collision 
induces a dramatic change in the shape of the soli- 
tons. After the collision, each beam remains a soli- 
ton but then has an intensity profile different from 
the initial one. In the example in Fig.2, collision 
leads to the formation of a six-peak structure of 
the soliton. 

v 

m 
-3 

-6-4-2     0      2      4      6 
spatial coordinate X 

FIG. 2. Collision of two slightly asymmetric PCS, 
each consisting of six linear modes. Parameters chosen 
in this simulation are Ai = 6.0, A2 = 5.0, A3 = 4.0, 
A4 = 3.0, A5 = 2.0, A6 = 1.0, Axi2 = 0, Axis = -0.2, 
Axi4 = -0.1, Ans = -0.3, Axie = -0.1 and the 
angle of collision 6, is chosen such that tanÖ = 0.3. 

This reshaping can be explained by viewing each 
incoherent soliton as a multisoliton complex. It is 
well-known that a soliton collision leads to lateral 
shift for fundamental solitons. During the colli- 
sion, each soliton component experiences a lateral 
shift which depends on the Aj and on the rela- 
tive angles of incidence. For an incoherent soliton, 
each component experiences multiple pair-wise col- 
lisions.   This leads to assorted lateral shifts and 
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consequently to a change in the soliton profile. 

FIG. 3. Experimental observation of the collision of 
two-component PCS with a fundamental soliton. 

On the other hand, the reshaping phenomenon can 
be also understood as mutual refraction of PCS 
on the self-induced waveguides. Since each con- 
stituent mode of the PCS have different phase ve- 
locity, each one experiences a different rate of re- 
fraction in the impact area of the collision. Self- 
consistent reassembling of modes after the collision 
results in a stationary output beam with a modi- 
fied shape. 

-10   -5      0       5      10 
spatial coordinate 

-5 0 5 
spatial cooidinate 

FIG. 4. Numerical simulation of collision of 
two-component PCS solitons in a saturable nonlinear 
medium with the nonEnearity An oc 7/(1+0.05/). The 
input and output profiles are shown on the r.h.s. 

The collision of partially coherent spatial solitons 
has been studied experimentally with screening 
solitons formed in a photorefractive strontium bar- 
ium niobate crystal biased with high DC field 
(3kV/cm) [14]. We produced the PCS by copropa- 
gating two mutually incoherent ID beams (stripes) 
simulating the fundamental and first-order guided 
modes of the self-induced waveguide, respectively. 
This composite beam can form a partially coher- 
ent soliton when propagating in the biased pho- 
torefractive crystal. 

We then collided it with another soliton formed by 
launching an additional single-component beam. 
Two examples of the collision are shown in Fig.3. 
The top row shows the output intensity distribu- 
tion of each PCS during individual propagation 
while the bottom row illustrates the results of the 
collisions. In the first instance (Fig.3(a)) the par- 
tially coherent soliton forms a single peaked struc- 
ture. It is quite clear that after the collision it 
becomes strongly asymmetric; this is an indica- 
tion of the partial separation of its constituent 
modes. In the second example (b), the compos- 
ite soliton exhibits a clear double-peaked structure 
with the separation between the peaks being 24 mi- 
crons (Fig.3(b)). When it collides with the funda- 
mental soliton, the two-peaked structure becomes 
even more pronounced and the separation between 
peaks increases to 34 microns. 

It is worth noting that the photorefractive non- 
linearity is not, strictly speaking, of Kerr-type. 
Therefore, collisions of PCSs transform them into 
solutions which are not stationary. As a result, 
solitons exhibit oscillatory dynamics after the col- 
lision (see Fig.4). 
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Manipulating the spatial or temporal coherence properties of an optical beam has always been a topic 
of great interest [1,2]. Along these lines, active processes such as two-wave-mixing [1] as well as spatial 
filtering [2] (based on the pinhole principle) have been used in order to improve the spatial coherence of an 
optical beam. Thus far, all the methods for shaping the coherence function employed components (or 
systems) which do not conserve the total energy borne upon the beam: some involve gain (e.g., a laser) and 
some involve loss (pinhole), but none was passive. Certainly, it is highly desirable to identify a passive 
scheme capable of enhancing at-will the spatial correlation length (spatial coherence) at an arbitrarily- 
chosen point upon a partially incoherent optical beam. Recent theoretical studies [3,4] have shown that the 
fluctuation statistics of partially spatially-incoherent light can be greatly affected in a nonlinear self- 
focusing (or defocusing) environment such as biased photorefractives. For example, the coherence length is 
known to increase within the gray notch of an incoherent dark soliton [3] after its formation. Similarly, the 
coherence increases at the sides of an incoherent bright soliton [4]. 

Here we show that the spatial coherence length of a bright partially coherent signal beam can be greatly 
affected through its interaction with an incoherent/coherent dark spatial soliton. We show that during this 
interaction, part of the incoherent bright beam is trapped within the dark/gray notch of the controlling dark 
soliton thus forming a sharp intensity spike. Moreover, while propagating, its correlation length 
dramatically increases by at least two orders of magnitude. Thus incoherent light can be effectively 
"cooled" (its entropy being reduced) at any arbitrarily chosen point upon a partially incoherent wavefront 
using either a coherent or an incoherent dark spatial soliton. 

To demonstrate the principle, let us consider a biased Strontium Barium Niobate (SBN) crystal in a 
standard soliton arrangement. The crystal is used in reversed bias (self-defocusing nonlinearity). Let us 
assume that a broad partially incoherent bright signal beam interacts incoherently with a partially 
incoherent/coherent dark soliton during propagation. In that case, these two beams evolve according to the 
following two integro-differential equations [3]: 
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IN(X,Z) = INB+I„D = ] (\f(x,z,0)\2 +\g(x,z,0)\2)d0 (3) 

where at the origin f(z = O,x,0) = rmGNB
m (0)0OB(x) and g(z = O,x,0) = pU2GND

in (0)0OD(x). In 

the above equations, / and g represent coherent densities [3] for bright and dark beams respectively. r33 

is the electrooptic coefficient of the SBN crystal and £0is the bias field strength, rand p\aie the 

normalized peak intensities of the bright and dark beams and GNB and GND their normalized angular 

spectra [3]. Finally 0OB and <Z>0D represent their spatial modulation functions at the origin. The coherence 

properties of the bright beam are manifested in its correlation length [3]: 

/cW=J 
//(*, z,0)f{x\ z, 0)exp[ik0(x - x')}!0 

^NBiXiZVmiX'Z) 
dx' (4) 

As an example let us consider a bright incoherent beam with an intensity FWHM of 30 pm. The initial 

correlation length of this beam is 9 pm (0O = 0.55°), and it is the same anywhere across the beam [3]. 

The beam propagates in SBN:75 crystal with r33 = 1022pm IV. This beam co-propagates with a dark 

spatial soliton whose initial intensity FWHM is 7 jUm and its maximum normalized intensity is p = 40. 

On the other hand the maximum intensity ratio of the incoherent bright beam is r = 3, i.e., weaker than the 
dark one. The wavelength of both beams is 488 nm. 

J-NB 

i    2000 

z (mm) 

Fig. 1 (a) Evolution of the intensity profile of a bright beam and (b) its correlation length when it co-propagates 
with a dark coherent spatial soliton. 

Figure 1 shows the evolution of the intensity profile of the bright beam as well as its correlation length 
as function of distance. In this case the dark soliton was assumed to be fully coherent. In our simulations, 
the angular spectrum GND collapsed to a delta function and thus Eq.(2) took the form of a standard 

nonlinear Schroedinger equation. It is clear from Fig. 1(a) that part of the incoherent bright beam was 
captured in the waveguide induced by the dark soliton, whereas the rest of the beam undergoes diffraction. 
What is very interesting is the fact that coherence of this sharp spike has also increased dramatically. Fig 
1(b) shows that the correlation length at the center has increased from 9jUm to 2200 fJm, i.e., more than 
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240 times after 6 mm of propagation. Note that this enhancement or "cooling" has been carried out entirely 
passively, that is without any power transfer between the two beams. This process is reminiscent of Bose- 
Einstein condensation. One can intuitively understand this enhancement by considering the modal 
properties of dark soliton induced waveguides. As previously shown [5], these waveguides are single- 
moded even in saturable media. As result, in the absence of any modal competition, the spatial coherence of 
the trapped light is expected to increase. 

J-NB 

1600 
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0 
0    40 -60 -40 -20 0  20 40 60 
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Fig. 2 (a) The input (dashed curve) and output at z = 6 mm (solid curve) intensities of an incoherent bright beam 
and (b) its coherence length in um after 6 mm of propagation when it is co-propagating with an incoherent dark 
soliton. 

Even more importantly, "cooling" can be accomplished using a dark incoherent soliton [3,6]. Figure 2 
depicts the intensity profile and the correlation length of the bright incoherent beam after 6 mm. All the 
parameters are the same as in Fig. 1, but this time the initial correlation length of the dark incoherent 
soliton beam is 9 jum \ (0O = 0.55°), i.e., the incoherent beam being "cooled" and the "cooling beam" 

have the same correlation length. Yet in spite of the fact that the guiding dark beam itself is incoherent, the 
correlation of the bright signal beam has increased from 9jum\ to 1500 jum\. This can be intuitively 
explained by recalling that in a large range of parameters (for first-order incoherent dark solitons [3]) the 
waveguide induced by an incoherent dark soliton is single-moded: not very different from the waveguide 
induced by a coherent dark soliton at the same wavelength. In this case the increase in coherence is 
somewhat lower since at 6 mm the dark incoherent soliton has not yet formed: the beam still evolves into 
its stationary (solitonic) form. 
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It was recently demonstrated that a slow self-focusing 
nonlinear medium can support partially coherent solitons 
[1,2]. The necessary condition for soliton formation is 
that the nonlinear response is slow compared to the fast 
and random fluctuations of the phase front of the inci- 
dent optical beam. In this case the medium cannot follow 
the random speckle structure of the beam and responds 
only to its time-averaged intensity, which is a smooth 
function of the spatial variables. Following the experi- 
ments in photorefractive media [1,2] Christodoulides et 
al. used the so-called coherent density function theory 
to describe the spatially partially coherent beams [3,4]. 
In case of the specific logarithmic nonlinearity the sta- 
tionary soliton solution was found analytically [4]. 

Spatially partially coherent beams in inertial Kerr me- 
dia was discussed more than 20 years ago. For instance, 
Pasmanik [5] analyzed the nonlinear equation for the 
cross-correlation function to describe self-focusing of in- 
coherent beams. This aberration-free approach indicated 
collapse, but lead to the incorrect conclusion that the 
threshold power above which collapse occurs is the same 
as for coherent beams. Aleshkevich et al. [6] later used 
the mutual coherence function in a more rigorous numer- 
ical study, in which fitting to the numerical results gave 
an empirical formula for the effect of the partial coher- 
ence of the beam on the collapse threshold power. 

Here we use the coherent density function approach 
to study the propagation of partially coherent beams 
in inertial Kerr media. We find the first analytical for- 
mula for the collapse threshold power, which shows how 
the deterioration of spatial coherence tends to suppress 
self-focusing. Furthermore, we present the results of 
the first fully 2+1 dimensional numerical propagation 
of spatially incoherent beams described by the discrete 
Christodoulides model of coupled nonlinear Schrödinger 
(NLS) equations [3], which displays an intricate dynam- 
ical interplay between the components. 

We consider the dynamical equations for incoherent 
light beams propagating in a bulk Kerr medium [3] 

tdxf + i e ■ v/ + v2/ + 7// = 0, (1) 

where /=/(r, z, 6) is the coherent density function, which 
is parametrized by the walk-off angle 6=(6x,6y). Since 
we consider a bulk medium with two transverse dimen- 
sions (2D) f=(x,y), V=(Öx,Öy), and V2=d2 + Ö2. The 
total intensity is represented by / in the following way: 

nr,z) = J\f(f,z,e)\2d9, (2) 

where/dfe/r«/.00«,^«»,. 
Equations (1) can be written in a simpler form without 

walk-off by applying the unitary transformation 

f{f, z, 6) = F{r, z, 9) exp(i62z/4 - iff. f/2),        (3) 

where 62=\0\2=&l +02. In terms of F(f, z, 0) the dynam- 
ical equations become 

ZF + V2F + flF = 0. (4) 

The model (4) conserve the power P${9) in each angular 
component and the Hamiltonian H, 

Pe(e) = J\F(r,z,e)\2dr, 

H= f f(\VF\2 - jI\F\2/2)dfS, 

(5) 

(6) 

as well as the momentum in the x and y direc- 
tion, Mx>y=f f2Im{F*dXiyF}drS. Here J df = 

SZc S-oc dxdy- The totaJ P°wer P=IPe{6)de and the 
total momentum M=xMx + yMy, are also conserved. 

To study Eq. (4) (and thus (1)) analytically we define 
the effective beam width (i.e. the width of the inten- 
sity profile) or so-called virial, V(z)=P~1 f R2Idf, where 
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R=f- (f) and R=\R\ is the distance from the center of 
mass {r)=P~1 J fl(f, z)df. The dynamics can then be 
analyzed from the acceleration of the width, d2Vjdz2

l 

for which we can derive a simple expression in terms of 
conserved quantities, the virial relation: 

dz2 ~ P V 4P ) ' (7) 

where M2=\M\2. If the right hand side of (7) is nega- 
tive the beam width V(z) will continuously decrease and 
a collapse, defined as V(z)-iO, will inevitably occur at 
a finite distance. Thus H — M2/(4P)<0 is a sufficient 
condition for collapse. Importantly, such a collapse of the 
total wavefunction implies also a collapse of each angular 
component, VB(0, z)=P~1 / R2\F(f, z, 6)|2df->0. If the 
right hand side of (7) is positive, H - M2/(4P)>0, we 
have to do further analysis to determine whether a col- 
lapse can occur or not. For example, if the beam is given 
a sufficiently strong focusing at the input (dV(0)/dz<0) 
a collapse could in principle develop despite the second 
derivative of the virial being constant and positive. 

We will now assume that the profiles of the intensity 
and the angular power spectrum, are both radially sym- 
metric and Gaussian at the input (z=0), i.e. 

f(f,z = 0,6) h      ,   e2      r* — exp(-— -—), 
■K0 2a2 2A2 (8) 

where Jo is the peak intensity (I(r, z=0)=lo exp(—r2/A2). 
In logarithmic media the beam will maintain its Gaus- 
sian statistics during propagation and one can apply 
the Gaussian Schell-model to describe partially coherent 
light as in [4]. In inertial Kerr media this is not so. 

Transforming   this   initial   condition   according   to 
Eq. (3), the total power and the Hamiltonian become 

P = 7rA2/0,   H = 7i70 + TTAV/O/4 - n-yA2I2/4, 

with the momentum being zero, M=0, due to symmetry. 
From Eq. (7) we then obtain that the beam will collapse 
if the total power is above the threshold 

Pth=Pt
n

h
ls(l + /3), (9) 

where /3=A2<72/4 is the number of speckles inside the 
beam cross section, and Pt'J1

ls=47r/7 is the well-known 
threshold for collapse of Gaussian beams in the NLS 
equation. Furthermore, the virial and its derivative are 
initially V(0)=A2 and dV(Q)/dz=0, respectively. There- 
fore, for this initial condition, P>Pth is both a necessary 
and sufficient condition for a total collapse in the sense 
that the total beam width goes to zero, V(z) -4 0. 

As we would expect the power threshold for collapse, 
which is depicted in Fig. 1 (solid curve), increases with 
the degree of of incoherence ß. In other words, the more 
incoherent the beam is the stronger is the tendency to 

diffract, and the more power is required for collapse to 
occur. The threshold (9) represents the first analytical 
prediction of the influence of the degree of incoherence 
on the self-focusing of partially incoherent beams in in- 
ertial Kerr media and fits well with the numerical result 
Pth=Pt

n
h
ls(l + 0.6/3) obtained by Aleshkevich et al. [6]. 

Note that in the coherent limit when CT-40 and the angu- 
lar spectrum becomes a delta-function, the power thresh- 
old reduces to the NLS threshold PjjJ8, as it should. 

'• »ja 6 o o 
(»•»too o 

0 12 3 4 5 
Angular spectrum width, a 

FIG. 1. Theoretically predicted collapse threshold power 
P$*(l + ß) (solid) and the best numerical fit Pt"J,ls(l + 0.4/?) 
(dashed) versus the angular spectrum width a for 7=A=1. 
Filled (open) circles indicates numerical results, in which col- 
lapse (diffraction) was observed. 

To study the beam propagation numerically we dis- 
cretize the walk-off space into a center component (n=l) 
at 6x=6y=0 and NT rings with each Ns equidistant spokes 
or components on them. This gives the discrete equations 

.dFn 
N 

i^£n+V2Fn+7JP„ = 0,   J=£nn|F„|: (10) 
n=l 

where On is the solid angle or area around the nth compo- 
nent and N=NtNs + l is the total number of components. 
The discrete model (10) was first used by Christodoulides 
et al. to study partially incoherent 1+1D solitons in pho- 
torefractive media [4]. 

The numerical results are summarized in Fig. 1, with 
Pth=Ptf!

s(l + 0.4/?) representing the best fit to the col- 
lapse threshold power. This lies below both the analytical 
prediction (9) and the Pth's(l + 0.6/3) found numerically 
by Aleshkevich et al. [6]. The discrepancy between the 
analytical and numerical results, i.e. the saturation of 
the numerically found threshold, is an artifact of discrete- 
ness, as observed for the simpler two component case [7]. 
Clearly, with a finite ^-resolution, the power in the cen- 
tral component can be sufficiently high to ensure that a 
collapse will always occur, disregarding the power in the 
other components. Furthermore, the nearest components 
may walk-off and collapse away from the center, thereby 
created multiple hot spots. We are currently investigat- 
ing this effect. 
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FIG. 2. Evolution of the position of the maximum ampli- 
tude of the individual components, represented as tubes, dur- 
ing a collapse for A=l, CT=1.75, and P=20. The number of 
rings and spokes is NT=NS=16, and shown is the central com- 
ponent and spoke 1-14 on rings 2, 5, and 7. The corresponding 
walk-off is 0=0, 0.54, 1.34, and 1.88. 

0.2        0.3       0.4 
Distance, z 

0.5       0.6 

FIG. 3. Top: slice in the y=0 plane of Fig. 2 overlayed the 
total intensity in grey scale with white being the most intense. 
Bottom: Evolution of the maximum (center) intensity. 

In general each component always starts to walk-off 
of at an angle Atan(0), corresponding to simple linear 
walk-off. Depending on the value of $ for the particular 
component a certain portion escapes the attractive po- 
tential (or waveguide) of the total intensity and continues 
to walk off, while another portion is captured by this po- 
tential and reflected back towards the center. If enough 
power is reflected back a collapse can occur with the in- 
tensity going to infinity at the center r=0. In Figs. 2 and 
3 we show the dynamics of such a typical collapse. A few 
components on each ring have been left out in the 3D 
picture in order to see the central component. 

If the power captured at the center is not enough to 
initiate a collapse, then all components will diffract and 

the total beam will spread out, as shown in Figs. 4 and 
5. Still some of the components are captured by the po- 
tential or waveguide of the total intensity. 

FIG. 4. Evolution of the position of the center of mass 
of the individual components, represented as tubes, during 
diffraction for A=l, CT=2.75, and P=20. The number of rings 
and spokes is JVr=jVs=16, and shown is spoke 1-16 on rings 2, 
1-14 on ring 5, and 1-16 on ring 7. The corresponding walk-off 
is 0=0, 0.84, 2.11, and 2.94. 

1.0 
Distance, z 

FIG. 5. Top: slice in the y=Q plane of Fig. 4 overlayed the 
total intensity in grey scale with white being the most intense. 
Bottom: Evolution of the maximum (center) intensity. 
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Recent experimental and theoretical studies have 
shown that incoherent dark solitons are 
fundamentally different from their coherent 
counterparts [1-3]. For example, unlike a coherent 
gray soliton, an incoherent dark soliton does not 
exhibit a transverse velocity in spite of its grayness 
[1,3]. On the other hand, as in the case of coherent 
dark beam [4], an initial 7t -phase flip at the center 
of the beam leads to a fundamental dark incoherent 
soliton, whereas a uniform phase causes the beam 
to split into a Y-junction incoherent soliton [1]. 

Here, we show that , in spite of random phase 
fluctuations which tend to wash out the phase 
memory, a dark incoherent soliton remembers its 
initial phase imposed at the center. We compare 
the higher-order behavior of incoherent and 
coherent dark solitons under the same initial 
conditions. Surprisingly, we find that over a wide 
range of parameters, the Y-splitting is 
approximately the same irrespective of coherence. 
Experiments carried out in SBN:60 photorefractive 
crystal confirm our theoretical predictions. 

Let us first discuss the diffraction behavior of 
coherent and incoherent dark beams under odd and 
even initial conditions. Diffraction of coherent and 
incoherent dark beams is analyzed by using the 
coherent density approach as done in Ref. [1]. The 

electrooptic coefficient of the crystal is 
250 pm/V and its extraordinary refractive index 

is 2.3. 

-50    0     5 
x(um) 

Fig. 1 (a) Intensity profile of an odd or even dark 
beam at the input. Diffraction of an (b) odd and (c) 
even coherent dark beam, and (d) an incoherent odd 
or even dark beam after 12 mm of propagation, (e) 
The coherence length curve in jum äs a function of x 
for the odd (dashed curve) and the even (solid curve) 
diffracted incoherent dark beam. 

The wavelength of the beam is Ä^ = 514 nm. The 

input intensity FWHM of the even and odd dark 
beams is taken here to be 25//mas shown in 
Fig. 1(a). Moreover, the normalized background 
intensity is  p = 3 . Figs. 1 (b) and (c) show the 
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diffracted intensity profiles of coherent odd and 
even dark beams respectively after 12 mm of 
propagation. In this case, the intensity FWHM of 
the odd dark beam at the output is 42 jUm whereas 
that of the even is 76 JUm. It is important to note 

that after diffraction, the intensity of the odd 
coherent beam is always zero at the center whereas 
that of the even is gray-like. Fig. 1(d), on the other 
hand, demonstrates how an odd or even incoherent 
dark beam will diffract after 12 mm of 
propagation when at the input the correlation 
length, lc, of the beam is 17/^w. This latter figure 

shows that, the intensity profiles of the odd and 
even incoherent dark beams are almost identical 
with an output FWHM of 100 jUm. Simulations 
suggest that the same also applies for the 
coherence length curves corresponding to these two 
cases as shown in Fig. 1(e). Thus, from diffraction 
data alone, it is extremely difficult to distinguish 
an odd dark beam from an even one. In other 
words, the randomly changing speckled structure 
of an incoherent beam leads to a loss of phase 
memory. Therefore, as a result of this phase 
washing effect, a sufficiently incoherent dark beam 
diffracts approximately the same way regardless of 
the phase information initially imposed on it. An 
important distinction between diffraction of a 
coherent and an incoherent dark beam comes from 
the structure of their background. Figure 1 clearly 
demonstrates that a diffracted coherent dark beam 
exhibits intensity ripples on its background. These 
oscillations tend to disappear in the case of an 
incoherent beam as a result of its speckled 
structure. 

When on the other hand the nonlinearity is 
activated, the dynamics of these incoherent beams 
depend on initial phase information. As previously 
shown, generation of a single incoherent dark 
(which is in reality gray) beam or a higher-order 
triplet   requires    a    7t -phase   shift [1-3]. 
Conversely, starting from even initial conditions, 
an incoherent gray soliton pair or Y-soliton 
splitting can be obtained [1,2]. In other words, in 
the presence of nonlinearity, an incoherent dark 
beam tends to remember its origins and identity, 
i.e. a "phase-memory" effect is established. Thus, 

the beam starts to behave in a quasi-coherent 
fashion [4]. 

For comparison, experiments with an amplitude 
notch (even initial conditions) are performed by 
using both coherent and spatially incoherent light 
sources. Details regarding the coherent dark soliton 
experiments can be found in Ref. [4]. For the 
incoherent case, a rotating diffuser is employed to 
provide random phase fluctuations across the beam 
[2]. In this case, we generate a dark notch on a 
broad partially spatially incoherent beam with 
controllable degree of coherence. The experimental 
arrangement is the same as that in Ref. [2], except 
that the phase mask is now replaced by an 
amplitude mask. 

(a) 

(b) 

(C) 

Fig. 2 Experimental observation of coherent and 
incoherent Y-splitting: (a) coherent dark beam; (b) (c) 
incoherent dark beam with an average speckle size of 
30jUm and 15/tfrc respectively. The first column 
depicts the input intensity, the second one diffraction 
data, and the third one Y-splitting at -350 V. 

Incoherent Y-junction solitons are generated and 
then compared with the coherent ones. Fig. 2 
shows typical experimental results. When the dark 
beam is coherent and in the absence of 
nonlinearity, it diffracts from a FWHM of 25 jum 
(left) to about 58 jum after 12 mm of 
propagation (middle). Note that, with the exception 
of the dark notch FWHM (which from simulations 
is expected to be 76 ßn), its intensity structure is 
in agreement with Fig. 1(c). The discrepancy in 
FWHM is attributed to the fact that the reflection 
from the metallic wire introduces a quadratic phase 
[4] which is not accounted in our simulations. 
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After applying a voltage of -350 V (negative 
relative to the c-axis), the dark amplitude notch 
evolves into a pair of gray solitons (right). The 
second and third rows of this figure depict the 
same data when the dark beam is incoherent. The 
right column of the figure was obtained at -350 V 
and with an input FWHM of 25 jum. As seen in 
Fig. 2, the grayness of the soliton pair increases as 
the coherence of the beam decreases. Nevertheless, 
the spacing of these two solitons at the crystal 
output face is about the same for a varying degree 
of coherence. 

-150  -100   -50      0      50     100    150 

x(M-m) 

Fig. 3 Intensity profile of a soliton doublet at z = 12 
mm when the external bias is -450 V and the beam 
is (a) coherent or (b) incoherent with lc = 25/Zw 

and(c) lc =\lfjm. 

These experimental results are now compared with 
numerical simulations. By keeping in mind that in 
the experiment, the input speckle size of the 
incoherent beams is 30 jum for Fig. 2(b) and 
\5jUm for Fig. 2(c) and by considering then- 
diffraction behavior, we estimate that the width of 
the angular power spectrum in these two cases is 
3.5 mrads and 5.2 mrads respectively. The 
simulation shown in Fig. 3(a) demonstrates how a 
coherent soliton doublet forms from a 25 jum even 

dark beam after 12 mm of propagation when the 
bias voltage is -450 V. For the same bias voltage 
and initial beam width, the intensity profile of an 
incoherent doublet after 12 mm of propagation is 

shown in Fig. 3(b) when lc = 25jum. Fig. 3(c) 

depicts similar data when lc =17 jUm and again 

the bias is -450 V. Here, again coherent density is 
used in obtaining these results. In agreement with 
the experiment, Fig. 3 demonstrates that the 
doublet becomes grayer as the incoherency 
increases. Surprisingly, for this range of 
parameters, both theory (Fig. 3) and experiment 
(Fig. 2) suggest that the Y-splitting angle or the 
doublet separation does not depend strongly on the 
degree of coherence. Thus, the evolution of 
incoherent dark solitons in non-instantaneous 
nonlinear media is associated with strong "phase- 
memory" effects which are otherwise absent in the 
linear regime. 

