AD NUMBER: \quad AD0864955		
TO:		
Approved for public release; distribution is unlimited.		

FROM:

Distribution authorized to US Government Agencies only; Export Control; 1 Aug 1969. Other requests shall be referred to Manufacturing Technoogy Division, Air Force Materials Laboratory, Wright-Patterson AFB, OH 45433.

AUTHORITY

AFML Itr dtd 7 Dec 1972

MANUFACTURING METHODS FOR AIRCRAFT TIRES BY FILAMENT-WINDING TECHNIQUES

Merle J. Sanger
Robert E. Landes
Darrel M. Warner
Howard W. Waldo

MM PROJECT NR-360.7

FINAL TECHNICAL REPORT AFML-TR-69-226

AUGUST 1969

THIS DOCument is subject to special export controls and each transmittal to foreign governments or foreign nationals may be made only with prior approval of the manufacturine technology division.

Reproducend by the
CLEARINGHOUSE
for Federal Scientific \& Technical
Information Springfield Va. 22151

Prepared Under

Air Force Materials Laboratir
Air Force Systems Command
Wright -Patterson Air For :e Base, Ohio

NOTICES

When US Government drawings, specifications, or other data are used for any purpose other than a definitely related Government procurement operation, the Government thereby incurs no responsibility nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise, as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

Do not return this copy unless return is required by security considerations, contractual obligations, or notice on a epecific document.

Qualified requesters may obtain copies from Defense Documentation Center, Document, Service Center, Cameron Station, Alexandria, Virginia 22314. Orders will be expedited if placed through the Librarian or other person designated to request documents from $D D C$.

This document is subject to special export controls, and each transmittal to foreign eovernments or foreign nationals may be made only with prior approval of the Marufacturing Technusgy Division. Basis for restriction is to protect technical know-how relating to manufacturing processes.

DDC release to CFSTI is NOT authorized because the report contains technology identifialle with items on the strategic embarpo lists excluded from export or re-export under US Export Control Act of 1949 (63 STAT. 7) as amended (50 U.S.C. Appl. 2020-2031), as implemented by AFR 400-10, AFR 310-2, and AFSCR 80-20.

MANUFACTURING METHODS FOR AIRCRAFT TIRES

BY FI'AMENT-WINDING TECHNIQUES

Merle J. Sanger
Robert E. Landes Darrel M. Warner Howard W. Waldo

This document is subject to special export controls and each transmittal to foreign governments or foreign nationals may be made only with prior apyroval Wright-Patterson Air Force Base, Ohio 45433. Forcegaterials Iabgratory,

FOREWORD

This report was prepared by the Structural Composites Department, Mechanical Systems Operations, Electronic: Division, Aerojet-General Corporation, Azusa, California, under USAF Contract F33615-67-C-1726, Project 360.7. The work was administered by the Air Force Materials Laboratory, Manufacturing Technology Division, Fabrication Branch, and under the technical direction of Charles Tanis, Senior Project Manager.

I'his report covers work conducted frow 1 May 1967 through 30 June 1969 and is submitted in partial fulfillment of the contract. The manuscript was released by the author in July 1969 for publication as a technicsl report.

The program was conducted under the direction of the Structural Composites Department, Electronics Division, Aerojet-General Corporation, and by the Advanced Tire Development Department, the General Tire and Ribber Company. Personnel of the General Tire and Rubber Company who participated in this program include W. S. McCormick, Manager Advanced Tire Development; W. Bezbatchenko, Manager Advanced Domestic Products; and R. A. Almond, Project Engineer. Others who cooperated in the program and in the preparation of this report were M. J. Sanger, Program Manager; R. E. Landea, Stress Analyst; D. M. Warner, Machine Design Eaiolneer; D. Bentman, Stress Engineer; H. W. Waldo, Process Engineer; and Frank Salcedo, Consultant. This technical report is catalogued by Aerojet-General as Report No. 3720.

This project has been accomplished as a part of the Air Force Manufacturing Methods Program, the primary objective of which is to develop, on a cimely basis, manufacturing processes, techniques and equipment for use in economical production of USAF macerials and components.

Your commerits are solicited on the potential utilization of the information ontained herein as applied to your present and/or future production programs. Suggestions concerning additional manufacturing methods development required on this or other subjects will be appreciated.

This technical report has been reviewed and is approved.

ABSTRACT

This work on the development of new and improved manufacturing methods, controls, equipment and processes was directed toward the fabrication of filament-wound, continuous-cross-section, aircraft tires. Nylon, glass and wire reinforcements in bias, geodesic, and redial types of filament-wound configurations were investigated in the fabrication of subscale, 30×8.8, 22-ply-raied tires. Acceptable designs, materials and processes were developed for the f brication of subscal: tires. The findings on work with subscale tires werc applied to the fabri:ation of $49 \times$?7, 26-ply-rated, prototype tires, which were made with nylon reinforcement in a bias-type fabrication of A carcass-winding machine was designed and fabricated for the the nylon reinforcotype tires. In addition to its capability of producing the winding-machine is capable of utilizingion used for the prototype tires, geodesic and radial configurations in niques were developed for the productionating procedures and control techfabricated which exceeded the burst pressur 49×17 tires. Two tires were No. 60D2561J, the document which outi insure requirements of USAF Drawing size. The dynamic test requirem outines the requirements for tirec of this achieved by the 49×17 prototype tires USAF Drawing No. 60D2561J were not indicated that major desion modificats of the dynamic tests dynamic performance in the large aircraft. Part I of this report and 17 tires used on the C-5A and similar design, process development, tooling appendices I through VI report the and full scale tire sizes, supported fy deteilion ard testing of both subscale rim-locking assembly, manufacturing by detailed stress analysis for the Prrt II presents the computer

Distribution of this Abstract is unlimited.

TABLE OF CONTENTS

PART I. MANUFACTURING MEIHODS FOR AIRCRAFT TIRES BY FILAMENT-WINDING TECHNIQUES
Page
Definition of Terms xii
I. INTRODUCTION 1
II. SUMMARY 3
III. DESIGN AND EVALUATION (TASK A) 5

1. Design Studies 6
2. Materials Evaluation 34
IV. TOOL AND EQUIPMENT DESIGN AND FABRICATION (TASK B) 43
3. Subscale Tooling and Equipment 43
4. 49×17 Tire Tooling and Equipment 44
V. PROCESS DEVELOPMENT (TASK C) 53
5. Fabrication of Subscale Tires - 30×8.8 Type VII 53
VI. pROCESS AND ERUIPMENT DEMONSTRATION (TASK D) 72
6. Equipment and Process Checkout 72
7. Fabrication of 49×17 Prototy pe Tires 78
8. Desi.gn and Process Evaluation 101
VII. CONCLUSIONS AND RECOMMENDATIONS 118
TABIE OF CONTENTS
PART II. COMPUIER FROGRAM FOR DESIGN OF CAMS TO FIIAMENT-WOUND TIRES
Page
I. INTRODUCTION 1
II. COMPUTER REQUIREMENTS. 1
III. WRAP PROGRAM OPERATIONAL FROCEDURES. 2
A. Program Descifiption. 2
B. Input Information. 4
C. Output Information 6
D. Additional Comments. 6
IV. CAM DESIGN PROGRAM OPERATIONAL PROCEDURE 8
A. Program Description. 8
B. Input Information. 11
C. Output Information 13
V. NOMENCLATURE 14
APPENDIX I - Stress Analysis Rim-Locking Assembly, 49×17 Tire
APPENDIX II - Tape Winding of 6-Ply Turoidnl Tire
APPENDIX III - Drawings of Components and Tooling
APPENDIX IV - Checkout Process Specification, 49×17 Tire-Winding Machine
APPENDIX V - Instruction Manual for Toroidal Winding Machine
APPENDIX VI - EMI - Engineering Manufacturing Instructions, 30×8.822 FR
APPENDIX VII - Analysis of a Winding Machine Design for a Filament-Wound Tire
APFENDIX VIII - Supplement to the Winding-Machine Design Analysis
APPENDIX IX - Fortran IV Computer Listing
APPENDIX X \quad - Sample Problem for Specific Cam Design

