| AD NUMBER |
| :--- | :---: |
| ADA800053 |
| CLASSIFICATION CHANGES |
| unclassified |
| FROM: \quad confidential |
| TO:
 Approved for public release; distribution is
 unlimited. |
| |
| |
| FROM:
 Distribution authorized to DoD only;
 Administrative/Operational Use; 18 JUL 1952.
 Other requests shall be referred to Naval
 Research Laboratory, Washington, DC. Pre-dates
 formal DoD distribution statements. Treat as
 DoD only. |

TH LS REPORT. HAAS BEEN DELIMITED
A $)$ CLEARED FOR PUBLIC RELEASE
H DER DOL DUBECTIVE $5200: 20$ ANB
: RESTRICTIIONS ARE IMPOSED UPON
I'S USE AND DISMLOSURE:
I STRIBUTIOA STATEMENT A
1 PPROVED ${ }^{6}$ FOR POUBLIC RELEASE; ASTRIBUTION: UNLIMITED,

ITI 205443

Repraduced
 茹 the

AD G MOM BLLL STATON

HOTICE THS DOCUUIENT CONTANS INHORMATON AMEECTINGTHE
NATIONAL DEFRNGE OF TUE UNTED STATES WTTHI THE MEANING OF TYIE ESPIONAGE LAWS, TATEE 18, U.S.C., SECTIONS 793 and 794.

THE TKANSUMSSION OR THE RTVELATION OF ITS CONTENTS IN ENY MANNER TO AN GNAUTHORIZED PERSON IS PROMBITED BY LAW.

contidentat security informenion

Proce 0 dinge

FOURTH SXMPOSIUM
 ON

SCANINTG ANYEMNME
xinday the aumpigeg of the Antenna Research Branch

Radio Division l

$$
\text { 21-22 April } 1952
$$

Naval Research Liaboratory
Washington, C.

contidential
security insormation

FOTMORO

Phis symposium ts touth in a series which was begun 1943. Each was held in an effort to acquaint workers in the scanning field and other interested parties witithe latest deveiopments in antenna scianning systems. It is felt that these symposia have proven usetil not only in disseminating existing İnformation but also in stimulating new edeas. It is hoped that they will continue to be heid whenever enough siguificant work is available for prestentation.

One objection to meeting of this type is that the size of the audience limits the interchangeofideas. Fortunatyy this thas not been altogether true. Eāch symposium has included interesting discussion periods tnitī ated by the audience. However, there has been a cime limitation on the discussion; soit apneared worthwile to introdiee smaller group meetings for the purpose of discussing specialuzed subjects. This iden was suggestedby Dr. R. C. Spencer of Air Force CambridgeResear ch Center, and two such sessions were held in conjunction with this symposium.

Considerable space zould be used fin discussing the techniques of these symposia, but it might be better to consider here some of the impressions which have grown out oit them. One of the most strikigg of these is-the urreased interest in this Seld. Evidonce of this is seciin the large numper of parficipants in the last two symposia. Further evidence of this is provided by the fact that twerty four papers were presonted at this symposium, held oniy eighteen months aiter the third
 a poid crowding the pregen

This increase in interest has resulted in the development of new sotuths to scanning problems and the improvernent of the other metiods. Scaning requirements ane no longer looke Hon as a combination of impossibilities but for some mrobins may different soluthons the Ben effered The problem now vecriees one of choosing the most conpentint method he the paticular aplichtion,

Anotion signiticant moression was obtainea from the discussion durtng the third session of this sympostim. It this the, it was poited out that the sapidity of scan is rot theited oy the samer. The antenna systern mustenergive the target pith a number of pulses during the time that the beam scans past the target. Since there is a finite number of pulseemailahe there is a tht to the rate at which the hearn can scan. Thic rate can almost nuariahly be obtained by a mechaniol rotatuon in hefeedassembly: tould be well thentoreveryone in the feld to speak of e scanning problem" zather than a "sanid-scaning problem." The papidity of scan is no ionger a problem in existing sysiems.

One fưther impression: Since sointions exist for most scaning problems, future efforts whll generally be concentrated on simplifying existing solutions developing rewsolutions whith cars be denonotrated tobe superior to existing solutions. The superionty must be evidencea not only by improvea electrical periormance tuit also by an inherent simplicity of design. Simplicity should be the keynote in future scanners. It whil not be sufficient to demonstrate periect optics with a system of inherent complexity. The concept of complexity versus imporyed performance should not be the concern of the prolect enginear alone. The seanner designer must be aware of this concept and must govern his aky-to-day thinking accordingly.

The usiou infermetc obtained from these meetings was not these impressions, but rather the data presented and interpreted in the warious papers and in the discussion periods. The present publication contans summar es mostof the talks and the discuscion herdods. The discussion material has not beem edited by the Individual particinants, oo that any thancuracies or misstatements are due to the shortcoming of the traniscription processes.

The success of this progrem requirea the efforts of wainy peopic. We are grateful to the speakers for their interesting papers. We wish to thank Dr. M. B. SleddandDr. W. T. Gabriel for supplying us with infor-
 B. xelly mhandling the detais of the arrangenents and in doing the very large arnout of necessary tybing is parkicularly appeciatod. The cooperadon and assistance of LCDE C. C. Rust was very effective in pro-

NOTE

The papērs presented at the Side Lobe Conference will be included in a separate publication. Those on tite attendance hist wilu weteite copies.
\qquad
———:

COTGDBNHLAL

Welcome
Capiof P-Turth Dutectoz Naval Research Laboratory
Opening Remarts$\underset{8}{ }$J. I. bôdmert, headAntenna Researich Branch, Radio Division I, NRL
WWE ANGLE SGANNERS
Concentric System Buannês 3A. S. DutivazStano
A Rapid-Scan, circuleng Syametricas Pillbox Antenna 11
Walter Rotman
Air Force Cambridge Reesearch Center
Foster Scanner Developments 14
3. C. स"oster and W. M. Jeliona
Mecin Universify17Airbañe Scañer for vighthawkWeC WhansonRCA, Dinceton, N: J.
Foóster Scanner Developments 19 $=$
GE Fere:-Genépl Flect ric Compny
On the Mangin Mirror21Roye Gunter, Jr.Clark University
Feed stabilization system 32Naval Researoh laboratory
FEDD SYSTEMS AND SCANNNG LOES
An Organ plipe Auteñ 43P. H 5 F FithBellrelephone batoritories
CONEDINTIAL
SECURIT INFORMATMOM
H. M1/ Bristow

Ađmiraliy Signai ana radar Estabushment, England
Ring Scanner with Applications
W. F. Gabrél

Naval Research Laboratory
Mark 25 Mod. 6 Scanner68
M. Butugham

R二ves Instrument Corporation

Cassegrain system with ghmetric Scaniag

H. H. Hibbs

Naval hoseatch Labotatory

Fivacis of vaiabie integration Time añ wetentor Characterishés
of Scaning Lo so Caiculations16
y. E. Corbin

Beil Yelephone Iaboratories
Losses in the AN/TPQ-2 Scanner
in. Hi. Honer
Georgia Instate of Tenhnology

Tphercol tuneberg Lens
89
He Thelk
Airborne Ins truments Lahoratory
The Tin Hat, a Modified Luneberg Lens

T. G What
 RCA Victor company Canada-

Luneberg Lens
G. D. Meeler

Naval Research Laboratory
360 Dénee Nonmechanical Scancer ompoyng a
Rineto it Lueberg Lễ's
111
R S. Wahner
Rughe Arcrafícompañ
Senning ar R.R. D .
S. S. D. Jones

Rauio Reseatohind Development Establishment England

WELCOME

Gaptain Fere Furth, USN, Director
Naval Research Laboratory.

This is the fourth of a series of symposta on scaming antennas. Approximately 18 months have olapsed since pur third symosium. In that geriod, many advances have been made in the art of scaning antennas, It is hoped that we may be abie to fully acquatnam the poopie nere with the developments and advances which have been made during this time. We are at least blescod with good weather, and those members from California are going to have to wort hard to hrag about mieir weather for it is heint duplicated here. it is a pleasure to welcome you to the Laboratory. We are always happy to have you here and we hope that you wili benefit by the papers which are to be deltvered curing the three days. We want you to make yourself at home here, and if you have the opportunity we liope tnat you will visit some of our labonatories. We are always anxious to welcome visitors, añ our scientists are always eager to talk about chose phases of their worlabout wheh they may taik, it is indeed apleas-
 time. Dr. J. I. Bohinert, Head of tine Antema kesearch Branch will open tie symposium.

Dri F. E Bohnert, Head
Antoum Resedrch Branch, Radio Division :
Naval Research Laboratory

Inarriving atour decišionto hold this symposium, we used two criteria, Finst, we felt thatenough sighif-
 in November 1950; and second, we felt that there was enoughgeneral interest by workers in the field to have another such get-together. We think that the last sytu-
 exchanged, and then put into practical antenna désign. Some examples woule ive the Schinidt lens and the Organ-Pipe feed. The success of this symposium will depend not only upon the quality of the papers to be given, but aliso on the quality and quantity of the discussion from the floor. We therefore kope that you, the members of the audience; will feel tree to comment on the proess, t would like et this time to glye reoognition to Mr: K. S, Kelleher of the Antenna Research

Dr. R. C: Snoncer, AFCRC
(Chairman)

ATM

CONCENTRIC SYGTEAT BCARNERS*

A. S. Dunbar
Stanford 品esearch Insîtute

A spherical mirccr operating at about $f / 1$ would make a nighly satisfactory reflector tor all but extremely highgah antennas. Fou sherter focal iengti system, however, it is necessary to introduce currection for the spherical aberration of the spherical mirror. The Schmidt System, consisting of a suherical reflector and an aspheric corrector plate, Is one of the mure successful corrected svitems. It operates up to speeds of $\bar{f} / 0.7$. The àdaptation of the Schmidt System tô a miorowave antenna has been described by Chait. ${ }^{1}$ Another highly cori ected spherical nirror system is the Bouwers-Maksutov or Concentric
 gated in the course of the work on this projece and will be ditcussed brielly here.

The Concentric system consists of a spherical reflector and a dielectric corrector which is a portion of a phencal shell concentre with the shericai reilector. The corrector introduces spherteal aberration comparable to the spherical aberration of tine reflector but upposite in sign. A small residual aberration which is independent of the field angle seciatins, since the focal surface is also sphericai and concentric with the reflector asid corrector. The Conecnitic System is represented inthe diagram of Figure 1.

It may readily be seen that in this completely centered system the performance at any field angle is precisely that at zero angle, provided the stop is placed at the cominon ceni ter, Thus the only requirement to obtain ercellent over-all performance is to reduce the residual aberration to tolerable limitis.

Thenarach vahe of the nont wheh a ray crosses the axis, ts guenoy

$$
\frac{1}{\frac{1}{G}}=\frac{1}{\underline{T}}+\frac{1}{\underline{T}}
$$

where F is the focal length of the reflector (R / z) and f is the focal length of the cornector. The latter is given by the relation:

$$
\left.\frac{1}{\frac{1}{2}}=\frac{\underline{I}-1}{R_{1}}-\frac{1}{R_{2}}\right)
$$

In ofruer to obtain good corrections it is necessary that \underline{C} for any given ray should coincide with or differ onizy slightly irom $\mathrm{E} p$. Consequently, $\underset{\text { c must be computed as a function of }}{ }$ \underline{R}_{1}; añd \underline{R}_{2}, año the ray height \underline{h}.

From the diagram of Figure 1 and the construction of Figure 2, it inay be seen that

$$
\mathrm{C}=\frac{\mathrm{h}}{\sin \left[2 \sin ^{-1}(\mathrm{~h} / \mathrm{R})+\epsilon\right]}
$$

and

$$
\cdot \dot{\epsilon}=\sin ^{-1}\left(h / R_{1}\right)=\sin ^{-1}\left(h / R_{2}\right)-\sin ^{-1}\left(h / \underline{n}_{1}\right)+\sin ^{-1}\left(\underline{h} / \underline{n_{2}}\right)
$$

Computations have been performed to determine the optimum values of R_{1} and R_{2} with the reflector radus R taken an unity, for vapicus values of the refractive index: . A somple set of parameters is $n=1.52, R_{1}=0.410$, and $R_{2}=0.355$.

Fiqure $2-$ Construetern pray tracing in Concentric sysiem
6. Secondand Thirouartery Progres Reports, Contract DA $36-0.39$ sc 5435 ,

 spherical reflector was procured from the C. W. Torngren Co., Somerville, Massechusetts, and the correcting lens was obtained from Bondwel, thc., Takland, Californa. A hovel techuque was used in fabricating the polyetivlene cry-otor. Molten poiyethytene was sprase gnto an aluminum hemispherical dome, bus buiding a sit of the plastic about onches thick The shel was then machined to the proper thichess and contour:

A photograph of the spherical reflector, ieed horn, and lens support is shown in F ure 3; a photograph of the assembled anemina is given in Figure 4.

Figure 3 - S̈pherical reflector, feed horn, and lene support

Figure 4 - Assembled antenna
 270 and 40° These patterns indieate that the fieldis in excess of 440°

The Bert System is an interesting variátion of the concentric system and consists of spherical feflector and a thick corrector in contaet with the reflector. A diagram of the Benti System is shown in Figurë 6.

$$
\sin ^{-1}\left(\mathrm{~h}_{1}\right)-\sin ^{-1}\left(\mathrm{~h} / \mathrm{m}^{2}\right)
$$

anid therefore

The paraxial value of is

$$
\frac{1}{2 / \mathrm{E}+(\mathrm{q}} 1 / \mathrm{R}_{2}
$$

The focalyngho the Berti system is given by

$$
\frac{1}{E}=\frac{2(n-1}{R_{1}}\left[1+\frac{2}{n}\left(\frac{1}{R_{8}}\right)\right]\left(\frac{R-R}{R}\right)
$$

Figure 5 - Concentric Sytem ontenna patterne (Hylane)

Figure 6 - The Berti System

Figure $7=$ Construction for ray tracing oñ Berti Syitem

Computakions to determinie the opt:num value of R for $n=1$, \boldsymbol{R} have been made ${ }^{7}$ with F taken as unity. The result is F , $=0.470$. An ciperimental f/0.47 Berti System has been constructed in a double-iayer pillbox. A drawing of the system is shown in Figure 8 , and ahotugapk of the artenna shown in Figure 9.

Tigure 8 - Cross section of experimental Berti System

Tests of the antenna have been made at $\lambda=3.2 \mathrm{~cm}$. Typical paiterns axe shown in rizure $\%$. These patterns are seen to be symmetrical nêither with respect to their oum major iobe nor with respect the antenna aris. This fact is due principaily to the lack of-contact between the dielectric sheets and the conducting piatesor the doubie-iayer pill how Smail ais spaces beteen the hielechrie and the conducting sheets cause changes in the efective dielectrieconstant and thus mưtíy the yelocity of wave m me menizm, This effect probably could be largeiy eliminated by painting the dielectric sheets with conductfigg silver paint.

It will be of interest here to examine the performance of a spherical reflector without correction. The condition will be that the diameter of the aberration circle at the focus of the spherical reflector shatl be less than the bain-power widh of the diffraction disc. It may be shown that this condition is equivalent to about $1 / 4$ the Rayleigh Limit.

Wigne - Bo extilystem antenna patterns (HEplane)

The diameter of the ieast circle of aberration in a spherical reflector is givez to good approximation by 8

$$
\mathrm{DLC} \equiv \mathrm{H}^{3} / 16 \mathrm{f}^{2}
$$

where fif is the height of the marginal ray and it is tie fouat length. The diameter of the aperture is 2 H ; the focal length is very closely given by

$$
\mathrm{f}=\mathrm{R} / 2 .
$$

The diameter of the diffraction disc at hälf power is

$$
\dot{A}=1.02 \mathrm{f} \lambda / 2 \mathrm{H}
$$

Let us nut- set the uidamers of the two circles equal. It is required to find the maximum permissible diameter 2 H . The result is:

$$
2 \mathrm{H}=128 \lambda(2 \mathrm{f})^{3}
$$

where (12 L is the ocal length to diametor ratio. Table 1 gives the masimum diameter of the aperture of a spherichi renlector which satisfies the condition that the aberration te onuai to $1 /$ the Ravleigh Limit.

A comparison of the uncorrected spherical reflector with the Concentric and Eerti Systems is afforded by Tables 2 and $\frac{3}{3}$. The Concentic Systen 15 compared with a sheri bal reflector with and without a ston in Table z nite Bert System employing a double-
 that correctors yid litheof no improvement. It may be seen with reference to Table 1 that this condition will preyail so long as the focal-length-to-diameter ratio of the reflector is close to and the thater is ress ynati 100 wavelenghis.

8 A beuvers op, cit pp, 7

TABEE 1
Dinneters of Ghefinal Roflectors Satisiving i/f raylégh Elmit

	$1,2 \mathrm{R}$
	2 B
3.0	3456
2.0	1024
-1.0	128
-0.5	16

TABLE 2
Comparison of Splerical Reflectoin with Concentric Sistem

CONFIDENTIAL

SECURTY TNFORMATHON

Budenbom: Did your spherical reflector have a $6 \hat{0}$-inch aderture?
(BTL)
Dundar: This was an X-band refiector with asso-inch aperture, but it had an effective (SRI)
Budenbom: We at Behtyeinhone yabonatixat anewoungionagincular reflector with

2h coud Kollehar; =- Coudyoutell uswhat criterion you used in retermining what size ape (NRI) $=$

人50
: Prast

tronix maty
(

> Dunbar:- We can use the circle of confusion to define sphericalemenakion We make tuie circle of coniusion equel to the hall-power widt of the finy disk:

Kelleher: Hive you tried to relate that condition which might be consideryatas a receiveu condition to the transmitecondition tising a point source and evaluatIng the phase error over your aperture?
Dunviri: Yes, it turns autcto be the same. \% o
Exorisingeracit "00
 the same eonclusion that the circie of coniuskon condition and phase erper candiongave the simeresult
(6) 4 "8, 80

I believe the conclusion we reached was that the optimumoliaise exror con
 were to plot the size of the circlepof least conusion and the maxtmum amount of phase error as a fuetion of focal point the curves might not neessarily colncide.

(hterc) hne surce whthe eane sies spharical reflector as that employed by Mr.
Dunbar. In the vidine plane rwe wera abietonget beamwidths of less than 2. However, we ilioninted wityone-ralf of the sphere; so in the other plane our beam widths were-abot 40 . We think that fou-posect coprection, a sphere of thatrsize should produce a 2 -degree beam,

SEGURMXTMORtwhox

A NAPID-SCAAR CHPCULARLY SYMAETEMCAL Phidex AWCNNA

Waltar Rotmar
Air Forcé Cambridge Research Center

$\therefore-\therefore \quad-\quad \therefore$ -
A directional antenna for microwave appitcations; capable of high-coed scanning and using sereral novel techntques, has been designed ard tested. Constaction is of the waveguide-fed; abuble-lāer pilloox type, but with ä circular radiating apenture insieãụ of thë customary lineär one. A sketch of the antenna with the emerging rays indicated is shown in Figure 4

Abstract

The operationai basis of the antennz is derived from the fact that radiation from a point source may he located spherical reilector or, in parallel plate structures, by a circular cylinarical reflector. For such a cylindrical reflector the limitation upon the degree of collimation is poincipally imposed by spherical aberration, which may be pariy elimi= nắte whinout destroying axial symnetry by ind metric dielectric lens between the parailel platess. Altexnately geoodesic pinciples of the type described by Nyers may lae employed to markedly reduce the spherical aberraton The following remarks apply only to the dielectic lens corrector, however.

If the structure made in the form of a double -layer pillbox, the lens may be enclosed within the same layer as the point source feed. The coilimated bêa then passes through the pillbox obend Arto the alfernate layer or top of
 over the upper surface of the pilibox is used. Cricular symmetry or alu reflecting and. fefractug elements thus preserve Furthen mone circular aperture, Iying the hórizontai plane and radiating over a metal plane, pooduces a much narroxer beam in

[^0] 18. 22l, February 1947

 SHCUKITY RHORMAMOS

elevation than wrold be obtained from an equivalent linear aperture. Coitrol of the surfâe characteristics of the metal plane by dielectric loading or cormagations or hoth permits changes in elevotion pattern without affeting appreciably tine pencil-beam characteristics of the azimuthal pattern.

Tnis antenna possesses characteristice which maje fotaptable to seral apolicatons:

1. Complete arial symmetry of all stationary portions. Hence, the antente is camek: of high-sjeed scan through elther 360° or any sector ther cof by simple rotation of the tatively smali central hub.
?. Narrow azinuthai pateern and stapea ele ation astesti-
2. Adaptability to flush mounting. The pillbox, except for transmission ine input, is in the form of a circutar plate only one or two hinhes thick at x-band and may be made an integral part of äny fiat surface.
3. Simutaneous scan in several diyectons. Since if all bends and transitions are pastectly matched) nẹ reflected energy is incident upon a transmiting waveguide point source, a multiplicity of sources may be used simultaneously without mutual interference.

Experimental and theorètical studies to determine the properties of the anterina have been conaucted and are now being analyzed. A model has been built and successfully tested.

DISCUSSION

Spencer: I would Ike to cor stent on the Myers Radiation Laboratory report. A lot of (AFCRO) the worl describeu by Myers was done by other peoplo, A large part of it Was stimuthed be a Suseestion from Dr. Chin A feed source could be moved ground the base of some object such as a jarutinere. Bueirgy would travei in geodesics around the side wails and be radited from a dameter across the top.
 I succeeded in showing that such a system had inherent sumerical aberration. This is evident if we consider that this surface an be pushed down to form a two-layter paraliel-plate system with à circuiar reflector. There appears to be some correction when we use a cylindrical surface since the wave fronts would turn un and you can detoceus. Charicy robinson found that he could insert a layer of dielectric and correct some of the spherical aberration. This is in agreement with a statement of Dr. Kingslake of Eastman Kodat Company whe says that no matter where you put a dielectric yon ohtalin the opposite sense of spierical aberrāton from that of the reflector.

Kelleher: Mr. Sakiotie of NRL has worked on what we might call the Myers' geodesic (NiRL) probiem. zie used a type of analysis essentialiy different from that employed by fivers. He tried to minimize phase error across the entire aperture,
 aperture thāve a question ior Mr. Rotman: Was this structure a cylinder or a come?

Rotman: It was a portion of a right circular cylinder. (AFCRC)

Kolleher: It was my idea that Myere' results, described in the Journal of Applied Physics

 $1 / 3$ of the ridius. For a cylinder of zerc height he compares a 30 -ftech aperture with a 60 -inch gerture. The 60 inch aperiure superior of course; when we use only the center 30 Inches.

One further queston: Just mo da you buport your plates? That was one our problems which we felt must be solved before we could build Mr Sakiotis' model.

Roman: Without sempircular geture we supported the pates with meta bars at the edges. We were fortunare to find spot where we could put metal supports. For our 360 -degree model, we expect to use nonreflecting metal posts which have been developed both at our laboratories and at Belt Telephone Laboratories.

Warren: What was the effective aperture of your system?
(RCA)
Totmant We used 750 whe physical aperture; for the geodesic type we used approximately 60 .

Comrmind A
 SECURTE INFORMATON

NOSTER SCARAER OEVELCMENTS

J. C. noster and Mi Molfan
Mecin University

BASIC PRINCTPLE OF THE FOSTER SCANNER

In its most elementary form the Foster Scamar may be considered as a line source pivoted and moving at unitorm speed in such a manner thet when it has moved through a given angle it snaps back to the original position. The source mustie placed on the surface of a cone and this cone revolved insice another cone. Suitable barriers and an exit gilt in the outer cone are necessary additions.

REQUIREMENTS CR THE PRESENT SCANNER

 National Reesearch Council is intendsi for a Canadian Army application. The system requires a double beam - one above the other - coch seanning 20 degrees and both owtathed from a single reflector. The speed of scan is approximately is scans per second for both beams, and the beamwidth must be equal to or less than 1 degree in both planes. Fio dimension of the equipment shall be longer than 78 in. it should be as light as posibible and should operate at a wavelength of 1.87 cm , Several possibilitien were suggesod, but tyas decided to nonstruct the scanner with the following featurès:

1. A single wiequite slot array to be fed through a rotatig iont on the rotor shaft
2. A 40 -agree developed cone to have a 4 -degnee yentex angle when roiled into ácone
3. Tuo exit slits 180 degrees apart to ntroduce the redation into separate horn feeds energling a single reflector; each feed to be silgitly off the focallinson the reffectur
4. Rotor ardotator cones to be fabricated as far as posiole from thet yetal.

The uata on a single slot has been oltaned from batch measurements of short sectione. It was decided to use shunt slots in the aray, The conductane of a single slot is given by $G / G_{0}=\sin ^{2} \theta$ for the tapered-mouth arrangernant uted. The numinaton across the array matchec a somewhat arbitrary symmetrical gabling function, and it was nâtched hy nsing ten groups of ten slots each. The amplitudes axe given by Table 1 .