This work was supported by AFOSR, ARO, and NSF. 
* Permanent address, Pamukkale University, 
Electronics Engineering Department, Denizli, Turkey. 
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Optical spatial solitons1 in photorefractive crystals2 have shown potential to form graded 
index waveguides which can guide other beams3,4. A soliton forms when a photoinduced index 
change in the material exactly compensates for the diffraction of the beam; i.e. the beam creates 
its own waveguide. In photorefractive materials, a screening soliton is formed by the screening of 
an externally applied electric field through the transport of photoinduced carries5. However, these 
induced waveguides disappear if the applied field is removed from the material. In this paper we 
report on the use of soliton formation to create permanent waveguides by selectively reorienting 
ferroelectric domains within the propagating light beam. 

For the experiment, the output of an argon-ion laser is collimated and focused to a spot 
size of 12 |im on the front face of a 1 cm cubic SBN:75 crystal. When a 3 kV/cm electric field is 
applied to the crystal along the direction of the spontaneous polarization, the beam self focuses to 
its input diameter. The external field is then removed and a uniform background beam that fills the 
crystal is switched on. The space charge field due to photoinduced screening charges is larger 
than the coercive field of the ferroelectric domains and causes the domains in the area of the inci- 
dent beam to reverse their orientation. At equilibrium, a new space charge field, due to the bound 
charge at the domain boundaries is locked in place. This new field increases the index of refraction 
in only the area of the original soliton, so that a waveguide is formed. The waveguides are 
observed to have the same size as the original soliton, exhibit single mode behavior and last indef- 
initely. 

In addition to fixing single and multiple solitons (FIG.l), a coherent collision of two 
solitons was used to fixed several y-junctions in the crystal (FIG.2). Two mutually coherent, in 
phase beams were focused on the entrance face of the crystal with a peak to peak separation of 33 
|im. As the applied electric field was increased, the two beams fused into one output beam, 
forming a y-junction. Following the procedure outlined above, several y-junctions were fixed in 
the crystal. The output intensity was observed to be dependent on the relative phase of the input 
beams. For beams with no phase difference, the output was maximized while with a relative K 
phase difference, no output was observed. To verify that the y-junction was bidirectional, a HeNe 
laser was coupled into the 'output' of the y-junction. It was observed that the intensity was evenly 
divided into two outputs, with a peak to peak separation equal to the original separation of the 
Argon ion beams. In addition, we also demonstated a technique to form a fixed wave guide 
which propagated unpolarized light 
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Fig.l Intensity profiles for a single guided 
wave, showing the input at the 
entrance face, the diffracted output at 
the exit face, the trapped soliton at the 
exit face and the fixed waveguide 
output at the exit face. A TEM0i input 
at the entrance face and its rejected 
output at the exit face are also shown. 
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Fig.2 Intensity profiles for a coherent 
collision, showing the input at the 
entrance face, the collision at the exit 
face, and the fixed y junction output at 
the exit face when excited by both or 
only one input beam. The output of a 
HeNe laser coupled into the collision is 
also shown. 

HeXe Lttier KaupMMo Collision 

'Li 

Entrance Face OttfractfiS Betuax 

«. & # 

i* JM       *« u 

yr^^^vd" Jkafsis Fiwd Uvwxmdts 
Fig.3 Three dimensional plot of of 
several fixed soliton waveguides. 

•;-«■ ■: i     :. 

.*■■ '■■■/. 



420 / NOTES 



Nonlinear Guided Waves and Their Applications 

Materials and 
Characterization 

Friday, 3 September 1999 

J. Stewart Aitchison, University of Glasgow, UK 
Presider 

FA 
08.00-10.00 
Salle Morey—St-Denis 



422 / FAl-1 

Frequency conversion and parametric processes in 
form-birefringent semiconductor heterostructures 

(Invited talk) 

V. Berger1, G. Leo2 

THOMSON CSF Laboratoire Central de Recherches, 
Domaine de Corbeville, 91400 ORSAY, FRANCE. 

2Dipartimento di Ingegneria Elettronica, Universita "Roma Tre", 
00146 ROMA, ITALY 

e-mail: vincent.berger@lcr.thomson-csf.com 

In this talk we discuss the feasibility of a parametric oscillator integrated on a GaAs 
chip, after reviewing the recent frequency conversion experiments using form birefringence in 
GaAs/oxidized-AlAs waveguides. 

Since bulk GaAs is an optically isotropic semiconductor, birefringence phase-matching is 
impossible. In spite of this problem, GaAs is a very attractive material for nonlinear optics, for 
several reasons. Its large x^ (— 100 to 250 pm/V) gives about one order of magnitude greater 
intrinsic efficiency than the commonly used nonlinear materials. Second, the mature know- 
how in growth and technology of AlGaAs /InGaAs/GaAs materials provides multiple tools 
that can be used in a frequency conversion scheme: technological processes enable the design of 
various optical heterostructures (such as microcavities or quantum wells (QWs)). Furthermore, 
the possibility of integrating a nonlinear converter with the most efficient laser sources that are 
QWs is highly attractive, opening the way to complete nonlinear systems (as optical parametric 
oscillators) on a GaAs chip. Recently, phase-matching has been demonstrated in a GaAs-based 
waveguide, using form birefringence in multilayer heterostructures GaAs/oxidized AlAs (Alox) 

This concept was first demonstrated in a difference frequency generation (DFG) experiment, 
and details can be found in [1, 2]. Form birefringences n(TE)—n(TM) from 0.15 to 0.2 have 
been measured for different GaAs/Alox waveguides, which is sufficient to phase match mid- 
infrared generation between 3 /xm and 10 fim by DFG from two near-infrared beams. Note 
that by increasing the width of Alox layers, much higher birefringences up to 0.65 could be 
achieved, in principle. 

Typical mid-IR output powers of 120 nW were obtained at 4.8 //m (TE polarisation) for 
0.4 mW and 17 mW of Nd:YAG at 1.32 /xm (TE polarisation) and Ti:Sa at 1.035 /im (TM 
polarisation) pump powers, respectively [2]. By increasing pump powers and reducing scattering 
losses originating from processing [2], this result can easily be pushed into the fxW range, which 
is an interesting power level for mid-infrared spectroscopic applications. We also demonstrated 
the general feasability of form birefringence for nonlinear optics phase matching with a SHG 
experiment at 1.6 /an. 

A second step towards the realization of an OPO was the observation of parametric fluores- 
cence. Parametric fluorescence was measured at 2.1 /zm in an oxidized AlGaAs form-irefringent 
waveguide [4].   The signal level measured is around 15 pW, over the range 1.9-2.5 izm, for 



FAl-2 / 423 

typical injection levels of 10 mW. The sample consists of a high-index, strongly birefringent 
guiding core made of a GaAs-Alox stack, embedded in an AlGaAs cladding, similarly to the 
sample used for our previous demonstration of DFG. 

4.0 

1800    1900    2000    2100    2200    2300    2400 

Wavelength (nm) 

Figure 1: Observed TE spectrum near the half-harmonic frequency of the TM pump at 1.064 /mi. 

This power level, which is comparable to the first observation of parametric fluorescence at 
1.3 /im in LiNb03 waveguides [5], makes difficult to use a monochromator for the spectroscopy 
of the generated radiation in the wavelength range of interest here. To this aim we therefore 
resorted to a set of six narrow-band (40 nm) interferential filters, tunable with the angle of 
incidence. The spectrum of the TE-polarized output component is shown in Fig.l, where IR 
generation appears to peak at about 2.1 /mi. 

One of the most exciting perspectives opened with this new type of nonlinear material is the 
realization of an OPO on a GaAs chip. To this aim, minimization of losses is the most crucial 
point. Using the expressions from ref [6], the OPO threshold was calculated and plotted in 
figure 2 as a function of losses, supposed to be equal at pump, signal and idler frequencies. A 
typical value of this threshold is less than 100 mW (in the guide) for 1 cm-1 losses, and with 
90% reflection coefficients. The level of losses is now of the order of 2 cm-1; which implies the 
need for an improvement of the waveguide fabrication process. After a further decrease of the 
losses it will be worth to invest in the optimization of broad-band multidielectric mirrors. Note 
by the way that reflection coefficients up to 90% are currently obtained with high-reflecting 
mirrors for semiconductor lasers. 

Other perspectives of form birefringent semiconductor waveguides will be discussed: 
- Simultaneous frequency conversions: Form birefringence is an example of building an 

artificial structure with the desired optical properties, that is an illustration of refractive index 
engineering. It is obvious that the large number of degrees of freedom in the design of the 
structures enables to design waveguides with several simultaneous constraints. For instance it 
is possible to design a guide in which the doubling process u + to -» 2u and the sum frequency 
(SFG) process u + 2u -> 3u> are simultaneously phase matched. The three waves w, 2u and 3w 
obey to a new system of nonlinear coupled equations and interact simultaneously. 

- Use of QWs as nonlinear material: Form birefringence phase matching has been demon- 
strated using bulk GaAs as nonlinear material. In principle, the huge nonlinear susceptibilities 
related to intersubband transitions in quantum wells [7] is readily feasible by growing asym- 
metric GaAs/AlGaAs quantum wells in the core of a GaAs/Alox structure. 

- Non-critical phase matching: Another consequence of the large number of degrees of free- 
dom in the design of the structures is the possibility to choose, among all the possible phase- 
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Figure 2: Left: 0P0 threshold power (coupled inside the waveguide) as a function of waveguide losses, for 
several reflection coefficients for signal and idler waves. The curve NDPA is the limit of a non-depleted pump 
approximation. Right: General scheme of an integrated 0P0. The semiconductor QWs give the gain for 
laser action, and the Alox layers give the form birefringence necessary for parametric fluorescence and optical 
parametric oscillation in the mid IR. 

matched structures, the one with the widest phase matching resonance. 
- Self-pumped optical parametric oscillator (QW laser 0P0): The introduction of inverted 

QWs in the nonlinear structure would be of great interest if the optical gain could be pushed 
above lasing threshold. In such case, the structure would be basically a semiconductor laser, 
with intracavity phase-matched parametric fluorescence. If losses at the parametric frequencies 
are lower than the parametric gain, such a structure, which is schematically represented in Fig. 
2, is an OPO which provides its own pump internally. The full OPO system, including laser 
pump, nonlinear material and cavity, would be integrated in the same cavity on a semiconductor 
chip. This would represent the smallest OPO system ever realized, and also an alternative way 
to extend the range of room temperature semiconductor lasers in spectral regions where they 
are not yet available {e.g. around 4 //m). Several problems need to be solved, however, before 
the realization of such a device: 1) again, losses have to be reduced (this is a processing issue); 
2) since the lowest wavelength in the nonlinear interaction must be TM polarized, the QWs 
have to läse in the TM polarization, which is possible but not usual. 

This work was supported by the European Community under the IT "OFCORSEII" pro- 
gram. 
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Introduction 

Direct-gap semiconductors have found numerous applications as diode lasers, light-emitting diodes and optical am- 
plifiers. There is also an emergence of semiconductors as nonlinear optical elements. For example the nonlinear 
refractive coefficient n2 at 1.55 /an in AlGaAs is around 103 times larger than in silica. The second-order coefficient 
for optical frequency conversion is similarly enhanced over conventional materials, for example, %^ has a value around 
300 pmV-1 for GaAs in the near-IR1 which is 1-2 orders of magnitude larger than conventional ferroelectric crystals. 
The current limitation on the exploitation of semiconductors as wavelength conversion elements is the development of 
novel phase-matching techniques, particularly as cubic semiconductors lack an intrinsic material birefringence. One 
of the emerging technologies for the control of nonlinear optical coefficients is quantum well disordering,2 opening up 
the possibility of integrated (with diode laser pump) semiconductor optical parametric oscillators, for example. 

A key requirement is a predictive capability for nonlinear optical coefficients in semiconductor heterostructures 
and their modification under disordering. It has previously been established that induced second-order coefficients are 
maximised by (1) increasing the number of quantum wells per unit thickness (increasing the density-of-states) and (2) 
increasing the inter-subband separation.3 Both of these requirements indicate short-period, deep-well superlattice are 
desired. 

Disordered Superlattice Bandstructure Algorithm 

Prediction and optimisation of the linear and nonlinear optical properties requires knowledge of (1) the energies of 
the electronic states of the material and (2) the optical matrix elements between them (obtainable from the electronic 
wavefunctions). That is a suitable bandstructure algorithm must lie at the core of any calculation. Here an algorithm 
is developed for calculating the bandstructure in semiconductor superlattices based on the k • p method. The basis 
functions for this algorithm are the topmost valence band triplet (Tv

l5), the lowest conduction singlet (Tf) and the 
higher triplet (Ty states4 and hence the model is anisotropic and non-centrosymmetric. These higher bands are 
necessary for obtaining a non-zero second-order nonlinearity5 and for predicting the substantial anisotropy of third- 
order nonlinearities in the vicinity of the half-bandgap6 in bulk semiconductors. 

The dynamics of quantum well disordering are most commonly described by Fick's Second Law. This attributes the 
change in alloy concentration $(z,t) under the disordering process to a diffusion equation. On examining the solution 
of the diffusion equation in Fourier space, the Fourier coefficients of an initial square-wave profile are modified by a 
Gaussian factor, 

( [(Lp-Lz)<bb+Lz<bw)/Lp n = 0 

*n{T)={ -i(^-<Msin/"t^exp-(«rcz£)2 "T^O (1) 

where <j>w and <)>6 represent the alloy concentrations for the well and barrier regions respectively, Lz is the well-width, Lp 

the superlattice period and Ld the diffusion length which characterises the extent of the disordering process. In addition 
to investigation of disordered profiles, this also allows the Gibbs phenomenon to be circumvented by incorporating a 
small, nonzero degree of disordering and therefore provides a more satisfactory representation of alloy profiles in the 
Fourier domain. 

The solution of the 14 x 14 electronic Hamiltonian4 is also sought in the Fourier domain. Multiplications in real 
space are replaced with discrete convolutions in Fourier space and the Hamiltonian matrix is transformed from a set of 
coupled differential equations to a set of 14(2W+1) algebraic equations (truncating the Fourier series at the Mb. order). 
This matrix is then diagonalised using standard numerical libraries. An additional advantage of solving the electronic 
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Figure 1: Shift of the lowest conduction state and highest valence band states (kx, ky, kz=0) with disordering diffusion 
length Ld. The maximum order of the Fourier coefficients taken are 1 (chain), 2 (dashed), 4, 8,16,32 (all solid). 

Hamiltonian for superlattices is that there is that there is no distinction made between bound and continuum states in 
contrast to conventional heterostructure solvers. 

The example symmetric superlattice structure examined here consists of 10 monolayers of GaAs and 14 monolayers 
of Alo.5Gao.5As. Fig. 1 shows, as an example, the shift with increasing diffusion length Ld of the lowest conduction 
and uppermost valence sub-band edges (located at kx, ky, kz = 0) taking the maximum order of the Fourier series 
as indicated. The disordering process causes a blue-shift of the band-edge and restores the heavy-hole/light-hole 
degeneracy and is effectively complete around Ld/Lp ~ 1/2. Note that for this superlattice structure, very few Fourier 
orders are required for an adequate simulation, with the dominant effect being due to the reduction in amplitude of the 
first-order Fourier coefficient for the potential profile. 

Determination of Nonlinear Optical Coefficients 
(2) (2) For the second-order nonlinearity, the heterostructure breaks the degeneracy between the yjcyz and y}xy tensor elements. 

It is anticipated that the blue-shift of the band-edge on disordering leads to a reduction in the magnitude of the second- 
(2) 

order nonlinearity through the resonant denominators. In Fig. 2 the calculated dispersion of yj^ is shown for the 
example AlGaAs superlattice structure described above for the undisordered {Ld = 0) and disordered (Ld = 12 mono- 
layers) cases. The calculation is based on the three-level A • p expressions for the second-order susceptibility derived in 
Ref. 3 which also incorporate virtual inter-valence transitions. As the bandstructure basis states are taken at the T-point, 
the states at the Brillouin zone edges are not adequately accounted for. Hence the calculated values for the second- 
order susceptibility contain an unphysical divergent term (~ co~2) which is discarded and a constant background value 
which is underestimated here. However the resonant features are accurately represented and it is these which give rise 
to the modulation on disordering. For this particular example there is only a modest reduction observed in the value of 
nonlinear susceptibility (10-20 pmV-1) just beneath the original half-bandgap. The reason for this small modulation 
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Figure 2: Calculated dispersion of y^y in the AlGaAs superlattice example for Ld = 0 and 12 monolayers. The 
maximum Fourier order was taken to be 8 and the integration limit taken as k\\ (max) = 0.6 (eV)1/2 (about halfway to 
the Brillioun zone edge). As the integration takes place over three dimensions in /fc-space, convergence is relatively 
slow and the upper bounds on the magnitude of the numerical error after a maximum of 2000 evaluations are also 
shown. The arrows indicate half the band-edge in both the undisordered and disordered cases. 

in the second-order susceptibility is that the increase in bandgap of the "well" regions is compensated by the decrease 
in bandgap of the "barrier" regions, i.e. the resonance in the second-order susceptibility is enhanced in the disordered 
case. 

An alternative method for controlling the modulation of the second-order susceptibility is to employ asymmetric 
heterostructures where additional non-zero tensor elements are induced: %£L %^ and x®. These coefficients revert to 
zero on disordering as the heterostructure is symmetricised. These induced coefficients are small for typical MOW3-7-8 

but should be substantially enhanced in short-period superlattices. 
In the case of third-order nonlinearities (nonlinear refraction or two-photon absorption), the heterostructure also 

causes a breaking of the tensor element degeneracies, providing 8 independent non-zero tensor elements in comparison 
to 3 for bulk semiconductors. An example of the consequences of this is that cross-phase-modulation between the two 
orthogonal polarisation components in a semiconductor waveguide is degenerate in bulk but not in heterostructures. 

References 

[1] M. M. Choy and R. L. Byer, Phys. Rev. B 14,1693 (1976). 

[2] J. S. Aitchison, M. W. Street, N. D. Whitbread, D. C. Hutchings, J. H. Marsh, G. T. Kennedy and W. Sibbett, 
IEEE J. Sei. Topics Quantum Electron. 4, 695 (1998). 

[3] D. C. Hutchings and J. M. Arnold, Phys. Rev. B 56,4056 (1997). 

[4] P. Pfeffer and W. Zawadzki, Phys. Rev. B 41,1561 (1990); 53,12813 (1996). 

[5] M. I. Bell, in Electronic Density of States, ed. L. H. Bennett, Natl. Bur. Std. (US) Spec. Publ. 323,757 (1971). 

[6] D. C. Hutchings and B. S. Wherrett, Phys. Rev. B 52, 8150 (1995). 

[7] S. Janz, F. Chatenoud and R. Normandin, Opt. Lett. 19, 622 (1994). 

[8] A. Fiore, E. Rosencher, V. Berger and J. Nagle, Appl. Phys. Lett. 67,3765 (1995). 



428 / FA3-1 

Ultrafast excitonic saturable absorption at 1.55 urn 
in heavy-ion irradiated quantum well vertical cavity 

J. Mangeney, J. L. Oudar, J. C. Harmand, C. Meriadec, G. Patriarche, G. Aubin 
France Telecom - CNET/DTD/CDP, 196 avenue Henri Ravera, 92220 Bagneux, France 

tel: +33 1 4231 7258 - fax: +33 1 4253 4930 -jeanlouis.oudar@cnet.francetelecom.fr 

N. Stelmakh, J. M. Lourtioz 
Institut d'Electronique Fondamentale, CNRS URA 022, Bat. 220, Universite Paris-Sud, 91405 Orsay Cedex, France ■ 

tel: +33 1 6915 4015 - Nikolai.Stelmakh@ief.u-psud.fr 

For the processing of high bit rate optical data transmitted in broadband fiber optic networks, the 
development of efficient all-optical active devices is of crucial importance, as in many instances one 
would like to avoid the complexity of using high speed electronics. A specific application in optical data 
transmission (e. g. soliton 1 or RZ transmission), is that of data regeneration, which can be a complex task, 
especially in a WDM context. In data regenerators one needs to compensate for the signal distorsions and 
S/N degradations introduced at the various data processing stages2. In particular, amplified spontaneous 
emission (ASE) due to optical amplifiers introduces a noise in the "zeros" of return-to-zero optical data 
streams, which must be suppressed when one plans to perform a large number of transformations (such as 
switching, demultiplexing...) on the data. 

Semiconductors are the most promising materials because they offer the possibility of achieving compact 
devices. Saturable absorbers allow the practical realization of all-optical switches, such as demultiplexing 
switches3 based on excitonic absorption in InGaAIAs/InAlAs multiple quantum wells. They can operate at 
potentially very high repetition rates (>100 Gbit/s), provided that the carrier lifetime is drastically reduced 
through the introduction of recombination centers during or after the crystal growth3"5. In these quantum 
wells, absorption saturation recovery times shorter than 2 ps have been obtained3'4, however the reported 
experiments have been performed at repetition rates below 100 MHz, or at best with short pulse trains 
simulating a high repetition rate. This leaves as an open question the actual behaviour of the devices under 
true high repetition rate conditions. 

The problems that may be anticipated at high repetition rates are of two kinds: an excessive temperature 
rise if the dissipated power density is too high, and a recombination bottleneck if the carrier traps that 
mediate the absorption recovery cannot be cycled fast enough to accomodate for a high average carrier 
generation rate. The thermal problem can be minimized through a reduction of the switching energy, and 
the recombination bottleneck can be avoided by the introduction of efficient recombination centers. It has 
recently been shown that irradiation with high energy heavy ions is a promising way to obtain these two 
features4'6. The excitonic absorption lines of the InGaAs quantum wells were preserved for a nonlinear 
absorption recovery time as low as 1.7ps, which is favorable to achieve a small switching energy, and 
subpicosecond recovery time was demonstrated (in bulk GaAs) without any relaxation up to excitation 
densities as high as 1.6 mJ/cm2. This rather unique combination of desirable features is due to the fact that 
irradiation with high energy heavy ions produces clusters of point defects*. These clusters should have a 
high number of electronic states which open up a large number of recombination channels, while their 
areal density can be kept small enough for the excitonic features to be preserved. In addition, the use of 
microcavity effects can enhance the effective nonlinearity, and contribute to the reduction of the switching 
energy7. The present devices incorporate a combination of these advantages. 
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A reflection mode vertical cavity geometry at normal incidence was adopted, because it is intrinsically 
polarization insensitive, and it allows to play with 
interferometric  effects  to  cancel  the reflection 
coefficient at low intensity, thereby allowing a 
high on/off switching ratio. The device structure is 
shown on Figure 1. The MBE-grown absorber 
consists  of 6  groups  of an  7  period MQW 
InGaAs/InAlAs structure, with the MQW groups 
separated by InAlAs spacers, and located at the 
antinodes of the intracavity intensity. This design, 
with  a  resonant  periodic  absorber,   ensures   a 
stronger  and  more uniform coupling  of     the 
saturable absorber quantum wells with the optical 
signal. The samples were irradiated by 12 MeV 
Ni+ ions, with an irradiation dose up to 3 1012 cm"2 

InAlAs 

InGaAs/InAlAs 
MQW 

mirror (Ag) 

heat sink 

Figure 1: Device structure 

The ions have a high enough energy to go completely 
through the quantum well structure, leaving only trails of defects along their trajectory, until they are 
finally stopped in the InP substrate. After irradiation, the cavity was formed by deposition of an Ag film, 
top-down mounting of the structure, and a final chemical etching to remove the InP substrate. Hence the 
ions used to create the defects are no longer present in the structure. 

The nonlinear response of the devices was measured with a reflection mode pump-probe set-up, using 
single short pulses generated by a mode-locked fiber laser at 1.55 um. Two series of measurements were 
performed, one with a passively mode-locked source generating 1 ps pulses at 20 MHz repetition rate, and 
the other with an actively mode-locked source generating 5 ps pulses at 10 GHz. 

The pump-probe measurements displayed on Figure 2, obtained with the 1 ps, 20MHz laser source, show 
the reduction of relaxation time that is obtained at increased implantation doses. The relaxation time 
values deduced from these curves are displayed in Table 1. The evaluation of the relative efficiency of the 
various samples indicates that the saturation energy is essentially constant (within the experimental 
accuracy) up to an irradiation dose of 1012 ein2, while there is a noticeable increase of this parameter at 
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Figure 2: Differential reflectance vs probe delay 
Table 1: Relaxation time of the samples at 

various irradiation doses 

the^ 10^ cm' irradiation dose. This is to due to the persistence of the quantum well excitons up to the 
10 cm" dose. For the 10 cm"2 irradiated sample, the relaxation time was found constant within the 
± 1% experimental accuracy, when measured with pump energies varying from 10 to 30 pJ. The low 
intensity reflectance R, varied somewhat on the sample surface, due to the non-ideal surface uniformity, 
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with values below 0.04 at the cavity resonance. In that case the contrast ratio Ri/Ro between the 
reflectance at high (>10 pJ) and low (<1 pj) pulse energies could be as high as 3.5:1, and the best 
measured absolute differential reflectance AR=RrR0 was 0.20, which shows the good switching capability 
of this device. The measurements performed at 10 GHz did not show any degradation of the switching 
speed at high repetition rate (see Figure 3). The relaxation time measured on the 1011 cm"2 irradiated 
sample was 12ps, i.e. exactly the same as the value measured at 20 MHz. For the two faster samples the 
differential reflectance signal essentially followed the ~5ps pump pulse, indicating that the relaxation time 
is shorter than the pulse duration. 
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Figure 3: Differential reflectance measured at 10 GHz repetition rate 

In conclusion, these results show that heavy-ion irradiated quantum wells can provide the basis for 
efficient compact optical switching devices, operating at optical communication wavelengths. The 
reflection mode vertical cavity device structure is advantageous in many respects, including an increased 
design flexibility, good thermal properties, and polarization insensitivity. 

This work was partially supported by the french Telecom Research Network (RNRT - ASTRE project). 
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We propose a new technique for the measurement of the nonlinear refractive index and two photon 
absorption coefficients of waveguides and bulk nonlinear materials, The presented method, that was named 
"D-scan1", is nothing but the temporal analogue of the Z-scan2 technique which is based on spatial distortion 
of gaussian beam. The converging or diverging input beams in the Z-scan are replaced here by up-chirped or 
down-chirped pulses, the intensity induced wavefront curvature is replaced by intensity induced temporal 
phaseshift, and finally the far field detection is replaced by a spectral analysis. The D-scan is applicable to 
waveguides as well as to bulk nonlinear materials, isotropic or anisotropic. This method is principally 
sensitive to fast (electronic) contribution to the intensity dependent refractive index change and permits to 
avoid the influence of long time response contribution like the one due to thermal effect. It requires only a 
single beam delivered by a femtosecond laser source, which avoids the problems of alignment, collinearity 
and polarisation associated to method based on pump-probe beams. 