LIST OF IILUSTRATIONS

Figure
1
2 Bias Nylon Assembly, Green-Carcass Profile
Geodesic Nyion Assemily, Green-Carcess Preil. 14
Geodesic Nylon Assemily, Green-Carcass Profile
15
Radial Nylon Assembly, Green-Carcass Profile
Radial Glass Assembly, Green-Carcass Profile 16
Radial Wire Assembly, Green-Carcass Profile. 17
Revised Geodesic Nylon Assembly, Green-Carcass Profile. . . . 18
Green-Carcass Assembly 8-Ply Bias Nylon 49; 17 Tire.... 19
Rim Locicing Assembly - Fabrication Sequence. 22
Rim Locking Assembly - 30×8.8 Tire 27
Rim Locking Assembly - 49×17 Tire. 2930
Load vs Elongation of Nylon $6-5$ ut Various Temperatures. 37
Load vs Elongation of Steel Wire at Various Temperatures . . . 37
Prototype 49×17 Tire..Winding Machine
38
Non-Slip Panels on Drive Belt. 45
Mandrel Fabrication Equipment. 48
RLA Building Mandrel Disassembled. 9
Carcass Handling Truck 50
Mendrel Washout Equipment . 50
Load-Deflection of Conventional Tire A-10 at Various Inflation Pressures

51

Load-Deflection of Conventional Tire A-i3 at Various Inflation
Fressures
Winding of Radial Wire Car
Winding of Radial Wire Carcass 60
Filament-Wound Geodesic-Nylon Carcass. 63
Schematic Layout of Cord Treating Equipment. 1
Process Flow Chart 49×17 26PR FiJament-Wound Tire...... 85
49×17 Rim-Lock Shell with Bushings and Nuts. 87
Rubber Covered 49×17 Rim Locking Assembly. 87
Wrapped Mandrel Ready for Cure 88
Filament-Winding of 49×17 Tire 88
Curec 49×17 Filament-Wound Tire Mounted for Testing on . . 90
Dynamometer . . .
Modification of RLA Profile. 100
Design of Barrier Membrane 103
Design of Reinforcing Inserts. 103
Cross-Section of Tire LBN-12 After Dynemic Test. 105

Shell Steel Rim-Locring Assembly - 49×17 Tire. 108
Design of Rubber Coverilic for Steel RLA and Inserts for
Carcass 113

PART II
Mandrel Geometry Required for Wrap Program Input

LIST OF 'fABIES

Table
Page

I Carcass Designs - 30×8.822 PR Bias Nylon Tires (Conventional end Filament-Wound) Carcass and Reinforcement Designs - $30^{\circ} \times 8.8^{\circ}$ こ2 PR Geodesic NyIon Filament-Wound Tires. 7

Carcass Designs - 30×8.822 PR Radial, Glass and Wire Tires . 10 Breakers for 30×8.822 PR F/W, Radial, Nylon, Glaes and Wire Tires11
Constructions for 30×8.822 PR Tires. 13

Comparison of Geodesic Designs. 20
RLA Design Parameters25

H-Adhesion Values for Tire Cords 35
RLA to Elastover Adhesion - Test Results 36

Cord Creep Data for Nylon 6-639
XII Cord Creep Data for ECG Fiberglas 40
XIII Cord Creep Data for Brass Plated Steel Wire 41
Stais.c Test Data for Conventional 30×8.8 2 PR Tires 54

Construction Features of 30×8.822 PR Tires57
XVIWinding Data for 30×8.822 PR Tires59
XVII
XVIII30×8.822 PR Tire Weights64General Sumary of Results on Subscale 30×8.8 Tires$6 ?$
XIX
XIX
XX
Cord Ends Per Ply - 49×1726 PR Tires 91
Mandrel Removal Data - 49×17 Filament-Wound Tires 92
Man-Hour Requirements 93
XXII Material Weights - 49×17 Filament-Wound Iires 95
XXIII Static Test Data - 49×17 Filament-Wound Tires 97
XXIV

Dynamic Test Data - 49×17 Filament-Wound Tires........ 99XXV
XXVI
XXVII Dynamic Test Data - 49×17 Filament-Nound Tires of Modified Design.106
Winding Data for Tire LBN-15. 114
General Sumary of Results on 49×1726 PR Tires 117

Some of the more comonly used terms in this report are defined below.
Along the ID: The face along the inner surface of the tire between the carcass heels.

Bead-to-bead: The surface from one heel over the crown to the opposite bead.
BR: Polybutadiene rubber.
Carcass ply: One layer of cord and one layer of insulation rubber.
Cord insulation: A layer of rubber compound over a layer of cords.
Ends per inch: The number of cords per inch measured at 90° to the direction of the cord path.

Starter layer: The initial layer of ply elastomer applied to the cured inner
Neop.: Neoprene.
NR: Natural rubber.
Tire carcass: The filament-wound assembly of inner liner, cords, and insulation before application of the tread and sidewalls.

RLA: Rim-locking assembly.
Total end count: The total number of cords per layer.
Winding assembly: The mandrel and RLA covered with the cured inner liner.

PART I

SECTION I

INTRODUCTION

The feasibility of the basic concept of iflament-wound continuous-crosssection tires was demonstrated by Aerojet in work under Contract AF33(615)-2315, which is covered in Technical Report AFML-TR-66-154. The filament winding concept was optimized in additional work performed under Contract AF33(615)-5024, which is covered in Technical Report AFML-TR-67-154. In the current 20-month Air Force program, Aerojet-General Corporation and its major subcontractor, The General Tire and Rubber Company, conducted studies on the development of new and improved manufacturing methods, controls, and equipment for the fabrication of filament-wound aircraft tires. The tires produced by these studies were expected to surpass the performance of conventional tires in each of the following areas: They were expected to be lighter in weight and safer in service, to run cooler, to possess a higher flotation, to maintain a more uniform pressure profile, and to be more adaptable to automated processing. The oujectives:
To develop advanced manufacturing methods for fabricating tires by filament-winding techniques
To define and/or establish, by the fabrication of 30×8.8 subscale tires, the limitations on applying the process under development to various reinforcements and configurations
To design, fabricate, purchase, furnish, operate and modify (as required) pilot or prototype equipment
To develop and establish optimum operating procedures and control techniques
To generate engineering data, design criteria, and operating experience necessary for the efficient design and operation of production equipment employing the developed techniques
To demonstrate achievement of the desired manufacturing method by the fabrication and testing of filament-wound aircraft tires that are physically interchangeable with the Aircraft Pneumatic Tire, Tubeless, Type VII, size $49 \times 17,26-$ ply-rated (26 PR). The 30×8.8 size tire was used as a subscale of the 49×17 size tire.
The program consisted of the following tasks:

Task	Title
A	Design and Evaluation
B	Tool and Eqidipment Design and Fabilcation
C	Process Development
D	Full-Scale Process and Equipment Demonstration
E	Fabrication of Teet Tires

This final report presents $\|$ detailed summary of all work performed during the program. In addition, conclusions and recommendations related to program results are presented for guidance in future work on filarent-wound aireraft tires.