TABE 1
Illumination Values for the Array

Shot Number	$1-10$	$14-20$	$21-30$	$31-40$	$41-60$	$61-70$	$71-80$	$81-90$	$91-100$
Arapituade	30	.40	55	60	1.0	80	55	.40	30

 slot array 58-1/A in. long (without end load). The bommidth was .72 degrees at half
 terns were taken at $10,0 \overline{0} 0$ naegancies at which the beamuidth we .74 degrees at haly pure $\bar{x}_{\text {, }}$ and the side lobes wete if parcent in field strength or 20 db down. The angle of squintichanges by 1 degree foz a 1.7 -ipercent frequency change.

ASSEMBLY OF SOURCE TN THE DOMOR

 extruded by the Aiuminum Co. of Canada by a procene pnica चas jelativeny inexpensive.
 feed line. The array was fed from waveguides passing through a hole in the wall of the shaft. The rotor joint conected to this wavegnide was mounted on the end oit tus shet.

METHOD OF CONSTRUCTION OF ROTOR AND STATOR

The rotor and stator skeletons wëre made of 65ST machined ribas. A chamel was bult into the rotor opposite the array in oraer to obtain a counter-boiance effect. Ali footharrers (haee suts) mexemachines fogether at one time on milling machine to eliminate any difficulty in meshing the teeth. Wine sheet nietal skins ior the notoi and
 rivets. The tolerances en the teeth were 031 in. netween the teeth and the skin and . 037 in. betwes adjacent teeth as cuo tooth baripins were meshed.

CONSPUCMONON RHE REPLECOR

The reflector was ansymetrical mrabolc cylinder which was cut along a line 6 in. from the vertex line to grold feed obstruction, in fis fini form it was 60.90 in. it was made of sheet motal wih rivetect constuction an weighed obout 135 lbs, one feed hörn was placed 2 in. inside of the focal line ana $\$ 5$ degrees below the axis; the other was placed 2 in. outside the focal he and 15 degres above the is.

CONINDENTAL

 GECGRYTY SNERWATIGN
DISCUSSION

Muller: (NRC)

Kelinher:
(MRi)

Thave alvays feit that the main problem was to nake the thing. Anyone can see that it wh work. We woulo like to be acacemic but we catinot in this case.
 in the past few Fears by the Aluminum Company of Canade to idea of cutting all of the teetin at one time nas removed any vestige ju troubie about maktng the teeth. The otner cinange ias been to employ atreraft techniques; thus avoiding lengthy machine work on a large latioe: We have the two best organizations in Canada working on that. We have one set in already

MMER:

Dr. Foster has been handing this scanner zander contract from us and he is ahead of our schedule. These is cne probiem eelated to this scanner which I would like to mention. We have iwo feed horns enemgiting a single reflector. Naturally both could not be on the focal line. If we usea a normal reflector and puit the two feed horns in the focal plane and displaced from the focal line, we would get poor beam characteristics. However, since we were ustif a had parabola this restriction to the focal plane une no longer necessary. Dr. Gruenberg of our laboratories developed a theory which indicated correct postifonting for the two feeds. The results, when applied to the exporimental refector obiained trom Mccil university, wexe highy satisiactory. A space between the two feed horns was a iittle over two beamwidhs. The side lobes were abouit 26 db down in both cases.

AHEORN: SCANEIg ROR NIGHTUAWK

WW. C. Whanson
RCA, Princeion N, I.

This antente is part of \#ighthem, an aporimental eirborne high resolution radar
 operates at $35,000 \mathrm{Mc}$. It whil have a range resolution ci about a feet by the use of a 10 midimicrosecond pulse and an azirnuth resolution of about 0.4 degree by the use of a 5-1/2-foot aperture;

System needs which determine the target spectifications of the artenna are:

Because quthe mide scanagie ard relatively high sean rate, it is thought that the Foster type of scañes is best juited for this joh. To produce 30 Gegrees or 75 beamwintus of ban the scanier wit le dout 6 feet long and 15 inches in diameter. The feed will be either a slotted wavegude linear array or a pilibox, the choter being mete on the basis of mechanical tolerances and space available. The Foster scanmer with feed a halfparabole cylindrical 12 -inch reflector of 6 inch focal leng th for vertical focusing to a narrow beam 1.8 degrees wide. The complete antenna will be mecharitcally tabtized for airplane motion and will be housea in a radome about the same size as that of the AN/ABGo 20 (8 feet in wdo and 3 feet in deptin). The entire antenna wil be rotated for elevation train.

Eypeted problems are: mintenane of parallel sheet spaciuss, zahication orbatriers for the schuncr, asymuetrical feed for pertical dish, and general construction dif ficultics. A forin of tuned aizer will be used to reduce rigidity requirements in the fiat sections of the scanner. A sample spacer tested in wavegude had a viju of 1.3 or less
 that two or more choke barricer be used instead of the commonly used meshing waveguide-beyond-cutoin type. This whil relieve some of he nating tolorances betwen the stator and rotor and will place the close thlonces in the chole dimensions, pioliminay measurement indicate appoximatery 20 dib for combintion of wow simple quarter-waye ciedres:

Fabrication the stator rotor assembly has been started, and it ozpeciea that fight tests of system will kegin sometime chis fall.

Gomadename
 GEOKRIT INFORMATION

DISCUSSION

Dunbar: Has cinere been any attempt made to provent the loe ftuatial propagation (SRI) of energy in the long choke grooves?

Wiikinson:

 (ECA)Feiker: (GE)

Foster: The hest way to handle the problem is to push the energy down the drain as

 (tiocili)We have not done anything aong those Tines as yet. There is some matication thă we have the eftact you mention. Our caperimentai wopt has invoived feeding from one long-taper ed horn into another long-tagered horn through a short section in which we put the chokes. There is some indication of unusual effects. This type of choke gecove was described in a Radiation Laboratory. report. Theydidnot mention this effect which youhave jrought up. We enpect to do fugther forik on our caperimental model in an attempt to resolve this problem.

Abbey: Dr. Tomíyasu of Sperry häs done considerable workeith longitudinal chokés

Wilikinson: I have a question I would ilike to direct to Dr. Foster. Some of your previous work under a USAF contract indicated vibrational problems in your fahricated structure when high speeds were attempted. The structure, as I recall, was welded and then some machine work was done. It appeans that nentape this present model requires noo machining. Is this truc?

FOSTER SCANNER DEVELOPMETETS

G. E. Feiker
General Engineering Laboratory General Electric Company

Two Foster scañes are presentiy under development for use in search antenna systoms. These are of two different types, the first a double-beam soaner and tine second a single -beam scanner. The first type is illustrated in Figure 1. A travelingwave line source attached to the rotor collimates the azimuth beam at an angle to the line source equal to half the scan ansele. During hali the scanning cycle the beam is scanned.in azimuth through the exit horn A and during the remainder of the cycle through horin . These herns ane displiced on enther side of the focus of an anmmetrical siattype reflector ln such a way that the beams scan sequentially in azimuth at different elevation angles.

Design wonthas been completed and a prototype is under construction. Barriers
 in the 菼-band. The line source, consisting of 20 grouns of 4 slots each, was ciesigned to approximate a Bolph distixibution. The experimental pateen is shown in Figure 2. The design figure for side-iobe level was 30 db ; first side lobes veried between 23 dio and 28 d . The ingist VSWR was less than 1:05 over tine band.

Figure 3 - Single-beam Foster scanner antenna gssèmbly
nny eflections during scan must be exceedingly suaif. Accomingiy; the scanner has been designe so tiat the barricis genever paraliel tō tíc wavésronto This design is iliustrated in frume a wheh shows the developed view of the scanner. fil output flare has been added in order to center the scan about the normal to the exit horn. rihis flared section hes been rolled up, as shown in Figure 3 , to keep the exit horn paraide to the scanner axis. As inustrated "n this figure, the scanner output horns and separate tracistry Eecus int having two reflecting surfaces. The front surface collimates the vertical polarization from the search feed, and the rear surface colinnateg the mont zontal polariequion from thetrackfeds.

CN THE RMANGM MIRROR*

Roy C. Gunter, Jr:
Clark Uriversity, Worcester, Massachusetts

INFRODUCRION

In view of existing effont in the field of radaz scanning antemas, it seemed that the next logical step was the design of 2 multiple element system, probably a s sparazed douoiet; tie writer, however, suggested that it might be well to examine certain other phases of the geneial problem before embarking on a specific tesign problem. The point was baised that the possibilies of high and low index sphemic and aspheric singlet diontric spstems had been considered; catoptric systems such as the parabola, sphere, etco, had becre extensively fivestigated; but an equally eotensirye study had not been made of catadioptre sysems, A plinosophical exa uifition of tie catadioptric system shows thet the corrector piate may be placea in one of tinee possible positions: (a) in font of the mirror, (b) coincident with the mirror surface or (c) behind the minor Gombinations of these are also possible. System (a) hau tucin studied by Stanfor nesearch Institute and others and reported under the generic terms of Schmidt, Boumers, etc. Systen (c), while atfixst glance appears ridiculous, is actualiy a distinci possibility if one admits the various foldea systems of tre Schmidt type. System (b), however, appase eithy has wen iittie considered; and accondaniy it neemea advisable to investigate it, Since this system is classically known as a Mangin Mirror, ${ }^{\circ}$ this term will be retained.

THE MANGTN MTRROR

Fundamental Consideations

Prion to the intuouction of the parapoloidi miror oy the Germans, the sperical minror was videly used in seaphitgits. An oovious disduantage was the spherical aberration whith caused a broadening of the beam-as the reflector wizopondup, joo, used sathin elative patwes-

An ottemito Improve the performance of the sherdcal system vas tirst made by A. Mangint $2,3,5$ in 1676 . in essence, his corrector consisted or a negative spherte lens

 With the stenfora Research Institute.
A Mangin Memorial de Officiex dingenicur Peis (1876)

 18¢\& p. 32 es es

Figure 1 - The Mangin Mirror

In practice, the coriector was ground and polished, and then the rear surface was silvered. Such units wère demonstratied to be sensibly free from spherreal aberration, anu coria was quite 1ow. The system never receiveü rū̆ favor, largely fecause of the steep curve on the front surface and the consequent excessive chictuess of giass at the mar: gins. Furuther, the paraboloid, while harder to make in one sense than a. spheric, was essentially a simpler syste mos

The fact rematns, nuwever, that Mangin dici show it was possible to correct a spherical reflector for woth coma and splerical aberration a nd for very large relative apertures at that ghortunately details of Mangin's work are to be found only in obscure French Government promphetş hence, it was decided that the quickest way to assess the advantages of the sintem was to actually calculate it out. To this end a radius and aperture were chesen fos the minror surface that would give aporoximate an f/s system; and then the curvature of the front surface was variod. It shoula ze botne cleasivy in mind that this is not wend. ing the lens in the strict optical sense of the word inasmuch as the paraxial focal pength wasmotyopt constant.

It has been goinach out that one of the grime dificulties with the inangin system is the exicessive marginal thickness. Considering the wavelength region in which we are working, -ft oesurred to the wrifer that it might be feasible to adopt a basically different fabrication technique. This would involve spinning the spheincal reflector and then spraying on the correction cuating. The coating would then ive finished to a aero center thickress ($\boldsymbol{\sim}=0$). In an anaigsis one should consider the effects of varying the radius of the first surf ce and
 a zero centor thichess, it semed advisable to investigate, to a limited exent, the eifect
 sphericai, cona, andast gmatism-whichare of greatese foterest to the designers of rapidscanning radar antemas.

stherical Aber ration añ coma

While there do exist relatively simple analytical expressions that will give the primaty sphericalaberration with satisfactory exactness fox systerns at high f-numbers, such expresfions are not in genciud, satisfactory for fumioers in the vicinity of unity or less. gecause of this an exact trigonometrical ray tracing pocedur was isedtodecermine the spherical aborraton (th). Angles were cartiedout to anacuracy of to001 but with six decimal. figues carried atong routinely fo avoid any rounding off errors since the amount of cal culation in sugha ray tracing procedure is extensive, onif the results wid be reported.
 arevaride The unde userare roptive uitis.

As the purpose of this investgation was not to come up with design for anoptimum system but rather to explore the possibilities of a principle, a somewhat simpified measure or coma (sagittal) was employed. This is not the true OSC' as referred to by Conrady. 6
 p. 370 et seq

CONFDENTLA
SECURIT ENGORMATEON

TaEter 1
IW - For Various values of $\mathrm{F}_{1} ; n=1.02, t=0 ; R_{2}=-4$

R1/R	$\begin{gathered} \mathrm{LA} \\ \mathrm{~h} \\ \hline 86064 \end{gathered}$	$n=\frac{\mathrm{LA} A^{\prime}}{\mathrm{x} 2 \mathrm{z} 2 \mathrm{Zag}}$	$\mathrm{B}=\frac{10}{}$	Paraxh Focal Lenifth
6	$\because 028198$	-0062710	-118682	+3.651212
-6a	-. 01125	-. 033691	-. 058555	+2,626863
. 66	-. 0005092	-014343	-,029056	+2.731785
. 68	+:00152	-. 002639	-009425	+2649968
70	+004826	+ 007550	$+007491$	+2,573526
174	+.01284	+0.85856.	+.035902	+2.stugiz
. 80	+.022805	+,046268	+.070335	+2.298850

TABLEE 1A
Coma-For Various Values of $\mathrm{R}_{1} ; \underline{n}=1.52, \mathrm{t}=0, \mathrm{R}_{2}=-4$

TABTE 2
 $h=1,5, t=0, R_{1}=+_{6} 68 \mathrm{~B}_{2}, R_{2}=-4$

TABLE 3
IA and Coma For Various Vaiues of t: $h=1.5, n=1.02, H_{1}=-68 R_{2}$

	LA ${ }^{\text {a }}$	Coma				Eor	Length
5	Co3n533	+ +1	+2.394366	0	+ 009425	7.090987	
1.52	6009425:	+.090987	- +6.6968	04	-005412	± 096446	+2,608319
IVt5	-0.066204	+ +000777	-3.092031	08	$\bigcirc 001782$	+. 101680	+2.569567
2.20	-215988.	- 139797	$+4.594598$	16	+006188	+.113096	$\underline{+2.494714}$

The techique is an application of the Sine Condtion in the presence of sherical aderration. betails of this techique may be found in Jenkins and White. ${ }^{7}$ The governing equation is;

$$
\begin{equation*}
\text { Coma sphergatatortinn }-\left(f^{\prime}-f^{\prime}{ }^{\prime}\right. \tag{i}
\end{equation*}
$$

 paraidit rowi longth measured from the secuin principal surface. Detalledaiscussion of

7 F. A Jenkins and F. F. White New York 1950 pp 1356

CONFHENALAL

SECGRTV HFORAATMON

Astigmatism

$$
\begin{align*}
& \frac{\operatorname{mog} \phi}{\mathrm{s}}+\frac{\mathrm{a}^{2} \cos \phi^{\prime}}{\mathrm{S}^{t}}=\frac{\mathrm{n}^{2} \cos \phi^{\prime} \cos \phi}{\mathbf{T}} \tag{2}\\
& \frac{n}{s} \frac{n^{\prime}}{S^{\prime} \mathrm{s}} \frac{n \cos \mathrm{~m}^{\prime}-n \cos \mathrm{~g}}{\mathrm{~F}} . \tag{3}
\end{align*}
$$

In bothequations ${ }^{-\phi}$ and 中e are the angles of inctdence and refraction，respectively，of the chief rate at each surface，Image and object distances are measured along the chief ray． These equations are not reaty accurate ior wide apstures，but they do furnish a first approximation．In the final analysis of an actual design for wide aperiure systems trigono－ metricat ray tracing would be employed．

Tables 4 and 5 show the effect of varying R_{1} and the index．Figute 2 is a graphical presentation of the results of Table for R1 $=70 \mathrm{R}$ ．Decause of time limitations，no attometwas wate to chect the cffect on astgmatism of an increase in center thickness： It is not anticipated that such a procedure would be frutut uniess the thicicness is increased excessivively．

TABLE 4
Astigmatism－For Various Values
of $R_{1} ; t=0, R_{2}=-4$ ，and $n=1.52$

$\mathrm{B}_{1} / \mathrm{R}_{2}$	Astigmatism $\left(S_{s}^{\prime}-S^{\prime} t\right)$		
	$\theta=8^{\circ}$	$\theta=12^{\circ}$	$\hat{0}=20^{\text {c }}$
． 6 ¢ิ	＋． 050069	＋．113311	＋．388592
IU	104576\％	＋边达 22	－ 248 l

t θ＝semi－ficla angle ＊＊not calculatea

wer

ABBLE
Astigmatem e or Various Values $=1$
$0 \mathrm{O}, \mathrm{t}=0, \mathrm{R}_{2}=4$ ，and $\theta=20^{\circ}$

DISTUSTION
Cnitical evaluation the pextomane of any inage forming system is generally effected by compardsoñ ïrse with an absolute stanará，such as Rayleigh timit，anu then

8 These equations are generally attributed to Coddington．A derivation of them may be found in Go．Mont，Hight，Pinciples and Experiments foGraw Hill Book－Gos，Inc．New． York；1937）first editito petz

With eniating sytems debenedto othe same fob, Accordingly, we discuss wur modified Manin system (henceforth abbreviated MMS) first fin terms of the Rayleigh Himit and then by comperison with its existing counterparte.

System Aberations vs Ravieigh himit

White the statement of the Rayleigh Limit in terms of path difference is fundamental, the statement of optical aberration tolerances in this ruaner is inconvoniont. It con be shown that the Rayleigh Limit may be restated in terms of spherical aberration, coma, and astigmatism as follows:?

$$
\begin{align*}
& \text { Tolerance or } \mathrm{LA}=\frac{4 x}{n^{\prime} \sin ^{2} \theta^{\prime} \mathrm{M}} \tag{4}\\
& \text { Tolerance for Coma }(\operatorname{sig} \operatorname{tith})=\frac{\lambda / 2}{n \sin e^{\prime} N} \tag{.5}
\end{align*}
$$

Tolerance for focal range $=\frac{\lambda}{n_{0} \text { Sing }}$,
where $\theta^{\prime} M$ is the closing angle, n^{\prime} the index of image space, and $H^{\prime}{ }_{k}=$ height of the image determined by the intersection of the principal ray and the paraxial image plane.

If wë choose an antenna of diāmeter 72 inches, tinē̄ 1.5 ru (relative units) $=36$ inchés, or 1 rū $=8 \frac{s}{x}$ inches. Thése antenna dimensions may, of coursse, be varied at will, suibject to the problemat hand, with consequent radefinition of the ru. Let us in adition choose
 yinned downe can compute the Qayletgh Tolerances. This is snow th Table 6 or LA'.

The measure of coma used in the section on the Mangin Mirror is valuable because if is (o) a relatively simple and quick way of assessing the variation of sagital coma with system parameters and (b) does provide an excellent method if we wish to juge the variafion of coma in terms of focal length. To judge the coma in terms of the Rayleigh Tolerance one mav use the oser of Conrady.

$$
\begin{equation*}
\mathrm{OSC}^{\prime}=1-\frac{\theta^{\prime} \mathrm{p}}{\sin \theta^{\prime}}\left[\frac{\mathrm{S}^{\prime} \operatorname{sp}}{\mathrm{S}^{\prime} \mathrm{pr}} \mathrm{~S}^{\prime} \mathrm{pr}\right] \tag{8}
\end{equation*}
$$

Where

$6^{\prime} \mathrm{p}$	$=$ the closing angle of the paraxial ray obtained by an artifice in ray tracing,
$\theta^{\prime} \mathrm{M}$	= the closing angle of the marginal rays.
S'sp	- back focus for the paranial ray,
S_{3}	- bact focus for the maxginal ray, and
S^{pr}	F distance of exit pupil point from last surface.

 the index for this condition being ahout 1.79 when $\mathrm{R}_{\mathrm{i}}=0,68 \mathrm{R}_{2}$. There ate reagons to believe, however, that the utilization of $n=1.52$ may be advantageōus; so OSC has been computec
 Tole $\bar{r} a n c e$ fos OSC', and hence sagittal coma, appezir in table \bar{i}.

TABLET
OSC' for Selected Values of $\mathrm{R}_{1} / \mathrm{R}_{2}$;
$t=0, n=152, R_{2}=-4$

Af the upper and lower rim ray method wat hot used to calculate coma or astionatism, the data required for an exact determination of $\mathrm{H}^{\prime} \mathrm{k}$ was not available. Instead, a simpler, but more stringent tolerance, was placed on OSC by the use of $\mathrm{H}^{\prime} \mathrm{k}=1$. 5 ; the full aperture. The ratho ot the true Raleigh Tolerance to that incicated in Table 7 is about $8: 7$. The results shown in Table 7 gre, as usual, hoth pleasant and (as expected) unplè şant, nieasant becauge It is clear that the coma can be held well withth the Rayielgh Tolerance by proper cholce of R1 gnd unpleasant becuase the proper cloice (a) does not concide with the ninimum value of spherical and (b) ocurs at anather stéep curviture.

If an actul destra wére to be worked out, an enaedvor wout be mana, course, to arrive at the best compromise of $\mathrm{R}_{1}, \mathrm{R}_{2}$, t and n Is is fairly clear from Tabie 3 that thecelolitie to be galned by increasing the center thickness from zero.

Let us refor to Figure 2 to study the astigmatism then the front surface is the stop. If the leed is caused to nove circularly midway between the S and T surfacels, its radius Woula ve 2628 rit 0 er 20 Whie this is notexactly mideay tor $\theta=12$, is is not too far off, the radius being 2,591 for $\theta=10$, a difference of 04 ru 0 o 00 theches for the
assumed antenna umensións. This might well be tolerated se if is most advantagecus, as we shall see, to use the full focal range tolerance at miximum sield angle. The center for the fectatation woult then be the exit
 the antenna. Actually, if the feed were cäsed to move circularly with the vertex of the antenna as a center and the paraxial focai lengeh as a radius, it is highly posible that the defocussing produced might well be acceptable. This mossibility exists since astigmatism produces, fa general, a symmetrical diffision wheras coma does not.

The Rayleigh Toierance tor tie astig= matism may be determined by assuming that the chief ray is the optical axis rotated and θ^{\prime} m is then the angle between the ray irom the
 efentyy close mproximation this angle turns cit (from graphical methods) to be 32° for $\theta=80^{\circ}$, $\theta=12^{2}$, and $\theta=8$. Thus, the astigmatism allowed may be derived from Fquakion 7.

$$
\begin{align*}
\text { Tolerance for astigmatism } & =\frac{\lambda}{n \sin ^{2}} \\
& =\frac{.0492}{(.529 G)^{2}} \\
& =0102 \tag{7a}
\end{align*}
$$

Refering to Table 4 or Figure 2 , we see that this tolerance is reached at about it

 but teopirg the zotit suriace as the stop; the gain will probahly not balance the marked increase in coma. Inspection of the petrol condition indicates that some sight inprovement migh we achievea, but it will probably oc found that the astsomatism is the baste
 Raylefricolerance may beccepted, it is demonstrably possible to bring the cona añ Epherical aherration of this system well within the requren Imits without resorting to other than a simple spherical mirror andin-contact corrector piate, and with no artificial stop.

Comporison with eomparable Existiog Systems

There ane manvoptical sptems with whinh the NMS might companed rowever, it seems logical to limit this comparsun to systems in nich there is a sing eoptical operator. if we thus exclude systems with separated oopenaiors, inere ${ }^{2}$ ieft, of the simple systems, Wut the spher cal neftector, the paraboloidal reflectos, and the giple lens. Comparison of their selative performance may be made most easily hy chasfothe io m shown in

 of a simplelens at fic would be several times that of the inarginat thickness of the Miss.

TABLE 8
Comparison of the Aberrations of the simple Lens, Spherical Réflector, and Paraboloidai Reflector with the Modified Mangin System.

	Simple	Sphétical Refiector	Ranaboloinal Reflector	Mangin Mirror
Spherical Aberration	cannot be made less Than $R=T$ fon nomal values of N	< R 。2.	Zero	$<\bar{x}$
coma	can be made zero	> R.T.	> Fi. T.	$\leqslant x_{0} \mathrm{~m}$
Astigmatism $\mathrm{S}_{\mathrm{s}}-\mathrm{S}_{\mathrm{t}} \text { at } 20^{\circ}$	20, 1 ¢	≈ 0.9	coma so great that hides effect of astigmatism	≈ 0.1 全
Maximum Keiative Apertura	0.5	. 0.5	. 0.0	≈ 0.5

A study of Table 8 shows that the MMS is clearly superior or equal to the others as regards coma and spherical aberration. It is understoóa, ố course, that if an aberrationt may be reduced to apee ciably less than the Rayleigh Tolerance, theree is no significant mefit in zaking the aberration to zero. As regards astigmatism, the four syatems are
 thecetaphothte perfecton than the other three. The facts, nowever, that there may be some lose due to the dielectric in the MMS and that the ultimate \bar{f} number of a parab= oloidel reflector is zero (coma, etc., disregarded) as against about 0.5 for spherical surfaces mut be taken into consideration.