Dispersive line 

Power-meter 
Moving 
Prisms 

The experimental set-up is depicted on 
Figure 1 and the operation principle is 
described in the following. Ultrashort 
pulses emitted by a femtosecond laser 
are send in a tunable dispersive line 
before propagation across the nonlinear 
material. Dispersion is modified by 
moving the prisms so that the path of 
the pulses across the glass is increased 
or decreased without deviation of the 
output beam. At the output of the 
dispersive line, the pulse is broadened 
and exhibits a parabolic temporal phase 
profile whose sign depends on the sign 

of the dispersion introduced, <(>". For the particular case of Gaussian pulses described as E(t)=Eoexp-(at)2, 
where a is related to the inverse of the characteristic temporal size T0 (a=2Ln2/T0

2), at the exit of the 

Silica fiber 

73 fs 
75Mhz 

@830nm 
Figl. 

dispersive line the chirped pulse is given by: Ed (r) = 
t   2 a 

I- i2a  <j>' 

exp- ■t 

^ l + 4aV2 

The light exiting the dispersive device is then coupled into the sample (a nonlinear waveguide or a bulk 
material) which is kept fixed. The injected optical power is chosen so as to introduce only moderate 
nonlinear distortions. After their propagation in the sample the output pulses are analysed by an Optical 
Spectrum Analyzer (OSA). When the parabolic temporal phase shift experienced by the pulse after its 
passage through the dispersive line adds with the self phase modulation (SPM) in the sample the output 
spectrum is broader than in the linear case. On the contrary when the dispersion is of opposite sign with 
respect to the SPM the combination of the two effects can lead to a spectral narrowing. When the input 
dispersion is large, whatever its sign, the pulse broadening decreases so much the peak intensity that the 
propagation across the sample gives a negligible nonlinear contribution. 
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Fig^l 

In a preliminary experiment we have 
characterized a short sample of single mode 
silica fiber of 53.5mm length with the 73fs 
pulses provided by a Ti:Sapphire laser source 
operating at 830nm. We have plot on Figure 2 
the peak spectral intensity versus the dispersion 
coefficient, <j>", introduced by the dispersive 
line, for a peak nonlinear phaseshift, 
A<t>o=2*7t*n2*Io/X=l. 15 radians, (I0 being the 
peak intensity of the pulse). The experimental 
data are shown as open circles, for discrete 
values of the dispersion. The continuous line 
corresponds to the result of a numerical 
simulation assuming a Kerr coefficient n2=3.2 
10'"m2/GW. This value deduced from the 
fitting agrees with the published values for 

silica fibers in this range of wavelengths3,4. We must stress that a negative nonlinearity would give 
rise to an inversion of the curve, so that the sign of the nonlinearity is clearly identified. The peak 
to valley deviation of the peak spectral intensity with respect to the linear value, AIp.v , depends on 
the SPM amplitude and permits to measure the real part of the third order nonlinearity. 
Calculations indicate that the dependence of the spectral intensity change, AIp.v, on the resolution 
of the spectrum analyzer can be approximated by AIp.v =0.44{exp-(0.5(r/ra)

2}0,25. r being the OSA 
spectral resolution, and ra the spectral width of the input pulse (FWHMI). For a given spectral 
resolution of 5nm, AIP.V varies linearly with the peak nonlinear phaseshift according to the 
relationship AIp.v= 0.418 A<j>0. The imaginary part 
of the nonlinearity can be deduced from the 
evolution of the total average transmitted power 
versus the input dispersion. In Figure 3 we plot 
typical theoretical evolution of the spectrum peak 
intensity together with the transmitted average 
power versus dispersion 

To some extent the D-scan technique is also able to 
identify the time response, x, of the nonlinearity. The 
time dependent refractive index change has been 
considered in the simulation as the convolution 
product of the optical pulse intensity with a single 
exponential decay for the material response5. For the 
particular case of a Gaussian pulse the nonlinear 
response can be described by: 
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where I0'=Eo2/l(l-2ia<j)")l and A=2a2/(l+4a4(j)"2)- From the above expression we can see that a non 
instantaneous nonlinearity shifts the maximum of the phase and introduces a temporal asymmetry on the 
phase whose magnitude depends on x, T0 and <(>". These effects lead to a frequency shift of the spectrum 
maximum and an asymmetry in the spectral profile. At the same time the peak spectral intensity variation 
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versus dispersion decreases, producing the same 
effect as a lower nonlinearity in the D-scan curves. 
In Figure 4 we show the frequency shift of the 
spectral peak versus dispersion assuming x=30fs, 
To=73fs and A<t>o=1.15 radians. The highest shift is 
here of about 2.5nm and may be easily detected 
using standard OSA with O.lnm resolution. The 
strongest spectral deviation is reached at <j>"=0, 
which corresponds to the narrowest pulse profile at 
the input. The sensitivity of the method to 
refractive index change time response (see Figure 
5) is limited, on one side, to time response shorter 
than the pulse duration T0, and on the other side by 
the resolution of the spectral analyser. In practice, 
using pulses of about 70fs duration and an OSA 
with O.lnm resolution, time response in the range 5 
to 70 fs seems measurable. 
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In   conclusion,   we   have   presented   a   simple 
technique  for  measuring  the  fast part  of the E&4 
complex third order nonlinearity of bulk materials and waveguides. To some extent the method is also able 
to provide the time of response of this fast contribution to the refractive index change. The sensitivity is 
limited by the OSA performance and was estimated in 
our set up to be Xy900. The sensitivity  can  be 
improved by recording the spectral variations in 
the pedestal of the spectrum instead of its peak, in 
a    way    similar    to    the    "eclipsing"    Z-scan 
technique6. Preliminary computations have shown 
that   one   order   of  magnitude  increase   in   the     jj 
sensitivity   can   be   obtained   by   shifting   the     "< 
frequency   corresponding   to   the   measurement 
point by one spectral width (FWHMI). Although 
the experiment reported has been  carried at a 
wavelength of 830nm, this method can be used at 
other wavelengths. 
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Over the past decade, improvements in nonlinear materials and new methods such as quasi- 
phasematching, in combination with guided-wave geometries, have led to dramatic increases in the 
conversion efficiency of three-wave mixing devices. These devices can operate efficiently at CW powers 
below 100 mW.[l] In recent years, such highly efficient mixers have also been used in signal processing 
applications analogous to those of RF mixers, but operating at optical frequencies.[2] Examples include 
wavelength converters for WDM systems, and spectral inversion for dispersion correction. In this 
presentation, fabrication of quasi-phasematched frequency mixers with mixing efficiencies approaching 
1%/mW in periodically-poled lithium niobate waveguides will be briefly reviewed. Applications to 
various communications functions, including dispersion compensation of 4x10 Gbit/s signals over a 150 
km span, will be described. 

In a difference frequency mixer, inputs at frequencies a>p and cos generate an output at frequency 
®out -®p- ®s- (Fig- la). The output power Pmt of such a mixer is related to the pump power Pp and the 
signal power Ps by p   = np p, where TTW"

1
] is the nonlinear efficiency. It is convenient to write rj as 

rj = 7]0 L
2, where the length of the device is L. The normalized efficiency % [W1 cm"2], which depends on 

the nonlinear susceptibility and the overlap of the modal fields at the pump, signal, and output 
wavelengths, is useful for comparing different device designs. The best devices operating around 1.5 urn 
wavelengths today have normalized efficiencies in the range of 0.5 - 1 W"1 cm"2, so that in 4 cm long 
devices efficiencies in the range of 10 W"1 are obtained. Note that for a fixed pump power of about 100 
mW, such a device has an output linear in the signal power, with conversion loss approaching 0 dB. The 
output electric field Em, is proportional to complex conjugate of the signal field, E*, so the device also 
operates as a phase conjugator or spectral inverter. 

co-       Co..., m./? co. 
Fig. 1: Schematic description of a difference frequency 
mixing between a strong pump at coP and signal at cos 

For communications applications, operation is typically near degeneracy, i.e. the signal and output 
wavelengths are in the 1.5 urn band, and the pump is around 0.78 um. For an input a>s = cojl + A, the 
output is (Op/2 - A, that is the output spectrum is the input spectrum mirrored around half the pump 
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frequency (Fig. lb). A practical problem in this scheme is that a waveguide that supports a single mode 
at the signal wave is highly multimoded at the pump wavelength, significantly complicating stable 
launching of the pump into the desired (fundamental) mode. An adiabatic waveguide taper can be used to 
couple an input region single-moded at the pump wavelength into a waveguide that supports a single 
mode at the signal wavelength, thereby enabling stable launching of the fundamental pump mode into the 
mixing waveguide.[3] However, the input region is then cutoff for the signal wavelength, requiring 
launching the signal into a separate waveguide and combining with the pump in the mixing waveguide 
after the taper, using a wavelength selective directional coupler. Figure 2 shows a complete device of this 
type. The tapered input regions also provide the freedom to tailor the ellipticity and size of the mode at 
the input independent of the size and ellipticity in the mixing region. This degree of freedom 
simultaneously enables large input modes for efficient coupling to single-mode fiber, and tight 
confinement in the mixing region for high mixing efficiency. Devices 5 cm in length with fiber-to-fiber 
passive losses below 3 dB and mixing efficiencies of 10 W1 have been constructed in this way.[4] 

KA J  ru.    ox       Frequency conversion Mode filters taper stion 

Pump 

Signal 
< ► 

Directional coupler 

fc* 
Converted output 

Fig. 2: Schematic of integrated nonlinear frequency mixers. An adiabatic taper 
transforms the pump radiation into the fundamental mode of the conversion 
section for mixing with the signal radiation, coupled by a directional coupler. 

The signal bandwidth near degeneracy depends only on the square root of the length of the device, so the 
bandwidth is large even with devices as long as 5 cm, for which 3 dB bandwidths of 60 nm are obtained 
(Fig. 3). In this device, with 90 mW of 780 nm pump power, the conversion loss was 4 dB. As the only 
noise source is parametric fluorescence, and the only saturation mechanism is gain compression due to 
pump depletion, these devices also have a large dynamic range. We have observed 50 dB dynamic range, 
from -54 dBm to - 4 dBm, limited by measurement equipment rather than the mixing device itself (Fig.' 
4). The absence of cross-talk mechanisms other than pump depletion also allows simultaneous 
conversion of multiple input channels without interference. Unlike SOA-based devices, three-wave 
mixers can convert 
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Fig. 3: Normalized efficiency vs. input signal 
wavelength for a 4 cm long wavelength converter. 

Fig. 4: Mixed output power vs signal input 
power showing > 50 dB dynamic range. 
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symmetrically from the 1.3 urn band to 1.5 um band and from 1.5 urn to 1.3 um. Bidirectional 
conversion loss of 9 dB with 40 mW pump power has been demonstrated in these devices.[5] 

An alternative to pumping with 780 nm radiation is the use of a cascaded interaction, in which a strong 
1560 nm pump is frequency doubled to provide the pump for the frequency mixing process (Fig. 5).[6] 
Because of the narrow SHG acceptance bandwidth, these two interactions can be carried out. 
simultaneously in the same waveguide without introducing significant interference between multiple 
input wavelengths. Four input channels were simultaneously converted with 7 dB fiber-to-fiber 
conversion loss in such a cascaded device. [7] ,   

(a) 
X(2..X(2,S3C,3» 

Oou,= 2(0B-(D. (b) ,(2) 

„(2) 
Hi 

Xm 2co„        cüou( (ano), 
Fig. 5: Schematic description of a cascaded %(2) process between a strong pump at a>p and 
signal at a. Second harmonic of strong pump mixes with signal to produce output. 

This same device was used as spectral inverter to correct for dispersion in a 150 km link operated at 4x10 
Gbit/s. Fig. 5 shows the eye diagram for one signal channel with and without spectral inversion at the 75 
km mid-span point. It can be seen that the eye diagram is completely open with the mid-span spectral 
inversion; BER tests indicate only ~1 dB penalty attributable to the mixer after 150 km. [8] 
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Fig. 6: Eye diagrams for one of the 4 10 Gbit/s channels (a) back to back; (b) unconverted 
after 150 km of SMF; (c) after mid-span spectral inversion and 150 km of SMF. 100 ps/div 

Fabrication methods, additional device and system results, progress in polarization independent 
operation, and new materials systems promising better performance, such as all-epitaxially patterned 
twinning of GaAs films will also be presented. [9] 
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1. Introduction 

Measurements of the photorefractive gain in a planar waveguide versus parameters like the 
orientation of the grating vector written by two TE modes, the total incident intensity are 
presented. Up to now, the results already published about the two wave mixing in BaTiC>3 
waveguides concern one well defined orientation of the grating vector and waveguide realized by 
proton mono implantation [1,2]. Our previous studies revealed that H+ implantation in BaTi03 
results in a poor optical barrier width so that the light confinement in the guide is low [3]. For this 
reason, we make a guide with a BaTiC»3 substrate implanted with He+ ions. The study of the losses 
of the fundamental TE mode versus the direction of its propagation in respect with the optical axis 
is conducted. Then the photorefractive gain induced by the interaction of two TEo modes is 
investigated versus the orientation of the grating vector. It is shown that taking into account the 
losses, the measured gain values do well agree with the theoretical predictions. The optimized value 

of the gain is 58 cm' that is the highest ever reached in a BaTi03 waveguide. The response time is 
three orders of magnitude below that in the bulk crystal for the same intensity. 

2. Waveguide fabrication and characteristics 

The substrate is a nominally undoped BaTiC>3 crystal grown at FEE by the TSSG method. It is cut 

along the crystallographic axis with a size of 6x5x3 mm3. The optical axis is along the greatest 
length and the direction of implantation is along the smallest length. In a previous work, it has been 
shown that some implantation conditions must be fulfilled to obtain a BaTiC>3 waveguide with 
negligible energy leaks through the optical barrier [3]. In particular, the width and the depth of the 
implantation barrier must be great enough to correctly confine the guided light. We conclude that 
He+ implantation lead to better results than H+ implantation. Small doses of implantation are also 
sufficient to 1) obtain a guiding layer with losses as low as possible 2) keep the monodomain 
structure of the sample . To obtain a sufficient width of index barrier we choose the multi- 

implantation process with He+ ion energies of 2, 1.9, 1.8 MeV each at a dose of 2 1015 ions /cm2. 
M-lines measurements at X = 514.5 nm revealed that this sample supports three TE guided modes if 
the wave is ordinarily polarized and one mode for an extraordinarily polarized wave. Fig.2 depicts 
the evolution of the TEo mode loss K (per unit length) versus the angle a defined in fig.l. There is 

a minimum (K = 4 cm' ) for a = 7°. The increasing of the loss is probably related to the decrease of 
the index variation created by the implantation resulting in non negligible energy leaks. 
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fig.2 : Loss of the TEo mode versus 
the angle a. 

fig.l : Relative arrangement of the waveguide and 
the input prism that injects two modes (beam 1 
and beam 2). c is the optical axis of the guide, 
n is the normal of the entrance face of the prism, 
±9 are the incident angles of the beams (1) and 
(2) on the prism. 

3. Photorefractive wave mixing 

The interaction of two coherent beams in photorefractive media results in an energy transfer from 
one strong beam of light (the pump) to a weak beam (the probe). In the bulk, the theoretical 
expression for the amplification coefficient y at stationary state has been established to be [4] : 

1 + r 
Y = .       -TLeff 0) 1 + re      eJ7 

where T is the gain, r is the ratio between the pump and probe intensity, Leff is the effective 
interaction length between the pump and probe beams. 
If r » /  and taking into account the losses, expression (1) simplifies as : 

Y = /V/V (2) 
where Tejj- = T - K , K being the loss of the considered mode. 

We use a prism setup to investigate the two wave mixing at X = 514.5 nm inside the waveguide. This 
arrangement is a suitable mean to prospect all the angular configurations of the incident beams in 
respect with the optical axis of the guide and so to determine the optimum disposition for wave 
mixing. The prism coupling technique also avoids the multimode interaction that can arise if the 
injection of light is made with microscope objectives. The experimental conditions are : a total 
incident intensity of 10 W / cm2 in the guide, a pump-probe ratio r = 500, 2Q = 34°. With our 
setup, guided waves are mixed in a range for the angle a that is not limited by the cut of the faces 
of the BaTi03 substrate. This is not the case in an 0°-cut crystal since the maximum refraction 
angle due to the index of BaTi03 is 23°. To correctly compare the experimental and theoretical 
gains versus a, we take into account the loss K and we normalize all the gain curves (fig.3). It is 
clear that the variations of the effective gain (filled circles) is similar to the theoretical gain (dashed 
curve). In particular, the maximum of the corrected gain is closer to the calculated value (a-40°). 
It is important to underline that the mode losses is the restrictive quantity and can not be neglected. 
This results in an optimal configuration of the two wave mixing inside the guide that is different 
from the one in the bulk. 
The gain values for the bulk are measured under the same conditions for two values of a : 
T(0°) = 0.5cm~J, r(15°) = 12.3 cm~]. Considering that the value for T(15°) represents 80% of 
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the maximum gain, the maximum expectable gain T in the bulk is about 15 cm'1. This difference 
between bulk and waveguide may come from a higher trap density in the waveguide. Another 
peculiarity of the wave mixing in the guide is that the direction of the energy transfer is reversed 
compared with that in the bulk medium. The transfer direction being linked to the charge carriers 
nature and considering that they are holes in a nominally undoped BaTi03, this seems to indicate 
that the implantation has changed the nature of the dominant charge species (from holes to 
electrons). 
Figure 4 represents the evolution of the response time x versus the intensity in the guiding layer 
and shows that the response time T in the waveguide is three orders of magnitude lower than the 
response time in the bulk. This property is in agreement with the hypothesis that the dominant 
charge carriers in the guide are electrons. The straight lines (fig.4) are numerical fits of the 
experimental data according to a law of the form I~x . The exponents are x = 0.18 for the 
waveguide and x = 0.77 for the bulk. Once again, the property of the guide is different from that of 
the bulk. 
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fig.3 : Normalized gain curves versus the angle 
a. The dashed line represents the theoretical 
gain in a bulk BaTiC>3 sample. The straight 
lines that join the experimental points are 
guides for the eyes. 

4.  Conclusion 

fig.4 : Response time x versus the light 
intensity inside the waveguide (•) and inside 
the bulk crystal (■). The straight line are 
numerical adjustments of the experimental 
data according to power laws I~x. 

Photorefractive effects in a BaTiC>3 waveguide realized by He+ implantation have been 
demonstrated via two wave mixing experiments. We showed that the prism coupling device is a 
useful setup to analyze precisely the two wave mixing in waveguides. We have measured the gain and 
the losses for several angular configurations and deduce the optimal disposition of the beams in 
respect with the optical axis. The role of the mode losses on the exact value of the gain has been 
emphasized. The waveguide properties appear to be different from those in the bulk sample. The 
gain is greater, the response time is shorter (about 1000 times). So that it is necessary to study the 
waveguide as a new medium with its own properties. The exact role on the photorefractive 
properties of the dose and temperature during the implantation process are not yet quite understood. 
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Synchronously driven passive fiber resonators constitute a class of devices of growing interest from 
both fundamental and applied points of view. They can be found in practice as the basic elements of a 
large number of fiber based-devices such as APM lasers, fiber raman lasers or fiber loop memories. From 
a more fundamental point of view, a passive nonlinear fiber resonator is structurally so simple and exhibits 
such a broad spectrum of complex behaviors that it is considered as the paradigm of an optical system 
prone to instabilities and chaos. In this context, several authors have performed experimental studies of 
fiber cavities with the aim of demonstrating various phenomena such as optical bistability, period-doubling 
cascades, or intracavity modulational instability [1, 2]. Because of the weakness of the silica fiber Kerr 
nonlinearity, most of these experiments have been performed with a pulsed input beam, i.e., the cavity was 
synchronously pumped. In this configuration, the feedback is achieved by adjusting the cavity length to 
the pump laser repetition rate so as to superimpose the intracavity pulses with the external pump pulses 
in the input coupler. Little attention has however been paid to the cavity behavior in presence of a small 
synchronization mismatch due to unavoidable inaccuracies in the cavity length. In our communication, we 
show analytically and experimentally through the study of optical bistability that the convective transport 
mechanism induced by a cavity synchronization mismatch can drastically alter the usual nonlinear cavity 
properties even when the round-trip time mismatch is much smaller than the pump pulse width. Moreover, 
our study allows us to demonstrate that the very existence of optical bistability in synchronously driven fiber 
resonators is intimately linked to a competition between convection and chromatic dispersion. 

The competition mechanism between convection and dispersion can be understood as follows [3]. In 
the absence of dispersion, the feedback is achieved only under perfect synchronization conditions so that, 
round-trip after round-trip, each point in the intracavity pulse envelope is superimposed to the same point 
of the input pulse envelope. If the synchronization is not perfect as is always the case in practice, the 
intracavity pulses undergo a drift with respect to the pump pulses so that the point-to-point superposition 
no longer takes place and the feedback disappears. Dispersion is able to restore the feedback through the 
introduction of a non-locality in the pulse envelopes. Indeed, owing to dispersion, the amplitude at a given 
time T of the intracavity pulse at the beginning of the cavity round-trip influences, after propagation in the 
cavity, the amplitude distribution of the pulse in a whole region surrounding time r. This region of influence 
may be large enough to compensate for the synchronization mismatch AT so as to restore the feedback and 
hence bistability. 
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Figure 1: Experimental setup. Figure 2: Bistable cycles for (a) a perfect synchro- 
nization, and with a synchronization mismatch of (b) 
150 fs, (c) 300 fs, and (d) 600 fs. The mean input 
power was set to 2.8 W. 

We have studied experimentally this fundamental competition mechanism between dispersion and con- 
vection. In our experiment (see Fig. 1), we use a 7.4 m long all-fiber ring cavity. The cavity is synchronously 
pumped by a mode-locked Nd:YAG laser emitting 180 ps (FWHM) pulses at 1064 nm with a repetition rate 
of 82 MHz. The cavity length is precisely controlled by means of a mechanical fiber stretcher [2] that allows 
for synchronization tuning with a resolution of ~ 50 fs. During our measurements of the bistable cycles, 
the input power was kept constant while the cavity detuning 0O was varied by applying a triangular signal 
to a piezo-electric fiber stretcher. Our results are illustrated in Fig. 2 that shows the bistable cycles obtained 
with several values of the synchronization mismatch for a mean input power of 2.8 W. These results reveal 
quite remarkably that a synchronization mismatch as small as AT = 600 fs (i.e., only 0.3 % of the pump 
pulse duration) is sufficient to make bistability disappear. 

In order to develop an analytical description of this phenomenon, we have studied with more details the 
nonlinear intracavity wave dynamics in the presence of convection. In the pulsed regime, the multivalued 
response of the cavity is associated with the existence, in the profile of the intracavity pulse, of switching 
waves (SW's) that link adjacent temporal domains in which the system is respectively on the upper and lower 
states of the bistable cycle [4]. In a cw pumped cavity the SW's consist of steady-state fronts that propagate 
at a speed determined by the input pump amplitude. For a given cavity detuning, only one value of the pump 
amplitude 5, say S*, gives rise to a stationary SW. In the pulsed regime in the absence of convection, the 
SW's in the steady state intracavity pulse profile are located at a time r corresponding to the critical value 
of pump amplitude, S*. Therefore when decreasing the pump pulse amplitude, i.e., when going closer to 
down switching, the SW's move closer together. This feature is illustrated in Fig. 3(a) that shows several 
experimental pulse profiles measured at the cavity output by a streak camera in the conditions of Fig. 2(a). 

With a non-zero synchronization mismatch, convection is responsible for a drift motion of the SW's 
at the velocity d = [2/(\k\La)]1/2AT where ß2 is the fiber dispersion coefficient, L is the cavity length, 
a is the overall cavity loss and AT is the synchronization mismatch, i.e., the difference between the laser 
repetition time and the cavity round-trip time. This eventually leads to an asymmetric pulse profile [see 
Fig. 3(b)] in which SW's are positioned such that their natural velocity counteracts the effect of convection. 
However, if the convection velocity d is larger than the maximum value of the natural velocity of the SW, 
there is no mean to compensate for the fast convective motion of the up-stream SW so that the upper state 
domain is washed away. In this situation bistability is inhibited by convection. Accordingly, the maximum 
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Figure 3: (a) Pulse profiles at zero synchronization mismatch. When approaching down-switching, the SW's 
go closer together, (b) Asymmetric pulse shape observed with a small cavity mismatch near down-switching. 

value of the synchronization mismatch compatible with the bistable operation of the device, say, A7max is 
such that the drift velocity d equals the maximum SW velocity vmax. For the experimental results presented 
on Fig. 2, this simple model yields ATmax ~ 640 fs in good agreement with the experimental observation. 

To get a better picture of the process described above, we have developed an analytical model of the 
SW's dynamics. By restricting our analysis to nascent bistability, we have reduced the complex mean field 
model describing the fiber cavity dynamics to a real Fisher-Kolmogorov equation [5] whose SW solutions 
are known exactly. This provides us with the approximate value ATm3X = (\fa\La(A — V3)/4)1/2 where 
A is the normalized cavity detuning. This expression illustrates in particular the competition mechanism 
between convection and chromatic dispersion discussed above since it shows indeed that a small dispersion 
leads to a high sensitivity to convection. We have checked the validity of our analytical model by comparing 
it with the exact SW solution of the mean-field model. Even far from nascent bistability, our model provides 
a good qualitative agreement for both the SW profile and the SW velocity. 

In conclusion, by means of a simple all-fiber resonator, we have experimentally demonstrated that dis- 
persion can efficiently overcome the inhibiting effect of convection in optical bistability. This effect has been 
described in terms of switching-wave dynamics for which we have developed an analytical model based on 
a Fisher-Kolmogorov equation. Finally, it should be stressed that the phenomenology described here is very 
general. We can therefore expect similar phenomena to be observed in other kinds of nonlinear resonators. 
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There is constantly growing interest in optical solitons because of their robustness and potential 

applications in information transmission, processing and storage schemes. Recently resting solitons 

were identified in scalar [1] as well as vectorial [2,3] intracavity second-harmonic generation. Until now 

it was common believe that for normal incidence any motion of a localized structure in an externally 

driven cavity is damped because the momentum is not conserved. As far as expanding structures are 

concerned growing stripes were found in quadratic as well as in semiconductor cavities [1,4]. In this 

communication we show that, based on a spatial symmetry breaking of a polarization front (PF) where 

the two fundamental components are no longer the mirror image of each other, moving ID cavity 

solitons may emerge. Moreover, in a 2D configuration a filamentation occurs leading to stable 

propagating stripes that carry radially symmetric solitons. Another interesting feature of the present 

configuration is the existence of breathing solitons. 