SECTION II

SUMMARY

The primary objective of this progran was to develop manufacturing methods for filament-wound aircraft tires by applying results obtained during process development of subscale $30 \times 8.8^{1} 22 \mathrm{PR}^{2}$ tires to the fabrication of prototype 49×1726 PR tires.

Designs were prepared for subscale $30 \times 8.822 \mathrm{PR}$ tires to evaluate various filament reinforcements and cord angle configurations that included nylon bias-ply, nylon modified geodesic-ply, nyion radial-ply, glass radial-ply, and wire radial-ply constriuctions.

A water-soluble mandrel material was developed and tested to verify the design allowances used in the mandrel design for subscale and prototype tires. After analyzing the merits of steel and aluminum for use in the rim-locking assembly, a glase, filament-reinforced epoxy composite was selected.

An analysis to determine the feasibility of using tape-winding rather than single-cord winding showed that a high buildup of reinforcement at the tire's heel area and inside diameter prevented adoption of the tave winding technique for the tires under design.

A toroidal filament-winding machine capable of winding aircraft tires that fit 16 to $20-1 n .-d i a$ wheels and have a carcass outside-diameter (OD) range from 38 to 50 in. was designed and fabricated. Tooling- and handling-equipment for production of subscale 30×8.8 and prototype 49×17 tires were designed and fabricated. The filament-winding mactine, and all tooling and handiling equipment performed catisfactorily durirg tire fabrication.

Process development studies in subscale tire fabrication showed that nylon, glass, and wire reinforcements could be filament-wound in bias, modified geodesic, and radial-ply configurations. The critical elements in the winding process were found to be cord tension and cord spacing.

The performance of the new toroidal filament-winding machine was demonstrated in the fabrication of 49×17 prototype tires. Complete application of cord and insulation was accomplished without removing the tire from the machine. This appication confirmed the predicted time-saving feature of this machine.

[^0]Optimum operating procedures and controls were established for the Pabrication of prototype tires.

Fifteen 49×1726 PR tubeless, Type VII, tires were fabricated, of these, two were lost during cure because of equipment malfunction and two blistered during cure. The remaining eleven cured satisfactorily.

IWo 49×17 prototype tires exceeded the burst this size conventional tire (USAF Drawing No burst pressure requirements for 49×17 tires tested to this specification.

The inflated dimensions of the tires tested were within specification except for a width approximately $0 .!0$ in. over the maximum.

Dynamic test requirementis of USAF Drawing No. 60De56lJ were not achieved by any of the six prototype tires tested. The test results indicated that major a tire of this size.

DESIGN AND EVALUATION (TASK A)

The objectives of the design and evaluation studies were (1) to develop and evaluate designs for subscale aircraft tires of various cord paths utilizing conventional and experimental reinforcements; (2) to evaluate construction materials for the component parts of filament-wound tires, and (3) to investigate manufacturing methods for these tires. For this purpose, subscale tires (of the 30×8.822 PR (ply rated) tubeless, Type VII, aircraft type) were designed, fabricated and tested.

Conventional tubeless bias-type pneumatic tires are built on a collapsible contoured drum by the application of the components in successive layers. The inner liner is laid down first, followed by layers of bias-cut rubber-coated woven cord fabric. After a predetermined number of cord plies have been applied to the drum, the beads are anchored in place by turning up the cord plies over a bundle of bead wires on each side of the drum. The carcass is completed by addition of more plies, reinforced cord breakers, tread, and sidewall. Large tire fabrication deviates from this procedure by building up cord plies in the form of a sleeve on a flat drum before the cord plies are placed on the final building drum. The finished carcess, in the form of a short cylindrical tube, is expanded into the tire's approximate final shape by insertion of an air bag into the inside of the cylinder, or by the use of a forming diaphragm inside the curing press. The change in carcass shape resulting from expansion during shaping and curing in a female mold produces realignment or "pantographing" of the cords.

Radial and modified bias-type tires are fabricated according to a somewhat different procedure varying with the manufacturer. More breakers under the tread are used with the radial and belted-bias tires to provide the circumferential strength required by these tires.

The continuous cross-section filament-wound tubeless tire is a completely enclosed toroidal configuration in which the cord reinforcement is wound around an inner-liner-covered rigid mandrel. It differs from ine conventional tire by lacking beads and completely enclosing the inflating mediun. The filament-wound tires ${ }^{2}$ inside rigidity is provided by a rim-locking assembly (RLA), a stiff flatlike ring that is incorporated inside of the tire during carcass fabrication. The fabrication procedure consists of molding a soluble mandrel, mating the mandrel with the rim-locking assembly previously wound on a contoured mandrel form, applying the inner liner from calendered rubber tape over the mandrel, and continuously winding cord-reinforcement in the desired pattern over the liner. Rubber insulation is placed between the plies of cord by application of calendered tape. The wound carcass is then completed by application of chafer strips (heel reinfiorcement), breaker strips, tread, and sidewall. The soluble mandrel is removed after application of the tread, and curing is accomplished in a tire mold with inflation by steam or water.

1. DESIGN SIUDIES

a. Carcass
(1) 30×8.822 PR Subscale Tire

The bias cord path is the type used in a conventional tire. The surd angle at the crown is established on the basis of dynamic test results, and the sidewall angle is that which the calendered cord takes when expanded from the flat building-drum to the tire mold. The modified geodesic path approaches the natural. angle that the cord follows along tre sidewall when the crown angle is established at other than 90°. The radial path is perpendicular $\left(90^{\circ}\right)$ to the circumferential center line of the tire.

Nylon cord was selected for the reinforcement in the prototype 49×17 tire. To provide for versatility in design and equipment, however, work was also done on design, fabrication, and testing of 30×8.8 tires using glass and wire cords.

The following considerations were used in the design approach for the subscale tires:

> Strength Level - All constructions of the $30 \times 8.822 \mathrm{PK}$ tires were designed to have equivalent burst strengths.

Reinforcements - To ensure test results of value on a comparative basis, the reinforcement was limited to a single kind for each type of tire design (bias, geodesic, or radial).

- ỉlastomers - The same elastomer compounds were used for the component parts of all designs except for the wire-reinforced tires.

Tread Design - Inasmuch as the 30×8.822 PR tire used in 250 mph service requires a special tread-retention design of the type used on the 49×17 tire, this tire (30×8.8) can be considered a subscale for the larger prototype tire.

Preliminary design studies were made of the structural requirements of the candidate carcass, and the rim-locking assembly. The investigations covered nine candidate nylon 6-E cords, two ECG 75 glass cords, two wire cords, and two ravon cords for each application in the carcass, rei forcement and breakers. Tables I through V prosent the results. These ε iles covered design parameters, structural requirements to meet minimum lurst conditions, allowable maximum end counts, resulting end counts, plieis, gages, and angles as applied to the cured and fabricating states.
TABTEE I

Cord style
Tensile strength, $1 \mathrm{~b} /$ cor Cord gage, in. Cords on core, total Cords on ply, total Ends per inch (EPI), maximum For 65.5% cured cords
Core Ply No. of plies, calculated No. of plies, actual number of plies Cured cords $\begin{array}{lr}\text { Cured cords } & 28.5 \\ \text { Core } & 26.6\end{array}$ Ply
Prowth potential, $\%$, throush EPI increase EPI increase
Cured-cord insulation, mils Cured-ply gage, in. Cured-ply gage, in.
$($ estimated) (9 to Ply insulation, mils
Cured-carcass thickness, in.
NyIon 6-6 angle 50° (filament-wound), and ply angle 38° (conventional angles: cured angle 35.5° (molded), core
 circumferential strength $10,700 \mathrm{lb} / \mathrm{in}$. End-count (EPI) ratios: cured cords strength $4,660 \mathrm{lb} / \mathrm{in}$., and cords to core $=1.070$.