Tould aphear that the Bonwers', Maksatove Schidt, and Bennett ${ }^{10}$ systems althave mevt and from a purely aberration point of tew they are modoby better correctedthan the MMS- The Bennett system (s) is essentially that of Maksatov, but all surfaces are cons

- entric (or neariy so) with the focal surface concident (or nearly so) with the frst surface of the corrector plate. In addition the Bennett system utilizes a second corrector in contact with the nirror, From anower all antenna point of view these systems are, in general, much more complex mechanically as well as ontically than the MME. The Bennett system in audition; while excentionaly well corrected because of its concentricity, utilizes very thick corrector elements. One-way corroctor element thicknesses of from $20 t \% 2 \%$ of the focal length were empoyed The comparabie elenent thichass for the MMS is about 6% of the focal legith:

Whe writex would like once again to bring attention to a method of construction which, while durfeut (if not impossible) at oglical wavelengths; tecomes quite possible at radar wavelengths. This is the spinuing of the sphericat yeflector, spraying or coating of the corpector-material (probabiv poivethylene') on the reflector suriace, and subsequent machinizg to specificatuons:
Wh, Bennett, Catadioptric Lens Systems, US Patent $2,571,657$ (195i) anled Apris 271455 Serial 7590,598

Conailions Pertaining When the Pacaxial Rocus is at che Center of Curvature of the First Surface

Durine the course of this investigation, the results of Table 1 were graphed, it then became apparent that when Ryo. 0.6 F 2 , the praxitil focus and the center of curyature of the first surace were neary coincident, we center hicknese beng equai eozero. A theoretical study was then made to sind the analytical relation between R_{1}, R_{2}, and in such that exact coincidence would existi. the derivation proved quite simple and is given here as a matter of interest:

$$
\begin{equation*}
\frac{n}{s^{\prime}+\frac{n^{\prime}}{s^{\prime}}} \frac{n^{\prime}-n}{R} \text {, the general paraslal formit. } \tag{9}
\end{equation*}
$$

Assumint $s=R_{1}$, we will work for $s_{8}^{\prime}=\infty$,

$$
\begin{equation*}
\frac{1}{R_{1}} \frac{n^{\prime}}{S_{1}^{\prime}}=\frac{n^{\prime} 1}{R_{1}} ; \text { solving for si' we gat } \tag{10}
\end{equation*}
$$

For the mirror,

$$
\mathrm{s}_{\mathrm{I}^{\prime}}=-\mathrm{R}_{1}
$$

$$
\begin{equation*}
\therefore s_{2}=+R_{1} \tag{11}
\end{equation*}
$$

$$
\begin{equation*}
\frac{1}{\mathrm{~s}}-\frac{1}{\mathrm{~s}^{\prime}}=-\frac{2}{\mathrm{R}} \text { is the general pardial formuia } \tag{12}
\end{equation*}
$$

$$
\cdots \frac{1}{+R_{1}}-\frac{1}{s_{2}^{\prime}}=\frac{-}{-R_{2}}
$$

End $\frac{R_{1} R_{2}}{2 R_{1}-R_{2}}$

- bithizing (3) again for the third surface.
solving tor $\frac{1}{5}$, weget,

$$
\begin{equation*}
\frac{1}{3_{3}}=\frac{1-2 n^{\prime}}{R_{2}} \tag{14}
\end{equation*}
$$

If Ry is to be the paraxial focal length then $\mathrm{s}_{5}^{\prime \prime}=\infty$.

$$
\begin{align*}
& 0=\frac{1-Q_{n}}{R_{1}} \frac{R_{n}}{R_{2}} \tag{15}\\
& R_{1}=I_{n} n^{\prime} R_{2} \tag{16}
\end{align*}
$$

Q GimbDENMAL
SCCURITY INFOnEMON

For $\mathfrak{n}^{\prime}=\frac{1}{\text { and }}$ Wave,

$$
\begin{equation*}
R_{1}=\frac{1-3.04}{3.04} R_{2}=-.67105 R_{2} \tag{17}
\end{equation*}
$$

 If we regnize that $R 2$ is actualy negative, then Equation (17) becomes,

If will be noted tiat it is in very close agreement with the value interpoleted from Table i.
As in any preliminary investigation of this sort, a termination line must be drawno Ii was thus decided by the writer that a single stuay would be made of the possibilities Inherent in Equation (18) and then leave further detailed analysis for the actual dessign. phase, if such there be. Accordingiy, the astigmatism $O S^{\prime}$ and spherical were determuned either by direct calculation or by ntormolation, with the results appearing in Table 9 : Flguize 3 is a graphical sketch of the system discussed in Table 9 showing the sagittal and tangential thtercepts with the meridicnal plane.

Enamination of Table 9 and Figure 3 ieveals the effects of moving the ston. These effects ane: (a) the most prorninent change if the hure pedution in astigmatismi (b) coma and Spherical aberation are relatively unafiected. of if the same f-number is to be preserved the edge thickriess must be about doublea, and (d) tie finle curvature has changed from positive to very slightly negative. There are several other obvious factors involved in
the choice of an artificial stop. These, however, are more of à mechanicai engineering nature and will not be discussed in this xeport. tic clear, howiever, that by proper move. ment of the stop, the astigmatism can be reduced to about the Rayleigh Toferance for the desired field inspection of Equation (8) also shows that by proper placement of tire stop the sagital coma may be seduced to a minimum. The two positions, incidentally, shoula be approximately the sume.

Dricússion

Dunbar: We have some experimental results obtained from a pillböx of 30 -inch (Silit) apertse operating at 0.85 cm . It is a one-layer bilibox of $1 / 8$-inch spacing employing a polyethylene lens. The feed horn is in the aperture; so it obstructs to some extent. On-axis the beamwidth was 1°, and the first sice ibve was $16: d \mathrm{~b}$. At 11 beamwidths off, the beamwidth had increased
 conditions were the same. At 27° off we had 1.5 -uegree beamwidth, and the firse side obo was raised to +4 dis. Because we are in a pratiea note system this data gives no information on astignatisna, The 27 -degree piosition is far in excess of the value calculated on the basis of perinissible astigmatism. The increase in beamwidth is probably due to some coma coming into the system, but the pattern did not show añy, soña lobe.

Budenbom: I woud like Dr, Bünter to define what ne means by relative aperture and (BTL) to discus the units used in his tables.

HEDGARIUTMON SYSTEM

K. S. Kelleher anied in. H. Hibbs
Naval Research Laboratory

The scanner $t o$ be described in this talk a wide-angle sustem eapoble of sweeping a pencil beam over a greater angle thar any existing scanner vith which we are familiar. If anyone requires an antenna which yrill scan a narrow beam through 120° in one plane, this, I believe, is the solution.

The system for which this scanner has been designed is a target-aequisition radar Which will be used in conjunction with gun fire control systems. It has generally been considered that the antenna shouid scan a beam over a nemisphere. A more accurate description might be the scan over the triuncated hemisphere as shown in Figure 1. The scanner must provide the converag shom nexe once every four séconds.

Figure 1 Trunceted Scrivghere coverage
Many solutions for executing this coverage have been proposec in the past two years. Warious industial aboratories have formally proposed four diferen ones. Radio Division I and $\overline{I I}$ of NRL have proposed, between them, five differen solutions. A the progent time, it appeare that every one of these proposals could be successfuly employed on a large thip. nowever, if we assign the single further condition that the topside weight be less that 500 ib, most of these proposals are unusable. The reason for this is fairly simple. The systeux must be stabilized, and the weight of conventional siabilization is prohibitive.

One of the best of the proposed systems is shown in Thgure 2. It is a BTL proposal based on the Schmiat scanner described at the last symposium. It employs a cylindrical refector and double-layer piliox. The feed system within the pilibox is an organ pipe.

Figure 2 - BTL target acquisition system

Its output can be seen at the point where the pllbox plate is cut away. This system has the desirable feature that the antenna beam and he rate of scau can be varied during the scan cyele, Unfortunately, this syster must alco te stablized, and is, therefore, too heavy for the aplication we are interested in.

Figure 3 shows a model of the zystem Winch we feei wiil dọ tre juib. its tentative parameters are ajout the same as the BTL system. Its reflector is somewhat smalier, and it eliminates the pillbox weight and less. The biggest weight saving, however, develops from the fact that instead of stabilizing the entire structure, only the feed is stabilized.

Feed stabilization tias been considered by workers in this field for many years, It is usually immodiately yecognioed that this can be achieved only when the reflector or lens used as an objective is a wide-angle scanner.

Thie is sue to the fact that stailiter tion is accomplished by scanning the antenna beam in ordet to hold it fixed on the horizon as the ship rolls and pitteres. Since a roll of the order of ± 30 degrees is expec ed, the antenno sy=tem must be capable of scanning through 60 degrees juf in onder $\dot{\text { jo }}$ pioutucestabilization. The first probtembin fedstabilizationis thennot the feed but the reflector.

The puost interesting feature of this scanner is thereflector, Figure 4 ghows cross sections of the reflector in the two principal plane s. Inone plane it is a parabola and in the other it Is circle. The ouface is formed by cotating the parabolic curve atout a line paralle to the făus rectun, as indicated by the arrow Notethat the reflector mill not be a symuetrical one. Since almost any type of scanuhine red wil present obstruction to rellected radiation, it is well to use a the dith th the maner show here. Figure $4\left(\begin{array}{l}\text {) Indicates hew a feod can }\end{array}\right.$ be scanned through 120° using thesymmetry of the circie. The change lin are length subtended by the rays foom the feed indicates a change in beatio. widty as the antenna is scanned.

Figure $3-N R$ target acquisition systom

Figure 4 - Cross-sections of refrectox
An investigation has been made of the ratio of to R, and an esperimental model with near optimum ratio has been built,
A considerable amount of work has been done on this X-band model of the refiector (Figure 5). In this case, the f / R ratic wras 0.46 . Identical parabolic curves were cut from sheets of $1 / 16 \mathrm{in}$. brass. These sheets were assembled so that they touched a circular arc on the bese, Ordinary window, sereeining was then applied to form the reflecting surface. The resulh wis as though a single parabolic curve were swopt through 130 degrees.

 and which is generated by a curve sweeping through 180 degrees. The feed shown on Figure 5- is one of those which we have tried. Note that the outputs from the organ-pipe ebonelis increase in size from one end of the aperture to the other. The meth plate is enployed to direct the energy into the asymetrical reflector.

Figure shows expermental results when normal horns are usea to fed the refecoor. The apper curves are patterns in the plane of scan, while the one plotted 10 dj below a patexn in the other plane The change in the upper patterns is due to the use of various feed horns -that is, to the use of various areas of the reilector. As expected, the patterns Fith best lobes are those with the broadest beams. The side lobe level for the namomest beam is 17 ab. This, we feel, is adequate for pur purpose and superior to those ginaned from existing scanners which have provided satisfactory operation. It has been possible to obtain a pattern in the plane of scan witha beam width of abut 4.0 dogrees and slde lobes of about 20 db . Unfortunately; patterns in the other plane then had broader beams.

The pattern obtained in the horizontal plane is very goca. The sace lobes axe low, and the 4.5 -degree beam width represents a very etficient use of the aperture width. It has ween possible to decrease the bearn width in this pi ne slightly at the expense of higher side loves. In general, the patterns obtained in this plane ane about equal to those obtaned
 reflector in this plane is a parabola.

The patterns shown here are among the frot we obtaded. We have since takenhidueds pifterns in an investigation of unusual feed systems. We have not decided exactiy which syifem to use, but we fel that can always fall back on these particular pattens.

The methods of obtining feed stabilivetion (Figure ore of some interest Our hirst
 indicates a cross section of the reflector in the vertical plane. The feed systom e a mita scanne which will be discussed in detail this afternoon. it provides a method ior feeding any of the tive homs wincir ines up with the inner feea arc. In the present position, one forn is about to enter and another is leating the feed arc. Stabilization can be acheved by metely holding the feed ine to the inner arc horizontal. Any horn is then initialy fed whin lies the horizontal plane. The initial radiated beam will then alvays begin its scann in the horizontal plane. This beam will accordingly never be directed below the horizon and mulu never begin the scan at a point above the liorizon; therefore, stabiliza.. tion is âchieved.

Figure 7(b) indicates the method of stabilization with which we are now concerned. It consists of four fecds with an r-f switch and an organ pipe sector of feeu channels. Stabilization is achieved by holding the hist channel horigontal so that the beam at the beginnitg of the scan cycle is again in the horizontal plane. This second solution is now preiersed for several reasons. The mosi signiticant resson î that a similar feed system occurss in the BTL scañer, and we hope to use their resuits in our design.

Wigure shows thats of the fed system whit futitate che cose relaticnotin tione the two systems. The BTL system is mounted in a pllibox; its extent, the cefore, appears to be somewhatgreater than that which is actualy used The only difference between the owo is in the arc length occupied by the output oharnels. The BTL arc, I beiieve, sübtends

Ihope everyone will understand the feed sjstem from a consideration Figure 8. Energy is Anteduce through the circular guide in the center. The transition from circular guide to eectangular gulde cogether with the four feeu horns acts as an r-f switch. Energy goes into the one of four channets which is not shonten that is, it goes through the channel which is feeding the organ pipe. As the four payeguides rotate, ench of the four is fed in

Figure 8 - Organ-pipe feed syistems
turn, and each feeds the organ pipe. Feed energy is then tade to sweep along the organ pipe aperture.

I would like to take this opportunity to thank Dr. Wheeler and Mr. Lince of BTL for their very helpful cooperation and for thoir permission to use some of their figures in my paper.

Figure 8 indicates what ocurs as the añeña rotates and the ship holds a fixed position of roll. The first beam remains horizontal, but the plane of scan is not verticai.
 antenna position and ship's posifion.

Figure 10 shows the proposed scaner dimensions. The effector wh be about feet by 5 feet The feed axe has a raduo of abut 3 fect. We expect to get a on-horizon beam of 3.5 degrees by 3.5 degrees with a corresponding gain of $33,5 \mathrm{db}$. The beam in the scan plane will increase in width with increasing elevation up to a madmum width of 11 degrees. A rough estimate of the weight has ween given to us as 250 lbs yothout pedestal and about

Figure in introduces some philosopiny on wde angle scanners. It offers a comparison between the lens; the parabolic cylinder, and unis new reflector, mhe empanion is based on concents of effective aperture. That is, how large must these antennas be in order to produce the same beamwidth or the same gain?

The mathematies employed here is quite simple. In the fundamental case of the simple aperture or lens, we have the effect pointea out by Dr. Sivencer at the last symposium: The effective aperture a is related to antenna sige a by cósine factor. A similar relation occurs for the parabolic cylinder, but here the antenna size A must be even greater by an amount 2Δ to insure that energy is nat lost past the reflector. The length of i depends on the focal length of the system. In onder to obtain usable numbers, fwas picked equal to d/2-that in it was equal to onemalfof the sine-segment. To avoid crowding, the drawing shows f much larger tian this value.

This particular representation indicates the lens to be superior to the cylinder. However, this superiority is some what offset by the fact that the feed displacement for the lens is greater than that for the cylinder.

SLAMME APERTURE (IENS

GOMPARISON OF ANTENAA SIZES:

	$120^{\circ} \mathrm{SCAB}$	$90^{\circ} \mathrm{SCAN}$	S0'SCAM	REMARKS
LEAS	20008	1.4.1.d	1.159	LENS LOOSS
PARAEOLIC CYLINDER	$3: 73$ d	2.41d	1.75 d	P1980x
NEW REFLECTOR	:1.79 d	1.75	1.60 d	

qaperuc crivose

$1=0 \sec / \frac{1}{2}$
$\Delta=f+6 \pi / 2$
if $f=\frac{d}{2}$

Wigure 13 - Comparison of witangle scanners
 wiut angles the new refiector ts superter totut other tuo fit smalle scan angles, the lens appears superior. This, of course, assumes that a lens could be built capote of scaning through oo degrees.

The remarks are included in the tole since they relate to the efficiency of the system. Thete appears to be Ioss nherent in the iens and the parabolic cylinders which utilize pilibozes. th was establishod at the last symposhom that the normal lens has a oss of 2 to 3 db compared to a reflector. A figure of 1 do for pilibux 10 sses is probably reasonable: Fortunately, we wil have a discussion of pilbox losses later in the program:

From the considerations covered this talk, it appears that this new reflector might be a useful component in scañing systems designed 10 F wice-angle cọverage.

In conclusion, the authors would like to thank Mr, Maag of our section ior his work on this project and Mre ooleman for his assistance in preparig the sides.

CONEDEHTAL GECURTTY NFORNATHON

DISCUSSION

Spencer: Couid you restater wor wenefit the shape of your reflector? (APCRC)

Kelleher: The reflector migh he callen parabolic torus-that is, a doughut-shapec (NRL) sursace, Consider a coughmet, znd replace the ordinary circular crosi section by a narabola. A section of that doughnut then forms our surface.

Spencer: This surface is reminiscent of what we used to call the barrel reflector.
Kelleher; Yes, it is related, although believe the barrei efilectors were used to produce cosecant beams whereas this proäuces a pencil beam.

Dunbar: $\overline{\text { a }}$ an interested in the last side shown by Nir. Kelieher. The fact that the para(SRI) bolic cylinder reflertor and the torus do not use their entire surface at all times is not bad. Irt many cases it is good because it is netcessey to obtain a scan. Many people seem to think it is bad because we are wasting some of the siziace. It is a price you must pay in order to obtain scaning. A similar loss in gain is obtanod from the fxed ions arerture because with scanning the aperture decreases by the cosine of the scan angle.

Kelleher: Thank you. That is the point wanted to make with that last slide. The lens appears to $b \in$ good at smaller angles, but it would seem that for wide-angle scaining you can use only about $1 / 2$ of your aperture in almost any system, lens or ortherwise.

Fep SYSTEAS ARD SCANNMAG LOSS

Mr. H. T. Budenbohm, BTL, Whippany (Chairman)

AM ORGANPDPG AMTENAA

P. H. Smith
Bell Telenhoue Tabovatories

Abstract

I The Bell Telephone Laboratories is in the process of developing a radar set for picket submaxines which is intended to provide accurate range, height; and azinuth data

The antenna for this radar is being uestgned to generate and scan a narrow pencii beam rapidiy in elevation at a linear rate while at the same time rotating slowly and uniforinly in azinuti to provide either compiete of sectoral azimutin coverage.

This gntena is mique in that it $\frac{1}{\text { wini }}$ rêpresent the itrst appliction of a metal-plate lens to submarine service and also in that it is to be mounted on a platiorm which is fully stabilized against roll and pitch above the deck of the submarine.

The metal-piate lens portion of the assembly serves in the usual way to collimate the eelatively wide-angle primary radiation from an olectrically scarning "point souices into senning pencil beam. The scining point scurce is generated by an "ongan-plpe" position behina the metal plate iens assembly.

 composed of 73 horizontal metal plătes of 815 aluyinum $1 / 8$ inch thick. The contour of the front surfece of the lens will be cylindrical, with the axis of the cylinder hortzontal, The curvature in the renticail piane minimizes coma aberrations as a result of scanning offaxis approximately $\pm 10-1 / 2$ beamwidths.

The lens has an over tatio of 1.1 and is zoned on to ther surface. Both lnner andouter edes of the indivduat lens pletes are taper to reduce suriace eflections.

Due to the fact that this len is to be subjected to unusuity severe mechand stress in crash dives it was necéssary to locate the lens plate eparators a maximum of 12 Inches apart. The lens plates wil be añodized and painted to resist compoion.

The orgainscanner portion of this antenna is composed of total of 44 cost feed horns
 ied circle whose radius as 50 inches.

The electric plane dimension of the horns is horizontal to provide horizontal rolarigatoon and the horns are haredoniy th the plane. At any intant the totai energy emergés hron a maxinumof 3 andaninimum of 2 feed hornṣ.

K the final design it is planied to cast together groups of 8 feed hopns to provide maximum mechanical resistance to \%ydrostatic crushing forces of 500 lbs per square inch on the sides of the scanner housing when the submarine is at maximum depth. This total force amounts to nproximately 180 tons or 4 tons per feed horn.

The radiation patien of scañer horns produces a dean iliumination taper tor the leñs. सifior lobes of the primary feed patern in the horifontal plane ase down about 45 dib from the peak intensity. In the vertical plane they are down about 13 db at the conter of scan. These larger lobes are the result of the space-phase relationship necessitated by stacking the horns with their magnetic dimension in the vertical plañe. Closer spacifge wout intiove this but mould necessitate narrower horns more nearly apprcaching cutoff.

The 44 scañer horns are excited through 44 geparate waveguides folded together in a compact assembly. All vavesuides are aporour ately the säme length and are made by bending a continupus piece of waveguide. Th Soluing arzangement for the waveguides provides a d-shaped bend in each run which permits design changes in individual waveguide leñths to be readily made as maỵ be required.
 at the center of the scanner. A small feed horn subiending an are equivaient tō two wavegulde apertures is located on the awis of the circle and rotates at speeds of from 2

A low-ioss dielectric water-sealing cover plate is planned for the scanner homs. The outer sueface of this coves is to be machined with id horizontal water-matching grooves, each one-uuarter warelength deep and covertic 50 percent oi the total aperture of each hom. Such sumacehas beenfound tominimize reflection from sea watevinch comes in contact with the eover plate and thersby minimes the tendency oror the waveguide components to sparis over when the antenna is hit by 2 water wave or is submerged.

DISCUSISION

Beriowity: Could you explain the reason for the plane taper of the feed horns? (Spexz

Chit: What hapened to your impedance when the añtenna comes out or
(NRL) Water if your Rexalite st stepped to provide a match in the witer?
Snither A simllar antenna pas matched thatr, añ we found very little diference when it was submerged. As the antema approachit the whte we fer troubled by the reflection at the water surfoce. When it is entirely githir the water, however, it does not know whéner it de tit wher or air: Energy zelected into the waveguile is cancelled by the two surfaces eacly having equal refleetion and being spaced a quarter wave apart.

c. E. Felmer
General Eagineering Laboratory General Eiectric Company

An S-band oryan-nipe zeaner is under development for use as a paid seaning primary source for an asymunetrical paraboloidgl meflector. The scanner configurakion, shown in Figure 1 , coneista of 20 waveguide channels of euini electrical iengths diverging from a feed circle. The feed horn, which illuminates $2 \frac{1}{2}$ shanoln, is uesigned to suth at a 17-cycle-per-second rate. The scan angle is plus and finus five beamwidths at an fatio of o. 76.

Primary petterns of ghe organ pipe ane ilustrated in Figure 2. The impedance locus

Figute 1 = Oremupipe camner

Figure 2 - Primary feed patterns (organ-pipe scanrer)

$400 \mathrm{Mc} / \mathrm{sec}^{2}$ for a magnetron pulling figure of $12 \mathrm{Mc} / \mathrm{sec}$. This will be reduced by a factor of three by the long-line effect in the 50 -foct feed line to the transmitser.

High-power periformance apnears to be very promising. Tests made on an X-band sample indicated satistactry operation at powers un to ano kw at oop duty factor without pressurization.

Figure 3 - Impedance variation with scan (organ-pipe scannez)

SCHNAEES AT A.S.R.E.

H. M. Bristow
Royal Navai Scientific service
Adimalty Signal-añd Radar Establishment, England

INTRODUCTHON

This lecture was road for the Chief Scientist A.S.R.E.o from a paper by B. W. Lythalk, A.STRE: Extension, Nutbourne.

The scaming unit to be described is part of an s-band radeur system, at present under development, known as postol. The unit consists of five separate and identical scanners ins close proximity, It win we used in the focal zone of a fourteen foot diane exer iens of unity f-number: S mounting which carriesthe lens and scanning unit will be rotated continuously in azimīth

SCANNER DEVETOPMENT

Each scanner is essentially a device which simulates a hown feed moving along a linear path of ahout 18 in . in à sawtooth manner at about 20 cycles per second; it must aiso he capabie of handing the required power. 站has been clear for a long time that the main dinicultigs are not so much in the general aesign of a rapid-scanning feed but in the deveiopment of such a iea subject to the particsiar restrictions imposed by the cholce

There aree two features which impose sevese limitations on the design.

1. Bécuuse five scanners are used, the beam swing requiped from each is smail. Hence the widt of the fec horn is significant compared with the digtance thiouigh *hich the norn has to move during one san cycie thus with many simple single feed systems the dead-space is prohibitivery large.
2. As the scanners are stacked diagonaly, the maximum dimentor of the mechanism in the direction perpendicuiar to the feeding plane muat not exceed about $0=1 / 2$ lniz, except where permittee by the offset of one scanner relative to the next.