The configuration we are looking at is a high finesse Fabry-Perot resonator with a %(2)-cavity. The 

normalized equations of the two orthogonally polarized fundamental fields FH1 (Aj) and FH2 (A2) and 

the second harmonic SH (B) are 

. a   a2    a2   A   . 
i 1 r^ r + A.+i 
dT   dX2    dY2      A AJ+A;_JB = EP 7=1,2 

(1) 
. 8    1 
1—+- 
dT    2 

fd2 

dX2+dY2 +AB+iy 5+A.A, =0, 
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asymmetric brandhes 
—►polarization fronts 

~* 1 r 

-2 

where Em are the FH input fields, AA and AB are the detunings 

from the FH and SH resonances, y describes the ratio of the 

photon lifetimes. Here we assume negative detunings. < 

For a symmetric FH input E\ = E2 a symmetry breaking of the 

plane wave solutions occurs (Fig.la). PFs can be formed by 

connecting the two asymmetric FH branches of different 

polarization (Fig.la). If IAAI is small the PFs are stable and at rest 

because the FHs are mirror-symmetric to each other (Fig.lb).    ^ 
'55 

Increasing 1AAI each stationary PF develops a pronounced peak    £ 

with a linear internal mode of the PF being localized there. This 

bound state passes through the trivial translation mode at a certain 

detuning AA. The stationary PF destabilizes and bifurcates into 

two PFs where the FH components loose the mirror symmetry and    » 

move with opposite velocities. An example of such a moving 

asymmetric PF is shown in Fig.lc. For the PF with the opposite 

velocity the shape of the FH fields are interchanged, i.e. now the 

FH2 exhibits the pronounced peak at the edge of the PF. 
Fig.l   (a)   Symmetry   breaking   of 

All PFs exhibit conspicuous spatially oscillating tails which form   stationary plane wave solutions, thin 
solid      (dashed)      lines:      stable 

a periodic effective potential and may capture a second PF. As a    (unstable),     bold      solid      lines: 
modulationally unstable, AB = -4, E = 

consequence the interaction of resting PFs (Fig. lb) entails the   3.8, y= 0.5. 
(b) stable resting polarization front, 

formation of stationary cavity solitons of different order (Fig.2a).    (c) moving polarization front due to a 
spatial symmetry breaking 

Two asymmetric moving PFs can be combined in two different 

ways. If PFs with opposite velocities are excited (symmetric excitation) a breathing but resting cavity 

soliton is formed (Fig.2b). The breathing originates from the interplay of the motion of the individual 

PFs and the binding force due to the oscillating tails of the constituents of such a cavity soliton. 

Mathematically it can be considered as a nonlinear coupling of the two unstable eigenmodes of the 

stationary PFs. 

A, 

(h) 
FH1 \    t          FH2 
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\ 
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(c) 
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1 i . /           FH2 
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45 30        45 0 15        30        45 0 15        30 

X X X 
Fig.2 ID cavity solitons (a) stable, stationary, AA = -0.2, (b) oscillating, AA = - 0.322, (c) running, AA = -0.7 

Combining two PFs with equal velocity (asymmetric excitation) a moving localized structure is created 

(Fig.2c). Because the soliton consists of two   ^ 

different PFs its shape is asymmetric. 

In a 2D configuration this running soliton is 

modulationally unstable. Though still moving 

it finally transforms into radially symmetric 

solitons sitting on the propagating stripe (Fig. 

3).  Because  the  whole  object  has  to  be 

asymmetric   each   stripe   edge   carries   its Fif3 Sta^ propagating stripe carrying radially symmetric 
r ° solitons, AA = - 0.32 

individual kind of radial filaments. 
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X 
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An ordinary three-wave mixing (TWM) process in standard or birefringent single-mode fibers 
commonly refers to the interaction of a central-frequency wave at frequency u>o, with a pair of 
upshifted (anti-Stokes) and downshifted (Stokes) sidebands at frequencies u>2 = UQ + Q and u>i = 
OJO-Q, respectively [1, 2]. Two distinct types of interactions are usually considered, as shown in Fig. 
1, namely: scalar interaction^, in which the two sidebands are polarised parallel to the pump, and 
vector interactions^, in which the sidebands are orthogonally polarised with respect to the pump. 
However, efficient generation of new optical frequencies requires the fulfilment of phase-matching 
conditions which impose strict limitations in the Q. - frequency domain. A highly mismatched 
TWM interaction is characterised by a perfectly periodic energy-exchange process between the 
three waves, with a very short coherence length (several mm or cm) compared with practical fiber 
lengths. As a result of the short periodicity of the process, non-phase matched waves cannot be 
generated and amplified through an ordinary TWM process. To overcome these limitations, we 
choose to make the stimulated Raman scattering (SRS) enter into play in the TWM-induced energy- 
exchange processes. The SRS is a well-known nonlinear effect which occurs whenever high-power 
light beams propagate in optical fibers [3]. SRS induces a unilateral transfer of energy from higher 
to lower-frequency waves, which destroys the spatial periodicity of the parametric energy-exchange 
process. As a result, the generation and amplification of a non phase-matched Stokes wave idler is 
achieved by mixing a strong pump with an anti-Stokes signal. 

In this research we present experiments showing the generation and amplification of non- 
phase matched idler waves through scalar TWM interactions of collinearly polarised waves in a 
polarisation-maintaining fiber, and through vector interactions of a pump, which is polarised along 
the slow axis of a weakly birefringent fiber, with a pair of sidebands that are both polarised along the 
fast axis. Note here that the pump is polarised along the slow axis in order to prevent from any de- 
polarisation of the pump. On the other hand, it is worth noting also that the phase-matched TWM 
interaction which takes place in a low-birefringence fiber is the polarization modulational instability 
[4] which occurs in the following frequency detuning region : 0 < £2 < 3THz (for Po = 3001^) and 
0 < n < 4.5THz (for Po = WOW). Consequently, for vector interactions, we consider systemat- 
ically frequency detunings which are outside those frequency regions. Scalar interactions are not 
phase matched in the normal dispersion regime, whatever the frequency detuning Q. The theoret- 
ical demonstration of those frequency generation processes by Raman-assisted three-wave mixing 
(RATWM) is straightforward when using a three-wave model which includes the Raman suscepti- 
bility [5]. Figures 2, which we obtained from a coupled mode analysis, represent the evolution of 
the normalized power of each modes : nj(z) = Pj{z)/ Y^j -Pj(O), j = 0 (pump), j = 1 (Stokes idler) 
and j = 2 (anti-Stokes signal), for different frequency detunings. For each frequency detuning fi, 
th pump input peak power was chosen such that the global power gain of the idler wave exceeds 
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the pump power gain (which results from the RATWM-induced energy transfer from the signal to 
the pump), for a signal power F2(0) = 5W. As Figs. 2 show, whenever tt falls in the Raman-gain 
bandwidth, the parametrically seeded ilder wave is then continuously amplified through Raman 
gain, and may after several coherence lengths grow up above the noise level. It is important to note 
that in scalar interactions, the Raman gain is induced by the parallel component of the Raman 
susceptibility (see Fig. la), whereas in vector interactions the Raman amplification results from the 
combined effects of the parallel and orthogonal components of the Raman susceptibility (see Fig. 
lb). The orthogonal component induces an energy transfer from the anti-Stokes to the pump, and 
a transfer from the pump to the Stokes sideband, whereas the parallel component induces a direct 
energy transfer from the anti-Stokes to the Stokes sideband. As a result, for scalar interactions, 
the maximum efficiency of idler generation is obtained for fi = lS.2THz (see Fig. 2b), which coin- 
cides with the peak parallel Raman gain, whereas for vector interactions the maximum efficiency 
is obtained for Q = S.bTHz (see Fig. 2c), which corresponds to the peak orthogonal Raman gain. 
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X,,(-2Q) 

(b)     xx(-0) A   X±(-Q) 
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JU-2Q) 

Fig. 1 Schematic diagram of a 
scalar (a) and vector (b) TWM 
interaction. 

T-i 
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.(c)P0=300Wn=3.5THz_ 

I - pumi 
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2 4 6 
Distance z [m] 

Fig. 2 Normalized powers t)j (Z) — rjj (0) versus propagation co- 
ordinate z for the scalar (a)-(b) and vector (c)-(d) interaction, 
j = 0 (pump), j = 1 (idler), j = 2 (signal). 

To observe the generation of a non-phase matched idler wave through RATWM, we have imple- 
mented different experiments for scalar and vector interactions. In the scalar case, the signal beam 
was a 40-ps stretched pulse produced by a tunable optical parametric generator/amplifier pumped 
by the third harmonic of a pulsed mode-locked Nd:YAG laser operating at 1.064 fim at a rate of 
10 Hz. The same laser source was used to produce the frequency-doubled pump beam, a 35-ps 
pump pulse. The two beams were launched synchronously along the fast axis of a single-mode 
high-birefringence fiber. The fiber length was L = 3 m. The output light was spectrally anal- 
ysed with a littrow grating spectrometer and we obtained spectra shown in Fig. 3(a) and (b), 
for P2(0) = 0.5 W and different frequency detuning. The idler generation is clearly shown, even 
below the usual SRS threshold when Ü « lS.2THz (see Fig. 3(b)). For this frequency detuning we 
measured a conversion efficiency as large as 10 ± 2dB for the 0.5 W signal. 

In the case of vector interactions, the pump beam was obtained from a cw tunable ring dye 
laser, pumped by a 4 W Argon laser, and subsequently amplified by a three-stage dye cell. The dye 
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amplifier was, in turn, pumped by a frequency-doubled, injection-seeded and Q-switched Nd:YAG 
laser (operating at A = 532.26 nm). The pump wavelength was adjusted by tuning the dye laser 
around Xp = 580 nm. The signal pulses were obtained by frequency-shifting the same Nd:YAG 
laser by self-SRS in a cell filled with C02. This frequency shift was necessary to obtain several THz 
frequency detunings. The signal wavelength was fixed at the value A2 = 574.746 nm. The fiber was 
initially a non-birefringent fiber in which a weak linear birefringence (B « 10-T) was introduced by 
winding the fiber onto a spool with a 14.5 cm diameter. The output light was analysed by a 50 cm 
spectrometer with a resolution better than 0.04 nm. We obtained a set of spectra shown in Figs. 
4(a) and (b), measured for pump peak powers of approximatively 220 W and different frequency 
detunings 0. In Figs. 4(a) and (b), ones clearly identifies the MI sidebands, as well as the ordinary 
Raman Stokes radiation. A noticeable feature in the case of vector interactions is that a relatively 
strong signal beam is required to generate the idler wave because of the presence of spontaneous 
PMI and SRS processes which cause a strong pump depletion. In conclusion, the spectra in Figs. 
3 and 4 demonstrate that non-phase matched idler waves can be generated by mixing the pump 
with an anti-Stokes signal beam in a relatively large range of frequency detunings that fall within 
the Raman gain bandwidth. The main advantage of this Raman-assisted TWM technique is that it 
offers the possibility of generating new optical frequencies for a relatively large frequency-detuning 
bandwidth, without having to go through the strict limitations imposed by the phase-matching 
conditions of ordinary parametric processes. 
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Cascaded nonlinearities of noncentrosymmetric optical 
materials have become an active topic of research due to 
their potential applications in all-optical switching de- 
vices [1]. Parametric interactions are known also to sup- 
port solitary waves, in particular two-frequency spatial 
quadratic solitons [2]. Usually, solitary waves are consid- 
ered for homogeneous media where spatial localization is 
induced by self-focusing and self-trapping effects. How- 
ever, localized modes can exist even in a linear medium 
at defects or interfaces. The properties of nonlinear de- 
fect modes are usually analyzed for non-resonant Kerr- 
type nonlinearities [3]. Here we consider a qualitatively 
different situation and introduce a novel type of nonlin- 
ear defect mode: a two-frequency (or two-color) localized 
photonic mode, where the energy is localized due to the 
parametric wave mixing induced by an interface between 
two linear optical media or a thin layer with a quadratic 
(or x(2') nonlinearity embedded in a linear bulk medium. 

First, we notice that there exists a strong experimen- 
tal evidence of SHG in localized photonic modes. For 
example, recent experimental results [4] reported SHG 
in a one-dimensional periodic photonic band-gap struc- 
ture, in which a nonlinear defect layer was embedded. An 
enhancement of the parametric interaction in the vicinity 
of the defect was observed, suggesting that SHG occurs 
in local modes, being suppressed for propagating modes. 

To introduce an analytically solvable model for SHG 
in localized waves, we consider a fundamental frequency 
(FF) wave propagating along the ^-direction in a linear 
slab waveguide. We assume that an interface (or a de- 
fect layer) possesses a quadratic nonlinear response, so 
that the FF wave can parametrically couple to its second 
harmonic (SH). The coupled-mode equations for the com- 
plex envelope functions Ej(x,Z) (j=l,2) can be written 
in the form, 

^ l- + n1(x)El + T1(x)EiE2 = 0, 

.8E2 . „ d2E2 . .. ,.,„   . „ , (1) 

.8Ei 
ldZ 

+ D, 

i-Sy+D2~+ n2(x)E2 + T2(x)E2 = 0, 8Z Bx1 

where Dj are diffraction coefficients (Dj > 0). In the ap- 
proximation of infinitely thin interface layer (valid when 
the width of each layer is much smaller than the FF wave- 
length), we take n^x) = n0j(x) + Y,n

KAx ~ xn) and 
Tj(x) = jj5(x - xn), where jj are the nonlinearity co- 
efficients, n0j(x) and Kj account for the phase velocity 

differences in bulk and interface materials. 

Single nonlinear layer. We start our analysis consider- 
ing a single nonlinear layer (xn = 0) with uniform lin- 
ear media on both sides of it. In order to reduce the 
number of parameters, we normalize Eqs. (1) as follows: 
Ei(Z) = u(z)/y7F£, E2(Z) = v(z)/7l, a = D2/Di, 
Qi = KI/DI, and a2 = K2/DI, where z = Z/D: is mea- 
sured in units of £>i. Then the coupled equations are 

■ du     d2u , x        f/ w 
%~dz + di2 + ^i w u + S (x) (Qi" + u*v) = 0. 

dv       d2v lfc + °~Q-2 + "2 (x)v + 6(x) (a2v + u2) =0, 
(2) 

where uj(x) = t/f, for x > 0, and Vj(x) = vj, for 
x < 0. If the mismatch 2vf - vf is small, then 
CT=1/2 is a good approximation, that we use below in 
the numerics.    System (2) conserves the total power 
P = /_« (H2 + \v\2) dx for spatially localized or pe- 
riodic solutions. 

First, we consider the scattering problem for a plane 
FF wave at the nonlinear layer. Using the fact that 
Eqs. (2) are linear for x ± 0, the total field is taken 
as a superposition of plane waves, 

aie-iXiz+iq-x + bie-iX1z-iq1 x.   x < Q} 

b2e-iX2Z-iq-X]   X<Q: 

C2e-i\2Z+iq+x.   X>Q^ 

where oi, &i, and cx are the amplitudes of the incident, 
reflected, and transmitted FF waves, respectively. Corre- 
spondingly, b2 and c2 are the amplitudes of the generated 
SH waves on both sides of the interface. 

In order to illustrate the characteristic physical prop- 
erties of the system, we assume that the linear media 
1 and 2 on each side of the interface are identical, i.e. 
i/j = Vj and qf = qj. The SH transverse wave num- 
ber can be found from the phase-matching condition 
2Ai = A2, which is a general requirement for station- 
ary propagation of FF and SH without energy exchange: 
92 = y/[2q'i - ß] /a, where ß = 2vl-v2. The q2 can be 
either real or imaginary, corresponding to plane waves 
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and waves that are spatially localized at the interface, 
respectively (see Fig 1) Note that localization does not 
depend on the wave amplitudes 

uV kZu *"//" 

®    / r     ® 

"/ c 
CD   -J.h-   ® 

■L 
FIG. 1. Left: Scattering of a plane FF wave (dashed) on a 

X(2'-interface between two linear media 1 and 2. The gener- 
ated SH (solid) can be either propagating or localized. Right: 
Dependence of incident FF intensity |ai|2 on FF intensity at 
the layer |ci|2, illustrating existence of multistability. 

Then, using the continuity conditions at the layer, the 
characteristic equation for the FF wave intensity \c\\2 at 
the interface can be obtained, 

|cf 1 - 2|c*|Re(51S2) + |c2| jSjSs]2 = 4|a1|
2|<?1-52|

2, (3) 

where a\ = a-i + 2iqi and S2 = a2 + 2ierg2. Equa- 
tion (3) is cubic in |ci|2, and thus three different roots 
may exist for a given input intensity |ai|2, corresponding 
to three different values of the amplitudes at the inter- 
face, as shown in Fig. 1. As the SH amplitude is related 
to the FF intensity, c2 = -C\/OL2, this describes a mul- 
tistable SHG process. For fixed material parameters the 
multistable SHG regime can only be observed in certain 
regions of the input parameters qi and |ai|2. Stability 
analysis revealed that the growth rate for non-oscillatory 
instability modes is positive on the branch with negative 
slope (dashed, Fig. 1), meaning that the corresponding 
solutions are unstable. 

Transmitted FF and generated SH waves can be either 
propagating or localized. However, the situation when all 
the FF and SH waves are localized is also possible. This 
corresponds to two-frequency nonlinear localized modes. 
To find stationary localized solutions for these modes we 
assume the following conditions in the general scatter- 
ing problem: (i) no incident plane wave, i.e. ai—0, and 
(ii) all transverse wave numbers are imaginary, qj = i/ij, 
where fij are real and positive (as the wave amplitudes 
should vanish at infinity). Such localized states can exist 
for any combination of material parameters, an example 
of mode profile is presented in Fig. 2(a). The amplitudes 
at the interface are |ci|2 = 5i52 and c2 = —5i. As only 
one wave number is arbitrary, the solutions constitute a 
one-parameter family. Analysis shows that the power de- 
pendence P{n\) has always, for any values of the material 
parameters, a branch with positive slope. Under certain 
conditions a second branch with negative slope may ap- 
pear, and it corresponds to smaller values of Hi. We may 
conclude that for two bistable states the one with lower 
Hi is unstable. We perform numerical simulations and 
observe switching from a perturbed unstable mode to a 

stable one. 

Such interface mode can be generated by launching a 
localized FF wave at the interface. This problem can 
be solved analytically in the undepleted pump approxi- 
mation, and the analysis reveals that the amplitude of 
the generated SH exhibits oscillations as the solution ap- 
proaches asymptotically a stationary two-color localized 
state. We have performed a number of numerical simu- 
lations with Gaussian initial profiles of the FF wave and 
found that, in the general case, the formation of localized 
modes is accompanied by the same kind of transitional 
oscillations, see Fig. 2(b). 
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FIG. 2. (a) Intensity profiles of the stable localized state 
with power P=20 at ai = a2 = -1, ß = 2. (b) Generation 
of a two-color localized mode (FF - dashed, SH - solid). The 
input power is P ~ 28 and the final state is close to (a). 

Multilayer structures. As the next step, we consider 
an infinite layered structure, consisting of linear slices 
separated with thin nonlinear layers. We assume that 
nonlinear layers are uniformly spaced, xn = nh, and 
bulk medium refractive index is periodic, n0j (x + nh) = 
n0j (x). 

Similar to a single nonlinear interface we would also 
expect to observe localized stationary solution in mul- 
tilayered structures. As the first step in this study, it 
is convenient to reduce the system (1) with periodic co- 
efficients to a set of discrete equations. Indeed, in the 
stationary case the field in a bulk linear medium is com- 
posed of noninteracting counter-propagating FF and SH 
waves. Regardless to the internal structure of a linear 
slice between nonlinear interfaces, the wave amplitudes 
at its edges are related by the transmission matrix: 

= r«>(A,)[^+) (4) 

Here j = 1,2 correspond to FF and SH, and ± indices 
denote the waves on the right and the left of the nonlin- 
ear layer. Note that the matrix elements depend on the 
propagation constants, which in turn are related through 
the phase matching condition A2 = 2Ai. 

Equation (4) allows us to describe the field in terms of 
the amplitudes at the layers, c"' — a.j + bj '. It is 
then straightforward to write continuity conditions at the 
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layers, in the same wave as for a single interface. Finally, 
we obtain the following system of discrete equations: 

VlUn + (Un-i + Un+1) + XiU*Vn = 0, 

mvn + (K-i + V„+i) + XiUl = 0, 
(5) 

where Un and Vn are the normalized FF and SH ampli- 
tudes at the n-th nonlinear layer. Parameters Xj = ±1 
and T)j are defined by the matrix elements. 

Now we can use Eqs. (5) to search stationary localized 
solutions, or bright gap solitons. Such a problem was ear- 
lier analyzed in [5]. Approximate solutions were found 
in the limit of highly localized FF component, and the 
analysis revealed that solitary waves can have different 
topologies. These results were confirmed by numerical 
simulations. However, with the analytical method which 
was used to find approximate solutions, it was impossible 
to adequately describe FF component, and deviation be- 
tween the approximate and exact SH profiles was quite 
large. Thus, a more rigorous analytical description is 
needed to better understand the properties of discrete 
localized modes. In order to find approximate localized 
solutions, we use here the variational method. First, we 
have to choose trial functions. This is a very important 
step, as only appropriate class of functions would pro- 
vide an accurate approximation. As we are searching for 
localized solutions, it can be assumed that the tails are 
decaying exponentially. Finally, we introduce two sets of 
trial functions to account for different topologies [5]: 
odd modes, when the center of symmetry is at a layer, 

Un = U0e-(pi+i,fi^n\, Vn 
y e-(P2+i<P2)\n\ 

(6) 

and even modes, when the center of symmetry is between 
two neighboring layers, 

, f übe-to+to)!"!, n > 0, 
" 1 J7oSie-(^+ivi)|n+i|5 n < 0> 

, f Voe-^+^W, n>o, 
n 1 Vbs2e-("2+i^)l"+1l) n<0. 

(7) 

for even Vi?22 + 1 + 1/V%2 + 1 = |rji|. The topology 
doesn't change sharply as the parameter 772 crosses the 
curve 7722 (jyi), but numerical calculations confirm that 
the transition occurs in a narrow region close to the sep- 
aration line. Normalized relative differences between the 
variational and numerical solutions, and examples of odd 
modes, are presented in Fig. 3. We see that approxi- 
mate solutions are much better for larger values of T}J, 

i.e. when the profiles are highly localized. The results 
for even modes (not shown) are similar. 
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FIG. 3. Left: Color-map in (|J?I|,7?2) plane showing relative 
differences between the variational and exact solutions with 
the odd symmetry. Darker areas correspond to smaller de- 
viations. Right: Mode topologies corresponding to different 
regions on the left plot (variational solution: FF - triangles, 
SH - squares; exact profiles: FF - dashed line, SH - solid). 
(1) staggered FF and unstaggered SH, (2) both components 
staggered, (3) both unstaggered. 

Here the parameters tpj = 0,ir and Sj = ±1 are intro- 
duced to describe unstaggered and staggered modes. Un- 
known values U0, V0, pj are determined by minimizing 
the Lagrangian corresponding to Eqs. (5). 

As the system possesses the symmetry xi -* ~Xi and 
cos(v?i) -> -cos(Vi), we consider X1X2 = 1 without a 
lack of generality. The analysis shows that solutions ex- 
ist only if si = cos(ipi), s2 = 1, and j?icos(y>i) < -2. 
The latter condition means that the FF component is 
unstaggered for 771 > 2, and staggered, otherwise. Simi- 
larly, we consider only the case |rfc| > 2, as for other val- 
ues the localized solutions are unstable due to resonant 
interaction with linear waves [5]. The SH is staggered 
for 2 < % < 7/22, and unstaggered for other parameter 
values. Here, for odd modes y/rfci + l/y/irjä = \Vi\, and 
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The instabilities that arise from electromagnetic wave propagation in optical fibers have been the 
subject of extensive study in recent years. In particular, modulational instability (MI) is a well-known 
effect where weak periodic perturbations of an intense CW wave experience exponential gain. In the 
context of optical fiber propagation, MI leads to the amplitude modulation of an initially CW wave, 
often interpreted as a quasi-degenerate stimulated four-wave mixing effect. In the anomalous 
dispersion regime, MI can be observed with the propagation of a single incident wave, and this scalar 
form of MI is associated with the fundamental bright soliton of the nonlinear Schrodinger (NLS) 
equation [1]. When the additional degree of freedom represented by the state of polarization of the 
incident light is considered, light propagation in isotropic fibers is described by two incoherently 
coupled NLS equations, and MI can be extended to the normal dispersion regime [2]. This vector 
MI has been termed polarization modulational instability (PMI), and Haelterman and Sheppard have 
shown how PMI is associated with a vector dark soliton which can be viewed as a polarization domain 
wall (PDW) [3]. The PDW soliton is a localized structure across which the state of polarization of 
light switches between two counter-rotating circular polarizations (CP's). PDW solitons are of 
significant fundamental interest as an example of a dynamic soliton structure, and may also be 
important for applications in high-capacity telecommunications systems [3]. 

Due to the difficulties inherent in controlling the polarization state of an incident wave in standard 
optical fiber, the PDW soliton has not previously been experimentally observed. In this paper we 
report what is to our knowledge the first experimental generation of periodic PDW pulse trains, 
through the adiabatic reshaping of an injected beating signal in an ultralow birefringence spun fiber. 
The initial beating signal is obtained by the simultaneous injection of two nanosecond pulses of 
different frequencies with orthogonal polarisations and equal peak power. Numerical simulations of 
the two incoherently coupled NLS equations show that the propagation of such a beating signal in an 
isotropic fiber leads to the formation of PDW structures of counter-rotating CP states. Figure 1 
presents typical simulation results showing computed intensity profiles of the CP components after 
propagation through 1.2 meter of isotropic fiber for two incident fields of peak power 135 W and 
frequency separation 0.6 THz. It is clear that the computed envelopes form two interlaced periodic 
trains of domain-wall structures separating uniform domains of counter-rotating CP's. Note that this 
PDW generation is similar to the process of generation of dark and bright soliton trains by adiabatic 
reshaping of a scalar beating signal in a fiber with amplification or nonuniform parameters [4]. 

Figure 2 shows the experimental set-up used to generate and characterise PDW structures. The input 
beating signal was obtained using two synchronised laser sources producing nanosecond pulses at a 
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repetition rate of 25 Hz. One beam at a wavelength A,,=574.06 nm was delivered by a tunable dye 
laser pumped by a frequency-doubled, Q-switched Nd:YAG laser. The second beam at A,2=574.72 nm 
(frequency shifted by 0.6 THz) was obtained by Raman frequency conversion of an additional beam 
from the Nd:YAG laser. The two beams with orthogonal linear polarizations were focused in an 
ultra-low birefringence spun fiber (LB600 Fibercore) of length 1.2 m. The isotropy of the spun fiber 
was carefully verified by checking that any input polarization state was unchanged upon propagation. 
Since the PDW structures occur in the basis of CP states, a quarter-wave plate and a polarizer was used 
at the fiber output to select one CP state after propagation. This state was then characterized using a 
visible spectrometer, a background-free second-harmonic generation (SHG) autocorrelator, and a 
frequency-resolved optical gating (FROG) measurement set-up based on the spectral analysis of the 
SHG autocorrelation signal using a UV spectrometer [5]. The spectral, autocorrelation and SHG- 
FROG signals were sampled and averaged by means of a boxcar integrator. 

Direct autocorrelation 

-1 0 1 
Time (ps) 

Fig.    1.    Intensity    profiles    of    the    CP 
components forming the PDW train. 

Fig. 2. Schematic of the experimental setup. 
P, polarizer; A/4, quarter-wave plate; BS's, 
beam splitters; PM's, photomultipliers; ODL, 
optical delay line. 

We note that the use of FROG to characterise the output pulse train in these experiments represents a 
significant advantage over previous experimental studies of MI processes in fibers, since it allows the 
direct observation of the intensity and phase of the output pulse train. Although FROG has 
previously only been applied to the characterisation of ultrashort laser pulses of picosecond and 
femtosecond duration, we have adpated the FROG retrieval algorithm to the characterisation of 
periodic pulse trains imposed onaCW background. In our experiments, the expected modulation 
period of the periodic PDW structure is T = 1/0.6 THz = 1.67 ps, more than three orders of 
magnitude shorter than the input pulse durations so that the approximation of a CW background is 
well satisfied. 