CABCASS AND REINFORCEMENT DESIGNS - 30×8.8 ع२PR GEDDESIC MTLON FILAMENT-WOUND TIRES ${ }^{a}$

TABLETII

Tensile strength, lb/cord Cord gage, in.	$\begin{gathered} 840 / 2 \\ 30 \\ 0.021 \end{gathered}$	1260/2 45 0.026	$\begin{gathered} 1680 / 2 \\ 60 \\ 0.029 \end{gathered}$	$\begin{gathered} 1260 / 3 \\ 67 \\ 0.031 \end{gathered}$	$\begin{gathered} 1680 / 3 \\ 90 \\ 0.036 \end{gathered}$	$\begin{aligned} & 3360 / 2 \\ & 120 \\ & 0.041 \end{aligned}$	$\begin{gathered} 2520 / 3 \\ 135 \end{gathered}$	$\begin{aligned} & 4200 / 2 \\ & 150 \end{aligned}$	$\begin{gathered} 3360 / 3 \\ 180 \end{gathered}$
Cured cords required, total	155	104	78	69	0.036 52		0.043	0.045	0.048
Ends per inch (EPI), maximum at 15-in. diameter					52	38.9	34.5	31	25.9
For 80\% cord At crown center line	38	30.8	27.6	25.8	22.2				
Cured curds	20.9	17.0	15.2	14.2				8	16.7
No. of plies, calculated	21.9	17.8	15.9	14.9	12.2	10.7	10.2	9.8	9.2
No. of plies, actual	7.	6.12	5.13	4.90	4.26		10.7	10.25	9.6
	8	7	6	5	5	4			
EPI calculated for actual number of plies					5	4	4	4	3
Cured ecrds Core	19.4	14.9	13						
	20.4	15.7	13.7	14.6		9.95	8.6	7.75	8.62
Growth potential, \%, through EPI increasa	8				10.9	10.5	9.05	8.15	9.1
Cured-cord insulation, mils		14	17	2	17	10	18		
	30	41	48	41	60	59	73		
(estimated)	0.031	0.036	0.039	0.041	0		. 73	84	68
							0.054	0.056	0.059
Ply insulation, mils	10	10	10	10	10				
Curea-carcass thickness, in.	0.248	0.252	0.234				11	11	11
					0.230	0.208	0.216	0.224	0.117

[^1]TAREE IY

CARCASS DESIGNS -30×8.8 22PR RADIAL GLASS AND WIRE TIRES

	bCG 75 Glass		Wire	
Cord style	5/3	5/5	5/033	S/004
Tensile strength, lb/cord	125	185		$\begin{aligned} & \text { S/0 } \\ & 355 \end{aligned}$
Cord gage, in.	0.035	0.047	$\begin{aligned} & 190 \\ & 0.036 \end{aligned}$	$\begin{gathered} 355 \\ 0.048 \end{gathered}$
Cured ends required, total	37.3	25.2	23.95	13.15
Ends per inch (EPI), maximum at 15-1n. diameter				
For 80% cord At crown center line	22.9	17	22.2	16.65
Cured cords	12.8	9.5	12.4	9.3
Core	13.45	9.96	13.0	9.76
No. of plies, calculated	2.92	2.65	1.85	1.41
No. of plies, actual	3	3	2	2
EPI calculated for actual number of plies				
Cured cords	12.4	8.4	12	
Core	13	8.8	12.6	6.95
Growth potential, \%, through EPI increase				
Cured-ply gage, in. (estimated)	0.054	0.066	0.054	0.076
Ply insulation, mils	19	19	18	18
Cured-carcass thickness, in.	0.162	0.198	0.108	0.152

[^2]tabis y
BREAKERS FOR 30×8.8 2̨PR FILAMES r-HOUND RADIAL WYLON, GLASS, AND WIRE TILRES

	Payon Preakers		Glass Breakers		Wire Breakers	
Cord style	1650/3	2200/3				
Tensile otrength, lb/cord	50	2200/3	$\begin{aligned} & 5 / 3 \\ & 125 . \end{aligned}$			
Cord gage, in.	0.034	0.039	0.635	$\begin{aligned} & 185 \\ & 0.047 \end{aligned}$	$\begin{aligned} & 196 \\ & 0.036 \end{aligned}$	$\begin{aligned} & 355 \\ & 0.048 \end{aligned}$
Ends per inch, maximum	24	22	16	14	18	13
Cured cords required (total) for 12° cured angle	223	160	89.5	60.5	50.7	31.5
No. of plies calculated for 12° cured angle	9.3	7.26	5.6		3.1	
No. of plies, actual	10	8	6	6	4	4
Cured angle, degrees, for actual number of plles	19	17.5	15	32	27	39
Ply gage, in.	0.055	0.060	0.070	0.070	0.070	0.090
Total belt thickness, in.	0.550	0.480	0.420	0.420	c. 280	0.360

[^3]Style $3360 / 2$ cord was selected for the nylon-reinforced tires on the basis of high strength and proven performance. The bias design required eight plies. The modified-geodesic design required 4 plies. The radials required 4 plies for nylon, 3 plies for glass, and 2 plies ?r wire. Although the wire and glass cords have approximately the same strengths, the larger diameter of the glass cord restricts the amount that can be placed in each ply; therefore, an extra ply is required.

Glass-reinforced breaker strips were employed in the nylon and glass radial tires. A wire-reinforced breaker strip was used in the wire radial tire. Breaker strips are low-angle calendered cord fabrics used between the plies and tread to provide circumferential strength.

The construction featurea adrpted for the 30×8.822 PR subscale tires are shown in Table VI. The green-carcass (uncured) profiles of the five 30×8.8 subscale tire constructions are shown in Figuresl through 5. These profiles were used to design the mandrel molds and the cums for the winding machine. A tire mold profile was made uicilizing these basic parameters and considering the required cui α^{\prime} tire dimensions, most of which are controlled iny Air Force specifications.

During the development of the winding machine cam profile for the geodesic design, it was found that the cord path which had been developed by analysis would not fit the limitations of winding a continuous cross-section torus. For the cord to go through the inside diameter of the torus, it has to make a drastic anglc change at the bead area, i.e., the geodesic cord angle at the bead was $\approx 58^{\circ}$ and it had to change to 20° to go through the center. This would cause a distortion of the cord path over most of the sidewall. As a result, a new cord path was determined. This path has a shallower angle (45°) at the bead and allows for a smooth angle transition through the inside diameter of the torus. A new green carcass profile was determined and is shown in Figure 6.