There is a description in the Proceedings of the 1949 U.S.N.E.I. Antenna conference of a proposed organ-plpe scanner for Postal in which the dead-space ls reduced by using Itu feed horns with a self-commutating ar rangement attached between the feed and the rotating joint. The layout of tinis device was considerably tmproved later; mainly by the adoption of a cylindrical commutatíg plate instead of a plane one; this ensibled the axiay length of the system to be considerably reducea. The restricted space inside the feed circle sulil posed consiútable problens, however, anả efort was transferred to o mone sophisticateadesion onsenner.

Principie of presen scanneer

Figure 1 will help to explatn the basic mechanism of the present scanner，which con－ sists of a tred wavegudie feed and a fixed＂stator＂similar to the organ－pipe，betpeen which is a rütting dise of waveguides，atitervaros calied the rotor．＂The rotor consists
 zotation．The moutis of the horns however，each subtend an atie of $[n /(\mathrm{n}+1)] \theta$ ，whene nis the number of etator wavegudes embraced by a horn mouth．If the rotor turns through． an anyie $\hat{0}$ ioctween pulses，it win be found that as each pulse is twansmitted，a hörn is aligned with the feed and iliuminates agroup of n waveguides in the stator；the successive groups for succestive puises are stepped along the stator by one waveguide per pulse． In order te guotid serious reception losses each horn contains n wavegudes，which on transmission are，of course，aligned with the intuminated group of waveguides in the stator．

Eigute 1 －Simplex nonteriaced． \qquad
The deadd－space is effectively one pulse interval，since although the last puise is trans－ mitted correctly，reception of reflected signals from it is progressively inhibited as the tar－ get range incteases．

Eyen an this somewhat symbolic form the deesign appears to have șeveral âttractive features．

1．The layout is essentialiy planar，lead－ ing to a＂pancake＂form wery suitable for stackiz；scanners in Postal．

2．There is only one moving component高気台 ties are also 3 zi this same component．

3．The deac－space se nitited to one pulse interval and there is no additional mis－ match nresente to the transmitter during this puise：

Interlicing and Duplexing

one ontersions of bie principle hove ben developed for the revised radar parameters of postal．Figuectis drawn with－ 5 and with te mises transmitted per cycle．The present values for Postalate n ， 8 ，and 25 pulses per cycle．Since the inner circumfer－ eze the rotor is determined，not by the length of scan，but by the nimber of pulses per a inner diameter of the rotot to reanonable size．The principle of Interlacing is iliustrated Im Figure 2．The hornso the rote are overlapped by half their wath so that helf of one． horn is also usedas hain of the next，Thus the inner diameter of the rotor is aporoximately haved and the numer ot vanes in the rotor is also hatved．mees ts hoverer，an aditional pulse wathed he dead space foll ke seen from Figure 3．There is no additonal mismate presented to the transmitter during this puilse．

Figure 2 - Pinciple of interlaced sotor

After proliminary measurements of the impecance of individual curved wave gudes it was decided to thereane the outer. diameter of the rotor considerably, it is then possibie to use a auplex rotor in Whehthereare two completets of नowe guides in the rotor circumference. Although number of walls in the rotou. is now dowbled, the rotation speed is helved and the total inerta it in fact sightly reduced. Noreover the rotor is now inherently balanced. The curvature of the rotor wrvegulde is considerably reduced wille thelr length remains of the order of wave-
 of the stator is also reduced, so that the path Iength correction zequred in the stator is yex much reduced and can there. fore be expected to be reasonable over amuct broader band is scale plan of the presentsystem, using an interiabed duplex retor is shown in tigure 4:

Figure 3 Interiaced rotor (adational pulse wotted)

* Tho stator contains two addtional waveguides át each end to accept possible iéak̃age or the bowne sides of the bot foring

Figure 4 - Duplex interlaced ioto
Eesign Dicolems
The main problems expected occur were the power handing capaciry of the feed
 of the curved rotor waveguides; the path tength correction and pressuire seatiog of the stators and tie diffeultes associated with the limited H-plane dimension of the output: The firstwoproblome the severest.

Power Handing Capacty

It in inossible to provide proper chokes at the rotor gaps, since the thin whane wall of one waveguide is also the wall of the next guiue thue it mas expector that power breakdown might prove a serious limitation. A linear model of the fedornor anc rotor stator gaps was made up (Figure 5 (a)) all to the dimensions of the input zotor wavgutdes. In order to ease fabrication of the final rotor and to reduce weight, the waveguide walls had to be as thin as possibie ara were set at 0.029 in . With this wall hickness thes found that yindrical pillars fitece the tree edges of the walls increased the powerhanailing capacity yery considerabiv, and with $3 / 32$ in. diameter piliars añ a ogap of i/ 6 in. the breakdown power was slighty ahove 1.3 Mw at atmospheric pressure. Thus, dissuming no sertous reflemions ofeur beyond the gans, it is thought that with the design pressure of $30 \mathrm{lbs} / \mathrm{sq}$ h. in eacess over atmospheric pressure, the device should be reasonably safe at te yorking power of 2 Mw although tie sefety factor is not as high as is desirabie.

The brent down powser was not signiif－ fcantly different whenthe waveguide wails were filly misaligned，or when iफọ gaps were disect sa series．
 dameter pilers ivas found to be small enourt to ignore，although the $1 / 0=\frac{3}{2} n$ diameter pilass useu at the outergap in the experimentan model were matchedby transverse pillars， forming lips 0.055 in．deep around the oute rims of the rotor side－ plates $3 / 32$ in．pillars are now pro－ dosed for all gaps．Measurement of the tmpedañe of gaps and pillays presented some dirficuity，since not only must the test waveguide be flanked with other we veguides to ob－ tain the eoriect radiation impedance through the gap，but tiese waveguicies must be fed with the same onwer as the test waveguide．

Figure $\overline{5}$（a and b）－Test rig ior breakaow measurements

An alternative method，describen iaier，of manufacturing the rotor would use thick palls，as shown in Figure 赖），a suudel using 0.080 in．walls did not breakdown until the yower reacned $\$.5 \mathrm{Mw}$ ，even though the waveguites were narerower．

Impedance of Rotor Waveguides

 are fixed by the basieprinciple of the scinez．㐾 ciear that the gude wailsotween these two sets of points must be falred or＂streamined＂to produce the mookhest curves Wth no constrictions or extreme curvature，but once this has been done tieze ios fitle futher impedance adustment that con be done．it has hoen ourd from prajurements on isoiated waveguides with typical próles that generally a total cigth âbout an nutegral numer of half wajelengths is bo prefer red even though the toper and curvature are notuniform throughout the longth this is convenient the duplex rotor，where the curves to also less drastic thanto the sinporease

It is clec弓，however，irom isolated measurements that orae of the cured waveguldes may heed matching，and this wil have to be dune bynsertng poots tnto the natow sides． Attempts at matohirg isolated curves over the required frequency band have proved quite satisfactory．The metiod of insertion of the posts is discussed in the section dealing with玄ethods of nanưactuze．

There no analytical set of curves which satisfes all the require inity conditions． The curves werate efore first smoothe by hand until a reasonable looking set s obtaineă．They were then drawn out teñoes rull size anc the firegyarites funther smoothed out．Coordinates of these curves vere ted into jag－borer for manufacture of the engraving tomplotes，and further residual irregulanties wexe then shown up．The coordintes wefe themefore fur ther smootined analyticaliy，añ tiven the meter templates werc made

Stator: Path Length Correction and Pressune Sealing
The difenence in electrical ingth between tre rion mon shotest stator guide is inve onily about one thrd of a wavelength with the duplex rotor, and the maximuri variăthon in lengtheross an eigh-guite group is orily one quarte wavelength. The smati peth lonth oppoption required should this be able to be accompished with adenute bardWuth by the use of delectric blocks (e. g, of polythene), The correction is in fact reeded more to correct the squint of the scanter beam than to improve its shape and sfde lowes.

Eonstexation is being given to the use wriong iongths of expanded dielectric rather than short lengths of solid dielectric. The weight appears to be less, and the bandwidth of the impedance transformation shouc be much higher. It is not yet known, however, whether the elecrical constants of the material cañ $\overline{0} E$ made suffielentily consistent.

It is hoped that the correcting blocks may we ued also as the pressure seal at the throat of the final output fare. (A dielectric window across the whole stator fe undesir able because it introduces another gan which cannot be choked.) It may be possible to grow a soft metal gasket on to the metallized surfaces of the dielectric blocks; if this fails, siniple metallised blocks may be used, since the methatical impedance presented to the
 the the tise of a multiple gastot neme of gopper-plated P.V. $\overline{\bar{c}}$. rods.

Limited Dimēnsion of Output Flare

The K -plane dimension of the final flared scanner mouth is limited by the stacking of the scanners and is not sufficient for the most desirable illumination taper on the lens. Nrirrowing of the beam from the limited aperture by the use of transverse pins (after Pao at MI.T.J or by using a box-horn is therefore being considered in spite-of the higher sidelobe energy characteristio की such devices,
 simple bimis exthemply wili-natched, the addition of pins introduces a severe reflection which it has proved diticult to-rompe.

Leakage through the rotor gaps mily cause some energy to travel down wavegudes adjacent to the elght which are being fed This will produce an effectively larger E-plane aperture and a narrower E-plane bea mom the scanner; fowever, this renforcement ie absent on one side of he radiating aperiure, and there will be some variation of the radiated pattern This has been noticed in experiments, but it is hoped that withetolerable.

Ningenturing Methods

The sotor, and to a lesser extent, the stator, clearly present the main manufacturing
 00026 in sheet brass held in curved slots milled in the two sla plates- the slot citting is done with high-sped end mill mounted on an engaving machine. Fgure fo show the engraving of the two side plates of the first experimental notor quadrant.

The brass vanes are pühed through the siots and soldered into place; the pillaris are - oldered into position manitaining the free edges of the vanes reasonbiy plane.

Figure 6 - Experimental model rotor snowing engraying of side walle.

In proauction, any matching posts in the rotor wāesuides would be inserted in holes izg-drilled into the side plates bifore assembiy. Difficulty arises, however, in the experimental determination of the positions and dimensions of such posts, since the side plates nuat be drilled from the outside where there is ne repliy accurate indication of the position of the vanes.

Anote nothod of manufacture using electroforming techniques is being exploned,

 (ni) and the first experimental quadrant, now heing made, will be split along the central plane and made th two halves so that the maiching posts can be inserted and coldered infrom the inside or the wavegule.

Dosibiutes of low pressure die casting are being investigated, but the tooling is extremely complex, and it doubtul whether the stator car be sinilariy fade. The two previous methods, of course, apply equally well to the stator.

GENERAL PROGRANME

The wor described has led to the design of an experimenta mode scanote that after many delays, has nop been xeceivet from the contractors. it is shown in figures 7and 8. The ofor cuisises of rather nove tan a puadrant of the full circle since this contains all possible unile waveguide paths of the set. Ciere are two feeds so that etther any eight adjacent rotor waveguides can be fedatonce, or any single guide can be fed individualiy The wotor can fect either thito the stator or into a batch of twelve straight, matched wavogides which can be indoxed so that tie centre elght of these guldes can be aligned with the bartucular set of rothr wavegudes being iluminated by the feed. The rotor can also be indexed at intervals of hall a wavegulde. Thus the impedance of each indiyidual rotor guide can be measured, as well as the scaliner impedañe for all roter bositions.

CONFUENTLA SECURIT MFORMATON

Figure 7 - Expeximental modul scanner with matched loads mounted and stater oñ berich

Figure 8 : Ex-perimental model
 matched ioads in fore ground

This apparatus has only recentiy artyed in the laboratories, and is hoped that a Targe quantity on inumedion will be obtained from it in the next few months. After the first measuremsnts, the main object will be to determine any necessay matching posts in the rotor, in order not to hold up production on the complete scanners. Measurements to date have shown that it will probably not be hecessary to mateh at least half the rotor yanes.
 designed, subject to detalled modicications in the igh or results on the experimental model, and it is hoped that this wili form the production prototype. A section of this scaner is shown in Figure 9 and an outijne sketch is shown in Figure 10, the whole unit is contained in a pressure tight light-alloy split casting, the rotor is held in two light-alioy spiders and rotates on two $6-1 / 2$-in. ball races. Acketch of the five-scanner assembly is shown in Figure 11.

The author wishes to acknowledge the prominent part taken in the development of this scanner oy D. G. Hanan (enginering Development and Design) and F. A. Ballard Experi-mettal Developmenti-

COMUNGEML

(GAFB)
Coubyourtityour atatement hat hen onepulse wated the yyten?

Bintow: (Ament
Sheltelman: Can you tell us what this device is used for? (Dushitps)
Bristów:

Buderibom: (BTL)

Bristow: Is the tone pulse for yery pulse sentout on onepuise forthe stingotan?

It is one pulse for the entire revolution of the scanner.

This is aradar for appraisa of the atr stitution It supposedo give verticai overage up to 22-1/2 degrees andan atinuth scan ate co about why
what the thavelength of this systen?

W. F. Gabriel
Naval Kesearch Laboraiory

Abstract

"Ring Scanner" is a name which has been arbitrarily chosen for the particuiar type of miliphe channei, waveguide ring switch with which we are concerned. This detice was ueveloped as a solution to the protlem of outhing a raph, Fepetuive, feediorm motion along an arc of a circle.

The most important element in a wavegude ring switch is the mechanism used to accomplish the switching action aut, in the case of the Ring Scanter, this mechanism com sists of a rightangle waveguide pin bend. The use of pins in waveguide bends first came to our attention through the work of Louis m. Breetr of NRL. Figure 1 shows a drawing of the pin-bend apparatus used by Breeiz. it is reproduced from his iki keport 3 \%eg. This particular deytec is a spesial type of rotary joint and contains two pin bends. Jach hend consists of a set of five stralght pins or "fingers" whe afe get on as to simulate a rightangle \vec{F}-plane weyognide bend. The simple sketch to the right in rigure i shows a side view of the pin bends as they are about to pass theough one another. It whil be noted that there is no chove arrangement at the free endo of the pins, thic omiscion hetno Aus te the particular application with which Breetz was concerned. A VSwR of about \$2 over a 10percent band was obtained with these pin bendsi and it was found that they carried about 200 kw of power zt X-band.

> CovPMEYTAL

The simplicity of the nin bena idea was very anpealing, of course, and it was subeequently dectued to developa pin bend suitable for certain scanime appications, pigure 2 ghows a photograph of the final model arrived at. Essentially, it consisto of an ordimary doutie-mitred, right-angle, I-plane bend in with a portion of the solid side wall has been Eetoreunc apiaced byosely gheed chote phe. This chole-pin bend was only slighty hiferlor to a solic-wat venu in ien mº of VNR. Its success may be attributed to two fac tors: Flost, when the pins are aranged in an H-plane bend in this maner they are parallel to the fuide-wall current paths and thereroe do not intencup those currents to any appreciable extent (that is not the case in an B -plane pin bend); second, the quarter-wavelength "chote-tatis on the free geds of the pins aids in approacning the shoxt-circuit impedance which is desired at those points.

Higure 2 boublemitred joplà choke pin bend
Having obtained a successenu pin-bend design, the next step was to appy it a waye. guide swifch Ngures 3 and s show photogithe of the ways gude switch which wos constructed utilzing the n-plane chote ph bend. it is composed of two similar parti which can move relative to one nüther Fach part forms hat of the cominon wavegulde gection in which the swicching operation is carried out and sugoots one pin bend. Figure is a simple schemate top view of the switch iliustrating its operation. vipe abata taken on
 in Figure 6 that the VSWR of a single H-plane choke pin bend is less than 1,4 over an - Hepercentequency band. Eigure 7 is a plot of the swtehing cross-over mismatch; it show that the minimum distance within which a wavegulde branch can oe switched from "on" to "offe is 1.5 nches, using standard 1 z $1 / 2$-inch X of cource 1 sthe " dead-tirne shace associated with the switch.

Po test its power handing capacity, the switch was inserted oetween a 450 mggetron and ahgh-powe dummy load. No sign of breakdown was observed for any poaition of the
 exese of 10 hilowatts. Haximum power-handine capacity ts not known the present time;

COMDDMMEAL SECURITY HIFORMATION

Figure 3-H-plane pin bend waveguide switcn

rigure 4 - Waveguide switch díassembled

CENEHENHLAO SEGURUYY INTORWAMYON

One the problems which comes up in asigning a two-piece wavegude section such as chis is the tongituduat choke. Orcinarily, halk-wavelength chote grooves are unsatis. factory because of the fact that they act like another wavegulde of different wrave Felociy coupieá to the mainguide, consequeniv they caụe changes iñ the normat phase and anpiltude distribution alno the main guide if a distance of more than a few wavelenghis is . nyolved. Also, there may be apprectable reftection of energy if the thoge grooves are interruted of terminatèdiby a mismatch; corversely, there is appeciable radiation of energy out the ends of the choke grooves if they are not terminated properly one method of reaucing or eliminting these eifects is to use a serrated choke which discourages longltudinal propagation of energy. Such choke was used on the swith under discussion anci may be clearle seft in Figures 3 and 4. The desion is patterned after that used by Speery

quärter-wavelength pins. It effectively breaks up longtudinal choke propagation and yet provides gocd chote actione however, it has the disaduantage of higher attenuation losses than the ordinaty chove groove. An X-band wayeguide channel 18 inches in length was constructed, utilining this type of pin choke, and it was found to have an attenuation of 0.2 decibels per foot at 9375 megacycles.

The satisfactory operation of the foregoling straight-section pin switch led the design of a complete king senmer, shown in figure 8 with the top cover removed. it has a diameter of akout 20 inches and was designed to feed four organ-pipe levels in a twodivensitoial "FY" type scanner. Figure 9 shows schematic views of this particular ring scanner. Here you can clearly see the input, the common waveguide section or "feed trough" the four output oranches on the wheel, and the phumbing down to the appropriate output feed horns. The active scan nigle (angle during whith the output feed horn receives energy) is 82 degrees, and the switching dead-lime angle is 8 degrees.

illustrates a single Ring Seäner unt ieeding two gex sytems nointed indiferent directions. This is possible because of the fact that the Ring Scanier is a mititipie-channel switching device and, therefore, ean have several inputs and associated outputs. Each system woula be independent of the others and, bi desirea; couid operate at a diferent frequency.

Fogure 10- Atiot's sketch of GEA radar poposal

Anotner apolication of the Ring Scanner woud be tat of feeding vanoue type of moroWave potical syetems such as the schmid lene scanners, concentric ien scanners, virtual source scanners, Luneberg lens scamers, surface-oíseyolution scanners etc. As a typical example, let us consider the feed requtred for a schmide lens system m wich the scan angle is to be about 40 degrees and switching aead time less than 10 percent. Figure 11
 Would be mounted with respect to the Schmidi lens oflibox. Since the scanimg wheel carries elght fee horns, it would have to rotate at a speé of only 225 rom in order to obtaln a scan repeltión rate of 30 cps. Fteve 13 is a photograph of a roodel which ifustrates a proposalfor seanning an 84 -degree sector by combing two such systems.

If a sufface-of-revolution optical system were ayo ithle, this 84-degree coverage might be obtained by using only ore Ring Scanier thstead of two. Figure 14 shows a crossSection vew of what steh a sysem might look like.

Figure ii - Schematic of Schmidt System Ping Ecanner

Figue 12 Ring Scaner and Schmatsy sen combind

Figure 13 - Model of Schmidt System proposai

CONELDNHLAL SECURITY TNFORMATION

 15 is a diawing of a proposed ripand Concentrie Cirele Scriner, The hemt of the fovice is a Ring exanner, of course, and in this drawing you can see the input waveguide feed arid fipe output branches which go to five feed horns located at aifer medat if the inginere to be held stationary and the Ecanning horn wheel rotated, each horn would be fed over the
 rotated in the same direction as dhe scanning wheel various scaming efiects can be obtalned. For instance, by rotating the lnput at the same speed as the scanning wheel, you couli pick out any of the five horns and scan it cortinuously. Then again, by rotating the input at exactly $4 / 5$ the speed of the scanning wheel, each horn will be fed for one complete sevolution of the scaning wheel; thus giving a full solid-angle scan consisting of concentric ciecies (tuus the nane). These scan circles are complete except for switching deactine spotş. However, the switching deacitine spots can be made to precess by rotating the input a little faster than exactly $4 / 5$ the speed of the scaning wheel. fn fact, by selecting the proper sneed ratio of the two wheels, the dead-time spots can be moue to vanish altogether. Oi coourse, this jleesn't make the switching dead-time varish; it merely causes it to oceur oetween complete scen circtes.

Scanning wheel was to rotate at 1800 rpm; thus giving a tracking signal of 30 cps and a solid-angle, iook-through, searen scan with a repetition rate of about 5.5 times per second. Figure 16 shows àn artist's sketch cf a Concentric Circle Scañer.

The author wishes to acknowledge the assistance of Keineth S. Keither in working out he foregoing auplications of the Ring Scanner-

Budenbom: What spatial angle does your ring scaner angle of 8 ócormespond to (OHL)

DISCUSSIOM

Ihadindicatedz ning scamer ised inconjunction wath the schmot system. For that antenna we expected a scanangle of 40° to 45° To reach the 84 show on te sidu d was necessary use two Schmot scajzers.

CONFIDENTMAL
 SEUUTIY INTORMATION

NARK 25 MOD. SCARNER

\author{

- Ni. Burungnam
 Reeves Instrument Corporation
}

We, at Reeves Histrument Corporaion, have been working on an automatic tracking and missile ilighit control radar.

The Mark 25 Mod. 6 Scanner was developed because the specifications required system using a 7 th-foot lens, a system which would be able to açure añ tyaci a urget and to guide a beam riding missile. This scanneer is matehed to a VSWR of 1.2 or better over a 300 -megacycle handwidth and has a loss of less than 1 db . The scaner
 pressures abovie $30 \mathrm{lbs} / \mathrm{sg}$ in: although the onerating pressure is set at $15 \mathrm{lbs} / \mathrm{sq}$ in.
 maximum difaneter of go dithes. To produce the desired scaming, a de motor, under the control of an amplidyne speed regulating sysiem, drives a horn-type radiator through a gearing system. The horil moves in süch a manner that the radar beam, after passing through the lens, will move in either a spiral pattern for target acquisition or a conical pattern or target traching and missine guidance,

Fimare 2 is a rear view of the scannex with the rear cover removed. The rotary joint is one of three necessary to bring energy from the stationgry weguide run to the horn.
 position of the horn in scan is derived from the output of the three two-phase 30-cycle reference generators. The solenoid operates the clutch which controis the type of scanning-conical or spiral.

Figure 3 is a front view of the scanner with the front housing and the tibethas cover removed, The remainig tue rotary oints are paty visible. The rotay doint in back of the horn is necessary to allow the radar bean to remain vertically polarized, It permits: horizontal orientation of the horn's longer aimension. The other rotary joint in conjunction With the rear conical wotary jotit permtte spiral scaning

Figure 4 lilustrates all of the microwie components of the sconnor. A flexible waveguide comects the scaner housing to the rear conical rotury toint. The gooseneck
 ponents of the scanner. The gooseneck assmbly is attached to the secondary Thead by means of the sutral rotary joint. The norn assembly is athached the zecondary T-inead by means of the polarization rotary joint Cifce the longer dimension of the norn must
 attecned to the horn assembly, is einployed.

COMELDEMAY SECURMY TAFORMATION

With the heip of Figure 5, ten be shown how siral or conical scanning is
 hine at a speed of 1800 rpm. With the clutch in the spiral position, as showin (b), the T-head rotates about its own axts (the secondary center ine) at a speed of 144 rpm; the tesultant horn motton consists of the sum of these two rotatieg monis.

Figure 5 scañ erotaion

For every rotation of the Thead about the primary center ine in (c), the horn which is attached to the $\$$ headimoves less than $1 / 12$ ol a turn about the secondary center line. Thus it takes $12 / 2$ tump of the assembiyor the horn to maike one complete rovution.

The axis of the horin in (u) is $2=1 / 2$ then from the ande of the Thend ato the axis of the Toneads thehes from the primary axise Thus the horn describes a spirat With andnner radius of $1 / 2$ inch and an outer radius of $5-1 / 2$ neth. In conjunction with the lens thts peviesta solidfiedo-view angle of 7 dogrees.
With the clutch in the onical position (e) the T-head does not rotate about its own axis: Thus the resultant motion consists of the fixedradius rotation of the hom about
 minimum of $1 / 2$ fich anc a mexmun of $5-1 / 2$ nnches

CQNRTMENTIA SECTHETE MNORMATHOM

The rinetion of the clutch in Figure 6 is to cause the seconday T-head to rote about
 scans may be had by throwing into the system, by means of the clutch which is splinea to the foilower, either the spiral or the conical driver. Note that the conical driver- is cuipued with a single tapered recess, bit the sonical clutch half is equipped with a singie tapered
 Secause there is relative speed between the two drivers, springs had to be incorporated betwen the two nalves of the clutch to take the the nitial shock when shifting from one poeitopa w werther.