The fundamental output spectrum in these experiments consists of the two input frequencies used to 
generate the initial beating signal, as well as higher-order sidebands characteristic of the reshaping of 
the input signal. Fig. 3 shows a typical SHG-FROG trace for experimental parameters corresponding 
to those used in the numerical simulations shown in Fig.l. The measured SHG-FROG trace shows 
spectral components at each of the SHG frequencies corresponding to each sideband in the output 
pulse spectrum, as well as spectral bands at frequencies corresponding to sum frequency mixing. It is 
clear from the figure that the interference between the different sideband pairs leads to a complex 
periodic modulation in the FROG trace. The intensity and phase retrieved from this measured FROG 
trace are shown as the open circles in Fig. 4. The pulse retrieval error was G = 0.013, which synthetic 
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data tests indicate, is an acceptable error for this form of periodic FROG trace in the presence of 
noise. Indeed, the visual agreement between the measured and retrieved FROG trace was good, and 
the spectrum and autocorrelation derived from the retrieved pulse train were in good agreement with 
independent experimental measurements. 

Delay (ps) 

Fig. 3. Experimental SHG-FROG trace of 
one of the CP components. Zero 
frequency corresponds to the SHG 
frequency of the input wavelength X2. 

0        1 
Time (ps) 

Fig. 4. The circles show the retrieved intensity (left 
axis) and phase (right axis). The solid lines show 
the corresponding simulation results. 

These experimental measurements show the expected characteristics of PDW pulse trains. In 
particular, we note that the shape of the retrieved intensity deviates significantly from a simple 
sinusoid, showing flattened extrema as a result of temporal reshaping during propagation. It is also 
important to note the observed 100% modulation in the retrieved intensity which indicates the 
complete switching between the two CP states as expected for the PDW structure. Fig. 4 also shows 
the corresponding results from numerical simulations for direct comparison with these experimental 
results, showing very good qualitative agreement in both intensity and phase characteristics. The 
differences in pulse width between experiment and simulation is attributed to the residual effect of 
noise in the pulse retrieval process, and uncertainty in the fiber parameters used in the numerical 
simulations. 

In conclusion a complete characterization of the reshaping of a beating signal in a spun fiber has 
been carried out using spectral, autocorrelation and SHG-FROG measurements. Our experimental 
results demonstrate that polarization domain walls are generated in the spun fiber. 
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1. Introduction 
During past ten years the optical methods have been developed for generation of ultra-short [1] and 
nanosecond [2] pulses of THz-wave. At the same time, compact mid-power CW sources are also 
necessary in practice. Since the first observation of CW THz difference frequency generation (DFG) [3], 
the new configurations of second harmonic generation (SHG) as surface-emitted [4] and backward [5] 
geometry have been created. In recent paper [6] we reported the possibility of periodically poled lithium 
niobate (PPLN) to emit THz-wave DFG in surface-emitting geometry (SEG). The main advantage of 
SEG is a significant increase of generation efficiency due to the possibility of application of resonant 
cavities both at a pumping and at a difference frequency. The SEG allows the separate optimization of 
both optical (nonlinear) and THz cavities. This is important taking into consideration the requirements, 
which are pointed in [7]. For all that, the absorption of emitted wave in SEG is determined by the 
thickness of nonlinear waveguide, which is usually much less than its length. Unfortunately, the PPLN 
has so large absorption that resonant enhancement is not more that a few units. It is interesting to 
investigate other material application in the scheme of SEG. The GaAs is the most suitable material for 
efficient generation of THz-wave due to its large nonlinear coefficient and its transparent characteristics. 
The purpose of this paper is to develop a simple theoretical model for cavity enhanced THz-wave DFG in 
SEG in GaAs-based waveguide. 

2. Theory 
Let us consider two waves with the frequencies coj and 0>2=CöI-Cü3, which propagate in the same direction 
into a core of planar GaAs-based waveguide as lowest order TM and TE-modes. The nonlinear mixing of 
propagating waves will induce a nonlinear polarization PNL at the difference frequency 003 with 
propagation constant: 

4 = AM(CöI)-AE(C02), (1) 

where y&M(coi) and ßrz{(üi) are propagation constants of interacting optical waves. 
When fi= 0, the nonlinear polarization PNL will create wave in the direction normal to the surface of slab 
[6,8]. For THz-wave DFG the frequency ü>3«ü>2,C0I and condition &= 0 can be written as 

(03= 0)2 An I nz , (2) 

where 

ns =nTM (ü)2)+a2{dnm lda)m2 (3) 

is the refractive index of group velocity of TM mode at ©2 frequency,   An = «TE (coj) - nTM (©2) is the 
birefringence of optical waveguide, nTE (CO2) and nTM (©2) are the refractive indexes of TE and TM modes. 
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In modern GaAs-based waveguide the value of An is 0.01 - 0.22 [8, 9]. The group velocity of light in 
waveguide depends on many factors. For rough estimation of ©3 in Eq. (2) we assume ng = 4. Using ©2 
=2.1 1015cycles/s Ct=0.9u) we obtain 0)3/27: = (0.84 - 18,4) THz. Therefore, the SEG THz-wave DFG 
can be obtained by birefringence of GaAs-based waveguide. 
Let us now evaluate the power P? of DFG, taking into consideration the enhancement caused by 
resonance at both THz and optical frequencies. Using the approximation of slowly varying 
envelope [10], for configuration presented on Fig. 1, we obtain 

where 

>7_2j2 

^3 = 
2/^W0L.FQF„1Fflö 

Q. 

n n3A b 
Pf* 

4r, in 

(^+<y ,2' 

(3) 

(4) 

The Eq. (3) was obtained using the conditions that the thickness of waveguide core, a is much less than 
the distance between two mirrors of THz-wave resonator, h = mklln-i , where X is the length of the 
emitted wave, n3 is the refractive index of GaAs at C05 frequency. We also assume for simplicity that 
exciting modes of waveguide have very high confinement and MTM = HTE = "■ In Eq. (3,4) we use 
definitions: deff is the effective nonlinear coefficient, Px and P2 are the powers of exciting modes, W0is 
the impedance of a free space, & = 2aJi+Tm , Tp = 1-R,n, Rjn <j=l,2) is the reflectivity of mirrors, aa is 
a power attenuation coefficient and Fah Fa2 are determined by Eq. (6), which is written now for 
frequencies C0i and ©2. 
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Fig.l. Configuration for cavity-enhanced DFG in surface-emitting geometry 
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3. Discussion 
The Eq. (3) is similar to the expression for the power of SHG, which has been obtained using different 
method: a coupled mode formalism [11]. In contrast to SHG, the value of overlap integral equals 
approximately 1 due to the condition that the thickness of waveguide core is much less than the distance 
between two mirrors of THz-wave resonator. For evaluation of gain due to resonance at THz-wave we 
substitute in (4) the value h= 83.3fj. (for which we have resonance at A.=200|! , n3=3.6). The maximal gain 
is about 60 for optimal coupling given as Tx « 0 and TlQ = 2aah = 0.017 , (where On » 1cm"1 [12] have 
been used). This value is more than ten times greater that for PPLN case. 
For the evaluation of the efficiency of frequency conversion, t| = P3IPXP2, substituting in Eq. (3) the 

values FQ = 60, dtS = du = 83 pm /V [13], l=200[i, L= b =3mm, and using optimal coupling condition 
T\ai = Soy = 0.01 (j=1>2) we obtain T| = 10"3W_I. For a pumping power nearly 1W, that is available with 
modern diode lasers, one will get the output power P3= lmW at the wavelength 200p.. This value of 
power of DFG corresponds to quantum efficiency 20%, taking in account the ratio ©3/(0, = 5 103. The 
lack of compact THz-waves generators makes such DFG source useful in many practical applications. 

4. Conclusion 
It was shown that THz-wave DFG emitted by the GaAs-based planar waveguide can propagates in the 
normal direction to the surface of a waveguide due to its birefringence. The general expression for DFG 
in vertical cavity was obtained. It was shown that the double resonant cavity-enhanced surface-emitting 
DFG enables the design of compact solid-state source of THz waves with the output power sufficient for 
the practical applications. The use of GaAs as nonlinear medium gives a hope to integrate mixer with 
pump sources and will create very compact device. 
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Summary 

Recently the demonstration of highly efficient Second-Harmonic Generation (SHG) in periodi- 
cally poled silica fibres (PPSF) [1], has opened new prospects for the realisation of second-order 
nonlinear optical processes in all-fibre devices . In particular the achieved high SHG efficiencies, 
show PPSF are now mature for the implementation of Parametric Fluorescence (PF), a special 
case of Difference Frequency Generation (DFG). PF is at the heart of optical parametric oscil- 
lators and represents a unique source of correlated photon pairs, whose peculiar characteristics 
make them extremely useful for the study of quantum interference [2], quantum cryptography [3] 
and for metrology applications (e.g. absolute measurement of the quantum efficiency of photon 
counting detectors [4]). 

The fabrication of the PPSF samples is fully described in [5]. The period of the patterned 
aluminium anode, A = 56.5 /zm, prodeuced QPM-SHG around 1532 nm, with a conversion 
efficiency rjSH ^ 4 • 10-3 %/W (see Ref.l). 

The setup for the parametric fluorescence generation is illustrated in Fig.l. Up to 300 mW 
of pump power were coupled into the sample in the fundamental mode, without exciting higher 
orders. For the coincidence measurement two InGaAs APDs operated in photon counting mode, 
were spliced to a 3 dB fibre splitter into which we launched the output from the sample. 
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The coincidence curve was collected with a Modulation Domain Analyser (MDA) attached to 
Nuclear Instrumentation Module (NIM) discriminators connected to the APDs. 

Si filter 
V KlrilHEr EHi 

Tisapph 
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x40     ppsF      xlO    f-       xlO 

Monochromator 
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234 kHz 
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Fig. 1: Setup for parametric fluorescence generation and coincidence measurement. 
APD: Avalanche Photodiode, PPSF: Periodically Poled Silica Fibre, MDA: Modulation Domain 

Analyser, NIM: Nuclear Instrumentation Module. 

The QPM curve was collected detecting with a single APD the output from the fibre, passed 
through a monochromator. 

Fig.2 illustrates the coincidence curves for vertical (top) and horizontal (bottom) polarisation 
of the pump, its wavelength being 766 nm. The large background in is due to the high dark 
counts rate (~ 200 kHz) of the detectors. The larger signal for vertical pump is due both to the 
tensorial nature of the nonlinear coefficient and the fibre birefringence. 
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Fig. 2: Coincidence curves for vertical (top) and horizontal (bottom) pump polarisation. Each point 
corresponds to 0.09 ns interval 

Given the coincidence rate ~ 500 Hz, we estimated the quantum efficiencies of the two APDs to 
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be 1.4 ± 0.4% and 1.7 ± 0.4%, and the photon pairs production rate to be ~ 150 MHz, in good 
agreement with the expected 156 MHz. 

Fig. 3 shows the collected QPM tuning curve. We measured the signal branch, while, due 
to the roll-off in the detector sensitivity and the significant losses for long wavelengths in the 
sample, only three idler points could be identified experimentally. The bars correspond to the 
bandwidth for the process. 
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Fig. 3: QPM tuning curve. The bars show the measured signal bandwidth. 

We have reported on the observation of quasi-phase matched parametric fluorescence from 
periodically poled silica fibres. The photon pair production resulted in 150 MHz for 300 mW of 
pump power at 766 nm. These results clearly show the large potential of periodically poled silica 
fibres as nonlinear media in all-fibre single photon sources, which are going to play a major role in 
the future for the implementation of quantum cryptography systems and as absolute metrology 
standards. 
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Introduction 
Integrated optical parametric devices in LiNb03 have been identified as most attractive tunable nonlinear 
frequency converters [1] with many applications mainly in environmental sensing and process monitoring. 
Using periodically poled waveguides and exploiting quasi-phase matching devices of high efficiency can be 
developed even for mid-infrared- (MIR-) operation allowing optical pumping with diode lasers. 
In this contribution, we report quasi-phase matched difference-frequency generation (DFG), optical 
parametric fluorescence, and optical parametric oscillation of high efficiency in Ti:LiNb03 waveguides. 
They have been fabricated in a Z-cut LiNb03 substrate with lengths up to 90 mm, widths between 15 and 
30 um, and with losses as low as 0.03 dB/cm. By electric field poling periodic domain structures with 
periodicities of 31.2 to 32.2 urn have been realized up to a length of 80 mm. The corresponding fabrication 
parameters are given in [2]. 

Difference-Frequency Generation 
To perform the DFG experiments a tunable external cavity laser was used as pump and a He-Ne laser 
(Xs = 3391 nm) as signal source [2]. The pump radiation was amplified by an erbium doped fibre amplifier 
up to 11 mW in the 1520 to 1580 nm spectral range. The transmitted pump power was blocked by a Ge 
filter. Due to the chopped pump radiation, only the amplified part of signal power was measured together 
with the generated idler power using an ac-coupled PbS or PbSe photoconductive detector and a lock-in 
amplifier. 
The highest device conversion efficiency was T| = 105 %W_1 (XP = 1568 nm, Xi = 2917 nm). This figure is 
more than one order of magnitude higher than previous reported conversion efficiencies [3], [4], [5]. 

Optical Parametric Fluorescence 
Due to the high parametric gain, possible in these waveguides at higher pump power levels, an investigation 
of spontaneous and stimulated parametric fluorescence in the MIR becomes possible. In this case an 
external signal source as used for DFG is not necessary. 
The experimental set-up is sketched in Fig. 1. A Q-switched Ti:Er:LiNb03 waveguide laser (k = 1562 nm, 
repetition rate R = 2 kHz, AX = 5 ran, PPeak = 500 W) was used as pump laser [6]. On the output side of the 
periodically poled waveguide the transmitted pump was blocked by a Ge filter. Signal and idler 
wavelengths were measured using a monochromator and a PbS photoconductive detector. 
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X{, 

Ge 

i 

T 
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Fig. 1: Experimental set-up:    QSL (Q-switched Ti:Er:LiNb03 waveguide laser), Ge (germanium filter), M 
(monochromator), PbS (lead sulfide photoconductive detector) 

According to the tuning characeristic, spontaneous and stimulated parametric fluorescence is observed at 
Xs = 3297 nm (signal) and at Xt = 2938 nm (idler). As an example, a preliminary result is shown in Fig. 2. 
The evident difference between signal and idler power levels is due to the power instability of the pump 
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laser. During the wavelength scan the pump power fell from about 500 W to about 300 W resulting in a 
much stronger decrease of the signal fluorescence due to its strong pump dependence (see inset of Fig. 2). 
The broad spectral width of the lines is determined by the low resolution of the monochromator enabling 
the measurement. 
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Fig. 2:    Measured parametric fluorescence spectrum; inset: calculated signal peak power versus pump peak power 

Optical Parametric Oscillation 
The low losses of the periodically poled Ti:LiNb03 waveguides of long effective interaction length (up to 
68 mm) enable the development of optical parametric oscillators of very low threshold [7]. Fig. 3 presents 
calculated results for the pump threshold as function of the reflectivity of the resonator mirrors for a single- 
(SP-) and double- (DP-) pump pass configuration of a doubly resonant oscillator (DRO). 
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Fig. 3: Pump thresholds of continuous-wave mid-infrared single-pass (SP) and double-pass (DP) doubly resonant 
integrated optical parametric oscillators as function of mirror reflectivity; different waveguide losses used 
as parameters 

To confirm these results experimentally an integrated optical parametric oscillator (IOPO) was set-up with 
90 mm long Ti:LiNb03 waveguides (80 mm periodically poled with periodicities around 31 nm) in a 
0.5 mm thick and 12 mm wide Z-cut, X-propagation LiNb03 substrate and of external dielectric mirrors in 
contact with the waveguide end faces. To achieve doubly resonant optical parametric oscillation we used 
mirrors optimized for high signal (ks) and idler (A,r) reflectivity (= 95 % in the 2800 to 3400 nm spectral 
range) and high pump transmission (80..92 % in the 1500 to 1580 nm spectral range). The IOPO was 
pumped by a tunable, single-frequency external cavity semiconductor laser (1500ran<lP< 1580nm) in 
combination with a high power (up to 27 dBm) fibre amplifier. 
The power characteristic of an IOPO with 20 urn wide waveguide is shown in Fig. 4 as signal and idler 
power versus external pump power together with the power-dependent pump transmission (depletion) at 
A,p = 1541.49 nm (degeneracy point: X? = 1556 nm). Optical parametric oscillation started at 14 mW; the 
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corresponding transmitted pump power was only 6.5 mW due to a waveguide coupling efficiency of about 
70 %. With rising pump power level also signal and idler power increased up to 6.5 mW at 300 mW pump 
power. At even higher levels the MIR-ouput saturates at about 7.8 mW. The measured threshold agrees 
well with modelling results. However, the calculated characteristic has a much steeper slope than the 
experimental one. Furthermore, the measured pump transmission (depletion) falls with increasing pump 
power much weaker than theoretically expected. Both discrepancies will be investigated in the near future. 
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Fig. 4: Power characteristics: Signal and idler power (left) and pump transmission (depletion) (right) as 
function of external pump power at XP= 1541.49 nm; A = 31.6 um; w = 20 urn. Full lines correspond 
to calculated results with about 70 % estimated waveguide coupling efficiency. 

Conclusions 
Mid-infrared radiation was generated by difference-frequency generation, optical parametric fluorescence 
and optical parametric oscillation with very high conversion efficiencies. A continuous-wave integrated 
optical parametric oscillator of very low threshold was demonstrated, more than two orders of magnitude 
lower than those of previously reported NIR-devices [8], [9]. 
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project number 13 N 7024. 
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With 155 mW coupled pump power (Xp = 1.556 \im) a DFG efficiency of -I4 dB has been 
achieved in a 80 mm long periodically poled Ti:LiNb03 for signals in the 1.5 \xm telecommu- 
nication band 

Introduction 

Recently Brener et al. [1] demonstrated highly efficient difference frequency generation in 
the 1.5 [im. telecommunication band by using a cascaded second order nonlinear process in 
a periodically poled, proton exchanged waveguide in LiNbC>3. In such a x^ • X^ based 
wavelength converter a strong fundamental wave in the 1.5 fj,m band is used to generate a 
pump wave at u>p = 2u>f which interacts with a signal wave at us to generate an idler wave 
at Ui = Uf- u)s- The major advantage of using a cascaded process in comparison with a con- 
ventional DFG with a pump of about 780 nm wavelength is that no selective mode excitation 
is necessary. The idler output power in a x(2) : X(2) process can be written as Pi oc L4PJPS 

(low fundamental power regime). As it scales with fourth power of the interaction length it 
is a great challange to develop low loss nonlinear converters of maximum length. Periodically 
poled Ti:LiNb03 waveguides are ideal candidates. Based on equations from [2] we calculated 
the efficiency of an cascaded difference frequency generator for an ideal and lossless periodi- 
cally poled Ti:LiNb03 waveguide of 80 mm length. Fig. 1 shows the results for two different 
nonlinear coefficients d33 = 27 pmV-1 and d33 = 18.7 pmV-1, both taken from literature [3]. 
In this contribution we demonstrate for the first time an efficient near infrared "cascaded" 
DFG wavelength converter using a periodically poled Ti:LiNb03 waveguide. 

Device Fabrication and Experiment 

The periodically poled waveguide was fabricated by indiffusion (1060°C, 7.5h) of 7 /im wide 
and 98 nm high Ti-stripes into the (-Z)-face of a 0.5 mm thick LiNb03 substrate. A sub- 
sequent electric field poling was not possible due to a shallow domain inverted layer on the 
(+Z)-face. Therefore, we had to remove that layer by careful grinding. As domain inversion 
always starts on the (+Z)-face it is advantageous to have the waveguides on the preferred 
side of the sample. Taking these considerations into account we performed as next fabrication 
step a homogeneous polarisation reversal of the whole sample. Thereafter, the periodic mi- 
crodomain structure (A = 17 (im) was fabricated by using the electric field poling method with 
the structured photoresist on the (+Z)-side. The length of the periodically poled waveguide 
was 80 mm. Due to inhomogeneities of the waveguides the effective nonlinear interaction 
length - measured by SHG - was reduced to 50 mm. The corresponding conversion efficiency 
was 200 %W_1 considerably lower than previously observed in other waveguides [4] 
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Figure 1:   Calculated device efficiency for an ideal, lossless periodically poled Ti:LiNbC>3 
waveguide of 80 mm length and two different values for d33. 

Figure 2. shows the experimental setup to investigate "cascaded" DFG. A high power erbium 
doped fibre amplifier (up to 27 dBm) was used to amplify the output two tunable external 
cavity lasers. One was used as the fundamental source to generate by SHG the pump for DFG; 
the other one was the signal source. Both waves were polarisation controlled and launched 
into the waveguide by butt-coupling. The coupled fundamental power was 155 mW and the 
coupled signal power was 54 mW. The generated idler radiation was measured using an op- 
tical spectrum analyzer. Fig. 3 shows on the left a corresponding result with an idler power 
of 2.1 mW. Therefore, the conversion efficiency was -14 dB. By tuning the signal wavelength 
we measured the conversion bandwidth in the low power regime. The measured figure (see 
Fig 3. on the right) of 55 nm agrees exactly with the bandwidth calculated for a 50 mm long 
device. 

#*?. Ti PPLN WG 

/ 

^ 80 mm (L„ = 50mmL 

OSA 

Figure 2: Experimental setup to investigate "cascaded" difference frequency generation; ECL: 
external cavity laser; PC polarisation controller; EDFA: erbium doped fibre amplifier; OSA: 
optical spectrum analyzer. 

Conclusion and Outlook 

We demonstrated "cascaded" difference frequency generation in 80 mm long periodically poled 
Ti:LiNb03 waveguides. The maximum efficiency was -14 dB achieved with 155 mW coupled 
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Figure 3: Left: Transmitted optical power of fundamental, signal and idler versus wavelength 
measured with a spectral resolution of 0.1 nm. The coupled fundamental power was 155 mW. 
Right: Measured (dots) and calculated (solid line) (spectral resolution 0.1 nm) idler power 
versus signal wavelength in the low power regime. 

pump power. The device efficiency was mainly limited by the effective nonlinear interaction 
length. It is expected that by further improvements of our waveguide fabrication technology 
a device of 0 dB conversion efficiency at fundamental power levels of about 100 mW can be 
developed. 
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There is considerable interest in materials with high upconversion efficiencies for 
converting infrared pump wavelengths to the shorter, blue-violet wavelength region. So far, the 
highest upconversion efficiencies are obtained in fluoride, rather than oxide, hosts because of their 
lower phonon energies which decrease the multiphonon relaxation rates of rare-earth excited states. 
In this paper we report an efficient upconversion blue light generation in phosphosilicate glass 
fabricated by Flame Hydrolysis Deposition (FHD). Sample cores were made of Si02-P205 glass, 
doped using an aerosol doping technique [1] with Tm-Yb-Na chlorides (0.1-1.0-0.1M 
respectively). 

Figure 1 shows a typical power 
spectrum of the upconverted signal 
at 476 nm, generated in a 5.5 cm 
long rib waveguide. For a 
fundamental CW pump of 200 mW 
at the absorption peak of Yb3+ ions 
at 975 nm. The spectral bandwidth 
of 12.6 nm is characteristic of a 
fluorescent mechanism due to the 
transition 'G4^

3H6 of the Tm3+ 

ions. Signal power of 130 nW was 
generated from 150 mW of infrared 
pump power at 975 nm. 
Considering that the injected power 
into the waveguide corresponds to 
30% of the delivered power, the 
calculated process efficiency is 
2x10 %. Similar conversion 
efficiency was obtained in a Tm3* 
single doped (0.2M) waveguide 

pumped by a mode-locked Nd:YAG laser only with high pump power [1]. The low conversion 
efficiency of the present process is attributed mainly to the unfavourable waveguide geometry. As 
depicted in the insert of figure 1, the waveguide is highly multimode at the pump and signal 
wavelength, and has a poor optical confinement due to this rib configuration. 

The upconverted signal intensity as a function of the fundamental pump power was 
analysed and the results are depicted in figure 2. As reported in the literature, the expected result is 

475 500 525 
Wavelength (nm) 

Figure 1: - Power spectrum of the upconverted signal from a 
5.5 cm long channel waveguide, pumped by a CW200 mW 
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of the sort of PUue <=cP*pump however, measurements repeatedly presented the same quadratic 
dependence as can be inferred from log-log insert plot of figure 2. This could imply that the 
upconversion process is saturated in at least one step. Considering reasonable energy transfer 
probability, moderate level of excitation in the ytterbium population would be suffice to pump the 
majority of the thulium ions to the first excited state, depleting the ground state and causing 
saturation. 

The efficient energy transfer was confirmed when preliminary results have shown 
upconvertion blue light for pumping at 800 nm. This process is also under investigation and it can 
be explained as follow: single Tm3+ doped sample pumped at 800 nm did not show blue light 
generation. This upconversion process should be possible only if the 3H5 level is highly populated 
due to the 3F4 -> 3H5 photons decay, which is not possible because the 3F4 -> 3H5 lifetime is much 
longer (~10x) than the ground state relaxation from the same level. This upconversion process 
become possible in the Tm37Yb3+ doped sample because Yb3+ ions creates an efficient route to 
populate the 3H5 level via energy transfer from Tm3+ to Yb3* (3F4 -> 2F5/2) [3,4], and energy back 
transfer from Yb3+ to Tm3+ (2F5/2 -» 3H5). 

Previous workers have found that a large ratio of Yb3+ to Tm3+ ions, close to 100:1, is 
needed to achieve high upconversion efficiencies [2]. Where as in our sample this ratio is only one 
order of magnitude different. 

The influence of Na+ in this glass system is also under investigation. Previous 
measurements in phosphosilicate glass have shown an increase in the Er3+ laser lifetime (at 
1535 nm) due to the presence of Na+ ions. Reported second-order nonlinearity in poled silica glass 
[5] have shown enhancement due to influence of Na+ as well. 

In summary, we have shown two possibilities of efficient CW upconversion blue light 
generation in phosphosilicate Tm/Yb/Na doped glass (in silica-on-silicon fabricated by FHD). The 
commercial availability of powerfull diode lasers at the single pump wavelength used (at 800 nm or 
980 nm), and the facility of integrate them on the same substrate of the doped waveguides, increase 
the prospect to produce compact and robust devices to generate blue light. 

Xp = 975 nm 

50     100    150   200    250   300 
Pump Power (mW) 

Figure 2 - 476 nm signal intensity as a junction of CW fundamental 

pump power at 975 nm. Insert is a log-log plot of data showing the slope 2. 
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Summary 

Optical solitons are reaching the commercial stage for lightwave transmission because they offer the 

possibility of dynamic balance between group-velocity dispersion (GVD) and self-phase modulation (SPM), 

the two effects that severely limit the performance of non-soliton systems [1]. Most system experiments 

employ the technique of lumped amplification and place fiber amplifiers periodically along the transmission 

line for compensating the fiber loss. However, lumped amplification introduces large peak-power variations, 

which limit the amplifier spacing LA to a fraction of the dispersion length LD [2]. 

