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Final Report 
Coherent Structures and Chaos in Beam Plasmas 

AFOSR Grant No. F49620-97-1-325 

This report summarizes our research carried out under the auspices of the above 
referenced grant from May 1, 1997 to December 31, 1999. The goal of this research is to 
investigate coherent structures and chaos in beam plasmas in regimes relevant to the 
development of advanced microwave/millimeter wave sources. Preprints and reprints 
describing detailed findings in recent investigations are provided in a compendium of 1997- 
2000 reprints in refereed journals at the end of this report. The following is a brief summary 
of our research accomplishments in selected areas. 

1. Mechanisms of Chaotic Electron Motion and Beam Halo Formation [1-3] 

An important issue in the design of HPM tubes is how to prevent high-intensity 
relativistic electron beams from forming halos because they cause electron beam losses and 
subsequent plasma formation, rf pulse shortening and rf breakdown [4]. Under the auspices 
of this grant, investigations were conducted of mechanisms by which chaotic particle motion 
and halo formation occurs [1-3]. 

In particular, it was found [5,6] that there are two important mechanisms for chaotic 
particle motion and halo formation in high-intensity electron beams in such systems as high 
power klystrons. One mechanism is due to a root-mean-square (rms) mismatch between the 
beam and externally applied focusing field [5], The rms mismatch is induced by the bunching 
of the electron beam by intense rf (radiation phis electrostatic wave) fields inside the device. 
Above a certain threshold, rms mismatched electron beams produce pronounced (sizable) 
halos asymptotically. For high-intensity electron beams, the threshold occurs at the relative 
envelope mismatch of 42%, as predicated analytically and confirmed by self-consistent 
simulations in earlier work [7], The other mechanism is due to the subtle effect of a 
mismatch in the particle phase-space distribution (e.g., a nonuniform charge density 
distribution) under the rms matching condition [6]. In HPM tubes, the former is primarily 
responsible for halo formation in highly bunched electron beams caused by intense rf fields, 
whereas the latter is primarily responsible for halo formation in the transport of electron 
beams in the absence of any significant rf field. 

Detailed comparisons were made between the 2-D Green's function-based simulations 
[1-3,5] and the experimental observations of electron beam halo formation and beam loss in 
the 50 MW, 11.4 GHz periodic permanent magnet (PPM) focusing klystron experiment [8] at 
the Stanford Linear Accelerator Center (SLAC). Because of the availability of more precise 
experimental data, considerable improvements [1-3] were made in the comparisons after we 
reported initial results of our investigation [5]. The results were presented at a number of 
technical meetings, including an invited paper [1] at the 1999 APS Division of Plasma 
Physics Annual Meeting in Seattle, Washington. 



2. Discovery of Intense Electron Beam Equilibria in Periodic Focusing Fields [1,9,10] 

The fundamental reason for the two important mechanisms [5,6] for chaotic particle 
motion and halo formation is that the electron beam is far from equilibrium (or quasi- 
equilibrium) in the field configuration consisting of external applied (static and/or rf) fields 
and the self-fields generated by the beam. Therefore, in order to invent techniques for prevent 
intense electron beams from developing halos, a better understanding of the equilibrium 
properties of high-intensity electron beams must be gained. Under the auspices of this grant, 
we investigated intense electron beam equilibria in periodic solenoidal focusing fields and 
studied the influence of the equilibrium profile on the phase-space structure of the beam. 

2.1. Determination of the Phase Space Structure for an Intense Beam in the Rigid-Rotor 
Vlasov Equilibrium [10] 

An analysis [10] was made of the phase space structure for test particle motion in the 
field configuration consisting of an applied periodic solenoidal magnetic field and the self- 
fields of an intense beam in the rigid-rotor Vlasov equilibrium [11] to address the 
fundamental question: How does the phase space structure vary with beam intensity, 
focusing field strength, • and beam rotation under the 'best' conditions corresponding a 
matched equilibrium beam. By examining the intrinsic properties of the phase space of the 
test particle motion as a function of these parameters, valuable insights were gained as to 
which operating regimes are more or less robust against the ejection of halo electrons form 
the beam interior (core) under small beam mismatch and/or collective excitations in the beam 
core. Detailed findings of this investigation are reported in [10], two important results are: 

a) Increasing the beam intensity induces more pronounced nonlinear resonances and 
chaotic structures in the phase space of the particle motion; and 

b) Increasing the average canonical angular momentum of the beam reduces the 
chaotic behavior in the phase space of the particle motion. 

These results may be used in future design of HPM tubes to prevent beam losses. 

2.2. Cold-Fluid Corkscrewing Elliptic Beam Equilibrium [1,9] 

It was shown [1,9] that there exist a new class of cold-fluid corkscrewing elliptic beam 
equilibria for intense electron or ion beam propagation through a linear focusing channel 
consisting of uniform solenoidal, periodic solenoidal and alternating-gradient quadrupole 
focusing magnets in an arbitrary arrangement including field tapering. The equilibrium 
density and flow velocity profiles were determined, and generalized beam envelope 
equations were derived. The equilibrium beam theory was verified [1,9] with self-consistent 
simulations using the Green's function based code [12]. 



The stability properties of the corkscrewing elliptic beam equilibrium are being studied 
It is anticipated that the new corkscrewing elliptic beam equilibrium may be used to improve 
beam transport and beam confinement in high-power microwave sources. 

3. Discovery of Ultrabigh-Frequency Stimulated Radiation from 
Spatiotemporally Gyrating Relativistic Electron Beams [13-15] 

Under the auspices of this grant, a theoretical investigation was made of stimulated 
electromagnetic interactions in relativistic gyrating beam with strong spatial, temporal, or 
spatiotemporal correlations [13-15]. In this investigation, the equilibrium distribution 
function for a spatiotemporally gyrating beam is assumed to be of the form f0(p^,p„ji), 
where the magnitude of the perpendicular momentum px, axial momentum px, and variable 
X = <t»-<ae(z-v)/(vx -vp) are the single-partricle constants of motion for the electrons, and 4> 
and ©e are the electron gyrophase and electron cyclotron frequency, respectively. An axial- 
dependent distribution corresponds to the v,=0 limit of the spatiotemporal distribution, 
whereas a time-dependent distribution corresponds to the vp =» limit of the spatiotemporal 
distribution. Beams with axial dependent distributions have been used in gyroamplifier and 
cyclotron autoresonance maser (CARM) experiments [16], and those with time-dependent 
distributions have been used in gyroklystrons [17]. More recently, spatiotemporally gyrating 
beams are used in harmonic converter experiments [18]. 

While results of our investigation are detailed in [13-15], the important findings are as 
follows. 

a) The growth rate of the cyclotron maser instability is sensitive to the detailed 
distribution in the variable %»including the enhancement of the instability growth 
rate [13]; 

b) The gain bandwidth depends critically on the phase velocity vp [ 14,15]; and 

c) Spatiotemporally gyrating relativistic electron beams with vp «v, exhibit a new 
effect, namely, stimulated interactions at uhrahigh frequencies with <a»2y2oc 

[14,15]. 

Item c) listed above can be used to develop high-frequency gyroamplifiers that can operate 
with low-voltage electron beams and low magnetic fields to satisfy key requirements in 
airborne radar applications. 

4. Discovery of Omnidirectional Reflectivity and Omniguide [19,20] 

As a spin-off of the research and excellent eduation funded under the auspices of this 
grant, a novel dielectric omnidirectional reflector [19] has been invented recently and 



demonstrated experimentally by a term of Massachusetts Institute of Technology's 
researchers. Such an omnidirectional reflector, which consistent of multiple alternating layers 
of dielectric materials with sharp contrast in the index of refraction, can reflect light in 
arbitrary direction with arbitrary polarization over a wide range of wavelength. Since the 
publication of this invention [19], it has generated considerable interests from government 
(especially DOD) laboratories, private industries, and news media [21,22]. An omniguide 
was also invented based on the principles of omnidirectional reflectivity [20]. We are 
currently developing a Photonic Bandgap Structure Simulator (PBGSS) for the modeling of 
metallic photonic bandgap structures for use in HPM sources. 

5. Interactions with Air Force Research Laboratory and Industries 

We made numerous contacts with researchers (e.g., Dr. Tom Spencer and Dr. J. A. 
Gaudet) at Air Force Research Laboratory, and communicated our research results with 
them, through 1999 seminar presentation at AFRL as well as technical meetings such as the 
1997, 1998 and 1999 APS DPP Meetings and 1998, 1999 and 2000 SPIE AeroSence. We 
will continue our strong ties with AFRL. 

In an effort to transfer technology to private industry, we completed a conceptual design 
for a high-power X-band relativistic two-stream amplifier. The design was done in 
collaboration with Microwave Technologies, Inc. in Fairfax, Virginia, which is interested in 
the experimental demonstration of the relativistic two-stream amplifier. Results of the design 
were presented in the Intense Microwave Pulses Session at the SPIE Meeting held in San 
Diego from July 31 to August 1, 1997, and were published [23]. In addition, we are also 
establishing collaboration with Mission Research Corporation (MRC, contact persons: Dr. 
Las Ludeking and Dr. Richard Smith) on relativistic magnetron research. 

In the area of photonic bandgap research, we are establishing collaborations with both 
Raytheon Systems Company (Contact person: Dr. Delmar Barker) and Omniguide, Inc., a 
start-up company co-founded by our graduate student (Dr. Yoel Fink). 
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Mechanisms and control of beam halo formation in intense microwave 
sources and accelerators* 

C. Chen* and R. Pakter 
Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 

(Received 3 November 1999; accepted 7 February 2000) 

Halo formation and control in space-charge-dominated electron and ion beams are investigated in 
parameter regimes relevant to the development of high-power microwave (HPM) sources and 
high-intensity electron and ion linear accelerators. In particular, a mechanism for electron beam halo 
formation is identified in high-power periodic permanent magnet (PPM) focusing klystron 
amplifiers. It is found in self-consistent simulations that large-amplitude current oscillations induce 
mismatched beam envelope oscillations and electron beam halo formation. Qualitative agreement is 
found between simulations and the 50 MW11.4 GHz PPM focusing klystron experiment at Stanford 
Linear Accelerator Center (SLAC) (D. Sprehn, G. Caryotakis, E. Jongewaard, and R. M. Phillips, 
"Periodic permanent magnetic development for linear collider X-band klystrons," Proceedings of 
the XECth International Linac Conference, Argonne National Laboratory Report ANL-98/28, 1998, 
p. 689). Moreover, a new class of cold-fluid corkscrewing elliptic beam equilibria is discovered for 
ultrahigh-brightness, space-charge dominated electron or ion beam propagation through a linear 
focusing channel consisting of uniform solenoidal magnetic focusing fields, periodic solenoidal 
magnetic focusing fields, and/or alternating-gradient quadrupole magnetic focusing fields in an 
arbitrary arrangement including field tapering. As an important application of such new cold-fluid 
corkscrewing elliptic beam equilibria, a technique is developed and demonstrated for controlling of 
halo formation and beam hollowing in a rms-matched ultrahigh-brightness ion beam as it is injected 
from an axisymmetric Pierce diode into an alternating-gradient magnetic quadrupole focusing 
channel.   © 2000 American Institute of Physics. [S1070-664X(00)96105-6] 

I. INTRODUCTION 

One of the most challenging tasks in the development of 
high-intensity microwave sources and high-intensity particle 
accelerators is to prevent intense electron or ion beams from 
beam losses.1,2 In high-intensity microwave sources, such as 
those considered for directed energy applications and for 
powering the next linear collider (NLC), a small fractional 
loss of electrons into the radio-frequency (rf) structure will 
inevitably induce secondary emission of electrons which, in 
the presence of intense rf fields, may cause an avalanche of 
secondary electron emission and subsequent plasma forma- 
tion and alteration in the frequency response or dispersion 
characteristics of the rf structure. It is likely that a sequence 
of such events ultimately leads to rf pulse shortening in high- 
power microwave (HPM) sources.1,3"7 In high-intensity elec- 
tron or ion accelerators, such as high-gradient electron linacs, 
rf proton linacs for spallation neutron source, and induction 
linacs for heavy ion fusion applications, losses of electrons 
or ions in the accelerating structure may also result in intol- 
erable radioactivity in the structure,8 in addition to the sec- 
ondary emission of electrons and/or ions. 

While disruptive beam loss is caused by violent instabili- 
ties such as the beam-breakup (BBU) instability9-11 in the 
beam, mild beam loss is often associated with the formation 
of a tenuous halo12-21 around a dense core of a beam, mak- 

- *Paper JI2 5 Bull. Am. Phys. Soc. 44, 163 (1999). 
invited speaker. 
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ing physical contact with the inner wall of a microwave tube 
or accelerator. From the point of view of beam transport, 
there are two main processes for halo formation in high- 
intensity particle (electron or ion) beams. One process is 
caused by a mismatch in the root-mean-square (rms) beam 
envelope,12-15 and the other is due to a mismatch in the 
particle phase-space distribution relative to an equilibrium 
distribution.16-21 Both processes can occur when the beam 
intensity is sufficiently high, so that the particle beam be- 
comes space-charge-dominated. 

For a periodic focusing channel with periodicity length .5 
and vacuum phase advance <r0, a space-charge-dominated 
beam satisfies the condition20 

SK 

4o-0€ >h 

whereas an emittance dominated beam satisfies the condition 

SK 

4cr0e 
«1. 

2203 

Here, K=2q2Nbl^bß
2

bmc2 is the normalized self-field per- 
veance, eis the unnormalized transverse rms emittance of the 
beam, Nb is the number of particles per unit axial length, q 
and m are the particle charge and rest mass, respectively, 
ßbc and yb are the average axial velocity and relativistic 
mass factor of the particles in the beam, respectively, and c 
is the speed of light in vacuo. The emittance, which is essen- 
tially the beam radius times a measure of randomness in the 

© 2000 American Institute of Physics 
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transverse particle motion, is often measured experimentally 
or calculated in terms of the normalized transverse rms emit- 
tance e„= ybßbe. For a untform density beam with radius a 
and temperature Tb, the normalized transverse rms emit- 

tance is given by 

a(ybßbTb\
in 

where JtB is the Boltzmann constant For an electron beam, 
the dimensionless parameter SK/4a0e can be expressed as 

SK „_« 1 (S\   h 
 =2.9X10 5— — -ra. 
4a0€ <ro\enl nßb 

where Ib is the electron beam current in amperes, e„ is the 
normalized rms emittance in meter-radians, and S is in 
meters. For an ion beam, 

«..Ij6xur. • (ip '» 
4a0e <TQA :w>- 

where A and qle are the atomic mass and magnitude of the 
charge state of the ion, respectively, Ib is the ion beam cur- 
rent in amperes, e„= ybßbe is the normalized rms emittance 
in meter-radians, and 5 is in meters. ^ 

In this paper, halo formation and control in space- 
charge-dominated electron and ion beams are investigated in 
parameter regimes relevant to the development of HPM 
sources and high-intensity electron and ion linacs. A mecha- 
nism for electron beam halo formation is identified in high- 
power periodic permanent magnet (PPM) focusing klystron 
amplifiers. A new class of cold-fluid corkscrewing elliptic 
beam equilibria is discovered for ultrahigh-brightness, space- 
charge-dominated electron or ion beam propagation through 
a linear focusing channel consisting of uniform solenoidal 
magnetic focusing fields, periodic solenoidal magnetic focus- 
ing fields, and/or alternating-gradient quadrupole magnetic 
focusing fields in an arbitrary arrangement including field 
tapering. As an important application of such new cold-fluid 
corkscrewing elliptic beam equilibria, a technique is devel- 
oped and demonstrated for controlling of halo formation and 
beam hollowing in a rms-matched ultrahigh-brightness ion 
beam as it is injected from an axisymmetric Pierce diode into 
an alternating-gradient magnetic quadrupole focusing chan- 
nel. In these studies, two-dimensional cold-fluid and self- 
consistent electrostatic and magnetostatic models are used 
whenever appropriate. The self-consistent model is based on 
a Green's function technique rather than a particle-in-cell 
(PIC) technique. 

In the study of electron beam halo formation in high- 
power PPM focusing klystron amplifiers, the two- 
dimensional self-consistent electrostatic and magnetostatic 
model15 for the transverse beam dynamics is used to analyze 
equilibrium beam transport in a periodic magnetic focusing 
field in the absence of a radio-frequency signal, and the be- 
havior of a high-intensity electron beam under a current- 
oscillation-induced mismatch between the beam and the pe- 
riodic magnetic focusing field during high-power operation 
of the device. Detailed simulation results are presented for 
choices of system parameters corresponding to the 50 MW, 

11.4 GHz periodic permanent magnet (PPM) focusing kly- 
stron experiment22 performed at the Stanford Linear Accel- 
erator Center (SLAC). It is found that sizable halos appear 
once the beam envelope undergoes several oscillations. 

In the analysis and applications of cold-fluid corkscrew- 
ing elliptic beam equilibria, the steady-state cold-fluid equa- 
tions are solved with a general magnetic focusing field pro- 
file. Generalized beam envelope equations for equilibrium 
flow are obtained. It is shown that limiting cases of cold-fluid 
elliptic beam equilibria include the familiar cold-fluid round 
rigid-rotor beam equilibrium in a uniform magnetic focusing 
field23-25 and both the familiar round rigid-rotor Vlasov 
beam equilibrium26-28 in a periodic solenoidal focusing field 
and the familiar Kapchinskij-Vladimirskij beam 
equilibrium29 in alternating-gradient quadrupole magnetic 
focusing field in the zero-emittance limit. As a simple ex- 
ample, a cold-fluid corkscrewing elliptic beam equilibrium in 
a uniform magnetic focusing field is discussed. As an appli- 
cation of the present equilibrium beam theory, a general 
technique is developed, and demonstrated with an example 
for the controlling of beam halo formation and beam hollow- 
ing in ultrahigh-brightness beams. This technique is effective 
before any collective instability may develop to reach con- 
siderably large amplitudes. 

The paper is organized as follows. In Sec. n, steady-state 
cold-fluid equations and two-dimensional self-consistent 
model are presented for transverse electrostatic and magne- 
tostatic interactions in a highintensity charged-particle beam 
propagating through a linear focusing channel with a general 
magnetic focusing field profile. In Sec. m, both equilibrium 
beam transport and halo formation in high-power PPM fo- 
cusing klystron amplifiers are studied. The equilibrium 
(well-matched) beam envelope is determined for intense 
electron beam propagation through a PPM focusing field, 
and self-consistent simulations of equilibrium beam transport 
are performed. The effects of large-amplitude charge-density 
and current oscillations on inducing mismatched beam enve- 
lope oscillations are discussed, and use is made of the self- 
consistent model to study the process of halo formation in a 
high-intensity electron beam during high-power operation of 
such a device. The results are compared with the SLAC PPM 
focusing klystron amplifier experiment22 In Sec. IV, a solu- 
tion to the steady-state cold-fluid equations presented in Sec. 
II is obtained, and generalized beam envelope equations for 
equilibrium flow are derived. Examples of corkscrewing el- 
liptic beam equilibria in a uniform magnetic field are pre- 
sented. In Sec. V, a technique for controlling of the beam 
halo and beam hallowing is developed and demonstrated as 
an important application of the cold-fluid equilibrium beam 
theory. Finally, conclusions are given in Sec. VI. 

II. MODELS AND ASSUMPTIONS 

We consider a thin, continuous, space-charge-dominated 
charged particle beam propagating with axial velocity ßbctz 

through a linear focusing channel consisting of uniform so- 
lenoidal magnetic focusing fields, periodic solenoidal mag- 
netic focusing fields, and/or alternating-gradient quadrupole 
magnetic focusing fields in an arbitrary arrangement The 
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fields can be tapered, and the quadrupole magnets are al- 
lowed to be at various angles in the transverse direction. In 
the thin-beam approximation, the focusing magnetic field is 
expressed approximately as 

BeM(x,y,s)=Bz(s)ez-^B'z(s)(xe+yey) 

+(<?*f/«?y)o(7%+%)- (i) 

In Eq. (1), s=z is the axial coordinate, x±=xex+yey is the 
transverse displacement from the z-axis in the laboratory 
frame, the prime denotes a derivative with respect to s, x± 

=xe;+yey is the transverse displacement from the z-axis in 
a frame of reference that is rotated transversely by an angle 
of <pq with respect to the laboratory frame, and (<?Z?|/<?y)0 

= (dBpdx)o with subscript' 'zero'' denoting (x,y)=0. 
In the present analysis, we consider the transverse elec- 

trostatic and magnetostatic interactions in the beam. We 
make the usual paraxial approximation, assuming that (a) the 
Budker parameter is small compared with yb, i.e., 
q2Nblybmc2<\, (b) the beam is thin compared with the 
characteristic length scale over which the beam envelope 
varies, and (c) the kinetic energy associated with the trans- 
verse particle motion is small compared with that associated 
with the axial particle motion. In the following, we presant 
steady-state cold-fluid equations describing equilibrium 
beam propagation in the magnetic focusing field defined in 
Eq. (1), and a two-dimensional self-consistent model de- 
scribing the transverse dynamics of the beam. 

A. Steady-state cold-fluid equations 

For an ultrahigh-brightness beam, such as a high- 
intensity heavy ion beam, kinetic (emittance) effects are neg- 
ligibly small, and the beam can be adequately described by 
cold-fluid equations. In the paraxial approximation, the 
steady-state cold-fluid equations for time-stationary flow 
(d/dt=0) in cgs units are 

ßbc^nb + V±-(nbVJ = 0, (2) 

(3) 

ds 

q*b 

7b™ 
~ 3Vx^+MXB0i + -^XBz(s)ez 7b 

(4) 

■ii\-\n where yb=(l~ßb)~
lu, use has been made of ßz=ßb 

=const, and the self-electric and self-magnetic fields E* and 
Bs are determined from the scalar and vector potentials <j>s 

and As
zez, i.e., Es=-Vx<f>s and B*=VXA&. It will be 

shown in Sec. IV that the steady-state cold-fluid equations 
(2)-(4) support a class of solutions that, in general, describe 
corkscrewing elliptic beam equilibria in the magnetic focus- 
ing field defined in Eq. (1). 

B. Two-dimensional self-consistent model 

For moderately high-brightness beams, such as electron 
beams in high-power PPM focusing klystron amplifiers, ki- 
netic (emittance) effects play an important role in the beam 
dynamics, and the evolution of the phase space of such 
beams must be studied. In the paraxial approximation, the 
self-consistent electrostatic and magnetostatic interactions in 
such a charged-particle beam can be described by a two- 
dimensional model involving Np macroparticles (i.e., 
charged rods). In the laboratory frame, the transverse dynam- 
ics of the macroparticles is governed by15,30,31 

d2x dyt 

ds 

d2yt 

~dlT 

y + Af?(s)(^1cos2^+y1sin2(p )-2VK2(j)-7-i 

ds 

d 

'dl =0, (5) 

-XqisK-XiSinl^+yiCOSlip^ + lyjK^s)-^- 

a   ,  
+*.:7rvKz(*)+ •ds 

q     W 
yißlmc2 dyt 

=0, (6) 

where i = l,2,... ,Np, and the focusing parameters KZ(S) 

and Kq(s) and self-field potential <f>s(xt ,yt ,s) are defined by 

yjxz(s) = 
qBz(s)       nc(s) 

2ybßbmcz     2ßbc ' 

dB% 
K*{s)   ~y7^\dy 

<t>s(Xi,yi,s) 

qNb 

(7) 

(8) 

Nn 

ln- 
(xt-xj)2 + {y,-yj)2 

Np ,=f^0 ™(Xi-xjrl/rpz + iyi-yjrl/r])2 

qNb 

Nn 

ln[(A:|.-^/rf)2+(y,.-yI.r^)2L (9) 

respectively. Here, ilc(s) is the (local) relativistic cyclotron 
frequency associated with the axial magnetic field Bz(s), and 
!■,•=(*,• +y,)1/2. The beam is assumed to propagate inside a 
perfectly conducting cylindrical tube of radius rw, such that 
the self-field potential satisfies the boundary condition 
<t>s{ri=rw,s)=Q. Note that the parameter \JKZ{S) can be 
positive, negative, or zero at any given axial position. 

The two-dimensional self-consistent model described by 
Eqs. (5) and (6) will be used to simulate equilibrium beam 
transport in a PPM focusing field in the absence of a rf signal 
and electron beam halo formation in the transverse direction 
induced by large-amplitude longitudinal current oscillations 
in a PPM focusing klystron amplifier (Sec. HI). It will also 
be used to verify cold-fluid corkscrewing elliptic beam equi- 
libria in a linear focusing channel consisting of uniform so- 
lenoidal magnetic focusing fields, periodic solenoidal mag- 
netic focusing fields, and/or alternating-gradient quadrupole 
magnetic focusing fields in an arbitrary arrangement, and to 
demonstrate control of halo formation and beam hollowing 
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TABLE L SLAC 50 MW, 11.4 GHz, PPM focusing klystron experiment TABLE II System parameters used in the simulation. 

Beam current lb 

Beam voltage 
Cathode radius 
Cathode temperature Tb 

Beam radius 
Pipe radius 
Total tube length 
Focusing field period length 
PPM focusing section length 
RMS axial magnetic field 

190 A 
464 kV 
2.86 cm 
800° C* 

2.38 mm' 
4.7625 mm 

90.0 cm 
2.1 cm 
42.0 cm 
1.95 kG 

"Estimated. 

in a rms-matched ultrahigh-brightness ion beam as it is in- 
jected from an axisymmetric Pierce diode into an alternating 
gradient focusing channel (Sec. V). 

III. ELECTRON BEAM HALO FORMATION IN PPM 
FOCUSING KLYSTRONS 

In this section, we study the dynamics of relativistic 
electron beams in high-power PPM focusing klystron ampli- 
fiers. Of particular interest are the properties of equilibrium 
beam transport in the absence of a rf signal and the mecha- 
nism for electron beam halo formation during high-power 
operation of such a device. To make comparisons, with ex- 
periment, the following analysis is carried out with system 
parameters corresponding to those in the SLAC 50 MW, 
11.4 GHz PPM focusing klystron experiment 

A. Equilibrium beam transport 

In the absence of a rf signal, the relativistic electron 
beam propagates through the PPM focusing field in an equi- 
librium state. It has been shown previously26"2 that one of 
the equilibrium states for the system described by Eqs. (5) 
and (6) is the rigid-rotor Vlasov equilibrium in which the 
beam density is uniform transverse to the direction of beam 
propagation. The outermost beam radius rb(s) = rb(s+S) 
obeys the envelope equation, 

d2rb 
d-T + Kz(s)rb--- 

K    {Pe? 
T •^=0, (10) 

where ybßbmec(Pe) = constant is the macroscopic canonical 
angular momentum of the beam at r=rb{s), and e is the 
unnormalized transverse rms emittance associated with the 
random motion of the electrons. If there is no magnetic field 

at the cathode, then (P0)=O. Any residual magnetic field at 

the cathode will lead to (Pe)¥=0. 
We analyze the beam envelope for equilibrium beam 

transport in the SLAC 50 MW, 11.4 GHz PPM focusing 
klystron experiment.22 The system parameters of the experi- 
ment are shown in Table I. To examine the influence of a 
small residual magnetic field ori the beam transport, we ana- 
lyze two different cases shown in Table II. In Case I, we 
assume no residual magnetic field at the cathode, such that 

(Pe)=0. In Case II, however, a residual field of 6.86 G is 
assumed, corresponding to a beam with a finite canonical 
angular     momentum     given     by      ybßbmec(Pe) = 4.5 

Basic parameter Casel CaseH 

Beam current lb 

Beam voltage 
Cathode radius 
Residual magnetic field at cathode 
Cathode temperature Tb 

Beam radius 
Pipe radius 
Total tube length 
Focusing field period length 
PPM focusing section length 
RMS axial magnetic field 

190 A 
464 kV 
2.86 cm 

0.0 G 
800°C 

2.05 mm 
9.0 mm 
90.0 cm 
2.1 cm 

42.0 cm 
1.95 kG 

190 A 
464 kV 
2.86 cm 
6.86 G 
800° C 

238 mm 
9.0 mm 
90.0 cm 
2.1 cm 
42.0 cm 
1.95 kG 

XlO-26Kgm2/s. The following dimensionless parameters 
are derived from Table H: 52Kz(j)=[1.04Xsin(2ira/5)]2 

(with S=2.1 cm), 0-0=42.3°=0.738, SK/4a0e= 10.1, and 

(pe)/4e=0.0 in Case I and <P„)/4e=6.93 in Case H. 
Figure 1 shows plots of the axial magnetic field Bz(s) 

and outermost beam radius rb(s) versus the propagation dis- 
tance s for Cases I and n. In both cases, the amplitude of 
well-matched (equihbrium) envelope oscillations about the 
average beam radius is only about 0.005 mm, as seen in Figs. 
1(b) and 1(c). 

Self-consistent simulations based on the model described 
in Sec. ÜB are performed to further investigate the equilib- 
rium beam transport. In the simulations, 4096 macroparticles 
are used. The macroparticles are loaded according to the 
rigid-rotor Vlasov distribution26 with an initial beam radius 
equal to the equilibrium (matched) beam radius at 5=0 [see 
Figs. 1(b) and 1(c) for Cases I and n, respectively]. 

Figure 2 shows, respectively, the initial and final phase- 
space distributions at s=0.0cm and s=42.0 cm for Case I. 
The final distribution in the configuration space shown in 
Fig. 2(d) agrees very well with the initial distribution shown 
in Fig. 2(a), and the effective beam radius obtained from the 
simulation agrees with that obtained from Eq. (10) within 
0.2%. In the simulation, no beam loss is detected. A com- 
parison between the final phase-space plots in Figs. 2(e) and 
2(f) and the initial phase-space plots in Figs. 2(b) and 2(c) 
shows a slight emittance growth. This is because of numeri- 
cal noise in the simulation. Nevertheless, the emittance 
growth has little effect on the beam transport properties be- 
cause the beam transport is dominated by space charge. 
Similar results are also obtained for Case Ü,32 showing pres- 
ervation of the initial distribution and no beam loss. In both 
cases, we find that the equihbriurn beam transport in the 
PPM focusing klystron is robust, and that there is no beam 
loss in the absence of a rf signal. Within the experimental 
error, these results are in good agreement with the experi- 
mental observation22 of 99.9% beam transmission in the ab- 
sence of a rf signal. 

B. Halos induced by large-amplitude current 
oscillations 

Microwave generation in a klystron is due to the cou- 
pling of large-amplitude charge-density and current oscilla- 
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FIG. 1. Plots of the axial magnetic field in (a) and outermost beam radius 
rb(s) versus the propagation distance s for equilibrium beam propagation 
corresponding to Case I in (b) and Case II in (c). The dimensionless param- 
eters are S2Kz(s) = [l.04Xsin{2irs/S)¥, a0=42.3°=0.738, SK/4a0e 

= 10.1, and (Pe)/4e=0.0 in (b) and (Pe)/4e= 6.93 in (c). 

tions in the electron beam with the output rf cavity or struc- 
ture. The charge-density and current oscillations result from 
the beating of the fast- and slow-space-charge waves on the 
electron beam, and are primarily longitudinal. From the point 
of view of beam transport, the charge-density and current 
oscillations perturb the equilibrium beam envelope. Al- 
though a quantitative understanding of the effects of such 
large-amplitude charge-density and current oscillations on 
the transverse dynamics of the electron beam requires three- 
dimensional modeling which is not available at present, a 
qualitative two-dimensional study of such effects is pre- 
sented in the remainder of this section. 

The amplitude of the envelope mismatch induced by lon- 
gitudinal current oscillations can be estimated using the stan- 
dard one-dimensional fluid model based on the continuity, 
Lorentz force, and full Maxwell's equations. It follows from 
the linearized continuity equation that the current perturba- 

4.4       -0.2       0.0       0.2       04 '4.4       -0.2       0.0        0.2        0.4 
a: (cm) ;c(cm) 

-0.02 4.02. 4.4       4.2       0.0       0.2       0.4        ' 44       -0.2       0.0        0.2        0.4 
jc(cm) jc(cm) 

0.02 

FIG. 2. Plots of the initial and final particle distributions at s=0.0 and 42.0 
cm for the equilibrium beam corresponding to the parameters in Case L 

tion {SIb)f, is related to the axial velocity perturbation 
c(Sßb)f,s by33-34 

»      (W/f, W/,,,  
h o-ßbCkf,s     ßb 

(11) 

where subscripts / and s denote the fast- and slow-space- 
charge waves, respectively, and <o and kfs are the frequency 
and wave numbers of the perturbations, respectively. Making 
the long-wavelength approximation for a thin beam, it can be 
shown that the dispersion relations for the fast- and slow- 
space-charge waves can be expressed as33 

V*sc o>-ßbcku=±—-ju, (12) 

where kf assumes a plus sign, and ks assumes a minus sign. 
In Eq. (12), ex is the longitudinal space-charge coupling 
parameter. The effective value of ex is estimated to be ex 

= 0.012 for the SLAC PPM focusing klystron.22 In the kly- 
stron, the total current oscillations are the sum of fast- and 
slow-space-charge waves with a phase difference of ~ 180°. 
As a result, the total current oscillations and the total velocity 
oscillations are out of phase by ~180°. Therefore, the am- 
plitude of the total current oscillations is given by 
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FIG. 3. Plots of particle distributions in phase space at 
s=34.7, 37.8, 42.0, 44.1, and 46.2 cm for Case t 

";.o     -as     o.o     OJ     i.o 
jr(cm) 

-i.o     -as     o.o      0-5      1.0 
i (cm) 

.1.0      -0-5       o.o       o.s       i.o 
j(cm) 

W«otal        ■   2ybßl (Wtotal (13) 

This has the important consequence that the perveance of the 
electron beam varies dramatically along the beam during 
high-power operation. From the definition of the perveance, 
i.e., K-2e2Nbfy

3
bßlmec

2, it is readily shown that the am- 
plitude of perveance variation is given by 

SK    I       3yfcy
/c^\(g/fc)totai (14) 

For the SLAC PPM focusing klystron, Eq. (14) yields 
SK/K=lA5X(8Ib)uMfIb. At the rf output section, SKIK 
exceeds unity considerably because 81bIIb<**\. (Note that 
the current oscillations are highly nonlinear in the rf output 
section and the maximum current exceeds 2Ib during high- 
power operation.) From the beam envelope equation (10), 

the relative amplitude of beam envelope mismatch is esti- 
mated to be Srb/rb=0.56, where rb is the equilibrium beam 
radius and 81 b IIb= 1 is assumed. In the self-consistent simu- 
lations presented below, we use 8rblrb= 1.0 in order to take 
into account the fact that the instantaneous current exceeds 
21 b during high-power operation of the klystron. 

The process of halo formation in intense electron beams 
is studied using the two-dimensional self-consistent model 
described in Sec. HB. In the simulations, 4096 macropar- 
ticles are used, and the macroparticles are loaded according 
to the rigid-rotor Vlasov distribution26 with an initial beam 
radius of 2rfc(0), where r6(0) is the equilibrium beam ra- 
dius at 5=0 [see Figs. 1(b) and 1(c) for Cases I and II, 
respectively]. The effect of current oscillation build up in the 
PPM focusing klystron, which requires three-dimensional 
modeling, is not included in the present two-dimensional 
simulation. In the limited space of this paper, we discuss 



Phys. Plasmas, Vol. 7, No. 5, May 2000 Mechanisms and control of beam halo formation in. 2209 

only the results of the self-consistent simulation for Case I, 
although the effect of a small residual magnetic field at the 
cathode in the halo formation process is also studied for Case 
II and is reported elsewhere.32 

Figure 3 shows the phase-space distributions of the elec- 
trons at several axial distances during the fourth period of the 
beam core radius oscillation for Case I. In contrast to the 
equilibrium phase-space distribution (Fig. 2), significant ha- 
los appear at 5=34.7, 37.8, 42.0, 44.1, and 46.2 cm. In the 
configuration space plots shown in Figs. 3(a)-3(e), we ob- 
serve a large variation in the beam core radius during the 
mismatched envelope oscillation period. The halo particles 
reach a maximum radius of rA=6.4mm at s=42.0 cm, 
where the beam core radius is a minimum and the traveling- 
wave rf output section is located. Around 1.5% of the elec- 
trons are found in the halo at that axial position. Because the 
maximum halo radius of rA=6.4mm is greater than the ac- 
tual beam tunnel radius rr=4.7625 mm, these halo electrons 
are lost to the waveguide wall. Therefore, the simulation re- 
sults show that there will be 1.5% beam electron loss. In 
terms of beam power loss, 1.5% beam electron loss in the 
simulation corresponds to 0.2% beam power loss because the 
lost electrons have given up 88% of their kinetic energies (or 
have slowed down by about a factor of 2 in their axial ve- 
locities). The simulation results agree qualitatively with« 
0.8% beam power loss observed in the experiment22 »The 
discrepancy between the simulation and experimental mea- 
surements may be caused by nonlinearities in the applied 
magnetic fields which are not included in the present simu- 
lation. 

As the beam propagates in the focusing field, its distri- 
bution rotates clockwise in the (x,dx/ds) phase space, as 
shown in Figs. 3(f) to 3(j). The particles are initially dragged 
into the halo at the edges of the phase-space distribution, 
where a chaotic region is formed around an unstable periodic 
orbit that is located just outside the beam distribution.13 The 
unstable periodic orbit is a result of a resonance between the 
mismatched core envelope oscillations and the particle dy- 
namics. As the halo particles move away from the beam 
core, the influence of space-charge forces decreases and 
these halo particles start rotating faster than the core par- 
ticles, creating the 5-shaped distributions observed in Figs. 
3(f) to 30). 

The halo formation is also observed in the (x,dy/ds) 
phase-space distributions shown in Figs. 3(k) to 3(o). Al- 
though the macroscopic (average) canonical angular momen- 

tum (Pg) is constant in the simulation, the distributions pre- 
sented in Figs. 3(k) to 3(o) indicate that the distribution of 
single particle canonical angular momenta induces spread in 
the (x,dy/ds) phase space. 

Figure 4 shows the halo radius and effective beam core 
radius as a function of the propagation distance for Case I. 
The halo radius is the maximum radius achieved by all of the 
macroparticles in the self-consistent simulation. It is appar- 
ent in Fig. 4 that the halo formation process takes place 
essentially during the first 4 periods of the envelope oscilla- 
tions. After reaching rfc = 6.4mm at s = 42.0 cm, the halo ra- 
dius saturates. It is interesting to note that once the halo is 

0.8 r T"i ITI'V i 'i i i i 
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111111111111 
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FIG. 4. Plots of the halo radius (solid curve) and core radius (dashed curve) 
as a function of the propagation distance s for Case L 

developed, the halo radius and core envelope radius oscillate 
in an opposite phase, with the former being maximum when 
the latter is minimum [as seen in Fig. 3(c)] and vice versa. 

To summarize briefly, we studied equilibrium beam 
transport in a periodic magnetic focusing field in the absence 
of a rf signal and the behavior of a high-intensity electron 
beam under a current-oscillation-induced mismatch between 
the beam and the magnetic focusing field. Detailed simula- 
tion results were presented for choices of system parameters 
corresponding to the SLAC 50 MW, 11.4 GHz periodic per- 
manent magnetic (PPM) focusing klystron experiment.22 We 
found that in the absence of the rf signal, the equilibrium 
beam transport is robust, and that there is no beam loss in 
agreement with experimental measurements. During the 
high-power operation of the klystron, however, we found 
that the current-oscillation-induced mismatch between the 
beam and the magnetic focusing field produces large- 
amplitude envelope oscillations whose amplitude is esti- 
mated using a one-dimensional cold-fluid model. From self- 
consistent simulations, we found that for a mismatch 
amplitude equal to the beam equilibrium radius, the halo 
reaches 0.64 cm in size and contains about 1.5% of total 
beam electrons at the rf output section for a beam generated 
with a zero magnetic field at the cathode. In terms of beam 
power loss, 1.5% beam electron loss in the simulation corre- 
sponds to 0.2% beam power loss because the lost electrons 
have given up 88% of their kinetic energies, which agrees 
qualitatively with 0.8% beam power loss observed in the 
experiment.22 

IV. CORKSCREWING ELLIPTIC BEAM EQUILIBRIA 

In this section, we show that there exists a class of so- 
lutions to the steady-state cold-fluid equations (2)-(4) which, 
in general, describe corkscrewing elliptic beam equilibria35 

for ultrahigh-brightness, space-charge-dominated beam 
propagation in the linear focusing channel defined in Eq. (1). 

We seek solutions to Eqs. (2)-(4) of the form35 

nb(x±,s) = 
Nh 

va(s)b(s) 
0 1- 

x2 

az(s)     b\s) (15) 
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FIG. 5. Laboratory and rotating coordinate systems. 

V±(xx ,s)=[/J.x(s)x- ax(s)y]ßbcez+[ßy(s)y 

+ ay(s)?]ßbcey. (16) 

In Eqs. (15) and (16), x±=xex+yey is a transverse displace- 
ment in a rotating frame illustrated in Fig. 5; 9(s) is the 
angle of rotation of the ellipse with respect to the laboratory 
frame; ©(*) = 1 if x>0 and 0(*)=O if *<0; and the func- 
tions a(s), b(s), /MX(S), Py(s)' «*(*). ay(s), and 0(s) are 
to be determined self-consistently. 