Rigune is a typleal high-speed pressurized rotary joint employed as the reer conical rotary joint. Fote the size of the rotary joint by comparing if with its standagd w-band flatnge.

Drossurigation is achieved with the help of a lapped, nitrited nitrably surface which rotates against a low-codficient-of-friction carbon graphite (graphitar) surface. The nitralloy surface is lockect hath of thenotary jobst and the graphitar suriace is keyen to the other hin of the rotary joint.

DIŞCưSSION

 (SRI) 3600 rpin?

Burlinghane. Our highest speed has boen 1944 rpin. (Reeves)

Durbat: Fouldyour beanings tate a higher topeen \%
Burlingham: I see no reason whan they could not be iotated faster, althoigh we have not atitempted this

Buacinom: Could these jointis nold the pressure that mignt be required in an aracraft (B71L) sy̆stem?

Buninghan: There is a certain amount of leakage. We repienish the air at all times,
Didenbom: woin think that with the addition of an air bottle that we might be abie to use this joint?

Euringham: fes, Ibelieve you may be able to aothat.

H. H. Hibibs
Navail Research tavoratory

Since the ideá or a diametric scanning antenna was a product of our last scanning sympoting thas seems like a geod time to talk about ft.

The possibility of scaning an objective across ins uinmeter, while at the same time have the ciametor rotate about the atis of the objective was first suggested to us by Mr. Small who until a few weeks ago was asscriated with the Antenna Fesearch Branch of Nhi, but is now with NEL in California:

It was decided that an antenna of this type might have possibilities as a track-through scan radar. I will attempt, in the shert time that I bave, to describe some of the work done to date ơñ this system.

The organ-pipe feed system shown in Figure 1 was designed and constructed to satisfy the refuitements for diametric scanning. A symmetricildesign was used so that the feed sysism could be rotated about an axis which is perpendicular to the screen. Mir. Bartelt of the Bureau of Ordnance suggested that we use a wavelength of 1.8 cm . The feed circie

The microwave energy is transmitted from a rotatig fed horn in tieed cimele through the waveguide channelis and out the aperture which is across the center line. The waveguide channels are lonped over to form tronbone scotions thus mpting eact path length equal. The feed horn scans completely acrose the apertury and then returns to the starting point. Three of these channels are fed at one time to produce a 10 rit beampidth.

For mechanicat simplicity in achieving the diametric scan, we decided to a casoegrain Sistem. Figure 2 shows our inst model which utilized on existing parabolic cylinder. The organ pipe feed was placel at the rear, and the box horn was inserted throwgh slot in the center.

Figure $\bar{Z}=$ Cassegrain System

The byperbile oynute was designed that if placed at a point which would properiy Illuminate the parabolic cylinder if mould prodice a virtual source at the focus of the major reflector As you can see, our mator probiem here is the fincing caused by hypenbole cylinder, and it is no doubt the cause of the high side lobes:

Figure $\frac{\mathrm{T}}{} \mathrm{is}$ one of the best patterns otained with this setup. We have a 3 -db beamwidt of 18 g degrees. and the highest side lobe is 10 db down With this data we were ready to proceed with a two dimensiond model.

Figure 4 shows the Diametric Scaner and Cassegrain System as you will see it on exhibit. As yet we have no conclusive data on this model. The organ-pipe feed is nlaced at the rear of the reftector and cari be rotated with chener of the reflector. The hyperboloth is supported by Tiberglas tubes and can be positioned with adjusting screws:. By
 uncue scans may be obained - from a sectorat scan though spiral scar to a dametric sean.

We have this model rigged with lights to demonstrate the different scan possibilities, and will we on eahbit in Budaing oz.
 onthisproject

conghental
 SECVERY MFORMATON

Figure 3 - Anterna patiern

Figure 4 Diametric Scenner and
\qquad

CONFMTNGAE
SECURIEY INFORNATION

DISCUSSION

Thomas: I woullo hive to asi Mr. Abbs if he feeus three alternate wayegudes?
(Gi. Martin)

Hibise: (NRL)	Qs that is rithe frere is a space between each waveguld
Thomas:	Boes that proutuce high iotes?
Hibus:	In the primary patern the lobes are 10 to iz db; the secondary pattern shown on the sliue had 18-db lobes.

Spencer: Did your photograph show the hyperboloid mounted in front of the reflector? ArCRC) I was wondering if the wavegutas feeding to would not spili energy past its cages.
Hiobs: - We have to work out proper phase to tilt the beam from the ends of the organ pipe towaru the hỳperboloid.

Sponcer: i presume that if you mate the hyperboloid larger fou thil have more trouble with anerture blociking.

Eibūs: We do have a larger hyperboloid but have not hâu the opportunity to evaiuate it.

Rowland: Would it be possible for you to make the hyperboioid in the form of a grat(Pick.\&Burns) ing and then rotate the polarization between the hyperboloid and the dish So that the reflected rays would not be affected by the hyperboloid?

Hibos: - Mat might be a good thing to try.

Kelleher: Someone has suggested that I mention the fact that this is a no-dead-time
(MPIT)

J. E. Corbin

Bell Teiephone Laboratories, Whippay Laboratory, Whippany, New Jersey
jenny sounar sȳtens hav̀e hâd poor range performance tr portions of their scanned fields berurse of excessive scanning losses. The process of scanning involves time factors that efiect the range performance of the associated radar because of the presence of integration or memory in the system. The parameters with which we are concerned are scainiug irenuency or trame time, antenne beam angle and pulse repetition frcquency. When other requirements permit sufficient jatitude, these characteristica must be juggled tc obthin the best range performance in all portons of the scanten fete.

To proulct radar range anu evatuate scanning loss, it is necessary to inow the time Lin ubit which integration cccurs. This time has been ässumed to be a constant for tive usual cathode-ray tube and human observez, Howevex, when we compare the scaning loșs meanarements for a number of raday systems with calculations based on a six- to gightocoind integration time and the square-root integration law, we ind disagreement. The square root entation can be stated as follows;

$$
\begin{equation*}
=\quad p_{m} \cong \sqrt{\frac{n_{t}}{n_{s}}} \tag{1}
\end{equation*}
$$

where

$n_{t}=n_{S}+n_{n}$ te the totar number of swens in a banowidth during the integration timé,
ns the number of sweeps whin shge power precentod duvino the
Integrationtime, and
On no nse numbe of Sueeps liaving only noise presented at the range beintoontucted during integration time
 accurate predictions of radar range añ losses due to scanning are to be made.

The conclusions drawn from the measurements that the integration time (T for detection on a cathoderay tube tya human observer a not a universai contant but bears some functional relationshlp to the pulse repobition frequency of the form

$$
\tau=a+b b^{1}+c f^{-2}+
$$

Whe esouphtion that $b=1250$ and that all other constante equat zero moduces a fairly satsfactory firt-order aporoximation. Thus the ciationship takes the orm of it 1250 .

Thare its a mot on acmiog papen of neasured curves of scanning losiz versus scañer speo in sphe fuperimposed on these curps ane two asymptotes one having zere siope representing the maximum loss, and be other having a square-root slope obtained from the usual relationship. Jutegration time for the system is defined as the time associated with the scaning syeed at which these asymptotes intersect.

Figure i-senging oss us anterna speed

The data exhibited in curve förm ôn Figure 1 came from severat soonese measured at different times. However, the general experimental procedure used in otathtif the data was the same. In some cases, actual ratar reflection from a foutarget was used and In other cases a simulated radaroche was used. In all cases, however, the curyes representayerages of a number of observers. The type oì measurement ylelas data that Iluctiente considerabiy and is subject to uncertalnties of the order of pus or minus one ab,
 It is easy to see that small changes in the chote of these coriers whiose chio range consideratiy

 amplifer iatsen the ght following the attenuator to allow the desired notse level to be displayed on the indicator. The atenuato tis adiusted by the operaton to optan detection of a strong steady local texgetin the portion of the scanced reto uncer teest. Scenning losses are determined by connarthe the attenuator settingste those obtaine with the antenhat hot scaning but pointed drectly at the same darget. A biock diagram of the raúar moditication Is shown in tigut 2

COHMOENTAL SECURTY INTORMATION

Figurc 2 - Radar sysiem modincation ror scaning loss measurementis.
A comporison of the measureathe computed integration time τ is plotted on Fighre 3. The rime referred to here as the integration time is concerned with look-to-iook integration. For slow scanning speed only the pulses received during a single pass of the antenma are integrated. The next puss of the antenna occurs at too long a time after the last look to contriutute to the signal information presented during the last pass. As tion antena scanning soeed increases, the pulses on target per pass decrease, and as a result the scanning loss increases until a speed is reached where the succeeding look contributes signal information stored at the iesi loox; thus the contributing number of puises remain constant. The emplitical relation appears te agree witu afe measized data müh better than the cuncept of a constant integration time.

CONEIDENMAL
gEcunity myorinator

Along with the above modification, the nonline jities in the second detector most be
 the sigua at intermediate frequences. It not necessarivinue, io examue, that a two aio chane of a cignal attenuator in the intermediate frequency transmission path represents a two-db chance in signal-to noise ratio in the video path.

Whgure is a plot of a inversal detector charaterstio puified by fubini and Jumson in the Deceinber 1948 IRE Procedings. This curve tiustrates the degree of compession in going from the ridpo circuif to iniemediate circuits when the signal and ruse pouers are of the same orders.

Figulee 4- Úniversal-detector characteristic from Fubini-jonnson, I.R.E. Procedings, Dec. ione

The following procedure find cates hom these concepts mightoe used in the computation of scaning loss fora proposed system.

Fint, estimate integration fime τ for the system puise repetition rate nvolvod oushg ne mpirical relationship $f=1250$. where is repettion wate in cps. Then determine the scaning logses, using the appropriate relation Equations (\%) and (3). The notseand signa

Trof simple rex scan, this relation netuces to

$$
\begin{equation*}
L=\sqrt{\frac{6 \pi R}{\theta}} \operatorname{tor} R \frac{\theta 0}{\tau} \tag{3}
\end{equation*}
$$

Fon $R \geq 60 / \pi$ a limiting loss of $\mathrm{L}=\sqrt{360 / 6}$ is assumed.
For complex scans where the trame time of the scan is iess than τ the gantines iv, n_{t}, and n_{s} may bee redefined for convenience in terms of afteme. The scanning loss tay then be determined on a per-frame basis from the scan geometry. If the frame time of the scan is greater than the integration time, the values of N, nt, and n_{S} must be determined for the full time τ as defined gibove. The losses thus calculated appily to the video. To obtain the logges as applied to r-f or $1-f$, the detector characteristic must be taken anto account. A curve sach as the one shown in Figure 4 is convenient.

The procedure is to estimate the threshold video signinto-noise ratio (S / N) v wher spotlighting the target. A good estimate of (B / N) v ior current radars is -14 d . Üsing. this value ci (S / N) the corresponding i-f signal-ton-noise ratio can be detemined from Figure A. For exampie, the maximum scanning loss for a sofral scanning system was cafculated from the geometry ui the scan to be 22 db . This results in a variation of the (S/N) virom -14 dib at spotlight to 2 vaiue of +0 dib at the point of maximum loss. In the i-1, where scaming loss mesurements are made, this would corresponu to an S/iv range of -9 db to +8 db .

By the use of these simple reiaticns, much better agreement between measured and calculated losses have been obtained.

DECUSSION

Dunbar: Could you discuss the comparison between a moderate numbex ox puises in a (SRI)

Leamwidth and one pulse per beamwidth in a syatem which scans very rapiöly? That is, endin you compare 5 puises in a bean with to 5 successive pulses atquinenan

Corbin: If jour thize belween ecans is Iess than the integration time, there shoura oe (RTI) Hitie sifferace. What scan time will you conslder?

Dunbar: Scanpericd ofliz tes seconds.
Corbin: That is much greater than any integration time, On the req. we had an integration time of $2 / 10$ second.

Wikinson: I would like to compare the case where we might scan 30 irames per seconct (RCA) to that in which we scan 5 frames per second, assuming that we have the same number of hịts.

Corbin: The acanning loss should go down for the slower frome rate. The exact point at which a change would occur depends on your system. If we stay abbove the linee of the cu: ve, nothing will happen. If you have a lot of look-to-ioor integration, nothing will change. Toú have inore pulē̃ pes beamwidth and less looks. Once you pass the point where the frame-to-frame integration stops, you siow the scan down and have more pulses in a beammidth. The scanning loss becomes less and then drops ciown eventually to the searchlight conaition for zero speed.

Wilkinson: What I wanted to know was where is the point wher the frame-to-frame integration drops off?

Gorbin: Whave difned it ig it $=1250$.
Wilkinson: I have slighty difétet quenton. Funpose we pemit the target to move so that between frames it moves more than the spot diameter, but very litile more?
 no loss was suffered fif the target moved less than y/2 its size Integration contines out to point at which there is no overlaping at all, The trace

Warreñ:
(RCA)

(NPI)
Do you thin that the knee of your curve would cofrespond to the spotitght value if you reauced the putse repetition rate by the saine actor with vituh gour beaniwith corresponds to the total scan angier fins due te the fact that you cannot realize all of the antenna gain. The beam moves of tage durinc the time fatervai otwen the transmitted and the - Fectved pulse.

Gunter: An efoct, Ehimitar to that of tanity a photograph of a cathode-ray tube over a

Biake: It àpears to He that you have destroyed the concemt of an integration timie (NRt) which might depeñ on the PPI and the observer and have substituted for it an
 applied this result or attempted to explen it ay mecianism?
Conbin: zt not belteve that the is momptionary. provious range formulas used by some people are related to this figure.

UESSE PA THE AR/TPG2 SCMNPEE

R. E. Honer
State Eingireering experiment Station
Ceorgia Instutute of Tecinolugy

ABSTRACT
A theoretical and experininntal investigution was conducted to determine the causes of unexplained power losses of the dider of 4 ab in the antenia system of the AN/TPQ-2 Mortar-Locating Radar The añtenna consists of two Zewis-type scañers fecding a common waveguide lens. The program of investigation consisted of studjes of the losses in the r-f system, the explanation of the losses, and consideration of methods for the reduction of these losses. The losses in the system were measured by the short-circuit nethod and checked by the substintion methoa. These losses are itemized and discosseu.

The investigation estalted in the following conclusions concerning the AN/TPQ-2 scanner.

1. Particular attention must be given to rigidity of the parallel plate mediumir since this contiols tise effects of tempexature upon losses.
2. The deyectric lenses must make good contact with the surfaces of the parallel plates.
3. Shortig bariers between the plates must make good contaci anc be paraileí to the electric teid.
4. Cracks anu suriace roughess contribute appreciakle to the lósses.

DISCUSSION

Puderibom: Since this scanner was developed by Western Electric Co., we have signifi(Eric) . cant evite that til session was not organized in a smoke -filed room.

Foster:
(McGill)

Honer: We are not connected with BTL but we think that this is a good scanner. It (Eả.Tech.)

BTL should not feel badly. This scanner is something in the nature of unfitfished business on their part. Ene was made at Radiation Laboratory at the same time, and it aida not have that much loss. seemed that development work on it was suddenly dropped in 1945. I think
 scanner. It dopes not appear to od too dûticuit to construct. it may have ppications in some instances. I think that further investigation of temperature and buckling effects in parallel plate media should be carried out.

Budenbom:, Irecall considerable e concern at the Bell Laboratories when this $4=\mathrm{db}$ figure Has uiscovered some years ago. Perhaps the gentleman from Evans Signal Laboratory has more information on this.

Ducore: Some years back, RCA developed for us a scanner which used this Lewis-type (SCEL) scan. The scanner was formed by electroform process. Perhaps wi. Wilkinson of RCA has information on this scanner.

Wilkinson: As I recall, it was less than 4 do. Data un teat sünmor was given at the last (RCA) symposium. We used an electroformed parallel-plate structure in which the barrier was an integral part of the parallel sheets. We used a similar type of lens. We plated the lens and placed an absorbing cloth between the plated lens and the parallel-plate conductor.

 AND SEANNING ELECTRONICS

Dr. L. C. Van Atta, Hughes Aircraft
(Chairmañ)

CONFDOENTLAL
SECURTYI INFORMATION.

Heny Jasik
Aituonine tistument tabotatory Inc.

A countermeasures sustem known as the high probablity Intercept system under
 maior components of this system is an instantanous direction finder which is capable of votating directional inforuztion without scanning. To accomplish this, it is necessary that multiple overlapping beams receptive to both polarizations be used to cover the entre 360 degrees of the azimuth plané. For the first developmentai system; 15 beams each 24 degrees wide in agimuth were requireä at S-band. In order to achieve some additional gain, it was desired that the elevation beamwidth alse be 24 degrees.

The brute-force approach to this problem would be the use of 15 pyramidal horis, each with an aperture 15 inches in diameter and häving an over-all length of about 30 inches. To mount these horns aboard ship would require an unwieldy structure having volume of about 30 cubic feet. In order to reduce the over-all size required, it was theught that it mighi be môrêe êficient tu use one aperture 15 tinas rather than having 15 indivioual apertures. This philosophy led us to consider the possibility of using a spherical Luneberg lens with 15 feeds.

The Luneberg lens* is a symmetrical lens having a variabie refractive udex given by thee relationship

$$
\mathrm{R} \sqrt{2}\left(\mathrm{c}^{2}\right)^{2}
$$

Where r is the radus coordiate and R the outside fatis of the teng. Aithougn considerable work häs been done on the two-dimensional lenses of the vat table refractive index type and of the goodesic type, little work has been uone on the sherical type of lane.

In lookin for ways to achieve the variable iefractive tuax required for the lens, a. number of posibilities were considered From the standpoint of expedency it was decided that the simplest way to buil the developmental model would be to use an artificialdielecirie consisting of pyrex glass balis armanged in a symmetrical Lattice structure. The epacing of the dattice would be varied tin such a manier as to achieve the desiño reiractive indes ajong the tadius. Our computations were considerably aided by hie use of some data on sherical
 Research Centert.

Dofore buiding the complete lans, a silice of the certral section was constructed and tested between paraliel bates in order to check the cormputations Figure 1 shows a photōe graph of the two dimensionat Iens Deweo paraliel plates heving actamedat thon the edge of the plates The lens, which was 14 thehes in diameter aha $1 / 2$ hich high, was fed by a shozt section of rectangular waveguiae. Figure 2 shows the structure with the top

 betueen parallel piates

plate removed. Here, the construction of the lens Is readily visible. The glass bails are Lotd out in a circuarly symmetrical pattern with the number of balis per uht volume decreasing from the center out to the edge. This resuife in a variation of refractive inder decoutur to the relationship glyen above. Higure 3 shows a close-up view of the lens proper. Ai of the glass balls with the excention of those in the outermost row have a diameter of
 isg oetween die glass bails did not become to large

Fhase-fan weastatuen made on the two-dimensonal lens indiceded that the struncure Was operating as preticted. At 3000 Mc, the wave front in the forward direction was nlane to withtin ond sinteentin or a wavelength. The radiation patterne at 3000 Mc are shown in Ftgure 4 .

Figure 3-Close-up view of lens

The pattern on the leit iqas takeir at standarusain seting whie the pattern at the right was taker with the gain increased by 10 ib: The main beamis smooth and gymmedical, and the

 able concern añ rásed the question as to mhethen the same dificulties would be oncountered with the splierical lers:

One explantion was that the refiection from the edge of the parallel plate aperture could be responsibie for the back lobes. Because the aperture posessed chinarical

 Fenectoitegeficient:
 etine of the atefture was butit. Thite flare was 3 inches long and 3 inches high and provitáà \& ebnsldeyably bettay matoh than the abrupt aperture transition previously used. patterns

 and werie hiow thout if th befoiv the main beam. The shate of the main beam was essentially
 abyerture reffectlon and not to the wedgn of the dent.

 (xan

TABLE 1
Datern Sharactarstos for single Feed

Comphonmial

Figuire $7=$ Horizontal plane radiation pówer patern (horizontal polarizatioǹ ón sphericai lens antenna with singí feed

Figure b - forizontal plane radation powerpaternetucak

anould be encountered, It wil be noted however that he beanoldth obtained was conelderabis narrower than the 2 degrees orignally required.

The beawidth was lesg than the value that had been or ignaiy estimaica ioy twọ reasons The first was the narrowing obtaned pecause of the end fire effectue to the lens having depth as well as breadth. The second is the tendency of the timovery lens to acentute the wide-angle radiation of the prinary fecd, berety frithg yn the iluml nationlevel at the edges of the aperture.

The minowgenonmidhs lower the crossover levol between adjacent beans mon than desireă in order to brig the beamwith back to 24 degrees, it was decided to reduce the dlanieter of the prototyo mitenna to it inches instead of 14 hehes.

To determine how the 11 ench prototype antena would perform from 2000 Mc 3300 kic tith a complete set of feens, data were obtained on the lis inch experimental antenna in the region from 2200 Hic to 2700 wc.

The problem of locating feeds completely around the periphery of the lens was not
 and the feeds occupy only a strip of the sphere. Actually, even this strip is only olighty blocked because of the feed poiarization. Be dause the antenta needed to be receptive to both polarizations, the feed was mounted at 45 degyees: winis resuited in the rather fortunate circumstance that the feeds on opposite sides of the lens were perpendicular to one another and were thus essentially transparent to one another. The dipoles were backed by a grating of 45 -degree elements that acted as reflectors for the ind-ridual dipoles. Figure 9 shows the lens with a single dipole oriented at 45 degrees and the $45-$ degree reflecting grating mounted around the lens. Figure 10 shows a detail view of the experimental grating. In orucr to determine what effect the grating had, patterns weve tahent mith and without the grating blocking the forward half of the lens. The only result wans a negligible change in beamwidth and an increase of 1 db in stide-ioge ievel.

To determine the performatice of the comjlete anterna, is teeds and feed cables at 45 dagrees weremountation the lons. Data were taken down to 2200 vec with the expert-
 of the scalel prototye antennu. The keents ape bhown tn figutes it and 12. The bortizontal plane half-power beaniwiths vary Fom 28 degrees to jhout 21 degrees over the band, while the cross-over level varies finom 2.0 of down to about 3.5 db down. The vertical-plane beammidths are slightify anco romer than those in the berizontal plane. The side-lobe levervaries from 14 db cown at the low ent of the band is ancut zo do demat the figh end of the bañ. The side iobibe level
 the broadente of the pothary feed illumiration watiorn as the froquency goes down and partially duie to the cumfitive effect of the other feeds ant cables.

Figure $10=$ Detain view of 45-uegree grating

Figure 12 - ficvation plane beamwidth and horizontal plane minor lobe leveĨ for complete spherical lens
Tho oven-alleotrical performance of the antenna was condidered quiteacceptableintarms
 feet so that a very substantal gning in space wil be gained over the 15 -horn array.

Ai amater ofinterest, some measur ements were made on the experimental Iens to determine tisperiomance oner ati etudedfrecuencyrange. The primary ieed was changed andpatorns Were meatureüas thefrequency was variedfrom, 1000 Mc to 7000 Mc . As might be expecto, the beamwth decreased as the frequency increased 100 ve 5000 Mc , how evar, the patterns were not satisfactory because some secondary beams of large amolitude started to form. It is not definite whener thesevere dueto ine iatict spacing or due to be dameter of the ind viduaglass balls

 inverefrst 20 wer of the fiequency, it is belleved that the more rapld yariation of the beamulath to ue tothe end fire efect that is present with the spherical lens.

Some theuric ans beer of ten to the possibility of modifyin the lens to meintain beamwidh constant over e mide toguency range. Fetminary coroputations ndicate that this can probabiy be done by using the lens to generate a sighty curved wave front that will bave a onmponsating effect ith frequency. The modified wave front shape woult he obtalne by changing ihe law of variation of retractive inder from its present form to a clighty fevised. fobimo

CONGIOENTAL SECURYT RNORNATION

DISCUSSION

Question: Do you have a photograin of that 1t-fesu nytem?
Jaser: No Io not. It was a hatote arrangement. We are buiding a prototype (3LL) nư.

Question: Are the 15 feads displaced anound the ontixe surface?
Jasik: -.. Yes, they are spaced every 24 degrees around the equatos. Since it is going to be used on shipboard against aircraif, it inight have been better to drop the feeds slighty beiow the equator to point the beam upward. This would have imnroved the feed blocking.

Quèstion: Have you trieu a zadomé over thè entire systern?
Jasile: Yes, we have, and a cylindrical radome does net appear to be too critical. The cyindrical radome over the sphexteal lens scattered the zefiections more than they wout have been had the raọme been spherical. I belteve this antenna vill be one of the first zunebergs to go into a system. It is not the first spherical Euneberg, however. IDelieve Hughes Aircraft Comgany buit a gherical lens sorie time ago, using a difier entechuique.