Type
Bias
Modified geodesic
Carcass
Breaker
Radial, nylon
Carcass
Breaker
Radial, glass
Carcass
Breaker
Radial, wire
Carcass
Breaker

[^4]

Figure 1．Bias Nylon Assembly，Green－Carcass Profile

Figure 2. Geodesic Nylon Assembly, Green-Carcass Profile

Figure 3. Radial Nylon Assembly, Green-Carcass Profile

Figure 4. Radial Glass Assembly, Green-Carcass Profile

Figure 6. Revised Geodesic IJylon Assembly, Green-Carcass Profile

Because of the shallower angle, it was possible to increase the cord end count in each ply. In addition, the angle change allows the radial strength requirement to be satisfied with fewer cords. The combination of these two changes permitted the design of a $4-\mathrm{ply}$ tire. A summary of the design differences between the orisinal and revised modified-geodesic tire is given below:

TABLE VII

CIMPARISON OF GEODESIC IESIONS

Designs

Original,
Geodesic Cured
Geodesiced, Wound

Carcass

Cord	$3360 / 2$ nylon 6.6	$3360 / 2$ nylon 6.6
Plies	8	4
Cured Ply	6.15	
\quad Ends per inch	62.75	65.66
\quad Cured Angle, ${ }^{\circ}$		
Core	7	7.32
\quad Crown, ends per inch	26	23.7
Crown wind angle, $^{\circ}$	520	555

Reinforcement (Breakers)

Cord	ECC	75
Plles	$5 / 3$	ECG 75
Ends per inch	6.	6
Cured angle, 0	16	16
	27	23.25
imated Weight, Lb	60.6	52.5

(2) 49×1726 PR Prototype Tire

A bias construction utilizing the originaliy selected nylon reinforcements was used for the prototype 49×17 tire (see Flgure 7). Design details are as follows:

Construction	bias ply
Reinsorcement	nylon 6-6
Cord type	$3360 / 2$
Number of plies	8
Cord ends per inch, cured crown	14.5
Total ends per ply, neutral axis	1200
Cured-crown angle	35°
Wrapped-crown angle	30.4°
Liner thickness	$0.075 \mathrm{in}$.
Insulation thickness per ply	$0.025 \mathrm{in}$.
Carcass thickness (side)	0.452 in.

Tabulated below are weight comparisons based on calculations by tire design engineers and the recent K revision of USAF Drawing 60DR56ld in which the Air Force increased the nonskid depth of the 49×17 tire from 0.30 in . to 0.40 in .

Specified maximum

Presently qualified General Tire \& Rubber tire, conventional configuration

Conventional configuration, under development by General Tire \& Fubber
Filament-wound tire, under development in this program

Weight (1b)
$\frac{\left.\begin{array}{c}\text { J Revision } \\ \begin{array}{c}\text { Nonskid Depth } \\ 0.30 \text { in. }\end{array} \\ 215\end{array} \begin{array}{c}\text { K Revision } \\ \left(\begin{array}{c}\text { Nonskid Depth } \\ 0.40 \text { in. })\end{array}\right. \\ \text { Not yet established }\end{array}\right)}{}$

187

The estimace of 182 lb , which represeats a welght advantage of 11.6% as compared with 206 lb ior the conventional rire, was arrived at as follows:

Component	Quality	Weight (1 b)
Inner-liner compound	497.6 cu in.	22.10
Ply-insulation compound	1153 cu in.	45.10
Nylon cord	17,000 yards	27.20
Chafer plies	0.97 square yards	2.50
Heel filler	16.5 cu in.	0.95
Tread and sidewall	1448 cu in.	59.17
Total - rubber, cord, and fabric 157.02		
Rim-1	cking assembly	25.00
	Total estimated	t 182.02

The original target for the cured crown angle of the $49 \times 1726 \mathrm{oR}$ prototype tire was 35 degrees ± 1 degree. This angle was considered necessary to retain, during dymamic operation, the higher tread mass resviting from an increase in nonskid depth from 0.30 to 0.40 inch. It was determined by test of conventional tires that retention of the thicker tread was maintained with a cured crown angle of 36.5 degrees ± 1 degree. To provide this in the cured tire, a 39° to 41° wrapped crown angle was selected for fabrication of the prototype tires.

The original target for cord ends per ply was 3.200. One tire with an average and count of 1295, when subjected to a burst test yielded a burst factor (burst strength/operating pressure) of 3.94. This was higher than the 3.5 factor required by the conventional tire specification USAF Dwg. 60D2561J. Another tire with an average end count of 1244 yielded a burst factor of 3.70 . On the basis of these tests, a 1230 ± 30 end count was selected as standard. This provides a satisfactory margin of safety above the required 3.50 minimum burst factor.

During the cure of a 49×17 prototjpe tire in the process development effort, a high buildup of cord and insulation on the inside of the carcass interferred with closing of the curing mold. It was, therefore, determined that a reduction in insulation thickness was required. The thickness of insulation was reduced from 0.025 to 0.020 in. This reduction providad a weight reduction of 2.41 lb in the tire carcass. An additional 1.6 lb saving in weight resulted from a reduction from two layers to one layer of rubber covering the rim locking assembly.
tire: Erototype tire:
blas ply
nylon 6-6
3360/2
8
14.5
1230 ± 30
36.6°
$39-41^{\circ}$
0.075 in.
0.020 in.
0.420
b. Rim-Locking Assembly
(1) Design

The importance of the rim-locking assembly (RLA) to the to the design, materials, and fabric required that careful attention be given lateral compressive strength to tolerate of this part. The RLA must have high and the loads that are imposed on the tire due clamping pressure during mounting also required to maintain tire integrity duringg use. Eigh hoop strength is pressure inflation and applied lcads.

Table VIII gives the basic parameters used in the design of the rim-locking assemblies ior the 30×8.8 subscale and the 49×17 prototype
tires:

TABLE VIII
RLA DESIGN PARAMETERS

Tire Size			Maximum	$110 w a b$	
and		Casing Ioad	Hoop	迆	
Cojd Path	$\begin{aligned} & \text { Pressi } \\ & \text { (psi) } \end{aligned}$	at Rima (lb/in.)	Tension	Hoop Strain	Iateral
30×8.8 bias		(lb/in.)	(1b.)	(in./in.)	Deflection (in.)
	295 (rated)	1300			
	1035 (burst)	4550	17,300 60,500	0.0065	0.031
30×8.8 geodesic	295 (rated)		60,500	0.0120	0.094
	1035 (burst)	4000	15,500	0.0065	0.6 .31
30×8.8 radial	295 (rated)	4000	54,200	0.0120	0.094
	1035 (burst)	1770	24,200	0.0065	
49×17 bias	170 (burst)	6200	84,500	0.0120	$\begin{aligned} & 0.031 \\ & 0.094 \end{aligned}$
	270 (rated)	1290	29,100		
	595 (burst)	4520	102,000	$\begin{aligned} & 0.0090 \\ & 0.0170 \end{aligned}$	0.031

a The casing load at the rim is the load exerted at each edge of the RLA. $450^{\text {is }}$ derived from the internal pressure and is assumed to be applied at a 45° angle to the edge of the RIA.

An analysis was made to determine the dimensions reauired to accommodate the stresses and strains exerted on the RLA. Several .ieign concepts fabrication. Three materials together with various materials and methods of and a glass-fabric and roving/epoxy considered: 6061-T6 aluminum, 4130 steel, concepts to arrive at a strong, lightwposite. Tradeoff studies were made of the approaches were followed. Ing, lightweight, low-cost companent. Two design a bead strong enough to carry ail thed that the RLA was composed of two parts: restrict the lateral compressive forces. unit and the entire ring contributed to the other assumed that the RLA was a The RLA is considered as a right circuiar hoop as well as the lateral strength. its ends, external pressure, and lateral cylinder subjected to shear loading on using weight as the criterion, the glass compression. The analysis showed that, the most desirable material.