The limitation on the amplifier spacing imposed by lumped amplification can be overcome by using 

distributed amplification, a technique that was pioneered during the decade of 1980s [3]. It was abandoned 

after the advent of erbium-doped fiber amplifiers although not completely [4], [5]. In one implementation 

of this scheme, the transmission fiber itself is lightly doped with erbium ions and is pumped periodically, 

creating sufficient gain for compensating the fiber loss. Since the gain is distributed throughout the fiber link 

and compensates losses locally all along the fiber, soliton peak-power variations can be made much smaller 

compared with the lumped amplification scheme. Although one expects the pump-station spacing LA to 

become comparable and even exceed Lp in the case of distributed amplification, a systematic comparison 

of the lumped and distributed amplification schemes has not been made. Here we report the results of such 

a systematic study and show that distributed amplification can provide better performance at high bit rates. 

Our approach is based on solving numerically the generalized nonlinear Schrödinger equation 

*tr ~ \^x)w+llA?A = k[g{z) ~ ^A+T*A^f> (i) 
where TR is the Raman constant and other parameters have their usual meaning [6]. Distributed ampli- 

fication of solitons is included through the gain g(z). To avoid excessive generation of dispersive waves, 

we optimize the the dopant density such that g(z) —a deviates from zero as little as possible. For this 

purpose, we solve the three-level rate equations governing the dynamics of erbium dopants for the case of 

bidirectional pumping at 1480 nm. 

We first demonstrate the advantages offered by distributed amplification for a 20 Gb/s system having 

100-km pump-station spacing, uniform dispersion with /% = —0.5 ps2/km, 7 = 3.36 W_1/km, TR = 3 fs 

and a = 0.23 dB/km. We choose A(0,t) = y/P^sech(t/T0) with T0 = 5 ps (TFWHM = 8.8 ps). The 

dispersion length is 50 km for such a system while LA = 100 km. Figure 1 compares soliton evolution for 

the cases of lumped and distributed amplification. Since LA/LD = 2 in the case of lumped amplification, 

the soliton radiates its energy through dispersive waves and is distorted significantly after a few amplification 
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Figure 1: Comparison of lumped (top) and distributed (bottom) amplification schemes for the case of a 

20-Gb/s system designed with 100-km amplifier spacing. 

stages. Such a system cannot transmit the 20-Gb/s signal over more than 500 km. In contrast, the soliton 

shows no degradation even after 5000 km when distributed amplification is used. A logarithmic plot shows 

the contribution of residual dispersive waves to remain below the 10-5 level even after 5000 km. 

For a bit rate of 40 Gb/s, it was necessary to use T0 = 2.5 ps (TFWHM = 4.4 ps), resulting in a dispersion 

length of only 12.5 km. Such a system is affected both by soliton self-frequency shift (SSFS) and by soliton 

interaction. To include soliton interaction, we use a 64-bit pseudorandom sequence in numerical simulations 

and compare the system performance using two-bit-wide "eye diagrams." Figure 2 (top) shows the combined 

effects of SSFS and soliton interaction for lumped amplification at a distance of 1000 km. Clearly such a 

system is inoperable in practice. We have found that both the SSFS and the soliton interaction problems can 

be solved by combining distributed amplification with dispersion management. Figure 2 (bottom) shows 

the eye diagram after 5000 km for a dispersion-managed (DM) system under identical operating conditions. 

The dispersion map consisted of two 50-km fibers with GVD of 0.3 ps2/km and -0.38 ps2/km, resulting in 

an average dispersion of -0.04 ps2/km and a map strength \ß2iLl-ß22L2\/TjWKU = 1.75. As seen in the 

bottom part of Figure 2, solitons barely move out of their time slot when distributed amplification is used 

with DM. We also studied the case of lumped amplifiers with DM and found that both SSFS and soliton 

interaction are reduced in this case as well (middle part of Fig. 2) although the system performance is better 

in the case of distributed amplification. 
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Figure 2: Eye diagrams for a 40-Gb/s system in three different operating conditions: after 1000 km without 

DM (top); after 5000 km with lumped amplification and DM (middle); after 5000 km with distributed 

amplification and DM (bottom). 

We plan to present a detailed comparison of lumped and distributed amplification schemes for dispersion- 

managed systems by considering several different dispersion maps and taking into account various sources 

of performance impairment such as Gordon-Haus timing jitter, soliton interaction, and Raman-induced fre- 

quency shift. 
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At present there is much interest in the transmission of 40Gbit/s data as a means of upgrading 
existing terrestrial networks. These legacy networks consist almost entirely of high average 
dispersion standard fibre, which severely limits transmission distances due to polarisation mode and 
chromatic dispersion. One promising technique at 10 Gbit/s is the use of dispersion managed 
(DM) solitons[l], and there is evidence that DM solitons may be an appropriate approach at 
40Gbit/s[2]. At this data rate the bit interval is 25ps, so to ensure a good mark space ratio short 
(<6ps) pulses will need to be used. The map strength in its usual definition (from [3]) is defined by 
the difference in dispersion and length of the two alternating sections of fibre and the inverse of the 
pulsewidth squared, and determines amongst other things the degree of energy enhancement and 
the amount of pulse breathing within the map. With the pulse width decreasing, the map strength 
soon becomes intolerably large, making transmission in the usual regime difficult due to the 
constraints (be they regulatory or practical) of EDFA power availability. However, we have 
identified a new quasi-linear regime at a much lower average power than predicted in recirculating 
loop experiments. This appears to work well at high data rates, providing a record transmission 
distance of 1009km at 40Gbit/s over standard fibre that is twice that of competing technologies[4]. 
In this paper we present results that seek to clarify certain aspects of this regime and determine the 
limiting factors for successful transmission. 

Experiments were carried out using a recirculating loop as shown in figure 1. The commercially 
available (Pritel UOC-3) modelocked fibre laser source provided 2ps pulses with a time-bandwidth 
product of 0.45 at the operating wavelength of 1558nm. A 10Gbit/s 231-1 PRBS data pattern was 
imposed on the pulse stream by a lithium niobate amplitude modulator (AM), and this bit stream 
was multiplexed up to 40Gbit/s using a fibre delay line multiplexer (MUX) in a now standard 
configuration. The transmission experiments were carried out using a single span recirculating loop 
containing of two erbium doped fibre amplifiers (EDFA) separated by a length of DCF and a 2.3 
nm optical bandpass filter. 

23l-ilPRBS 
lOGHzPulses   lOGBt/sdata 40GBit/sdata 

GS-DFB 1'      I    AM     I T MUX    [ r 
40GBit/sdata o o 
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10 GHz 
cbck 
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• i      10 GHz cbck 
f :......_._.._......„'..„' | 

40GBä7s~-I,Ö GBil/sbEMÜXand"dock""|" 

figure 1 experimental set up 

14.2 km SF 
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The loop consisted of 75km of standard fibre (SF), in section lengths of 32km before and 43km 
after the EDFAs/DCF respectively, with an average dispersion of +16ps/(nm km) and 14.9km of 
dispersion compensating fibre (DCF) with a total dispersion of -1200ps/(nm km). The average 
dispersion zero wavelength was 1556nm and the overall average dispersion at the operating 
wavelength was +0.04ps/(nm km), the DCF also providing partial slope compensation resulting in 
a value of +0.02ps/(nm2 km) for the fibre combination. In figure 2 results are presented showing 
the total propagation distance for a 40Gbit/s data stream using this map. Included for reference are 
results using a 5ps pulse and a similar map with the fibre lengths scaled to give a 32km amplifier 
span for reference. In this case the map strengths were 750 and 51 respectively, with the 
corresponding dispersion lengths in the standard fibre and the DCF being 200m and 40m. 
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figure 2 BER as a function of distance for 75km span (closed circles) and 32km span(open circles) for 
demultiplexed 40Gbit/s data 

In order to investigate this further, 10Gbit/s transmission experiments were carried out by removing 
the MUX and DEMUX stages from the experiment and using the same dispersion map and 2ps 
pulsewidth. At this data rate error free propagation was achieved over 1900km. In figure 3 eye 
diagrams taken at distances between 0 and 1980km are presented. As can be seen from these, there 
is little build up in noise in the zeros, whilst the degradation appears to be due to timing jitter. As the 
Gordon-Haus limit is far in excess of this (~20,000km), the cause of the jitter is most probably due 
to interactions. 
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yigure 5 eye diagrams at several transmission distances between 0 and 1980km for lOGbit/s data 

The transmission distance was then fixed at 895km, and the average power was varied. Results are 
presented in figure 4 show eye diagrams at powers between 0.02mW and 0.532mW, which indicate 
severe degradation at higher powers. 
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Furthermore, a fixed data pattern was transmitted to look at interactions, and results are presented 
in figure 5. These patterns indicate clearly the magnitude of the interactions, as the adjacent pulses 
quickly become degraded, whilst the separated pulses remain intact. 

4*   } 

180km 990km 

1890km 2250km 
figure 5. Transmitted pulses at various distances indicating degradation due to pulse-pulse interactions 

Several other features became apparent during the course of this work. Unlike the 'classical' DM 
soliton is the reduced energy enhancement. For this map the predicted energy enhancement should 
be 526 giving an average power of 6.6pJ but the optimum energy was found to be only 25fJ, an 
enhancement of 2. This would seem to indicate linearity of the transmission regime, but it was also 
found both experimentally and theoretically that the launch point within the map was critical for 
successful transmission, indicating that non-linearity remains important for this system. 

In conclusion, we have investigated transmission utilising a new quasi-linear regime that looks 
promising for high data rate transmission over standard fibre. The hmiting factor in such a regime 
was determined to be interaction induced timing jitter, and several features such as a reduced energy 
enhancement and pulsewidth independence were observed which distinguish this regime from the 
better understood DM soliton regime. 
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Although the dynamics of the mutual interaction between the neighboring pulses of a given channel of a 
dispersion-managed (DM) system can be quite different from what is observed with conventional solitons, 
pulse interaction still represents an important factor that can limit the bit rate [1-3]. Among the differences 
in behavior, the quasi independence of the interaction on the relative phase between the pulses in a system 
with strong dispersion management is noteworthy. As noticed elsewhere [1-2], the reason behind this can be 
traced back to the fact that the large local dispersion tends to average out the phase-dependent terms of the 
interaction. The self- and cross-phase modulation terms that remain in the coupled governing equations 
when dropping the other four-wave mixing contributions leave the interaction phase-independent. 
Variational models [2-3] that do not include these four-wave mixing terms have indeed been found to be 
accurate enough when compared with direct numerical simulations. This agreement prevails as long as the 
pulses remain sufficiently far apart. And, a priori, this is the regime of interest for communication 
purposes as one wants the pulses to be easily distinguishable. 

This work is concerned with a different regime where the pulses are brought closer to each other. The 
evolution of the total field T = *F] + ¥2 is then more appropriately described by a single NLS equation: 

Wz+lDtfVn  +   M2T = 0 

where Di=ß2il<ßi >, with ß^ ( i = 1,2 ) representing the dispersion parameter of each fiber segment of 
length L, of a two-step dispersion map and <ßi> is the path-averaged dispersion. The time T = t/T0 is in 
units of a reference time T0 and the propagation distance z is expressed in terms of the average-dispersion 
length d = T„/\<ß2 >|- We mostly rely on numerical simulations for analyzing the interaction between 

closely spaced DM solitons that are here approximated by Gaussian pulses: 

Y(z = 0,f) = Y0i exp[-((f + S)ITY )2] +  T02 exp[-((? - S)/T2)
2 + iff] 

where the relative phase 0 is introduced. The system parameters considered in the simulations reported 
below are the following: Li = L2 = 100 km, fe = - 3.06 ps2/km , ßz> = + 2.86 ps2/km and T! = T2 = Tn = 
13.5 ps. The amplitude parameters are: »Pm = ¥02 = 2.7. Figure 1 first compares, in terms of contour 
lines of the pulse profile at the midpoint of the anomalous fiber, the long-haul evolution (200 map periods) 
of in-phase (a) and 7i-shifted (b) interacting pulses initially spaced by 28 = 6.0 Ti2. 
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Figure 1. Contour map of the evolution of two interacting DM solitons. a) 0 = 0; b) 0 = n. 

Whereas the initial behavior looks similar in both cases, the long term evolution is quite different. In 
particular, in contrast with the pulse coalescence observed in Fig. la, the rc-shifted pulses tend to preserve 
their individuality (Fig. lb). Figure 2, where the initial separation between the Ti-shifted pulses is reduced 
to 25 = 2.0 T12, is even more contrasting as it shows a quasi steady state. (In the in-phase case, one can 
hardly talk in terms of two pulses as they are too close to each other.) 
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Figure 2. Evolution of two closely spaced 7t-shifted solitons. The input separation is 28 = 2.0 T]2. 

We interpret this behavior as being due to the existence of an antisymmetric DM soliton which was 
discussed elsewhere [4]. Figure 3, which compares the launched Ji-shifted Gaussians of Fig. 2 with a DM 
soliton of odd parity having the same peak power as the combined pulses, confirms the validity of this 
interpretation. 
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Figure 3. Comparison between an antisymmetric DM soliton and the two 7t-shifted Gaussian pulses of Fig. 2. 

To be of practical interest for communication systems, this behavior should be robust enough to sustain 
various perturbations. According to our simulations, the most important one appears to be a breaking of the 
perfect antisymmetry in the launched pulse. Although the subsequent evolution depends, of course, on the 
importance of this perturbation, we have found that the interacting pulses can preserve sufficiently well 
their integrity to remain clearly distinguishable even after a few thousands of kilometers. This will be 
discussed in further detail. 
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Introduction 
In the scope of high rate submarine long haul transmissions, different kind of in line control systems are 
investigated. Synchronous amplitude modulation is know to be the most powerful of them: with 
synchronous modulation 70 000 km of soliton propagation were achieved at 40 Gbit/s in [1] or 8x20 Gbit/s 
over 10 000 km in [2]. Its benefits on classical path averaged soliton have been demonstrated since several 
years If this technique limits continuum generation and timing jitter, it causes modulational instability 
which is usually limited by in line filtering. 
The aim of this communication is to show that proprieties of the spectral dependence of the DMS on its 
energy, which are penalizing for fixed filtering [3], can nonetheless be exploited to reduce in the same time 
energy, time and frequency fluctuations with in-line synchronous amplitude modulation only. 

Modeling 
The propagation of a pulse in a non-linear line can be modeled by the normalized Schrödinger equation 

da     1 ö^q i i2 
i-r + -D(z)-rf + a(z)\q\ q = 0 (2.1) 

where D is the normalized dispersion of the fiber and a(z) is the relative energy at position z. The evolution 
of a(z) is driven by fiber loss and amplifier gain. In the following, its value is chosen to be equal to 1 at 
amplifier output. 
The lumped amplitude modulator function can be approximated by its 2nd order taylor expansion 
r(r)=l-Ar2(f-//)

2 (2.2) 

where fi is the time when the transparency maximum of the amplitude modulator is reached. 
Perturbation theory [4] is applied through a Lagrangian formalism on a gaussian pulse 

q(z, t) = -Jß exp - (1 + ib) j— +1$ - iClt   t0 me perturbation deriving from an excess gain <£and 
2W J 

modulation. 

The reference energy is E = 4zBW and the pulse energy along the line is E,.  = aE . In absence of 
"'line 

[.2 
perturbation E(z) remains constant. Other parameters are defined :y=

x+b   related to the square of the 

quadratic bandwidth of q, £p = YI2 and c = --the cumulated dispersion with linear and non linear 
r 

contributions. 
The effects of the amplitude modulation on the pulse characteristics are the following: 

AE = -r2E$(a-lUy + (w2-W0
2f(z-zm) (2.3) 

&a=-2{a-/Sp/2K2S{z-zm) (2.4) 
A£l = 2l£(a-/uyXz-zm) (2.5) 
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The excess gain 5 appears in eq. (2.3) through S=W0
2/c/2. 

When C=0, equation (2.4) is analog to the effects of amplitude modulation on PAS. Nonetheless, as W is 
enlarged by the chirp which is not present in PAS, the effects of amplitude modulation can be stronger on 
DMS. 
Eq. (2.3) is also analog to the effects of amplitude modulation on PAS. Whereas W is well know to 
decrease with E for PAS which makes fluctuations amplified trough eq. (2.3), the existence of energy 
domains where W increases as E increases for DMS allows the reduction of energy fluctuations with 
amplitude modulators. Actually, making the assumption of an adiabatical variation of W (i.e the pulsewidth 
for steady propagation at modulator location only depends on the pulse energy), one obtains 
W^l/W-^SijC'-l/fJ^+jCC,} 
For the particular case where C is close to zero at the modulator position and if the pulse is not shifted 
temporally, the distributed energy evolution is driven by E\ = §cm(E-E0) with the modulation strength 

km = IKJNI lz!Kp and g=o.5yeE0 ly where zslep is the amplitude modulation spacing. ^ is a correction 

factor brought by dispersion management (subscript m designs the pulse characteristics at modulator 
position). It has been shown in [4,5] that parameter ^ can be negative for high energy pulses. 
Hence, energy fluctuations can be reduce by amplitude modulation if the pulse energy is judiciously chosen. 
With DMS, chirp induces a coupling between time shift and frequency. Amplitude modulation has the same 
effects as a phase modulation. The sign of the product cumulated dispersion times averaged dispersion 
DCm appears to be important. If this sign is positive, the coupling between time and frequency fluctuations 

induces a return strength in frequency and an increased efficiency of the time fluctuation reduction. 

Influence of amplitude modulation on steady propagation 
Let's consider the line sketched in figure 1 

-a- Dja I n 

ekmnu i """" tkmt»ty Amplifier 

Fig.l : Implementation of synchronous amplitude modulation in a dispersion-managed link. 
Each cell of the line consists of a fiber of length za and dispersion D, two lumped dispersion compensators 
cx and cy , an amplifier whose gain G compensates for the fiber loss. The excess gain for the amplitude 
modulator loss is included in the modulation characteristic. A prechirp c, and a postchirp c0 are also 
included. The dispersion compensation ratio is then    _ ~lc* + c,l. 

Steady propagation can be achieved if Cj and y at pulse emission are judiciously chosen for a given pulse 
energy. 
In the following, the parameters will be taken as follows : G=100, za=0.2, D=100, cx=-18.4, Cy=-1.4. 
Numerical simulations are now performed in order to confirm analytical results. 
Numerically the amplitude modulator is considered to achieve a gaussian profile. 

Energy evolution 
The energy chosen for numerical simulation is Eo=300. The steady point parameters are CF-0.99, yo=0.72 
(so that Cra=0.41) and K2=0.0194 is chosen to have k„,=0.3. Figure 2 shows that the numerically the 
strength is found around 0.11 whereas analytically its value is 0.098. Parameter % is then close to -0.33. 
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Fig. 2 : Numerical(solid line) and analytical (dashed line) energy evolution of a pulse of energy E=305 in a line 
whose steady propagation occurs for E=300 

Time and frequency fluctuations 
It appears that through the linear dispersion and in-line modulation, frequency and time jitter are coupled. If 
the chirp at modulator location is judiciously chosen, the coupling matrix between da and do>, time shift 
and frequency shift at modulator position, has eigenvalues which are not real, but which real part is 
negative. The time jitter and frequency fluctuation are then reduced even if timing jitter is translated into 
frequency fluctuations (see figure 3). As the time references are given by a clock recovery, the frequency 
fluctuation reduction does not prevent against an uniform frequency shift. 
In the case of figure 3, the real part of the coupling matrix eigenvalues is found to be -0.153 analytically 
and -0.156 numerically which confirms the good agreement between analytical and numerical simulations. 
This value is close to the theoretical real part -km/2- Dr„cm/c, of the coupling eigenvalues. 
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Fig. 3 : Numerical frequency (dashed line) and time (solid line) evolution after a frequency perturbation 
A£2=0.1(left) and time perturbation Aa=0.2 (right) 

Conclusion 
Singular spectrum proprieties of Dispersion Managed Soliton have been investigated to show the 
theoretical possibility of the use of in-line synchronous amplitude modulators only to achieve fluctuation 
control in energy, time and frequency domains. This application requires high energy Dispersion Managed 
Soliton and does not prevent from a general frequency shift of a pulse train. 
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Growing demand for high-bit-rate data transmission stimulates intensive research of new fiber 
communication technologies. Promising way to realize high capacity long-distance and terrestrial 
fiber communication systems is to exploit dispersion managed (DM) soliton or general return- 
to-zero (RZ) data formats. Recent experiments of wavelength-division-multiplexed (WDM) RZ 
signal transmissions with DM showed that the inclusion of in-line filters improves the transmission 
performance [1]. Indeed, it is well known that guiding filters are important for the control of 
conventional soliton propagation in fibers [2]. In the case of DM pulses, earlier theoretical studies 
pointed out that filters are effective in reducing both frequency and energy fluctuations arising 
from noise [3], interactions [4] and WDM collisions [5]. However, the ability of filters to control 
energy fluctuations is, in general, strongly reduced in DM systems [3,6]. In striking contrast to the 
case of guiding center Schrödinger solitons, where the dynamic evolution of the soliton parameters 
is slow as compared with the amplifier spacing, so that the filtering action may be well described 
as effectively distributed along the line, the internal dynamics of RZ-DM pulses within a map is 
critical in determining the stabilizing action of filters [7]. Optimization of the performance of DM 
transmission systems involves many parameters such as, for instance, strength of the map, average 
dispersion, initial chirping, strength of the filter, locations of the amplifiers and filters along the 
dispersion map and so on. In the particular relevant situation when the amplifier spacing coincides 
or is comparable with the dispersion management period, it is essential to take into account the 
lumped nature of the filters and the influence of loss on the DM pulse dynamics [4]. Previous 
analyses basically considered filters placed at the junction between opposite dispersion fibers. In 
this work we study the effect of the position of a filter anywhere in a lossy dispersion map, and find 
the optimal points for the stabilization of both energy fluctuations and pulse-to-pulse interactions. 

Let us consider a practical dispersion management scheme like that of Figure 1, which represents 
an upgrade of a link with standard single mode fiber (SMF) by means of dispersion-compensating 
fibers (DCF). In physical units, dispersion changes from DI = 17ps/(km-nm) to D2 = —68ps/(km- 
nm); The total amplifier span or dispersion map length is L = 112.5km. Fiber loss (0.22 dB/km) 
is compensated by lumped amplification at the end of each map. Whereas the position of the 
filter is allowed to slide anywhere within the map. The Gaussian filter transfer function reads (in 
dimensionless units) as H(Ct) = Gexp{-ßQ2}, where ß is the filter strength G is the excess gain; 
the propagation of a pulse within a map is described by the equation 

.do     D(z) d2q       , .,, ,9 

where a(z) and D(z) represent the periodic loss and dispersion. It has been shown already that the 
Gaussian zero-mode approximation in the DM soliton expansion into the Gauss-Hermite functions 
[8], reducing Eq.l to a set of ordinary differential equations (ODEs) on the pulse characteristics, 
works rather well in a range of system parameters. By restricting our attention to the evolution 
of the Gaussian zero-mode in this expansion [8]:  q(z,t) — aoAexp(—p2(t — T)2 + iC(t — T)2 - 
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Figure 1: Schematic of the dispersion map. 

Figure 2: Bandwidth evolution for pulse ener- 
gies of 7.67 pj (solid thick curve), 6.86 pj (solid 
thin curve), and 6 pj (dashed curve) 
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Figure 3:  Pulse energy versus propagation dis- 
tance for different filter positions 

Figure 4: Evolution of bandwidth and chirp 
with: no filter (dashed thin curve); filter at ZF = 
4.5km (dashed curve); filter at ZF — 13.5km 
(solid curve). 

m(t - T) + i<j)) (ao is the input power enhancement factor), we obtain ODEs governing evolution 
of the pulse inverse width p(z), chirp C(z) frequency K(Z) and temporal shift T(z); the action 
of the lumped filter on the Gaussian pulse parameters may then be analytically evaluated [3]. 
We use this approximate approach to explore system properties and then will verify the results 
by direct simulations of Eq.l. In what follows, we define the spectral bandwidth of the pulse as 
B{z) = (l/?r)y/2ln{2)\p{z)'i + C(z)2/p(z)2}. Figure 2 shows the evolution of the pulse bandwidth 
along the dispersion map for three different values of the average pulse energy. Here the filter is 
placed at z = 4.5km, where it introduces a small bandwidth drop. Note in the inset the phase 
plane trajectory that corresponds to the three periodic solutions or fixed points of the map. Figure 
2 shows that, at points between A and B, the bandwidth of the solution grows larger as the energy 
increases, which leads to a negative feedback or stabilizing action of the filters [6]. 

In Figure 3, we compare the evolution of the DM pulse energy for different filter positions Zp in 
the case of small (10%) amplitude fluctuations at the input. Here we fix ß = 0.05. As can be seen, 
by placing the filters in the positive feedback region (where the bandwidth drops as the energy 
increases, e.g., with ZF = 18km, Zp = 36km, ZF = 54km), we observe a continuous growth of the 
pulse energy with distance. Note that in these situations the pulse bandwidth, and consequently 
the filter-induced spectral losses, are lower than in the stable cases (ZF = 4.5km, Zp = 6.75km, 
ZF = 13.5km). As can be seen, greater stability of the pulse energy is achieved whenever the filter 
is placed near the point B of Figure 2, that is at the end of the negative feedback section. In 
detail there is an optimal filter position (ZF = 14.8km in the considered example) for which the 
energy evolution is a separatrix between growth (Zp = 18km, ZF = 36km, ZF = 54km) and decay 
(Zp = 13.5km, ZF = 6.75km, Zp = 4.5km).  Note that sliding the position of filters in the map 
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shifts both the bandwidth and chirp evolution, as seen in Figure 4. Moreover, besides the instability 
of the pulse energy, setting a filter in the positive feedback region also enhances the creation of 
wings in the pulse, which are detrimental for the interaction with nearby bits, as shown in Figure 5 
(negative feedback case) and 6 (positive feedback case). Indeed, the control of soliton interactions 
requires an additional fine tuning of the filter position within the negative feedback section of the 
SMF. As shown in Figure 7, observe that, by placing the filter near the initial part of the stable 
domain (point A), i.e., with Zp = 4.5km, the interaction-induced timing shifts in a pseudorandom 
sequence are strongly reduced. The stabilizing action is seen to be stronger by tuning the filter 
near point A rather than point B; moreover we observed interference with dispersive radiation near 
the middle of the negative feedback region. A reasonable trade off between energy and interactions 
stabilization leads to a best filter position nearby point A, while filters placed at point B have 
optimal features whenever the pulse energy control has priority over intersymbol interactions. 