Question: How was the dielectric constant determined?

Jasik: Whe uned the nesuts ohtained at Cambridge Field Station zy use of a cubical lattice. We posituiated that what counts is the density of the balls per unit volume rather than the spacing between bails, provided that the bailis weere smail enough. We computed a position of the oalls from the density concept in varicus rãial stens. To simplity fabrication, this paition was made to contempht the desines of our machine shop, As a metter of interest, U took about a day and a half to dinil all of the holes reguired in the lens: ido not think that this onestruction vould be usetur a procuction mode, but we feel that it is tdeal to prove a phiocopophy and a design technigue
ones
TRRDE)

\because Jasta

Do you condide the possiblity of ufat hollow medi spheres as obstacles?
Yes, but when metalsheres are used, the permeabilty goe downs ate Iatice spacing is ncreased. Ibelieve the cambride data shows wo teach altatetn the rofentive ndex of about 1.29 wichis less than the 1.41 that Screquired The giass spores are melatively hiexpensive and easy to obtain and are possibly somewhat lighter.

Cruenterg: Do you have any icea of ne Iops tuns temo
(VRO)
Iasix: " "No, we have not, but we oud maken matimate of the loss for a wave passing through a sphere filied complotoly with the pynex matertal. The mesile mas $3 / 10 \%$ a/io ou a dib, Since we did zot have the sphere completely inied and since our measured gain of 17 to 13 db is ample, we feit that the losses were nothing to worry about.

Van Atta: (Hughes)	In ragard to the scattering by the obstacies-if it were appreciable, it would stiow up in the side loues from the system.
Ribiet: (ailic.Dev.)	Can one infer from the data you heve given that the initerent bandwiutin of this system is of the order to 5 to 1 ?

Jasik: \quad Froni the standpoint of the range aver which this system can perform, it is good from 1,000 to 5,000 megacycies. This range cüld ba extended up to 10,000 or 15,000 megacycles by reducing the obstacle slae and the swacing. Of course there is no lower limit. The problem confronting us here is that of keeping the beammidth consiant over a freguency band of about two to one. The structure was developed on the basis of geometapal optics and so is of course independent of frequency.

Connibo: Could you give references on the geñeral derivation of the Luneberg iens ?

Jasik:

Hiatt: (AFCRC)

Jasiz: $\quad \forall e s_{\text {, the }}$ couping between two adjacent feeds was of the order of 24 dib. This decreased for the other feeds. The diametricaily opoosite feed had a eouphing figure of ress that 40 ču.

Kelleher: (NRL)

The first derivation was given in Luneberg's Notes, yublished'by Brown University. I believe this is the oniy place in tine literature where it is done completely. The tatic oparation of the reñ has been discussed in many places in the biterature. In this country, work has deen done by Cambridge Research Center and by NRL. The work in Canada will be discussed in the next talk. Where has been a paper in the Britich literature oramharizontally polanized lens.

Do you have any information on the coupling between various feeds?

In ansor to the quostion of the gonteman from Melone, there fis anober derigtion of the inneberg lens which is sonewhat simplep. Thas not bean piolishea yet. Gr, Eaton of NRL nas worked out the solution and ohli give a pagri at
Ai. Kellehels does that include the more general case?
Kelleher: Yes, Cbelievethat oo, Dr. Eaton optaned an ntegral equation simian to thet of unebergs, and hetion neater solution to that equatioñ

ContmenTMI
SECHTH TNFORMATOM

TAR THA

F. G. R parron
HEA Victor Cominany TTD. Montreal, Caūada

In Maty title, I have described the subject of this paper as a modffied Luneverg lens. I am sure that most of yeu are familiar with the various forms of the tumeberg lens which have been constructed for micrcwave use; so I will go over the baikground only very briefy. The Iunejerg lins is an optical devtee in which the index of refraction of a sphere of transparent material varies from unity at the surface to the root of 2 at the enter according to
 optucs we are able to make both two- and three-dtrentital rersions since we have a number of mify of optaluing a yariable index of refraction.

Further, K. F. Rinenart has derived a parallel-plate sysem in the shepa of a suriace
 tion. Fiowever, when we chatulake hat exact equivalan of the Luneberg lens as a surface of rovolution, parallel-piate grotem of unit inder of refroction we tind that the systemi to vericai at the edges. If ve represtut the system by the generator of the suriace of revolution winith is the mean suriace between the piates, the Rinehart solution is of the form of the broken curve in Figure 1: To uise the syistera as a microwave lens the emerging rays miast be brought into the horizontol plane. 位 a curved lip is added to the Rinehare solution, this adas extrat focusing properties which somewhet degrade the performance of the lens. This has keen done at the Air Force Cambride Research Laburatories where it has been shown that this

The monk t an describlig began wh an attempi to derive the shape of the surfaces which
 that Is, e sygtem which woula eive a batu of parallel radiations from a point souree on the circumference. At this noint I might sey that this work wes underiaken as a part of a sturifinder contract to the Devinse Researeh Bardin Canada. when of the worit both
 fot feports on the project whieh areavahable through the Defense Research Board.

We visualized the system we wantea ä faring in general the share of helmet, for which reason we diristeneu it the "tin hat. Anaiysis showed that the verticail edges oí the Rinehart solution were a neçessary consequence of requiring focusing across the entire aperture-that is, focusing even of maps which travel entixely in the nareow region near the cireumiex ence. If we piere wiling to foreqo the focesing requiement for these extreme rays, we could put a curved lip within this region and still construct a sysiem Which focused ait other says: One attemptofind an analyical solution for the central. surfacetc go witi any given it was successfur in giving formel solution, but this was itself an integral equation which we cound not soive in zup useful case. We were abie, however to tind the shape of the required central suriace to go with the given lip by return.-

 polygon wás determined by requiring that a particular ray emerge firm tue systen pamini to the diameter drawn thrount the source point. The caiculations are all made in terms. of the mean surface between the acual parallel plates anc are based upon the assmpton that the radiation travels aloigg geodesics on the mean surface. The number of stidight elements chosen was sufficiently large that on construetion a smooth surface would be bobtained. Obtaining a suffictentiy accurate surface by this means is a bit laborious, but on the ofher hand the process is very flexible.

The comparison betwen the shape of the serneatoz of the mopn surfage of ine Rinehart form and that ồne tin hat is shown in Tigure 1. The broken curve représents the fine-

 each different 1 p there exists a complementarg entral sure ece.

A model antenna 9.5 inches in diamoter was constructeu on the basis of the calculations inade, and radiation patters were measured with the pattern measuring faciities at the laboratories of the fational Research Counci of Canada in Ottawa Figure 2 shows

 of this pattern 4 ol degrees This agres closely whthe calculated oeam wath. assumizi a reasonable Luminationtaper. The sicelobes intstaternare ail below 20 dh. Because the device uses path-length focusing, it shond be insensitive to frequency. To invétigate this property radiaton patterns were also easured at a welengtiof 0.887 centimeters, A typical horizontal pattenat this wavelengthis shown Figure or
 agreement with the calculationis; che change in beamwath ine in ene ratio of the wavelengths. Vertical pettoras hadiaso deen calcurtea in both cases, and had beem shown that because of the end-fize type dix uturty inguedod the dimetrion of the aperture
 iess than that cormesonding to tixe height of the anextue. thus, tithough the remegh spacing of the piates was only o. centimetors the wetiget hif-power patcern withat a wayelength of 0.86 cm was falculated to 0 y 36 degrees, and at a wavelength of 1.25 cm the cadulater vertical half-power widh was 45 degrees. Fopermentat values were

COMFDENTAL
 SECURINX MFORMATION

Figute 2 - H-plane patern of 9.5 in. diamioter tin hat at 1.05 cm wave= length

 simple waveguide fieeds piaced against the eage of the system and pointed toward the axils. No unusual presautions were necessany hit locating the feeds.

The work done on this antenna suggested other possiblitiss, none of which have yet
 the antena we have been discussing s single wavegude feed pould revolve obout the cir cumference oi the system.

If we wigh to scan through a smaịer agigie, say singinty dess than izto degees, we couid we three symmetricilly located waveguide feeds in conjunction with a three-way wayeguide rotary switch. Only one feed, that lying in a paricuiar 120 -degree sector, would be energized at any one time; and the beam would scan in a sawtooth fashion through a sector of 120 degrees; less switching loss, at three times the rate of rotadion of the feed system. In the case of three feeds, the bean. would pass almost entirely between the two inactive feeds so that aperture obowuction would be unimportant. If we wished to use more shan thuee feeds to gat a smaher angle of scañ, the inactive feeds woud cause serious obstruction of the apertize. Powever, without losing the optical advantages of ūing a surface of revolation we can construct a system for use in limited-angle scanning. which avoids this obstruction of the apexture by the feeds. This is aone by dividing the circumference into the aperture region and the feed region. In these two separate regions we use different iips, both of which are portions of surfaces of revolution about the amis of the system. They are so shaped, however, that the continuation of the feed circle does not interfere with the aperture. The center of the system is a complete surface of revolution witiz foins smocthy inte the lir region. The methods of calculation used in deriving the shape of the tin hat are readily adaptable to calculating the shapes of the mean suriaces of these systems. Figure 4 shows a few of the possible shapes of this type of antenna. The form embodying a toroidai bend in the feed region is particularly interesting as it gives the shontest and lightest feed siystem. Decauce of the oxtra focusing introduced oy the toroidal beind, the curratire of the dome-zhaped section is less than that of the simple tan tiat. You will see that it would also be possible to construct a modited muebere lene of the fiat wariale-index type whel uses a toroid bend around part of the circumforence to separate the feed eincle and aperture circle.

Systems of this type wouc be capobien a very rapid rate of scan through angles up to about 80 -degrees, The scaning rate, in scanc per second, is the rate of revolution of the fed sysiem mutifled by the number of feew theat the seafing rate, in degrees per second, is sto thes the rate of revolution of the feed system, The aryangement of tie system piti it rolled-under brim and ten-way rotary s wich s show dagrañoticaly in figure $\overline{3}$ e scans through 36 degrees, less the lose due to sutching time at ten times the rate of revolution of the feed system.

Another variaton of the suriace of-revolutuontye of focusing wiuch can be handed by the same appotch that of phesing the aperture to elevate tin beam tünum above the logigon, The would serve to give a measure of contral over the shape of the vertical patern. It is the only obvious way in which the bean widh of the vertical radiation patiern could be nereased-if the were desirable. The mathernatical relations show that any eleration of the feed in this manher entalis some decrease of the effective apextire. The Hethe the ban megle the smaller the portion of the aperture which can be properly phased. At of degregs elevation no finite ferigth of the aperture can be progerly phased by this methatifecusing:
in sumany; the man ieatures of the wor it have oben discussing ne as follows: Methois were derived for caicuiting the shape of the meanarurfuce for a runebexpotype;

Higure 4 - Añtenna Soman with separate feed circie and aperture for $\overline{1} \bar{s} e e^{-i n}$ limited-angle scanning

paraini-nintes, surfice-of-revolution lens corrected for the de-focusing effect of a hortcontal ing. Calculations were made for a model which was conistructed and tested ât
 anienina compoutd of portions of surfaces of sevolution about the seme axis was proposed. Full details of this work, ineiture a minhop of yelated metery not discussed here, are

G. Di. Hie Penicr
Naval Research Laboratory

 conducing plater; the space between plates being filled with polystyrene. This lens uses the TE T_{n} mode su: that the proper index of refraction is obtained by making the plate spac. ing a function of the radius. Figure 1 shows a picture of the lens together with a siofich that exaggerates the curvare of the plates. For ease of counjuidtion, the top plate vas
 designod for a wavelength of 3.2 cm , making the poiystyrene thickness 0.91 hoh at the center and 0.58 nef at the edge. The diametor 156 inches. The flanges at the rear of the lens position a feed horn and were arbitrarily made to oover go degrees of the circumference. The extra rim at the edge of the top plate was added to maie the apertire symmeticalt thes making the total trickness $1-7 / 8$ inches.

Provision is made for adding flares to this lens in order to obtain a hore directive beam in the H-nlane. One set of flares consists of plane sheets of 20 -inch radius mounted ou each side of tie iens, These are dessigned to act as a box horn at the aperture. Another set, which we call the conical flares, has a plane section the same as the first set but with the addition of a section of a 45-degree cone to each fiare to mate the total aperture 12 nehes.

The design of the lens can be understod by constdentig perfectiy parallel plates separa d by a dielectric which will propagate the TE mode. Mith index of refration of this medum tis guvenby

$$
\begin{equation*}
\mathrm{in}=\frac{\lambda}{\lambda \mathrm{E}}=\sqrt{\epsilon^{\ell}-\left(\frac{\lambda}{20}\right)^{2}}, \tag{1}
\end{equation*}
$$

where $\epsilon^{\prime \prime}$ is the dielectric constant, λ is the free spaze wavelengin, and a is the plate spacing. The design techinique permits variation of the spacing between piates with radius in

$$
\begin{equation*}
\dot{n}=\sqrt{2_{2}^{-v^{2}}} . \tag{2}
\end{equation*}
$$

Equations (i) and (2) cañ be conimed, and the plate spacing a cañ be found as a function of rauius when the dielectric conctant and the wavelength are taken as mameters

$$
\begin{equation*}
a=\frac{x}{2 \sqrt{6-I^{2}}} \tag{3}
\end{equation*}
$$

Inspection of Equation (3) for $\dot{r}=0$ indicetes that ϵ 'must be greater than 2 for this equation to have any meaning. The lens must ofperate avove cutoff for the tero mode; when this

Flgure a shows frplane patorse with and without fiayes. The lens without tares has a pattern with a that top and no side lobes as such, aithough there is aprechable a mplitude解 wide angles. the nall-power beamwidth is 39 degrees. The addition of the piane thates
 gtve a peamwidth of az degrees and iecuce the sidelobes slightly but we believe that for most applications the thorovement over the plane flares does ho justify the langer structime

Caremust be tainen to be sure that ar adition of the flares does not destroy the focusing propertes of the lens Figure shows no appeciable difieronce 3 E plane patterns mith and withot the lares. Theo patterne, when or the various sed positivisp indicate constant gain and they have sidelobes for the most part under 18 db . If he flares were used to suphort the fead instead of the flanges, 360 degea scanning coult te obtained. The heamwinth 18.2 degrees. Cotphanison of scales will show that he beam shft equat to the feed hore shift, there were twice as many feed positions used without flares dis with thent.

The gain of the lens with the piane flares at 32 cm is 20 dh, about what is expected from a consideration of hiebeanuidtris.

Data turen over a 6 -pexcent band of frequencies show that the waterns ane much the same as those shownere for 32 ch .

Future plans for this project inctude developing smaller feed circle Iunebergs as Shom th Figure 4 Lingbercis solution renuires the feed to be at the edge of the lens,

Cengompul
SECORTY ITFORMATON

Figure $2 ;$ Lunoberg Lens-typical patterns (H-plane)

No Flares

Figüre 4 - Limebery Eens -
snanl feed circle
 to aredius of r_{1}, a highter and more compact feed system could be designed yich woitu permit easier and mare rapia scanning. A lens with this smallor fecdotecie padius requires 2 different variation of index of pefraction, and perhaps need not be called a Luneberg at all. Dr. Eaton of the Antenna Research Branch of NEL has solved the proklem of determining the index of refraction for an arbitrary feed circle radius:

DISCEESIION

Winac: Could you explain how you bolted the two plates together?
(A察)
Dipeler: - Pirst 1 should say that we useã the TE ${ }_{10}$ mode so that the bolts are porpen(Mitz)

Wilkes:

Did you paint the polystyrene surfaces for good metal contact?

Quêtion: How couta tīe small feer circle be fed?
Peejer fone were interested in a limited scan he cuid cut ont a petion in the back; for a 360 -degree scan, he could feed with a slot between the inner circle and the annular ring. The separation between the inner and outer regions of the lens would permit feed horn rotation or feed horn and inner ring rōtation. For three-dimensional lens the scan might be limited to a sector of 90°. For a frill sphere you must remove a part of the sphere.

R. ST. Wehner
Hughes Aircraft Company
Culver City, Californià

In connection with a study of the proviem of electronic scanning under Air roxe Canbridge Research Center Contract No. AF 10 (122)-454, Dr. M. T. Ehrlich and Mr. I. K.
 and interesting application of the pinehart-Lunebers lens (x) in this appication the lens is used as a principai component of a nonmechañical scanner in such a maner äs toprovide a possible practical solution to the aperture blocking problen -a naturai monans. for extending the ridrow annular apertue of a conventional Rinehart-Luneberg into a cylindrical or conical surface wide enough to permit the possibility of beam-shaping in the pianes tranjerse to that of the aperture-and as a means for accomplishing widesector or full 360 -degreè scanning of a fan beam without mechanical motion of either the lēns or its feed.

Consider the toroidal-bend aperture of a standard Rinehart-Luneberg lens (2) to be pemoyed at its junction with the lens focal line and replaced by a cylindrical parailelplate medium conposed of ment trentic可 rectangular waveguides, anranged axially, nairow siud ajuting raxyow siäe, as indicatea in wigures 1 and 2 . If any one of these waveguide apertures were fed so as to radiate into the iens, it wouid be apparent that the

Figure $1=A x t i s t$ tis sheteh thowing finguical surince componed of rectangulat wexeduides coniaining shumt

CONFIDENTIAT
SECURITY TNFORMATEOT
guide apextures ryint âtone the ophosite semi-circumference would be illuminated witi the proper phase uistribution to give rise to a plane wave (neglecting. reflection and ainiraction efifectis pro. viding that the individual rays were refracted so as to emerge parailel and coplanar. The toroldal bend acconpllshes We hater fuiction in the conventional Rinehart-Guneworg; here it is accomplished by the wavegulde medium and by the slot arrays in each of the component guides.
puns expected that phase and
 os a function of angle of inetidence, Interial reflectione, what difactionat the guide wale edges would complicate transmission from the Rinehait Luneverg mediun into the no thotinto susion. This mater was hyestiçed externmentally using a 36 -inch diameter Rinehart-inumers tefis forimed of

Figure, 2 artist's sketch showing portion of Rinehart-Luneberigens féaing parallel-plate medium composed of recing gular waveguides arranged to form cylindrical suriace
aiuminum spinnings, loaned to us by the Air Force Cambridge Research Center. Figure 3 shows the experimentai setup, with the Limeberg lens fed by standara X-band guide and the lens reeaing an array of 113 sections of standard guide, ean in temminated In a matched load. Flgure 4 is a chosionp of part of the system, with the upper spinnixg removed to show the guide apatures arranged along the focar line. (The torotial bend was not removed
 the tiativiual gude section in piace oin ther pecnectye mathed loads and also the Arcre

F2gure 3- Photograph of 36-inchdiameter pinchart yuneisergiens

Figure 4 - Photograph of 36 -inch diameter Kinehant-Luneberg lens (...ith tooidui bend) feeding array composed of X-band guides with upper surface of hens removed to show guine apertures along focal line

Figure 5 Photogaph of Arrorce Cambiage Research
 and matched probe coed in study of cyrudrical waveguide. surfacés apértupe
to olaal-bend aperture Figures 6 and 7 show the measured anplitude and phase distributions over the wavegude array and tơrotdal-bend apertiares as functiont cf angutar pugito of the probe with verpect to the cirection opposite the feed. The general simi-
 the open apertare by the higher gain horn feed and despite the prosence of obvious reflection and statioring affects in the data pertainitg to the wavenide medium.
conmentuil

Figane $6=$ Comparison of a,mplitu de distributions ove a perture of ofzetyLuñebet tens zeeding open
 cal array of X - Ba ad wayeguides as measured at 9250 Me

Fqure - Comparon of onas distributions o ex apertire of Rinehart Luneberg lens feedig opentoondal benáăd cylinarical
 megured at 250 0ic

The andeld pattern of the oper anderture lens, having the phase and anopurte tatrinution shown in Figures 6 and $\%$, was measured and found to be characterized by a 3 -degree half-
 guide-aray aperture was compuied by aporoximate methods and fucud to have a 2 T-degree hall-power with, with highest stde lobes 10 do down. These restuts are only preitminaty,
 or ieariy equivalent in perfotmante to the terotel bend.

Figure 8 - Schematic diagram of proposed resonant switching systern by meansof whichà Rineberg-Luneberg lens couidbe ised to feed a cyindrical array of rectangular waveguides in an electronie scancr.

To return to the electronic scanning problem, Figure 8 is a schematic diagran of one proposed feedrg and switching arrangeneng byens of whith ang one the waveguide elementi ceula we mace to serve as the feed for the Rineharto Luneherg lens while the other guldes function as radiating elements. this systenn noolves a naja circuiar feed line contained within the cyibidrical wavegulde surface and a oysteth of switches in branch arms thee ofiches per element. In this particular arrangement, only the three switcheo ascociated with the element momentarily serving as the feed, indicated by the " X "s in the figure, are fired at a given time: all the other switches are quiescent. Digure 9 ls an artist's sketch of a possible method of no poraths this switching scheme into a thelart-Luneberg electronic scanner:

Figure 9 - Airist's sketch showing proposed feed and switching systems £or electronic scannex emploving
 ture fed by finehart-Luneberg lèns

In conclusion, to porhans unnecessary to temert to this audience that no extsting electronic switches (gas-tube, territe, or what-have youl meet or even aproach the reqürements mposed by this type of rador scanner. However, the swith spegitations, and the controi system complexity, beome much more yeasonable if the scan anie is reduced from fuil 360 degrees to 90 despees or less, so that a given element of the waveguide auay ned sery only as feed of as radiator and need not perform both functions.

RET ERENCES

Kinz K. S. Bramer, F. And Johannensen, J. D. Final Report on contraćno. Whe $099-a c-141 \% 30$ setember 1949
3. "Luneberg Horn Feeds" United States Air Force Air Materiel Command Drawings

SEANNING AT R. K. R

S. S. D, Jones
Radio Research and Developmeñ tistahitshment, England

- wime being limited intend to treat briefly items that have been puiblished elsewhere, and concluạe writh a more detailed treatment of current work.
 of the funeberg lens. The necessary varying refractive index was obtatued men of conducting sheets spaced in the derection of the magnetic vector, ir such a way as it produce a quasi-refractive index varying according to the muneberg relation. This variant; which had the defect of being limited to the neodiction of a line source, is the only one we have examined experimentally. However, my former colleague, Brown now of City and Guilds College, London, has developed the theory of a similar system which is capable of scanning-a fan beam through sobe 0° by moving the feea through a circie. Further infor.. mation can ou ob̄ained from the ret̂erences appendề.

The only high-speed scanner that has been developed to the prototype stage is a Foster Scanner fed by a half pillboz. Its aperture is some 20λ at ${ }^{\circ} \mathrm{X}^{*}$ band, and it has been designed oy my colleague, Slater, to scan over an are of $8 g^{\circ}$ at a speed of 25 cps (complete cycles). I have no information to give encept that performance is entirely satisfactory. The design follows the information proyded by Dre Foster; and there were no znags, Considerable care was icquired beth in machining of the light alloy cästings
 Establehmeistound the latter problem of simpleone

We have recentiy been called upon to produce a lens to operate in the 8 centimeter Band to the folloung specilications:
Beambidtio 3 to - bid
Scarning Angles 120
Fandwath:
polarizationt plane
Teed:
Pofit Source (moying for scaning) or ine source
(stack of hoons suitabī̀ fed to synthesize CSC ${ }^{2}$ beam)
Aperture Ratio Unity
 give a betier scanitu periormance, but, as plane potatyation was spectied an "eggiox" finucture, which poud be negessary to meet the Ruze conditions in both planes, seomed to in ninuiecessary complication. We accordingly tried to meet the soecification with the zock fype

Our mechanical engineer wanted to use perforated plates to save wefght and chatned
 centered herg genal lathe whe pationotetometal was 55%.

117

A few preliminary experiments showed thatuse of periorated plates orifere anadvañage more important than weight saving. Ccupiing between adjacent channels drasticaily modified the waveguide equation, and plate spacing was some 15% less than the value given by that equationint the desired refractive index of 0.5 (in fact, the lens was designed for $n=0.53$ as, on account of some rather inaccuratepreliminary experimpats, a number of spacers which procuced this value hàd been made before the lens was constructeal). This reduction of plate spacing, hy delaying the onset of secondorder reflections, promised to improve the efficiency of the lens.

Figure 1 shows the construction of the lens. A combination of front and back steps was usediso that the tack surface of the lens lay approximateiy on a sphere centered on the focus.

(b) Clöse-up of lens

COHFIDEMEAT
SECUETMY ENEORRAGOM

Figure $2=$ Polar diagrams of 6^{γ} lens, $\lambda=8.2 \mathrm{crn}$, feed horn $5-1 / 2$ by 4 in.