Another consideration used in the RIA design was the chafing of cord reinforcements that resulted in early dynamic test failures of 30×7.7 tires on an earlier program. The failures occurred in approximately the same location, at the lower radius of the edge of the RIA, a point of maximum stress concentration. An increase in the radius of ine $\bar{K} A$ in this area was selected as a first step in the improvement of dynamic performance.

(2) Manufacturing Methods

On the basis of the design studies, an S-901 glass/epoxy composite was selected for the FLA. A hand layup process was chosen in preference to a molding process because of the high tooling custs required for the latter method. The initial fabrication process consisted of wrapping alternate layers of resin-impregnated type 181 glass cloth, resin-impregnated 2-oz. Rovmat, and glass roving over the mandrel until the desired thickness was obtained. Compacting rings were placed over the entire mass and spaced equidistant from the RLA edges. Resin-impregnated glass roving was wound in the cavity between the compacting rings and the edge of the RLA to form the hoop reinforcement. After curing, the RIA was sandblasted, covered with liner rubber, and fitted with air-vent bushings. FHure 8 shows the $30 \times 8.8 \mathrm{RIA}$ in various stages of fabrication.

Tests on sections of 30×8.8 RLA fabricated according to the above procedure showed a compressive yield strength of $8400 \mathrm{lb} / \mathrm{in}$. at a deflection of 0.0246 in . A maximum casing load of $6200 \mathrm{lb} / \mathrm{in}$. at burst and a maximum dflection of 0.031 at rated inflation pressure were the design criteric for the 30×8.8 tires; this construction appeared to have adequate strength

During the test program on the 30×8.8 tires, however, a weakness in the lateral compressive strength of the RLA became evident. A stress analysis of the RIA indicated the need for more lateral reinforcement to provide an adequate margin of safety. A configuration consisting of laminated layers of Style 341 glass fabric, which has a warp count of 30 and a fill count of 49, appeared to meet this requirement. Tests of laminates prepared in this manner showed the following values:

$\frac{\text { Specimen }}{\text { Width (in.) }}$		Untimate	Compressive Strength	Texural Strength
		n.	(psi)	(psi)
1.031	0.268	10,580	39,342	---
1.962	0.278	10,560	37,866	---
1.025	0.267	---	---	70, 765

These data indicate that the use of Style 341 glass fabric provides additional compressive and flexural strength for the RLA. The construction incorporating this glass fabric was, therefore, used in the fabrication of the RLA's for the 30×3.6 aubscale and 49×17 prototype tires.

The final RLA fabrication process consisted ois wrapping a layer of preimpregnated Style 341 glass fabric around the mandrel to form the desired contour. Layers of preimpregnated Style 341 glass fabric and glass roving were wrapped over the first layer of prepreg until the desired thickness was obtained. The width of the glass fabric was reduced stepwise to provide a cavity on each edge for the hoop winding. Prepreg glass roving was wound at each edge of the RLA, the full thickness and over the glass fabric to provide adequate hoop strength. A stress analysis for the rim locking assembly, 49×17 tire, is presented in Appendix I.

The design for the rim lock assembly of the 30×8.8 tire is shown in Figure 9 Drawing No. 1269154. The design for the rim lock assembly of the 49×17 tire is shown in Figure 10 as Drawing No. 1269203.
c. Windsing Mandrel

(1) Material Studies

Studies of various types of mandrel materials and moldfilling methods were made to determine optimam compositions and handling techniques. The two prime cand:dates were a sand/acrylic-resin mixture and a sand/sodium silicate mixture. These were compared for mold shrinkage, moldability, solubility, and strength. The effects of short cures and unique curing techniques on the mechanical and chemical properties of promising mandrel materials were also investigated.

The most significant forces acting on the winding mandrel during processing are:

- Va.vum pressure cure of inner liner over the mandrel.
- Lifting of wandrel into and out of filament-winding machine.
- Pressure of 30 lb on crown roller during application of the tread and sidewall.

The mandrel must be simply fabricated, relatively inexpensive, and easily removable from the carcass after application of the tread and sidewall. A stress analysis that too's into account the above forces was made on a sand/resin mandrel material with a compressive strength of 4150 psi , a shear strength of 800 psi , and a modulus of elasticity of $0.6 \times 105 \mathrm{psi}$. The results of this analysis showed that a mandrel material with these properties end 0.375 in. thickness would withstand the forces applied during processing.

(2) Candidate Matiarials

Twg combinations of binder and filler were compared with the standard Kerr DMM r,laster mandrel material for tensile, compressive, flexural, and shear strength properties. The following compositions were tested:
. PL-1, consisting of Kerr DMM plaster (69.50 wt) and water ($30.50 \mathrm{wt} \%$).

Following are the results of the mechanical-strength tests on these materials. All values are averages of three determinations except the tensile strength of PL-1 which represents only one test.

Property	PL-1 (Plaster)		SA-1 (Acrylic)		SS-6 (Sodium Silicate)	
	$70^{\circ} \mathrm{F}$	$230^{\circ} \mathrm{F}$	$\frac{70 \%}{}$	$\frac{250{ }^{\circ} \mathrm{F}}{}$		
Tensile Strength (psi)	26	---	248	---	285	
Compressive Strength (psi)	198	309	2338	2699	3095	1740
Compressive Modulus ($10^{5} \mathrm{psi}$)	0.573	---	2.167	---	2.016	---
Flexural Strength (psi)	65	107	1041	918	822	597
Shear Strength (psi)	49	100	725	703	660	443

These results indicate that the sand-based materials are substantially stronger than the standard plaster mandrel material. Although the sand/acrylic mixture shows higher strength properties than the sand/sodium silicate material at $250^{\circ} \mathrm{F}$, both candidates were considered adequate for the
vacuum bag curing pressure.
3. Kerr Manufacturing Co., Detroit, Michigan.
4. Wedron Silica Sand Co., Wedron, Illirois.
5. B. F. Goodrich Chemical Co., Cleveland, Ohio.
6. Ottawa Sand Co., Ottawa, Illinois.
7. Carver Foundry Co., Muscatine, Iowa.

The solubilities of SA-1 and SS-6 were compared by immersing equal volumes in $150^{\circ} \mathrm{F}$ water and mechanically agitating for five minutes. Any undissolved remainder was dried and weighed: 63% of the SA-1 specimen dissolved in five minutes, and 100% of the SS-6 dissolved in 35 seconds, indicating the hig her solubility of the material with a sodium silicate binder.

In the development of a mandrel material, it was found that the addition of a fine-particle silica filler improved the molding ciaracteristics and surface finish. It was found, however, that higher amounts of the silica filler decreased the solubility of the compound. The effect of filler content on washout characteristics was studied. The results follow:

Compound Identification	Type of Binder	$\begin{aligned} & \text { Silica Filler } \\ & (w t \delta) \end{aligned}$	Immersion THme in 150 water (min)	Washout $(w t \%)$
SA-1	A-73-X	8.5		
SS-12	Steinex C	0.0		50.
SR-5	Steinex C	3.0	1.5	100.0
SR-6		3.0	3.0	100.0
SR-6	Steinex C	6.0	5.0	97.3
SR-8	Steinex C	14.0	5.0	28.0

This test indicated that washout characteristics are profoundly influenced by the silica-filler content - i.e., the higher the content, the slower the disintegration of the cured part in water. This effect is believed to be due to the filling of voids between the coarser sand particles by the fine filler, creating a dense structure not easily attacked by water. The result is slow penetration by water and retarded disintegration.

A formulation containing no silica filler (e.g., SS-12) would provide the fastest washout time. A certain amount of fine-particle filler is required, however, for satisfactory moldability and good surface finish. SR-6 was therefore selected as the standard formulation on the basis of a trade-off of processing, surface-finish and washout properties.