Substituting Eqs. (15) and (16) into Eq. (2) and express- 
ing the result in terms of the tilde variables, we find * 

„x+fiy---T}& ~b 

x2     f 
^a^'b1 + 2 — M, 

x2 

+(y-^)^+ 
b0'     ad'     bax 

aba 

a a z,xy_ 

b     ab 

=0, (17) 

where the 'prime' denotes a derivative with respect to s, 
S(x)=d&(x)/dx, and use has been made of the identities 
dxlds=6'y, dylds=-0'x, and V-F=dFi-/dx+dFy-/dy 
for any vector field F. Since Eq. (17) must be satisfied for all 
x and y, the coefficients of the terms proportional to ©, x2S, 
y2S, and xyS must vanish independently. This leads to the 
following equations: 

_\da _\_db_ 

de   ~2 

ds 

a2ay — bax 

(18) 

(19) 

where the functions a(s), b(s), ax(s), and ay(s) still re- 
main to be determined. 

Solving for the scalar and vector potentials from Eq. (3), 
we obtain 

V=ßZxh\=- 
2qNblx

2 . f 

a+b\a      b 
(20) 

in the beam interior with x2la2+y2lb2<\. In deriving Eq. 
(20), use has been made of Vl = d2/dx2+d2/df. 

To solve the force equation (4) we substitute Eqs. (15), 
(16), (18)-(20) into Eq. (4), express the results in terms of 

the tilde variables, and use the relations dx/ds= 0'y, dylds 
= -e'x, dex/ds=e'ey, and <%/<?*=-0'%. We obtain 

{fx+Kqco^2(e-<pq)]}x-{gy+Kqsw[2(e-<pq)-\}y=0, 
(21a) 

{gx-Kqsul2(e-<pq)]}x+{fy-Kqcos[2(e-<pq)]}y=0, 
(21b) 

in the x and y directions, respectively. In Eq. (21), 

2 J2. 1 d2a    b2(a2
x-2axay) + a2a. 

fx~a7? "a^F — 2arvV/cT— 
2K 

yv"z   a(a+b)' 
(22a) 

1 d2b    a2(al-2axay) + b2a2
x 

fy   bds2"*" 

x"-y> 

a —o 
■ — 2ax\jK,— 

2K 

b(a + b)7 

(22b) 

1 f d     „ r—       a3b(ax-av) d Ib\) 

/—       ab3(ax—ay) d Ia\)      ■■•    v [a2(ay+JTz)]-      y_y  -fc)}.   (22d) 8*=-?] 

Since Eqs. (21a) and (21b) must be satisfied for all x and y, 
we obtain the generalized beam envelope equations, 

/,+ JC,COS[2(0-?,)]=(>, 

/y-K,cos[2(0-<pg)]=O, 

gy+*gsin[2(0-<p,)] = O, 

gx-Kqsm[2(e-cpq)]=0: 

(23a) 

(23b) 

(23c) 

(23d) 

35 
Making use of Eq. (22), we can express the generalized beam 
envelope equations as 

d2a 

ds2 Kq(s)cos[2(e-<pq)]- 

2K 

b2(a2
x-2axay) + a2a2 

~a^br 

— 2aYyfi<z a- =0, 

d2b 

(a + b) 

ds* + \ -Kq(s)cos[2(e-<pq)] + 

— 2<XXS[KZ 

(24a) 

a2(a2-2axay) + b2a2] 

J-W 
2K 

b- ,   , ,,=0, 
(a + b) 

d ,—       a3b(ax—av) d lb 
Tsib2(ax+^—pf^^" 

+ Kq(s)b2M2(e-<pq)-]=Q, 

—[a2(ay+JKz)]- 
ds a2-b2      ds\b 

-Kq(s)a2sii£2(e-<pq)]=0, 

de    a2av-b2ax 

ds ~aT^br ■=o, 

1 da 

^=adl' 

(24b) 

(24c) 

(24d) 

(24e) 

(24f) 
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/y 
1 db_ 

'bis' 
(24g) 

Equations (18) and (19) are added here as Eqs. (24e)-(24g) 
for completeness. Equations (24a)-(24g), together with the 
density and velocity profiles defined in Eqs. (15) and (16), 
describe cold-fluid equilibrium states for variably focused 
ultrabigh-brightness beams. 

A wide variety of cold-fluid beam equilibria can be con- 
structed with Eqs. (15), (16), and (24) for proper choices of 
magnetic focusing field profiles. While cold-fluid beam equi- 
libria are elliptic and corkscrewing in general, they do re- 
cover familiar beam equilibria in proper limits. In particular, 
such limiting cases of cold-fluid elliptic beam equilibria in- 
clude (a) the familiar cold-fluid round rigid-rotor beam 
equilibrium23-25 in a uniform magnetic focusing field with 
*z(s) = const¥=0, Kq(s)=0, 6(s)=0, a(s)=b(s) =const, 
and ax(s) = ay(s) = const as discussed in more detail below, 
(b) the familiar round rigid-rotor Vlasov beam 
equilibrium26-28 in a periodic solenoidal focusing field in the 
zero-emittance limit with KZ(S) = KZ(S + S)¥= const, Kq(s) 
=0, 0(s) = O, a(s)=a(s+S)=b(s)¥'const, and ax(s) 
= ay(s)¥: const and (c) the familiar Kapchinskij- 
Vlaclimirskij beam equilibrium29 in an alternating-gradient 
quadrupole magnetic focusing field in the zero-emittance 
limit with KZ(S) = 0, Kq(s) = Kq(s+S)¥' const, 6(s)=0, 
a(s)=a(s + S), b(s) = b(s+S), and ax(s) = ay(s)±0. Fur- 
thermore, for 0(5)=0 and ax(s) = ay(s)=0, the present 
corkscrewing elliptic beam equilibria also recover geometri- 
cally nonrotating beam equilibria reported recently. 

As a simple example, we consider corkscrewing elliptic 
beam equilibria in a uniform magnetic field with B0*' 
=Bz0ez. Setting V*ZW = >/«*> = qBz0/2ybßbmc2=const 
and Kq(s) = 0, it can be shown that Eq. (24) has the follow- 
ing two branches of physically acceptable special solutions: 

11/2 

(25a) 

b=b, = \-T 

a, 

a, 

1/2 K 

VKz0 - (ax+ V/^)( ay + V^Io). 
1/2 

.Kz0-(ax+^^Kä)(ay+^JKz~ö) 

1/2 

axay 
d(s) = u)lS= ' s+8(0), 

ax+ay 

for branch A, and 

a=a2 = 

b=b2= 

ay + 2yfi<z^) 

K 

(25b) 

(25c) 

1/2 

Kzo-(ax+ V^)(«y+ V^ö) 

gy+2y/^\ 

ax+2y[i<^j 

\ 1/2 
K 

(26a) 

1/2 

Kz0-(<*x+ V KZ0)(ay+ V Kzo) 

0(s) = o>2s = 
axay-4Kz0 

ax+ay + 4ji<^, 
5+0(0), 

(26b) 

(26c) 

for branch B. In Eqs. (25) and (26), both ax and ay are 
constant. 

-4.0   -3.0  -2.0  -1.0   0.0    1.0    2.0    3.0    4.0 
(ax/jKz) + l 

FIG. 6. Regions in the parameter space for the confinement of corkscrewing 
elliptic beam equilibria in a uniform magnetic field. 

For branch A, the conditions for the confinement of 
corkscrewing elliptic beam equilibria are 

a,<0,    ay<0,   and (ax+yfi<z^)(ay+yfKz^)<Kzo,    (27) 

for    positively    charged    particle    beams    with    yfic^ 
= qBz0/2ybßbmc2>0, and 

ax>0,    ay>0,    and    (ax+ y[i<z^)(ay+ y[K^)<Kz0, 
(28) 

for    negatively    charged    particle    beams    with    V^jo 
= — \q\Bz0/2ybßbmc2<0. Because ax and ay have the same 
sign, the internal flow for branch A is always rotation-like. 

For branch B, the conditions for the confinement of 
corkscrewing elliptic beam equilibria are 

ay>-2y[Kz~0,    a,>-2v^, 

and (29) 

(«*+ V^o)(ay+ JKZ~O)<KZO> 

for    positively    charged    particle    beams    with    V*zö 
= qBz0/2ybßbmc2>0, and 

ay<-2\[K^,    ax<-2y[K^, 

and (30) 

(ax+TjKÖ)(ay+y[i<z~^<Kz0, 

for negatively charged particle beams with V*zö 
= — \q\Bz0/2ybßbmc2<0. In contrast to the internal flow for 
branch A, the internal flow for branch B can be either 
rotation-like with ax and ay in the same sign, or quadrupole- 
flow-like with ax and ay in the opposite signs. 

Figure 6 shows the regions in parameter space for the 
confinement of corkscrewing elliptic beam equilibria in a 
uniform magnetic field applicable for both positively and 
negatively charged particle beams. It is important to point 
out that the familiar cold-fluid round rigid-rotor beam 
equilibria23-25 are recovered in the present analysis by set- 
ting ax= ay in either Eq. (25) or Eq. (26), as indicated by the 
dark solid line shown in Fig. 6. 

V. CONTROL OF HALO FORMATION AND BEAM 
HOLLOWING 

As discussed in the Introduction, one of the key mecha- 
nisms for halo formation in high-intensity electron or ion 
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beams is due to a mismatch in the particle phase-space dis- 
tribution relative to an equilibrium distribution. In general, 
distribution mismatch can lead to rather complex evolution 
in a beam, including not only halo formation but also beam 
hollowing. This mechanism for halo formation and beam 
hollowing occurs for rms matched beams because rms beam 
matching does not necessarily guarantee the beam in an equi- 
librium state. 

For example, both halo formation and beam hollowing 
were observed in the heavy ion beam injector experiment at 
Lawrence Berkeley National Laboratory (LBNL),19 in which 
an ultrahigh-brightness, space-charge-dominated potassium 
ion beam was generated with an axisymmetric Pierce diode 
and then accelerated by a set of electrostatic quadrupoles. 
More recently, experimental evidence of beam hollowing 
was found in a high-brightness, space-charge-dominated 
electron beam experiment at the University of Maryland.37,38 

As an important application of the equilibrium beam 
theory presented in Sec. IV, we develop and demonstrate a 
technique for controlling of beam halo formation and beam 
hollowing in ultrahigh-brightness beams. This technique is 
widely applicable in the design of ultrahigh-brightness 
beams, and is effective before any collective instability de- 
velops to reach considerably large amplitudes. 

To demonstrate the efficacy of this technique, we con- 
sider here a specific example, namely, the matching of a 
round particle beam generated by an axisymmetric particle 
source into an alternating-gradient magnetic quadrupole fo- 
cusing channel. For comparison, we analyze two non- 
rotating rms matched beams with the same intensity; one 
beam will be in equilibrium and the other beam has an initial 
perturbation about the equilibrium transverse flow velocity. 
At the entrance of the alternating-gradient magnetic focusing 
channel (5=0), both beams have the same density profile 
defined in Eq. (15), but the transverse flow velocities of the 
beams are of the form 31 

dx± 

~d7 
da 

dl 
1 + v 1 - 

2XJ.-XX 

(31) 

where v is a parameter that measures the nonlinearity in the 
velocity profile. For example, an initial velocity profile with 
v>0 in Eq. (31) may model the effects of the concave shape 
of a Pierce-type ion diode.19 For equiUbrium beam propaga- 
tion, v=0. 

The rms matching is obtained by numerically solving the 
rms envelope equations, 39 

ds: 
■ + Kq(s)a- 

K 

2(ä+b) 
=0, 

d2b 
-2-Kqis)b- 

K 

2(5+b) 
--0, 

(32a) 

(32b) 

where 5=(x2)m and b=(y2)m are the rms envelopes, (• • •) 
denotes average over the particle distribution, and emittance 
terms are neglected. For given beam intensity K and focus- 
ing channel parameters C3 and 77 shown in Fig. 7, we make 
use of Eq. (32) to determine the injection parameters for the 

FIG. 7. Plot of the focusing parameter S2Kq as a function of the propagation 
distance s. 

axisymmetric beam, namely, 5(0), F(0), ä'(0), and b'(0), 
as well as the strengths of the two quadrupoles centered at 
5=5/4 and s = 35/4 in the first lattice, C\ and C2, as shown 
in Fig. 7, assuming all quadruples having the same width r] 
and equally spaced. Because Eq. (32) has a unique solution 
for a rms matched beam in the constant-parameter 
alternating-gradient focusing section with s/S> 1, integrating 
Eq. (32) from s=S to s=0 yields four implicit functions: 
5(CX,C2), B(Ci,C2), 5'(CUC2), and b'(CuC2). The 
conditions for an initially converging round beam, i.e., 
5(0)=b(0)=a(0)/2=b(0)/2 and a'(0) = F(0), uniquely 
determine the parameters Cx and C2, which is done numeri- 
cally with Newton's method. The results are presented in 
Figs. 7 and 8. 

Figure 7 shows the focusing field parameter S2Kq as a 
function of s, where 17=0.3, C! = 2.31, C2=7.44, and C3 

= 10.0. In Fig. 8, the solid and dashed curves show, respec- 
tively, the rms matched envelopes ä(s) and b(s) for the 
focusing channel with vacuum phase advance o-0=70.8° and 
beam perveance SK/4e(0) —16.0 (corresponding to a space- 
charge-depressed phase advance of cr=5.4°), where a neg- 
ligibly small unnormalized rms emittance of e(0)=Q.15 
X10"6 m-rad has been assigned to the beam at s=0. 

2.5 

2.0 

1.5 

1.0 

0.5 

0.0, 

.o-Q. 

— b 
•   ~h (simulation) 
o   b (simulation) 

0.0 1.0 2.0 3.0 
s/S 

FIG. 8. Plots of rms beam envelopes versus propagation distances. Here, the 
solid and dashed curves are obtained from Eq. (32), whereas the solid dots 
and open circles are from the self-consistent simulation for a beam with v 
= 0.25. Here, 5 and b are normalized to yje(Q)S. 
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FIG. 9. Particle distributions in the configuration space for v=0 (left) and 
v=0.25 (right). Here, the coordinates x and y are normalized to -Je(0)S. 

Self-consistent simulations are performed with Np 

=3072 and free-space boundary conditions to study the 
phase-space evolution for the two beams in the focusing 
channel shown in Fig. 7. In Fig. 8, the solid dots and open 
circles correspond to the rms envelopes a(s) and E(s) ob- 
tained from a self-consistent simulation for a beam initially 
with a nonlinear velocity profile with v=0.25. It is evident 
in Fig. 8 that there is excellent agreement between the pre- 
diction of the rms envelope equations (32a) and (32b) and 
the results of the self-consistent simulation, despite that the 
transverse flow velocity is perturbed substantially. 

We now examine the evolution of the particle distribu- 
tion if the nonlinearity in the initial transverse flow velocity 
profile is introduced, and compare with equilibrium beam 
propagation. The results are summarized in Figs. 9 and 10. 
Figure 9 shows a comparison between particle distributions 
in the configuration space with and without nonlinearity in 
the initial transverse flow velocity at three axial positions: 
5/5=0, 1.0, and 2.5. These axial positions are chosen such 

that ä(s)=b(s). In Fig. 9, the plots shown on the left cor- 
respond to v=0 and those on the right to v=0.25. For v 
= 0.25, the initially round beam develops sharp edges after 
the first lattice, becoming partially hollow subsequently at 
s/S=2.5. In Fig. 10(b), the radial distribution of 3072 mac- 
roparticles at s/S=2.5 shows that the density at the edge is 
twice the density at the center of the beam, and that there is 
a small halo extending outward beyond the radius where the 
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FIG. 10. Radial distribution of the macroparticles at s/S=2.5 for (a) v=0 
and (b) v=025. 

density reaches its maximum. The partially hollow density 
profile shown in Fig. 10(b) is similar to, but not as pro- 
nounced as, that observed in the heavy ion beam injector 
experiment at LBNL.19 In contrast to the case with v 
=0.25, the beam propagates in an equilibrium state for v 
=0 without beam hollowing and without any significant 
beam halo formation, as shown in Fig. 10(a). 

VI. CONCLUSIONS 

Halo formation and control in space-charge-dominated 
electron and ion beams have been investigated analytically 
and computationally in parameter regimes relevant to the 
development of high-power microwave (HPM) tubes and 
high-intensity electron or ion linear accelerators. In particu- 
lar, a mechanism for electron beam halo formation was iden- 
tified in high-power periodic permanent magnetic focusing 
klystron amplifiers, and a new class of cold-fluid corkscrew- 
ing elliptic beam equilibria was discovered for ultrahigh- 
brightness beam propagation in a linear focusing channel 
consisting of uniform and periodic solenoidal and alternat- 
inggradient quadrupole magnetic fields in an arbitrary ar- 
rangement including field tapering. 

In the exploration of electron beam halo formation in 
PPM focusing klystron amplifiers, equihbrium beam trans- 
port was analyzed in a periodic magnetic focusing field in 
the absence of a if signal, and the behavior of a high- 
intensity electron beam was studied under a current- 
oscillation-induced mismatch between the beam and the 
magnetic focusing field. Detailed simulation results were 
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presented for choices of system parameters corresponding to 
the SLAC 50 MW, 11.4 GHz periodic permanent magnetic 
(PPM) focusing klystron experiment. It was found that in the 
absence of a rf signal, that the eqiiilibrium beam transport is 
robust, and that there is no beam loss in agreement with 
experimental measurements. During high-power operation of 
the klystron, however, it was found that the current- 
oscillation-induced mismatch between the beam and the 
magnetic focusing field produces large-amplitude envelope 
oscillations whose amplitude was estimated using a one- 
dimensional cold-fluid model. Self-consistent simulations 
showed that for a mismatch amplitude equal to the beam 
equilibrium radius, the halo reaches 0.64 cm in size and con- 
tains about 1.5% of total beam electrons at the rf output 
section for a beam generated with a zero magnetic field at the 
cathode. Because the halo radius is greater than the actual 
beam tunnel radius, these halo electrons are lost to the wave- 
guide wall, yielding 0.2% beam power loss. The simulation 
results agree qualitatively with 0.8% beam power loss ob- 
served in the experiment22 The discrepancy between the 
simulation and experimental measurements may be caused 
by nonlinearities in the applied magnetic fields which are not 
included in the present simulation. 

In the analysis and applications of cold-fluid corkscrew- 
ing elliptic beam equilibria, the steady-state cold-fluid equa- 
tions were solved for an ultrahigh-brightness, space-eharge- 
dominated beam in general magnetic focusing field profile 
including periodic and uniform solenoidal fields and 
alternating-gradient quadrupole magnetic fields. Generalized 
beam envelope equations for equilibrium flow were ob- 
tained. It was shown that limiting cases of cold-fluid cork- 
screwing elliptic beam equilibria include the familiar cold- 
fluid round rigid-rotor beam equilibrium in a uniform 
magnetic focusing field and both the familiar round rigid- 
rotor Vlasov beam equilibrium in a periodic solenoidal fo- 
cusing field and the familiar Kapchinskij-Vladimirskij beam 
equilibrium in an alternating-gradient quadrupole magnetic 
focusing field in the zero-emittance limit. As a simple ex- 
ample, a cold-fluid corkscrewing elliptic beam equilibrium in 
a uniform magnetic focusing field was discussed. As an ap- 
plication of the present equilibrium beam theory, a general 
technique was developed, and demonstrated with an ex- 
ample, for the controlling of beam halo formation and beam 
hollowing in ultrahigh-brightness beams. This technique is 
effective before any collective instability may develop to 
reach considerably large amplitudes. 
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It is shown that there exists a new class of cold-fluid corkscrewing elliptic beam equilibria for ultrahigh- 
brightness, space-charge-dominated beam propagation through a linear focusing channel consisting of uniform 
solenoidal, periodic solenoidal, and/or alternating-gradient quadrupole focusing magnets in an arbitrary ar- 
rangement including field tapering. The equilibrium beam density and flow velocity profiles and equilibrium 
self-electric and self-magnetic fields are determined by solving generalized beam envelope equations. In proper 
limits, such cold-fluid corkscrewing elliptic beam equilibria recover many familiar beam equilibria in beam 
physics, including the round rigid-rotor Vlasov beam equilibria in uniform and periodic solenoidal focusing 
fields and the Kapchmskij-Vladimirskij beam equilibrium in an alternating-gradient quadrupole focusing field. 
For beams with negligibly small emittance, the equilibrium solutions are validated with self-consistent simu- 
lations. Examples and applications of the present equilibrium beam theory are discussed. As an important 
application of the present equilibrium beam theory, a general technique is developed and demonstrated with an 
example to control large-amplitude density and flow velocity fluctuations (such as beam hollowing and halo 
formation) often observed in ultrahigh-brightness beams. 

PACS number(s): 29.27.-a, 41.75.-i, 41.85.-p 

L INTRODUCTION 

The equilibrium and stability properties of charged- 
particle beams have been an important subject of investiga- 
tion in beam physics, plasma physics, and vacuum electron- 
ics. Indeed, the principles of vacuum electronics [1] are 
based on electron beam interactions with radio-frequency 
structures, and the discovery of strong focusing in the early 
1950s [2] has provided the scientific basis for modem par- 
ticle accelerators such as synchrotrons, linacs, and high- 
energy colliders. 

Recently, there have been vigorous activities in the re- 
search and development of high-intensity vacuum electronic 
devices and high-intensity accelerators in order to meet the 
needs in communication, in high-energy and nuclear physics 
research, in the development of spallation neutron sources, in 
heavy ion fusion applications, and in advanced x-ray radiog- 
raphy, to mention a few examples. 

In the design of high-intensity charged-particle beam sys- 
tems, the most challenging task is to properly match high- 
intensity beams into focusing systems, so that the beams are 
in equilibrium or quasiequilibrium states in the combination 
of applied fields and self-fields [3]. A widely used tool for 
the determination of matching conditions of high-intensity 
charged-particle beam systems is based on the rms beam 
description [4-7]. However, rms beam matching is inad- 
equate for ultrahigh-brightness beams, because detailed in- 
formation about the beam dynamics, especially the evolution 
of the density and flow velocity profiles, is lost by perform- 
ing phase-space averages in the rms analysis. In general, rms 
beam matching does not guarantee well-behaved beam trans- 
port if the beam becomes space-charge dominated. In fact, 
without detailed equilibrium flow matching of high-intensity 

*Present address: Instituto de Fisica, Universidade Federal do Rio 
-Grande do Sul, Caixa Postal 15051, 91501-970 Porto Alegre, RS, 
Brazil. 

beams, many undesirable phenomena can occur, including 
chaotic particle motion [8] and chaotic beam envelope oscil- 
lations [9], beam halo formation [10], beam hollowing [11], 
emittance growth [12], and multimode excitations, as ob- 
served in recent high-intensity beam experiments. 

In this paper, we present exact steady-state solutions to 
the cold-fluid equations governing the evolution of an 
ultrahigh-brightness, space-charge-dominated beam propa- 
gating through a linear focusing channel consisting of uni- 
form solenoidal, periodic solenoidal, and alternating-gradient 
quadrupole focusing magnets in an arbitrary arrangement in- 
cluding field tapering. The equilibrium beam density and 
flow velocity profiles and equilibrium self-electric and self- 
magnetic fields are determined by solving generalized beam 
envelope equations. For beams with negligibly small emit- 
tance, these steady-state solutions are validated with self- 
consistent simulations using the Green's function method. In 
general, these steady-state solutions correspond to cork- 
screwing elliptic beam equilibria. They recover many famil- 
iar beam equilibria in beam physics, such as the cold-fluid 
round rigid-rotor equilibrium [13,14] and both the periodi- 
cally focused rigid-rotor Vlasov equilibrium [15] and 
Kapchinskij-Vladimirskij equilibrium [16] in the zero- 
emittance limit. 

Examples and applications of the present equilibrium 
beam theory are discussed. As a simple example, a cork- 
screwing elliptic beam equilibrium in a uniform solenoidal 
magnetic field is obtained. As an important application of the 
present equilibrium beam theory, a general technique is de- 
veloped and demonstrated with an example to control large- 
amplitude density and flow velocity fluctuations (such as 
beam hollowing and halo formation) often observed in 
ultrahigh-brightness beams. For comparison, we investigate 
numerically the beam transport for distributions that substan- 
tially deviate from the equilibrium solutions. In this case, the 
occurrence of beam hollowing and halo formation is found. 
As a final example, we consider an ultrahigh-brightness 
beam equilibrium in a periodic focusing channel consisting 

1063-651X/2000/62(2)/2789(8)/$15.00 PRE 62 2789 ©2000 The American Physical Society 
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of overlapping solenoidal and quadrupole focusing fields to 
illustrate a wide range of applicability of the present equilib- 
rium  beam  theory  in  manipulating  ultrahigh-brightness 

beams. 
The paper is organized as follows. In Sec. II, steady-state 

cold-fluid equations are presented for transverse electrostatic 
and magnetostatic interactions in a high-intensity charged- 
particle beam propagating through a linear focusing channel 
with general magnetic focusing field profile. In Sec. Ill, an 
equilibrium solution to the steady-state cold-fluid equations 
presented in Sec. II is obtained and generalized beam enve- 
lope equations for equilibrium flow are derived. In Sec. IV, it 
is shown that the steady-state cold-fluid solutions found in 
Sec. Ill recover familiar beam equilibria in proper limits. In 
Sec. V, examples and applications of the present equilibrium 
beam theory are discussed. Conclusions are given in Sec. VI. 

H. THEORETICAL MODEL AND ASSUMPTIONS 

We consider a thin, continuous, ultrahigh-brightness, 
space-charge-dominated beam propagating with constant 
axial velocity ßbcez through a linear, focusing channel with 
multiple periodic solenoidal and alternating-gradient quadru- 
pole focusing sections. The focusing fields can be tapered, 
and the quadrupoles are allowed to be at various angles .in 
the transverse direction. The focusing magnetic fietld is ap- 
proximated by 

B0(x)=Bz(s)ez--B'z(s)(xex+yhy) 

+ (dBpdy)0(y$x-+xey), (1) 

where B'z(s) = (SBz/ds)0, s = z is the axial coordinate, x, y, 
e>, and % are coordinates and unit vectors of a frame of 
reference that is rotated by an angle of <pq with respect to the 
x axis in the laboratory frame, {dBq-ldy)0^={dBq-ldx)(i, and 
the subscript "zeroy denotes (x,y)=0=(x,y). 

In the present analysis, we consider the transverse elec- 
trostatic and magnetostatic interactions in the beam. We 
make the usual paraxial approximation, assuming that (a) the 
Budker parameter is small compared with yb, i.e., 
q2Nb/ybmc2<l, (b) the beam is thin compared with the 
characteristic length scale over which the beam envelope 
varies, and (c) the kinetic energy associated with the trans- 
verse particle motion is small compared with that associated 
with the axial particle motion. 

For an ultrahigh-brightness beam, kinetic (emittance) ef- 
fects are negligibly small, and the beam can be adequately 
described by cold-fluid equations. In the paraxial approxima- 
tion, the steady-state cold-fluid equations for time-stationary 
flow (d/dt = 0) are 

ßbc— nb+VL-(nb\J=0, 

Vlcf,s = ßb
iVlAs=-47rqnb, 

(2) 

(3) 

*■ x 

FIG. 1. Laboratory and rotating coordinate systems. 

i       a    „     d U     qn>> 
ds 7b 7bm 

Y 
+ -XB,(s)e2 (4) 

wherex1=^ex+yey, yb=(l-ß2
b)~

m, and the self-electric 
and self-magnetic fields Es and Bs are determined from the 
scalar and vector potentials <j>, and Azez, i.e., EJ= — Vx<f>s 

and B'=VXA'ez. In Sec. m, it will be shown that the 
steady-state cold-fluid equations (2)-(4) support a class of 
solutions that, in general, describe corkscrewing elliptic 
beam equilibria in the magnetic focusing field defined in Eq. 

(1). 

D3. CORKSCREWING BEAM EQUILIBRIUM 

In this section, we show that there exists a class of solu- 
tions to the steady-state cold-fluid equations (2)-(4) which, 
in general, describe corkscrewing elliptic beam equilibria for 
ultrahigh-brightness, space-charge-dominated beam propaga- 
tion in the linear focusing channel denned in Eq. (1). 

We seek solutions to Eqs. (2)-(4) of the form 

nb(x±,s) = 
Nh 

ira(s)b(s) 
e l- 

x2 f 
a\s)    h\s) 

V±(xx ,s) = [fix(s)x-ax(s)y~]ßbcez+[f*yU)y 

+ ay(s)x]ßbcey. 

(5) 

(6) 

In Eqs. (5) and (6), xx=xex-+yey is a transverse displace- 
ment in a rotating frame illustrated in Fig. 1, 6(s) is the 
angle of rotation of the ellipse with respect to the laboratory 
frame, 0(x) = l if x>0 and 0(*)=O if *<0, and the func- 
tions a(s), b(s), fix(s), /xy(s), ax(s), ay(s), and 0(s) are 
to be determined self-consistently. 

Substituting Eqs. (5) and (6) into Eq. (2) and expressing 
the result in terms of the tilded variables, we find 

+fl 
f       x2    f 

+2 {{Ui 
lb'          \y2    1     b6'     ad'     bax    aay\xy' 

+ \T~fM>j'bI + \~~+~V+~~~}ab. 

XS 
■       x2    f 
1_? b2 = 0, (7) 
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where the prime denotes derivative with respect to s, S(x) 
=d®(x)/dx, and use has been made of the identities 
dx/ds=d'y, dylds=-6'x, and V-Y=dF;ldx+dFyldy 
for any vector field F. Since Eq. (7) must be satisfied for all 
x and y, the coefficients of the terms proportional to 0, x28, 
y2S, and xyS, must vanish independently. This leads to the 
following equations: 

_\ da _]_db_ 

dB _a2ay-b2az 

ds ar^br 

(8) 

(9) 

where the functions a(s), b(s), ax(s), and ay(s) still re- 
main to be determined. 

Solving for the scalar and vector potentials from Eq. (3), 
we obtain 

2qNblx
2    f\ ,   , 

in the beam interior with x2/a2+y2/b2<l. In deriving Eq. 
(10), use has been made of V2

L = d2ldx2+^ldf. 
To solve the force equation (4), we substitute Eqs. (5), 

(6), and (8)-(10) into Eq. (4), express the results in terms of 
the tilded variables, and use the relations dx/ds'-d'y, 
dylds = - e'x, <%/<?*= 0%, and <%/<?*= - 0'%. We ob- 
tain 

{fx+Kq cos[2( 6- <Pq)]}x-{gy+ ^ sin[2( 0- <pq)]}y = 0, 
(11a) 

{gx- Kq sin[2( 6- <Pq)1)x+{fy- Kq cos[2( 6- <pq)]}y=0 
(lib) 

in the x and y directions, respectively. In Eq. (11), 

2_.2 1 d2a    b2(ax-2axa) + a2a 
fx   a~d? ~a^b^ 

— 2ay\JKz 

2K 

yy  z    a(a + b)' 
(12a) 

,2 Ji 

fy=H 

1 d2b     a2(a2-2axay) + b2a2
x 

b ds2 ■ + 
~aY^br — 2ax^jKz — 

2K 
z    bia + b)' 

(12b) 

8>=p 
( d 

Js 
a3b(ax—ay) d lb 

-rj^+V^)]—^izp ds \a 
(12c) 

**=?1 — [a2(«y+V^)]- 
ds 

ab3(ax—ay)  d la 

a2-b2      ds\b)\' 
(12d) 

Since Eqs. (1 la) and (1 lb) must be satisfied for all x and y, 
we obtain the generalized beam envelope equations 

fx+Kqcos[2(e-cpq)] = 0, 

/y-/c9cos[2(0-«p?)] = O, 

Sy+K9sin[2(0-<p?)] = O, 

(13a) 

(13b) 

(13c) 

gx-Kqsin[2(e-<pq)] = 0. 
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(13d) 

Making use of Eq. (12), we can express the generalized beam 
envelope equations as [17] 

d2a 

d? Kq(s)cos[2(d-<pq)]- 

2K 

b2(a2
x-2axay) + a2a2

y 

az-b2 

— 2ayyi<z a—- =0, 

<Pb 

ds- 
- + 

(a + b) 

-Kq(s)cofl2(e-<pq)] + 

(14a) 

a2(a2
y-2axay) + b2a2

x 

)2K 
b~(aTb)=°' 

d ,—       a3b(ax— av) d [b -[bHax+^z)]—^^--[- 

+ K?(5)fc2sin[2(0-<p?)]=O, 

d r 2,     ,   r-x-,    ab\ax-ay) d la 
-[a(«y+V*z)] ^TZy-1— -rs\b 

-K(7(s)a2sm[2(0-<p(7)]=O, 

(14b) 

d6    a2av — b2az 

ds     .4-T^-a a l-b2 

Px~- 
1 da 

a ds' 

fly-- 
1 db 

~b~d~s' 

(14c) 

(14d) 

(14e) 

(14f) 

(14g) 

Equations (8) and (9) are added here as Eqs. (14e)-(14g) for 
completeness. Equations (14a)-(14g), together with the den- 
sity and velocity profiles defined in Eqs. (5) and (6), describe 
cold-fluid equilibrium states for variably focused ultrahigh- 
brightness beams. 

IV. LIMITING CASES 

A wide variety of cold-fluid beam equilibria can be con- 
structed with Eqs. (5), (6), and (14) for proper choices of 
magnetic focusing field profiles. While cold-fluid beam equi- 
libria are elliptic and corkscrewing in general, they do re- 
cover familiar beam equilibria in proper limits. In this sec- 
tion, we discuss some of these limiting cases. 

First, let us consider the case of an axisymmetric beam in 
a periodic solenoidal focusing field with KZ(S)=KZ(S + S) 

#0, Kq(s)=0, and a(s) = a(s+S)=b(s). In this limit, Eqs. 
(14c)-(14e) imply that 

dO «</ 
ds- = a*=a> = aT(sj-^> (15) 

where ed= const is an unnormalized emittance associated 
with beam rotation relative to the Larmor frequency \IKZ(S). 

Equation (15) indicates that the beam rotates at a rate that is 
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a periodic function of the axial propagation distance s. Sub- 
stituting Eq. (15) into Eqs. (14a) and (14b), setting ax 

= a , and taking the limit a=b, it is readily shown that the 
beam envelope equations reduce to 

d2a 

~d? 
(16) 

The equilibrium described by Eqs. (5), (6), (15), and (16) is 
identical to the familiar round rigid-rotor Vlasov beam equi- 
librium [15] in the zero-emittance limit 

Second, in a uniform magnetic focusing field with KZ(S) 

= Kz0=const, Kq(s)=0, and a(s)=b(s), a special solution 
to the beam envelope equation (16) is 

K+(K2+4Kz08'd) 
2x1/2 

2*zo 

1/2 

= const, (17) 

and the equilibrium recovers the familiar cold-fluid round 
rigid-rotor beam equilibrium [13,14]. A general class of 
corkscrewing elliptical beam equilibria with constant radii 
a ¥= b in a uniform solenoidal focusing field is discussed in 
detail in Sec. IV A. 

As a third limiting case, we consider a nonrotating ellip- 
tical beam in an alternating-gradient quadrupole focusing 
field with KZ(S) = 0, Kq(s) = Kq(s+S), 6(s) = 0, a,(*)=a(s 
+ S), b(s) = b(s + S), and ax(s) = ay(s)=0. In this case, 
Eqs. (14c)-(14e) are automatically satisfied and the envelope 
equations reduce to 

d2a 2K 
7-T + Kq(s)a-— = 0, 

<Pb 

ds 
--KJs)b- 

2K 

a + b 
= 0. 

(18a) 

(18b) 

Note that the internal flow must satisfy ax(s) = ay(s) = 0 in 
order to prevent the beam from rotating with a finite ddlds. 
The equilibrium described by Eqs. (5), (6), and (18) corre- 
spond to the familiar Kapchinskij-Vladimirskij beam equilib- 
rium [16] in alternating-gradient quadrupole magnetic focus- 
ing field in the zero-emittance limit 

V. EXAMPLES AND APPLICATIONS 

In this section, we discuss three examples of cold-fluid 
corkscrewing elliptic beam equilibria predicted by the equi- 
librium beam theory presented in Sec. IV. These examples 
are (a) cold-fluid corkscrewing elliptic beam equilibria in a 
uniform magnetic field (Sec. VA), (b) matching and trans- 
port of an ultrahigh-brightness round beam generated by an 
axisymmetric particle source into an alternating-gradient 
magnetic quadrupole focusing channel (Sec. VB), and (c) 
matching and transport of an ultrahigh-brightness round 
beam into a periodic focusing channel consisting of overlap- 
ping solenoidal and quadrupole focusing fields (Sec. V C). 

In addition to illustrating a large class of beam equilibria 
predicted by the present equilibrium beam theory, these ex- 
amples are also intended to demonstrate a general technique 
for controlling of large-amplitude beam density and flow ve- 
inritv flnrmntions and associated emittance growth and beam 

halo formation often observed in ultrahigh-brightness beam 
experiments. To demonstrate the efficacy of this beam con- 
trol technique, the transport for an ultrahigh-brightness beam 
with an initial perturbation about the equilibrium transverse 
flow velocity is compared with the equilibrium beam trans- 
port (Sec. V B). 

A. Corkscrewing elliptic beam equilibria 
in a uniform magnetic field 

As a simple example, we consider corkscrewing elliptic 
beam equilibria in  a uniform magnetic field with Be 

—B.ne. zOKz 
Setting JKZ(S)= J^>=qBz(/2ybßbmc2=coiist 

and Kq(s)=0, it can be shown that Eq. (14) has the follow- 
ing two branches of physically acceptable special solutions: 

a=ai = 
«, 

1/2 

*=*i=hr 

1/2 

. Kz0-(ax+ V^Ö)(«y+ V*zÖ) 

K 
axl    [Kzo-(arx+V^)(ay+V«iö) 

1/2 

1/2 

azav 
-^s+0(O), (19) 

for branch A, and 

a = ü2 

ax+2^^i<rt\ 

ay + 2\[Kzol 

i/2r 

,Kz0-(ax+ V*io)(a>+ VKzo). 

1/2 

b = b7 

1/2 

ax+2SKzQ} 

0(5) = W25 = 

K 

. Kz0~(ax+ 4Kz0)(ay+ VKZO) 

axay-4Kz0 

1/2 

ax+ay+4yfi<zo 
s+6{0), (20) 

for branch B. In Eqs. (19) and (20), ax and ay are constant 
For branch A, the conditions for the confinement of cork- 

screwing elliptic beam equilibria are 

ax/\[K^><0,    ay/^[i<z^<0, 

( ax + VK^) ( ay + %/K^) < K z0 (21) 

for both positively and negatively charged particle beams. 
Because ax and ay have the same sign, the internal flow for 
branch A is always rotation like. For branch B, the condi- 
tions for the confinement of corkscrewing elliptic beam equi- 
libria are 

ayl^i<io>-2,    axlsfi<70>-2, 

{ax+^ö)(ay+yfK~ö)<Kz0 (22) 

for both positively and negatively charged particle beams. In 
contrast to the internal flow for branch A, the internal flow 
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FIG. 2. Regions in parameter space for confinement of cork- 
screwing elliptic beam equilibria in a uniform magnetic field. 

for branch B can be either rotation like with ax and ay in the 
same sign or quadrupole flow like with ax and ay in apposite 
signs. Figure 2 shows the regions of the confinement of cork- 
screwing elliptic beam equilibria in a uniform magnetic field 
applicable for both positively and negatively charged particle 
beams. It is important to point out that the familiar cold-fluid 
round rigid-rotor beam equilibria [13,14] are recovered in the 
present analysis by setting ax=ay in either Eq. (19) or Eq. 
(20), as indicated by the dark solid line shown in Fig. 2. 

B. Control of halo formation and beam hollowing , 
in uttrahigh brightness beams . 

• 
As discussed in the Introduction, one of the key mecha- 

nisms for halo formation in high-intensity electron or ion 
beams is due to a mismatch in the particle phase-space dis- 
tribution relative to an equilibrium distribution. In general, a 
distribution mismatch can lead to rather complex evolution 
in a beam, including not only halo formation, but also beam 
hollowing. This mechanism for halo formation and beam 
hollowing occurs for rms matched beams because rms beam 
matching does not necessarily guarantee the beam in an equi- 
librium state. 

For example, both halo formation and beam hollowing 
were observed in the heavy ion beam injector experiment at 
Lawrence Berkeley National Laboratory (LBNL) [11], in 
which an ultrahigh-brightness, space-charge-dominated po- 
tassium ion beam was generated with an axisymmetric 
Pierce diode and then accelerated by a set of electrostatic 
quadrupoles. More recently, experimental evidence of beam 
hollowing was found in a high-brightness, space-charge- 
dominated electron beam experiment at University of Mary- 
land [18]. 

As an important application of the equilibrium beam 
theory presented in Sec. IV, we develop and demonstrate a 
technique for controlling of beam halo formation and beam 
hollowing in ultrahigh-brightness beams. This technique is 
widely applicable in the design of ultrahigh-brightness 
beams and is effective before any collective instability de- 
velops to reach considerably large amplitudes. 

To demonstrate the efficacy of this technique, we consider 
here a specific example, namely, the matching of a round 
particle beam generated by an axisymmetric particle source 
into alternating-gradient magnetic quadrupole focusing chan- 
nel. For comparison, we analyze two nonrotating rms 
matched beams with the same intensity; one beam will be in 
equilibrium, and the other beam has an initial perturbation 
about the equilibrium transverse flow velocity. At the en- 
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FIG. 3. Plot of the focusing parameter S2Kq as a function of the 
propagation distance s. 

trance of the alternating-gradient magnetic focusing channel 
(j=0), both beams have the same density profile defined in 
Eq. (15), but the transverse flow velocities of the beams are 
of the form [19] 

dxL 

~ds~ 

Xj_ Ida 

a \ ds 

2xx -Xj. 
l + Hi-^r1 (23) 

where v is a parameter that measures the nonlinearity in the 
velocity profile. For example, an initial velocity profile with 
v>0 in Eq. (23) may model the effects of the concave shape 
of a Pierce-type ion diode in the LBNL 2-MV Heavy Ion 
Beam Injector Experiment [11]. The value of v in the LBNL 
experiment [11] is estimated to be i>=0.25. For equilibrium 
beam propagation, v=0. 