The remainder of the figares stmmarize the measured periormance. Figure 2 shows radiation patterns at the design frounency, and Tigure 3 gives a summary of the scanning properties in erantifotates. It rill be soen that the optimum ocal surface is vory zeanty a spinve nontered on the center of the lens. the gain vis. seanning angle characteristic does not compere with the Binormal tyoe of lens; but even so, it is sufficientily goca for our presen purpose, and the constuction avoids the complication of the eggbor.

In all of these figures a primary feed horn giving a 10 db taper was used.
 nere will understarid my teluctance to be very confident in an absolute gain measurement, This rather high value would seem to indicate that front steps are slightly less harmiul than the usual rear steps.

Finally, I would like to place on recond my appreciation of the generosity of the U. S. Naval authơrities in enabling the British representatives to attend this mast valuable Conference.

BDBLIOGRADTY

1. Euneberg. "Mathematical Theory of Optics," Brown University press; Do $2 \overline{1} \overline{3}, 1944$

2. Brown ard Jones; Electronic Engineering, p. 357, Sept. 1250
3. Carlson end Heins, "The Reflexion of an EM Plane wave by an infinite Set plates,"

4. Browne proceaings of Conference on Aextals for Manine padar her Britannic Majesty's Stationary office, Februafy 18 it

DISCUSSION

Budenbom: Could you give a figare for the loss in gain on this lens?
(BTI)
 (RROE)

Kelieher: That appears to be a very good gain figure. Wie had some discussion about
 priate to that discussion Your data appears to show a very broad maximum for your gain as a feed is moved aleng the amis of the lens

Jones: - Yes, it is very broad. It what might be expecteu from the optics of the situation. The f/D Fatio was 1 rind titre was a tolerance of ± 9 inches about the 8 foot focal length.

Kelleher: That is encouraging. The previous reaults aeem to indicate that you might jose large andut gein if the feed were moved only slightly fron the best focus point.
Jones: There was a ripple on the curve, and it is possible that bad impedance mâtching might give false geni data.

Budenbom: Your gain iiguie was no doubt quoted for the design frecicency, Was there any atempt to broad bandithis lens?
joñes:
No, it was a simatitubrward Kock desigu with steps on tine front face. In regard to this 50% figure, I would like to say that it might be off by a dib or so. We did not have accesss to a sié which leftit us entireiy irce arumu

WREITES AT 蝠COOMANES

H. N Chait anow G. Sakotis
Naval Research Laboizatory

Onc method of scanning involves the use of arrays of radiating eiements such as dipoles, slots, or horns, The anteña beam is scanned by causing the relative phase between elemitnts to vary with time in a prescribed mamer. This has been accomplished in some antenia systems by mechanical methods. For example, in an Eagle Sieanner the width of the wakeguide feeding the array is changed, thus changing the guide wiavelength whith consequently varies the electricai cistance between the eiemenis of the suray to prowide the required scan, Unfortunately, this and other such schemes frequientip result in mechanically eonplicated structurés which are have to construct, hard to maintain mechanichily, that most important of all, hard to move rapieity.

In yecent yeaxs, attenion has been directed toward the possibility of scanning by methods which avold the use of mechanically moving parts, One approan to this problem invoives a source whose frequency varies with time. This, as in an Eqge Sẹanner, changes the guide wavelength and thus can be used to proauce an electrical scan. This inne of attack is already being fonlowed by fughes Aircraft and others, and the maior problem seems to be the development of variabie-frequency magnetrons os klystrons.

Recenthy another method of electrical scanning susgested itself to us when a new type of waveguide switch was introduced by C. H. Luhris. The design of this switch wàs based op tie eiectiomagnetic pröperties of certain fenite materials. These properties have been the sublect of yecent papers by wise of BTL, Polder of philips fintoven, and Bado of Netu fore recentiv, papers have been publishod by nogan of BTE ană. Sakiotis, Simons, and myself here at NR describing some microwave applicatons of feramic materials.

When we stanted our ferrite reseanch program we fünt bit then \#aterare hac characteristue quite unle α y other material currently used in micio wave components. For lackol better name, we call this material a ferromagetic dielectic. This material has meny interesung characterstice. Rmong others it is anisotropic in such a way thatitcould be made nonreciprocal-that is, one can make getces from thich will hotonotye neciprocify law. Since the was so much unexplained the interature we
 milowave region.

Gince our primary alm his been the developinent of an electronte phase shifter, our
 ties difectly applicable to the design of such a gadget-nately, the phase shiff and loss.

An idea how fer rites operate can peraps be obthed by considering the heo y of opeation of a Luhe switch. Fugre ishow an X-banc waveque setrip. Notice the the ouptot rude is rotated 90 degrees with respeet to the mpur gulde. The switch is iccated between these crogsed guhes. it consists of a section of dielectric-filled circular waveguide in which a plece of ferrie fod about $1 / 4$ atech

Conementhe 123
SECUAMYY MORMATON

Figure 1-Luhreswitchas used in X-band wíveguide

Figure $2=1$ longitudinal section of a typical switeh
shown in Figure 2. A coil of wise provided to supply an axial magnetic field. When the proper current is fed to this coil, the polarization is rotated 90°, and power will be transmitied from one sude to the other with about 0.25 to 1.0 db of attenuation, depending on the particular switch and the ferrite in use. When the curreni is removed, atenuations of as high as 50 db have been measured.

This particular phenomenon can be explained by a consideration of the Faraday opt-
 two circularly polarized components of equal magnitude, one rignt-handed and the other left. On appication of the de magnetic field, the ferrite becomes anisotropic in such a way as to have differcit indices of refraction for each of these components. ghus in passIng through the materiai; a relative phase shift is introcuced between these components. and this will cause rotation of the piane of polarization. With the proper field, the 80 . degree rotation required by the switch may be obtained. It is vident froin this that eitc: tronic phase shifting can be obtained by feeding such a dovice with energy having only one sense of circular dolarization. The output phase can then be conto oinea vayyng the Sild appled to the ferrite

We then feit wa necessary to determine the factors which control the phase shift or zotation and the loss characteristics of the ayalible ferrite materials. Figure 3 shows schematicily our orignal measuring setup. Wigure fa) lis a pleture or the actual setup for meanuroments in a circulain a restanguiar wavegude. Hete we can measure all the character stics of the ferrites in which: are fnterested. To simplify the actual measurements, the single mode transducers have been replaced by doublemode transưcers so that the input Visw and the outvut elifitity can be meacired continuously without moving any part nit the setur. The Janaty 1952 issue of the Nhe Progress Report cuptins a description of the work and the setup, we are determining how the physical dimensions and the thape of both the in rite and the suide which contains it affect the phase and ioss properties of all ayailable ferrite materials. The effects are bèng siuded for bithongitudnal and tinavercu fictds and combinations ot both.

Tigure 3 - Schematic diagram of original setiup for measuring the characteristics of ferrites

Figure - Actual setup for measuring the chatactestics of fexrites

Heoorination wit our measurements, Tr. Wh. Kales our brarch has been condueting 2 theotetcat study of the propagation modes in wavegude of arbitrary dimensions
 ine reparit giving some resuits of his investigation.

Once familiar wh the properties of these ferctes, one finds many places in zrata system where they can be used; in fact, the mumer of applications is limited mainly by
 hodilators, swiches, mtenuators, phese shifters, watemeters, matching sections,

Complemntiat
 sECUKIV INFORMATION

polarimation changers, etc. There are, of course, many probiems to be sciver hefore these components can we used. Their power-nanding capabilities, their bandwidth, and their temperature dependence are of prime interest.
I. pould now ike to coscribe a few of the components whin we are presently develoning. As I mentioned earlier, we were very interested in building an ali-electronic, variable chase shifter. Qur first idea was to convert from linear to either right- or left-hand circulat polantition, using some form of quanter-wive plate; then to do our phase shiftnt in a ferrite section; and finally to reconvert to linear polarization witin another quarterwave plate. We soon roalized that the phase chit un transmission was different from that obtained on recepton. whe wuru we highly undesirahle in an antenna array. Fix. Sinmons cf our branet cuscented the adition of the two 45 -degree ferrite rotaters which miede the unit bilateral. Eigure 3 shows the schematic of this phase shifter which is an xisand model. An applanation of the operation of this device is inchided in the progress report article mentioned earlier.

Figure 5 - Shematiciagrano ophase shifter (x-hand)
 rotator was designed and bullt so as to rotate the piane of poiarization 45 degrees when the

 on the total phase shit reguted. Figure 6 shoms the phase shift and loss charactertaties of a ro-degree tar bio phase shifter. As you can see, the locitis less thano. 30 do over
 noessary, Tifis"or any other imilar phase ofifter, is not limited by any méchanical motions since the jase sinit is varied Ey changlag the curent passing through the eony. This can be done as rapidy as required in anzensting scanning appicition.

Figure 6 - Phase shift and less characteristicis of a $70-$ degree variable phase shifter

Another interesting device that may have main applications in scanning antennas is the movable ferrite slot. Inagine a noneadiatint siotu cut in a secton of oircular waveguint in an arrongement similar to Figure 7. Piocing a citindrical fiece of fisite in the center of this waveguide section will not materially affect the radiating propenties of this

slot. However, if an axial field is applied to this section of gude, the field in the guide is rotated and the slot can be made to radate, Tests Fre condueted on the section of guide shown in Figure 8 . The coupling lose mat about 0.5 db whereas the decouping in the unactivated position was 30 abor greater. An array of slots such as this one can be placed at the focus of any reflector or lens to prestent a movable point scurce to the objective; thus, the beam is scanned electronically. Such a unit is ynder nevelopment here at NRL.
 two-mode transducers similar to the one shown in Figure 9. If the switch is placed in front of the teansducer, power can be swithed irom one output to the other simply by placing a suiate wave cf current on the solenof wraped around the switch. If a number of these giements atecescuact, we obtani the equivalent of the organ pipe scanner. Such an arrangement is shown in Figure 10. The eneagy is switched consecuitively from horns i to 5 by actuating the switehes in the same order. The dead time will be negligible, since

Figure s - Section of guide showing azeagement for making tests in whichthe

Figure 10-Various applications utilizing Luhrs-type switches and ino mode transducers
the switching time can be made one microsecond or less. On this same fitde are thustrated some other applications of tha fexrite switis. The polatization rotation properties of the ferite can be used to rotate the polarization of the energy coming from a horn; thus the satenna beam is changed from a penci-heara to cosecant-squared bean.

The last application I wil talk about was suggested by Dr. Kales. It similar to a BTL device devoloped for cworaton. we call the "mianless mácher " wreryone here realies the ufficulty in isolating the antenta from the fenerator. There are cases wher a scanning scheme has heot atscarded Decause of the puiling of the magnetron due to the vartation in phase of the antena reflection as this antenn scans. Figure 11 shows the typical arrangement of the "matchless matcher, When the magnetron fines, both the TR and ATP aro closed. The outetrof tie magnetron is rotated 45 degrees in pasing throigh the iftegre rotator and then f procece the antona. If ay power is reflected by the antenna, it comes back down the line passes through the rotator, and is rotated another 45 degrees, making a total of 99 . The refiected energy therefore cannot enter the input and must proceed up one of the for side arms. Since the themin Tr are stip cosed the reflected power proceds to the uper arm and st absorbed in the load. Ey the time the torget refleptom artees back at the antent, both TK and atr are open and this the target energy proceeds to the reciver instead of the leat.
 Jay rabur systeme. The iedi is reatively ney. Mate much more to be learnec about
 in the rader systems of the future:

COWFDENTLIL
SECURTR NFORMATION

Figure 1．3－Phe＂matchless matcher＂

DISCUSSION

Mikes：Mow will wou be abie to hatoite nower through this device？

（ADI）
Cliat：A switch has been operated at 15 kilowafts whthout any trouble．We intend （INHİ）\cdots－ Laturatory pepent in which they mes suise loss in the ferrite as a function of the appled power．They found that the conditionsimproved as the power Was incteased．

Whikes：

Did yo ut anyhing about mantentyg constant teñonatre oround the Saimplen

Chaiti：
We beve water focketound the waveguide to keep the terite at oonstant Tentrongtire

据数家

bhit
 fobors
 have found considerable trouble from thenenting ô our samples．we cee
 the somples．These enmples become very hot even with milliwatin－f feeds．

Chait: Whe have uscd de fields oldained from a few turns of wire though whint we passed very high cuments.

Wruter: That would explain the atvence of your difficulties.

Ation:	In regard to your waveguide switch-as you change the polarity of the mag-
(Hazeltine)	netic field, does that change the golarization of the output wave?
Chait:	Yes, as we go from zero current to saturation current, the polarization is
changea.	

Aiken: Then you must have high attenuation at zepo current level?
Chait: No, not necessarily. That depends on the type and shape of the sample.
Mr. J. P. ALien of NRL developed a circuit in which he used ant eariy model of the Iuhirs swith witi high loss at zero current (about 2 db). He was able to actuate the switch at ail times and so had little loss.

Aiken: Does the switeh you describe completely cancel one sense of polarization so that there is a net $3-d b$ loss 5

Chait: (Mir. Chait used a slide to show that no loss of this type was necessary.) The swith chainges the polarization from vertical to horimontal. if you have the means of coupling out either polarizadion there will be no loss.

Exynizin: What materials had been found useful in this investigation?
(APL)
Chat: - The particular material depended on the application for whin it wis sequired.
Eerntein: That is the lewest less materiai tou have found?
 Aand.

Bernsteine What material gives your lowest loss due to abisoryion?
Chot The curve shownere wes feramic 0
Aken Could we have description of the ATR and ze acton in the matchless matcher?
Chat For highower siouce, The coutche fred by eakepowes. For low power surce it couid pe fied externally.

Foy S. Andei:sen
Stanfora researchin tnistitute
Btantora Caifíurnia

The requir ement has long existed for a microwave swich capable of higher operating speeds than those realizable with conventional mechanical devices. Electrical devices can meet the requrement for higher speeds. This paper describes preliminary investigations of a switch which operates on the principle of chariging electrically the propasation properties of waveguides, This is achieved by varying with an enterially applied magnetic fed, the electrical propenties of a section of waveguide contaning a ferromagnetic semiconducung material-namely, a ferrite.

The Faraday magneto-optic effect* has been investigated in the microwave region by the use of rerrites as the optically active material (1,2). (A farauay switch has recenty tecome available commerciaily (3).) The switch reported herein dóes not use che Faraday offect whiñ âepends upon magnetically induced anisotropic properties of materials. Instead, the electrical constants of ferrite materials are changed by the application of an external magnetie fipld. Miller (4) has applied this techmiue to suspensions of carbenyl iron powder in polystyrene. The use of ferrites instead of carbonyl iron is much more desirable, however, because of the relativeiy high ioss of the carbonyl iron suspensions. More recentiy Reggia (5) has insed the effect of magnetic fields on ferrites to control tre attenuation in a coaxià transmisision line.

The obsarvations to be reported تere mate at 8430 me in ctandard xiband waveguabe The wavegude components consisted of a $2 k 20$ klystron, an attenuatorestrip load, a slofted
 into a section Gf weguide fill completely the waveguile cross section. No attempt was made to match the efergite materian into the waveguide.

An electromaene or 800 tarns and 5000 oins resistance provided the extornal nab netic field, zwo colf, spaced one mich, were completely enclosed in a sof iron cylades. Provision was made ior the introcuction into coils of either two cylindrical, soft iron pole pieces of 1 and $1 / 8$ inch diametcr or the waveguide section containing the ferrite. Thee
 oriented along the ection of Gaveguide mopagation or in two huections in the piane ot
 wavevide though sectangiar holes cut for the waveguide cross secten on a dameter ox the coill casing cyinater. The transverice orientations were selicked for the appied magnetí ifeld to be either parade or pervendcular to the wavedude e-ibia.
mporfect cetion with matexinh hrough which pianepolarized radiation pases wha magnetic theld is appied to tis material paraliel to the dipection oi propagation of the radiation, Upon application of the magnetic field, rotation of the plane of polazazation dis obsèrvert.

The properties of the ferrite materials used in this investigation are summarixed in Table 1:

TADEE 1
properties of Territe Materials

Ferrite	μ_{0}	$\begin{aligned} & \mathbf{B}_{\text {sat }} \\ & \text { gauiss } \end{aligned}$	μ	
Stewnai $\mathrm{F}=6=22$	12	000	0.2\%-j 0.0 .82	10.3-j 1.27
Stewara F -52-S	300	3500	0.64-j 0.02	14.1-j0.8\%
SEI $\mathrm{NiOFe}_{2} \mathrm{O}_{3}$	3	--	0.44-30.10	$8.265-10.36$

The values quotect for μ and ϵ were obtained at $943 n \mathrm{Mc}$, using the method of measurement given by piris (9). A haboratory Co-ferxite was also used, but no effect was chserved upon application of a magnetic fteld.

The first magnetic field polorization attempted was in the longitudinal direction, that is, the directuon paraileing the pronagation. An effect for this orientation would correspond to the Faraday effect. With this polawisation no significant change was onserved in the transmission properties of he texrites. However, an view of the large effe, found for
 obscured because the fiux density within the sample is much lower, relatively, thans that for other magnetic polarizations. There are zwo reasons for this. In the case of a longitudinal field, the magnet poie pieces must be removed to allow insertion of the waveguicie. This resuits in a considerable reduction in nux available to the sample. Firther, for this goiarization, the sample cross section is that of the waveguide, whereas for the other polar:izations the cro s section involves the much smaller sample thiclness. A combination of these condifions causes a large reduction of the fius uensity availanle to the sample under longtudinal polarigation.

More delinte experiuental resuits were obtained with the transverse polarizations. Consider the appied nagnetic held parallel with the electric field. Wigure 1 shows the
 to the two tow-pormeability ferrites, The sample lengtns aje amost equal, The general shape of the curves is aimost dentical and both Irdicate symmetry with magnette tem. directon One signifcant difference does occur, however, In the case of the laboratory Ni-ferrite a pronounged dispersion is obsexved. At approximately the same fied strength an inflection occurs th the curve of the commercialferytte $F-62-5$. It seems reasonabie to altribute each of these deviations to an moluce magnetic resonance-the inamor precessional resonance. The point labele 0 do is parely relative; the the tion los̃ if given on Figure 3. For purposes of reference the flux densily at 100 ma magnetiring current was. measured to he 2×10 zatus.

The resulis prubue when so sue roagnetic polarietion wes appied to the thim

 appears of secondary mporange to the effec of chang the sample thekness A compari-
 - wed in Whue 1 mu be quite comiarate to those expected from the $F-6-23$ ferrite of similar thichess. mrom this it appears that the permedility of the medurn seesis top have litie effect on the shatie the trañinission curve.

Figure 1-Transmission of ferifites in tiansuerse H-field- samples hàve

- nearly the same iengin

Figure 2 - Transmission of ferrites in transverse H-field--showing the efiect of changing sample thickness

Of greater interest is the asymmetry of the transmission loss curve shown in Figure One fiela direction apeari to dive quite momat resuts; the other showe pronounce absorptions sunerimposed on the general shape of the curve. No indication of the presence of these sharp responses has been found in reflecton measurements of these materials, It must then be conctuded that these are resonance absorptions. Sitice tū̆ moar renonaices canot cuife these paticular responses, it is tentatively tolieved that these anomalies aresplained by dimensionaluesonances slmilar to those reporifa by Ectman, Dowling, and Steneck (7): A displacement of the sample Eeater tian a half wavength had oniy
 of the material seemed to have the most pronounced effect This was evident from a change iñ the amplitude of the absorptions and also \%om an indication of aivsorpcion $\frac{1}{6}$ the other -ialf of the curve

When the transuerse mangetic field is rotated 90 degreco so that the fied is now
 wre 3 presents these resuits. This field polazization ndicates a transmission gain winin incoases with the applieg magnetic fieta, as oppod to a tithondiston lose fom the othe
 shoun The general form of these curves is that or a normel magntization cupe, A prombed sataration is evient; in fontrast to the results for the other polarization. The insertion loss of the sample withont fiet is indicated on the approprite curve. Whe hign insertion iosses should be expected since no effort hols been wate to matat the sumbies into the wavegude. The offect of a change in thiciness is ãso shown in this Fiot, the lafiger value for ferrite $\bar{\sigma}-6-2 \mathrm{z}$ betng associated with the gicter sample. The

Figure 3-Transmission of ferrites in tiansverse fi-field-transverse maynetic siteld rotated on-degrees
general shape of these curves is prowabiy aue to the effect of the steady magnetic fisld on ter incrementin permonbintit of the mnto xial. At satuazion this value would be unity, and the magnetic behavior of the material then approaches tnat of free space. The dieiectric propenties of the ferrite must also be consideret; they are fesponsibie for deviations from free-space (lossfreel benavior.

Whe experimental results presented here were all taken on demagnétized samples and are analogous to normal magnetization curves. Pysteresis effects were evicient, but for the sate of simplicity they have not been indigeted in the date.

It ghant to emphasizeut that these ore proliminary oxperimentai results and interpretations. Further investigation will be conducted to determine reflectom properias; electrical length (phase shift), the effects of attexnafing magnetic fields, and the suitability of other ferrite materials. Any general explanation of the behavior of ferrites under the influence of a magnetic fieid in waveguides which are propagating microwave radiation requires considerabie investigation into the behavior of the field equations. Only recenily has any work been done on this problem (8).

REFEREINCES

(1): F. F。Foverts, "A Note on the Feromagnetic maraday cifect Centimetex Wave-

(2): C. Nogan, "The Forromagntic Faraday Eifect aticrowave Frequencies andic

(o) C Touhs Co.g 29% Hudson St Hackensáano No
(A) F. Giner, Magnetcally Controiled Wayceude Attsuators \% Appl. Phys., 20 gho, September 1949
 Bulletin 35100 , August 1051
(6). T. B. Birks The Measurement on the Rormeablity of Iow Gonductivity Fexromag-

 Fron Eigh Dielectic Constant round a Feromagnotic Perrite" Phys. Fev., EGF, 自nuay 1850
 magnetres Sull

Contmpunar
SECURITY NFORMATHON

dISCUSSION

 (APD)

Andersoni Nopeos

 (SRI)Wiikes: With the nickei, that would correspond to $\mathrm{Fr}_{2} \mathrm{O}_{3}$.
Anderobn: That is coraect.
Rado: In regard to the question of anisotropy, thera are two reiatea effects present.
(NRI) In one rane you are dealing with an artificially produced anisotropy due to the external dic iield, which is strong enough in some cases to overcome eficinal anisotropy. In the cases which you have discussed, it is possible that the indernal antsotropy is the stronger. Many of these difficulties arise from the fact that the waveguide problem has not yet been solced-uniess wr. Kaies has soived them in the meantime. Because or the dimensional resonances it is dificult to interpret the tata which you have when the de field is at regit angles to the ac magnetic fiela. chis is a difficulty which exists over and above the mode pronerties. In the case of your second experi-
 saturating the material; in fonich case the incrementat premeability is reduced, and consequently the losses are reduced and the transmission increased. The loss which is left will be determined entirely by the dieiectric constant.

Ancerson: Those were my impressions exiactiy.
Sakotis: Moy I ask why you expected symmelry in the asymmetrical carves? (MR)

Anderson: I o not belieye you should expect an appreciable asymmetry tn regard to the resonance points the tis io change in the Enector.

Gukiotis: Ghathas snown prexiously that when we revese the aral tele ge get a different effect I tould expect thatetiect or all cases in whichue iof H-fieldanthede Hefíd ane crossed.

Anderson: But your effectepends on witch ndex either right or lethaine fofectea
Sakiotis: No- Using the same sense of potazation and reversing the field, you can get adiferent effect. In regard to these resonances the ahsorption of the fertite should not be biamed for oll of loss. It posible that one siñ

难．W．Lance
Bureaia of shidurds，Corona，California

MTRODUCHON

It is the curposie of this paper to describe the worl done by and ulso that sponsored By the whssile zevelopxent Division of the National Ruedu of Standerds on P－hand and low－lovel alectroutc suitches suitabie for use in fish－speed antenta lövino mhe thace types of switches constiened in this paper are shown in figure 1．＂

The first of thene is the wroxt cominationswitch and Tre tuive. This tube is the outgrowith af a suggestion inacie by mith in 1945 and followed up by the Naval Research Läoratory(i), The suggestionwasthatal Bed Tritue might oe mociuied by increasing the interantion of the keep-alive electrode with the electronagnetic field in the cayity so fort it couth be zad aleo as a micnowave switch. Soen after this proposal; a tube was made by. Sylvania which demonstrated the feasiblity of the tuea. Duritig the lait iow years, the Mational Durean of Standards has sponsored and actiyely participated in developmental wore on the tube. This work, together with the specifications which have been set up for the tube and the periormance which hai been obtained to tate, arie described briefly. In addifion, à brief discussion is given of a radar in which the whetr is used for antenna lobing.