The effect of cure time on the compressive strength of SR-6 mandrel material was studied in order to select the optimum curing cycle. Following are the results of this study:

| $\begin{array}{l}\text { Specimen } \\ \text { Identification }\end{array}$ | $\begin{array}{l}\text { Hours } \\ \text { at } 250 \\ \mathrm{~F}\end{array}$ | Cure | |
| :--- | :---: | :---: | :---: |\(\left.\quad \begin{array}{c}Compressive Strength (psi)

(Ave. of Two Specimens)\end{array}\right]\)| SR-6-1 | 1 | 7460 |
| :--- | :--- | :--- |
| SR-6-2 | 2 | 5360 |
| SR-6-4 | 4 | 7180 |
| SR-6-6 | 6 | 5780 |
| SR-6-16 | 16 | 3920 |

The results of this study indicate that cures of one hour to six hours at 250 produce satisfactory compressive strength. A recheck of the two-hour cure produced 7642 psi compressive strength. On the basis of these tests, a two-hour cure at $250^{\circ} \mathrm{F}$ was selected for the SR-6 mandrel material. Following is the composition of SR-6, the compound used in the fabrication of al. 30×8.8 and 49×17 mandrels:

Material	\$ by wt.	Source
70-30 Wedron sand	81.0	Wedron Silica, Sand Co., Wedron, Ill.
Silica flour	6.0	Any local foundry supply company
Steinex C resin	13.0	Carver Foundry Co., Muscatine, Ia.
	100.0	Carer Foundry Co., Muscatine, Ia

The compound is mixed by blending all ingredients in batches of 200 lb in a Carver Muller Blender (Carver Foundry Co.) for eight minutes.

Manufacturing Methods

The fabrication procedures considered for the mandrel were compression molding, and mechanical vibration in conjunction with hand tamping. The compression molding method would require a substantial tooling investmont which could only be justified by a large-production operation. In the second method, the manarel halves are formed by vibration in a mold into wich an insert is forced to produce the annular cavity. Hand tamping was also used to provide maximum compaction of the material. The mandrel half was given a preliminary set cure while still in the mold. It was then inverted and given a final cure. Two halves of the mandrel were bonded together with an adhesive consisting of SR-6 diluted with a small amount of Steinex C. The bonded mandrel was then given an additional cure of one hour at 250 F.

The use of CO_{2} for curing the mandrel was investigated by subjecting small specimens to solid CO_{2} (dry ice) and to gaseous CO_{2}. It was found that the mandrel material in immediate contact with the CO cured quite rapidly. However, penetration through the material was slow and it was concluded that this process was not suitable for a formulation silica filler. Also, long contact with the $C O_{2}$ produced a high degree of insolubility in the material. In a controlled production operation, the CO_{2} treatment may be useful in surface hardening of tiae mandrel material to provide rapid turnover of the molds.

2. MATERRIALS EVALUATION

a. Cord-Rubber Adhesion

Static adhesion tests were performed according to ASTM D2138-62T on the conds of nylon, fiber glass, and wire used in the fabrication of subscale and prototype tires. This test, commonly referred to as the H test, measures its shearing force necessary to separate a single cord in the direction of data, representing 464 individual in wich the cords are imbedded. The following data, representing 464 individual tests, were cbtained:

TABLE. TX

H-AITESION VALJUSS FOR TIRE CCRDS

The results indicate that a high degree of adhesion can be obtained between the elastomer compound and the cords used for reinforcement in the filament-wound tires. These was a substantial drop in adhesion at $300^{\circ} \mathrm{F}$ but reasonabl
b. RLA-Elastomer Adhesion

A good bond is required between the glass-reinforced, resinimpregnated RIA and the rubber covering to prevent separation during cure and shearing off during dynamic testing. Various combinations of primers and adhesives were evaluated to determine the best to use in the fabrication of filament-wound tires. T-peel test sf cimens were prepared and tested to Feücral Test Methods Standard No. 601, Method 8031. The following results (averages for three tests) were obtained:

TABLE X

RLA TO ELASTOMER ADHESION-TEST RESUUIS

| Specimen | | Bonding Agents |
| :--- | :--- | :---: |\quad| T-Peel Adhesion |
| :---: |
| lbiln. of wldth |

Type of Failure Plastic to primer
Flastic to adhesive
In rubber
In rubber
Primer to rubber
In rubber
Primer to rubber
(a) Product of R. T. Vanderbilt Co., Norwalk, Conn. All others made by Fughson
Chemical Co.. Frie, Pa.

The test results indicate that several combinaticns of bonding agents provide adequate adhesion between the resin-impregnated glass mat and the rubber compound used as a coating for the RLA. The failure of the more promising adhesive combinations occurred in the rubber, which shows that marimum bond strength was obtained. On the besis of this test, a combination of Chemlck 205 primer and Chemlok 220 adhesive was selected for the bonding of the rubber covering to the RLA.
c. Load versus Elongation of Tire Cords at Various Temperatures

Load-elongation tests were conducted on two of the tire cords (nylon 6-6 and wire) to determine their probable behavior under dynamic conditions. Figure 11 shows the plotted data for nylon 6-6 cord at temperatures of 75,200 and $300^{\circ} \mathrm{F}$. Similar data for wire cord are presented in Figure 12.

The test results indicate the much greater stability of the wire cord as compared with the nylon 6-6 cord over the temperature range of the test. The nylon cord is reasomably stable as the temperature is raised to $200^{\circ} \mathrm{F}$, but starts to soften at $300^{\circ} \mathrm{F}$ and elongates to quite an extent. For service conditions at high temperatures, the wire cord is preferred. However, all organic elastomers are degraded at temperatures of $300^{\circ} \mathrm{F}$ and above, and limit the usefulness of a tire at high temperatures.

d. Cord Creep Properties

Creep tests were conducted on the reinforcement materials used in the fabrication of the filament-wound tires. The applied load was 25% of the oultimate strength of the materials. Tests were conducted at 75,200 and $300^{\circ} \mathrm{F}$. Th:ese data are presented in Tables XI through XIII for nylon 6-6, ECG fiber glass.

TABLE XI
CORD CREEP DATA - NYION 6.6

Type Cord Test Temp (${ }^{\circ} \mathrm{F}$) Applied Load (1b)	Creep (\%)				
	$\frac{\frac{840 / 2}{75}_{7.0}^{7(a)}}{} \frac{\frac{1680 / 2^{(a)}}{75}}{15.5}$		$3360 / 2^{(a)}$		
			$\frac{75}{29.5}$	$\frac{200}{29.5}$	$\frac{300}{29.5}$
Time (min)					
0	0.000	0.000	0.000	0.000	0.000
1	0.290	0.285	0.280	0.310	0.350
2	0.410	0.365	0.350	0.385	0.425
3	0.450	0.395	0.400	0.420	0.465
4	0.455	0.420	0.430	0.445	0.485
5	0.475	0.440	0.465	0.465	0.520
10	0.515	0.500	0.510	0.530	0.600
15	0.555	0.525	0.535	0.565	0.650
30	0.575	0.550	0.585	0.605	0.705
45	0.645	0.605	0.620	0.630	0.740
60	0.675	0.625	0.650	0.675	0.775
120	0.780	0.675	0.700	0.720	0.920
180	0.800	0.695	0.735	0.755	0.985
240	0.810	0.710	0.745	0.765	
300	0.810	0.735	0.765	0.765	1.060
360	0.810	0.735	0.765	0.765	1.090

(a) Product of Monsanto Chemical Co., St. Louis, Mo.