The rms matching for both beams with v = 0 and 0.25 is 
obtained by numerically solving the rms envelope equations 
[5] 

d2ä 
— + Kq(s)a- 
ds 

K 

2(0+5) 
= 0, 

dft 

ds 
--Kq(s)b-- 

2(ä+b) 
= 0, 

(24a) 

(24b) 

where 5=(x2)112 and b=(y2)m are the rms envelopes, (• ••) 
denotes average over the particle distribution, and emittance 
terms are neglected. For given beam intensity K and focusing 
channel parameters C3 and TJ shown in Fig. 3, we make use 
of Eq. (24) to determine the injection parameters for the 
axisymmetric beam, namely, ä(0), b~(0), ä'(0), and £'(0), 
as well as the strengths of the two quadrupoles centered at 
s = S/4 and 5 = 35/4 in the first lattice, Cj and C2, as shown 
in Fig. 3, assuming all quadruples having the same width rj 
and equally spaced. Because Eq. (24) has a unique solution 
for an rms matched beam in the constant-parameter 
alternating-gradient focusing section with slS> 1, integrating 
Eq. (24) from s = S to s = 0 yields four implicit functions 
ö(C,,C2), £(C,,C2), ä'(C,,C2), and P(C,,C2). The 
conditions for an initially converging round beam, i.e., 

ä(0)=b(0) = a(0)/2=b(0)/2 and a'(0) = b'(0), uniquely 
determine the parameters Cx and C2, which is done numeri- 
cally with Newton's method. The results are presented in 
Figs. 3 and 4. 
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FIG. 4. Plots of nns beam envelopes versus PW*» *J- 
«n«K Here the solid and dashed curves are obtained from Eq. (24J. 
SSS SIS« and OP*« «**- - ^«he self-consent 
simulation for a beam with v=0.25. Here ä and F are normahzed to 

VE(0)5. 

Figure 3 shows the focusing field parameter S2
K as; a 

fimSTof ,, where ,-03. C,-231. C2=7.44, and C3 

^0 0 In Fig 4, the soüd and dashed curves show, respec- 

tively, the rms matched envelopes ä(s) and b(s) for the 
focusing channel with vacuum phase advance a0-70.8 and 
b^rn plrveanc« SK/4E(0) = 16.0 (correspond»^ to a space- 
Se'depressed phase advance of <r=5.4°), where,. negh.- 
dbW small ««normalized rms emittance of e_(0)T0.15 
SlO^mradhasbeenassignedtothebeamat^-O 

Self-consistent   simulations   are   performed   with   N, 
-3072 and free-space boundary conditions to study the 
nhaS soTce Solution for the two beams in the focusmg 
SanneSowen in Fig. 3. In Fig. 4, the soüd dots and open 

circles correspond to the rms envelopes ä{s) and &(*)<*• 
Sned from a^lf-consistent simulation for a beam initially 
STa nonhnear velocity profile with v=0.25. It is evident in 
?   Zt there is excellent agreement between die predic- 
tion of the rms envelope equations (24a) and (24b) and die 
results of the self-consistent simulation, despite that the 
transverse flow velocity is perturbed substantially. 
*™ Z» examine the evolution of die particle distribution 
if the nonlinearity in the initial transverse flow velocity pro- 
Mefs ümUcecLd compare with .^fbri-^ .^ 
cation The results are summarized m Figs 5 and 6. Figure 5 
Sows a comparison between particle distributions m the 
cordon space with and without nonüneanty in the mi- 
tial reverse flow velocity at three axial positions:    s/S 
=0 1 0 and 2.5. These axial positions are chosen such that 

ä{s) = Üs). In Fig. 5, the plots shown on the left <™g«* 
to v=0 and those on the right to v=0.25. For „-025 die 
initially round beam develops sharp edges after ****** 
tice becoming partially hollow subsequently at s/S-2.5. In 
pj Social distribution of 3072 macroparticles at 
s1=2 5 shows that the density at the edge is twice the den- 
s ty at the center of the beam and that there is a small halo 
Sending outward beyond the radius where the density 
Ä maximum. Vhe partially hollow density profile 
shown in Fig. 6(b) is similar to, but not as pronounced as 

- Sobserve^ in the heavy ion beam injector■«¥■£££ 
LBNL rill- I" contrast to the case with v-0.25 the beam 
oronaites in an equilibrium state for ,=0 without beam 
noTowmg and without any significant beam halo formation, 
„..   „U^„-i-.   Jr.   Fir.    (y(^\ 
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FIG 5 Particle distributions in the configuration space for v 
= 0 (left) and v=0.25 (right). Here the coordinates x and y are 

normalized to Vs(0)S. 

C Matching and transport of a beam into a periodic focusing 
channel consisting of overlapping sdenoidal and 

quadrupole focusing fields 

As another example of corkscrewing elliptic beam equi- 
librium, we consider the matching and transport of an ini- 
tially round beam into a periodic focusing channel consisting 
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FIG 7 Plots of focusing and beam parameters versus normal- 
ized propagation distance s/S for an equUibrium beam in a tapered 
linear focusing channel consisting of overlapping periodxc solenoi- 
dal and alternating-gradient quadruple magnetic fields. Here K 
= 1 6X 1(T5 and 5= 1.0m. In (a) the solid and dashed curves are 
dimensionless focusing parameters S*KZ(S) and S2Kq(s), respec- 
tively in (b) the solid and dashed curves are the beam envelopes 
a(s) and b(s) predicted by Eq. (14). whereas the solid dots and 
open circles are obtained from the simulation; in (c) the sohd curve 
and open circles are the angles of the beam ellipses obtained from 
Eq. (14) and the simulation, respectively. 

of overlapping solenoidal and quadrupole focusing fields. 
Figure 7(a) shows plots of dimensionless focusing param- 
eters S2

KT and S2Kq versus propagation distance s/S for the 
channel In Fig. 7(a), the width of solenoidal and quadrupole 
magnets is 0.35. In the matching section (0<s<S), two 
quadruples at s/S=0.2S and s/S=0.75 are placed at angles 
a =-50° and <p,= -40°, respectively. In the periodic fo- 
cusing section (5>5), the quadrupoles are placed at  <f> 
= 0° in the first cell (l<*/5*2) and are rotated by -120 
in each of subsequent cells, yielding a periodicity of 3S for 
the channel. To determine the angles and the strengths of the 
matching quadrupoles, we first find from Eq (14) periodic 

"   solutions with a(s + S) = a(s),  b(s + S) = b(s),   ax(s + S) 
= „,(,), ay(s + S) = ay{s), and 0(s + 3S)=<Ks) in the pe- 
riodic focusing section and then match the initially round 
beam with a(0) = b(0) and a,(0) = ay(0) with the periodic 
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HG. 8. Particle distributions in configuration space obtained 
from the simulation for the case shown in Fig. 7. * 

solution at s/S= 1 using a shooting method. The results are 
shown in Fig. 7 for K= 1.6X lO"5 and S=1.0m. The sohd 
and dashed curves in Fig. 7(b) are calculated envelopes a{s) 
and b{s), and the sohd curve in Fig. 7(c) is the angle 0(s). 

We have validated the exact steady-state solutions using 
self-consistent simulations. In the simulations, use is made of 
Green's function method to determine electrostatic fields 
generated by the charged particles in the beam and image 
charges due to a perfectly conducting cylindrical tube of ra- 
dius rw. A detailed description of the simulation code was 
presented earlier [19]. For the focusing parameters shown in 
Fig. 7(a), 104 macroparticles are loaded in the present simu- 
lation according to the initial distribution function 

/(x1,xi) = «b(^,0)exP{-[xI/8fcc-V1(Xx,0)]2/r(xx)}, 

where nb(xx,0) and Vx(x±,0) are the initial density and ve- 
locity profiles defined in Eqs. (5) and (6), respectively, 
T(x±) = T0(x

2la2 + y2/b2-l) is an effective temperature 
profile, and T0 is a constant chosen to give an initial total (4 
times rms) emittance of 0.2X KT6mrad. The conducting 
cylindrical tube radius is chosen to be rw= 10.0mm. Results 
of the simulation are summarized in Figs. 7(b), 7(c), and 8. 
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Shown in Figs. 7(b) and 7(c) is the excellent agreement 
between the beam envelopes a(s) and b(s) and angle d(s) 
obtained from the self-consistent simulation and those pre- 
dicted by the generalized beam envelope equations (14), as 
expected. In Fig. 8, particle distributions in the plane (x,y) 
are plotted at several axial locations of the matching section 
and the periodic focusing section, showing the transition 
from a round beam to a corkscrewing elliptic beam in the 
focusing channel. The elliptic beam completes a full clock- 
wise turn from s/S= 1 to s/S=4 [see Figs. 8(e)-8(h)]. Both 
image charge effects and emittance growth are negligibly 
small. The density profiles are computed at various axial 
locations in the simulation, and they are found in good agree- 
ment with the density profile defined in Eq. (5). It should be 
stressed that the beam propagates in a steady state without 
either beam hollowing or halo formation. 

VI. CONCLUSIONS 

We have shown that there exists a new class of cold-fluid 
corkscrewing elliptic beam equilibria for ultrahigh- 
brightness, space-charge-dominated beam propagation 
through a linear focusing channel consisting of uniform so- 
lenoidal, periodic solenoidal, and/or alternating-gradient 
quadrupole focusing magnets in an arbitrary arrangement in- 
cluding field tapering. Generalized beam envelope equations 
were derived. The equilibrium beam density and flow Veloc- 
ity profiles and equilibrium self-electric and self-magnetic 
fields were determined by solving generalized beam enve- 
lope equations. For beams with negligibly small emittance, 
these steady-state solutions were validated with self- 
consistent simulations using the Green's function method. 
While these steady-state solutions correspond to corkscrew- 
ing elliptic beam equilibria in general, they do recover many 
familiar beam equilibria in beam physics, such as the cold- 

fluid round rigid-rotor equilibrium and both the periodically 
focused rigid-rotor Vlasov equilibrium and Kapchinskij- 
Vladirnirskij equilibrium in the zero-emittance limit. 

Examples and applications of the present equilibrium 
beam theory were discussed. In particular, a corkscrewing 
elliptic beam equilibrium in a uniform solenoidal magnetic 
field was obtained. As an important application of the 
present equilibrium beam theory, a general technique was 
developed and demonstrated with an example to control 
large-amplitude density and flow velocity fluctuations (such 
as beam hollowing and halo formation) often observed in 
ultrahigh-brightness beams. Furthermore, an ultrahigh- 
brightness beam equilibrium in a periodic focusing channel 
consisting of overlapping solenoidal and quadrupole focus- 
ing field was obtained to illustrate a wide range of applica- 
bility of the present equilibrium beam theory in manipulating 
ultrahigh-brightness beams. 

It is anticipated that the equilibrium beam theory pre- 
sented in this paper can be used to perfectly match ultrahigh- 
brightness beams in practical beam transport systems and to 
design electron beam equilibrium configurations in new 
vacuum electronic devices. Finally, the present cold-fluid 
equilibrium theory can be generalized to include the effect of 
finite beam emittance, which will be discussed in a future 
article. 

ACKNOWLEDGMENTS 

This work was supported by the Department of Energy, 
Office of High Energy and Nuclear Physics Grant No. DF- 
FG02-95ER-40919, the Air Force Office of Scientific Re- 
search Grant No. F49620-97-1-0325 and No. F49620-00-1- 
0007, and in part by the Department of Energy through a 
subcontract with Princeton Plasma Physics Laboratory. The 
research by R.P. was also supported by CNPq, Brazil. 

[1] J. Benford and J. A. Swegle, High Power Microwaves (Artech, 
Boston, 1992). 

[2] E. D. Courant, M. S. Livingstone, and H. Snyder, Phys. Rev. 
88, 1190(1952). 

[3] Space Charge Dominated Beams and Applications of High- 
Brightness Beams, edited by S. Y. Lee, AIP Conf. Proc. No. 
377 (AIP, New York, 1996). 

[4] P. M. Lapostolle, IEEE Trans. Nucl. Sei. NS-18, 1101 (1971). 
[5] F. J. Sacherer, IEEE Trans. Nucl. Sei. NS-18, 1105 (1971). 
[6] D. Chernin, Part. Accel. 24, 29 (1998). 
[7] J. Barnard, in Proceedings of the 1995 Particle Accelerators 

Conference (Institute of Electrical and Electronics Engineer- 
ing, Piscatoway, NJ, 1995, p. 3241. 

[8] Q. Qian, R. C. Davidson, and C. Chen, Phys. Rev. E 51, 3704 
(1995). 

[9] C. Chen and R. C. Davidson, Phys. Rev. Lett. 72, 2195 (1994). 
[10] R. L. Gluckstern, Phys. Rev. Lett. 73, 1247 (1994). 
[11] S. Yu, S. Eylon, E. Henestroza, and D. Grote, in Space Charge 

Dominated   Beams   and  Applications   of High-Brightness, 

Beams [3], p. 134 
[12] T. P. Wangler, K. R. Crandall, R. S. Mills, and M. Reiser, 

IEEE Trans. Nucl. Sei. NS-32, 2196 (1985). 
[13] R. C. Davidson and N. A. Krall, Phys. Fluids 13,1543 (1970). 
[14] A. J. Theiss, R. A. Mahaffey, and A. W. Trivelpiece, Phys. 

Rev. Lett. 35, 1436 (1975). 
[15] C. Chen, R. Pakter, and R. C. Davidson, Phys. Rev. Lett. 79, 

225 (1997). 
[16] I. M. Kapchinskij, and V. V. Vladirnirskij, in Proceedings of 

the International Conference on High Energy Accelerators 
(CERN, Geneva, 1959), p. 274. 

[17] Equation (14) can be integrated numerically as a approaches b. 
[18] S. Bemal, P. Chin, R. A. Kishek, Y. Li, M. Reiser, J. G. Wang, 

T. Godlove, and I. Haber, Phys. Rev. ST Accel. Beams 1, 
044202 (1998) 

[19] M. Hess, R. Pakter, and C. Chen, in Proceedings of the 1999 
Particle Accelerator Conference, edited by A. Luccio and W. 
Mackay (Institute of Electrical and Electronics Engineering, 
Piscatoway, NJ, 1989), p. 2752. 



PHYSICS OF PLASMAS VOLUME 7, NUMBER 10 OCTOBER 2000 

Stimulated radiation from spatiotemporally gyrating relativistic 
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A stability analysis is made of an electron beam, propagating along and gyrating about a uniform 
magnetic field, tor the case of a spatiotempoial equilibrium distribution in the phase angle of me 
transverse electron momentum component The axial momentum component and the magnitude of 
the transverse momentum component are assumed to have definite values in the equilibrium 
distribution. The analysis is carried out by applying Lorentz transformations to previous results for 
nongyrotropic eqjpbrium distributions. The dispersion matrix, its eigenmodes (which relate field 
amplitudes), and^uKypdispersion relation are obtained. Numerical results show that varying the 
spatiotemporal propertpLof a nongyrotropic equilibrium distribution has only a small effect on 
maximum growth rarexojiadiation, but has a strong effect on the frequencies and wavenumbers at 
which instability occurs. ^AtüQvel mechanism is found by which electrons emit stimulated radiation 

i, can be greater than the usual Doppler-shifted electron cyclotron 
© 2000 American Institute ofPhysics. 

at frequencies that, in princi 
frequency by orders of 
[S1070-664X(00)05010-2] 

I. INTRODUCTION 

Stimulated emission of radiation by electro 
magnetic fields has been an important subject of 
computational, and experimental investigations 
physics, astrophysics, and vacuum electronics for ^ 
decades.1-6 It is well known that the frequencies of such 
stimulated radiation correspond to the Doppler-shifted elec- 
tron cyclotron frequency and its harmonics. For moderately 
and highly relativistic electrons, the fundamental frequency 
is approximately 2 y^ae, where yx is the relativistic mass 
factor associated with the axial motion of the electrons and 
o)c is the relativistic cyclotron frequency. 

A number of papers have dealt with stability properties 
of a relativistic electron beam in the presence of a uniform 
magnetic field B0=fioei I*or ue case °f& nonisotropic equi- 
librium distribution in the phase angle <f> of the momentum 
component px perpendicular to the field.7-14 In particular, it 
has been suggested that such distributions may be employed 
to enhance the growth rates of desired radiation modes in 
devices employing the cyclotron resonance maser instability. 
More recently, there has been some interest in harmonic con- 
version processes in spatiotemporal equilibrium distributions 
in £15-" 

In order to gain a greater understanding of systems with 
spatiotemporal distributions in tf>, we analyze the stability 
properties of such systems in this paper. Preliminary results 
are given in an earlier report18 The analysis is limited to 
equilibrium distributions in which the axial momentum com- 
ponent p, and the magnitude of the transverse momentum 
component px have the definite values pz0 andp±0, respec- 
tively. Moreover, the systems are constrained to vary spa- 

''Permanent address: Department of Physics, Clark University, Worcester, 
Massachusetts 01610. Electronic mail: jdavies@clarku.edu 

1070-664X/2000/7(10)/1/12/$17.00 

tially only in the direction of the applied magnetic field (z 
direction). 

In Ref. 7, we analyzed the stability properties of such 
electron beam systems for two types of nonisotropic equilib- 
rium distributions in the phase #. These were the time- 

-   Jependentdismlmtion,wMchisarurictionofmeequih"brium 
J^gstänt of the motion <f>— ayj, and the axial-dependent dis- 

^ttibutioii, which is a function of the equilibrium constant of 
th&tn^on t—tuczlvjb. 
fy^Lahown in this paper that all relevant spatiotemporal 

distrifcuöjms are obtained from the above distributions by 
Ixmjmiirmnljbrmations. By making use of a Lorentz trans- 
formaticfigOlrihe», results obtained in Ref. 7, we derive the 
amplitude gfi^tFons and dispersion relations for small- 

re perturbations on spatiotemporally gyrating 
A detailed analysis is made of 

electron beams. 
jnalysis, we find a novel mecha- 
Imit stimulated radiation at fre- 

Etthemsual Doppler-shifted elec- 

' "y<^\of magnitude- Two key 
requirements for this mechamlsyi occur are that the gy- 
rophases of the electrons in the magnetic field have spa- 
tiotemporal correlations, and that the electrons have an in- 
verted population in the transverse momentum space. In 
contrast to most previous studies of the stimulated radiation 
by gyrating electrons with a random or spatial-dependent 
gyrophase distribution and inverted population in the trans- 
verse momentum space, the present analysis assumes the gy- 
rophase distribution to form a wave pattern in the direction 
of the magnetic field. When the phase velocity of the wave 
pattern is close to the average axial velocity of the electrons, 
the electrons emit right-hand, circularly polarized stimulated 
radiation   at   the   relatively   high   frequency   G>=2|/3 

© 2000 American Institute of Physics 

amplitude 
relativistic electron 
stability propertie 

In the present s 
nism by which electro: 
quencies that are greater 
tron cyclotron frequency 
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-ßa\~la>c, where ßpC and ß^c are the phase and electron 
axial velocities, respectively, and c is the speed of light in 
vacuum. 

It should be pointed out that die wave pattern in a spa- 
tiotemporally gyrating relativistic electron beam depends on 
how the beam is formed. One of the schemes to form a 
span'otemporally gyrating electron beam is through the cy- 
clotron laser (microwave) acceleratioa19-21 In this case, the 
phase velocity of the wave pattern in the beam is given by 
ßpc=(o0(ii>0—iüe)~

lßl0c, where a>0 is the laser (micro- 
wave) frequency. In the limit a>0> <ae and Ao-► h me stimu- 
lated radiation occurs at &>=*26>0. 

The organization of tMs/toaper is as follows. In Sec. n, 
the spatiotemporal distripuRo^is described, and me equilib- 
rium distribution is defined inJ4^The phase velocity ßp of 
a surface of constant disrrim^onjin phase is defined and 

■ result 

evaluated in (9). The primary 
persion relation for spatiot 
values ofp, and/>x • Thi' 
The derivation of our results from 
given in the Appendix. Moreover, Eqs? 
Appendix give the dispersion matrix for' 

paper is the dis- 
bria with definite 

(13) of Sec. in. 
Ref. 7is 
1) of the 

lectron beam 

FIG. 1. The {Aase angle ^ and pitch angle a, of a tingle-particle momen- 
tum p. 

systems considered in this paper. Another impcrtan|result is 
the expression for the eigenmodes of the ampUtdoe «mation 
given in (19) of Sec. DL This result gives the wl« * 
and frequencies of coupled right-hand circularly 

gier magnetic field. If the electron beam is generated in a 
cyclotron resonance accelerator, men a>0 corresponds to the 
rf frequency of die accelerator mat is a shifted cyclotron 

radiative waves,  left-hand  circularly polarized r&hgtKjeA   frequency. The phase of an unperturbed electron at (z, t) is 
waves, and longitudinal electrostatic waves. NumericakexL^ . /      _    \ _ 
amples are presented in Sec. IV. In these examples, the     m    tf>(z,t)=m0[t -)+<f>0+<oe——. (2) 
choice of spatiotemporal distribution [namely, the choice of .^st^ \      vzo / vl0 

the phase velocity (ßp) of the phase pattern in me equilib- 
rium distribution] is seen to have little effect on maximum 
growth rates of electromagnetic waves, but to have a strong 
effect on the range of unstable frequencies and wavenumbers 
and upon the wavenumbers and frequencies of coupled 
waves. These maximum growth rates of electromagnetic 
waves in the span'otemporally gyrating relativistic electron 
beams are greater than those in the corresponding gyrotropic 
relativistic electron beams. We discuss and summarize our 
results in Sec. V. 

II. SPATIOTEMPORALLY GYRATING EQUILIBRIUM 

We consider a beam consisting of electrons moving 
along and gyrating about a uniform magnetic field Bj 
=J?o8r Properties of the system are assumed to vary in the z 
direction only. All electrons in the equilibrium beam are as- 
sumed to have the same axial momentum (p»=/>2o) and the 
same magnitude of transverse momentum (/>x =/>xo)- As 
shown in Fig. 1, the phase angle of px is tf>=taa~l(pylp^, 
whereas a0=tan_1(px/pz) is the pitch angle. The equilibrium 
distribution in phase is spatiotemporal; that is, at some z 
=z0, we impose the condition 

ibove equation, the relativistic cyclotron frequency is 
jted by <oc=Clc/y0, where ile=eB0/mc is the nonrel- 
SEqg&ctotron frequency, -e and m are, respectively, the 

electf^nfidjarge and mass, c is the speed of light, y&nc2 is 
the uncmrtuped relativistic electron energy, and V& 
=/'zo/'w^5'^atiotemporally gyrating beam equilibrium 
is shown sc^ajfcaUy in Fig. 2(b). In an experiment, z0 

would correspond/» the point where the electron enters the 
region of interactiomw^i B0. However, boundary conditions 
are not dealt with %tiSß^aper, and the system is considered 
to extend over the tu^Pta|| (i.e., -oo<z<oo) of z. 

A distribution of valuejy|5f <f> at each (z, t) will result if 
distributions of values off^%d/orz0 exist From (2), such 
distributions will produce a^dß^rlution in the values of the 
equilibrium constant of the nmi9$|f, defined by 

X=<f>(z,t)-mot+(a>0-a>c) 
VzO 

(3) 

<f>(z0,t)=a)Ot+(f>0, (1) 

where <u0 and <f>0 are constants and t is the time. This geom- 
etry is shown in Fig. 2(a). The value of a>0 depends on how 
the electron beam is formed. For example, o)0=0 if the elec- 
tron beam is formed by passing through a tapered static wig- 

Consequently, a suitable equilibrium distribution for the sys- 
tem is 

$(P±~Ps.o) 
MPi,Pz,x) = n0 S(Pz-Pzo)$(x),       (4) 

Pi. 

where <&(*) is a periodic function of period 27rand nQ is a 
constant particle density. We normalize the integral of 
/oOi >Pz >X) over momentum space to n0. Consequently, 

f2u f2ir 
Q(X)d<t>=\    *(*)</*= 1. 

Jo Jo (5) 
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FIG. 2. (a) Tie generation of a spatiotemporally gyrating lelativistic elec- 
tion beam equilibrium with electrons arriving at z=z0 with a gyrophase of 
<*(z0,r)=(Uo/+(^o)- 0>) A spatiotemporally gyrating relativistic electron 
beam equilibrium. 

y >t 

% ***    >y Two additional constants of the unperturbed motion are 

{C £=</>-a>ct=<f>-—t, (6) 
Jo 

z milc 

%0 PzO 
(7) 

Using (3), we express x as the following linear combination 
of | and f 

^+(l-^>. (8) 

If <w0 = toc in (8), then x= £= <f>~ <0c
l- m this case, the equi- 

librium  distribution  [f0(j>± ,Pz,x)=fo(P± >/>;>!)]  in  (4) 

does not depend on z, and we refer to it as the time- 
dependent equilibrium distribution. If <o0=0 in (8), then x 
= £=<fi—a}cz/vz0. In this case, the equilibrium distribution 
LfoiPj. ,Pz,X)=fo(Pi. >Pz>0] in (4) does not depend on t, 
and we refer to it as the axial-dependent equilibrium distri- 
bution. 

At each instant of time, there is a z-dependent distribu- 
tion of phase angles given by (3) and (4). Each point on a 
surface of constant z will contain the same distribution of 
values of </>. As time progresses, a surface with a given dis- 
tribution will move with a normalized phase velocity ß. 
=dz/cdt obtained by differentiating (3) with respect to t at 
constant <j>. This phase velocity is 

_ <"o&o 
(9) 

where ßzo=va/c. Making use of (9), we can also express x 
as X=4>-<»c(ßzo-ßp)~l{zlc-ßpt), which is a single- 
particle constant of motion. We see that ßp is infinite for the 
time-dependent equilibrium distribution (A)0=<UC), and that 
ßp=0 for the axial-dependent equilibrium distribution (o>0 

=0). 

III. DISPERSION RELATION 

A stability analysis of systems with the time-dependent 
id axial-dependent equilibrium distribution functions has 

carried out in Ref. 7. In that analysis, Fourier trans- 
formsare taken of the Vlasov and Maxwell equations in 
ordeftij derive relations obeyed by the Fourier transforms of 

electric field components. For the case of defi- 
nite Igjpkytf Pz~Pzo and p±=pxo> these are algebraic 
equations$5fjae form 

,6») = 0, (10) 

where D is a thrSe-by^three dispersion matrix and E is a 
three-component victe^The components of E are the Fou- 
rier transforms ofTn1Lrj«Wbed electric field components, 
Ex.=Elx-iEly, Eif^^±JEly, and£,r. Respectively, 
these represent the rigjit-hanl^irculariy polarized (RHP) ra- 
diative field, the left-handcüjpaj^larized (LHP) radiative 
field, and the longitudinal elfec^^ffild The dispersion rela- 
tion for the system perturbations S given by 

detD(c*,(») = 0. ^   / (ll) 

It is shown in Appendix 
librium distribution with 

/that any spatiotemporal equi- 
"P\<1 can be obtained from a 

Lorentz transformation of the axial-dependent equilibrium 
distribution, and that any spatiotemporal equilibrium distri- 
bution with |^|>1 can be obtained from a Lorentz trans- 
formation of the time-dependent equilibrium distribution. 
Consequently, a stability analysis of systems with spatiotem- 
poral equilibrium distributions is obtained from Lorentz 
transformations of (10) and (11). Results for |/*p|<l and 
|/3p|>l have the same analytic form and are assumed to 
extend to the case of | ßp\ = 1. 
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The primary result of this paper (derived in Appendix V) 
is the dispersion relation for systems having definite values 
of pL—pio and Pz=PzQ. In terms of the dimensionless 

wavenumber k" and die dimensionless frequency w, defined 

by 

O) 
0)=- 

the dispersion relation can be expressed as 

(12) 

('   2 \2 

^ ) ßlo\stf{{ßz0&-Z)2M++(Ji>m[ßA*-2ßPh)-tf-2h)?M--a,&)} 

+ 4 \d) ßlo\^\2i^^ZßPh)-Hi-2h)fM„ii,&)--\^J ^(^i, +s_2*2)[<&(<ö-2/?,*0) 

-k^-2k0mßzo(&-^ß^j\(i-2ko)](ßz0^-^, 

SS* 

(13) 

which is a tenth-degree polynomial equatipiUneither £ or &. 
In Eq. (13), 

i/„(£<9) = (a2-P)(ö-£ßz0-1 )2 

 ${&-tß,0){&-kß,o-\) 

#* 

+\^ßio(*2-P), 

M++(if,6i)=[(ö-2^0)
2-(f-2f0)

2](<a-*A0-l)
2 

 ${&-tßl0-2){&-tßz0-\) 

are unchanged Consequently, a plot of T(<&) as a function of 
real £ is unchanged by reflection through the vertical line k* 

=*„• 2- 
It follows from (A1S) of Appendix Is that the eigen- 

modes of the dispersion matrix for the ease of a spatiotem- 
poral equilibrium distribution are given in terms of the elec- 
tric field by 

E(z,0=e'(ir-ä")[2-1/2£1_(*><ü)«+ 

+2_ly2£1+(it-2t0,<u-2a)0)8_e-2'(*B*-'Bo'> 

^+Elx(k-k0,tü-oy0)ixe-<^-^l (18) 

1   0> 

+ T-iÄoU6-2ßp£o)2-(£-2£o)21, 2 o 

]*„(£,&)={&-£ßl0-D
2--$(i-g0). 

Moreover, (al=4vn0e2/y0m, A.0=/>±0/W»c, 

i0=ck0/oie—(ßp-ß20)    , 

and 

l%k',&j^frEtS£k*-2k0,<Z-2ßpk0) y (19) 

v>&-ßpk'o) 

(14) For positive 5l(jE^C^Lö) and £,+(£<&) are Fourier 
transforms of the rigm^MM circularly polarized (RHP) and 
the left hand circularly polarized (LHP) radiation fields, re- 
spectively. [These polarizatiojfcal^gnments are reversed for 

(15) negative £R(if).] The transfomip^J|£,<a) is that of the lon- 
gitudinal electric field 

s«=       dx®(x)exp(-inx)- 
Jo 

(16) 
IV. NUMERICAL EXAMPLES 

Notice that ßp£0= <o0/ue-1, where *>0 is defined in (1). ^ ^ of ±e following numerical examples, the value 
The dispersion relation in (13) is invariant under the      chosen for 4>(y) in (4) is 

transformation 
*(x)=lim<5(;r-e),    O^x^ir. (20) 

Jc-*-k* + 2k0, «-0 
(17) 

&->-&*+2ß L. Consequently, all equilibrium electrons with the samez and r 
have the same phase <f>. For these distributions, a system is 

Under the transformation in (17), the fR(£),9t(<S) plane is      stable for sufficiently large magnitudes of real L The corre- 
inverted through the point (ßü,ßpk0), and 1(k) and T(o>)      sponding Fourier components in (16) are s\=s2—l. In all 
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FIG. 3. Plots of a(<S)=3(*>)/*>« vi t=eUa>e (ÜHJä 
etas 79=2, O£/<B*=0.05, a„=0A, and ii=*2 

value of 0,0=0.797 6& Values of the normalized phase velocity ß, nid ig 
are (a) /9,=0 (o>0=0) and Jf0=-1.2537, (b) £,=0.85 (^glfS*«,.) and 
£„= 19.11, (c) 0,=2 (*>,= 1^63<ue) and £„=0.8317, »°^^J,-J^">» 
=tac) and £o=0. Wide Hoes indicate flat instability ia due to 
cyclotron mode. Narrow lines indicate that instability is due to 
an electrostatic mode. 

examples,     topa>*=0.05     and    a0=0.4,    where     a0 

=tan-1(p±0/Jp^) is the equilibrium pitch angle. 
Figure 3 shows growth-rate curves [T(«ö)=!T(ö))/ö><. VS 

£—ck/<üe with k real] for a system with y0=2.0 (and the 
corresponding normalized axial velocity ßta= 0.7977). The 
resonance condition for the cyclotron maser instability is sat- 
isfied at £=(1— y8l0)-1—4.94. Plots are shown for several 
values of the normalized phase velocity ßp. Figures 3(a) and 
3(d) refer, respectively, to the axial-dependent (ßp=0 or 
o)0=0) and time-dependent (ßp

=a> or <u0=we) distribu- 
tions. The corresponding values ofk°0-(ßP~ßto)~l m 05) 
are -1.254 and 0, respectively. Figure 3(c) pertains to ßp 

=2.0 (or tt)0=1.663o)c) with £„=0.8317, whereas Fig. 3(b) 
pertains to £,= 0.85 (or o)0=\6.2Aoi^ with £„=19.11. 

It is interesting to point out that the maximum growth 
rate for each of the nonisotropic phase distributions in Figs. 
3(a)-3(d) is greater than the maximum growth rate for the 
corresponding gyrotropic relativistic electron beam, which is 
£(<ö)=0.054. (See Fig. 4 of Ref. 7.) 

Reference to Fig. 3 shows that maximum growth rates 
and growth rates at the resonance value £=4.94 are not very 
sensitive to the value of the phase velocity ßp. On the other 
hand, the range of values of £ for which instability exists 
may be very sensitive to values of ßp. [A corresponding 
sensitivity of the range of unstable frequencies is present 
because, for unstable modes, üft(a>)=ßr0£ when £>1.] In 
particular, instability of a RHP radiative component will oc- 
cur at large values of £ [and of £H(w)] if k0-(.ßp~ßzo)~l is 

large in magnitude. This effect is illustrated in Fig. 3(b), 
where £„= 19.11. The effect is explained by first noting mat 
instability is expected for values of £ near the resonance £ 
and second recalling (from the discussion at the end of Sec. 
m) that plots of Z(a)) versus real £ are symmetric under 
reflection through £0. It is also a consequence of the fact 
[evident from (19)] that frequencies and wavenumbers of 
coupled waves in an eigenmode become greatly divergent 
for large £0. 

In Fig. 3 and in the following, Figs. 4-9, both wide and 
narrow solid curves are employed Detailed numerical calcu- 
lations of roots of the dispersion relation in (13) show that 
die wide curves refer to modes whose instability, in the low 
wavenumber region (£<£0). is due to coupling of the cyclo- 
tron mode with the electromagnetic modes with 6>±dt=0. 
In the high wavenumber region (£>£o), the instability is 
due to coupling of the cyclotron mode with the electromag- 
netic modes with a— 2ßl0ck0±c(k— 2k0)=0. The wide 
curves are characterized by io—2ßl0ck— wc

a0 over the en- 
tire £ interval of instability. The narrow solid curves refer to 
modes whose instability is due to coupling of the electro- 
static modes. They are characterized by a»—ß^ck— a>e 

+(G>J,/6>c)(l-/3ri))
,/2=«0 over intervals of instability with 

£<£„ and oi-ßztfik- a>e-{aplo»e){\ -ßW^^O over in- 
tervals of instability with £>£0. 

Figures 4(a) and 4(b) are, respectively, plots of 9t(<u) vs 
& j& and of 1(a>) vs £ over the interval of the upper-£ growth- 

Jfkatepeak in Fig. 3(b). Coupled radiative components of the 
fieldamplitude eigenvector in (19) are £t _(£,£)  and 
E,mW-2i0fm-2ßpi0)=E1+(lc-3S^l,&-32.4S).   Con- 

i_(£,<S) represents high-frequency, fbrward- 
traveungl^RHP radiation, whereas E1+(lc- 38.21,<3-32.48) 
represer^J^wyrequency radiation in the £ interval in Fig. 4. 
It is eviden||mjroFig. 4(a) that the high-frequency radiation 
is slow-wave'raaiftiön (i.e., its wave phase velocity c&lfc is 
less than the spe*apf light). 

It is of tateres||cLra!emnne the relative contributions of 
the high- and low-trHg^crg components to the total Poyn- 
ting flux. As a meas rthe relative contribution of the 
high-frequency componen£tolthj|-total Poynting flux, we em- 
ploy the Poynting flux ratio ^defined by 

«S*= 
(S. 

(S-.:(ck,<o) + S+z(ck-2ck0,ai-2ßpck0)) 
(21) 

In the above equation, (S-z(ck,o))) and (S+z(c*:-2c/fc0,6> 
—2ßpck0)) are the time-averaged z components of the 
Poynting fluxes produced by the high-frequency and low- 
frequency electromagnetic components, respectively. [Be- 
cause the low-frequency flux may be backward traveling for 
some intervals of £, the ratio 5R may exceed one and will 
approach infinity when high- and low-frequency fluxes can- 
cel.] An expression for <SK as a function of k. and & is pre- 
sented in (A31). 

A plot of logioSfc vs k for the system of Figs. 3(b) and 
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30   32   34   36   38   40   42 
ck/co 

0.1 (b) 1 
,p.08 \ 

3 r\        1 £0.06 f\ / 1 
/    ^■■■""^ 1 

er> / I 
0.04 - M \ 
0.02 

\ U 
3( )               35 40 

ck/w 

FIG. 4. Dispersion relations in the region of the bJgber-£ growth peak lor 
the system of Fig. 3(b), with equilibrium parameters ro=2» wj/ä>*=0.05, 
aa—0.4, *,=j2=l» "*• /?,=0.85 (0)0=16-240),.). The corresponding val- 
ues of Ai and JEo are 0.7977 and 19.11, respectively. Plots are (a) M(<&) 
=!R(ü))/II), vs f=ct/<ue (reaQ for unstable modes, and (b) 3(<8) va if (real). 
Frequencies and wavenumbers refer to the component .E_(cyt,a>). The sec- 
ond radiative component of the eigenvector is £+(cit—3&21<ue,a> 
—3Z48<uc). Wide lines indicate mat instability is due to coupling of a 
cyclotron node. Narrow lines indicate that instability is due to coupling of 
an electrostatic mode. 

4 is presented in Fig. 5. We regard the high-frequency com- 
ponent as dominant if «SR>? [i.e., if log 10<5K>-0.3010.]. 
Figure 5 shows that this condition is valid over the interval 
37<jfc<40, which corresponds to 30a>c<*K(ü))<33*jc in 
Fig. 4(a). It is to be emphasized that these wavenumbers and 
frequencies greatly exceed the resonance frequency and 
wavenumber for the cyclotron maser instability (<ü=£ 

= 4.94). The frequency m0 (equal to 16.24a>c in this ex- 
ample) is exceeded by approximately a factor of 2. 

The rapid variations in the value of «SR in the interval 
37</fc<40 are explained as follows. Reference to (A29) 
shows that S+Z(ck— 2ck0,to—2ßpck0) vanishes when ck 
= 2ck0 (£=38.21) and when V\(io) = 2ßpck ptt(öj) 
= 32.48 and £ = 39.6 for the unstable branch associated with 
the highest maximum of the growth-rate peak in Fig. 4(b)]. 
At these values of k, log10<SK=0. For values of k between 
these zeros of the low-frequency flux, S+z(ck-2ck0,co 
— 2ßpck0) becomes negative, allowing log^S^ to approach ' 

32   34   36   38   40 
Ck/m 

FIO. 5. Plots of the Poynring ratio S& in (A31) vs £=ct/a>c for unstable 
modes in the region of the Irigher-f growth peak forme system of Pigs. 3(b), 
4(a), and 4(b). Wide lines indicate that instability is due to coupling of a 
cyclotron mode. Narrow lines indicate that instability is due to coupling of 
an electrostatic mode. 

infinity when the high-frequency and low-frequency fluxes 
cancel. 

Next we consider mildly relativistic systems with y0 

==1.2 and the corresponding &<>=0.50914. Resonance for 
cyclotron maser instability occurs at <u=jf=2.037. Fig- 

ures 6(a) and 6(b) show growth-rate [T(w) vs f] curves for 
of ßp=0 (*„=-1.9644 and w0=0) and ßp 

Y£„=6 and io0/<oe=4.0548). From (19), coupled 
des for the case of ßp=0 [Fig 6(a)] are 

Ev+{£+ 3.9288,0). Figure 7 is a plot of 
ible modes in mis case. It is evident from 
jhest frequency of unstable modes is ap- 

radiaffv 
EU 
SR(6>) vs1 

this plot th 
proximately 2.1 

In Figs. 8(a)MCl*SB>), we present, respectively, plots of 
£R(to) vs £ and §^%^i of unstable modes when ßp 

= 0.675 80 for the fcilt&yi[of the large-* growth peak in 
Fig. 6(b). Coupled radiativeJ^mDonents, obtained from (19), 
in this case are El^(klö>)ß^^1+(k-l2,<ö-SA096). 
From Fig. 8(a), it is evident^tjjrawing electromagnetic 
waves with frequencies of approximately 7<ac are present in 
this system. 

Figure 9 is a plot of the logarithm of the Poynting ratio 
in (21) as. a function of k over the interval of if in Fig. 8. It is 
evident that the high-frequency RHP flux dominates the low- 
frequency flux (i.e., logio<5K> - 0.3010) over a very narrow 
interval in this case. Numerical results show this interval to 
be 11.987=sA*s 12.036 with 7.079=s£R(<b) =s7.103. These 
values are much greater than the resonance values of w=j£ 
=2.037 given above for the cyclotron resonance maser in- 
stability. Moreover, the values 7.079s=9t(ö>)«S7.103 are 
slightly less than twice the value w0/&>c=4.0548. 