In summary, we have shown that by tuning the position of a filter within a dispersion-managed 
map one may substantially increase the energy-stabilization action of the filters, and counteract 
the timing jitter induced by interactions. This work was partially sponsored by a contract between 
the University of Bourgogne and the CNET-France Telecom. 
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HeXLN: A 2-Dimensional nonlinear photonic crystal 
N. G. R. Broderick, G. W. Ross, D. J. Richardson and D. C. Hanna 

Optoelectronics Research Centre, University of Southampton, Southampton, SO 17 1BJ, UK. 
Phone: +44 (0)1703 593144, Fax: +44 (0)1703 593142, 

email: ngb@orc.soton.ac.uk 

In one dimension, the concept of quasi-phase 
matching nonlinear processes by periodically chang- 
ing the sign of the nonlinearity is well known. The 
advantages of materials such as periodically poled 
lithium niobate (PPLN) lies in their engineerabil- 
ity - nonlinear processes over a wide wavelength 
range can be phase-matched by writing the appro- 
priate nonlinear grating. In these crystals nonlinear 
processes are efficient when the momentum (phase) 
mismatch between the interacting waves equals one 
of the reciprocal lattice vectors (RLV) of the 1- 
D periodic crystal. Clearly this can only occur 
in either the co- or counter-propagating direction. 
Furthermore, for a strictly periodic lattice quasi- 
phase matching can only occur over a narrow wave- 
length range since the RLVs are discrete and peri- 
odically spaced in momentum space. In order to ob- 
tain broader bandwidths densely spaced RLVs are 
needed. Recently broadband phase-matching was 
obtained by using a Fibonacci lattice[l]. Fibonacci 
lattices are an example of 1-D quasi-crystals[2] and 
as such have a dense spectrum in momentum space. 
Fibonacci lattices can be thought of as being the 1- 
D projection of a regular 2-D crystal. 

Recently the idea of quasi-phase matching was 
extended to two-dimensions and the notion of a 2-D 
"nonlinear photonic crystal" was introduced[3]. In 
such a 2-D photonic crystal the nonlinear suscep- 
tibility changes periodically across the plane while 
the linear refractive index is constant. Such crys- 
tals would have many advantages over a 1-D peri- 
odically poled crystal, such as being angle rather 
than temperature tuned and being able to phase- 
match multiple wavelengths simultaneously. We re- 
port here what is to the best of our knowledge both 
the first example of hexagonally poled lithium nio- 
bate (HeXLN) and the first 2-D nonlinear photonic 
crystal to be fabricated. 

A thin layer of photoresist was first deposited 
onto the -z face of a 0.3mm thick, z-cut wafer, of 
LiNbOs, and then photolithographically patterned 
with the hexagonal array. The x-y orientation of 
the hexagonal structure was carefully aligned to 
coincide with the crystal's natural preferred do- 
main wall orientation : LiNbC*3 itself has a hexag- 
onal atomic symmetry and shows a tendency for 
domain walls to form parallel to the y-axis and 
at +/-60 .   Poling was accomplished by applying 

an electric field via liquid electrodes on the +/- 
z faces. The short period of the hexagonal array 
was 18.05/zm, designed for quasi-phase-matched 
frequency-doubling of 1536nm at a temperature of 
160 C. After poling, the sample was lightly etched 
in acid to reveal the domain profile. The hexagonal 
pattern was found to be uniform across the sam- 
ple dimensions of 14 x 7mm (x-y). Fig. 1 shows 
a magnified section of the HeXLN sample showing 
clearly the hexagonal honeycomb structure. Each 
hexagon is a region of domain inverted material - 
the total inverted area comprises 25% of the overall 
sample area. Lastly we polished two opposite sides 
of the HeXLN crystal allowing a propagation length 
of 14mm through the crystal. 

To investigate the properties of the HeXLN crys- 
tal we proceeded as follows. The HeXLN crystal 
was placed in an oven and mounted on a rotational 
stage which could be rotated by ±10 degrees while 
still allowing the light to enter. It was pumped by 
4ps, 200kW pulses obtained from a high power all- 
fibre chirped pulse amplification system [4] operat- 
ing at 20kHz. The output from the CPA system was 
focussed onto the HeXLN crystal using a 12cm fo- 
cal length lens. At low input powers the output was 
as shown in Fig. 2 and consisted of multiple output 
beams of different colours emerging from the crystal 
at different angles. In particular two 2nd harmonic 
beams emerged from the crystal at identical angles 
of 1.1° ±0.1° degrees from the remaining fundamen- 
tal which was, as expected, undeflected by the crys- 
tal. Then at slightly wider angles were two green 
beams (third harmonic of the pump) and at an even 
wider angle was a blue beam (the fourth harmonic). 
There was also a third green beam copropagating 
with the fundamental. As the input power increased 
the 2nd harmonic spots remained in the same posi- 
tions while the green light appeared to be emitted 
over an almost continuous range of angles rather 
than the discrete angles observed at low powers. 

The two 2nd harmonic beams can be under- 
stood by referring to the reciprocal lattice (RL) of 
a hexagonal lattice. The RL of a 2-D hexagonal 
lattice is another hexagonal lattice[5] only rotated 
by TT/2. Fig. 2 shows the first Brillouin zone for our 
crystal. Due to our setup the pump beam propa- 
gated along the TK direction while the closest recip- 
rocal lattice vectors (RLV) are in the YM directions 
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and it is these RLVs that account for the 2nd har- 
monic light[3]. Using Eq. (6) of Berger[3] the angle 
between the fundamental and 2nd harmonic should 
be 1.07° degrees which agrees well with our mea- 
sured values. The shortest RLV in the direction of 
propagation is \/3 longer and this RLV accounts for 
the sum frequency generation between the funda- 
mental and the 2nd harmonic. If the crystal were 
to be rotated by 30 degrees then the propagation 
angle would be along the TM direction and hence 
we would expect to see efficient 2nd harmonic gen- 
eration in the co-propagation direction (however at 
present this is not possible due to the geometry of 
the oven and the size of the HeXLN crystal). 

After filtering out the other wavelengths the 2nd 
harmonic (from both beams) was directed onto a 
power meter and the efficiency and temperature 
tuning characteristics were measured. These results 
are shown in Fig. 3. Note that the maximum ex- 
ternal conversion efficiency is greater than 60% and 
this is constant over a wide range of input powers. 
Taking into account the Fresnel reflections from the 
front and rear faces of the crystal this implies a max- 
imum internal conversion efficiency of 82% - ~ 40% 
in each beam. Note that, due to nonlinearity in the 
CPA system the pump bandwidth increased as the 
pump power increased limiting the conversion effi- 
ciency at higher powers. In addition, as the 2nd 
harmonic power increases the amount of back con- 
version increases which limits the efficiency as is 
seen in Fig. 3(c). 

In the 1-D case the temperature tuning curve of 
a length of periodically poled material is expected 
to have a sinc(T) shape and to be quite narrow - 
4.66° degrees for a 1-D PPLN crystal with the same 
length and period as the HeXLN crystal used here. 
However, as can be from Fig. 3(b), the tempera- 
ture tuning curve is much broader with a FWHM 
of ~ 25° degrees and it exhibits considerable struc- 
ture. To obtain the temperature tuning curve we 
collected the 2nd harmonic light from all angles and 
focussed it onto a silicon head detector. We be- 
lieve that the increased bandwidth is is due to the 
multiple reciprocal lattice vectors that are available 
for quasi-phase matching with each RLV producing 
a beam in a slightly different direction. Thus the 
graph in Fig. 3(b) should be considered as the sum 
of multiple sinc(T) shaped curves. Due to the lim- 
itations of the oven we were not able to raise the 
temperature about 205° degrees and hence could 
not completely measure the tail of the temperature 
tuning curve. At temperatures below 120° degrees 
the conversion efficiency is limited by photorefrac- 
tive effects. Note that temperature tuning is equiv- 
alent to wavelength tuning of the pump pulse and 
hence it should be possible to obtain efficient phase- 

matching over a wide wavelength range at a fixed 
temperature as suggested by the efficient conversion 
of the broadband pump pulses. 

Lastly we measured at the spectra of the light 
produced however due to space constraints only the 
fundamental is shown in Fig. 3(c). Fig. 3(c) shows 
the spectrum near 1533nm for horizontally (solid 
line) and vertically (dashed) polarised input light. 
As the phase matching only works for the verti- 
cally polarised light the horizontally polarised spec- 
trum is identical to that of the input beam and 
when compared with the other trace (dashed line) 
shows the effect of pump depletion and of back- 
conversion. Note that for the vertically polarised 
light the amount of back-converted light is almost 
equal to the residue pump which is as expected 
given the large conversion efficiency. Fig. 3(c) shows 
~ 8dB (85%) of pump depletion which agrees well 
with the measured value for the internal efficiency 
calculated using the average power. 

In conclusion we have fabricated what we believe 
to be the first example of a two dimensional non- 
linear photonic crystal in Lithium Niobate. Due to 
the hexagonal structure of the crystal quasi-phase 
matching is obtained for multiple directions of prop- 
agation with conversion efficiencies > 70%. Such 
HeXLN crystals could find many applications in 
optics where simultaneous conversion of multiple 
wavelengths is required. Alternatively a HeXLN 
crystal could be used as an efficient monolithic op- 
tical parametric oscillator. In the near future we 
will measure the angular dependence of the HeXLN 
crystal as well as the correlation properties of the 
two 2nd harmonic beams. 
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Figure 1: Pictures of the HeXLN crystal on both the large and small scales. The large scales pictures 
shows the excellent uniformity over the crystal while the fine detail can be seen in the small scale. 
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Figure 2: Schematic of the experimental setup, the output beam pattern and a diagram of the first 
Brillouin zone. For our geometry the pump propagates along the TM direction while phase-matching is 
achieved by RLV in the TK directions. 
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Figure 3: Efficiency and temperature tuning of the HeXLN crystal. Note that the maximum efficiency 
is > 60% and is limited by pulse walk-off and down conversion. The temperature tuning curve is much 
broader than a comparable 1-D PPLN crystal and posses multiple features due to the large number of 
reciprocal lattice vectors available. The last graph shows the pump for both horizontally (solid line) and 
vertically (dashed line) polarised inputs. Note that the effect of pump depletion and back conversion can 
be clearly seen. 
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Modulational instability (MI) in an optical fiber leads to the spontaneous break-up of a continuous 
wave (cw) excitation into a periodic train of ultrashort pulses, provided that the dispersion of the fiber 
is anomalous and the cw input power sufficiently high [1,2]. Owing to the simplicity of this ultrashort 
pulse formation process, the exploitation of MI has been considered in many studies for the realization 
of laser sources adapted to ultrahigh bit-rate optical transmissions. However, despite its simplicity, the 
MI process in fibers is difficult to control and presents, in this respect, some important drawbacks. For 
instance : - The generated pulse train repetition rate depends on the incident power level and is therefore 
subject to fluctuations. - cw operation cannot be achieved due to the low threshold of the competing 
stimulated Brillouin scattering (SBS) process. - The pulses generated by MI are superimposed on a 
complex background field, which is detrimental to their subsequent propagation in fiber. 

The first step towards the control of MI in fibers has been realized by Hasegawa who suggested 
in 1984 a configuration in which MI is induced by an initial amplitude modulation [3]. As confirmed 
in a beautiful experiment [4], the amplitude modulation frequency determines the generated pulse train 
repetition rate which no longer depends on the incident power level. The use of a passive fiber res- 
onator has then been suggested by Nakazawa et al [5]. In this configuration, a cw beam is injected into 
a fiber ring cavity. During the first round-trips in the cavity, sideband waves grow from noise due to 
MI gain. If the MI gain is larger than the cavity loss, oscillation of the MI sidebands can be sustained 
and steady-state pulse trains are generated. Once the pulse train is established, pump fluctuations cannot 
modify its repetition rate, since the pulse train itself acts as a seed for the next round-trip. Owing to this 
principle of operation, this simple device has been called MI laser. The steady-state patterns formed in 
the MI laser consist of dissipative structures that, from a theoretical point of view, are robust attractors 
of the corresponding infinite-dimensional nonlinear dynamical system. With respect to conservative MI, 
the MI laser is therefore advantageous in that it potentially offers a better control of the generated pulse 
trains. Note that this configuration of the MI laser fundamentally differs from the active cavity con- 
figuration described in Ref. [6]. As a matter of fact, the device described therein should not be called 
MI laser since the multiple spectral components emitted by this device are not generated by MI but are 
simply the result of the multimode nature of the laser. In this case, four-wave-mixing combined with the 
cavity losses only acts as a mode-locking mechanism in a process that is not related to MI [7]. 

Experiments on the MI laser have only been performed with low finesse cavities. Under these 
conditions, relatively high power is required to get MI oscillations and cw operation is not possible. 
However, it has been shown theoretically that the use of a high finesse cavity allows for low power 
operation with short fiber lengths [8]. cw operation can then in principle be achieved by means of an 
intracavity isolator to suppress SBS. The drawback of the high finesse cavities is that the dynamics of MI 
are strongly sensitive to interference effects between the pump and the cavity fields. On the other hand, 
this sensitivity to interference effects makes the system much richer. In particular, MI was shown to be 
possible in the normal dispersion regime [8] and the background field on which the generated pulse train _ 
is superimposed can be suppressed by destructive interferences [9]. 
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In our communication, we present the first experimental realization of a cw pumped MI laser. We 
have used for this purpose a 115 m-long all-fiber passive ring cavity made up of standard telecommuni- 
cation fiber (see Fig. 1). The cavity is pumped by a DFB fiber laser that emits a cw beam at X = 1555 nm. 
The pump beam is amplified up to 120 mW before being coupled into the cavity through a fused fiber 
coupler. The same coupler is used to extract the MI laser output signal that therefore interferes with the 
reflected part of the cw pump beam so as to cancel the background field on which the MI pulse train 
is superimposed. The input/output fiber coupler has a high intensity reflectivity coefficient of 90 % so 
that the cavity finesse can be made relatively high, F ~ 25. This improves the cavity field confinement 
effect and the effective nonlinearity of the device. However, while a high cavity finesse and a long cavity 
length both contribute to lower the MI threshold, it imposes stringent conditions on the coherence of the 
pump laser that must have a linewidth smaller than the cavity resonance width, (c/inL))/? ~ 70 kHz 
(L is the cavity length and n is the group index of the fiber). The DFB fiber laser used in our experiment 
easily meets this goal since it exhibits a linewidth of 1 kHz. An integrated fiber isolator is incorporated 
into the cavity. It rejects the backward travelling Stokes wave generated through SBS and prevents the 
cavity from operating as a Brillouin laser. In practice, the 40 dB isolation provided by our isolator has 
turned out to be insufficient. To completely suppress SBS in our cavity, we have then slightly phase- 
modulated the cw pump beam at a harmonic of the cavity free-spectral-range larger than the Brillouin 
gain bandwidth. Finally, an optical path piezoelectric modulator is used to control the cavity length 
interferometrically so as to maintain the cavity on resonance. Path fluctuations resulting from external 
mechanical and thermal perturbations are compensated by a servo-controller whose input signal is the 
intensity of the first MI sideband lobe that is measured by spectrally resolving the MI laser output signal 
on a diffraction grating. The operating point is selected by comparing this intensity with an adjustable 
reference level in such a way that the cavity detuning can be fixed and controlled. The inclusion of this 
servo-controller is one of the key ingredients that has allowed us to operate the MI laser under steady- 
state conditions for indefinite periods of time. It demonstrates that simple low frequency electronics 
is sufficient to control the interferometric nature of the intracavity processes and to generate ultra-high 
repetition rate cw pulse trains. 

Under these conditions, we were able to comfortably investigate the cw MI laser. In terms of the 
power at the cavity input, the oscillation threshold has been observed to be as low as 80 mW. This 
corresponds to an intracavity power of 510 mW when the cavity is on-resonance. Typical results are 
shown in Fig. 2 : (a) shows the spectrum and (b) the intensity auto-correlation trace measured at the 
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Figure 1: Experimental setup. 
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Figure 2: Output of the MI laser, (a) is the optical spectrum while (b) is the auto-correlation trace. 

output of the MI laser for a pump power of 100 mW. The optical spectrum exhibits a series of peaks 
separated by 0.46 nm corresponding to a repetition rate of 58 GHz. Let us notice that the harmonics are 
visible up to the fourth order despite the remarkably moderate pump power we used. The repetition rate 
of the laser was observed to be stable on a high resolution Fabry-Perot spectrum analyzer. The auto- 
correlation trace (b) confirms the generation of a deeply modulated pulse train at 58 GHz. The large 
modulation depth of the signal is due to the use of a high finesse cavity to host the MI process contrary 
to what was considered in the earlier experiment of Nakazawa et al [5]. As a matter of fact, numerical 
simulations performed with the experimental parameters show that the background of the output pulse 
train should be very close to zero and that the limited auto-correlation contrast seen in Fig. 2(b) only 
comes from the relatively poor mark-to-space ratio of the generated pulse train. Note finally that the 
theory of intracavity MI [8] shows that the repetition rate of the MI laser scales as (\ß2\L3r)~1/2 where ß2 

is the dispersion coefficient of the fiber. This scaling explains the relatively low repetition rate of 58 GHz 
observed in our experiment. The repetition rate can however be easily increased up to several hundreds 
of GHz by shortening the cavity and by taking advantage of the low dispersion coefficient of dispersion- 
shifted-fibers. 

In summary, by means of a high finesse fiber resonator, we have, for the first time, successfully 
operated a MI laser in the cw regime. Our experiment constitutes the first demonstration of MI in the 
cw regime and reveals that the MI process in fibers can be totally controlled. In particular, since the MI 
laser is in essence a quadruply resonant optical parametric oscillator, our experiment demonstrates that 
simple low frequency electronics can efficiently overcome the high phase-sensitivity of such devices so 
as to allow for low power operation. This opens up new possibilities for the application of MI to the 
realization of laser sources adapted to ultrahigh bit-rate optical transmissions. 
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Modulation Instability of Incoherent Beams in Non-Instantaneous Nonlinear Media 

M. Soljacic, M. Segev, T. Coskun, D. N. Christodoulides, A. Vishwanath, and Z. Chen 

Modulation Instability (MI) is a fairly common phenomenon in non-linear wave systems; it can typically be observed 
on top of a pulse that is very smooth compared to the other characteristic length scales of the physical system. Small noise 
perturbations grow on top of the pulse as the pulse propagates, draining energy from large wavelengths into smaller 
wavelengths. Eventually, the pulse disintegrates. This phenomenon has been observed in very many non-linear coherent 
wave systems. MI phenomena can be regarded as a precursor for existence of solitons. The recent demonstration of existence 
of incoherent solitons [4] led us to wander whether MI can be observed for incoherent waves also. In this article, we 
demonstrate analytically and numerically, [1] that MI can exist in systems of incoherent waves also. It exists in non- 
instantaneous nonlinear media, when the average phase fluctuation time across the beam (or between modal constituents) is 
much shorter than the response time of the medium. In this case, the nonlinear change in the refractive index depends only on 
the time average of the light intensity. Incoherent MI occurs when the value of the nonlinearity exceeds a threshold imposed 
by the degree of spatial coherence. We use analytical and numerical methods to study the properties of incoherent MI in a 
general self-focusing non-instantaneous medium. We solve the incoherent MI problem in closed form for input beams with 
Lorentzian angular power spectra, and arbitrary forms of nonlinearities. Then, we confirm our results with numerical 
simulations, and further study general cases of input beams along with propagation-evolution effects. 

The incoherent light we analyze is propagating in the z-direction, with its spatial coherence length being significantly 
smaller than its temporal coherence length; i.e., the beam is a partially-spatially-incoherent and quasi-monochromatic (the 
wavelength of light K is much smaller than each of these coherence lengths). The nonlinear material is non-instantaneous, 
that is, the nonlinear index change is a function of the optical intensity, time-averaged over the response time of the medium^ 
T, which is much longer than the coherence time of the light, tc. Assuming the light is linearly polarized and E{r,z,t) 

represents its slowly varying amplitude, we define B{rx ,r2,z)=<E* (r2 ,z,t)E(r{ ,z,t)> where the brackets denote 
the time average (taken over T). The equation for B, as derived from paraxial nonlinear wave equation, is [3]: 

dB   i 82B   inJaY e «. 
&~^=TU {w^y*1^)} B> (i) 

where co is the carrier frequency, k is the carrier wave-vector, n0 is the background refractive index, 5n is the tiny nonlinear 
modification to the refractive index, r=(ri+r2)/2 is the middle point coordinate, and p=rrr2 is the difference coordinate. 
B(r,p,z) is known as the spatial correlation function, and I(r,z)=B(r,p=0,z) is the time-averaged light intensity. Clearly, from 
the definition of B, we have the constraint B(r,p,z)=B*(r,-p,z). 

To study MI, we assume the incident light to have a uniform intensity, except for small intensity perturbations that 
also depend on r and z. Thus, B can be written as: B(r,p,z)=Bo(p)+B,(r,p,z), where B1«B0, B0(p) representing the uniform 
background, so the uniform background intensity is given by I0=B0(p=0). The dependence of 5n on r comes from B, so to the 
lowest order in Bb {5n(r1,z)-5n(r2,z)}=K{B1(r,,p=0,z)-B1(r2,p=0,z)}, where K=d[6n(I)]/dI evaluated at I0 is the'marginal 
nonlinear index. In the Kerr case (8n=yl), so K=y. Note that, because of time-averaging properties of the material, any random 
time-dependent perturbation, no matter how large, if it occurs on a time scale shorter than x, averages to zero; only time- 
independent perturbations lead to MI in our system. Therefore, linearizing Eq.(l) in Bj produces: 

9Ä     i&R     in,(co\2   f o P } 
dz ~T^tp=~trc)   ^(^7^=0,z)-A(-f,P=0,z)}4(P). (2) 

Up to this point, the discussion is general and applies for any correlation function B0(p). In what follows, we assume 
that B0(p) has a Lorentzian-shaped k-spectrum, because in this case, one can obtain closed-form analytical results. That is, we 

assume BQ(kx) = A/[kx
2 + £0], where for any F(p),  F(kx) = j^\dpF(p)Jk*P is the Fourier transform of F(p). In this 

-co — 

case the normalized angular power spectrum of the source is also Lorentzian (i.e., GN{6) = (0O / ri){92 + (92)"1 where the 

angle 6 = kxIk is measured in radians). The background uniform intensity is then I0=7tA/kx0. The physically acceptable 
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eigenmodes of the Eq.(2) can be written as Bi(r,p,z)=exp(gz)exp[i(ar+<|>)]L(p) +exp(g*z)exp[-i(ar+<|>)]L*(-p), wiere <|> is an 
arbitrary real phase that carries no physical significance, a is real and g is associated with the MI gain. These modes 
automatically satisfy Bi(r,p,z)=Bi*(r,-p,z). For each a one can obtain a set of modes L(p) needed to describe any 
perturbation Bi. We look for the modes that grow: those with g that is not pure imaginary. By assuming a Lorentzian k- 

spectrum B0(kx) = AI[kx
2 + kxQ] in Eq.(2), after a few lines of algebra [1] we get the following result for the mode that 

grows, if g is bigger than zero: 

S. 
k 

-(kx0/k)(\a\/k)+(\a\/k). 
Ifdn 

n, o 
(3) 

where in the above expression K represents the marginal nonlinear index change because of the constant background 
intensity, and as previously noted kx0/ k = 0Q. The result of Eq.(3) clearly demonstrates that the MI growth rate is 

substantially affected by the coherence of the source. Moreover, in the limit kx0 -> 0, it correctly reduces to the well known 
result of coherent MI. Even more importantly, Eq.(3) indicates that for a given degree of coherence, MI occurs only when the 

2 
quantity KIO exceeds a specific threshold. More specifically, incoherent MI exists only if Kl   I W.  > 6  , whereas when 

2 
id   In    < 6„ , MI is entirely eliminated. In other words, the more incoherent a source is, the larger KI0 (marginal index 

change) that is required to induce MI. Computer simulations suggest that this trend is universal and is independent of the 
angular power. Having found g(a), one can then easily determine the intensity of the perturbation 

Ii(r,z) = Bl(r,p = 0,z). 

To apply the result of Eq.(3) for Kerr nonlinearity 5n(r)=yl, we set K=y; to illustrate this result, we present it 
graphically in Fig. 1. In this case, Kl0=8n, so the larger the non-linear index change, the stronger MI. 
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Figure 1: Incoherent MI for Kerr nonlinearity: growth rate of perturbations vs the perturbation transverse 
wavelength. ^=500nm in vacuum, and n0=2.3. The background uniform intensity has a Lorentzian angular 
power spectrum of width 0O. The nonlinear index change due to the background is given by 5n. In the left 
plot, we show gain curves for a few 8n's, with a fixed 0O=O.OO96 rads; the dashed line in the plot has 8n 
marginally small enough so that MI just disappears. In the right plot, we show gain curves for a few 90's, 
with a fixed Sn=0.0005; the dashed line in the plot has 90 marginally large enough so that MI just disappears. 

To verify our analytical findings and to further explore incoherent MI, we use computer simulations. In particular, 
the intensity/correlation MI dynamics of Eq.(l) are investigated by means of the coherent density approach [2]. The power 
Fourier spectrum of the intensity fluctuations growing on top of the constant incoherent background is used to identify the 
spatial frequencies that exhibit maximum gain. Figure 2 shows the evolution of the power spectra of the intensity fluctuation 
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when the angular power spectrum of the source is Lorentzian, and the nonlinearity is Kerr type. In this example, 

(90=9.6mrads, yl0=5*10"4, n0 =2.3, and A,=500nm. These results indicate that maximum MI gain is attained at a normalized 

spatial frequency a/k^O. 0135, with a peak value of g=1.37mm"', both in an excellent agreement with that predicted from 
Eq. (3) as also depicted in Fig.l for the same set of parameters. Note that in this case the spatial frequency where maximum 
MI gain occurs remains invariant during propagation. After a certain distance (in this example after 9 mm) additional sub- 
bands emerge as in the case of coherent MI. Physically, this effects is "secondary" MI: modulation instability for which the 
first amplified instability peak acts as a "pump" and plays the role of B0. Numerical simulations also confirm another 
prediction of the analytic result: the existence of a threshold for incoherent MI. The numerical study can also provide 
information about the evolution of incoherent MI from input beam of angular power spectra different than the Lorentzian 
shape. 
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Figure 2: Power spectrum of an incoherent beam during propagation in Kerr nonlinearity when the source 
power spectrum is Lorentzian with 60=0.0096rads and 5n=0.0005. 

As described in [1], our analytical approach can be used to obtain analytical understanding of MI with an arbitrarily 
shaped angular power spectrum, but some of the integrals involved typically have to be solved numerically- for the 
Lorentzian case, one can obtain closed-form solutions as we did. For example, when we apply this idea for input beams with 
Gaussian power spectra, we also obtain an excellent agreement between our analytical approach, and our numerics The 
analytic expansion here also captures the fact that there always exists a threshold KI0 for incoherent MI to occur. 

To conclude, we have shown that modulation instability exists in partially incoherent systems, and that its existence 
requires the marginal nonlinear index change times the background intensity, KI0 to be above a well-defined threshold There 
is no similar threshold in the coherent Ml case! The KI0 is determined by the spatial degree of coherence (angular power 
spectrum). Jo emphasize the fundamental importance of this result, we note that partially incoherent light is a system in 
which the quasi-particles" are only weakly phase-correlated (with the extreme case being a fully incoherent system in which 
the quasi-parücles are fully non-correlated). Yet this weakly-correlated system exhibits features characteristic of a phase- 
transition: above a well-defined threshold, it collapses and forms "clusters" (filaments). From this view point, the threshold 
value plays the role of the Curie temperature, and, like in any phase transition effects, small fluctuations grow rapidly What 
we have done here is to identify MI in an incoherent system, which is fundamentally a system in which repulsion forces are 
much weaker than the attraction forces. Since nature is full of nonlinear systems in which incoherent wave-packets exist (e g 
optics, and plasma physics), we expect that these systems will exhibit MI as well. We therefore believe that this work lays the 
foundations for instabilities and pattern formation in any nonlinear incoherent system in nature. From all of these arguments 
one thing is obvious: there are many more new and exciting features that are intimately related to incoherent modulation 
instability, and are yet unraveled and call for future research. Finally, we want to note that we have very recently obtained 
first preliminary experimental proof for existence of threshold incoherence in systems involving incoherent ML 
References 

(1) M. Soljacic et al; submitted to Phys. Rev. Lett. (July 1999). 