Because of difficuities encuatered in the deveiopment of the X7047 and because of a destre to have a tube which would operate over a greater bandwitin, work was started on

 flhis is a switch onlys where TR action is zequifea, il musi io obtained by a separate tube.

The thira type is the polarization switch, in which the switching action is producea by means of a magnetized feñitit cure. Several other laboratories are known to be interested in and working on this type of switch, and consequently a short summary of the results obtained hy NBS to date are included.

THE XTO47 COMBINATIOJ TR AND SWTTCE TUBE

Aiter preliminury work hat been done on this tube, a specification mac drawn up jucorporating the parformance features which weroconsidered to be both desirable and possibie(2). Brieft, the requirementsarethat the tube must have a iow insertion lose, a hisi attenwith (due minurfif to reflection rather than to absorntion) when switched, à low power requirement for switchig, and oiher characteristics appropriate to gopd tr
 tion, are given in Table 1.

Under development contracts at both Sylvania electric co. (3) and Bomac Libora tonies (A), numerous varibtion thenctuction, fil, and procesing were tried anc a

have been chefient mine sespect, the most persistent shortcoming has beñ finure to meet the attenuation and recovery time requirements for a periou oî ifu inouzs. This
 aischarge. This interaction has two effects. First, it changes the composition of the fill and ordianily results in decreased ethenuation and honger recovery time. Second; at ceines the pormation of a depsit un the eatrode whici alters the impenance characteristics.

Wip to Twe 1949, the depost fropuenty was of a concucting ondure woo shet cincuited the attemutor olectrode (cathode) to the surrounding copper cone. About this time, a study of the problem was undertaken by the NBS Tube Laboratory (5). It was found tide the detertozation of the cathode was enhanced by glow to arc transitions of the discharge, dubug when smail bits of the chthode were melted and oxizizes puther study showed that this effect was much less prevalent when the cathode was meade of $18-8$ stainless steein instead vi hovar, as unes then the case.

The suggested change in cathode material was macie, and the occurrence of short circulte was almost completely eliminated. However, another difficuly due to the formation of cathode deposits was encountered. In this case, the cathode was found to be partiy covered with a nonconducting deposit which limited its effective area and forced the dischatge farther into the abnormat giow region, thus hus enshy the potential difference required to maintain a fixed current in the tube. In extreme cases, the discharge could not be initiated by the available voltage. Fecentiy this trouble bablandy ditapoered. due presumably to small dimensional anc proussing changes wheh have inhibited the formation of the cathode deporsit.

The NBS Tube Laboratcry is continuing work on the funciamentals of this problem, and in adition is siudying the efiectiveness of varinus parts of the glow discharge in prodticting attenuation, including attemptos to determine electron temperature and density in the discharge by probe measurement techniqués. This woris is expecté to coñ inute to better periormance of future tubes. Meanwhile it is amportat to summarize the periormanee which te curently phing obtaned

Tests on recent tubes have becul naude at botin room temperature $\left(25^{\circ} \mathrm{C}\right)$ and at higher temperatures typical of thoce ncountered when operating the tubes to enciosed space
 from two different production lots ase shown in Tiguets 2 and 3. Both sets of curves
 to lot. From the figures it so sen that diring 100 hours of operation the attenuation maty crop below 30 db, the nisertion 10 so may exced 2 din an in ome thbes the recovery tme goes quite abit above 4 nioroseconds.

Concerning the fifectof ambient temperature, it is dificult to generalize from the data presented but on the ajerage, operation at blevated temperatures causes lower

 IE not a part of the specification, and in some tubes it is erratic. On recent tubes tif keep-allve electrode has wecu eliminated, since it has been func that resiual tonization from the switching process, he list if the tubes are switchet at a frequency of 1000 cms br abote, prowdes dienute seep-atye action:

Cuntes dotaib on the 7047 are aythble in the tom of numerous mag memorand autreghtsandentectore mpote.

Cormpentixy
 EECURTY INPOREATME

(1)

It mowe be mentioned in couciuaing the liscussion of the X 7047 that on a recent trip to England a santof of thitish TR aud swith tube deyolopment yielded no iniormanon that a cube which in outperforn rie HiGu's existed. However, twomeans of possible tuture ingurement were sugtested: thas of separating the TR and switening functions so that each may unterge optimum develonment hinenententiy, as is alrendy heing cone in the X202k, deneribed in the solonits section; and that of utilizing hara-soldered, bode
 ingrovement, bul it would be a major developmental task.

A raciar system tn which the X7jit is used to produce high-gpeed lobing of the antenna has been deveioped by the Thes Missile Deveiopment Division. The micruvave portion of tilis radar is shown schematically in Figure 4. As may be seen from the figure, the uignetron power output is divided hato two equai pants and goes through separate duplexers to the antenna feedis, Both $X 7047$ tubes are fired by the magnetron mulse and then behave as orainaxy rik tubes. Since the twe reeds are disposed symmetrically to the teft wad right of the antenna focues, the transmitted power is beamed straight ahead.

The firitg tireshold of the siont is appoximateiy equa to tis leakage poper as a TR tubè, about 30 mw . Accordingly, it is not useut hr high-level switching:

A sinteing frequency of 1000 cps has been used extensiveis The maximum switching trequency 促d the possibie exiect on trib Hife of hereased switching frequency has riot been
 wave sigal with modulation frequencies an ingh as 1 megacycle. At this freaucacy, hove dras, the madiation percentage is lymitet by the recovery time of the woe. In any event, it appears that the hithest switching frequencies likely to be encountered in radar practice maybe used.

TEL DOOAA SWEGC TUBE

Due partiy to the diffculties encountered with the $X 7047$ and partly to the destre fore tube shich wout operate without adustment vier a wides rame of requencies, TyEs inftioted in 1849 a swich-tube development contract with Federal Telecommunication Laboratonts. Because the current required tor a given attenuation increases with the bandondth of the tube, a different scheme of switching had to be devisen in exder to oktath the required attenuation with the power phich was available for switching. Since directionat information from the antenna is needed only irom tajegets at a selected range, it is sufficient to fire the switch tute ofity at times corresponding te the renge of the desixed target. Thus the switch need be on only for intervals sligntly longer than the faũar pulse.

Two switch tubes designed for misea cperation were brought to the eariy develop-
 pair of cones not used for keep-aive audin is pulsed with a de dischatice to produce âtienuation. Although this tube domonstrated suceessfuly the principies invoived, bit appeared to be more complicated and of less immedtate interest than the other tube, nat go further woris has been done on it:
 belleved that tine practice of separatine the sutehne ation from the ta athor te anind
 requiped to periorm. As shown in Figure \&, the mazente structure and the gas discharge tuite the f200A ate entrely sepgrate, thus reducting oo cost of monifacture and faciftating toplarement Tuts tube was iuewise carche to the eariy developmatal stage

GONEMYNGTA SECHETX TNFORMATYOM

Figure 5 二 WeqsA brical characteristics

Since there is no requirement for Tr action, the tube is
 it a long recovery time. im opera-
 rather short duration; the period of high alteniation then peasisis for ten or mone microsegoncs. This is demonstrated in Figure 5 where the attenuation and vSTUR are shown as a function of the time elapoed singe the fining nuise, The insertion loss over the 12 -percent band is aiso given. This developmentod tube naa appreamately the requiredinitial
 of 30 hours or less. in fairness to FTL, however, it should be pointed cut that the tube yiss produed at the very end of the cuntract, end adequate time for the improvement of stis perionmance was not araileble. It is now undergoing further development ta the NBS Tube Laboractay where an attempt is beling maxe to inctease its life and possibly to Impreve sone of tie other characteristics.

POTARIZAMON SWmer

About a year squ unt atertoo was cailedto development
 $X-b a n d$ switch. This phenomenon ts described by Beijers anc Snoek (2 and by Zogan (8).

The cimpiest method of operating this spitch is prophy with a square wape oftching voltage as is used for the X 704 F . Wower, it was dedire to investigate the possibility ol using as a pulse-type switch. The nriginai Juhre swite had a response time of about 0^{-3} second, making it unsuitable or such operation Studjes at Nis Fy B.C. Wood() texited no cutch wheh has a response time of about 3 x 1^{-7} second, which is pröbbig Faster than is required to antena lobing. The response of the cuhrs switch was limited Wy eday currents in the brass tuhe forming the circular wayeguide section which acts as a shorted turn secondary for the deving coll. This was avoided in the NBS switch by
 For maxinum swituth speed it is desirable to uge a coatug of as hath itesistivity as as posigtent with the ofovate anserion loss.

A akotch of the switch schoum in figure 6. Figure ' 7 shows de experinental puiser

OQfinontar:
 SECORTTY INFORNATIOT

Figure 6 - Polarizatiou switch

Figure - Experimental pulser for polarizationswitch

Figue 8 Waveforns for nolarization witch
current, natpowe vaveions, A mall reverse current ofiowing the main puise was necessary to comagntipe the perite materiait. In operation, with the swith tetween crossed guides, the correct amounit of reverse curreut was determined by adurting \%e of Figure 7 for minimum microwave transmission duting the effy period. Tisortion xos of 6 g db during the on period and atternation of about 40 cib during the off period were

When the polarization emitchis used at a F-futciun aso in Figure ; the minimum
 of course, restricts the userul band mith of the system. Tie principal advantage to be
 \qquad Which sliouta be oblainet?

CONFESNTML
 SECURTIY MPORMATION

This mrith has hoon done in connection with yuideduisctie dereloument for tho

2. Burenu of Ships Tentative gixecification for Thine Tive XTO4t (TR and Low Level Atienuatoš), January 30, $2 \hat{10} 4 \hat{8}$

4. NES contriacts Cse 10218 and ©st 158 nith Bomae Eaboratories

7. Beifert, 포, G., and Snoek, 工. L., Gyromagnetic Phenomena Dccurring within Ferrites,

 in preparation-

सubere EG Shaw
North American Aviātion, linc.

 ning patierns are theoreticaly possible. Kowever, the choice is imited first by the desine for reäsonable efficiency of time and secondy by nechanical considerations.

 moved slowly in a horzontal cheocton to produce a spiral. The reciting scan patiern is tapabie of alhotst minite vartation as the ampitude and pitch of the spirat are varied.

Another scaninne metno is the atne scan in which tie radar beata is moved raphaly up, und wown with sintsotel motion and simultaneousty moved slowly in a horizontal direction.

It is the purpose of this paper to illustrate a muber of these acan patterns and to present a new scan patiern witich has signticant aduautages.

Figure 1 shows three conical scan patterns. A 2 to 1 pattern is shown in (a); it is so designated because the path of the syimai pasibe two weamudith to the right and back one beamwdith per cycie as shown by the heay line。 Hustration (b) is designated a ō to 1 patien because the spiral passes three heamwiths to the rigitand back one, while (c) is aestriated a to 2 patern or a similar teatotion -
 distance over-and the distance back por cycie; that is, the diameter of the circle rrom which the spine is dentvedis equal to one hal the distance over plus one-half the distance back.
$=-$ In () () and one show the areas povered by the radar hom for eachot the pat terns above. These tyuths aile ofotained by moviag a beam circle along the aric of the
 tue beam circie paceos auen thatarea.

 motitisation petuse the holes tr be patern before it could be usea. Modificationi

 of the pattern.

Fitesented by irgi Courter MAA

Figure 2 bhow ancher set of patterns；this tizite the sis sertes，In（a）and（d）are shown 4－1 patherasy thit is，oper four beamintitis and backone．Fatterns（ioj and（e）ame

 leave wite areas of no coverage．

Wigure 3 s． shown are $5 \cdot 3$ patterts，in one case the beam circles aloug the adis bust touching each other，and in the other case the begme overion by haif beamwidth，Pattern（b）opears usahle as is，while pattern（a）again woudd require mondiliation to close up the hoies．
 Єver necensary to close up any holes which may have been present in the originai pattern． Diruensiens have been adided．

An exact eüatuation of these paxterus is extremely difficule because pit the many factors suvolved．In general；it may be said that the geater the height of the swath the betier，
 Also，the less the oventagomg the outez berase cverlapping represents excessive cov－

 ning auie Enc of the swaitu．

Another method of area scan，sine sean，is shown in Figure 5．With this method，the
 in a horizontal firection，thus producing the patobia ac shown．Sine scan has several advano tages：it is cousiderably easier to mochanim since the antena dish is required to move orily in oue plane；also，as you see，the coverage is quite uniform．Te provide a margin of Sateiy，there is deiberate overapping of ajacent cycles；astat som this deliberate over－ lapping the areas of muitiple coverage are quite small．

Both conitel scan and sine scan suffer somewhat from the fact that the angriat veloce ity of the beam varies over the cycle．Thus，the number of ratar pulsen wich occur dup－
 of the cycle in tigure 6 ，tor example，is a case in which 50 radar gulsps occur per scan eycle．The ustribition of these pulses over the cycle ss shown by the dots．tote that in this particular case n taxget on the sean axis and near the center of the spatit wuto recelve 5 hits ancureurn tochoes while the radar beam is travoling one biammith How rotethe a target on the crest of the cycle would receive 13 hits and return 13 ectoes with he radar Leamis tavelny one beamwith－

 the bean is traveling one benumidt at any point the cycie．

Such a mave oómen he aproxinatedqute peine adding a sail amount or hrd har－ mopic to the fundamenta sine scan with the waveror us autate

As ghon in Figure t，the addition of 6 percent 3 rd harmontc prounces a waveform

 in of the cydie．

[^1](w)

COTMDENTHA

Figure 5 - Sine scan

Figure $6=$ Sine pattern showing distroution of mo mez

Fiture 7 - Triangura wave pathern showing distribution of pulses -

comprominial
 Studury

GNE CUNVEIG\% BND HARMONIC (ADDITIVE AT 90°)

SINE GURVE $+10 \% 3 R 0$ HARROME
(ADDTLIE at 90.

Drganes - Aptrorimiations to triangular wave
 scan. The nurnber of bits and ethoes un a taty gitucted un the axis of the trianguiur scan during the time the bean is trayeling one beamwidth is 7, Since the distribution oi pulses
 over nast of the cycle. At the crest of the cycie, the number of hits and oohoes on a farget
 figures of 5 and 13 echoss tor shateran.

Fisuxe - Companison of ente and trianglay suan pateras

CWMEEATE SECURPI THEGRMATION

 of scan is used, bie scan frequency must be aditisted to yield at bast ane echo dining the tine the beam ts traveling one beamwith at any part of the eycle. Figure 10 is a stat scan prattern fn which the scan frequency is tou high, anial large areas are not covered.

Fiute if is a of hamonic triangular scan pattern ploted under condionio destical with these fade and irequency are used frote that he tringuly snan gives complete coverage with the exception or several negligibly small holes.

The mechamation of 3 pd harrumic trangulor scanappears to pe quite practical even

Figure 10 Sine sca patem = sez frequency too high

CORFDIMTYAL

क竟

National nesearil Council of Caneda

Dix , A. Ahiler, cofforonce chatimen sugge sted the following list of opics as being of posinle nemest to the group:

1. Counter-mortar problems
2. Cariex-contallod approach
3. Lownying árerat
(a) Detection
(b) Operation from low fivingemenat
(c) Light AA
4. Missile guiúance
5. Battrefiela surveivance
6. netaction of sumanines

Mr. H. D. Sheitelman (BuShips) observed that most of the topics suggester could re classified as low-angle problems over ianci or water.

A show of hands resealed that the third item $\overline{\text { nas }}$ of greatest interest to the group; ancat Dr. Milleo's jnyitation, Dr. F. C. Zpencer (A]CRC) opened the discussion with some comments on the detecion of low-figing aircraft. He indicated that. at least in certain quarters, the trend of current thinking is toward the conclūion that such detection wil best be effected by mote radare opeded closer togethery hence slmple and cheaper zadars will be zequireá.

 as it hproaches a carterirom distance of six nites

Mr. A. Harbath (Tneversity of Texas) discussathe troon arena system and
 Eaboratory.

 of 50 to 500 tect.
 chantry boposheric ducts hear the suriace of the ocean to improve ge getedion of
*prepared by A. Slerid, Geōgia Tnsitute of Terhootogy
 polarizations for the ywacke．

ATTENGANGM
 Conforace on Lownogle Coveraye

NARE
Bñ
Eutenhom，wis
 Danligig，H． P ． Gerving Wix

 Howsons．wi． Jones，6．S．B． Eilgrilen，A． Maciese， 1 intua Miniler， $\boldsymbol{G}=$ Fush，Staniey Capt． Serisiper，S． Sheitelman， $\mathrm{F}_{\mathrm{B}} \mathrm{D}$ ．
 Stedia 影．
－Spencess R． Vanela，Â．\＆ Walligiond Z WHEting WV．F． Whes，sibiber Hignty F－

GRGARMZATMON
Nothome Fexeerci Coundi
B安要
University of Texas
Bencix
NRE
University of Texes
Bencix

NTE

BuOrd
Beituh Joint Servict mission
National Ressarch Council of Canado
Grifiss Air Force Base
Hughes Airezait
BuSinips
Gtavid Engineerine
Georgan Teqk
ATCHC
ERy
Bự̃a
NRT
A
初变

sunntantor eombenence gh

Gaptain SSusk (Chaimen)
Grisfigs Air Force Base

The pincipal probiem considered un a Ground controlied Approach precision scan
 illustrated in Figure 1. The azimoth sweep fan beam is about $3^{\circ} \times 1.2^{\circ}$, and the elevation swey fan beam is about $5^{n} \times 0.6^{\circ}$. Eacin bam cen be postioned matualy so that the

 ares is not cowern.

The system now needed must be capabie of providing abcurate sesolution iniormation Over the entire sean area ha order thet unutisle plane landinge may be adequately handleu. Specifications foz the new system vere proposed by Captain Ruch as foliows: The 20° in azamuth by 7° in slevation scan ared is to be swept in a "qy" type sean with a pencin beam of $3 / 4^{\circ}$ in azimutic by $1 / \alpha^{6}$ in elevation. The operating frequenes is to be at X--pand, the puise repetition rete 9000 pps , the frame renetiper rate 4 to 4 xidas per second, and the range 10 miles. Each fizame would conitain about 27 beampitis 立 aimaty and 1A beantwath in elevation, of ate elemens- Fulsed per tarse orghesper element wuid therefore be

The getpower requredte entmated atess than 100 kw.
 Gabriel in the paper entitled Ring Scanners with Apolications." (Eieter to Picu-e io in

 in this discuscion were:

[^2]

 syechications.
2. Wequbinty that the ongan-pipe structure anght not be able we supply propet Himenintion taper for the iens since feed hom size is restrictea. Wonitucation of orgonplpe staiture wis surgested to meet thig obiection, Also, the lens might be loaded with absorbig aiaterial near the adges ta ehange the effective ilimination taper.
3. Fossthitity hat apurture coupling effects in organ-pipe structure might be quite
 This must be determined experimentaliy.
4. Possibility that the Ring Sca-ner requinod wnid have excessively large radius, perhapg geverel feet, Thit objection resiibed from a wisumerstanding of the ecinstruce iion and operation of the Ring Scamer. The sadus can te quite small, on the order of 8 to 14 inches, as win be shown later.
 ti electronte swithes utilizing fernites or gas-tubes are not avallable.
o. The guestion of lifT addition was rained. This might require compensation for the linear line-length change which occurs in the Ring Scanner, but it anpeared to be feasiblé

Abstract

The second proposal suggegted for constieration was made by Inyolved two thentile switehes feedry in urn eight feed torn which illuminated a lens. The feed horns would rotate on a circie of about 5 -it radius and would be located at atizeran levels ko produce a telezision scan. The proposat wns not applicable in this 7 -degnee elevation scan with $1 / 2$ degroe beanwiuth; consequenty, it was not discussed in any detail.

Tie hina proposai suggeted for consideration was the adaptation of dinultaneous lobing fechinges. However, it was pointed out that the relativety broad beans to be uturee the thas type of system poutaresult an a high nofe leyel due to ground return frox the large ground area covened by the lower hbine beams. It was ell that a wentit ham ofto absolutely tecessary benace or the broblem of ground yeturn therefore, fintuaneous lowng was net discusped futher

The nuestion was ratsed as to why it poposed to haye 7 degre scan in eievation

 tenobedin tace or the t defreangt

Berduritan: Banuaidy Gagiel, wo. F.
 wancer cen Bfte ; K. E. Woits ${ }^{5}$. S. Fontiner, is. Lampl S. Deeler, G. D. M. Rotmen, w. Ruish, S , tant. Sensiper, s . Sheitelman, 焐, D.

GRGARIZATIOA

Sperry
gendix Radio
NRRL
NKi
Bendize Radio
ATSEG
ATERG
NRT
Byships
NRL
ATCRC

Rughes Aircrait
Gubnips.
cobtibenyst
SECVRTXX Prutimbicion

W. F. Gabriel
Naval Research Laboratory

As a result of the Tro-Dimensional Scanning Conserence, some of he more rolevant detaide of the "TVT organ-phe scamer requireu for the proposed CCA system heve boon considered and are presented herein for the scrutiny of thase who are interested in this specific problem.

Let is begin by atstatug the scanning specinications which are to be met: it is desired to scan a sector which is 5° in Edevation by 20° in azimuth by means of a pencil beam of
 in which the frame repettion rate is 4 yer second and the pulse repetition rate is ôop prir secome The number of hits par target would therefore be:

$$
\frac{9000}{20 \frac{4}{3} \pi 5 \times 2} \times \frac{1}{4} \cong 8.0 .
$$

 kilewates or less.

For the purpose of making sample calculations, let the onmating trequency be fixed

 system in this proposal because of the unique type of organ-pipe cointrution contemntatea, Therofre, it may uthmately bechoten on the basts of its effect upon the fens pertormanoe, the complexity or the tens constructon, and the overall size, weight, ane coft the oy and For the moment, however, we are interested only making sample calculatoms, and fols this purpose a rocal length of ita froches sholl be used. This results in the following fot

$$
\begin{aligned}
& \text { Veticatit }=\frac{141}{176}=3 \\
& \text { Hórizontal } \frac{10}{6}=\frac{24}{17 \%}-1.2
\end{aligned}
$$

Knowh the foeal lon th and the dimenston of the iene, one candermine the lens

 in the horizontal plane is shows as an ure of a circle whose radius is the foral length. This was done party to simplify organ-pite line iengt: ajustments and party to fonform to the best focus are, aithough the latien faitor wril depend upon the type of lens used and may require that a different aperiure dine he used for best focus.

VERHEP PGARE

Figure 1 - feometrical relationsi

The proposail for the organ-pipe stinue6uth illustrated in Figures 2 and 3 . It is to constst of ten organ-pipe levels separated by a distame of 1.23 incnes, that tis, singe a shint from one ievel so the peat must produce E bean shift of $1 / 2^{0}$, then the level separa-

$$
\begin{aligned}
\text { Soenl lergth } x \tan 1 / 2^{0} & = \\
14 i \times 00573 & =1.23 \text { inches }
\end{aligned}
$$

Thè tēn leveìs are inăicaté (fronit view) partly by dashed lines and partiy in deteti, it will be noted in the detail portion of the dywnet that the levels are "interwoven" at the aperture. This tyne of construction was chosen because it permits the individual waveguide channels in
 dismenstor for obtamintere recuired lens shiumination angle in the vertical plane for any given focal lengith, For the chosenforal lengin of 141 inghes we saw in Figue 1 that hie requineáens Mhunation angle
 require that me wavegide chanhels te hared out to a diriension of about 2.1 nchee for $210-\mathrm{db}$ inumination toper. In order to obtalw the required huminationangle in the horizontal jlane, one can vary the num ben chanhor energizeu anuiso the sepantion wotwo vhanels. por the 40 - uez ee angle ohown in Fure the toarect iliumination taper voule be obtained hy onexgizing about three chanels at a time wh a wocing

 do not lfe side side as zn the usual organ pige but, instead, are separated by one chamel wfth. This quaces a wostriction on the maximum alowalo channel widit because of the fact
 channcis are separated by more than about one wavelength. Thus; the width of ench channel must he kept less than ahont half a wavergth, in the present mstane, a ahanel wixthot

[^3]

PROM ME

In orcor to bring the 54 chandels bech to a deatcicle or reasonable radus, it is nec-

 radius of about of inches, that gss

$$
\text { moiuc ne ogetexodax }-10 \times 60 \text { e } 21
$$

 batheotiederticle:

Figure Shustrates a small porton of a iye of yast construction whele would ohe the organ-phe assembly quite simple. Eich layer woud contain all of the boitom nemel for the 54 chamels in one level, and all of he top hatres for the 54 chamels to the followng

离会

 LI des

[^0]:

[^1]: GOTHEDNTLAY

[^2]: * PEpared by W F Gabriel, NRE

[^3]: COWREPMWHEL SHCUEMY FAFGREARED