The above and other numerical examples indicate that 
the width of the interval of relatively large high-frequency 
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^ r n 
0.01 

n , , ■ 

-8-6-4-2024 
Ck/ß> 

0.04 

FIG. 6. Growth rate curves [3(to)=3(a>y<oc vs &=ckltoc (real)] for the 
equilibrium parameters yt=\2, «U£/«D*=0.05, or0=0.4, *,=*!= 1, and the 
corresponding value /$*=0.5091. In plot (a), 0,=O (we=0) and tt 

= -1564; whereas in plot (b), /3,=0.67580 (o>„=4.055a>c) and ^>=6. 
Frequencies and wavenumbers refer-to the component E.(ck,o>). The sec- 
ond radiative component of the eigenvector in (19) is E+(ck— k0wc,m 
—ßjcauc). Wide lines indicate mat instability is due to coupling of a cy- 
clotron mode. Narrow lines indicate mat instability is due to coupling of an 
electrostatic mode. 

flux decreases with increasing frequency (increasing £0) and 
with decreasing yQ. 

V. CONCLUSIONS 

In Ref. 7, stability properties of an electron beam, propa- 
gating in a uniform magnetic field BO=2?Q^, were analyzed 
under tie constraint that all quantities depend spatially only 
on z. The equilibrium distribution in tie phase angle (f> of px 

was assumed to be nonrandom, and two distributions were 
considered. These were the time-dependent distribution in 
which the distribution depends on (f> through the constant of 
the unperturbed motion £= <f>— coct and the axial-dependent 
distribution in which the distribution depends on <f> through 
the constant of the unperturbed motion, f= <j>— <wcz/uz0. In 
this paper the analysis has been extended to spatiotemporal 
distributions, which depend on the constant of the unper- 

2 

1               i r- "   i r — 

1 m / o a - 

3*0 " 

S  < y 
-1 

/ 
-2 / 

-8-6-4-2      o 

ck/co 

FIG. 7. Plot of !R((3) vs k (real) for unstable modes of the system of Fig. 
6(a). Frequencies and wavenumbers refer to the component E_(ck,a>). The 
second radiative component of the eigenvector in (19) it J+(dt 
+3S29we ,u). Wide lines indicate that instability is due to coupling of a 
cyclotron mode. Narrow lines indicate mat instability is due to coupling of 
an electrostatic mode. 

turbed motion x=4>~ o>ot+{a>Q— m^zlv^t defined in (3). 
This analysis is limited to equilibrium distributions [Eq. (4)] 
for which pt and/»x have definite values. 

By carrying out Lorentz transformations of the results of 
£ 7, we have obtained the dispersion relation in (13) for 

ie spatiotemporal equilibrium distribution. The dispersion 
is given in (A19)-(A21), and its eigenmodes (which 

describe the coupling of the RHP radiative, LHP. radiative, 
an^npctrostatic waves) are given in (19). The parameters 

ie^this spatiotemporal system aiep^, pL0, apm*, 
ßp » %tej*j$»&i • ^e parameter ßp is the phase velocity of 
siirracesfPogmal to the z axis) upon which the equilibrium 
distributira^rf^has a fixed form. The Fourier components 
*i and st arf^gjveqjby (16). Once *(#) (and consequently st 

and s£ are fixecLjthe spatiotemporal distribution can still be 
changed by varyuWiÖ where 0=s|/3_|ss<». 

s indicate that the above varia- 
maximum growth rates or on 

Numerical cofbpiragd 
tion in ßp has little 
the growth rate at the resonance frequency for the cyclotron' 
resonance maser instability\^fowever, it has a strong effect 
on the range of real <a anolfeaI%,of RHP radiation over 
which the system is uristable,Ifana<hÄs a strong effect on the 
relative wavenumbers and frequencies of coupled RHP ra- 
diative, LHP radiative, and electrostatic waves. In particular, 
the distribution in (20) has been shown to result in unstable 
modes in which the RHP radiative component dominates 
over a relatively narrow frequency range at much higher fre- 
quencies than the resonance frequency for the cyclotron- 
maser instability. These high frequencies occur when the 
phase velocity ßp is close to the beam velocity B.n. -<^? 

<^In such cases, these frequencies exceed a>0 by approximately 
a factor of 2. 

It is well known that the cyclotron maser instability in a 
gyrotropic beam is very sensitive to axial velocity spread if 
the instability occurs at a highly Doppler upshifted cyclotron 
frequency^?3 The parameter regime of interest here is ßp 
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FIG. 8. Dispersion relations in the region of the higher-£ growth peak for 
the system of Fig. 6(b), with equilibrium parameters y^=\2, opal 
= 0.05, o,=0.4, J,=J,=1, and £,=0.6758 (o)0=4.055oie). The corre- 
sponding values of A« and £, are 0.50914 and 6, respectively: Hots are (a) 
St(<D)=!H(6i)/<i>e vs k—ckla>e (real) for unstable modes, and (b) J(<&) vs £ 
(real). Frequencies and wavenumberi refer to the component £_(cJt,a>)- 
The second radiative component of the eigenvector in (19) is Ä+(c* 
— 12a),.,ö)—8.110o/c). Wide lines indicate mat instability is due to coupling 
of a cyclotron mode. Narrow lines indicate that instability ia due to coupling 
of an electrostatic mode. 

—Ao<l. 1° ^"s case» ^e dispersion relations for the system 
are a set of coupled integral equations if there is an axial 
momentum spread. [The integral equations are obtained by 
applying the Lorentz transformation to the integral equations 
in Eqs. (41)-(43) of Ref. 7.] We have begun an analysis of 
the properties of these integral equations in order to the de- 
termine the degree to which thermal spread affects the insta- 
bility reported in mis paper. 
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FIG. 9. Plot! of the Poynbng ratio S* in (A31) versus t=ckluc for un- 
stable modes in the region of the higher-l growth peak for the system of 
Fig. 6(b). Wide lines indicate mat instability ia due to coupling of a cyclo- 
tron mode. Narrow lines indicate mat instability is due to coupling of an 
electrostatic mode. 

APPENDIX: DERIVATION OF DISPERSION 
RELATIONS AND THE POYNTING FLUX RATIO 

1. Lorentz transformationsof sparJotemporal 
equilibrium distributions 

^ A    Consider a Lorentz transformation from an initial frame 
Jglisference S to a frame S' that moves with the normalized 

'^velocity ßu in the positive z direction relative to S. Under 
brmation, 

■ßuCt),   Ä'o=7«(Pio-Äyo«c), 

H-ßuo>), 

dar      j**ji 

where yu=(l-ßff~^. The quantities <(>' = <[> and p'±0 

=pL0 are invarianr®^j^^is transformation. The distribu- 
tion function in (4) is^söffipriantj? Expressed in terms of 
primed quantities, it is    *&£   ,     \ 

A(PL >Pr ,X)=fo(p± ,pAp^$& 
l) 

=nn 
Pi 

■%P'z-p*mx). (A2) 

where n'0=n0y'0/y0. 
Using (3) and the Lorentz transformations in (Al), we 

obtain the following expression for x in terms of primed 
quantities: 

PzO + Pu V»c / ßz0 + ßu \        <»c) 

I'= *-««*'. (A3) 

)—O», 

'z0 
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Quantities appearing in (A3) are Q)'c=eB0/y'0mc and (o'0 

= <o0/y„. The phase velocity ß'p of surfaces of constant 0 
(or constant distribution in <f>) relative to the reference frame 
S' is determined by differentiating (A3) with respect to t' at 
constant <f>. The result, written in terms of both primed and 
unprimed quantities, is 

time-dependent equilibrium distribution. It is shown in Ref. 
7 that for the time-dependent equilibrium distribution the 
eigenmode E'{k',ta') is of the form 

ß'p 
i  o'oß'iO+Ocßu      <»o(ßzO-ßu) + «>cßu 

too-ot'c u>0(\-ßußa)-ü)c' 
(A4) 

/    Ex-ick',*')'    \ 
E'(ck',ai')=\Ei+(ck',a>'-2<o'e) I 

\Etick',»'-»'e) / 
(A8) 

The transformation velocity ßu from a general reference 
frame S to a frame S' relative to which the distribution is 
time dependent is obtained by setting the coefficient of £' in 
(A3) equal to zero and solrinfefor ßu. Expressing the result 
in terms of unprimed quanmils^and employing (9), we ob- 
tain 

_ 1 
ß»~~ä~- 

Pp 
(A5) 

(relative to S) 
dent rela- 
nce frame 

Consequently, the transformation is 
\ßp\>h Conversely, if a distribution 
tive to S', then \ßp\> 1 relative to any oi 
S. 

Similarly, the transformation velocity ß, 
reference frame S to a frame 5" relative to which th 
bution is axial dependent is obtained by setting 
cient of £' in (A3) equal to zero and solving for 
result is 

ßu-ßp- 
Consequently, the transformation is possible if (relative to S) 
\ßp\< 1. Conversely, if a distribution is axial dependent rela- 
tive to 5', men \ßp\ < 1 relative to any other reference frame 
S. 

2. Derivation of the dispersion matrix and 
eigenmodes 

In the stability analysis of Ref. 7 for the time-dependent 
and axial-dependent equilibrium distributions, the Fourier 
transforms of the field components E'(ck',io') were found 
to be related by matrix equations of the form 

D'(cJfc',tt)')E'(c*',w') = 0, (A7) 

where D' is a three by three dispersion matrix and £' is a 
three-component column matrix whose components are Fou- 
rier transforms of E[_=E[X-iE[y, E[ +=E'lz+iE[y, and 
EA^ The primes appear in these equations because the 
frame of reference in which the distribution is either time 
dependent or axial dependent is defined as the primed frame 
{S') in this treatment. 

A. Derivation for the case of\ßp\>1 

The time-dependent equilibrium distribution function is 
given by (A2) with x=€''■ From the discussion in Sec.^,of 
this Appendix, it is clear that properties of a system with a 
spatiotemporal equilibrium distribution and |/3;)|>1 can be 
derived from Lorentz transformations of a system with a 

where a>c = eB0/yQmc. The dispersion matrix for the time- 
dependent case is readily derived from (59) of Ref. 7. In 
order to determine stability properties of systems with spa- 
tiotemporal equilibrium distributions with phase velocities 
\ßp\>l, it is necessary to apply the Lorentz transformation 
to the quantities appearing in (A7). Under the Lorentz trans- 
formation from S' to S (which travels with velocity — ßu 

relative to S'), the electromagnetic fields (and their Fourier 
transforms) transform as 

Elt=E' lr> BU=B' \z< 

*ix-7.(*i»+A*i,).    Bu=yu{B'u-ßuE[y),   (A9) 

Ei,= Vu(E'ly-ßuB'lx),    Biy= %(*{,+£,*,',). 

From (19) and the Maxwell equation, 

rE'l±(z',t')=±^B[^z',t'), 
dt' (A10) 

It folio- 

fere B'l±{z',t')=B[x{z',t')±iB[y(z',t'), we find that 
unde_rjhe Lorentz transformation, 

j»)=y.(i + ^^Jff,'t(c*',»').        (All) 

) and (Al 1) that the transformation rule 
for the eiger^U3rE(c*',ö>') in (A7) and (A8) is "*        fX^i^u^ 

E(ck,o*)=t$c$m)E'(ck' ,a>'), 

where 

Uck',o»')= 

(A13) 

and 

(Ei-(ck,(ü) \ 

El+(ck-2ßuyu<ü'c,u>-2yu(o'c) 1   (A14) 
Eu(ck-ßuyu(o'c,o>-yua>'c)   ) 

Using (A5) and the Lorentz transformations in (Al), we can 
rewrite the arguments in the above expression entirely in 
terms of quantities pertaining to 5 to obtain 
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(E^(ckto>) \ 
El+(ck-2ck0,oj-2ßpck0) L        (A15) 

Elz(ck-ckQ,a>-ßpck0)   / 

where 

c*o=-s-rir- (A16) 
Pp    PzO 

By comparing (A7) and (A12), it is seen that the disper- 
sion matrix in the unprimed (spatiotemporal) is given by 

D(ck,(o) = U.ck',<o')B'(ck',o')\r\ck'>')•   (A17) 

J. A. Davies and C. Chen 

L_1(c/fc',w') 

h-^\ • 
o 1 

(A18) 

The dispersion matrix for spatiotemporal equilibrium 
distributions is determined using (59) from Ref. 7, (A 13), 

An expression, obtained ftom^Al) and (A13), which is use-      (A17), and (A18). When ßu is eliminated from the result by 
ful in the evaluation of fä&iu&s using (AS), we obtain 

(D (ck.ta) 

-v+- 

~Vz- 

The diagonal terms in the above equation are 

D++(ck-2ck0,o)-2ßpck0) 

=(a-2ßpck0)
2-(ck-2ck0)

2- -f 

JJ      kp">   o     V      kp">        V X 2110 2a>, II a> <o- I 
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The terms Z) (ck,(o), D++(c£,w), and £>zz(cifc,ö>) are, 
respectively, the dispersion functions for the RHP radiative 
field, the LHP radiative field, and the longitudinal electric 
field 

The off-diagonal elements of the dispersion matrix in 
(Al 9) are 

P±o WP   -1 
2 y0mc 

 co—ck I 
y0mc J 

J *Pz0 V2 

Xlto OJC 1    , 
\     row    7 

(A19) 
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4 PzO 
y0mc 

{w-2ß.ck0)-{ck -2ck0)j 

v / kPzO X 
XI to oi. I 

V       Jot»        ) 
(A21) 

determined by carrying out Lorentz transformations of re- 
sults for the axial-dependent equilibrium distribution. The 
axial-dependent equilibrium distribution (for definite values 
ofp{0 and^'o) is attained by setting x~V in (A2). In this 
case, the dispersion matrix D' in (A7) is readily obtained 
from (90) of Ref. 7. The eigenmode E' in (A7), given by 
(91) of Ref. 7, is 

In the above equation, oip=4irn0e /y0m is the relativistic 
plasma frequency squared This quantity is invariant under 
Lorentz transformations. The quantities sn are the Fourier 
series coefficients of $(x), defined by 

E'(c/fc>') = 

,= I    </**(Ar)exp(-' 
Jo 

B. Derivation for the case 

rium distribution with phase velocity i, 
temporal equilib- 

(A23) 

Equation (A12) governs the Lorentz transformation of the 
eigenvector from S' (the frame of the axial-dependent equi- 
librium distribution) to S (the frame of the spatiotemporal 
equilibrium distribution). From (Al), (A9), and (Al 1), it is 
seen that now the transformation matrix L is given by 

Uck',o>') = (A24) 

The transformed eigenvector is obtained from (A12). When 
written in terms of ßu, the expression for this eigenvector 
differs from that in (A14). However, once (A6) is employed 
to set ßu—ßp, the expression for E(ck,to) is the same as 
(A1S). Consequently, (A1S) gives the eigenmodes E(c/t,a>) 
for spatiotemporal equilibrium distributions both for \ßp\ 
>1 and for |£p|< 1. 

Equation (Al 7) together with (A24) is used to obtain 
D(dt,<u), the dispersion matrix for the case of the spatiotem- 
poral equilibrium distribution with |/3p|<l. After (A6) is 
used to eliminate reference to ßu and the unprimed quantities 
are eliminated, the result is the same as that given by (Al 9)- 
(A21) for the case aE\ßp\>l. Consequently, (A19)-(A21) 
gives the dispersion matrix for the spatiotemporal equilib- 
rium distribution for both the cases of \ßp\> 1 and of \ßp\ 
<1.   • 

C. The case of ßp= 1 

Equations (A15) for the eigenmodes and (A19)-(A21) 
are well behaved in the limit of\ßp\ = \. Consequently, we 
consider them to be valid when |ySp|=l. The fact that \ßp\ 
= 1 corresponds to |/?w| = l causes no difficulty, because 
such quantities as y0, p±0, andpz0 are held fixed while the 
limit is taken. 

To summarize, for all — O0</?p<
00, the dispersion ma- 

trix for the case of spatiotemporal equilibrium distributions 
is given by (A19)—(A21) and the eigenmodes are of the form 

__ ^15). The dispersion relation in (13) is obtained 
by setäj&phe determinant of the matrix in (A19) equal to 
zero. t&rjaa^|kK> be obtained by substituting Lorentz trans- 
formed qjjatraj^s into me dispersion relations in (69) and 
(100) of ReJ^&and replacing the transformation velocity 
with the approprijfoggfunction of ß .] 

ng flux ratio 3. Derivation of 

In the analysis of^the^pumerical results in Sec IV, we 
employed the Poynting ftoxpltio S^ in (21), which is the 
magnitude of me ratio or tn&^TQomponent of the average 
Poynting flux of the RHP raa^ti^field to the z component 
of the average total Poyntmg'fhlxwor a single eigenmode 
(A15) of the dispersion matrix in (Al 9), the Poynting flux 
vector is 

S=—9t(E)X9t(B), 
47T 

(A25) 

where 

E(z,r)=e+2" 1/2E{ _(rit, w)exp( ikz - i at)+i_2 " m 

XEi+(ck-2ck0,<o-2ßpck0)e3i^ii(k-2k0)z 

-i(m-2ßpck0)t]+iJEl2(ck-ck0,o}-ßpck0) 

Xexdi(k-k0)z-i(a>-ßpck0)f], (A26) 

with 
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2±=2_w(ei±/8y). (A27) 

The application of the Maxwell equation in (A10) yields 

B(i>/) = 8+2_1/251_(c*,ü))exp(/fe-/w0 

+i-2~mBl+(ck-2ck0,(ü-2ßpck0) 

Xexp[/(*-2/to)z-/(ö)-2)31,cio)r], 

where 

ck 
Bi-(ck,co)=-i—Ex-(ck,b>), 

Bi+(ck-2ck0,to-2ßpckj 

. (ck-2ck0) 
{w-2 ßpck0) 

Substituting (A27) and (. 
(A25), averaging the result 
= ir/(9t(ü))-/8pC*0), and assuming' 

|2*3(»)MK(»)-0,c*ol. 
we obtain the time-averaged z componi 
vector (Sz). The result is 

0,a-2ßpck0).    (A28) 

the z component of 
e time  interval   T 

(A29) 

ol>tne Poynting 

<*,)= — exp[2a(a.)r]|C*-^p- j E^ckl 

XEf_(ck,(a) + (ck-2ck0) 

X-El+(ck-2ck0,ü)-2ßpck0) 

XEf+(ck-2ck0,o>-2ßpckQ) (A30) 

It follows from (A30) that the value of the Poynting flux 
ratio S% in (21) is 

SR- (S-l(ck,<o)+S+z(ck-2ck0,(o-2ßpck0)) 

= \k'DK(d,)\tü-2ßplc0\
il\d>\2(lc-2k'o) 

X(fr\(<b)-2ßJ0)RR* + £fR(ä)\d,-2ßpk'0\2r1U 

where 

R= 
E1+(ck-2ck0,<o-2ßpck0) 

Ei-(ck,w) 

(A31) 

(A32) 

The amplitude ratio in (A32) is obtained from the amplitude 
(eigenvector) equation in (12). The flux ratio in (A31) can 
exceed one and may approach infinity at particular values of 
A. 
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ABSTRACT 

Electron beam halo formation is studied as a potential mechanism for electron beam losses in 

high-power periodic permanent magnet focusing klystron amplifiers. In particular, a two- 

dimensional self-consistent electrostatic model is used to analyze equilibrium beam transport in a 

periodic magnetic focusing field in the absence of radio-frequency signal, and the behavior of a 

high-intensity electron beam under a current-oscillation-induced mismatch between the beam and 

the periodic magnetic focusing field. Detailed simulation results are presented for choices of 

system parameters corresponding to the 50 MW, 11.4 GHz periodic permanent magnet (PPM) 

focusing klystron experiment performed at the Stanford Linear Accelerator Center (SLAC). It is 

found from the self-consistent simulations that sizable halos appear after the beam envelope 

undergoes several oscillations, and that the residual magnetic field at the cathode plays an 

important role in delaying the halo formation process. 

Keywords: halo formation, klystron, periodic permanent magnet focusing, and microwave source. 



I. INTRODUCTION 

One of the main thrusts in high-power microwave (HPM) research is to overcome the 

problem of radio-frequency (RF) pulse shortening [1,2]. Several mechanisms of RF pulse 

shortening have been proposed [3], ranging from plasma formation at various locations in the 

device to nonlinear effects at the RF output section [4-7]. However, few of them have been fully 

verified in terms of theory, simulation and experiment. In this paper, we discuss halos around 

high-intensity electron beams as a mechanism by which electron beam loss and subsequent plasma 

formation may occur in high-power klystron amplifiers. 

From the point of view of beam transport in a periodic or uniform solenoidal focusing field, 

there are two main processes for halo formation in high-intensity electron beams. One process is 

caused by a mismatch in the root-mean-square (rms) beam envelope [8], and the other is due to a 

mismatch in the electron phase-space distribution [9]. Both processes can occur when the beam 

intensity is sufficiently high so that the electron beam becomes space-charge-dominated. The 

purpose of this paper is to show that the former is responsible for electron beam halos in high- 

power klystron amplifiers. 

For a periodic solenoidal focusing channel with periodicity length S and vacuum phase 

advance a0, a space-charge-dominated electron beam satisfies the condition [8] 

SK . 1 
 = 2.9xl0"5 h 

2o2 
Y*ft 

>1. (1) 
4a0E <*<>{** Jw 

where K = 2e2Nb/y2ß2
bmc2 is the normalized self-field perveance, Ib is the electron beam 

current in amperes, en = yb$be is the normalized rms emittance in meter-radians, and S is in 

meters. In the expressions for the self-field perveance £ and the normalized rms emittance En, Nb 

is the number of electrons per unit axial length, m and - e are the electron rest mass and charge, 

respectively, c is the speed of light in vacuo, and yb = (l -ß*) is the characteristic relativistic 

mass factor for the electrons. The emittance is essentially the beam radius times a measure of 

randomness in the transverse electron motion. For a uniform density beam with radius a and 

temperature Tb, the normalized rms emittance en is given by 

*hMY2 

2 ^=^£ = 7^     . (2) \ mc    J 



where kB is the Boltzmann constant. 

In particular, we study equilibrium beam transport in a periodic magnetic focusing field in the 

absence of RF signal and the behavior of a high-intensity electron beam under a current- 

oscillation-induced mismatch between the beam and the periodic magnetic focusing field, using a 

two-dimensional self-consistent electrostatic model. Detailed simulation results are presented for 

choices of system parameters corresponding to the 50 MW, 11.4 GHz periodic permanent magnet 

(PPM) focusing klystron experiment [10] performed at the Stanford Linear Accelerator Center 

(SLAC). It is found from the self-consistent simulations that sizable halos appear after the beam 

envelope undergoes several oscillations, and that the residual magnetic field at the cathode plays 

an important role in delaying the halo formation process. 

The paper is organized as follows. In Section II, a two-dimensional self-consistent model is 

presented for transverse electrostatic interactions in a high-intensity relativistic electron beam 

propagating in a periodic focusing magnetic field. In Section III, the equilibrium state for intense 

electron beam propagation through a PPM focusing field is discussed, the equilibrium (well- 

matched) beam envelope is determined, and self-consistent simulations of equilibrium beam 

transport are performed. In Section IV, the effects of large-amplitude charge-density and current 

oscillations on inducing mismatched beam envelope oscillations are discussed, and use is made of 

the model presented in Section II to study the process of halo formation in a high-intensity 

electron beam. The results are compared with the SLAC PPM focusing klystron amplifier 

experiment. In Section V, conclusions are given. 

n. MODEL AND ASSUMPTIONS 

We consider a high-intensity relativistic electron beam propagating with axial velocity $bce 

through the periodic focusing magnetic field 

B'*(x,y,s) = Bz(s)ez -±B'z(s)(xtx + yey), (3) 

where s = z is the axial coordinate, xex + yey is the transverse displacement from the z -axis, 

Bz(s+S) = Bz(s), S  is the fundamental periodicity length of the focusing field, and the prime 

denotes derivative with respect to s. 



In the present two-dimensional analysis, we treat only the transverse electrostatic interactions 

in the electron beam. The effects of longitudinal charge-density and current oscillations in the 

electron beam, which are treated using the relativistic Lorentz equation and full Maxwell 

equations, will be considered in Section IV. For present purposes, we make the usual thin-beam 

approximation, assuming that (a) the Budker parameter is small, i.e., e2Nb/ybmc2 « 1, (b) the 

beam is thin compared with the lattice period S, and (c) the electron motion in the transverse 

direction is nonrelativistic. 

Under the thin beam approximation, the self-consistent electrostatic interactions in the 

electron beam can be described by a two-dimensional model involving Np macroparticles (i.e., 

charged rods). In the Larmor frame, the transverse dynamics of the macroparticles is governed by 

[8,11] 

d2xi e 

ds2 

.2 

ylftmc2 dXi 

d d y, t     , x        e 

tf(xi,yi,s) = 0, 

■V(xi,yl,s) = 0, 

(4) 

(5) 
ds2   ' ~'v""    fb%mc2dyi 

where / = 1, 2, ....,Np , and the focusing parameter Kz(s) and self-field potential ty'yx^y^s) are 

defined by 

eN, 

eBz(s) 
2y ßcmc2_ 

2 

"QCW" 
2 

\*i-Xj. ^(Xi,yi,s)=-—^.  £   In, '2/Jb   l'       'a,,!: 
™P Mo*»  [ixi ~xjrw I rj 1 + Ui - yjr» I rj J 

"+b u-y,} 

(6) 

(7) 

respectively. Here, Qc(s) is the (local) relativistic cyclotron frequency associated with the axial 

magnetic field Bz(s), and rt =\xf +yf)   . The beam is assumed to propagate inside a perfectly 

conducting cylindrical tube of radius rw, such that the self-field potential satisfies the boundary 

condition ty*(ri = rw,s)=0. Detailed derivations of Eqs. (4)-(7) can be found in [8] for rw —> «>. 

The two-dimensional self-consistent model described by Eqs. (4) and (5) will be used to 

simulate equilibrium beam transport in a PPM focusing field in the absence of RF signal (Section 



Ill) and electron beam halo formation in the transverse direction induced by large-amplitude 

longitudinal current oscillations (Section IV). 

III. EQUILIBRIUM BEAM TRANSPORT 

In the absence of RF signal, the relativistic electron beam propagates through the focusing 

field in an equilibrium state. In this section, we discuss important properties of the equilibrium 

beam transport, and present results of our analysis and self-consistent simulations of periodically 

focused intense electron beam equilibria for choices of system parameters corresponding to those 

used in the SLAC 50 MW, 11.4 GHz PPM focusing klystron experiment [10]. 

A. Beam Envelope Equation for a Rigid-Rotor Vlasov Equilibrium 

It has been shown previously [12,13] that one of the equilibrium states for the system 

described by Eqs. (4) and (5) is a rigid rotor Vlasov equilibrium in which the beam density 

is uniform transverse to the direction of beam propagation. The outermost beam radius 

rb(s) = rb(s+ S) obeys the envelope equation [12] 

d\ K    (Pe)
2    (4e)2    A 

*" rb rb rb 

where yb$bmc\Pe} = constant is the macroscopic canonical angular momentum of the beam at 

r = rb(s), and e is the unnormalized rms emittance associated with the random motion of the 

electrons. If there is no magnetic field at the cathode, then /pe \ = 0. Any residual magnetic field 

at the cathode will lead to lpe W 0. 

We analyze the beam envelope for equilibrium beam transport in the SLAC 50 MW, 11.4 

GHz PPM focusing klystron experiment [10]. The system parameters of the experiment are 

shown in Table 1. To examine the influence of small residual magnetic field on the beam 

transport, we analyze two different cases shown in Table 2. In Case I, we assume no residual 

magnetic field at the cathode, such that yb$bmc(pe ) = 0. In Case II, however, a residual field of 

.    6.86 G is assumed, corresponding to a beam with a finite canonical angular momentum given by 

Yfcßfrmc(^e)=4.5xl0~26  Kgm2/s. The following dimensionless parameters are derived from 



Table      2:       S2Kz(s)= [l.04xsin(27u/S)]2       (with       5 = 2.1cm),       c0 = 42.3° = 0.738, 

SKI4a0z =10.1, and (Pe)/4e =0.0 in Case I and (k \/4e = 6.93 in Case II. 

Figure 1 shows plots of the axial magnetic field B,(s) and outermost beam radius rb(s) versus 

the propagation distance s for Cases I and II. In both cases, the amplitude of well-matched 

(equilibrium) envelope oscillations about the average beam radius is only about 0.005 mm, as seen 

in Figs. 1(b) and 1(c). 
i 

B. Self-Consistent Simulation of Equilibrium Beam Transport 

Self-consistent simulations based on the model described in Sec. II are performed to further 

investigate the equilibrium beam transport. In the simulations, 4096 macroparticles are used. The 

macroparticles are loaded according to the rigid-rotor Vlasov distribution [12] with an initial 

beam radius equal to the equilibrium (matched) beam radius at s = 0 [see Figs. 1(b) and 1(c) for 

Cases I and II, respectively]. 

Figure 2 shows, respectively, the initial and final phase-space distributions at s = 0.0 cm and 

s = 42.0 cm for Case I. Comparing the phase-space plots shown in Figs. 2(e) and 2(f) with the 

initial phase-space plots in Figs. 2(b) and 2(c), we find an increase in the emittance (randomness) 

in the transverse electron momentum. The emittance growth is a result of numerical noise in the 

simulation. However, since the beam dynamics is mostly dictated by space-charge forces for the 

parameter regime considered here, the emittance growth has little effect on the beam transport 

properties. In fact, the distribution in the configuration space shown in Fig. 2(d) agrees very well 

with the initial distribution shown in Fig. 2(a). Moreover, the effective beam radius obtained from 

the simulation agrees with that obtained from Eq. (8) within 0.2%. In the simulation, no beam loss 

is detected. 

Figure 3 shows, respectively, the initial and final phase-space distributions at s = 0.0 cm and 

s = 42.0 cm for Case II. The final distributions shown in Figs. 3(d), 3(e), and 3(f) agree very well 

with the initial distributions shown in Figs. 3(a), 3(b), and 3(c). In this case, the effects of 

numerical-noise-induced emittance growth are less pronounced than in Case I (Fig. 2) because the 

momentum distribution is primarily determined by the finite angular momentum but not by thermal 



effects. The effective beam radius agrees with Eq. (8) within 0.5%, and no beam loss is detected 

in the simulation. 

C. Phase Space Structure 

It is known that the phase space structure for a matched intense beam in a periodic focusing 

system exhibits nonlinear resonances and chaotic behavior [14]. To determine how sensitive the 

equilibrium beam transport is against small perturbations for the parameter region of interest, we 

examine test-particle dynamics subject to the field configuration consisting of the applied focusing 

field and the equilibrium self-electric and self-magnetic fields. We make use of the Poincare 

surface-of-section method to analyze the phase-space structure of test particles. The results are 

shown in Fig. 4(a) for Case I with PQ /4e = 0, and in Fig. 4(b) for Case II with Pe /4e = -0.99. 

In Fig. 4, the successive intersections of 15 test-particle trajectories with the phase space (r,Pr) 

are plotted every period of the focusing field for 1000 periods. One test particle is initialized at the 

phase-space boundary of the equilibrium distribution, and the corresponding test-particle orbit is 

represented by the inner curved arc in Fig. 4(a) and by the innermost contour in Fig. 4(b). The 

remaining test particles are initialized outside the beam. For both cases shown in Fig. 4, the values 

of Pg are chosen such that the boundary of the equilibrium distribution extends to r = rb. 

Although the space-charge force outside the beam is nonlinear, the phase space is almost entirely 

regular. The same results showing regularity in phase space structure are obtained for different 

values of PB for Cases I and II. 

To summarize the results of this section briefly, we find from self-consistent simulations and 

detailed phase space analysis that in the absence of RF signal, the equilibrium beam transport in 

the PPM focusing klystron is robust and no beam loss is expected. These results are in good 

agreement with the experimental observation [10] of 99.9% beam transmission in the absence of 

RF signal. 

IV. HALOS INDUCED BY MISMATCHED ENVELOPE OSCILLATIONS 

Microwave generation in a klystron is due to the coupling of large-amplitude charge-density 

and current oscillations in the electron beam with the output RF cavity. The charge-density and 



current oscillations result from the beating of the fast- and slow-space-charge waves on the 

electron beam, and are primarily longitudinal. From the point of view of beam transport, the 

charge-density and current oscillations perturb the equilibrium beam envelope discussed in Sec. 

III. Although a quantitative understanding of the effects of such large-amplitude charge-density 

and current oscillations on the dynamics of the electron beam is not available at present, especially 

in the transverse direction, a qualitative study of such effects is presented in this section. In the 

present analysis, use is made of the standard one-dimensional cold-fluid model to estimate the 

amplitude of the envelope mismatch induced by longitudinal current oscillations, and the two- 

dimensional electrostatic model described in Sec. II is used to explore the process of electron 

beam halo formation in the transverse phase space of the electron beam. 

A. Estimation of the Mismatch Amplitude 

It follows from the linearized continuity equation that the current perturbation (o7fc)     is 

related to the axial velocity perturbation c(8ßfc)    by [15,16] 

(«0,,       a)    («fO,, 

where subscripts / and s denotes the fast- and slow-space-charge waves, respectively, and (0 

and kf s are the frequency and wave numbers of the perturbations, respectively. Making the long- 

wavelength approximation for a thin beam, it can be shown that the dispersion relations for the 

fast- and slow-space-charge waves can be expressed as [15] 

a-hcktJ=±£% 
TA*' (,0> 

where kf assumes plus sign, and ks assumes minus sign. In Eq. (10), e^. is the longitudinal 

space-charge coupling parameter. The effective value of ejc is estimated to be erc = 0.012 for the 

SLAC PPM focusing klystron [10]. In the klystron, the total current oscillations are the sum of 

fast- and slow-space-charge waves with a phase difference of -180°. As a result, the total 

current oscillations and the total velocity oscillations are out of phase by -180°. Therefore, the 

amplitude of the total current oscillations is given by 
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This has the important consequence that the perveance of the electron beam varies dramatically 

along the beam. From the definition of the perveance in Eq. (1), it is readily shown that the 

amplitude of perveance variation is given by 

8/£ 
K 

( WCife), 
1+    2ßi 

2 
V "fb    J 

'total 

h 
(12) 

For the SLAC PPM focusing klystron [10], Eq. (12) yields dKIK = 1.45x(8/J/o/a//Ib. At the 

RF output section, bK/ K exceeds unity considerably because blb / Ib ~ 1. (Note that the current 

oscillations in the RF output section are highly nonlinear and the maximum current exceeds 27b.) 

From the beam envelope equation (8), the relative amplitude of beam envelope mismatch is 

estimated to be brb / rb = 0.56, where rb is the equilibrium beam radius and blb / Ib = 1 is 

assumed. In the self-consistent simulations presented below, we use brb / rb = 1.0 in order to take 

into account the fact that the instantaneous current exceeds 2Ib during high-power operation of 

the klystron. 

B. Self-Consistent Simulation of Electron Beam Halo Formation 

The process of halo formation in intense electron beams is studied using the two-dimensional 

self-consistent model described in Sec. II. Results of the simulations are summarized in Figs. 5-10 

for Cases I and II. In the simulations, 4096 macroparticles are used, and the macroparticles are 

loaded according to the rigid-rotor Vlasov distribution [5] with an initial beam radius of 2rt(o), 

where rb(0) is the equilibrium beam radius at s = 0 [see Figs. 1(b) and 1(c) for Cases I and II, 

respectively]. The effect of current oscillation build up in the PPM focusing klystron, which 

requires three-dimensional modeling, is not included in the present two-dimensional simulation. 

We first discuss the results of the self-consistent simulation for Case I. In Fig. 5, the effective 

beam core radius is plotted as a function of the propagation distance s. The solid curve is 

obtained from the self-consistent simulation, and the dotted curve is obtained by numerically 

solving the envelope equation (8) with the emittance calculated in the self-consistent simulation. 



As expected, results from the self-consistent simulation and envelope equation are in excellent 

agreement. Although the core radius oscillations are not exactly periodic due to emittance growth, 

the core radius oscillates with an approximate period of 11.5 cm, such that the envelope typically 

executes four periods of oscillations in the entire PPM focusing section of the SLAC PPM 

focusing klystron which is 42 cm long. 

Figure 6 shows the phase-space distributions of the electrons at several axial distances during 

the fourth period of the beam core radius oscillation for Case I. In contrast to the equilibrium 

phase-space distribution (Fig. 3), significant halos appear at 5 = 34.7, 37.8, 42.0, 44.1, and 46.2 

cm. In the configuration space plots shown in Figs. 6(a) to 6(e) we observe a large variation in the 

beam core radius during the mismatched envelope oscillation period. The halo particles reach a 

maximum radius of rh = 6.4 mm at s = 42.0 cm, where the beam core radius is a minimum and 

the traveling-wave RF output section is located. Around 1.5% of the electrons are found in the 

halo at that axial position. Because the maximum halo radius of rh = 6.4 mm is greater than the 

actual beam tunnel radius rT =4.7625 mm, these halo electrons are lost to the waveguide wall. 

Therefore, the simulation results show that there will be 1.5% beam electron loss. In terms of 

beam power loss, 1.5% beam electron loss in the simulation corresponds to 0.2% beam power 

loss because the lost electrons have given up 88% of their kinetic energies (or have slowed down 

by about a factor of 2 in their axial velocities). The simulation results agree qualitatively with 

0.8% beam power loss observed in the experiment [10]. The discrepancy between the simulation 

and experimental measurements may be caused by nonlinearities in the applied magnetic fields 

which are not included the present simulation. 

As the beam propagates in the focusing field, its distribution rotates clockwise in the 

(x,dx/ds) phase space, as shown in Figs. 6(f) to 6(j). The particles are initially dragged into the 

halo at the edges of the phase space distribution, where a chaotic region is formed around an 

unstable periodic orbit that is located just outside the beam distribution [17]. The unstable 

periodic orbit is a result of a resonance between the mismatched core envelope oscillations and 

the particles dynamics. As the halo particles move away from the beam core, the influence of 

space charge forces decreases and these halo particles start rotating faster than the core particles, 

creating the S-shaped distributions observed in Figs. 6(f) to 6(j). 
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The halo formation is also observed in the (x,dy/ds) phase space distributions shown in Figs. 

6(k) to 6(0). Although the macroscopic (average) canonical angular momentum (Pe \ is constant 

in the simulation, the distributions presented in Figs. 6(k) to 6(0) indicate that the distribution of 

single particle canonical angular momenta induces spread in ihe(x,dy Ids) phase space. 

Shown in Fig. 7 are the halo radius, i.e., the maximum radius achieved by all of the 

macroparticles in the self-consistent simulation, and the effective beam core radius as a function of 

the propagation distance for Case I. It is apparent in Fig. 7 that the halo formation process takes 

place essentially during the first 4 periods of the envelope oscillations. After reaching rh = 6.4 mm 

at s = 42.0 cm, the halo radius saturates. It is interesting to note that once the halo is developed, 

the halo radius and core envelope radius oscillate in opposite phase, with the former being 

maximum when the latter is minimum [as seen in Fig. 6(c)] and vice versa. 

Second, we discuss the self-consistent simulation results for Case II and the role of small 

residual magnetic field at the cathode in the halo formation process. Figure 8 shows a plot of the 

effective beam core radius as a function of the propagation distance s. In Fig. 8, an excellent 

agreement is found between the envelope obtained from the self-consistent simulation (solid 

curve) and the envelope obtained by numerically solving the envelope equation (8) with the 

emittance calculated in the self-consistent simulation (dotted curve). One of the effects of the 

residual magnetic field at the cathode is to decrease the period of the envelope oscillations. The 

period for case II is 10.5 cm, slightly shorter than the period found in Case I (Fig. 5). The 

envelope executes four periods of oscillations in the entire PPM focusing section of the SLAC 

klystron. 

Figure 9 shows the phase-space distributions of the electrons at several axial distances during 

the fourth period of the beam core radius oscillations for Case II. The configuration space 

distributions shown in Figs. 9(a) to 9(e) do not exhibit sizable halos. In particular, comparing 

Figs. 9(a)-9(e) with the configuration space distributions for Case I, shown in Figs. 6(a)-6(e), it is 

clear that the halos are much more pronounced in Case I. Analyzing Figs. 9(d) and 9(e) in more 

detail we observe hollow regions in the interior of the beam and that the existing halos appear in 

the form of vortices. Because the beam rotation period is calculated to be approximately 3 times 

the envelope oscillation period, the hollow regions and associated vortex structure might be a 
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result of a diocotron instability process driven by a resonance between the envelope oscillations 

and the beam rotation. 

The properties of the phase space distributions shown in Figs. 9(f) to 9(o) resemble the 

properties discussed in Case I with regard to the rotation in the (x,dx/ds) phase space and the 

spread in the (x,dy/ds) phase space. In comparison with Case I, the main difference is that the 

phase space distributions in Case II exhibit vortex structures. 

Figure 10 shows the halo radius and effective beam core radius as a function of the 

propagation distance for Case II. Although sizable halos arise in the simulation after many periods 

of envelope oscillations, it is evident that the halo formation process is slower in Case II than in 

Case I (see Fig. 7). In particular, despite that the initial beam radius in Case II is larger than in 

Case I, the halo radius in Case I is greater than that in Case II at the output section (s =42 cm) of 

the PPM focusing klystron. Because the halo radius at s = 40cm is 5.3 mm and is still greater 

than the beam tunnel radius, the electrons in the halo are lost to the waveguide wall Nevertheless, 

these results indicate that a small residual magnetic field at the cathode plays an important role in 

delaying the halo formation process and might be used to prevent electron beam loss in future 

experiments. 