(2) D. N. Christodoulides, T. H. Coskun, M. Mitchell and M. Segev, Phys. Rev. Lett. 78, 646 (1997); ibid 80, 2310 (1998). 

(3) V. V. Shkunov and D. Z. Anderson, Phys. Rev. Lett. 81, 2683 (1998). 

(4) M. Mitchell and M. Segev, Nature (London) 387, 880 (1997). 



PD4-1 

Observation of quadratic vortex solitons 

Paolo Di Trapani, Walter Chinaglia, and Stefano Minardi, 
University oflnsubria, Como, Italy, Ditrapan@fis. unico. it 

Gintaras Valiulis 
Vilnius University, Vilnius, Lithuania,Gintaras. Valiulis@ff.vu.lt 

Spatial solitary waves in quadratic nonlinear 
media are currently attracting the attention of many 
researchers, both for their beauty and unique potential 
of performing ultrafast, digital-like, all-optical signal 
processing. Since their discovery in 1994,' however, 
all the experimental observations have been limited to 
the lowest-order case of the bright solitons, while no 
data are available for the higher-order or vortex 
solitary waves (VS). Actually, the bright soliton can be 
considered as a quite common event, since this is the 
final state toward which any beam sufficiently focused 
and intense should spontaneously evolve under 
parametric interaction. On the contrary, quadratic VS 
are supposed to be very rare objects to be found 
because of the well known modulation instability of 
the background embedding the core, instability which 
breaks up the beam into bright solitons2 thus 
preventing the achievement of the diffraction-free 
dark-core propagation (VS regime). Rare but precious, 
especially for the possibility of performing algebraic 
operations at THz rate by suitably playing with their 
"quantized" topological charge.3 This justify the 
efforts of many researchers to find out the way to beat 
this instability. One possible solution recently 
proposed is that of adopting a weak self-defocusing 
Kerr contribution to the nonlinear interaction4. We are 
not aware of any experiment done in this direction. 

In this work we propose a different approach for 
achieving the background stabilization and the VS 
regime, based on the effect of the transverse walkoff in 
phase-mismatched second-harmonic (SH) generation. 
In fact, at large positive Ak the X(2) cascading mimics 
the Kerr self-defocusing nonlinearity, which is known 
to support VS formation.5 The peculiarity of the X(2) 

case comes from the weak SH field, which actually 
controls the growth of the modulation instability. In the 
case of walkoff, the spikes which are formed tend to 
propagate at the walkoff direction, due to their large 
SH energy content. For sufficiently small beams, they 
will soon move out of the beam. This spike expulsion 
should work as a self-quenching mechanism for the 
modulation instability itself (see the discussion below). 

In the experiment, the nonlinear crystal which we 
selected for the VS formation is a 30mm LBO cut at 
0=90° <(>=150 and operated in type I phase matching. 
This cut was chosen in order to have the suitable 
walkoff angle (pC0.5°, close to normal incidence) for 
the background stabilization. At the selected 
temperature of 130° and at the chosen FH wavelength 
of 970 nm the self-defocusing and self-focusing 
interaction occurred for § angles smaller and bigger 
than 14.4°, respectively. 

Fig. 1. a): input vortex; b): linear output; 
c-d): nonlinear output in self'defocusing., FHandSH 
e-f): nonlinear output in self focusing., FHandSH 

0  100 200 300 400 500 600 700 
X coordinate Tumi 

0  100 200 300 400  500 600  700 

Y coordinate [u.m] 

Fig.  2.   Transverse x and y profiles. Dotted: input; 
dashed-dotted: output linear; full: output nonlinear. 
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Fig. 2. Transverse x and y profiles. Dotted: input; 
dashed-dotted: output linear; full: output nonlinear. 
The most of the work has concerned the generation of 
the suitable vortex beam for the VS excitation, that 
means sufficiently large, flat-top, intense, with a very 
narrow-core singularity and finally at a wavelength 
which unfortunately can not be that directly available 
from our Ndrglass laser systems (or harmonics). This 
charge-1 vortex was than obtained by single-pass 
parametric amplification of a weak vortex beam, this 
one being generated by a fork hologram diffracting the 
tunable radiation from a commercial 3-pass parametric 
quantum-noise amplifier. All the amplifiers are pumped 
by different portions of the same lps green pulses from 
a frequency doubled, CPM Nd:glass laser. The final 
parametric amplification of the vortex was performed 
in a walkoff-free type II LBO (tuning range limited to 
960-980 nm), the walkoff absence being needed for the 
amplification of a vortex with a sufficiently small core 
(in non soliton regime) and the type II operation to 
narrow the gain bandwidth and to prevent undesired 
cascading effects due to close-to-degeneracy operation. 

In the first part of this report we provide the 
experimental results supporting the claim of the 
achievement of the VS regime. Fig. la is a snapshot of 
the input FH vortex beam, as it appears at the entrance 
face of the SH-generator LBO crystal. The 
corresponding x and y transverse-coordinate profiles 
are given by the dotted lines in Fig. 2 top and bottom, 
respectively. The input dark-core singularity has a 
slightly elliptical shape with FWHM diameters 
dx=34um and dy=31um; the embedding beam is about 
0.45mm wide, with a pulse-energy content of 40 uJ 
(average intensity of about 30 GW/cm2). The effect of 
the linear propagation of the vortex inside the crystal, 
whose length is 10 times larger than the Rayleigh range 
of the input core, is shown by the low-intensity profile 
in Fig. lb, taken at the crystal output face (dashed- 
dotted profiles in Fig. 2), whose core diameter are 
dx=200um and dy=210p.m. The achievement of the 
diffraction-free propagation of the core (VS regime) is 
evident from the high-intensity output profile in Fig lc 
(full lines in Fig. 2), exhibiting a perfectly round core 
of FWHM diameters dx= dy=52um. This results is 
obtained for self-defocusing cascading X(2) effect, at Ak 
=+20cm_1 and p=0.47°. The corresponding SH field is 
given in Fig. Id. The arrow indicates the position of the 
VS singularity, and its direction that of the transverse 
walkoff. The conversion efficiency is here below 3%. 
The process of VS formation appeared to be a very 
stable phenomenon, being the results quite insensitive 
to small changes in intensity or Ak. A completely 
different behavior is observed at the self-focusing side 
of the tuning, characterized by beam breakup into 
several solitary waves. Typical examples are the FH 
and SH output profiles shown in Figs, le and If, 
respectively, obtained at Ak = -20cm"1 and for an input 
intensity twice lower than in the self-defocusing case. 

In order to verify the impact otf the walkoff we have 
repeated the measurements for the case of a walkoff- 

free 30mm type I LBO SH generator (cut at 6=90° 
<|>=0o), for similar input conditions except for the 
wavelength, here set to 1055nm. For all Ak's in the 0- 
150cm" range we always observed beam break-up 
without any significant reduction in output core 
diameter (respect to the linear case). What we have 
obtained is consistent with the result recently presented 
by Petrov et Al? In fact, they have observed bthe bright 
soliton formation using a KTP crystal, whose walkoff is 
very weak. These results thus confirm the strategic role 
of the walkoff to achieve VS formation. 

In the second part of this work we investigate the 
stability of the achieved VS regome. To this end we 
report our preliminary numerical results addressing the 
features of the beam-profile evolutions at larger 
distances than those achievable in our experiments. 
Calculations were done in the monochromatic 
approximation and neglecting the Kerr nonlinearity and 
the internal scattering inside the crystal. The input 
conditions and parameters (Ak=100cm"\ Intensity=100 
GW/cm2, p=0.6°) are close to those in the experiment, 
if proper rescaling is performed. Figs. 3a and 3b show 
the FH vortex-beam dynamics in the absence and in the 
presence of walkoff, respectively. Without walkoff, a 
number of solitary-wave spikes keep growing close to 
the core region (due to larger input intensity), severely 
distorting the beam and preventing the VS formation. 
With walkoff, on the contrary, a longer distance is 
needed for the spikes to grow. Moreover, they appear 
already far form the center and move soon outside the 
beam, where their growth is quenched due to the 
absence of energy refilling. In this case the spikes do 
not appreciably interfere with the core-region dynamics 
and the VS regime is well maintained. Fig. 3c shows 
the evolution of the FWHM core diameter for the linear 
case and for the nonlinear with and without walkoff. 
Fig. 3d show the different transverse velocities of the 
VS core and of the (largest) spike in the beam, due to 
the different SH energy content. 

In our experiment, we were able to obtain the 
formations of the spikes within our 30 mm crystal only 
by operating it at very small (positive) Ak, for the given 
intensity.     By    suitably    optimizing wavelength, 
temperature and angle in order to achieve the maximum 
walkoff (p=0.6°) we obtained the FH output profile 
shown in Fig. 4, which exhibits a VS formation 
(output core diameters dx=33um dy= 46um) with a 
single spike exiting the beam. We like to mention that 
the spikes tend to be formed on the bottom side of the 
two bright stripes evident in the SH profile shown in 
Fig. Id . 

In the last part we investigated the impact that the 
finite size of the external beam has on the vortex 
dynamics. To this end we repeated the experiment with 
a vortex with the same core size, but with an 
embedding beam 4-5 times smaller in diameter. For 
self-defocusing phase mismatch we were not able to see 
any VS formation, due to the fast beam diffraction. On 
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changes in intensity or Ak, since the beam tend to break 
up in several lobes. These result, which we obtained 
also  in numerical  experiment,  has to  be  probably 

attributed to the effect of the self focusing on the whole 
beam, whose intensity gradient is comparable to that of 
the core. 

15        30       45 

Z, mm 
30        45        60 

Z, mm 
75 

c) d) 
Fig. 3. Numerical results, a) Vortex-profile dynamics at large distances without walkoff; b) with walkoff p-0.7". 
c) Core diameters for linear (squares), nonlinear without walkoff (dotts) and nonlinear with walkoff (circles) dynamics. 
Left: input-beam profile; right, from top to bottom: output-beam profile linear propagation, nonlinear without walkoff, 
nonlinear with walkoff. d)Transverse positions of the VS core (empty squares) and the largest spike (filled squares) in 
the case of walkoff. 

100    200    300    400    500    600    700 
X coordinate [u.m] 

Fig. 4. Vortex soliton formation in consitions of large 
walkoff and small phase mismatch, with a single spike 
exiting the beam. 
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Optical solitons can be formed in the presence of the optical Kerr effect. They were demonstrated both in 
the time domain as stable light pulses [1], and in the space domain as self-guided beams in a slab 
waveguide [2]. Whenever a light beam or pulse are permitted to diffract or disperse in more than one 
transverse direction, they are expected, according to a slowly varying amplitude analysis, to be unstable. 
Focusing of a beam in a bulk medium above a certain power threshold may not stop until damage to the 
medium occurs. A light pulse propagating in an anomalously dispersing planar waveguide is another case 
where light has two dimensions to diffract in. Such a pulse should exhibit spatio-temporal collapse [3]. 
Slowly varying amplitude analysis suggest catastrophic collapse, however full wave calculations show that 
phase defects which are produced can arrest the collapse [4]. 

It has been proposed that focusing of such light pulses may be balanced due to their hybrid spatio-temporal 
nature and form stable light-bullets [3]. Such stable light bullets were suggested to result from a few 
mechanisms. Some examples are saturation of the Kerr nonlinear refractive index, nonlinear absorption or 
inclusion of non-paraxial corrections to the slowly varying amplitude approximation. Recently, stable 
spatio-temporal pulses have been demonstrated in a material with cascading of quadratic nonlinearity [5]. 
The stability in this case is a result of the saturation nature of the nonlinearity. The propagation of spatio- 
temporal pulses in a Kerr medium has been demonstrated, but only in the case of normal group velocity 
dispersion where solitons and light bullets are not supported [6]. 

We report here the results of the first experiment of propagation of light pulses in a planar waveguide in the 
anomalous dispersion wavelength regime. Our source pulses are 60fs long at a wavelength of 1.52um with 
a repetition rate of 1kHz. The maximum in-coupled peak power is about 10MW although for our 
experiment we use much less power. The waveguide is a single-mode step planar Silica waveguide, 5cm 
long and 1cm wide with no significant linear losses. We control the input beam profile by using cylindrical 
optics. The output facet is imaged onto an infrared camera and sampled and analyzed in a computer. The 
output pulse length is measured by using an auto-correlator in a non-collinear setup. 

The important parameters in this experiment are the diffraction and dispersion lengths. They are defined as 

LDF =kfiW* and LDS =T*/ß2  respectively, where W0 and T0 are the spatial and temporal widths. 

* Permanent Address: IFTO, Fsu-Jena, Jena, Germany 
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Fig. 1: Spatial and temporal widths of the (a) symmetric and (b) asymmetric pulses as a function of the in-coupled 
power. 

The input pulse length of 50-60fs corresponds to a dispersion length of about 12cm. In order to achieve a 
similar diffraction length, the spatial width should be about 175Lim.We used two beam sizes in our 
experiments, one 190jim wide, having lengths ratio close to 1:1 and a narrower beam, about 30|im wide, 
with a ratio of about 1:6 between the dispersion and diffraction lengths. The relatively short waveguide, 
only about a half dispersion length, is not a limitation in this experiment, because the dominant distance is 
the nonlinear length, which is about 0.5mm for the typical power used. We find the pulse to contract during 
propagation, while reducing its dispersion length considerably. 

The output pulse length and beam width, for the two input beam sizes, as a function of the in-coupled 
power are presented in Fig. 1. Apparently, the pulse shrinks with increasing power in both directions until 
reaching a minimum value, and then it starts to expand. For the asymmetric case (1:6 ratio), in the spatial 
direction, contraction is fast and expansion is slow whilst it is the opposite in the temporal dimension. In 
the case of the symmetric pulse (1:1 ratio), contraction and expansion in both dimensions look more 
uniform. In the symmetric case, a pulse of 190umX50fs is compressed to 30LimX30fs. 

While we do observe temporal contraction of the pulses, the symmetric case is expected to contract 
symmetrically in both directions. We suspect that our temporal measurements are limited by the setup. This 
is suggested by the shallow and flat minimum of the temporal width data. Spectral measurements of the 
light emerging from the sample suggest that the pulses focus temporally to about 15fs whilst our shortest 
temporal measurement is 30fs. In Fig. 2 we present a comparison between the spectra main features of the 
two kinds of input pulses. The data is re-scaled to the power where the minimal widths are achieved. Fig. 
2a shows the Raman shift of the pulse spectrum center and Fig. 2b shows the spectrum broadening due to 
self-phase-modulation (SPM). These two nonlinear effects suggest that the nonlinear action is much 
stronger in the focusing of the symmetric pulse. Therefore, we can assume that a symmetric pulse contracts 
in time more than a 1:6 ratio pulse. The actual spectrum of the output light beyond the minimal width 
power (not shown here) expands on a linear power scale over more than 600nm. 
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Fig. 2: (a) Raman shift of the central wavelength and (b) Self-phase-modulation induced broadening on the pulse 
spectra as a function of power for the two kinds of pulses. The power is re-scaled such that a unit value corresponds 
to the maximal pulse compression. 

We note that along the range of 25-30jxW of average power for the symmetric case, the pulse dimensions 
remain almost unchanged. We do not know whether this is due to the above mentioned limitations in our 
set-up. However, also the Raman shift and SPM broadening are rather constant in this range. 
These results suggest that there is a stable regime where light bullets may exist. Above the stability range, 
the pulses start to expand rather than to collapse as predicted by the slowly varying amplitude theory. A 
simple explanation can be that the pulse is self-focusing and the focal point is moving backward when the 
power is increased, until it reaches the output facet. When the power is further increased, the focus enters 
the waveguide. For a range of intensities the pulse retains its shape, but beyond this range, it expands. We 
know that no damage was done to the waveguide because these results were reproducible in consequent 
experiments. 
In conclusion, we observed for the first time a simultaneous contraction of light pulses in time and space as 
the result of Kerr nonlinearity action. Although we have difficulties in measuring pulses of such an ultra 
short duration (about 3 optical cycles in this wavelength), the contraction is evident, and probably reaches 
the size of about 30|imX15fs in the symmetric case. Due to the fast increase in peak power of the focusing 
pulses, we observed strong effects on their spectrum. At high power, the spectrum expands over more than 
600nm on a linear power scale. 
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High speed optical communication systems require ultrafast all-optical switching and processing. 
These functions are going to be implemented by controlling optical signal pulses by optical 
control pulses. The interaction of signal and control pulses is mediated by optical nonlinearities. 
Because of its fast response time, a preferred nonlinearity is the optical Kerr effect. All-optical 
switching has been demonstrated with the Kerr nonlinearity in silica glass fibers for many 
different schemes. However, the Kerr nonlinearity in silica fibers is relatively small (n2»2.8xl0'16 

cm2/W), making it inefficient for compact and low-threshold integrated photonic circuits. 
Therefore, novel nonlinear materials are required that combine a strong Kerr nonlinearity with 
low linear and nonlinear losses at the 1.55 um communication wavelength. From an application 
point of view, glasses are particularily attractive allowing for a relatively simple, low-cost 
fabrication of integrated all-optical circuits. 

Chalcogenide glasses are among the most promising candidates for use as a high Kerr-nonlinear 
switching material. Nonlinear refractive indices up to 80 times higher than in silica glass have 
been reported in chalcogenide glass l. Bandgap engineering is expected to yield even higher 
values in m, while keeping two photon absorption and the corresponding figure of merit (FOM) 
at acceptable levels.2'3 While all-optical switching has been shown in 1 m long chalcogenide 
glass fibers ', in planar chalcogenide waveguides, nonlinear phase shifts only up to n/2 have 
been demonstrated.4 

In this paper, we present experimental results for large nonlinear phase shifts, well above TC, using 
ultrashort pulses propagating along singlemode waveguides. The guides are written in 
chalcogenide glass films by photodarkening.3 All results shown are based on the chalcogenide 
glass compound Geo.25Seo.75- Recently, its Taue bandgap was measured at 2.06 eV.3 The linear 
refractive index was determined to be at no = 2.4 at 1.55 (am by ellipsometry. From a bulk 
Geo.25Seo.75 glass, a 1.9 urn thin film was deposited by pulsed laser deposition on a Si02/Si 
substrate. After rapid thermal annealing of the film at 220°C, singlemode channel waveguides 
were written into the chalcogenide film by photodarkening through an amplitude mask with 3 urn 
wide open channels.3 The film was exposed for one hour to 100 mW/cm2 of laser radiation at 
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532 nm. Finally, both ends of the guides were carefully cleaved resulting in 2.8 cm long 
waveguides. A schematic of one photodarkened chalcogenide waveguide is shown in Fig. 1. 

Photodarkened channel waveguide 

S Geo.25Seo.75 (1.9 urn) 
&* ■—■ iiyjw&^- 

■■•v ;..*• .-■ 

^  Silica glass (15 um) 

Fig. 1: Schematic ^dK/S^SSSBU^^   /S      Silicon 
of one of the 
photodarkened 
waveguides. 

In order to investigate nonlinear pulse dynamics in one of the channel waveguides, nearly 
transform limited 270-fs pulses were coupled into the guide using a 40x microscope objective. 
Pulse energies ranged up to 1.04 nJ in front of the input facet at a repetition rate of 13.5 MHz. 
The overall input-to-output transmission was at 13%, including a 19% coupling efficiency and 
31% Fresnel losses at the two interfaces. Waveguide intrinsic absorption and scattering losses are 
small garanteeing a nearly uniform pulse energy along the waveguides. 
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Figs. 2(a)-(d): Spectra measured at the waveguide output for different launched pulse energy. 

Figs. 2(a), (b), (c), and (d) show the pulse spectra after propagation along the 2.8 cm waveguides 
for incident pulse energies of 16,185, 740, and 1040 pJ respectively. A high aperture optical 
fiber was placed at the waveguide output so that it captured only a small portion of the 
transmitted light. Its spectrum was subsequently measured using an optical spectrum analyzer.   - 
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The output spectrum of the low energy pulses (Fig. 2(a)) corresponds to the input spectrum 
centered at the wavelength X = 1550 nm with a spectral width of 9.3 nm (FWHM) assuming a 
sech-shaped spectral envelope. Increasing the energy results in significant spectral broadening as 
well as in an oscillatory structure as expected from self phase modulation.5 Spectral asymmetries 
with respect to the center wavelength may be attributed to intrapulse Raman processes.6 The 
Raman gain is expected to scale with n2 compared to silica glass.7 Due to the small pulse width 
used in our experiment intrapulse Raman scattering is likely to be observed. By comparison to 
numerical simulations, the maximum nonlinear phase shift at the pulse peak intensity is 
estimated to be at 3.5 TC in Fig. 2(d). Assuming an effective area of 8 nm2 in accordance to mode 
field calculations, we obtain an approximate value for the nonlinear index of n2 = 1.5 x 10~14 

cm2/W corresponding to about 54 x n2(Si02). This value is within the same order of magnitude 
as previous Z-scan measurements on Geo.25Seo.75 bulk samples3 and also agrees with theoretical 
estimates.2 

In order to assess the impact of nonlinear absorption, we recorded the output energy as a function 
of the input energy. As shown in Fig. 3, the high-energy transmission deviates only slightly from 
a linear fit obtained from the low energy data. If we are modelling the deviation as a two-photon 
absorption (TPA) process, the TPA coefficient is extracted to be a2=5.3xl0"12 cm/W where a 
Gaussian spatial and temporal profile of the pulses has been taken into account.8 Defining a 
figure of merit FOM=n2/(a2A.), with all-optical switching possible for F0M>1, we obtain 
FOM=18. This high figure of merit clearly demonstrates the potential of the planar chalcogenide 
waveguides for all-optical switching devices. We are exploring other chalcogenide compounds 
with the bandgap adjusted slightly above twice the photon energy, hence promising an order of 
magnitude improvement in n2. 

150 

>. 100 

Fig. 3: Output energy 
versus input energy. 

a c « 
Q. 
3 o 

50- 

- 

O   data 

J>^ 1  

400 800 

Input energy (pj) 

1200 

M. Asobe, H. Itoh, T. Miyazawa, and T. Kanamori, Electron. Lett. 29, 1966 (1993). 
2 M.E. Lines, J. Appl. Phys. 69, 6876 (1991). 
3 S. Spalter, G. Lenz, H.Y. Hwang, J. Zimmermann, S-W. Cheong, T. Katsufuji, M.E. Lines, and R.E. Slusher, 
Nonlinear Guided Waves and their Applications Topical Meeting, (Optical Society of America, Washington, DC 
1999), paper ThD38. 
4 K. A. Cerqua-Richardson, J.M. McKinley, B. Lawrence, S. Joshi, and A. Villeneuve, Opt. Mat. 10, 155 (1998). 
5 G. P. Agrawal, Nonlinear fiber optics, (Academic Press, San Diego, 1995). 
6 F.M. Mitschke and L.F. Mollenauer, Opt. Lett. 11, 659 (1986). 
7 M. Asobe, T. Kanamori, K. Naganuma, H. Itoh, and T. Kaino, J. Appl. Phys. 77, 5518 (1995). 
8 W.L. Smith, CRC Handbook of Laser Science and Technology, M.J. Weber, ed. (CRC Press, Cleveland, Ohio, 
1986), Vol. 3, Pt. 1. 



Nonlinear Guided Waves and Their Applications Topical Meeting 
KEY TO AUTHORS 

Aitchison, J. Stewart, PD5 

Bar-Ad, Shimshon, PD5 
Broderick, N.G.R., PD1 

Chen, Zhigang, PD3 
Cheong, S-W., PD6 
Chinaglia, Walter, PD4 
Christodoutides, Demetrios N., PD3 
Coen, Stephane, PD2 
Coskum, Tamer, PD3 

Di Trapani, Paolo, PD4 

Eisenberg, Hagai, PD5 

Haelterman, Marc, PD2 
Hanna, DJ., PD1 
Hwang, H.Y., PD6 

Katsufuji, T., PD6 

Lenz, G-, PD6 

Minardi, Stefano, PD4 
Morandotti, Roberto, PD5 

Peschel, Ulf, PD5 
Potashnik, Orit, PD5 

Richardson, DJ., PD1 
Ross, Duncan, PD5 
Ross, G.W., PD1 

Segev, Mordechai, PD3 
Silberberg, Yaron, PD5 
Slusher, R.E., PD6 
Soljacic, Marin, PD3 
Spalter, S., PD6 

Valiulis, Gintaras, PD4 
Vishwanath, Ashvin, PD3 

Zimmermann, J., PD6 





Nonlinear Guided Waves and Their Applications 
Technical Program Committee 

General Chairs: 
David J. Richardson, Univ. of Southampton, UK 
Stefan Wabnitz, Univ. de la Bourgogne, Dijon, France 

Program Chairs: 
J. Stewart Aitchison, Univ. of Glasgow, UK 
Falk Lederer, Univ. of Jena, Germany 
Mordechai Segev, Princeton Univ., USA 

Category 1: Nonlinear Fiber Effects and Temporal Solitons 
Y. Kodama, Ohio State Univ., Columbus, USA, Chair 
G. Agrawal, Univ. of Rochester, USA 
P. Mamyshev, Tyco Submarine Systems, USA 
T. Georges, CNET, Lannion, France 
W. Forysiak, Aston Univ., UK 

Category 2: Spatial Solitons and Transverse Effects 
Yu. Kivshar, Australian National Univ., Canberra, Australia, Chair 
Y. Silberberg, Weizmann Inst, Rehovot, Israel 
L. Torner, Universität Polit. Catalunya, Barcelona, Spain 
W. Torruellas, Washington State Univ., Pullman, USA 

Category 3: Nonlinear Periodic Structures and Cavities 
L Lugiato, Univ. of Milan, Italy, Chair 
S. Trillo, Univ. of Ferrara, Italy 
J. R. Tredicce, Univ. of Nice, France 
M. de Sterke, Univ. of Sydney, Australia 
P. St. J. Russell, Univ. of Bath, UK 

Category 4: Frequency Conversion and Switching 
A. Barthelemy, Univ. of Limoges, France, Chair 
M. Asobe, NTT, Japan 
P.G. Kazansky, Univ. of Southampton, UK 
P. Di Trapani, Univ. of Milan, Italy 

Category 5: Materials and Fabrication 
A. Vilieneuve, Univ. of Laval, Quebec, Canada, Chair 
W. Sohler, Univ. Paderborn, Germany 
T. Kaino, Tohoku Univ., Japan 
F. Laurell, Royal Inst. of Tech., Sweden 
P. LiKamWa, Univ. of Central Florida, USA 

*Gregory Magel, Texas Instruments Inc., USA 

* OSA Technical Council Representative 