V. CONCLUSIONS 

We have studied equilibrium beam transport in a periodic magnetic focusing field in the 

absence of RF signal, and the behavior of a high-intensity electron beam under a current- 

oscillation-induced mismatch between the beam and the magnetic focusing field. Detailed 

simulation results were presented for choices of system parameters corresponding to the 50 MW, 

11.4 GHz periodic permanent magnetic (PPM) focusing klystron experiment performed at the 

Stanford Linear Accelerator Center (SLAC). 

From self-consistent simulations and detailed phase space analysis, we found that in the 

absence of RF signal, the equilibrium beam transport is robust, and that there is no beam loss, 

which is in agreement with experimental measurements. During the high-power operation of the 

klystron, however, we found that the current-oscillation-induced mismatch between the beam and 

the magnetic focusing field produces large amplitude envelope oscillations. We estimated the 

amplitude of envelope oscillations using a one-dimensional cold-fluid model. From self-consistent 
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simulations we found that for a mismatch amplitude equal to the beam equilibrium radius, the halo 

reaches 0.64 cm in size and contains about 1.5% of total beam electrons at the RF output section 

for a beam generated with a zero magnetic field at the cathode. Because the halo radius is greater 

than the actual beam tunnel radius, these halo electrons are lost to the waveguide wall, yielding 

0.2% beam power loss. The simulation results agree qualitatively with 0.8% beam power loss 

observed in the experiment [10]. The discrepancy between the simulation and experimental 

measurements may be caused by nonlinearities in the applied magnetic fields which are not 

included the present simulation. 

We also studied the influence of a small residual magnetic field at the cathode on the 

equilibrium beam transport and electron beam halo formation during high-power operation of the 

klystron. We found that the equilibrium beam radius increases with the residual magnetic field. 

Although the halo grows in size to reach the waveguide wall the RF output section and a 

nonlinear vortex structure develops in the electron beam, we found that the onset of halo 

formation is delayed, which might be used to prevent electron beam loss in future experiments. 

Although the results presented in this paper are based on a two-dimensional electrostatic 

model, they give a good qualitative description of the process of halo formation in high-power 

PPM focusing klystron amplifiers and suggest that halo formation is a potential mechanism for 

electron beam losses in such devices. 
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Table 1. SLAC 50 MW, 11.4 GHz, PPM Focusing Klystron Experiment 

Beam Current Ib 190 A 
Beam Voltage 464 kV 
Cathode Radius 2.86 cm 
Cathode Temperature Tb 800° Cf 

Beam Radius 2.38 ram* 
Pipe Radius 4.7625 mm 
Total Tube Length 90.0 cm 
Focusing Field Period Length 2.1 cm 
PPM Focusing Section Length 42.0 cm 

1 RMS Axial Magnetic Field 1.95 kG 
estimated 

Table 2. System Parameters Used in the Simulation 

BASIC PARAMETER CASE I CASE II 
Beam Current Ib 190 A 190 A 
Beam Voltage 464 kV 464 kV 
Cathode Radius 2.86 cm 2.86 cm 
Residual Magnetic Field at Cathode 0.0 G 6.86 G 
Cathode Temperature Tb 800° C 800° C 
Beam Radius 2.05 mm 2.38 mm 
Pipe Radius 9.0 mm 9.0 mm 
Total Tube Length 90.0 cm 90.0 cm 
Focusing Field Period Length 2.1 cm 2.1 cm 
PPM Focusing Section Length 42.0 cm 42.0 cm 
RMS Axial Magnetic Field 1.95 kG 1.95 kG 
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FIGURE CAPTIONS 

Figure 1. Plots of the axial magnetic field in (a) and outermost beam radius rb(s) versus the 

propagation distance s for equilibrium beam propagation corresponding to Case I in (b) and Case 

II in (c). The dimensionless parameters are: S2Kt(s) = [l.04xsin(2jw/S)]2, o0 =42.3° =0.738, 

SK140J- = 10.1, and (pe) / 4e = 0.0 in (b) and (P6) / 4e = 6.93 in (c). 

Figure 2. Plots of the initial and final particle distributions at 5=0.0 and 42.0 cm for the 

equilibrium beam corresponding to the parameters in Case I. 

Figure 3. Plots of the initial and final particle distributions at 5=0.0 and 42.0 cm for the 

equilibrium beam corresponding to the parameters in Case II. 

Figure 4. Poincare surface-of-section plots for 15 test particle trajectories under the influence of 

the PPM focusing field shown in Fig 1(a) and the self-electric and self-magnetic forces of the 

equilibrium beams. Shown in (a) is for Case I with single particle canonical angular momentum 

Pe =0, and in (b) for Case II with single particle canonical angular momentum/^ /4e = -0.99. 

Figure 5. Plot of the effective beam core radius rb(s) versus the propagation distance s for 

mismatched beam propagation corresponding to Case I. The solid curve is obtained from the self- 

consistent simulation, whereas the dotted curve is obtained by numerically solving the envelope 

equation (8) with the emittance calculated in the self-consistent simulation. 

Figure 6. Plots of particle distributions in phase space at 5 =34.7, 37.8, 42.0, 44.1, and 46.2 cm 

for Case I. 

Figure 7. Plots of the halo radius (solid curve) and core radius (dashed curve) as a function of 

the propagation distance s for Case I. 
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Figure 8. Plot of the effective beam core radius rb(s) versus the propagation distance s for 

mismatched beam propagation corresponding to Case II. The solid curve is obtained from the 

self-consistent simulation, whereas the dotted curve is obtained by numerically solving the 

envelope equation (8) with the emittance calculated in the self-consistent simulation. 

Figure 9. Plots of particle distributions in phase space at s =31.5, 33.6, 36.8, 39.9, and 42.0 cm 

for Case II. 

Figure 10. Plots of the halo radius (solid curve) and core radius (dashed curve) as a function of 

the propagation distance s for Case II. 
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Test particle motion is analyzed analytically and numerically in the field configuration consisting of 
.the equilibrium self-electric and self-magnetic fields of a well-matched, thin, continuous, intense 
charged-particle beam and an applied periodic focusing solenoidal magnetic field. The self fields are 
determined self-consistently, assuming the beam to have a uniform-density, rigid-rotor Vlasov 
equilibrium distribution. Using the Hamilton-Jacobi method, the betatron oscillations of test 
particles in the average self fields and applied focusing field are analyzed, and the nonlinear 
resonances induced by periodic modulations in the self fields and applied field are determined. The 
Poincare surface-of-section method is used to analyze numerically the phase-space structure for test 
panicle motion outside the outermost envelope of the beam over a wide range of system parameters. 
For vacuum phase advance a„ = &0°, it is found that the phase-space structure is almost entirely 
regular at low beam intensity (phase advance cr>70°, say), whereas at moderate beam intensity 
(30°:£cn£70°), nonlinear resonances appear, the most pronounced of which is the third-order 
primary nonlinear resonance. As the beam intensity is further increased (<r£30°), the widths of the 
higher-order nonlinear resonances increase, and the chaotic region of phase space increases in size. 
Furthermore, the many chaotic layers associated with the Separatrices of the primary and secondary 
nonlinear resonances are still divided by the remaining invariant Kolmogorov-Arnold-Moser 
surfaces, even at very high beam intensities. The implications of the rich nonlinear resonance 
structure and chaotic particle motion found in the present test-particle studies are discussed in the 
context of halo formation.   © 1999 American Institute of Physics. [S1070-664X(99)03409-6] 

I. INTRODUCTION 

Halo formation and control in intense charged-particle 
beams has been the subject of recent vigorous theoretical, 
computational, and experimental investigations.1"20 It is of 
fundamental importance in the development of next- 
generation high-intensity accelerators for basic scientific re- 
search in high-energy and nuclear physics, as well as for a 
wide variety of applications ranging from heavy ion fusion, 
accelerator production of tritium, accelerator transmutation 
of nuclear waste, spallation neutron sources, and high-power 
free-electron lasers. In these high-intensity accelerators, 
beam halos must be controlled in order to minimize beam 
losses and activation of the accelerator structure. 

It is well known that a space-charge-dominated beam 
can develop a sizable halo if there is a root-mean-square 
(rms) mismatch between the beam and the transport 
system. " • ■ " The mechanism for halo formation in rms- 
mismatched beams has been well developed in the particle- 
core model.3'6 When there is a sizable mismatch, the halo can 
contain a substantial fraction (up to 15%) of the entire beam. 

Recently, it has been shown theoretically5'9-15-16 that in 
periodic focusing transport systems, radial nonuniformities 
in charge density in rms-matched spacc-charged-dominated 

"Electronic mail: chenc@psfc.mit.edu 

1070-664X/99/6(9)/1/11/SI5.00 

beams can also cause halo formation. The mechanism of 
halo formation in rms-matched beams has been identified 
with chaotic particle motion21 and nonlinear resonances oc- 
curring in the vicinity of the boundary of phase space occu- 
pied by the particles in the beam core. Invariant 
Kolmogorov-Arnold-Moser (KAM) surfaces21 play an im- 
portant role in confining halo particles transverse to the di- 
rection of beam propagation. 

The purpose of this paper is to analyze the dynamics oft 
test particles in the field configuration consisting of the equi- 
librium self-electric and self-magnetic fields of a well- 
matched, thin, continuous, intense charged-particle beam and 
an applied periodic focusing solenoidal magnetic field. Un- 
like previous studies of halo formation in rms-mismatched 
beams and rms-matched beams with nonuniformities in 
charge density,1"20 this paper addresses the fundamental 
question of how the phase-space structure varies with beam 
intensity, focusing field strength and beam rotation under the 
best conditions corresponding to a matched equilibrium 
beam. Therefore, in the present analysis, the self fields22 are 
determined self-consistently, assuming the beam to have a 
uniform-density rigid-rotor Vlasov equilibrium 
distribution23,24 which includes the well-known 
Kapchinskij-Vladirmirskij (KV) beam equilibrium 
distribution25 as a special case. Using the Hamilton-Jacobi 
method, the betatron oscillations of test particles in the aver- 

© 1999 American Institute of Physics 
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age self fields and applied field arc analyzed, and the nonlin- 
ear resonances induced by periodic modulations in the self 
fields and applied field are determined. The Poincarc surface- 
of-section method"1 is used to analyze the phase-space struc- 
ture for test particle motion outside the outermost envelope 
of the beam over a wide range of system parameters. It is 
found that the phase-space structure changes significantly as 
the canonical angular momentum (Pe), beam intensity (as 
measured by SKIET or cr/au), vacuum phase advance cru, 
or beam rotation (wfc) is varied. The implications of the rich 
nonlinear resonance structure and chaotic panicle motion 
found in the present test-panicle studies are discussed in the 
context of halo formation. By examining the intrinsic prop- 
erties of phase space of test particle motion outside of a 
perfectly matched beam as a function of beam intensity, fo- 
cusing field strength and beam rotation, we gain valuable 
insights as to which operating regimes are more or less ro- 
bust against the ejection of halo particles from the beam 
under small beam mismatch and/or collective excitations in 
the beam core. 

To briefly summarize, based on a comprehensive study 
of the phase-space structure for test-particle morion for 
vacuum phase advance crll = 80o, we find that the phase- 
space structure is almost entirely regular at low beam inten- 
sity (phase advance cr2:70o, say), whereas at moderate beam 
intensity (30°ScrS70°), nonlinear resonances appear, the 
most pronounced of which is the third-order primary nonlin- 
ear resonance. As the beam intensity is further increased 
(CT<30°), the widths of the higher-order nonlinear reso- 
nances increase, and the chaotic region of phase space in- 
creases in size. Furthermore, the many chaotic layers associ- 
ated with the separatrices of the primary and secondary 
nonlinear resonances are still divided by the remaining in- 
variant KAM surfaces, even at very high beam intensities. 
Therefore, in the context of the present test-particle analysis, 
chaotic layers do not form an extended chaotic region in 
phase space. In actual beam propagation experiments, how- 
ever, it is expected that sufficient beam mismatch or pertur- 
bations about the periodically focused beam equilibrium can 
cause the particles to cross the invariant surfaces and form a 
halo. 

The organization of this paper is as follows. After a dis- 
cussion of the theoretical model and assumptions in Sec. II, 
the betatron oscillations and nonlinear resonances are ana- 
lyzed using the Hamilton-Jacobi method in Sec. III. The 
phase-space structure of test particle motion over hundreds 
of lattice periods is examined numerically in Sec. TV. Con- 
clusions are given in Sec. V. 

II. THEORETICAL MODEL AND ASSUMPTIONS 

In the present analysis, we consider a thin, continuous, 
intense charged-partiele beam propagating in the z direction 
with characteristic axial velocity ßbc and kinematic energy 
7bmc~ through the periodic focusing solenoidal magnetic 
field 

Here, e, and ev arc unit Cartesian vectors perpendicular to 
the beam propagation direction, J = ; is the axial coordinate, 
xeTH-_yev is the transverse displacement from the beam axis 
at (x,y) = (0,0), the superscript "prime" denotes dlds with 
B',(s) = dB:(s)/ds, and the axial component of magnetic 
field satisfies 

B.(s + S) = Bt(s), (2) 

where S is the axial period of the focusing field. 
To determine the self-electric and self-magnetic fields22 

consistently, we make the following assumptions:- (a) the 
Budker parameter v = Nbq

2/mc2 for the beam is small com- 
pared with yb; (b) the axial momentum spread of the beam 
particles is small in comparison with ybmßbc; (c) the beam 
is axisymmetric (<9/<?0=O); and (d) the beam is perfectly 
matched into the focusing field with uniform density profile 
over the beam cross section, 

nb(r,s) = 
\Nblirr2{s),        0^r<rb(s) 

(3) [0,     r>rb(s). 

In Eq. (3), r=(x2+y2)m is the radial coordinate, rb(s) 
= rb(s + S) is the outer envelope of the beam, and Nb 

= 2ir/on&rrfr = const. is the number of particles per unit 
axial length. The periodic outer beam envelope rb(s) = rb(s 
+ S) corresponds to a special solution of the beam envelope 

23.24 equation   ~ 

d2rb K 

ds- 
'■ + Ks(s)rb-- j = 0, (4) 

where K=2q2Nbly\ß\mc2 is the normalized perveance, 
Kz(s) = [qBz(sy2ybßbmc2]2 = [nc(s)/2ßbc]2 is the focus- 
ing parameter, er= const, is the total unnormalized emit- 
tance, q and m are the particle charge and rest mass, respec- 
tively, and c is the speed of light in vacuo. The transverse 
phase-space distribution that self-consistently generates the 
density profile in Eq. (3) is discussed in the Appendix. 

Consistent with the thin-beam assumption (rb<£S), the 
scalar potential for the self-electric field EJ= — V <f>s is deter-, 
mined from 

1   B    dcf>s 

757rlT = ~4ir9n>(r'5)' (5) 

;^0-:-:B.?'l)s".^)e«-ifi;(O(xe,+yey).. (1) 

where use has been made of the approximation V2sV2 . 
Integrating Eq. (5) for the density profile in Eq. (3), and 
applying the boundary condition (f>\r=rw ,s) = 0 at the wall 
of a perfectly conducting cylindrical tube with constant ra- 
dius rw yields 

4>'(r,s) 

=   qNb{\-r2lr2) + 2qNb\n{rwlrb),    0^r<rb(s) 

[2qNbHrw/r),     rb(s)<r^rw. 

(6) 

Because the axial momentum spread is assumed to be negli- 
gibly small, the vector potential for the self-magnetic field 
B -VX(^e;) is given approximately by 

K(r,s) = ßb<fi'{r,s), 
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where ßbc is the characteristic axial velocity of the beam. 
In the analysis of the particle motion, it is convenient to 

transform to the Larmor frame26 which rotates with angular 
velocity ddLlds= - JKz(s)=-qBz(s)/2ybßbmc2 relative 
to the laboratory frame, i.e., 

x(s)=x(s)cos[eL(s)]+y(s)sm[9L{s)l 

y(s) = -x(s)sia[eL{s)]+y(s)cos[8L{s)]. 

(8) 

(9) 

In cylindrical coordinates (r,6) in the Larmor frame, the 
equations of motion transverse to the direction of beam 
propagation can be derived from the normalized Hamiltonian 

  1 /_,    P2\     1 
Hi(r,Pr,Pt,s)=-\P;+—\+-Ksts)72+M7,s),   (10) 

where the normalized self-field potential i//(r,s) is defined 
by 

(K/2)[ 1 - 72/r2(s)] + K ln[rw /rb(s)], 

0^r<rb(s) (11) 

{. Kki[rw/7],     rb{s)<7^rw. 

From Eq. (10), the equations of motion can expressed as 

ds     dPr 

dd _   d  _      Pg 

ds 

dPr 

dP« 

-      d       _ 
as dr r ST 

dPe 

ds 36   ' 

(12) 

(13) 

(14) 

(15) 

mornen- It follows from Eq. (15) that the canonical angular 
turn is conserved, i.e., 

Pg=xPy-yPx=const., (16) 

which is expected for axisymmetric beam propagation. Com- 
bining Eqs. (12) and (14) yields 

dp 
-    Pg     d      - 

dr 
(17) 

For a particle in the beam interior (7<rb), the equation of 
motion (17) is intcgrable. For a particle outside the beam 

(r>rh), the equation of motion is generally nonintegrable21 

because of ithe nonlinear dependence of dibldT on the radial 
coordinate r. 

1.10 

1.05 

1.00 

0.95 

0.90 
0.0 

FIG. 1. Plot of the normalized beam radius rb(s)lrb vs normalized propa- 
gation distance s/S for intense beam propagation through a periodic step- 

function lattice. Here, r„/r4 = 5 is assumed, and the choice of system pa- 

rameters corresponds to: 7=0.2, S2
K. = 6.5, and SK/eT=4.Q. 

111. ANALYSIS OF NONLINEAR RESONANCES 

In this section, we analyze the nonlinear resonances in 
the particle motion in the Larmor frame described by Eq. 
(17). To simplify the notation, we omit the "tilde" in Lar- 
mor frame variables in the remainder of this paper. For 
present purposes, the Hamiltonian in Eq. (10) is expressed as 

HL(r,Pr,Pe,s) = H0{r,Pr,Pe) + Hx{r,Pr,Pg,s), (18) 

where 

H0(r,Pr,Pe)=^P2+V0(r,Pe) 

1    -     1_   ,     Pi 

2r + <Kr,s)\.U)m-       (19) 

Hi(r,Pr,Pe,s)=^{Kt(.s)-Kt'\r
2+^{r,s) 

-Mr'sKw-v (20) 
In Eqs. (18)-(20), ip(r,s) is defined in Eq. (11), and the 
effective mean beam radius rb is defined by 

'ejS\m 

a >-b= (2\f 

where a=ETJs
s
+s dslr\(s) is the space-charge-depressed 

phase advance for the rigid-rotor Vlasov equilibrium. The 

effective mean focusing parameter KZ occurring in Eqs. (19) 
and (20) is defined by 

K _   A 
^z    -o (22) 

Physically, the Hamiltonian H0 provides a good approximate 
description of the (slow) betatron oscillations, whereas the 
perturbation Hx describes nonlinear resonances induced by 
the (fast) oscillations in KZ(S) and rb(s). 

For future references, Fig. 1 shows a plot of the normal- 

ized beam radius rb{s)lrb versus normalized propagation 
distance s/S, obtained numerically by integrating the beam 
envelope equation (4) for intense beam propagation through 
a periodic step-function lattice with 
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FIG. 2. Plots of the normalized effective potential (5/er) V0(r,/>,) [Eq. 

(19)] vs normalized radial coordinate r/r4 for intense beam propagation 

through a periodic step-function lattice. Here, rw/Fd = 5 is assumed, and the 
two cases correspond to the choices of system parameters: (a) 77=0.2, 

S
2
K. = 6.5, SK/eT=4.0, and P,/£j.= 0, and (b) 77=0.2, S2i, = 65, 

SK/eT=4.0, and Ps/eT=0.7. For both cases, the vacuum and "space- 
charge-depressed phase advances are o-„ = 68° and cr=18.6°, respectively. 

K, 

KZ{S)={   0. 

0«j< 775/2 

775/2=?j<5- 775/2 

5- 775/2=? s< 5. 

(23) 

Here, *z = const., KZ(S + S) = KZ(S), and 77 is the so-called 
filling factor for the lattice. In Fig. 1, rw/7b = 5 is assumed, 
and the choice of system parameters corresponds to: 77=0.2, 
5^=6.5, SK/ET=4.Q. The vacuum and space-charge- 
depressed phase advances are found to be a 
= eTrs

+Sds/rl(s)\K=0 = 6S° and —- "+* 
= 18.6°, respectively. 

^=eTrs
+Sds/rl(s) 

A. Betatron oscillation frequency 

Because PB is a constant of the motion and H0 is inde- 
pendent of s, the unperturbed motion described by the 
Hamiltonian H0 is integrable. Figure 2 shows a plot of the 
normalized effective potential (S/eT)V0(r,Pg) versus nor- 

• malized radial coordinate rlrb for intense beam propagation 
through the periodic step-function lattice defined in Eq. (23). 
In Fig. 2, rwlrb=5 is assumed, and the two cases corre- 
spond to the following choices of system parameters: (a) 
-7=0.2, 5

2
K. = 6.5, 5K/er=4.0, and PgleT=0; and (b) 

77=0.2, 5
2
K, = 6.5, 5Ä7er=4.0, and Pg/eT=0.7. For both 

cases shown in Fig. 2, the vacuum and space-charge- 
depressed      phase      advances      are      given      by      av 

r/K 

FIG. 3. Plots of constant-rY0 contours for several values of (S/ET)H0 as 
labeled in the phase space (r,Pr) for the same choices of system parameters 
as in Figs. 2(a) and 2(b), respectively. 

= erJTS*/'frOLc-o=689 and tr=sT^
Sdslr\{s) = \Z.6a, 

respectively. As illustrated in Fig. 2, the effective potential 
Vo(.r,Pg) has a minimum at r = r0, where r0 is defined by 

(\Pg\/eT,      \Pg\<eT 

[K+(K2 + 4KzP
2

e)
m}/[K+(K2 + 4KzE

2
T)
ia]^ 

\Ps\>eT. 
-2 

(24) 

In Fig. 3, constant-Z/n contours are plotted in the phase spaced 
(r,Pr) for several values of (S/eT)H0, and the same choices 
of system parameters as in Fig. 2. For Pg/eT=0.7 and speci- 
fied value of H0, the particle undergoes betatron oscillations 
about r=r0, corresponding to motion on constant-H0 con- 
tours in the phase space (r,Pr) as shown in Fig. 3(b). In 
general, the betatron oscillation frequency depends on the 
amplitude of the oscillations. 

To determine the betatron oscillation frequency, we em- 
ploy the Hamilton-Jacobi method27 and perform a canonical 
transformation from (r,/°r) to the action-angle variables 
(4>,J). Let W(r,J) be the characteristic function satisfying 
the partial differential equation 

1 IdW 
2\"5TI   +vo(r,Pe) = H0 = const. (25) 

As discussed below, the dependence of W on J is uniquely 
determined because of the one-to-one correspondence be- 
tween H0 and J [see Eq. (29)]. A formal expression for the 
angle variable <b is siven bv 
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V     dJ (26) 

The action variable J can be expressed as 

J= ± j>(frdr= X-\j2{HQ-Vo{r,PB)]yndrt 

(27) 

where the turning points r* solve the algebraic equation 

H0=VQ(r^,Pg), (28) 

and r^>r_ is assumed. Because the action variable J in- 
creases monotonically with increasing H0, Eq. (27) can be 
inverted to yield a Hamiltonian of the form 

^Q-HQ{J,Pg). (29) 

The betatron oscillation frequency can then be expressed as 

«Wo 
Uß{J,PS) = dJ ' (30) 

which, in general, must be evaluated numerically. Before 
presenting numerical results, we discuss two special cases. 

For particle motion inside the mean beam envelope with 
r+<rb, it is readily shown from Eq. (27) that the action 
variable can be expressed as 

2a-      2 ' (31) 

where use has been made of Eqs. (21) and (22). It follows 
from Eqs. (30) and (31) that the betatron oscillation fre- 
quency is given by 

Mo 
' dJ 

2cr 

T' (32) 

which is independent of the amplitude, as expected for par- 
ticle motion in the beam interior. Note that the factor of 2 in 
Eq. (32) arises from the fact that in the present description of 
the betatron oscillations, the radial coordinate r=(x2 

+ y )ia is used as a generalized coordinate, instead of a 
Cartesian coordinate, say x. 

As the outer oscillation amplitude r+ increases well be- 
yond the mean beam envelope (F6), the oscUlation frequency 
increases because the influence of space charge on the beta- 
tron oscillations become less pronounced. In the limit where 
r+5>rb, the betatron frequency is given by 

5   ' (33) 

where <rv = eTS',+sds/rfc)^ is the vacuum phase ad- 
vancc. 

_ Figure 4 shows a plot of the betatron oscillation fre- 
quency cjß versus normalized betatron oscillation amplitude 
(r + r0)/r0 for the same choices of system parameters as in 
Figs. 2 and 3. 

1.0 2.0 
(r+-r0)/rb 

3.0 

12.0 

1.0 2.0 

(r+-r0>/rb 
3.0 

FIG. 4. Plots of the normalized betatron oscillation period 2-ir/ojgS [Eq. 
(30)] vs normalized betatron oscillation amplitude (r^-r0)/^ for the same 
choices of system parameters as in Figs. 2(a) and 2(b), respectively. 

B. Nonlinear resonances 

Under the influence of the perturbation H{, a variety of 
nonlinear resonances occur due to the coupling of the (slow) 
betatron oscillations and the (fast) oscillations in the focus- 
ing parameter KZ(S) and associated modulation in the beam 
envelope rb(s). The locations and widths of the nonlinear 
resonances are analyzed in this section. 

Making use of the action-angle variables ((f>,J) dis- 
cussed in Sec. Ill A, we express the total Hamiltonian H 
formally as 

H(4>J,Pe,s) = H0(J,Pe) + Hl(<p,J,s). (34);: 

Expanding #, in a Fourier series representation in <f> and s, 
we obtain 

so m 

Hi =  2     2   anl(J)sxp[i{n<f>+2lTrs/S)l, (35) 

where the Fourier coefficients anl(J) are given by 

1    [S     civ 
G"'(/)=2lrsJo^Jo   WM'*-*) 

Xexp[-j(n^ + 2/irj/5)]. (36) 

A nonlinear resonance occurs when the resonance condition 

d<f>    2lir 2/TT 
n17+~ ~ n <Dß('J'Pe) + ~J~=° (37) 

is satisfied. Of particular interest in the present analysis are 
the primary nonlinear resonances with l=-\ that satisfy the 
resonance condition 
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n^ßUn,Pg)=~, (3g) 

where Jn determines the location of the primary resonance of 
order n in the phase space (0,7), i.e., at J = J 

To estimate the width of the /zth-order primary reso- 
nance, we retain a single resonance term in the Fourier series 
in Eq. (20) and express the Hamiltonian approximately as 

H{^,J,Pe,s) 

sHoU^e) + 2\ani_,{J)\cos{n4>-2^IS^a     ,) n, — l / * 

(39) 
Here, an,_,(/) is the argument of the complex Fourier co- 
efficiem Cfli.,. and use has been made of a , 
-K_,|exp(Ia ,)=<,,. Expanding H0(J) about' J 
-Jn, the Hamiltonian in Eq. (39) can be approximated by 

md>,J,Ps,s)*H0(Jn,P8) + IO/AjiitptKj_jn) 

1   d 
+ 21JUß{J,Pe)\J^{J-Jn)2 

+ 2K.-i(J'J|cos(n0-2-7rj/5 

+ *i,.-i). (40) 

Performing a canonical  transformation with  <f>-2Trs/nS 

+ 2la/..-i(^n)|cos(n0) + const., (41) 

where £7 = 7-/ and use has been made of the resonance 
condition in Eq. (38). It follows from Eq. (41) that the full 
width of the nth-order primary resonance is given by 

(42) 
AJ„ = 

{d(optdJ)J = J 

in the action variable, or equivalent^ by 

Chen, Pakter, and Davidson 

(a) P, = 0 

6    - 

n   4 

MS Ay. 
P-J-J. 

(43) 

in the radial coordinate. 

The procedure for evaluating the resonance width A/  in 
Eq. (42) is the following. First, to determine (<?<vW y 

and associated quantities such as Jn, Eq. (38) is solved n^ 
mencally m terms of outer turning point rn = r(J   d> = 0) 
*r0   using Newton's method. This gives the valueVof r 
J-n • H0{rn,PB), {du>pldr)r=,n, etc. Using the chain rule for 

different.«™,  this  procedure also allows the numerical 
evaluation of (*«„/*/),-V Second, to determine the Fou- 
ncr  coefficent  an._l(/J,   the   Hamiltonian   perturbation 

mesh ii, ,;    1S COmPUted "««nerically on a two-dimensional 

and,  ana S T*** * and *' Whcre * ranSes fr°™ 0 to 2,r 
^anSfZ

SeS  T °t0SA two-di™™°nal discrete Fourier 
^ansfom, „ then used to evaluate the Fourier coefficient 
*.-iUnJ, instead of the continuous representation in Eq. 

'■00 1.25 1.50 175 
rJTw 

2.00 

n   4 

2 

(b) P<j = 0.7eT 

1.00 1.25 1.50 1.75 2.00 

FIG. 5. Plots of the locations and full widths of the primary resonances of 
order n -3-6 obtained for the choices of system parameters corresponding 
to: (a) 7=0.2. <r„ = 80° (5^= 8.712), cr=26.2° (5iC/.r-3.8). «,,0 and 
/>,= <>; and (b) 7=0.2. <r„ = 80» (S2^= 8.712). <r=262' (SKUT=3 8> 
«t-0. and P,/er=0.1. The solid lines correspond to the analytical esti- 
mates given in Eq (42). whereas the dotted lines are obtained by integral 
Eq. (17) numerically. -      " 

(36). Finally, the resonance width AJ„ (or correspondina 
resonance width Ar„ in radial coordinate r) is obtained by 
substituting the values of <*„._,(/„) and {duBldJ)._. mto 
Eq. (42). 

Figure 5 shows plots of the locations and full widths of 
the primary resonances of order n = 3-6 obtained for the >- 
choices of system parameters corresponding to: (a) 77=0 2 '■? 

^=80°   (S2KZ = 8.712),   o-=26.2° (SK/eT=3.S),  <ob = o[ 
and   Pg=0;   and   (b)   77=0.2,   o-u = 80°   (52^ = 8 712)' 
cr-26.2° (SK/eT=3.$), ^ = 0, and Pe/eT=0.7.lJn Fig 5' 
the solid lines correspond to the analytical estimates given in 
Eq. 43), whereas the dotted lines are obtained by integrating 
Eq. (17) numerically. For the lower-order primary nonlinea^ 
resonances with n = 3, 4, and 5, the analytical estimates are 
in good agreement with the numerical results. For the sixth- 
order primary nonlinear resonance, however, we cannot ob- 
tain an analytical estimate of its width because numerical 
noise becomes sizable in computing the Fourier amplitude 

The nonlinear resonances for the cases presented-in Fi°s 
5(a) and 5(b) are further illustrated with the Poincare 
surface-of-section plots21 shown in Figs. 6(a) and 6(b) re- 
spectively. Here, the Poincare surface-of-section plots'are 
generated by plotting the successive intersections of 15 test- 
partice trajectories, obtained from numerical integration of 
Eq. (17), with the Dhase snace (r P \  -,, ,v,, ,„„°., „,:„... 
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r/rL 

FIG. 6. Poincare" surface-of-section plots in the phase space (r P ) for 15 
test panicle trajectories moving through the periodic step-func'tio'n lattice 
from slS = 0 to 1000 under the influence of the space-charge forces in a KV 
beam equilibrium. Here, the choices of systems parameters in (a) and (b) are 
the same as in Figs. 5(a) and 5(b), respectively. 

s-0,S,2S 10005. Evidenüy, the locations and widths 
of the primary nonlinear resonances shown in Fig. 6 are in 
agreement with those shown in Fig. 5. 

IV. PHASE SPACE STRUCTURE 

In this section, use is made of the Poincare surface-of- 
section method to examine the phase-space structure de- 
scribed by the Hamiltonian H in Eq. (18). Of particular in- 
terest are the nonlinear resonances and chaotic particle 
motion of test panicles outside the boundary of the phase 
space occupied by the interior beam particles making up the 
rigid-rotor Vlasov equilibrium distribution /0 (Refs. 23 and 
24) in Eq. (Al). The phase-space boundary of the rigid-rotor 
Vlasov equilibrium is a closed surface in the three- 
dimensional phase space (r,Pr,Pg) at any given axial dis- 
tance s. A projection of such a boundary onto the phase 
space (r,Pg) can be determined from 

[W, + a>bPB- Hl-o>l)eT]P _0 = 0, (44) 

where PR, Pe, and HL are defined in Eqs. (A4), (A5), and 
(A7), respectively. Substituting Eqs. (A2)-(A5) and (A7) 
into Eq. (44) yields 

12 Perb{s) 

eTr 
■ + (i), 

rb(s) = 0-*>2) 1- 
1M (45) 

Figure 7 shows plots of the normalized canonical angular 
momentum Pe/eT versus normalized radius rlrb described 
by Eq. (45) for the following choices of system parameters- 

r/ru 

r/n 

FIG. 7. Plots of the normalized canonical angular momentum P,/ET VS 

normalized radius r/rb calculated from Eq. (45) for the choices of system 
parameters: (a) o)4 = 0 and (b) <ud = 0.9. 

(a) o>b = Q and (b) wfe = 0.9. All of the interior beam particles 
in the equilibrium distribution are enclosed by such a loop 
shown in Fig. 7. 

The phase-space structure for test particle motion is il- 
lustrated by the Poincare surface-of-section plots shown in 
Figs. 8-10 for a wide range of system parameters. The Poin- 
care surface-of-section plots in Figs. 8-10 are generated by 
plotting the successive intersections of test-particle trajecto- 
ries, obtained from numerical integration of Eq. (17), with 
the phase space (r,Pr) at the lattice points s = 0.5S, 1.5S, 
2.55, etc. ,i; 

Figure 8 shows Poincare surface-of-section plots in the*" 
phase space (r,Pr) for 15 test particle trajectories moving 
through the periodic step-function lattice from s/S=0.5 to 
1000.5 under the influence of the space-charge forces in a 
KV beam equilibrium. In Fig. 8, the choices of system pa- 
rameters correspond to: (a) cru = 80°, ?7=0.2, cr= 11.0° 
(SA7er=10), tob=0, and Pe/eT=Q; and (b) o-„ = 80°, 
77=0.2, cr=11.0° (SK/eT=\0), cob = Q, and Pe/eT=0A5. 
For both cases shown in Fig. 8, one test particle is initialized 
at the phase-space boundary of the KV equilibrium distribu- 
tion, and the corresponding test-particle orbit is represented 
in Fig. 8(a) by the inner curved arc approaching rlrb= 1, and 
in Fig. 8(b) by the innermost contour extending from rlrb 

= 0.54 to 0.84. The remaining test particles are initialized 
outside the beam, i.e., outside the phase-space boundary of 
the KV equilibrium distribution. Some of these particles un- 
dergo chaotic motion. By comparing Fig. 8(a) with Fig. 8(b), 
it is evident that the phase-space structure changes signifi- 
cantly as the canonical angular momentum Pe is varied. In 
particular, it is interesting to observe that there are many 
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r/r. r/ru 

FIG. 8. Poincare surface-of-section plots in the phase space (/■,/%) for 15 
test particle trajectories moving through the periodic step-function lattice 
from slS = 0.5 to 1000.5 under the influence of the space-charge forces in a 
KV beam equilibrium. Here, the choices of system parameters correspond 
to: (a) o-„ = 80°. 77=0.2. cr=11.0' (5tf/Er=10). <^ = 0, and PtUT=Q- 
and (b) <r„ = 80°, 77=0.2, o-=11.0° (SK/eT= 10), u>t=0, and P.lel 
= 0.45. 

nonlinear resonances and chaotic regions in the vicinity of 
the phase-space boundary of the KV equilibrium distribution 
for the case shown in Fig. 8(a) (Pa=0), whereas the non- 
linear resonances and chaotic regions are well separated, by a 
dense set of invariant curves, i.e., KAM surfaces,21 from the 
phase-space boundary of the KV equilibrium distribution for 
the case shown in Fig. 8(b) (Pe/eT=0A5). In general, as 
the canonical angular momentum PB increases in magnitude, 
the nonlinear resonances and chaotic regions move further 
away from the phase-space boundary of the KV equilibrium 
distribution. Consequently, for a KV equilibrium, particles 
with Pg=0 are the most likely to escape from the beam 
interior to enter into chaotic regions in phase space, forming 

"a halo. 

The Poincare surface-of-section plots in Fig. 9 illustrate 
how the phase-space structure varies as the beam intensity, 
measured by the normalized parameter SK/eT, is increased. 
The choices of system parameters in Fig. 9 correspond* to 
o-„ = 80°, 77=0.2, (ob = 0, and Pe/eT=0 at the following 
normalized beam intensities: (a) SKIer=0.5 (tr=66.8°) (b) 
SA7er=1.0 (<x=56.3°). (c) SK/eT=3.0 (<r=31.5°), and (d) 
SKIcT=l.Q (0-= 15.4°). For the low-intensity case shown in 
Fig. 9(a), the phase space is almost entirely regular. For the 
moderate-intensity cases shown in Figs. 9(b) and 9(c), non- 
linear resonances appear. The most pronounced among these 
resonances is the third-order primary nonlinear resonance. 
As the beam  intensity is  further inerenscr!.  th" wi'rWKc  „.- 

2.0 

-2.0 

r/ru 

r/n 

(d) SK/ET = 7.0 

0.0 0.5 1.0 1.5 
r/ru 

FIG. 9. Poincare surface-of-section plots in the phase space (r,Pr) for 15 
test panicle trajectories moving through the periodic step-function lattice 
from s/S = 0.5 to 1000.5 under the influence of the space-charge forces in a 
KV beam equilibrium at several beam intensities. Here, the choices of sys- 
tems parameters correspond to o"„ = 80°, 77=0.2, <u„ = 0, and P,/eT= 0 at 
the following normalized beam intensities: (a) SK/eT=0.5 (<r=66.8°), (b) 
SKUT=l.O (o^SÖ^"). (c) SK/eT=3.0 (cr=31.5°), and (d) SK/cT=7.0 
(<r=15.4°). 

higher-order nonlinear resonances increase, which is evident 
from Fig. 9(d). In general, the nonlinear resonances and cha- 
otic regions increase in size as the beam intensity is in- 
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r/ru 

r/rL 

Finally, we discuss the implications of the rich nonlinear 
resonance structure and chaotic panicle motion for beam 
halo formation. Based on a comprehensive study of the 
phase-space structure for test-particle motion for vacuum 
phase advance o-„ = 80°, we have shown that the phase-space 
structure is almost entirely regular at low beam intensity 
(phase advance cr>70°, say), whereas at moderate beam in- 
tensity (30°:£cr£70°), nonlinear resonances appear, the most 
pronounced of which is the third-order primary nonlinear 
resonance.   As   the  beam   intensity   is   further  increased 
(cr£30°), the widths of the higher-order nonlinear reso- 
nances increase, and the chaotic region of phase space in- 
creases in size. Furthermore, the many chaotic layers associ- 
ated with the separatrices of the primary and secondary 
nonlinear resonances are still divided by the remaining in- 
variant KAM surfaces, even at very high beam intensities. 
Therefore, in the context of the present test-particle analysis, 
chaotic layers do not form an extended chaotic region in 
phase space. In actual beam propagation experiments, how- 
ever, it is expected that sufficient beam mismatch or pertur- 
bations about the periodically focused beam equilibrium can 
cause the particles to cross the invariant surfaces and form a 
halo. 

2.0 

„7.0 
a, 

-1.0 

-2.0 

(c) P& = -0.9Ej. 

0.0 0.5 1.0 1.5 
r/i 

FIG. 10. Poincare surface-of-section plots in the phase space (r,Pr) for 15 
test particle trajectories moving through the periodic step-function lattice 
from s/S = 0.5 to 10005 under the influence of the space-charge forces in a 
rigid-rotor Vlasov equilibrium. Here, the choices of system parameters cor- 
respond to: or, = 80°. 77=0.2, (7=11.0° (SK/eT=10), <u4 = 0.9. and (a) 
P9/ET=0, (b) P,/eT=-0AS. and (c) 7>,/er=-0.9. 

The influence of beam rotation ((ob£Q) on the phase- 
space structure is illustrated by the Poincare surface-of- 
.section plots shown in Fig. 10. The choices of system 
parameters in Fig. 10 correspond to: cru = 80°, 77=02 
or=11.0° (SK/eT= 10), «»4 = 0.9, and (a) PBleT=0, (b) 
PgleT=- -0.45, and (c) P$/eT=-0.9. For all three cases 
-shown in Fig. 10, the innermost orbit corresponds to a test 
particle that is initialized at the phase space boundary of the 
rigid-rotor Vlasov equilibrium. By comparing Fig. 10 with 
Fig. 8 for the KV distribution where the beam rotation is 
absent (wb=Q), we find that the presence of beam rotation 
tends to reduce the degree of chaotic behavior in phase 

■space. This is evident when we compare Fig. 10(c) with Fi°. 
8(a). For both cases shown in Fig. 10(c) and Fig. 8(a), the 
value of Pg is chosen such that the boundary of the equilib- 
rium distribution extends to r=rb [see Fig. 7 or Eq. (45)1 

V. CONCLUSIONS 

Test particle motion has been analyzed analytically and 
numerically in the field configuration consisting of the equi- 
librium self-electric and self-magnetic fields of a thin, con- 
tinuous, intense charged-particle beam and an applied peri- 
odic focusing solenoidal magnetic field. In the present 
analysis, the self fields were determined self-consistently, as- 
suming the beam to have a rigid-rotor Vlasov equilibrium 
distribution. The canonical equations of motion for indi- 
vidual test particles were derived from a Hamiltonian. Using 
the Hamilton-Jacobi method, the betatron oscillations of test 
particles in the average self fields and applied field were 
analyzed, and the nonlinear resonances induced by periodic 
modulations in the self fields and applied field were deter»-, 
mined. Analytical estimates of the locations and widths of 
the primary nonlinear resonances were found to be in good 
agreement with Poincare surface-of-section plots obtained by 
integrating numerically the equations of motion. 

Use was made of the Poincare surface-of-section method 
to analyze the phase-space structure for test particle motion 
outside the outermost envelope of the beam over a wide 
range of system parameters. It was found that the phase- 
space structure changes significantly as the canonical angular 
momentum (Pff), beam intensity (as measured by SK/eT or 
cr/au), vacuum phase advance <ru, or beam rotation (ü)b) is 
varied. For an intense beam with KV equilibrium distribution 
(wfc = 0), it was shown that the chaotic regions approach the 
phase-space boundary of the equilibrium distribution as the 
canonical angular momentum P$ decreases in magnitude. 
Consequently, when there are perturbations about the equi- 
librium, particles with zero canonical angular momentum are 
the most likely to escape from the beam interior to enter into 
the chaotic regions, forming a halo. The phase-space struc- 
ture was also analyzed for test-particle motion under the in- 
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fluence of the self fields of an intense beam with a rigid-rotor 
Vlasov equilibrium distribution (w^O). It was found that 
the presence of beam rotation reduces the degree of chaotic 
behavior in phase space. 

For cr„< 80°, the test-particle analysis showed that at 
very high beam intensities, the chaotic layers associated the 
separatrices of nonlinear resonances are still divided by the 
remaining invariant KAM surfaces and do not overlap com- 
pletely to form an extended chaotic region. Although the 
chaotic layers do not form an extended chaotic region in the 
context of present test-particle analysis, any sizable beam 
mismatch or perturbations about the periodically-focused 
beam equilibrium may cause particles to cross the invariant 
surfaces, thereby resulting in a halo. 
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APPENDIX: RIGID-ROTOR VLASOV EQUILIBRIUM 

The transverse phase-space distribution that self- 
consistently generates the density profile in Eq. (3) is given 
by the rigid-rotor Vlasov equilibrium distribution 
function23,24 

fb{R,PR,PQ)=^4-8 ■HL + cobPe--(l-u>l)sT 

(Al) 

In Eq. (Al), wfc = const. (-\<wb<l) is a parameter mea- 
suring beam rotation relative to the Larmor frame. The nor- 
malized canonical phase-space variables (R,Q,PR,PQ) are 
related to the Larmor-frame phase-space variables 
(7,8,Pr,PB) by 

Ver- 
r, 

rb(s) 

0=0, 

l 
PR = 

Ve*r 

d_   „d 
rb{s)T/~rTsrb[s) 

Pn = P* 

through the generating function 

Fi{r,~e,PR,PQ,s) = -y- r~PR+8PQ + 
P 

rb{s) ds 

(A2) 

(A3) 

(A4) 

(A5) 

rb(s). 

(A6) 

The effective transverse Hamiltonian 7iL occurring in Eq. 
(Al) is defined for R<Jej (or equivalently for r<rb) by 

rU*)\ K r     j 
U (R.PR,Pe)=  JW*./W)-7-*ln-fr! 

T\Pi + 
Pi e 
R1 +n (A7) 

where H1_(R,0,PR,Pe,s) = Hl(r,Pr,P9ys) + dF2/ds is 
the   Hamiltonian   expressed   in   the   canonical   variables 

(R.Q.Pg.Pe)- 
For a particle moving in the beam interior (R<\[e^ or 

equivalently r<rb), it follows from the Hamilton equations 
of motion, dRlds = dHLldPR, dQlds = 3HLldPQ, 
dPRlds=-dHLldR, and dPe/ds=-dHx/dQ = 0, that 
the effective transverse energy "HL is a constant of the mo- 
tion, although the transverse Hamiltonian HL , in general, is 
not a constant of the motion. Because HL is independent of 
0, the canonical angular momentum Pe is also a constant of 
the motion, in agreement with Eqs. (16) and (A5). Therefore, 
the equilibrium distribution function f°b satisfies exactly the 
steady-state nonlinear Vlasov equation 

Vt    BH^dfb 

ds + dPR dR 

BH, 
- = 0 

dR  dPR 

with dfyds = Q. Making use of Jdx'dy'--- 
= [eTfrl(s)R]fdPRdPe- ■ •', it is readily shown that 
nb(r,s) = Jdx' dy'fb is indeed identical to the step-function 
density profile defined in Eq. (3). 
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Guiding Optical Light in Air Using 
an All-Dielectric Structure 

Yoel Fink, Daniel J. Ripin, Shanhui Fan, Chiping Chen, John D. Joannopoulos, and Edwin L. Thomas 

Abstract—The emergence of a dielectric omnidirectional mul- 
tilayer structure [l]-[4] opens new opportunities for low loss 
broad-band guiding of light in air. We demonstrate the ef- 
fectiveness of such an approach by fabricating a broad-band, 
low-loss hollow waveguide in the 10-//m region and measuring its 
transmission around a 90° bend. The generality of the solution 
enables the application of the method to many wavelengths of 
interest important in telecommunication applications as well as 
for guiding high-power lasers in medical and other fields of use. 

Index Terms— Dielectric, high-power lasers, hollow wavegu- 
sides, light conduits, low-loss broad-band transmission, medical 
lasers, multimode waveguide, omnidirectional reflectors, optical 
fibers, optical confinement, single-mode waveguide. 

I. INTRODUCTION- 

GUIDING light in dielectric fibers has had a tremendous 
impact on many aspects of our life—we rely on fiber 

optics for communications as well as for illumination and 
a host of medical applications. The typical optical fiber has 
a high index core and a low index cladding such that the 
light is confined to the core by total internal reflection. 
Two inherent drawbacks exist in this approach: the first is 
absorption. Since the light is traveling through a dense medium 
for long distances, material absorption becomes significant 
even in low loss materials. To compensate for losses the fiber 
is doped with erbium which is used to amplify the signal. 
This in turn limits the bandwidth of the fiber to that of the 
narrow erbium excitation lines. The other weakness follows 
from the confinement mechanism—total internal reflection 
which confines light only of a limited angle. Conventional 
optical fibers cannot guide light around sharp turns, which is 
especially important in optical integrated circuits. Light guided 
in a hollow waveguide lined with an omnidirectional reflecting 
film propagates primarily through air and will therefore have 
substantially lower absorption losses. In addition, the confine- 
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ment mechanism does not have angular dependence allowing 
for guiding light around sharp bends with little or no leakage. 

Most hollow waveguides fabricated to date [5]-[7], have 
internal metallic and dielectric layers. It has been shown [8] 
that the addition of dielectric layers to a metallic waveguide 
could lower the losses significantly. In contrast, our system 
is an all dielectric waveguide which confines all frequencies 
contained in its omnidirectional range. In principle this type of 
structure can have lower losses than the combined metal and 
dielectric structure since the waves do not interact with a lossy 
metallic layer. Although our proof of concept demonstration 
involves a large diameter multimode waveguide, one can 
fabricate a much smaller tube that could in principle be made 
to support a single mode. 

II. PRINCIPLE OF OPERATION 

A schematic of the hollow tube is presented in Fig. 1, 
as well as the index of refraction profile. In a realistic 
light guiding scenario involving many bends there exist no 
global symmetries and thus one cannot distinguish between 
independent TE and TM modes. Locally one can define a plane 
of incidence with respect to the normal to the film surface and 
the incident wave vector. Light entering into such a tube will 
invariably hit the walls many times and explore a wide range 
of angle of incidence of both polarizations with respect to any 
local plane of incidence. Since the air region is bounded by 
a structure that has a gap which encompasses all angles and 
polarizations the wave will be reflected back into the tube and 
will propagate along the hollow core as long as kz ^ 0. 

III. SAMPLE PREPARATION PROCEDURE 

A Drummond 1.92 mm o.d. silica glass capillary tube was 
cleaned in concentrated sulfuric acid. The first tellurium layer 
was thermally evaporated using a LADD 30000 evaporator 
fitted with a Sycon Instruments STM100 film thickness moni- 
tor. The capillary tube was axially rotated to ensure uniformity 
during coating. The first polymer layer was deposited by dip 
coating the capillary tube in a solution of 5.7 g polystyrene 
DOW 615APR in 90 g toluene. The next layer is tellurium 
deposited in the same method outlined above. The subsequent 
polymer layers are made of polyurethane diluted in mineral 
spirits. The device has a total of nine layers, five Te and four 
polymer and a total length of 10 cm. The layer thickness 
are approximately 0.8 ßm for the tellurium layer (refractive 
index 4.6) and 1.6 /im for the polystyrene layer (refractive 
index 1.59). An optimal design will vary the layer thickness 
according to the zeros of the Bessel functions. Performance as 
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Fig. 1. Cross section of the hollow waveguide showing the hollow core and 
the dielectric films, also shown is the index of refraction profile in the radial 
direction. 
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Fig. 2. (a) Measured (dashed) and calculated (dots) normal incidence re- 
flectance for hollow waveguide in the radial direction, (b) Calculated grazing 
incidence reflectance for the TM mode. 

well as the layer thickness were monitored by IR spectroscopy. 
The reflectivity of the deposited structure was measured in 
the radial direction using a Nicolet FTIR microscope and a 
variable size aperture, to ensure domination by radial reflec- 
tion. The coated capillary tube was then inserted in a heat 
shrink tube which was filled with silicone rubber. Finally, the 
glass tube was dissolved using concentrated hydrofluoric acid 

. (48%). The resulting hollow tube assembly is thus lined with 
the mirror coating and is both flexible and mechanically stable. 

IV. RESULTS AND DISCUSSION 

- The reflectance measurements and simulations are shown 
for normal incidence in Fig. 2(a). The measured gap width is 
smaller than predicted, probably due to microdefects in the Te 

MCT/A detector FTIR source 
FTIR source 

10cm 

MCT/A detector 

Fig. 3.   Hollow tube transmission measurement setup on the spectrophotome- 
ter (FTIR). 
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Fig. 4.   Transmission through the hollow waveguide around a 90° bend as 
a function of wavelength. 

layers. In addition there are absorption (8 ^m) peaks due to the 
Polyurethane. Fig. 2(b) is the calculation of the reflectance at 
grazing incidence for the TM mode. Since the omnidirectional 
frequency range is defined from above (high frequency edge) 
by the normal incidence gap edge (arrow) and from below 
by the grazing incidence gap edge (arrow) the extent of the 
gap is completely defined by these two data points. The extent 
of the omnidirectional range for the parameters used in this 
experiment is approximately 40% [1], [2]. 

The transmission through the tube was measured using a 
Nicolet Magna 860 FTIR bench with an MCT/A detector. The^ 
transmission was measured around a 90° bend at a radius of 
curvature of approximately 1 cm, which was compared, to 
the straight tube transmission to correct for entrance and exit 
effects. A schematic of the measurement layout is presented 
in Fig. 3. 

The results shown in Fig. 4 indicate a high transmission 
around the 90° bend for a spectral band that corresponds to 
the omnidirectional gap. The relatively high noise level in the 
measurement is due to the lack of purge. This measurement 
provides a proof-of-concept indicating the low loss characteris- 
tics and guiding abilities of the all dielectric hollow waveguide. 
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An investigation is made of the effects of nongyrotropic equilibrium distributions in the phase angle 
of pL on the stability properties of a relativistic electron beam propagating along and gyrating about 
an applied uniform magnetic field. Perturbations are assumed to vary spatially only in the direction 
of the applied magnetic field, so that generated electromagnetic and longitudinal electric fields 
propagate parallel to the applied field. The two equilibrium distributions considered are the 
time-dependent distribution/0(px ,p.,£) with £=<f>-ßct/y and the axial-dependent distribution 
foiPi'Pi'D with £=<p-mQ.cz/p.. A Vlasov-Maxwell analysis leads to integral equations 
relating the field Fourier components. These equations reduce to algebraic equations when no spread 
in y is present in the time-dependent equilibrium distribution and when no spread in pz is present 
in the axial-dependent distribution. Numerical computations for these special cases show that a rich 
variety of stability properties are obtained by changing the distributions in £ and f. © 1998 
American Institute of Physics. [S1070-664X(98)03309-6] 

I. INTRODUCTION 

During the past two decades, extensive studies have 
been made of the stability properties of a relativistic electron 
beam propagating along an applied uniform magnetic field 

B0ez.
l~u If the beam possesses a population inversion asso- 

ciated with the component of momentum perpendicular to 
the field (p±), then this system may be subject to the whis- 
tler and cyclotron-resonance maser instabilities, which ini- 
tiate the process of converting electron-beam kinetic energy 
into coherent electromagnetic radiation. The cyclotron- 
resonance maser instability provides the basis for existing 
and proposed electronic amplifiers and oscillators such as the 
gyrotron and the cyclotron-autoresonance maser.13"24 With 
the inclusion of thermal background electrons in addition to 
the beam, this instability is of interest in such problems in 
space- and astrophysics25"30 as the generation of auroral ki- 
lometric and Jovian decametric radiation. 

In this paper, we carry out a stability analysis of this 
system (exclusive of an ambient thermal background) using 
Vlasov-Maxwell theory. We make the assumption that the 
spatial variation of all quantities is in the z-direction only; 
however, the electron beam is not assumed to be gyrotropic 
in the phase angle <f> of the component of the particle mo- 
mentum normal to the z-axis. Most previous analyses of this 
system assume that the equilibrium distribution is of the 
form fo(Pi ,pz), i.e., that the beam is gyrotropic. Analyses 
of the nongyrotropic case are limited in number. Using the 
eikonal approximation, Fruchtman and Friedland have con- 
sidered the case of a stationary amplifier with a nongyrotro- 
pic equilibrium distribution of the form fo(pi,plf£) 
=/>±1,50>±-/>±o)<50>z-Pzo)£(£). where t=4>-m£lczlpz 

and Hc is the nonrelativistic cyclotron frequency. Both a 

"Permanent address: Department of Physics. Clark University, Worcester, 
Massachusetts 01610. 

fluid model7 and a kinetic model8 were employed. 
Fruchtman9 has extended the kinetic model (without employ- 
ing the eikonal approximation) to include a thermal spread in 
the transverse momentum. Kho et a/.,10 using the same equi- 
librium distribution, have dropped the assumption of a sta- 
tionary amplifier but assume that the left-hand polarized per- 
turbed radiation field can be ignored. Chen et al.19 consider 
TE modes for the case of a helical relativistic electron beam 
in a cylindrical waveguide. In an application to space plas- 
mas, Freund et al.21 consider the case of a diffuse electron 
beam propagating in a cold magnetized ambient plasma: The 
beam is coherent in phase, and has a thermal spread in pL 

but no spread in pz. 
Two equilibrium distributions are introduced in Sec. II. 

These are the time-dependent distribution /o(Px.Pj»£) 
where £=<p-D,ct/y and the spatial-dependent distribution 
MPL'PZ'O where C=<p-m£lcz/pz. By manipulating 
Fourier transforms of the Vlasov-Maxwell equations, we ob- 
tain sets of equations relating components of the perturbet} 
right- and left-hand polarized electromagnetic and the elec- 
trostatic fields. For the time-dependent equilibrium, these re- 
lations are given in Eqs. (26)-(28). The relations for the 
spatial-dependent equilibrium distribution appear in Eqs. 
(41)-(43). In either case, these relations are integral equa- 
tions, not algebraic equations. Equations (26)-(28) reduce 
algebraic equations only if there is no spread in p (i.e., in y) 
in the time-dependent equilibrium distribution. Moreover, 
Eqs. (41)-(43) reduce to algebraic equations only if there is 
no spread in pz in the spatial-dependent equilibrium distribu- 
tion. 

The analysis of these integral equations is the subject of 
current research and is not dealt with further in this paper. 
Instead, in the remainder of the paper, we deal with cases in 
which the integral equations reduce to algebraic equations. 

Stability properties for the case of the time-dependent 
equilibrium distribution with no spread in p are considered 

1070-664X/98/5(9)/3416/24/S15.00 3416 > 1998 American Institute of Physics 
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in Sec. III. Most generally, spreads in the pitch angle a 
= tan"'(/?1//7.) and the phase angle <p may be present. In this 
case, the integral equations (26)—(28) reduce to just three 
algebraic relations presented in Eq. (58) of Sec. Ill A. The 
corresponding exact dispersion relation, relating complex 
frequencies and complex wave numbers, is the three by three 
determinant relation in Eq. (64). In Sec. Ill B, we consider 
the more restrictive case of no spread in the pitch angle a in 
the equilibrium distribution. (Then, both px and p, have 
definite equilibrium values.) In this case, the dispersion rela- 
tion in Eq. (64) reduces to the tenth-degree polynomial rela- 
tion in Eq.  (69). Numerical computations of growth-rate 

curves (Imwvsi, real) and properties of eigenmodes of Eq. 
(58) are presented in Sec. Ill C for the case of definite equi- 
librium pL andpz and various equilibrium distributions in <f>. 

An analogous treatment is given in Sec. IV for the case 
of the  axial-dependent equilibrium distribution  with no 
spread in p.. Spreads in p± and <j> are still permitted. For 
this case, it is shown in Sec. IV A that the integral equations 
(41)-(43) reduce to the three algebraic relations in Eq. (89). 
The exact dispersion relation for the system is given by the 
three by three determinant equation (95). Although no as- 
sumption of a steady state has been made in the derivation of 
Eq. (95), the result in Eq. (95) is the same as that obtained in 
the steady-state analysis of Ref. 9. In Sec. IV B, the addi- 
tional condition that there be no equilibrium spread in pL is 
imposed. Then (as in the time-dependent case) the dispersion 
relation reduces to the tenth-degree polynomial equation 
(100) relating the complex frequency and complex wave 
number. Numerical computations of growth-rate curves and 
properties of the eigenmodes of Eq. (89) for this case are 
presented in Sec. IV C. 

A summary of our results and conclusions is presented 
in Sec. V. 

II. FORMULATION OF THE PROBLEM 

A beam consists of relativistic electrons, which propa- 
gate along and gyrate about a uniform magnetic field B0 

= 50e2. Initially the beam is in an equilibrium state in which 
temporally and spatially varying electromagnetic fields axe 
absent. The initial growth rates of these fields are obtained 
by regarding them as small perturbations on the equilibrium. 
The system is treated as one dimensional in the sense that the 
spatial variation of all variables is in the z-direction only. 
Consequently, only electromagnetic waves propagating par- 
allel or antiparallel to the uniform field B0 are included in 
this analysis. Furthermore, equilibrium self-fields are as- 
sumed to be negligibly small, so that results discussed below 
are limited to the case of a small ratio of the plasma fre- 
quency to the cyclotron frequency.6 

A. Equilibrium distributions 

A single-particle momentum p can be described by the 
components p±, pt, and <p, where <p is the phase angle (as 
shown in Fig. 1). This paper deals with two systems in which 
the phase angle 4> is not necessarily random in the equilib- 
rium distribution. One simple constant of the single-particle 
motion   involving    4>   is    £=<f>- {Clcly)t,   where   Cic 

FIG. 1. The phase angle (j> and the pitch angle a of the single particle 
momentum p. 

=eB0/mc is the nonrelativistic electron cyclotron frequency, 
— e and m are the electron charge and rest mass, respec- 
tively, c is the speed of light in vacuo, t is the time, and y 
= (l+p2/m2c2)lf2=(l+pl/m2c2+p2

z/m
2c2)m is the rela- 

tivistic mass factor of the electron. An equilibrium distribu- 
tion of the form 

/o(P.O=/o(/>j..Pi.f), 

where 

nc 

7 

(1) 

(2) 

corresponds to an equilibrium electron beam that is homoge- 
neous in the configuration space at any given time. Since the 
equilibrium distribution (1) is nonstationary in the momen- 
tum space, we refer to it as the time-dependent equilibrium 
distribution. 

Another simple constant of the single-particle motion in- 
volving <p is \>\ 

i=4>- 
n. 
y v 

- = 4>-m—z, 
i Pz 

(3) 

where v is the electron velocity. Use of f gives rise to an 
alternative equilibrium distribution 

/o(z.P)=/o(/>± •/>;.£)■ (4) 

In this case, the equilibrium distribution is constant in time at 
any given z. It is analogous to a typical laboratory situation 
where the beam is introduced into the interaction region at 
some initial z = 0 with a given distribution in <p. Then, if 
interactions with the electromagnetic field are excluded, the 
electrons move along the field lines with constant vz and 
gyrate around them with the constant relativistic cyclotron 
frequency nc/y. Consequently, the phase at any value of z 
is the phase at z = 0 plus £iczlyvz. We refer to this distri- 
bution as the axial-dependent equilibrium distribution. 

The time- and axial-dependent distributions are illus- 
trated with examples in Fig. 2. It is shown in the Appendix 
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(a) and Bi(z,:) are regarded as small perturbations governed by 
Maxwell's equations, which in the present treatment reduce 
to 

milc 

FIG. 2. Schematic diagrams of (a) the time-dependent phase distribution at 
a single instant of time for the case where f =0 for all particles, and (b) of 
the axial dependent distribution for all time for the case where f=0 for all 
particles. 

(?- 1    d2 
4TT d 

£„(«.„--, j?£li(w,.7-y1±(t.O.     (8) 

B id 
— ElAz,t)=±--BlT(z,t), 

c dt 

<?£,. 

dz 
[(z,f) = 47rp,(z,f), 

Biz(z,t) = 0. 

(9) 

(10) 

(11) 

that the two distributions in Eqs. (1) and (4) are physically 
different in the sense that neither can be transformed into the 
other by a Lorentz transformation. 

In the remainder of this section, we derive linearized 
equations relating components of the perturbed electromag- 
netic fields for each of the distributions in Eqs. (1) and (4). 

B. Perturbation analysis for the time-dependent 
equilibrium distribution 

The equilibrium distribution is of the form in Eq. (1), 

i.e., fo(.P,0=fo(.Px>Pz>0=fo(Pi>Pz><f>-toct'y)- The 
distribution is assumed to be periodic in £ and (for fixed r) in 
cf> with period 2TT. Consequently, the normalization of 
fo(P±>Pz><P~Qct/y) over momentum space is time- 
independent and is defined by 

In the above equations: 

E1±(z,t) = Elx(z,t)±iEly(z,t), 

Bl±(z,t) = Blx(z,t)±iBiy(z,t), 

Jl~(z,t)=-en0j dVi(z.P.0-j-, 

'oj P\{z,t)=-enQ\ d'pftb.p.t), 

j JpzjodpljJd<f>pxf0{p±,pz,<p--lt\ = l.  (5) p± = ymv~=pLexp(±i<{>), 

(12) 

(13) 

(14) 

(15) 

(16) 

As time progresses, the distribution evolves under per- 
turbations into 

/(z.P.O=/o(P.O+/i(z.P.O. (6) 

where/((z,p,r) is considered to be a small perturbation. To 
first order in the perturbation, the time evolution of this 
quantity is governed by the linearized Vlasov equation, 

dt 

d d 
-■jtf\(z,V,t) + vz—fx{z,v,t) 

--vxBo-VpAU.p.f) 

/        vxBj\ 
= e\ El+ ~~T"   -Vpfo(Px>Py>Pi,t), 

where n0 is the mean electron number density. The fields 
(Ei-,Bi-) and (El+,Bl+) represent right- and left-hariÄ 
circularly polarized transverse electromagnetic waves, re- 
spectively, whereas the field (£1:,i?Ir=0) describes longi- 
tudinal (electrostatic) waves. 

Because most of the integration of Eq. (7) along charac- 
teristics is standard, not all of the details will be given 
here. We remark that before integrating, it is convenient to 
express the x- and y-components of the vectors that appear in 
Eq. (7) in terms of v±, Ex+, and B1±. Moreover, 
dfoiPx'PyPz^tdPx' dfQ{px,py,pz,t)ldpy, and df^pi 

py,pz,t)/dpz     must     be     expressed in terms     of 

(7) 

where the total time derivative is along a characteristic of the 
unperturbed motion [i.e., z(t+r) = z + v.r, pz(t+r)=pz, 
pL{t+r)=pl, <f>(t+T)=<p + P.cT/y, and the variable of in- 
tegration r is in the range from -«= to 0]. The fields E^z.f) 

dfo(P± >Pz >O^Pi - <?/o(Pi ,Pz>£)ldpz. df0(p± ,pz,£)/<?£, 
because the latter partial derivatives are constant on a char- 
acteristic. Once these constant derivatives are removed from 
the integral sign; the subsequent calculation of the Fourier 
transform of /i(z,p,0 is facilitated by rewriting them in 
terms of df0{px,pz,<f>,t)ldpL, df0(pL,pz,<p,t)/dp z, 
dfo(p±,pz,<P,t)/d<p, and df0(p1,pz,<p,t)/dt. The expres- 
sion obtained for/^z.p,?) is 



Phys. Plasmas, Vol. 5, No. 9, September 1998 J. A. Davies and C. Chen        3419 

fi(z>P± >Pz><f>,t) = U{p± ,Pi,<t>,t)       drsxpl i — T E^(z + v,T,t + r) 
J-" \    7   I 

e p±nc    d Co I ftc   \ 
+ 2exp('^)7^P'^/o(Pi^^.')J   Jrrtx^i — TJE^U + V.JJ+7) 

+ V(pL,p.,4>,t)J    drexp / —T 5,_(z + UjT,f+T) 

+ V*(Pi<Pz,<f>>t)J_ dnxpl-i — T]Eu.(z + viT,t+T) 

e /?j_nc    d CO I      flc   \ 
+ 2sxP(-'<ß)yimic2j^MPi,Pt.^.t)J_jlTnxp\-i — T\El + {z + viT,t+T) 

f° I     ftc  \ d 

+ v*(Pi,Pz'(f>,t)\_jTtxp\-i — T\Bi + (z + vzT,t+T) + e—f0(px,pz,<f>,t) 

f° ep,Ctc   d fo 
Xj_JTE^z + v^t+^+yT^2-^fo(Px-Pz<^)J_JrTEu(z + vzT,t+r). (17) 

In the above equation, 

e Id        id] 
U(p1,pz,cß,t)=-exp(i(f>)^ — +-——\f0(p1,Pz,<f,,t), 

e exp(icf>) / d d      p,   d \ 

In order to relate components of the perturbed electromagnetic fields, it is necessary to obtain Fourier (or Laplace) 
transforms of /i(z,p,0 [Eq. (17)] and of Maxwell's equations (8)-(ll). The simple assumption that all variables vary as 
exp[i'(fa-wr)] leads to inconsistent results. In general, one cannot assume an infinite series of terms of the form exp{i[fe 
-(a>-nQ.c/y)t]} (where n is an integer), because y is not defined if fQ(pL ,pz,Q contains an energy spread. In the present 
analysis, we define the spatial and temporal Fourier transforms by 

1   f»       f» 
F(k,o>)= — \    dz\    dtF{z,t)exp[i{wt~kz)], >" • 

Z.T7 J _oo J -ao 

(18) 

1   f00'      f00 

F(z,t)= — \    dkl     dwF(k,a,)exp[i(kz-(ot)l 

The calculation of the Fourier transform of/,(z,p,f), denoted by /,(&,p,w), requires use of the convolution theorem 

(FlF2)(k,cü)=—J_Jk'JJw'Fl(k',w')F2(k-k',ü>-a>'). (19) 

Then, using Eqs. (17)—(19), together with the Fourier transform of the Maxwell equation (9), and assuming that orders of 
multiple integrals can be interchanged, we obtain (after a lengthy calculation) the following expression for the Fourier 
transform: 
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1     e                  f+*      ,              ,              fic 
/1(A-,p,w)= --=exp(/c/>)        dw     w-ü) -ku.  

2 v27T J-x     {[ y. 

w-to'-kv.l     d        1    d \       px      ck      c 

(o-u)'     \   dpL     pL dtp)      ymc w-w' dp. 

Xfo(P±>P:<<f><u')- (i)—(o' — kvr j1 /2 Tjfo(P± ,p:,<t>,u')\E\-(k>o>-u') 
y m~c~ dtp 

1     e [+* 
+ --^=exp(-£c/>)        da)' 

+ i 

2 V2TT 

Px      ck 

Co— to' —kv.+ 
a -1 w—io' — kv.f    d        1    d 

ü)- to'     \   (?PJ.     p± dtp 

ymc to-to' dp. MPi.Pz'fau')* 
'      7. 

~2  Pl^c 

"fm'C dtp 
TMPI<PZ<4>,«J') 

XEl+{k,o)-oi') + 
e    f + = 

yJ2irJ -=° 
[w-w'-fcuj   li—f0{p±,Pz,<t>,u') 

°Pt 

Pz^c     d 
+ [<o-io'-kvz]      yim2clJ7fo(Pj.>Pz,<f>><»') Elz(k,<o-ü)'). (20) 

The Fourier transforms of the Maxwell equations (8) and 

(10) are 

P\ 

(co2-c2k2)El±(k,to) 

foo /"as T2ir 

= 4TTien0o)\   dpL\     dp,\     dtp 
Jo        J-x      Jo yn 

Xexp(±i'(?!>)/l(*)p±,p2,^,w), (21) 

kElz(k,to) 

= 4in'en0J   dpL\^dpz\     d<pp1fl(k,p1,pz,tp,w). 

(22) 

By referring to Eq. (20), it is seen that Eqs. (21) and (22) are 
a set of integral equations (with variable of integration to') 
relating the Fourier transforms of the fields El± and Elz. 

Partial derivatives of foiPi ,pz,<P,oi') appear in the ex- 
pression for /[(Ar.p.w) in Eq. (20). These derivatives are 
removed from the integrands in Eqs. (21) and (22) by inte- 
grating by parts with respect to p±, pz, and <p, employing 
the periodicity of f0(pltpz,<p,co') in tp. The procedure is 
straightforward but requires much algebra. 

The periodicity of f0(pL ,pz,0 in £ (or tp) has not yet 
been fully employed in this analysis. Expansion of 

foiPi 'Pz'O ln a Fourier series gives 

1     += 

/o(/>±>Ps.£) = -/== 2   £„(/>± .P;)exp(<"£)>       (23) 
V 217" = - 

where 

8n(P±<Pz) = - 

1    rzi, 

•JTTTJO 

Because f0(Pi,Pz>O   is  rea1'  i*(Px >Pz) 
= i-n(P± ,PZ)- 

From Eq. (23), we see that the temporal Fourier transform of 

MP± >Pz .f)=/oO>i >Pt .0.0is given fey 

£ / *M 
MPl>Pz<<f>>°>) =   2J     gn07l.PZ)eXP('n<£)<5 \<°-n—   • 

(25) 

With the aid of Eq. (25), the integrations over to' can be 
carried out in Eqs. (21) and (22). Moreover, with the aid of 
the relation Jlrrdtpe;xp(m(p)=2ir8n0, the integrals over c6 can 
also be completed. In fact, only the « = 0,1, and — 1 terms of 
the infinite series in Eq. (25) contribute to the right-hand 
sides of Eqs. (21) and (22). In the nonrelativistic limit of 
y= 1, the integral equations in (21) and (22) reduce to alge- 
braic equations relating the Fourier transforms of the fields 
£1± and Elz because of the Dirac delta function in Eq. (25). 
However, in the general case, y=(p2lm2c2+\)xa=[(p\ 
+p\)lm2c2+\]xa. Consequently, Eqs. (21) and (22) remain, 
integral equations in the two variables pL and pz> relatirjg 
such unknown functions as El-(k,to + 2n.c/y(p1 ,pj), 
E^ik.w + Clc/yipx. ,pz)), and E1+(fc,w). 

Equations (21) and (22) can be reduced to a set of inte- 
gral equations in the single variable p by replacing the vari- 
ables px and pz with the new variables p and a, where a 
= tan~l(px/pz) is the pitch angle shown in Fig. 1. Setting 
dpLdpz=pdpda in the equations obtained from Eqs. (21) 
and (22), we obtain the following set of simultaneous inte- 
gral equations relating the Fourier transforms of the per- 
turbed fields £li: and Elz: 

D--{k,a>,nc)El-(k,u)) 

rf£/o(Pi.Pcf)exp(-inf).   (24) 

j   dpp2X-+(k,o),D.c,p)El + \ k,a- 

+ j <fp/?2x_.(fc,«,nc,/?)£,.! k,w- 

2ÜA 

Tip)) 

y{p) 
(26) 
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D++(k,co,flc)El + (k,co) 

r 
Jo 

= l   dpp2x+-{k,(o,Clc,p)El-.\k,co + 

k,o) + +     dpp2x+l(k,o},fl.c,p)Eiz 
Jo 

Dzz(k,co)Elz(k,w) 

= |   dpp2x: + (k,(o,Q.c,p)ElJk,co- 

W) 

Tip)}' 
(27) 

Tip) 

+ ^dpp2xz^^^c,p)El-l[k,co+~j.    (28) 

In the above integral equations: 

D„-(k,co,nc) 

X 

-c2k2- -2~nJJo dp]o dapg0(p,a) 

Ipsina I       kpcosa\l       kpcosa    ftc\
_1 

T     \ yn    )\ ym yx 

P3sin3g,..2     .2,-2 kpcosa    ftc 

'm'C ' ' \ ym y 

D + + (k,w,nc) = D--(k,co,-Clc), 

-J-J-TC^-CV)!»- .   (29) 

(30) 

£«(*,*>)= l-V^rflJ |   dp\"dap2g0(p,a) 
Jo      Jo 

kpcosa] ~2 2       2 p cos a sin« 
X ll- 

y   \        ym'c ^2.2 ym 

(31) 

x_+(fc,<u,ftc,p)=- 

sin3 a 

f-lA 

ftjjwj   dap2g2(p,a) 

2ftr 

m c 

ft. 
X| w2-2w c2k2 

y 

kpcosa    ftc 
X   io- 

ym 

X+-ik,<o,CLc,p) = X*+(k*,"*,-nc,p), 

(32) 

(33) 

V2WI2, j X_J(fc,a>,ftc,/>)=-V2"rrwftp I   dapgx{p,a) 

sin2or / copcosa 
■ck 

ymc\    ymc 

kpcosa    ftc 

ym y 
X   a> (34) 

X+z(k,Lo,nc,p)=X*M*,"< 

x.-(k,w,nc,p) 

-n:U+ — 

sin2 a 

-ft. 

dapg.\{p,a) 

(35) 

y mc 

pcosa I        ftc 
    wH  
ymc  \ y 

■ck 

ft 

/cpcosaA 

ym 

=i(w+^)-V-:(^.^+^,ftc,p|, (36) 

^+(jfc.«,ne.p)=^*_(fc*,w*.-ne,p). (37) 

Here ft =(4"n7r0e
2/m)I/2 is the nonrelativistic plasma fre- 

quency. 
Notice that the structure of Eqs. (26)-(28) is a coupling 

of £,_(*,«'), Eu(k,(o'-[Cle/y{p)]), and El + {k,to' 
- [2ft,. /y(,p)]) over the range of p for which the equilib- 
rium distribution is nonvanishing. 

C. Perturbation analysis for the axial-dependent 
equilibrium distribution 

The analysis for the case of the equilibrium distribution 
in Eq. (4), i.e., /o(z,p)=/o(P± ./>*.£) =/o(Pi ./>*.<£ 
-m0.czlpz) is similar to the analysis of the previous section. 
The distribution is assumed periodic in £ and (for fixed z) in 
4> with period 2ir. Consequently, the normalization of 
fo(P± tPz<(P~m^cz^Pi) over momentum space is indepen- 
dent of z. It is defined to be 

J-JiPzJ   dp±Jo  d<t>PLf°[PL'p',<t'~m~irz)=l- 
(38) 

The linearized Vlasov equation for the system is the 
same as Eq. (7) except that the factor f0(px ,py ,pz ,f) on the 
right-hand side is to be replaced vj\\hfQ(z,px,py,pz)- Max- 
well's equations (8)—(16) are applicable without modifica- 
tion. The derivation of integral equations relating the Fourier 
transforms of the perturbed fields involves a great deal of 
algebra but closely parallels that given in Sec. IIB for the 
spatially homogeneous equilibrium distribution. Conse- 
quently, we omit the details of the derivation. We remark 
that in the present derivation z plays much the same role as t 
in the previous derivation and k much the same role as to. 
Periodicity of f0(p± ,PZ,D in C giv« rise to the Fourier 
series expansion 

1     +" 
fo(P±*PfO=-E= 2   MpjL.p^expCinf).        (39) 

V27rn = -» 

where 

KiPL ,Pt)= 4= \2"d(f0(px ,Pl,C)cxp(-rin0.   (40) 
V2.irJo 

For the z-dependent equilibrium distribution fo(p±_ ,PZ < 4> 
— mflcz/pz), the integral equations are 
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Dl_(Jfc.ai,nc)£,_(*,£ü) 

f> /       2mCle 
dp.7]- + (k,a),[lc,p:)El + \k+ ,w 

J-= \ Pz 

fx                                       I      mCle     \ 
+        dpzT].z(k,a),flc,pz)Eiz\k+ ,o>l, (41) 

2mClc 

Pz 

D'+ + (k,o>,nc)El + (k,<») 

= |    dp.7j+.{k,a,Cle,P:)Ei-[k- 

+ J   Jptv^k,<o.ne,pz)El^k-—,<oj,    (42) 

D:.(jfc,w)£,j(jfc,ft)) 

+ I     dpzVz+(k,co,Clc,pz)EiJk+ ,wl.   (43) 

In the above integral equations: 

DL_(ifc,(tf,nc) 

,      , ,    ^/27r    , f« f- P_i 

r 

x 

r2 

ym/\        ym      y 

(u-CT)    Oi  
m_c ym      y 

D; + (it,üJ,flc) = Dl_(it,a»,-nc), 

D^(*,<u) = 1 - yl2vCl2pj_jdpsj   dpLpLh0{px ,pz 

(44) 

(45) 

y m c j \        ym 

kpz" ~2 

(46) 

77_ + (/:,w>nc,p.) 

J2TT 
np     dPi.h2{pL ,pz)-j—^ 

'Jo y m~ y m'c 

-u2 + c2k 
I       2mClc 

* +  
\ Pz 

w- 
fcp,   n, 

ym      y 

17+.(fc,w,ne,p4)=i7!+(**,ft)*,-nc,p.), 

(47) 

(48) 

.(A-,w,nc,/7:)=V2^P.2w     dp1hl(pL,p.)       , , 
^   Jo yJ/7j-c- 

X(-a>p.+£ymc")  w  
ym      y 

V+t(k,u>,ne,pz)=7)lt[k*,to*,-Cle,p:), 

(49) 

(50) 

77-_ (k, ci),Clc ,pz) = 
p{x Pi 

dPih-dPx.Pz)— Jc k Jo 

kp.    c2kl      mClc 

— +—  *  ym      (i) \ p. 

ymc- 

X   w- 
kPz 

ym 

-2 

(51) 

Vz+(k,ü>,nc,p.)=vt-(k*,<»*-Clc,pz). (52) 

The structure of Eqs. (41)-(43) is the coupling of 
£,_(£',<o) to Elz{k'+m0.clpz,o>) and £J + (£' + 2mnc/ 
p,,oi) over the range of pz for which the equilibrium distri- 
bution is nonvanishing. 

D. Some special cases 

In general Eqs. (26)-(28) [Eqs. (41)-(43)] couple the 
right- and left-hand circularly polarized radiation fields Ex ~ 
and the longitudinal, relativistic, plasma wave field Eiz. 
However, if g~i(px ,pz) = g~\(.P,<*) = 0[h~i(P± ,pz) = 0], 
then Eq. (28) decouples from Eqs. (26) and (27) [Eq. (43) 
decouples from Eqs. (41) and (42)] to yield the dispersion 
relation for longitudinal plasma oscillations. The radia- 
tion fields remain coupled. From Eq. (24) [Eq. (40)], it is 
seen that this situation occurs whenever the Fourier series 
tot f0(pL,pz,4>-üctly) [fo(PL>Pz><t>- mücz/pz)] con- 
tains neither cosc£- nor sin ^-components. 

If g±2(Pi.Pi) = g£2(P-«) = 0 [/i*2(Pi.P:) = 0] then* 
all three fields (£!± and £u) remain coupled, however, the 
radiation fields couple only through the electrostatic oscilla- 
tions and not directly with each other. From Eq. (24) 
[Eq. (40)], it is seen that this situation occurs whenever the 
Fourier series for /0(p± ,pt,4>~ (Clcly)t) [fa(Pi.,Pz,<i> 
-(mfic/pz)z)3 contains neither cos2<£- nor sub- 
components. 

Finally, if g±\(pL ,pz) = 8±2(P± ,Pt) = 0 [h~i(p±,pz) 
= hzi(P± ,Pt) = 0], then Eqs. (26)-(28) [Eqs. (41)-(43)] de- 
couple completely and reduce to the dispersion relations 

Z>__(*,w,ßc) = 0,- (53) 

D + + (Jfc,w,fic) = 0, (54) 

DK(*,ci>) = 0. (55) 

These dispersion relations are identical to those for the case 
in which the distribution in <f> is uniformly random. Refer- 
ring   to   Eqs.   (24)   and   (40),   we   see   that  g0(p±,Pz) 
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= (Uj2ir)fl1'd€f0(pl,p.,8 and h0(pL ,p.)= {l/JTir) 
X-Jo'dvfoiPi •Pz<V)- F°r tne case of a uniformly random 
distribution in <p [i.£-,fo(p± ■£;)]. both of these expressions 
reduce to g0(/>± >P:) = ho(Pi >P:)= ^rfoiPi <PZ)- For this 
case either Eqs. (26) and (27) or Eqs. (41) and (42) reduce to 
the dispersion relations for the cyclotron resonance maser 
with random phase obtained by Chu and Hirshfield.1 

The analysis of Eqs. (26)-(28) [(41)-(43)] as integral 
equations is the subject of present research and results of the 
analysis will be presented in a subsequent paper. However, 
many important special cases exist in which the equations 
reduce to algebraic equations from which dispersion rela- 
tions can be derived. Some of these cases will be analyzed in 
the remainder of this paper. 

III. DISPERSION CHARACTERISTICS FOR THE TIME- 
DEPENDENT EQUILIBRIUM DISTRIBUTION 
WITHOUT ENERGY SPREAD 

In the previous section, it was noted that, for a uniformly 
random equilibrium distribution in <p, Eqs. (26)-(28) de- 
couple and reduce to the well known dispersion relations in 
Eqs. (53)-(55). In this section it is shown that as long as 
there is no energy spread in the equilibrium distribution in 
Eq. (1), the integral equations (26)-(28) reduce to algebraic 
relations between the Fourier components of the fields even 
when the distributions are not uniform in <f>. The dispersion 
characteristics are illustrated with numerical examples for 
the time-dependent equilibrium distribution with no spread 
in p± or pz. 

A. Analysis 

For a beam with a definite energy y(p0)mc2=y0mc2 

= (plc2 + m2cA)m the most general distribution in Eq. (1) is 
of the form 

1 
f0(p,a,t;)=-?8(p-p0)f0{pQ,a,(;), (56) 

where £= <p-Clct/y. From Eq. (24), the coefficients in the 
Fourier series expansion of this distribution are 

1 
gn(P'a)= ZIs(P~Po)8n(Po<°t), 

1    (2v 

8n(Po<a)=-E=\    d£/o(Po.a.f)exp(-/nf). 
V2irJo 

(57) 

Substitute Eq. (57) into Eqs. (29)-(37) and then substitute 
the results into the integral equations (26)-(28). After replac- 
ing Co with co — 2fic/y0 in Eq. (27) and with cj — flc/y0 in 
Eq. (28), we obtain three homogeneous algebraic equations 
relating just three field components. Expressed in matrix n07 
tation, these equations are 

DE=0, 

where 

(58) 

/ £>__(£,a>,nc,/?0) 

2H 

D= 

-x-+(k,oj,nc,p0) 

2Ü, 
-X+-[k,(o-—-^,nc,p0\    D + Jk,w C-,Clc,Po)    -X+z\k> 

-xz-\k,(o-—,ac,p0 
-      , Ac 

-Xt + \k,u>-—,Clc,p0 
' To 

X-t(k,to,Cle,p0)      \ 

2Ü, 

7o 

Dzz\k-<*>---f-,Po 
7o 

(59) 

and D__(£,w,ftc,p0) 

E= 

/       £,-(*.«)      \ 
/       2n 

Ei + \ k,u>  

\ 

PI*        "< 
To 

/ 

(60) 

The quantities Xij appearing in the matrix in Eq. (59) are 
obtained from the corresponding quantities in Eqs. (32)-(37) 

simply by replacing each g„(p,a) with gn{p0,a) and setting 
p=p0 and y= y0. Moreover, from Eqs. (29)-(3l), the diag- 
onal matrix elements can be expressed as 

= co2-c2k2- 
l2ir   . f» 

2      'Jo 
dag0(Po,a) 

X 
2sina /       kp0cosa\ I       kp0cosa    Clc\   ' 

ro To™ 

Posin3ar . 
-TTT(^-^2)«- 

7ow c 

Jam To 

kpücosa    fi ^ ~2 

Jo™ To 

D++(k,ü),nc,p0) = D„_(k,<D,-nc,p0), 

(61) 

(62) 
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D, :(* .0) Po) 

= 1- - V2-jrn^J   dag0(p 
sina 

To 

X 
1      p2

Qcosza\ 1 
1         2 

kp0cosa^ 
(63) 

Recall that £lp = {4Tre2nQlm)m is the nonrelativistic plasma 
frequency. 

The dispersion relation for this system is 

detD(/t,w) = 0. (64) 

From Eq. (60), it is seen that, for a given value of the wave 
number k, the frequency to is that of the right-hand polarized 
wave £j_ . The corresponding frequencies of the left-hand 
polarized wave £1 + and of the electrostatic wave £lz are 
ü)-2Cic/y0 and w-D.c/y0, respectively. We point out that 
once the assumption of one-dimensional spatial dependence 
is made and equilibrium self-fields are neglected, the disper- 
sion relation is exact for equilibrium distributions of definite 
energy. 

Again notice why, in the general case, the field compo- 
nents are related by integral equations (26)-(28) instead of 
algebraic equations. If the distribution f0(p,a,<f> 
-Clctly{p)) is nonvanishing over a continuous range of en- 
ergies y{p)mc2, then the mode £1_(Jt,w) will be coupled to 
a continuum of modes El + (k,co-2Q,c/y(p)) and Ex.{k,u> 
-nc/y(p)). 

B. Case of definite pL and pz 

As numerical examples, we consider equilibria of defi- 
nite py =posinao and p.=p0cosoo. Consequently, the factor 

fo(Po-a<Z) in E9- (56) is 

8{a-a0) 
MP0'a>€): 

sina -*(a (65) 

where <!>(£) is a function of period 2-». From Eq. (5), the 
normalization condition on <J>(£) is 

j2Jd<t><S>[<f>--ft] = j*"dt<P(Z) = l. .       (66) 

Moreover, from Eq. (57), 

1    S{a-a0) 
gn(Po,a)=-?= = s. 

2TT sma 

where 

JO 
rff*(0exp(-in0: 

(67) 

(68) 

From Eq. (66), SQ=1. Also notice that s-„=s* . 
Substituting Eq. (67) into Eqs. (61)—(63) and into Eqs. 

(29)-(31) with g„(p,a) replaced by g„(pQ,a), we can ex- 
press the dispersion relation in Eq. (64) as the following 
tenth degree polynomial equation (in either co or £) with real 
coefficients: 

_1 

2\ 2 

M — (£,ü)M+ + (£,w)Mu(£,u)=-i-£\ ß2Jsl\
2[(ßzco-£)2M + + (k,w) + (ßzcü-2ßz-k')2M__(k',io)] 

1    ü) 
2\ 2 

+ - 
4\o,2 ß]\s2\2{co2-2co-P)2Mzz^,co) 

cl 

2\ 3 I/O) 

-4KI  ß{{s2s
2_x + s_2s2){co2-2io-k2){ßzcü-2ßz-k){ßtco-k). (69);. 

In Eq. (69), co2
p = Q.2p/y0 is the relativistic plasma frequency 

squared, and wc = Vicly0 is the relativistic cyclotron fre- 
quency. Dimensionless frequencies and wave numbers are 

co = 10/CJC and k = cklioc. Dimensionless velocities are given 
by ßx = vl0/c and ß,=vt0/c, where vJ_0=p0sina0/ 
y(Po)m and v.0 = p0cosa0/y(p0)m. Finally, 

A/+ + (£,w) = ((w-2)2-P)(w-£/3z-l)2 

(on 

\{co-kßz-2){co-kßz-\) 

+ \^ßl({u-2)2-k2), (71) 

M. -(k,to) = (io2-k2)(w-lßz-l)
2--^(to-kßz) 

X(co-kß:-l)+--^ßl(w2-P),  (70) 
2 to" 

Mzz(k,to) = (co-lßz-l)2- -~(l-ß2
r). (72) 

The dispersion relation in Eq. (69), which is valid for 

both complex co and complex £, is invariant under the trans- 
formation 
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*(£) 

(a) 

*(£) 

9   +K 
Zir 

2v 
-K 

(O 

«(f) 

1 (b) 

2a 

1 

C 0/2 »       1 27(-a/2 2ir+a/2 

$(£) 

(d) 

2?r   2TT+0 

FIG. 3. Distributions in phase #(f) used in numerical examples. Plot (a) is a uniformly random (gyrotropic) distribution. Also shown-are plots of 
nongyrotropic distributions for which (b) *, = 0 and s1 = sma/a, (c) s,= -4iK and *2 = 0, and (d) * , = (2/a)exp(-io/2)sin(a/2) and j2 = (l/a)exp(-iä)sina. 

*--£*, -w* + 2. (73) 

For the case of the distribution in Eq. (65), the behavior of 
the eigenmode E in Eq. (58) under this transformation is 
easily determined by applying the transformation to the ele- 
ments of D andEinEq. (58). If either s^O or s2±0, then 

£l+(£,ü-2)        El + (-k*-u*) £f_(£,w) 

£,-(£,") E^(-k*,-w* + 2)     £*+(£,w-2)' 
(74) 

and, if s^O, 

£I+(JE,W-2)      £,+(-£*,-«*) *f-  f  .QU) 
£u(£,w-l) ^£u(-£*,-w+l)    £*(JE,«J-i)' 

£,-(*,") 
(75) £,_(-£*, -w* + 2)    £*+a,w-2); 

Eu(k,w-l)      £u(-JE*,-w*+l)      £*,(£,ü-l)' 

Equation (69) gives the ten branches of the dispersion 
relation w(£). The behavior of ülk for large \k\ is easily 

determined for each of these branches. As |£|-*°°, ü{k)lk 

-+ + 1 for two branches, u>{k)lk-> - 1 for two branches, and 
(D{k)lk-+ß, for six branches. 

Simple expressions are easily obtained for the large \k\ 

behaviors of w{k) for all ten branches if either j, or s2 

vanishes in Eq. (68). If ^, = 0 and s2±0, then [from Eqs. 
(57) and(67)]g,(p,a) = 0 and g2(p,a)±0. It follows from 

the discussion in Sec. II D that the electromagnetic compo- 
nents are coupled and the electrostatic component is un- 
coupled. [Such a situation holds for (but is not exclusive to) 
the distribution 3>(f) in Fig. 3(b), provided that the param- 
eter a + -n. For this distribution, Si = 0 and s2 = sina/a.] Two 
of the branches pertain to the uncoupled electrostatic waves 
and obey the exact dispersion relations 

>=kßz+i±-^(\-ßl)m. {76) 

For sufficiently large \fc\, the remaining eight branches obey 
the approximate dispersion relations 

^+l±^/3i(l + N)1/2, 

,=£&+l±-^/?x(l-|52|)1/2, 

O) 
to. 2\ 1/2 

-±U2+-* 1Z 

= 2±U2+^ 

(77) 

(78) 

(79) 

(80) 
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For real k, Eqs. (77) and (78) give two branches with posi- 

tive Im co provided that |J-2| < 1 - In this case, growth-rate 

curves (Im a» vs real Ic) will show two unstable branches at 

large k. 
If 5,^0 and s2 = 0, then [from Eqs. (57) and (67)] 

g-,(p,a) = 0 and gl(p,a):£0. It follows from the discussion 
in Sec. IID that the transverse electromagnetic waves are 
coupled through the longitudinal electrostatic wave. [A non- 
exclusive example of a distribution $(£) having this prop- 
erty (if K+0) is presented in Fig. 3(c). Using Eq. (68), we 
find that sl = - 4iK and s2=0 for this example.] In this case, 

the large \ic\ approximations for four of the ten branches of 
the dispersion relation are the same as those given in Eqs. 
(79) and (80) for the distribution previous case. Approxima- 
tions for the remaining six branches are 

5+(j£,w-2) 

S.{k,w) .-2 

£", + (A,w-2) 

Ei-(jfc.ü>) 
(85) 

«-*A+1±^^- 

1   co. 
W = fcjßz+l±-p—K+, 

V2 wc 

!                      „    -               i   co„ 

:                        V2 toc 

where 

Kz~ [*(£-<-*)♦ [(£-<-* 
+ 4ßl(l-ßl)\^-\sl ')] 

1/2 1/2 

(81) 

(82) 

(83) 

(84) 

[The maximum possible value of K in Fig. 3(c) is 1/2IT, and 
the corresponding maximum value of \sx\ is U-n 
= 0.6366... . It is evident from Eq. (84) that the K± are real 
and positive for all \sl\<l/\J2 = 0.7071 Consequently, 
Eqs. (81) and (83) provide for two unstable modes at large 
values of real k for the distribution in Fig 4(c).] 

A nonexclusive example of a distribution for which nei- 
ther s! nor s2 vanishes (unless the parameter a = IT or 2 vr) is 
presented in Fig. 3(d). From Eq. (68), it follows that in 
this example i1 = (2/a)exp(-/a/2)sin(a/2) and s2=(l/a) 
Xexp(—i'a)sina. If both sx and s2 are nonvanishing, deter- 
mining the large |£| behavior of the dispersion relation in Eq. 
(69) is more difficult than in the previous cases. Four of the 
large-|£| branches are given by Eqs. (79) and (80). The be- 
haviors of the remaining six branches (including all that may 
show growth at large, real k~) are determined by solving a 

cubic equation in {co-kß,- l)2. Further details will not be 
given in this paper. 

Unless s {= s2 = 0, some of the eigenmodes E in Eq. (58) 

will involve two or more of the components Ex_{k,co), 

£1 + (£,w-2), and Elz(k~,to- 1). A quantity that will be em- 

ployed to measure the relative importance of £,_(£,w) and 

£1+(£,tu-2) is the Poynting flux ratio defined by 

This quantity is the ratio of the time-averaged Poynting vec- 
tors that the field associated with each component would 
produce in the absence of the other component. A time- 
dependent interference term due to the different frequencies 
of the components is not included. 

C. Numerical examples 

In the following numerical examples, k is restricted to be 

real. Then, Im <u>0 indicates an unstable mode. If £ is re- 
stricted to be real, then the transformation in Eq. (73) is 

equivalent to inverting a plot of Re co vs k~ (real) through the 

point (£,Re a>) = (0,l)and reflecting a plot of Im w vs k 

(real) through the Im co-axis. It follows from the invariance 
of the dispersion relation in Eq. (69) under this transforma- 
tion and from Eqs. (74) and (75) that there is no loss of 
generality if numerical examples are limited to the case of 

nonnegative real k. 
Parameter values in all of the numerical examples below 

in Figs. 4-7 are co2
plco2

c = 0.05, y0-2, and ar0-0.4. In order 
to ensure that values selected for sx and s2 are realistic [i.e., 
correspond to <!>(£) 2*0 in Eq. (65)], we assume that <£(£) 
has one of the functional forms shown in Figs. 3(a)-3(d). 

Example 1: If the distribution $(£) is uniform [see Fig.. 
3(a)], then Sx=s2=0. [Such a distribution is also attained 
with a = v in Fig. 3(b), K=0 in Fig. 3(c), or a = 27r in Fig. 
3(d).] In this case, the dispersion relation in Eq. (69) de- 
couples into the three independent relations M__(£,GJ) = 0, 

M+ + (£,Cü) = 0, and Mzz(lc,w) = 0. These are, respectively, 
the dispersion relations for uncoupled right- and left-handed 
circularly polarized electromagnetic waves and for the elec- 
trostatic wave. For a given k", the frequencies of these waves 
are w, w —2, and <o— 1, respectively. Growth-rate curves 
(Im co vs k) for this limiting case are presented in Fig. 4(a) 
over the interval 0=s£=£ 10. Corresponding plots of Re a» vs 

k~ over the interval 0=s£*S 1.4 are presented in Fig. 4(b). Lefc : 
ters on these plots designate corresponding points on the two 
diagrams. The points B and C in Fig. 4(a) coincide. The 
growth-rate curve segments CDG and HI are obtained from 
M__(£,Cü) = 0, and a corresponding eigenmode E in Eq. 

(58) has only £]_(£,co) as a nonvanishing component. The 
growth-rate curve segments AB and FEJ are obtained from 

M + + (k,co) = 0. A corresponding eigenmode has only one 
nonvanishing component, namely £,+(£,<y-2). 

The plot of Re co vs ic in Fig. 4(b) is needed for the 
proper interpretation of the growth-rate curves in Fig. 4(a). If 

ic>0 and Re co>0, then £]_(£,co) and El+(ic,co) are, re- 
spectively, components associated with right-hand polarized 
(RHP) and left-hand polarized (LHP) waves that travel in the 

forward (positive-z) direction. If k~>0 (as before) but Re co 
<0, then the handedness of these waves is unchanged, how- 
ever, they now travel in the backward (negative-z) direction. 

Similarly, the electrostatic wave associated with Elz(ic,u>) is 
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OIO 

FIG. 4. Plots of complex m vs £ (real) for the system parameters u]lu>l 
= 0.05, 7o=2. an£l ct0 = 0A. The time-dependent equilibrium distribution in 

phase is characterized by JI = J2 = 0- Plots ^e (a) Im d> vs £ for 0=s£ =s 10 

and (b) Re ü> vs i. for 0«£ =sl.4. 

backward traveling if £>0 and Re w<0. As an illustration 
of the use of Fig. 4(b) in interpreting Fig. 4(a), consider the 
segmented growth-rate curve A(BC)DG, which gives the 
growth rate of the cyclotron maser instability. Segment AB 

pertains to E1+(k,ü>-2). From Fig. 4(b), it is seen that 

Re a>-2<0 everywhere on AB. Consequently, the growth- 
rate curve AB in Fig. 4(a) pertains to growing, backward- 
traveling, LHP electromagnetic waves. Similarly, segment 

CDG in Fig. 4(a) pertains to £,_(£,o>). Reference to Fig. 

4(b) shows that Re oi>0 everywhere on CDG, so that 
growth-rate curve segment CDG in Fig. 4(a) pertains to 
growing, forward-traveling, RHP electromagnetic waves. 
Similar analysis shows that the growth-rate curve HI for the 
whistler instability pertains to forward-traveling, RHP elec- 
tromagnetic waves. Also, the growth-rate curve segment FE 
pertains to backward-traveling LHP waves, and the segment 
EJ pertains to forward-traveling LHP waves. Because all of 
the roots of Mlz{k,&) are real, no corresponding growth-rate 
curves appear in Fig. 4(a). 

Electromagnetic and beam waves are said to be in reso- 

nance for the cyclotron maser instability when a> = £ and w 

= kß +1. These resonance values of a> and k are given by 

w=kr-\l{\-ßz)- In this example, £,. = 4.94. Figure 4(a) 
conforms with the well-known fact that no growth of RHP 

radiation occurs at k = kr in an uncoupled system. 
Finally, it is emphasized that no special relation exists 

between the LHP and RHP waves considered above when 
,r1 = 52=0. However, the plots in Fig. 4 will be approached 
by any system using our parameters in the limit in which 
both sx and s2 approach zero. 

Example 2: An explicit example of a nonuniform distri- 
bution in phase is obtained by selecting a = TT/4 in Fig. 3(b). 
Then the unperturbed electron beam consists of two streams 
with respective distributions centered about f= 0 and £= rr. 
Each distribution is a water bag of width TT/4. The corre- 
sponding parameters defined in Eq. (68) are j| =0 and s2 

= 2\J2/TT. Because sl = 0, the eigenmodes E in Eq. (58) are 

of two types. The first type of eigenmode has only Elz(k,(o) 
as a nonvanishing component. The corresponding dispersion 

relation is Mzz(k,ü)) = 0, which does not allow for growth. 
[See Eq. (76).] The second type of eigenmode has two non- 
vanishing components, namely Ex-(k,(o) and £1+(£,a> 
— 2). Some of these eigenmodes are unstable. 

Growth-rate curves for this system for 0«^15 and 
corresponding plots of Re w vs ^ (for 0=££=sl.5) are pre- 
sented in Figs. 5(a) and 5(b). As a measure of the relative 
importance of the RHP and LHP electromagnetic waves as- 
sociated with unstable modes, plots of the Poynting flux ratio 

in Eq. (85) as a function of k (for unstable modes only) are 
presented in Fig. 5(c). Letters show corresponding points in 
Figs. 5(a)-5(c). By comparing Figs. 5(a) and 5(b), we see 
that the growth-rate curve segments BA, CD, and FE per- 
tain to modes consisting of a forward-traveling RHP electro- 
magnetic wave (because Re (o>0) and a backward-traveling 
LHP electromagnetic wave (because Re o>-2<0). All other 
segments of the growth-rate curves pertain to modes consist- 
ing of forward traveling RHP and LHP electromagnetic 
waves. ;!"■ ' 

In the case of a uniform distribution in £ (example 1), no 
growth of RHP electromagnetic waves occurs at the reso- 
nance wave number k = kr=4.94. [See Fig. 4(a).] The 

growth-rate curve CDH in Fig. 5(a) shows a mode at k 

= £r=4.94 which grows significantly faster than any mode 
in Fig. 4(a). From Fig. 5(a), we see that the RHP Poynting 
flux associated with the mode is almost 20 times the LHP 
Poynting flux. Consequently, growth of RHP radiation is 
now possible at k=kr although it must be accompanied by a 
smaller growing component of LHP radiation. We remark 
that among computations so far carried out those for systems 
with two-stream distributions in £ (with a phase difference of 

v) show the most rapid growth rates at k=kr. 
Referring to Fig. 5(a), we see that there are two unstable 

branches at large k in conformity with Eqs. (77) and. (78). 

From Fig. 5(c), it is seen that, for either branch at large k, the 
RHP Poynting flux is approximately double that of the LHP 
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Poynting flux. Finally, note from Fig. 5(c) that for unstable 

eigenmodes at small k the ratio of the backward traveling 
LHP Poynting flux to the forward traveling RHP Poynting 
flux depends very strongly on the branch of the dispersion 

relation and varies rapidly with k for a given branch. 
Example 3: As a second example of a nonuniform phase 

distribution, select the form of <!>(£) in Fig. 3(c) and choose 
the parameter value K=1/2TT. [Equivalently, we could let 
a = 77 in Fig. 3(d).] Then the equilibrium particle phases are 
uniformly distributed between £=0 and £=ir, and no par- 
ticles have phases in the range TT< £< 2 IT. Fourier compo- 
nents in Eq. (68) are SX = — 2HTT and s2 = 0. Because s2 

= 0, the field components E{^(IC,ü}) and £1+(£,<u-2) are 
indirectly coupled through the electrostatic component 

£1;(£,w-1). Consequently, the eigenmodes E in Eq. (58) 
will (in general) have three nonvanishing field components. 
Growth-rate curves for this example are presented in Fig. 

6(a) for 0=s£^ 10, and corresponding plots of Re w vs if (for 

the interval 0*s£s£2) are given in Fig. 6(b). Plots of the 
Poynting flux ratio in Eq. (85) are shown in Fig. 6(c). Fi- 
nally, as a measure of the relative importance of the electro- 
static component of the unstable eigenmodes, we present a 

plot of 2-l^\El-(k,o)/Elt(£,u-1)| vs k in Fig. 6(d). (The 
factor of 2 in appears in the field ratio because 2 ~ 1/2£, ± is 
the proper normalization of coefficients of the complex unit 
vectors for LHP and RHP waves when comparison is to be 
made with Cartesian field components.) Letters show corre- 
sponding points in Figs. 6(a)-6(d). 

Reference to Figs. 6(a) and 6(b) shows that the wave 

associated with the component £1+(£,w-2) is left-hand po- 
larized and backwards traveling for eigenmodes on the 
growth-rate curve segments GH, ABC, and DEF. The elec- 

trostatic wave associated with £lz(£,w-1) is forward trav- 
eling for all unstable modes except for those modes on the 
growth-rate curve ABC for which k is very close to zero. All 
other components of unstable eigenmodes represent forward- 
traveling waves. 

Referring to Fig. 6(a), we see that two unstable branches 
of the dispersion relation are present at large values of k in 
conformity with Eqs. (81) and (83). From Figs. 6(c) and 
6(d), it is seen that the RHP Poynting flux exceeds that of the 
LHP electromagnetic wave by a factor of approximately 3 

for both branches at large k. The electrostatic contribution to 
eigenmodes on the upper branch is relatively very small. On 
the other hand, the electrostatic field amplitude in eigen- 
modes on the lower branch is of the same order of magnitude 
as the LHP electromagnetic field amplitude. 

Two branches, MNO and GUI, show moderate growth 

rates at the resonance k=kr=4.94. Reference to Figs. 6(c) 
and 6(d) shows that the RHP Poynting flux is significantly 
larger than the LHP Poynting flux for the eigenmodes asso- 

ciated with either of these branches at k = kr. Moreover, 

l^.tf.wyE^JE.w-DlrMO for either branch at k = kr. 
Again, this behavior is in contrast with the case of a uniform 
distribution in £ where no growth of RHP electromagnetic 

radiation takes place at the resonance value of k. However, 
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FIG. 5. Dispersion relations and properties of corresponding eigenvectors 
for system parameters &>j/a>J = 0.05, y0

=2. and a0=0.4. The tirne- 
dependent equilibrium distribution in phase is characterized by J, = 0 and 

j2 = 272/w. Plots are (a) Im ü vs k for 0Sj£sS15 and (b) Re <J VS i. for 

0«£=sl.5. Also shown for unstable eigenmodes is (c) the Poynting flux 

ratio in Eq. (85) vs k. 
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FIG. 6. Dispersion relations and properties of corresponding eigenvectors for system parameters üIC/<<I =0.05, 7o = 2. and ar0 = 0.4. The time-dependent 

equilibrium distribution in phase is characterized by sx = —2ilir and J2 = 0. Plots are (a) Im ü vs j£ for O^SiEslO and (b) Re w vs k for 0sSJ?=S1.5. Also 

shown for unstable eigenmodes are (c) the Poynting flux ratio in Eq. (85) vs i. and (d) 2""2|£1_(JE,w)/£1.(£,i- 1)| vs k. 

the growth rates at k~ = kr in Fig. 6(a) are not large, being 
slightly less than the maximum growth rates that appear in 
Fig. 4(a) for the case of a uniform distribution. 

Although the growth-rate peak ABC is very narrow, 
eigenmodes at points near its maximum are the fastest grow- 
ing modes of this system. Moreover, reference to Fig. 6(c) 
shows that these modes contain a relatively strong backward- 
traveling, LHP component. 

Example 4: As our final numerical example, we treat the 
limit of a = 0 for the distribution in Fig. 3(d). In the limit, the 
distribution becomes $>(£) = 'ZZ<x,8(i;-2rnr) with 5[ = j2 

= 1. In this case, <f>=cjct for all particles in the equilibrium 

beam. Growth-rate curves for the interval 0=s£=£8 and plots 

of Re a) vs £ for the interval 0=s£s£ 1.5 appear in Figs. 7(a) 
and 7(b), respectively. For unstable eigenmodes, plots of the 
Poynting flux ratio in Eq. (85) vs k~ and 2~1/2|£1_(£,w)/ 

Elz(ic,u)- 1)| vs k ait presented in Figs. 7(c) and 7(d), re- 
spectively. Letters on these graphs show corresponding 
points. Eigenmodes belonging to growth-rate curve segments 

ABC and DE have backward-traveling LHP components 
and forward-traveling RHP and electrostatic components. A 
tiny growth-rate peak appears at G in Fig. 7(a). Reference to 
Fig. 7(b) shows that its LHP and electrostatic components 
are backward traveling. Eigenmodes on all other segments 
contain only forward-traveling components. 

A striking feature of the growth-rate curves in Fig. 7(a) 

is that no growth occurs for values of £ greater than approxi- 
mately 6.2. That is, no branches of the dispersion relation 

show growth in the limit of large L [Suppression of instabil- 
ity in the whistler by the electrostatic wave is discussed in 
Ref. 10.] Also, notice the interval of no growth FH (1.4 
£k£2). 

Another striking feature is the great height of the growth 
peak ABC. From Fig. 7(c), we see that the Poynting flux of 
the backward-traveling LHP electromagnetic wave exceeds 
that of the forward-traveling RHP electromagnetic wave over 
most of the interval of this growth peak. The amplitude of 
the forward-traveling electrostatic wave is seen [from Figs. 
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FIG. 7. Dispersion relations and properties of corresponding eigenvectors for system parameters ei)*/ti>* = 0.05, yo=2. and a0=0.4. The time-dependent 

equilibrium distribution in phase is characterized by ^[=^2=1. Plots are (a) Im o> vs k for0«f«8 and (b)Re <u vs k for 0s JE« 1.5. Also shown for unstable 
eigenmodes are (c) the Poynting flux ratio in Eq. (85) vs k and (d) 2~"2|£,_(£,ö>)/£'u(;E,a>-1)| vs k. 

7(c) and 7(d)] to be of the same order of magnitude as the 
amplitudes of the electromagnetic waves. 

Again, we see growth of RHP electromagnetic waves at 
the resonance wave number £=£r=4.94. In fact, the maxi- 
mum of the growth-rate curve HIJ in Fig. 7(a) is situated 
very close to the resonance wave number, and the growth 
rate at this maximum exceeds any growth rate for the gyro- 
tropic case in Fig. 4(a). From Figs. 7(c) and 7(d), it is seen 
that the largest component for eigenmodes near this maxi- 
mum is that corresponding to forward-traveling RHP electro- 
magnetic radiation. 

To summarize, it is evident that a richness of structure in 
the growth-rate curves can be produced by introducing non- 
uniform distributions $(£). Using proper choices of $(£), 

temporal growth rates near k=kr can be significantly in- 

creased and growth rates at large k can be on the one hand 
enhanced or on the other hand completely suppressed. Two- 
stream equilibrium distributions such as that in example 2 
seem to be most effective in enhancing growth rates at the 

resonance k=kr. Gaps of no growth can be introduced at 

moderate values of k. At small values of k where eigen- 
modes may contain backward-traveling components, growth 
rates and the properties of eigenmodes can be gready 
changed by changing 4>(£). [This latter fact suggests, but 
does not prove, that absolute instability properties may de- 
pend strongly on 4>(£). However, no pinch-point analyses of 
these systems have been carried out.31-33] 

IV. DISPERSION CHARACTERISTICS FOR THE 
AXIAL-DEPENDENT EQUILIBRIUM DISTRIBUTION 
WITHOUT AXIAL MOMENTUM SPREAD 

A. Analysis 

Finally, we consider the axial-dependent equilibrium 

distribution MPj.,PZ'0=fo(Px>Pz'<f>~m^cZ/pz') for 

which the perturbed field components are related by the in- 
tegral equations (41)-(43). Even if the equilibrium distribu- 
tion is not uniformly random in <ß, Eqs. (41)-(43) will re- 
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duce to algebraic equations if there is no spread in p. in the 
equilibrium distribution. (A spread in energy is permitted if 
it is due only to a spread in pL .) The most general equilib- 
rium distribution having this property is 

fo(P±>Pz>0 = s(Pz-Pzo)fo(P±'PzO>C)- 

It follows from Eq. (40) that 

KiPi. ,Pz)=s(Pz~Pzo)fin(Pi .Pzo), 

where 

(86) 

(87) 

KiPl -Pro) 
J2TTJO 

</£/oO>i.PIo.f)exp(-in£). 

(88) 

Three homogeneous equations relating just three field com- 
ponents are found using a procedure similar to that used in 
obtaining Eq. (58). In matrix form the equations are 

D'E' = 0, (89) 

where 

/ 
D'__(k,cü,Clc,pz0) 

D' = 

7j- + (k,w,D.c,pl0) 

-7}+-(k+ 2müc/pz0,(o,D.c,pz0)    D'+ + (k + 2mClc/pz0,o),Clc,pz0) 

- 7}z-(k+ m£lc/pz0l(t>,Clc,pz0)       - T}z + (k+ mflc/p.0,o),Clc,pz0) 

-T}-Z(k,ü),nc,pz0) \ 

- y+z(k + 2mClc/pzQ,ü),O.c,pz0) 

D'.,(k+mClc/pl0,w,p0) 

(90) 

and 

E,_J   El+(k+2mnc/pz0,ü)) 

Elz{k+ müc/pz0,(ü) 
(91) 

The quantities 7]ti in Eq. (90) are obtained from the corre- 
sponding   quantities   in   Eqs.    (47)-(52)    by   replacing 

hn(P±>Pz) with &n(P±>Pz)' Pz with Pzo, and y with 
y(P± >Pzo)- The remaining quantities in Eq. (90) can be ob- 
tained from Eqs. (44)-(46). They are 

DL-(k,ü),nc,pz0) 

a>2-c2k2-- 
J2-TT 

n2
p\   dp1h0(pl,pz0)        L 

vJo JKPL'PZO 

2  co- 
kp z0 kpz0 

y(p±>Pzo)ml\     y(p±,Pzo)>n 

n„ p\ 

y(Px <Pto)l y2(pL ,pzQ)m2c2 
(w2-c2k2) 

X   co- 
kpzo nr 

(92) 
y(PL<Pzo)m   y{p±.Pzo)> 

D'+ + (k,co,ac,pz0) = D'__(k,oj,-Clc,pz0), (93) 

D'zz(k,o),pz0) 

= 1 - ^hnVt] J   dp1p1h0(p1 ,pz0) y~' (Pl ,pz0) 

| / kPzO 
X    1 

Plo 
y2(pi 'PzoWc 2„2 I yiPi ,P:o)m 

(94) 

Once the assumption is made that equilibrium self-fields can 
be neglected, the exact dispersion relation for the case of. 
definite pz

=pzo l% 

detD'(*,w) = 0. (95) 

For a given frequency a>, the wave number of the right-hand 
polarized wave £t_ is k. The wave numbers of the fields 
£1+ and £lz are k + 2mD.c/pz0 and k + mClc/pz0, respec- 
tively. Although no assumption of a steady state has been 
made in the derivation of Eqs. (89)-(95), these results are 
the same as those obtained in Eqs. (60)-(62) of the steady- 
state analysis of Ref. 9. 

Finally, we emphasize that the eigenmode E in Eq. (60) 
is of a different nature than the eigenmode E' in Eq. (92). 
The eigenmode E is a composite of three components which 
refer to waves of the same propagation vector but of different 
frequencies. These frequencies differ by fixed real values. »On 
the other hand, the eigenmode E' is a composite of three 
modes which refer to waves of the same frequency but of 
different propagation vectors. These propagation vectors dif- 
fer by fixed real values. In either case, if k~ is restricted to real 
values, then temporal growth or decay rates are given by 
Im a for all components. If w is restricted to real values, 
then spatial growth or decay rates are given by Im k~ for all 
components. 

B. Case of definite pL and pz 

As in Sec. Ill, we present numerical examples for cases 
in which both pz=pzo and p±=p±o have definite values in 
the equilibrium distribution. Consequently, the factor 

foiPi <Pz0-Om Eq. (86) is selected to'be of the form 

S{pL-pl0) 
MPL.PZO.C)= no. 

PL 
(96) 
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where "¥(£) is a periodic function of £ (or <j>) of period 2ir. 
From Eq. (5), the normalization condition on ^(£) is 

where 

l2*d<f>vU-m—z)= \2"d&(0=l. (97) *"«=/„   dmC)e*p(-inC). (99) 

It follows from Eq. (88) that 

t . ,1     %P±-P±o) 
hn(Pl <PzO)=-^=  W- 

2TT PI 
(98) 

Notice that w0= 1 and that w_„ = w* . 
With the aid of Eqs. (92)-(94) and Eqs. (46)-(52), we 

obtain the dispersion relation in Eq. (95) for the case of 
definite pL and pz. The dispersion relation is 

2\ 2 

M-M.u)M'+ + (£,u)MK(k,a)=4^\ ßl\wtf 

I    (O 

2\ 2 

i) 
2\ 3 

4 ji aw 

(ßzä-k)2M'++(k,w) + 

2 

ß.o>-\k + 

tf-k\ k + 
Ä 

Mzz(k,ä) 

ßi(w2wi1 + w^2w2i) lll+J, 

M__(£,w) 

AH'+AM 
(&«-*).       (100) 

Dimensionless  frequencies,  wave numbers,  and velocity 
components are defined as in Sec. HI B, and 

M'+ + (k,u) = Ü) k+- 
ßz 

(ü-kßz-i)2 

P;(u-tßt-2){o-£ßt-l) 
w. 

l0)P    2 

2 w. *-it+ä" (101) 

The quantities Af __(£,<w) and Mzz(k,o>) are defined in Eqs. 
(70) and (72), respectively. 

Like Eq. (69), Eq. (100) is valid for complex w and 
complex k. It is invariant under the transformation 

•-£*- — (102) 

In analogy with Eq. (74), it follows from the matrix equation 
(90) that, if either w,^0 or w2=£0, then under the transfor- 
mation in Eq. (102) 

El+(k + 2/ßz,ä) E1 + (-£*,-ü*) 
£,_(*.«) E^{-k*-2lßz,-ü*) 

£*_(£,ü) 
~ E*+(k + 2/ßz,uy 

(103) 

Moreover, in analogy with Eq. (75), if w, ^=0, then under the 
transformation in Eq. (102) 

El + (k + 2/ßz,ü) El+(-k*.-a*) 

Eu(k+l/ß,,a) ~* Els(-£*-l/ßz,-w*) 

£f_(£,w) 

£i-(j£,w) 

E*z(k+i/ßz,ü)' 

E,_(-£*-2/&,-ü*) 
(104) 

Elz(k+l/ßt,a)      Elz(-k*-l/ßt,-a*) 

_E*+(k + 2/ßz,u) 

E*z(k+Ußz,ü)' 

The ratio of the time averaged Poynting vectors associated 
with the individual El + {k + 2lßz,w) and£1_(^,a)) fields is. 

S+(k + 2fßz,w) 

S-(£,u) 

k  +  2/ß; El+(k + 2/ßz,w) 

Ex-(k,ä) 
(105) 

Like the dispersion relation in Eq. (69) of Sec. Ill B, Eq. 

(100) is a tenth-degree polynomial equation in either k ov w. 

The large \k\ behavior of io(k)lk given by Eq. (100) is the 
same as that given by Eq. (69), including two branches with 
o)(k)/k—l, two branches with w(k)/k— — l, and six 
branches with cj(k)/k—kßz. 

If either w, or w2 vanishes, approximations for w(£) 
valid for large values of k are readily determined and are 
found to be very similar to those found in the previous sec- 
tion for the case of the time-dependent equilibrium. If W] 
= 0 and w2=£0, then the transverse electromagnetic compo- 
nents are coupled to each other and the electrostatic compo- 

nent is  uncoupled. The large  \k\  behaviors of the ten 
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branches of the dispersion relation in Eq. (100) are similar to 
those given in Eqs. (76)-(80) for the corresponding case 
(5 =0ST£0) of the dispersion relation in Eq. (69). Four of 
the branches now obey Eqs. (76) and (79). Four branches 
obey Eqs. (77) and (78) with s2 replaced by w2. that is 
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I    w. 
w =i:-/3.+i±-^x(i+M)1/2, (106) 

i   w„ 
w=fc/S.+ l±-7=—ySi( l-h^D 

1/2 (107) 

Finally, Eq. (82) is no longer valid and is replaced by 

w=r 

.21 

(k + 2ßS-+ — 
to. 

1/2 

(108) 

for the two remaining branches. Growth-rate curves for 
|w,|<l will show two unstable branches of the dispersion 

relation in Eq. (100) for large values of real k. 
If w i * 0 and w2 = 0, then the transverse electromagnetic 

components of an eigenmode are coupled through the longi- 

tudinal electrostatic component. The large |£| behavior of the 
dispersion relation in Eq. (100) is similar to that of the dis- 
persion relation in Eq. (69) for the analogous case of s,#0 
and s, = 0. Four of the branches obey Eqs. (79) and (81). 
Four additional branches obey Eqs. (82) and (83) with the 
quantity j, in Eq. (84) replaced with w,, that is 

a=kßt+l± 
1   o>r. 

-K + ' 

I     W P .J 

(109) 

(110) 

where 

K* = ^-(l-^)j + 2 "(I -ßl) 

+ 4ßli l-ßl)\\- \W\ 

1/21 1/2 

(HD 

The remaining two branches obey Eq. (106). At large real k, 
growth-rate curves will show two unstable branches of the 
dispersion relation in Eq. (100) if |w,|< l/>/2. 

Finally, if neither w, nor w2 vanish, then the large \k\ 
behaviors of four of the branches of the dispersion relation in 
Eq. (100) are given by Eqs. (79) and (106). The behaviors of 
the remaining six branches are obtained by solving a cubic 

equation in (a-kßt- D2. We do not include an analysis of 
the equation in this paper. 

C. Numerical examples 

Before the numerical examples are presented, one final 
point of clarification must be made. Throughout this paper, 
we have followed the usual terminology and referred to 

£,_(£,w) and £,+(£,o>) as components representing RHP- 
and LHP-electromagnetic waves, respectively. However, this 

FIG 8 Plots of complex a vs i. (real) for the system parameters <J|/<I>* 

= 0.05, 7o=2. and a0 = 0A. The spatial-dependent equilibrium distribu- 

tion in phase is characterized by vy, = w2 = 0. Plots are (a) Im « vs £ for 

- 1.254=s£« 10 and (b) Re u vs i. for - 1.254=s£s0. 

nomenclature is proper only if Re k>0. If Re £<0, thejvthe 
roles played by these components are reversed and 

£,_(£,w) and £, + (JE,w) represent LHP and RHP electro- 
magnetic waves, respectively. If (in addition) Re w>CMhen 

both waves are backward traveling. Moreover, if Re w<0, 
then both waves are forward traveling. 

As in Sec. Ill, the following numerical computations are 

limited to the case of real k. Then, from Eq. 002), Eq. (100) 

is invariant under the transformation a>-»-w* andfc-»-* 
-21 ß.. This transformation is equivalent to inverting a plot 

of Re« vs k (real) through the point (£.Re w) 

= (-l//3:,0) and reflecting a plot of Im(o>) vs k (real) 

through tne vertical line k= - \lßt. Because of Eqs. (103) 
and (104), no new information is obtained from the trans- 

formed eigenvectors. Consequently, the region k<- \lßt is 
omitted from the following plots. 

Parameter values used below are the same as those used 

in previous numerical examples (i.e., wp/wc = 0.05, 7o = 2. 
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and a0 = 0.4). Functional forms considered for ^(f) are 
chosen as ^(£) = <!>(£), where $(£) is defined in Figs. 
3(a)-3(d). Moreover each of the examples below is the ana- 
log (for the axial-dependent distribution) of the example of 
the same number in Sec. Ill C (for the time-dependent dis- 
tribution). 

Example 1: For wl = w2=0, which can be obtained from 
the uniform ¥(£) corresponding to Fig. 3(a), the dispersion 
relation, in Eq. (100) reduces to the three independent disper- 

sion relations Af__(£,w) = 0, M'++(k,co) = 0, and 

Af,-(£,to) = 0 for uncoupled right- and left-circularly polar- 
ized transverse waves and the longitudinal electrostatic 
wave, respectively. For a given frequency, the respective 

wave numbers for these waves are £, fc+2lßz, and k 
+ 1//3.. Growth-rate curves are shown in Fig. 8(a) for 

- \lßz= - 1.254ss£=s 10. Plots of Re a vs k for - l/ß^k 
«0 are presented in Fig. 8(b). Letters show corresponding 
points in Figs. 8(a) and 8(b). 

In Fig. 8(a), the growth-rate curve segments GH and HI 

are obtained from roots of M'++(k,w), so that the corre- 
sponding eigenmodes have a single nonvanishing component 

El+(fc+2/ßt,<ö). Referring to Fig. 8(b), we see that Re w 

>0 and k+2Jßz>0 on both segments. Consequently, both 
segments represent unstable electromagnetic waves that are 
LHP and forward traveling. All other growth-rate curve seg- 
ments in Fig. 8(a) are obtained from roots of M (£,w) 
= 0, so that the corresponding eigenmodes have a single 
nonvanishing component £,_(£,w). For all points of the 
short growth-rate curve segment AB, reference to Fig. 8(b) 

shows that k<0 and Re w<0. Consequently, growth-rate 
curve segment AB pertains to unstable, forward-traveling 
LHP electromagnetic waves. Similarly, £<0 and Re d>>0 
for eigenmodes on growth-rate curve segments BC and DE, 
so that these segments represent unstable backward- 
traveling, LHP electromagnetic waves. The remaining 
growth-rate curve segments (EF and JK) pertain to unstable 
forward-traveling, RHP electromagnetic waves. As expected, 
there is no growth of the RHP electromagnetic wave at the 
resonance wave number kr= 1/(1 -ßz) = 4.94. The eigen- 

modes obtained from roots of A/++(£,üj) are of course com- 
pletely decoupled from the eigenmodes obtained from roots 

of M—(£,w) = 0. Nevertheless, Fig. 8(a) represents the 
limit approached by any system with our parameters as both 
wl and w2 approach zero. 

This example is analogous to example 1 shown in Figs. 
4(a) and 4(b) in Sec. Ill C. Comparing Figs. 4(a) and 8(a), 
we see that they differ in two respects. First, the growth-rate 

curve in Fig. 8(a) obtained from M++(£,o>) = 0 has the same 
form as the growth-rate curve in Fig. 4(a) obtained from 

M++(lc,a) = 0 but is displaced to the left by 2//3z=2.508. 
Second, no information is lost in Figs. 4(a) and 4(b) by ig- 

noring the negative £-axis. However, only fc<-\lßz can be 
ignored in Figs. 8(a) and 8(b) without losing information. 

Example 2: For w,=0 and W2 = 2J2/TT, which can be 
obtained if ¥(£) corresponds to Fig. 3(b) with a = W4, the 
equilibrium beam consists of two streams, each with a water- 
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FIG. 9. Dispersion relations and properties of corresponding eigenvectors 
for system parameters <u*/a>* = 0.05, ya=2, and a0 = 0.4. The spatial- 
dependent equilibrium distribution in phase is characterized by W| = 0 and 

(v2 = 2V2/w. Plots are (a) Im ü vs k for - 1.254«=£=S 14 and (b) Re <ü vs i. 

for - 1.254sf «0. Also shown for unstable eigenmodes is (c) the Poynting 
flux ratio in Eq. (105) vs k. 
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bag distribution in <p of width 77/4. One distribution is cen- 
tered at <f> = mQ.cz/pzo and the other at cß = mClcz/p.0+TT. 
As z varies, each center rotates about the direction of the 
applied field lines with a characteristic wavelength of 
2 Trpzo /mClc = 27Tuzo/ojc- 

Growth-rate curves (for - 1.25=s&== 16) and correspond- ■ 
ing plots of Re a> vs k (for -1.25=£&=£0) are presented in 
Figs. 9(a) and 9(b). Plots of the Poynting ratio in Eq. (105) 

vs k (for - 1.25=£jfc=£l6) appear in Fig. 9(c). Letters show 
corresponding points on these plots. The letters have also 
been chosen to correlate with letters on the corresponding 
plots for example 2 of Sec. Ill C in Figs. 5(a)-5(c), which is 
analogous to the present example. Superficially the plots in 
Figs. 9(a)-9(c) are very similar to the corresponding plots in 
Figs. 5(a)-5(c). However, it is emphasized that the eigen- 
modes are very different in the two cases. The eigenmodes 

for Fig. 5 consist of the nonvanishing components £|_(£,UJ) 

and £1+(£,äi-2), whereas the eigenmodes for Fig. 9 con- 

sist of the nonvanishing components £1_(^,w) and £I + (£ 

+ 2/&,w). 
By comparing Figs. 9(a) and 9(b), it is easily seen 

that the eigenmodes belonging to the growth-rate curve 
segments BA, CD, and ££ consist of LHP, forward- 
traveling electromagnetic waves [from El+(k + 2/ß.,w)] 
and LHP, backward-traveling electromagnetic waves [from 
£[_(£,<!>)]. (The corresponding modes in Fig. 5 consist of 
RHP, forward-traveling and LHP, backward-traveling elec- 
tromagnetic waves.) From Fig. 9(c), we see that the back- 
ward Poynting flux is relatively strong for most eigenmodes 

on CA and that it varies rapidly with k for eigenmodes on 
CD and FE. The infinity in the Poynting flux ratio at the 
cutoff at £=0 is due to the factor \{k + 2ßz)lk\ in Eq. (105). 
All of the remaining growth-rate curve segments in Fig. 9(a) 
pertain to eigenmodes consisting of a forward-traveling RHP 
and a forward-traveling LHP component. Notice that the 
branch CDU of the dispersion relation shows a growth rate 
at the resonance £r=4.94 which is significantly greater than 
any growth rate for the uncoupled system in Fig. 8(a). Ref- 
erence to Fig. 9(c) shows that the Poynting flux of RHP 
electromagnetic radiation is dominant in the corresponding 

eigenmode. (This behavior is similar to that found at k = kr 

for example 2 in Sec. Ill C.) Figures 5(a) and 9(a) are very 
similar at large values of k in conformity with previous ana- 

lytic results pertaining to the large k behaviors of Eq. (69) 
when sl = 0 and Eq. (100) when W[ = 0. 

Example 3: The analog of example 3 of Sec. Ill [whose 
stability properties are summarized in Figs. 6(a)-6(d)] is ob- 
tained by setting wl=— HITT and vv2 = 0 in Eq. (98). 
Growth-rate curves for — 1.25=£A:=S10 are presented in Fig. 

10(a). Details of the growth-rate curves in the negative k 
interval (-1.25=£fc=s0) are shown in Fig. 10(b). Corre- 

sponding plots of Re (i) vs k (for —1.25=^^=^0) are pre- 
sented in Fig. 11(a). Plots of the Poynting ratio in Eq. (105) 
vs k appear in Fig. 11(b). The component Elz(k+l/ß.,o)) 
will not necessarily vanish for unstable eigenmodes of this 
system. Consequently, plots of £,_(/:,w)/£|.(£+ l/ß. ,w) 
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FIG.  10.  Growth-rate curves (Im w vs k, real) for system parameters 
(üj/(i)^ = 0.05, 7o = 2, and a0 = 0.4. The spatial-dependent equilibrium dis- 
tribution in phase is characterized by w{ = —HITT and w2 = Q. Plots are (a) 

Im a) vs lc for - 1.254=s£=sl0 and (b) a detail of the previous plot for 

-1.254=s£=£0. 

vs k for unstable modes are presented in Fig. 11(c). Letters 
show corresponding points in Figs. 10 and 11. 

A detailed comparison of Figs. 10 and 11(a) gives the 
following description of the unstable eigenmodes. The com- 
ponents of an eigenmode pertaining to the short growth-rate 
curve segment DR are two forward-traveling LHP electro- 
magnetic waves [from E^ik.w) and El + (k + 2/ßz ,a>)] and 

a backward-traveling electrostatic wave [from Elz(k 

+ \lßz,ü))]. The components pertaining to the growth-rate 
curve segments REF, ABCG, and MN are a backward- 

traveling LHP electromagnetic wave [from £i_(£,<w)], a 

forward-traveling LHP electromagnetic wave [from £i + (£ 

+ 2/ßz,a>)], and a forward traveling electrostatic wave [from 

Eiz(k+\/ßz,cj)]. All other growth-rate curve segments 
have eigenmodes consisting of forward traveling LHP and 
RHP electromagnetic waves and a forward traveling electro- 
static wave. 
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FIG. 11. Additional properties of the system whose growth-rate curves are 

plotted in Fig. 10. Plot (a) of Re ü vs d for -1.254«£«0. Shown for 

unstable eigenmodes are (b) the Poynting flux ratio in Eq. (105) vs k and (c) 

2-"2|£,.(f,<L)/£l;(f+l//3.,ci)|vsf. 

The most rapidly growing eigenmode of this system is 
that at point C in Figs. 10(a) and 10(b). The components of 
this eigenmode are a backward-traveling LHP wave, a 
forward-traveling LHP wave, and a forward-traveling elec- 
trostatic wave. Reference to Figs. 11(b) and 11(c) shows that 
the backward-traveling component [which arises from 

£,_(£,a>)] is the largest component both in amplitude and 

energy transfer. A similar situation was found for small |£| in 
Fig. 6(a) for the axial-dependent case except that the 
forward-traveling electromagnetic component was found to 
be RHP. 

Two branches of the growth-rate curves in Figs. 10(a) 
and 10(b) (MNO and ABCGHI) show moderate growth 

rates at the resonance wave number £r=4.94. For both of 
these branches, Figs. 11(b) and 11(c) show that the eigen- 

mode at £r=4.94 has a relatively large RHP electromagnetic 
component. Again we see that this behavior differs from that 
of the uncoupled system in Fig. 8(a), which shows no growth 
of RHP electromagnetic waves at the resonance wave num- 

ber. The growth rates at kr are approximately the same in 
Fig. 6(a) for the time-dependent equilibrium and Fig. 10(a) 
for the axial-dependent equilibrium; however, the electro- 
static components of the corresponding eigenvectors are of 
greater relative amplitude in the axial-dependent case than in 
the time-dependent case. [Compare Fig. 11(c) with Fig. 
6(d).] 

Finally, at large values of k. Figs. 10(a) and. 6(a) ap- 
proximate each other closely. This fact conforms with our 
previous results giving the large-|£| behaviors of Eq. (69) for 
s2=0 and Eq. (100) for w2=0. However, the corresponding 
eigenmodes [E in Eq. (60) and E' in Eq. (91)] are different 

even in the limit of large k. By comparing Fig. 6(d) with Fig. 

11(c), it is seen that (at large k) the electrostatic component 
is relatively much stronger in the case of the axial-dependent 
equilibrium distribution. 

Example 4: To obtain the analog of example 4 of Sec. 
Ill C (whose stability properties are summarized in Fig. 7), 
choose wl = w2=l- These values are obtained by choosing 
^(f) = 2Ü,c<5(£—2mr), so that in effect the phase of afcy 
particle is given by 4>=mClczlpz. Growth-rate curves (for 
- 1.254ss£=s8) and corresponding plots of Re w vs k (for 
-1.254=s£s£0) are presented in Figs. 12(a) and 12(b), re- 
spectively. For unstable branches of the dispersion relation in 

Eq. (100), plots of the Poynting flux ratio in Eq.'(105) vs k 

and E1^(k,(ö)/Eiz{k + l/ßz,ü)) vs k are presented in Figs. 
12(c) and 12(d), respectively. Letters show corresponding 
points in these plots. The letters correspond only loosely to 
those in Fig. 7. 

Comparing Figs. 12(a) and 12(b), we see that the com- 
ponents of an eigenmode on growth-rate curve segment DN 
are a backward-traveling LHP electromagnetic wave 

[El+(k + 2/ßz,(ö)], a forward-traveling LHP electromag- 

netic wave [£[_(£,«)], and a backward-traveling electro- 

static wave [£,.(£+ 1//3, ,w)]. Eigenmodes on "growth-rate 
curve segments ACB and NEF consist of a backward- 

traveling LHP electromagnetic wave [£| _(Jt,o»)]. a forward- 
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traveling LHP electromagnetic wave [E1+(£ + 2//3,,w)], 
and a forward-traveling electrostatic wave [Eu(lc 

+ l//3z,w)]. Eigenmodes on all other growth-rate curve seg- 
ments consist of forward traveling RHP and LHP electro- 
magnetic waves and a forward-traveling electrostatic wave. 

Some properties of the growth-rate curves in Fig. 12(a) 
are similar to those in Fig. 7(a). Like Fig. 7(a), Fig. 12(a) 
shows no growth at large values of L Both sets of curves 
show very large growth rates at small values of |£|, where 
backward waves occur [i.e., near point B in Fig. 7(a) and 
point C in Fig. 12(a)]. The eigenmode at point C in Fig. 
12(a) consists of a backward-traveling LHP electromagnetic 

wave [from £,_(£,w)l and forward-traveling LHP electro- 
magnetic and electrostatic modes. Reference to Figs. 12(c) 
and 12(d) shows that the backward-traveling component ex- 
ceeds the other two components in amplitude. In Sec. Ill C, a 
similar situation was found to exist at point B in Fig. 7(a), 
except that the forward-traveling electromagnetic component 
is RHP. Like Fig. 7(a), Fig. 12(a) shows a fairly large growth 

rate at the resonance wave number on the branch ACJBIJ. 
Moreover, Figs. 12(c) and 12(d) show that the correspohding 
eigenmode has a relatively strong RHP electromagnetic com- 
ponent. 

Finally, notice that no gap appears in the growth-rate 
curves in Fig. 12(a) to correspond to the gap between points 
F and H in Fig. 7(a). 

D. Remarks concerning numerical examples 

The analysis of the above numerical examples for the 
axial-dependent equilibrium leads to the same general con- 
clusions as those given in Sec. Ill C for the time-dependent 
equilibrium. A rich structure of different growth-rate curves 
and unstable eigenmodes can be induced by varying the form 
of ^(f). i-e-> *e values of w, and w2- A suitable choice of 
ty(C) can significantly increase growth rates of RHP electro- 
magnetic waves at the resonance wave number fc=l/(l 
- ß.) and can significantly increase or reduce growth rates at 

large values of L At small values of £, where backward- 
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traveling components are present, growth rates and the struc- 
tures of eigenmodes depend strongly on the form of ^(f). 
This fact suggests that properties of absolute instabilities 
may depend strongly on ty(0- However, a study of this 
conjecture has not been carried out. 

For the same parameters (£lc,y0,a0), growth rate 
curves for corresponding (si = wl, s2 = w2) time-dependent 
and axial-dependent systems usually show some resem- 
blance. Nevertheless, the eigenmode structures are very dif- 
ferent in the two cases. In the time-dependent case, unstable 
eigenmodes for coupled systems consist of two or three com- 
ponents of the same wave numbers and different frequencies, 
whereas in the axial-dependent case the components have the 
same frequencies and different wave numbers. Moreover, for 
small values of k, the handedness and directions of motion of 
components may differ between the two cases. 

V. CONCLUSIONS 

We have studied stability properties of a relativistic elec- 
tron beam propagating along an applied magnetic field B^, 
using the Maxwell-Vlasov equations under the constraint 
that spatially dependent quantities are functions of z only. Of 
particular interest are those cases in which the equili- 
brium distribution is not uniformly random in the electron 
gyrophase angle cf>. Two equilibrium distributions have been 
considered. These are the time-dependent distribution 
fo(P±<Pz>0< where £=<p-[lct/y, and the spatial- 
dependent distribution f0(PL,Pz,D, where £=<}>-mD.czl 
pz. Since neither of these distributions can be converted into 
the other by a Lorentz transformation, the distributions rep- 
resent two physically different systems. It is found that in 
general the Fourier components of the perturbed electric and 
magnetic fields are related by the integral equations (26)- 
(28) for the case of the time-dependent equilibrium distribu- 
tion, and by the integral equations (41)-(43) for the case of 
the spatial-dependent equilibrium distribution. In our nu- 
merical analysis, however, we consider special cases in 
which the integral equations reduce to algebraic equations 
even though the equilibrium distribution is not uniformly 
random in phase. 

If there is no spread in electron energies (or equivalently 
p) in the time-dependent equilibrium distribution, then the 
integral equations (26)-(28) reduce to just three algebraic 
equations [Eq. (58)] relating the Fourier components 
£,_(&,to), El + (k,(o-2a>c), and Elz(k,(o-a>c) of the per- 
turbed fields. Consequently, an eigenmode of the system 
consists of a RHP electromagnetic wave, a LHP electromag- 
netic wave, and an electrostatic wave. These components 
have the same wave number, and the same spatial and tem- 
poral growth or decay rates, but have different frequencies. 
[The electrostatic component is decoupled if the Fourier co- 

efficient i|(/?0.
a) in Eq- (57) vanishes, and all three com- 

ponents decouple if g2(po,a) also vanishes.] 
If there is no spread in the axial component of momen- 

tum (pz) in the spatial-dependent equilibrium distribution, 
then the integral equations (41)-(43) reduce to just three 
algebraic equations [Eq. (89)] relating the perturbed field 
Fourier components £i_(fc,o>), £|+(H2mfic/^0,w), and 

Ei:(k-i-mClc/pz0,(ü). Therefore the components of an 
eigenmode are a RHP electromagnetic wave, a LHP electro- 
magnetic wave, and an electrostatic wave. These components 
have the same frequency, and the same spatial and temporal 
growth or decay rates, but have different wave numbers. [In 
analogy with the time-dependent case, the electrostatic com- 

ponent is decoupled if the Fourier coefficient fi\{px ,p.0) in 
Eq. (88) vanishes, and all of the components decouple if 

k2{pL ,p-o) also vanishes.] 
Numerical computations of stability properties have 

been carried out for both the time- and spatial-dependent 
equilibrium distributions for the case where no spread is 
present in both p and the pitch angle a (or equivalently in 
both pL and pz). In this case the frequencies and wave num- 
bers can be normalized to the relativistic cyclotron frequency 

wc by defining <y=<u/a>c and k=cklac. The computations 

are restricted to real values of k~, so that Im tu>0 indicates 
temporal growth. It is found that (for fixed applied magnetic 
field, energy, and pitch angle) a rich variety of growth-rate 
curves and eigenmodes can be obtained by changing the de- 
pendence of the equilibrium distribution on the phase angle. 
Appropriate choices of the phase-angle dependence can sig- 
nificantly increase growth rates near the resonance wave 

number kr = l/( 1 - ßz). Growth rates at large values of !c can ■ 
on the one hand be enhanced and on the other hand be sup- 

pressed altogether. Moreover, finite intervals (in fc) of no 
growth can be produced. Finally, growth rate curves and the 
form of eigenvectors at small values of \fc\, where backward 
traveling components are present, are particularly sensitive 
to the (^-dependence of the equilibrium distribution. 

Based on the results obtained in this paper, we conclude 
that coherently gyrating electron beams can interact with 
electromagnetic and electrostatic waves in a rich manner, 
even in one-dimensional configurations. Such interactions 
are important if they occur in an extended space or time. 
Therefore it is critical to take into account these interactions 
in the design of coherent radiation devices based on coher- 
ently gyrating electron beams. 

As an important area in our current research, we are 
analyzing the integral equations to determine the structures 
of eigenmodes in the general case. We also point out that the 
results of this work are readily extended by Lorentz transfor- 
mations to frames of reference in which the distributions in 
phase vary both spatially and temporally. (See the Appen- 
dix.) Consequently, another area of current research is the 
extension of our analysis to spatiotemporal distributions.21"24 
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APPENDIX: RELATIONS BETWEEN EQUILIBRIUM 
DISTRIBUTIONS 

In this paper, we consider equilibrium distributions 
whose form in the laboratory reference frame is either 
MP'O^MPL'PI*?) or f0(z,p)=fo(Pi.,pc,C)- Also, in 
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this appendix, we define /0 to be n0 times the equilibrium 
distribution used throughout the rest of this paper. Below it is 
shown that, under a Lorentz transformation to a new refer- 
ence frame moving in the z-direction relative to the labora- 
tory frame with velocity ßu = u/c, either of these forms is 
transformed into combinations of the two original forms. 

It is well known that a distribution/0(z,p,r) is invariant 
under a Lorentz transformation. Consequently, under the 
Lorentz transformations described above the distribution be- 
comes 

(Al) 

(A2) 

/oV.p','')=/o(z,p,f). 

where 

z=yu{z' + ßuct'), 

ct=yu(ct' + ßuz'), 

p-=yu{p'z+ßuy'mc), 

ymc=yu(y'mc + ßup'l). 

Moreover, p±=p[, <£=<£', and yu = (l-ß2
u)~

m. 
Expressing ^-Clctly in terms of transformed (primed) 

quantities, we find that 

Z={i+ßuß[)-lZ' + ß'tßu{\+ßuß'z)-
1? 

'yid-ßußiH' + Tlßuißz-ßuW. 
where ßz = vz/c, and 

(A3) 

? = 4>—7*'. r 
Oc z' m£lc 

y vz       Pz 

(A4) 

(A5) 

Consequently, if the laboratory frame distribution is of the 
form/0(p,f)=/0(p± ,pz,£), then the moving frame distribu- 
tion will be of the form /o(z',p',r')=/oO?i ,pl ,ctg' 
+ c2C'),_ where cl = (l+ßuß^rl and c2 = ß'zßu(l 
+ ßuß'z) '. Notice that cx + c2 = 1 and that c,>0, so that a 
Lorentz transformation cannot change the form of a distribu- 
tion from f0(p± ,pz,£) into f'0(pL ,p[,£') for any value of 
p'. Finally, notice that Eq. (55) must be applied with care to 
the singular case of ßu = ßz (i.e., ß'z = 0), because £'->co as 

#-+0. In this singular case, (;=!;'-ß SI cz'I y'c where 
y' = (pl/m2c2+l)m. 

Expressing £=<t>-m£lczlypz=<p-ticzlyvz in terms 
of primed quantities, we obtain 

(= ^t' + 
K 

{ßu+ß[v   (ßu+ß'z) 
77 r 

ylß y\ ^  (l-ßtßH)e> + -±(ß-ßuyC>. (A6) 

Under a Lorentz transformation, a distribution of the form 

/o(2.P)=/o(Pi-P:.0    attains    *e    form   /o(r'.p'.f') 
=fi(Pl,p't'

C^'+C2^')'    Where    "0W    Cl = ßu'(ßu + ß':) 
and c2 = ß'./(ßu + ß':). Again, notice that C[ + c2=l. In the 
singular case of ßu—*ßz (i.e., ß'.-*0), Eq. (A6) reduces to 
£=£'- (fic//) (z'/ü.). Consequently, a Lorentz transfor- 
mation cannot change the form of a distribution from 
foiPi <PZ<0 'inlof'o(Pi .Pc'.O for any value of p'. 

Finally, we remark that if the laboratory frame is taken 
to be the primed frame, then distributions of definite £ in Eq. 
(A3) or definite £ in Eq. (A6) are referred to as spatiotem- 
poral distributions in the literature.21"24 
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A Dielectric Omnidirectional 
Reflector 

Yoel Fink, Joshua N. Winn, Shanhui Fan, Chiping Chen, 

Jürgen Michel, John D. Joannopoulos, Edwin L. Thomas* 

A design criterion that permits truly omnidirectional reflectivity for all polar- 
izations of incident light over a wide selectable range of frequencies was used 
in fabricating an all-dielectric omnidirectional reflector consisting of multilayer 
films. The reflector was simply constructed as a stack of nine alternating 
micrometer-thick layers of polystyrene and tellurium and demonstrates om- 
nidirectional reflection over the wavelength range from 10 to 15 micrometers. 
Because the omnidirectionality criterion is general, it can be used to design 
omnidirectional reflectors in many frequency ranges of interest. Potential uses 
depend on the geometry of the system. For example, coating of an enclosure 
will result in an optical cavity. A hollow tube will produce a low-loss, broadband 
waveguide, whereas a planar film could be used as an efficient radiative heat ;' 
barrier or collector in thermoelectric devices. 

Mirrors, probably the most prevalent of mirrors, the age-old metallic and the more 
optical devices, are used for imaging and recent dielectric. Metallic mirrors reflect 
solar energy collection and in laser cavities. light over a broad range of frequencies 
One can distinguish between two types of incident from arbitrary angles (that is, om- 

nidirectional reflectance). However, at in- 
v C.TT    ~ ~     —  frared and optical frequencies, a few per- 
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USA. j. N. winn, s. Fan, j. D. joannopoulos, Depart- mirrors are used primarily to reflect a nar- 
ment of Physics, Massachusetts Institute of Technol- row range of frequencies incident from a 
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Technology, Cambridge. MA 02139, USA. J. Michel Unllke tne>r metallic counterparts, dielec- 
and E. L Thomas, Department of Material Science and tr'c reflectors can be extremely low loss. 
Engineering, Massachusetts Institute of Technology, The ability to reflect light of arbitrary angle 
Cambridge, MA 02139, USA. of incidence for all-dielectric structures has 
*To whom correspondence should be addressed. been  associated with  the existence of a 
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complete photonic band gap {1-3). which 
can exist only in a system with a dielectric 
function that is periodic along three orthog- 
onal directions. In fact, a recent theoretical 
analysis predicted that a sufficient condi- 
tion for the achievement of omnidirectional 
reflection in a periodic system with an in- 
terface is the existence of an overlapping 

band gap regime in phase space above the 
light cone of the ambient media (-/). Now 
we extend the theoretical analysis and pro- 
vide experimental realization of a multi- 
layer omnidirectional reflector operable in 
infrared frequencies. The structure is made 
of thin layers of materials with different 
dielectric constants (polystyrene and tellu- 

Fig. 1. Schematic of the multi- 
layer system showing the layer 
parameters (nu and ha are the 
index of refraction and thickness 
of layer a, respectively), the in- 
cident wave vector k, and the 
electromagnetic mode conven- 
tion. E and B are the electric and 
magnetic fields, respectively. 
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Fig. 2. (A) Projected band structure of a multilayer film with the light line and Brewster line,      K = - In( ^ Tr(t/al) 
exhibiting a reflectivity range of limited angular acceptance with n0 = 1, n, = 2.2 and n2 = 1.7 
and a thickness ratio of h2/h, = 2.2/1.7. (B) Projected band structure of a multilayer film together 
with the light line and Brewster line, showing an omnidirectional reflectance range at the first and 
second harmonic. Propagating states, light gray; evanescent states, white; and omnidirectional 
reflectance range, dark gray. The film parameters are n, = 4.6 and n2 = 1.6 with a thickness ratio 
of /)2//i,   =   1.6/0.8. These parameters are similar to the actual polystyrene-tellurium film 
parameters measured in the experiment. 

rium) and combines characteristic features 
of both the metallic and dielectric mirrors. 
It offers metallic-like omnidirectional re- 
flectivity together with frequency selectiv- 
ity and low-loss behavior typical of multi- 
layer dielectrics. 

We consider a system that is made of an 
array of alternating dielectric layers cou- 
pled to a homogeneous medium, character- 
ized by »0 (such as air with >i0 = 1). at the 
interface. Electromagnetic waves are inci- 
dent upon the multilayer film from the 
homogeneous medium. Although such a 
system has been analyzed extensively in the 
literature (5-7). the possibility of omnidi- 
rectional reflectivity was not recognized 
until recently. The generic system is de- 
scribed by the index of refraction profile in 
Fig. 1, where h, and h2 are the layer thick- 
ness and «, and n2 are the indices of refrac- 
tion of the respective layers. The incident 
wave has a wave vector k = A-tet + kver and 
a frequency of io = c|£|/n0, where c is the 
speed of light in vacuum and ex and iv are 
unit vectors in the x and y directions, re- 
spectively. The wave vector together with 
the normal to the periodic structure defines 
a mirror plane of symmetry that allows us 
to distinguish between two independent 
electromagnetic modes: transverse electric 
(TE) modes and transverse magnetic (TM) 
modes. For the TE mode, the electric field 
is perpendicular to the plane, as is the 
magnetic field for the TM mode. The dis- 
tribution of the electric field of the TE 
mode (or the magnetic field in the TM 
mode) in a particular layer within the strat- 
ified structure can be written as a sum of 
two plane waves traveling in opposite di- 
rections. The amplitudes of the two plane 
waves in a particular layer a of one cell are 
related to the amplitudes in the same layer 
of an adjacent cell by a unitary 2X2 
translation matrix i/a> (7). 

General features of the transport prop- 
erties of the finite structure can be under- 
stood when the properties of the infinite 
structure are elucidated. In a structure with 
an infinite number of layers, translational 
symmetry along the direction perpendicular 
to the layers leads to Bloch wave solutions 
of the form 

EK(x,y) = £A.(x)e*V*'-' (1) 

where EK (.t, v) is a field component, EK(x) is 
periodic, with a period of length a, and K is 
the Bloch wave number given by 

1 

^-[Tr(L/°')]:- 1] ' j (2) 

Solutions  of the  infinite system can be 
propagating or evanescent, corresponding 
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to real or imaginary Bloch wave numbers, 
respectively, f lie solution of Eq. 2 defines 
the band structure for the infinite system, 
w(0-,.). It is convenient to display the so- 
lution's of the infinite structure by project- 
ing  the  u)(Ov.)   function  onto   the   w-ky 

plane; Examples of such projected struc- 
tures are shown in Fig. 2. A and B. The 
lieht   gray   areas   highlight   phase   space 
where "A." is strictly real, that is, regions of 
propagating states, whereas the white areas 
represent   regions   containing   evanescent 
states. The shape of the projected band 
structures for the multilayer film can be 
understood intuitively. At ky = 0. the band 
sap for waves traveling normal to the lay- 
ers is recovered. For it,. > 0, the bands 
curve upward in frequency. As ky -* *, the 
modes become largely confined to the slabs 
with the high index of refraction and do not 
couple between layers (and are therefore 
independent of kx). 

For a finite structure, the translational 
symmetry in the directions parallel to the 
layers is preserved; hence, ky remains a 
conserved quantity. In the direction perpen- 
dicular to the layers, the translational sym- 
metry no longer exists. Nevertheless, the K 
number, as defined in Eq. 2, is still rele- 
vant, because it is determined purely by the 
dielectric and structural property of a single 
bilayer. In regions where K is imaginary, 
the electromagnetic field is strongly atten- 
uated. As the number of layers is increased, 
the transmission coefficient decreases ex- 
ponentially, whereas the reflectivity ap- 
proaches unity. 

Because we are primarily interested in 
waves originating from the homogeneous 
medium external to the periodic structure, 
we will focus only on the portion of phase 
space lying above the light line. Waves 
originating from the homogeneous medium 
satisfy the condition w a ckjn0, where n0 is 
the refractive index of the homogeneous 
medium, and therefore they must reside 
above the light line. States of the homoge- 
neous medium with kv = 0 are normal 
incident, and those lying on the u> = ckJnQ 

line with kx = 0 are incident at an angle of 
90°. 

The states in Fig. 2A that are lying in 
the restricted phase space defined by the 
light line and that have a (<u, ky) corre- 
sponding to the propagating solutions (gray 
areas) of the crystal can propagate in both 
the homogeneous medium and the struc- 
ture. These waves will partially or en- 
tirely transmit through the film. Those 
states with (ID. £,.) in the evanescent regions 
(white areas) can propagate in the homoge- 
neous medium but will decay in the crys- 
tal—waves corresponding to this portion 
of phase space will be reflected off the 
structure. 

The multilayer system leading to Fig. 
2A represents a structure with a limited 
reflectivity cone because for any frequency 
one can always find a kv vector for which a 
wave at that frequency can propagate in the 
crystal and hence transmit through the tilm. 
For example, a wave with eo = 0.285 X 
2-xc/a (dashed horizontal line in Fig. 2A) 
will be reflected for a range of ky values 
ranging   from   0   (normal   incidence)   to 
0.285 X 2ir/a (90° incidence) in the TE 
mode, whereas in the TM mode it begins to 
transmit at a value of kt. = 0.1 S7 X J-'a 
(~41c incidence). The necessary and suffi- 
cient criterion (5) for omnidirectional re- 
flectivity at a given frequency is that no 
transmitting state of the structure exists 
inside the light cone; this criterion is satis- 
fied by frequency ranges marked in dark 
gray in Fig. 2B. In fact, the system leading 
to Fig. 2B exhibits two omnidirectional 
reflectivity ranges. 

The omnidirectional range is defined 
from above by the normal incidence band 
edge co,,(A-v = ir/a. A-,. = 0) (point a in Fig. 

• 2B) and from below by the intersection of 
the top of the TM allowed band edge with 
the light line ü),(itr = sla, ky = w/c) (point 
b in Fig. 2B). 

The exact expression for the band edges is 

A = i 

1 + A 
cos(A-,,"/il + A-,l2'/!2) 

+ [-j^ cos(*;"/i, - kf-%) +1=0,     (3) 

2\kj" + kr- TE 

I//!,;A-;:'     n.-kj" 

2\7JkJr' + nrk;z' 

(4) 

TM 

A dimensionless parameter used to quantify the 
extent of the omnidirectional range is the range 
to midrange ratio defined as (w;, - to,).' :(ID,, - 
(o,). Figure 3 is a plot of this ratio as a function of 
njnt and «,/n„, where CD,, and io, are determined 
by solutions of Eq. 3 with quarter wave layer 
thickness. The contours in this figure represent 
various equiomnidirectional ranges for different 
material index parameters and could be useful for 
design purposes. 

It may also be useful to have an approxi- 
mate analytical expression for the extent of 
the eap. This can be obtained by setting 
cos(fcv

l '>/],- kx
a'h2) s 1 in Eq. 3. We find 

that for a given incident angle 80, the approx- 
imate width in frequency is 

Aco(e0) 

2c 

where kja> = V(üJMQ/C)
2
 - ky (a = 1,2) 

and 

h, N/n? - n0
2sin28o + h2 N7Jf - nn 

S"(-\ITT)-C0S"(\ATT 

(5) 

At normal incidence, there is no distinction 
between TM and TE modes. At increasingly 
oblique angles, the gap of the TE mode in- 
creases, whereas the gap of the TM mode 
decreases. In addition, the center of the gap 
shifts to higher frequencies. Therefore, the 

Fig. 3. (left). The range to midrange ratio (o>h 

- <d,)/1/2(w,, + (d,), for the fundamental 
frequency range of omnidirectional reflection, 
plotted as contours. Here, the layers were set 

Sf^^tSS^bSS 4^1 = Wave.ength (,„,) 
2.875 and nJn0 = 1.6). It is located at the .,,..,     ,,   ,-j,-    \    A    „,„„J 
intersection of the dashed lines (black dot). Fig. 4 (right). Calculated (solid me) and measured 
(dashed line) reflectance (in percent) as a function of wavelength for TM and TE modes at normal, 
45°, and 80° angles of incidence, showing an omnidirectional reflectivity band. 
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criterion for the existence of omnidirectional 
reflectivity can be restated as the occurrence 
of a frequency overlap between the gap at 
normal incidence and the gap of the TM 
mode at 90°. Analytical expressions for the 
range to midrange ratio can be obtained by 

setting 

1c 

luiu  -T  lun. 

n, — n- 

"(6a) 

/': \":~ ■ /'i v«r - "»" 

xcos' ■' 

V\«: — n:~ \«f _ "o" 

''i  \> n,~ \ n \"' 
(6b) 

Moreover, the maximum range width is at- 
tained for thickness values that are not equal 
to the quarter wave stack although the in- 
crease in band width gained by deviating 
from the quarter wave stack is typically only 
a few percent (4). 

In general, the TM mode defines the low- 
er frequency edge of the omnidirectional 
ranae. An example can be seen in Fig. 2B for 
a particular choice of the indices of refrac- 
tion. This can be proven by showing that 

si (7) 
TM OK..ITE 

in the region that resides inside the light 
line. The physical reason for Eq. 7 lies in 
the vectorial nature of the electric field. In 
the upper portion of the first band, the 
electric field concentrates its energy in the 
hiah dielectric regions. Away from normal 
incidence, the electric field in the TM mode 
has a component in the direction of period- 
icity, and this component forces a larger 
portion of the electric field into the low 
dielectric regions. The group velocity of 
the TM mode is therefore enhanced. In 
contrast, the electric field of the TE mode 
is always perpendicular to the direction of 
periodicity and can concentrate its energy 
primarily'in the high dielectric region. 

A polystyrene-tellurium (PS-Te) materi- 
als system was chosen to demonstrate omni- 
directional reflectivity. Tellurium has a high 
index of refraction and low loss characteris- 
tics in the frequency range of interest. In 
addition, its relatively low latent heat of con- 
densation together with the high glass transi- 

Table 1. Penetration depth {£) at different angles 

of incidence for the TE and TM modes. 

Angle of incidence ,     (     } ^  ((im; 

(degrees) 

0 
45 
80 

2.51 

3.05 

4.60 

2.51 

2.43 

2.39 

tion temperature of the PS minimizes diffu- 
sion of Te into the polymer layer. The choice 
of PS, which has a series of absorption peaks 
in the measurement range (9). demonstrates 
the competition between reflectivity and ab- 
sorption that occurs when an absorption peak 
is located in the evanescent state region. The 
Te (0.8 (Jim) and PS (1.65 u.m) films were 
deposited (10) sequentially to create a nine- 
layer film (//). 

The optical response of this particular mul- 
tilaver film was designed to have a high reflec- 
tivity region in the 10- to 15-u.m range for any 
ancle of incidence (in the experiment, we mea- 
sure from 0° to 80°). The optical response at 
oblique anales of incidence was measured with 
a Fourier" Transform  Infrared  Spectrometer 
(Nicolet 860) fitted with a polarizer (ZnS; Spec- 
traTech)  and  an  angular  reflectivity  stage 
(VeeMax; SpectraTech). At normal incidence, 
the reflectivity was measured with a Nicolet 
Infrared Microscope. A freshly evaporated alu- 
minum mirror was used as a background for the 
reflectance measurements. 

Good agreement between the calculated 
(12) and measured reflectance spectra at 
normal, 45°, and 80° incidence for the TM 
and TE modes is shown in Fig. 4. The 
regimes of high reflectivity at the different 
angles of incidence overlap, thus forming a 
reflective ranae of frequencies for light of 
any angle of incidence. The frequency lo- 
cation of the omnidirectional range is de- 
termined by the layer thickness and can be 
tuned to meet specifications. The range is 
calculated from Eq. 6 to be 5.6 u.m, and the 
center wavelength is 12.4 u.m, correspond- 
ing to a 45% range to midrange ratio shown 
in dashed lines in Fig. 3 for the experimen- 
tal index of refraction parameters. These 
values are in agreement with the measured 
data. The calculations are for lossless me- 
dia and therefore do not predict the PS 
absorption band at -13 and 14 u.m. The PS 
absorption peak is seen to increase at larger 
anales of incidence for the TM mode and to 
decrease for the TE mode. The physical 
basis for these phenomena lies in the rela- 
tion between the penetration depth and the 
amount of absorption. The penetration depth is 
£ a lm{VK), where K is the Bloch wave num- 
ber. It can be shown that g is a monotonically 
increasing function of the incident angle for the 
TM mode of an omnidirectional reflector and is 
relatively constant for the TE mode. Thus, the 
TM mode penetrates deeper into the structure at 
increasing angles of incidence (Table 1) and is 
more readily absorbed. The magnitude of the 
imaginary part of the Bloch wave number for a 
mode lying in the gap is related to its distance 
from the band edges. This distance increases 
in the TE mode because of the widening of 
the gap at increasing angles of incidence and 
decreases in the TM mode because of the 
shrinking of the gap. 

The PS-Te structure does not have a com- 
plete photonic band gap. Its omnidirectional 
reflectivity is due instead to the restricted 
phase  space available  to  the  propagating 
states of the system. The materials and pro- 
cesses were chosen for their low cost and 
applicability to large area coverage. The pos- 
sibility of achieving omnidirectional reflec- 
tivity itself is not- associated with any partie- 
ular'choice of materials and can be applied to 
many wavelengths of interest. Our structure 
offers metallic-like omnidirectional reflectiv- 
ity for a wide range of frequencies and at the 
same time is of low loss. In addition, it allows 
the flexibility of frequency selection. 
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