TABLE XII

CORD CRARP DATA - ECG TIBEM HLAS ${ }^{(a)}$

Type Cord
 Test Temp (${ }^{\circ} \mathrm{F}$)
 Applied Ioad (1b)

THE (min)

0	0.000	0.000
1	0.050	0.080
2	0.065	0.085
3	0.070	0.095
4	0.080	0.105
10	0.080	0.125
15	0.095	0.135
30	0.105	0.135
45	0.125	0.145
60	0.130	0.160
120	0.135	0.180
180	0.135	0.180
240	0.135	0.180
	0.135	0.180

$\begin{array}{ll}47.0 & 62.0 \\ & \\ 0.000 & 0.000 \\ 0.050 & 0.080 \\ 0.065 & 0.085 \\ 0.070 & 0.095 \\ 0.080 & 0.105 \\ 0.080 & 0.125 \\ 0.095 & 0.135 \\ 0.105 & 0.135 \\ 0.125 & 0.145 \\ 0.130 & 0.180 \\ 0.135 & 0.180 \\ 0.135 & 0.180 \\ 0.135 & 0.180 \\ 0.135 & \end{array}$
(a) Product of Owens Corning Fiberglas Corp., Ashton, Rhode Island

TABIE XIII

CORD CRRERP DATA - BRASS-PLATED STKEL WIRE

Type Cord Test Temp (${ }^{\circ} \mathrm{F}$) Applied Load (1b)	Creep (\%)			
	$\frac{\frac{8-004}{75}}{90.0}$	S-033 ${ }^{(a)}$		
		$\frac{75}{57}$	$\frac{200}{570}$	300
Time (min)				
0	0.000	0.000	0.000	0.000
1			0.010	0.025
2			0.015	0.025
4			0.020	0.025
5			0.025	0.025
10			0.025	0.025
15			0.025	0.025
30			0.025	0.040
45			0.025	0.040
60			0.030	0.050
120			0.030	0.065
180			0.030	0.075
240	0.000	0.000	0.030	0.075
300		0.000	0.030	0.075
		---	---	0.075

(a) Product of Bekaert Steel Wire Corp, Zweregem, Belgium

The data show that at 75 and $200^{\circ} \mathrm{F}$, the nylon has stabilized after four hours. Since nylon is a thermoplastic material, stability in creep is never achieved at gny time period at $300^{\circ} \mathrm{F}$. The fiber glass cord stabilized after two hours at 75 F . The steel wire showed no increase in creep after 30 minutes at $200^{\circ} \mathrm{F}$, or after two hours at $300^{\circ} \mathrm{F}$.
e. Tape Versus Cord Reinforcements

The use of reinforcements in tape form was considered for filamentwound tires because of the saving in fabrication time that could be realized. That is, winding time is an inverse function of the number of reinforcements either as tapes or cords in each wrap. In the winding of a torus, however, the tapes overlap and cross each other on the inside of the torus. The overlapping produces excessive buildup which introduces interference in curing of the tire, and the crossing of cords produces lower dymamic life.

The extent of overlap and thickness increase is a function of the difference in diameters between the inside and the outside of the torus. The greater this difference, the greater the overlap. A detailed theoretical analysis presented as Appendix II, shows the extent of the overlap and the area where it
occurs on a 30×7.7 aircraft tire. In this analysis, a tape width of 0.25 inch and thickness of 0.047 inch is assumed. FCr a tire of $26.894-1 \mathrm{n}$. OD and $15.127-1 \mathrm{n}$. ID, the overlapping sterts at 19.25-in. diameter, which is mately one-third of the ilstance from the heel ares to the cter, which is approxiThis is a rather critical area from the standpoint of die crown of the tire. crossing of cords at this point introduces chpoint of dynamic flexing. The bufildup $0=$ cords on the inside of the tire chafing and lowers dynamic life. The approximstiely twice that of the carcass tire by the use of tape winding is increase in RLA diameter would be necessary to at the upper sidewall. An also represents a substantial weight penaly to accommodate this buildup. It features of tape winding more than overbalanced it was concluded that the undesirable produced by its use. It should be emphasied, the time economy that might be tape winding effects was directed for a sped, however, that this analysis of not apply to all tape winding concepts. specific theoretical situation. It may

SECTION IV
 TOOL AND EQUIPMENT DESIGN AND FABRICATION (TASK B)

The objectives of this effort were (1) to design and fabricate tooling and equipment for the fabrication of 30×8.822 PR subscale tires, and (2) to utilize performance data from this equipment in the design of tooling and equipment for the 49×1726 PR prototype tires.

1. SUBSCALE TOOLING AND EQUIPMENT

a. Carcass-Winding Machine

The carcass-winding machine for the 30×8.8 tires was available from earlier programs for 30×7.7 tires. It was adaptable to winding the 30×8.8 tire, although interference was encountered in the winding of the of the payoff mechanied geodesic nylon tires. This required modification problems were encountered redesign of the winding cams. No interference subscale tire program, an improvinding of the radial tires. During the accomplished by the addition of machine. The cams for the windingteresis brake tension controls to this developed in a computer used for the 30×8.8 bias and geodesed in Part II. Drawings for the cams
b. Handling and Curing Equipment

Molds for the sand mandrels were designed in accordance with the requirements outlis:od in Task A - Design and Evaluation. The cavities were made of giass-renforced polyester, and the plug for forming the inside diameter of the mold was made of aluminum. The insert for forming the annular cavity was cast from Ultracal-30 , a high-strength plaster material.

The aluminum mandrels for fabrication of the rim locking assembly were made in two parts to permit easy removal of the RLLA.

The machine used for the application of treads on both subscale and prototype tires was a series 200 American Machine and Foundry "Orbitread" machine. This machine was operated by punch card control to automatically apply the strips of extruded rubber to the carcass for the tread and sidewall.

The mold used for curing the 30×8.8 filament-wound tire contained a segmented curing ring to lacilitate mounting in the mold. This is shown in

Product of U.S. Gypsum Company supplied by George Throop Company, Pasadena,
California

Other tooling for fabrication, mandrel washout, handing and curing of the 30×8.8 tires is documented in the following drawings, which are on file.

Tool Number
T-1286078 (Aerojet)
T-120848 (Aerojet)
T-120852-001 (Aerojet)
T-120855 (Aerojet)
T-120849 (Aerojet)
T-120851 (Aerojet)
DK-4811 (Gereral Tire)
CK-8555 (General Tire)
CK-4135-2 (Jeneral Tire)
CK-8600 (General Tire)
De2lA-39 (General Tire)
D221A-40 (General Tire)
D-17716 (General Tire)

Description

Mold, Sand Mandrel, 30×8.8 Blas Mandrel, RLA, 30×8.8 Blas Mold, Sand Mandrel, 30×8.8 Bias Mold, Sand Mandrel, 30×8.8 Geodesic Mandrel, RLA, 30×8.8 Geodesic Mold, Sand Mandrel, 30×8.8 Radial Tire Mcild, $30 \times 8.8 \mathrm{~F} / \mathrm{W}$
Betd Rings, $30 \times 8.8 \mathrm{~F} / \mathrm{W}$
Mold Stamping, $30 \times 8.8 \mathrm{~F} / \mathrm{W}$
Curing Assembly, $30 \times 8.8 \mathrm{~F} / \mathrm{W}$
Test Rim, 30×8.8
Test Rim Side Plates, 30×8.8
Building Mach. and Access., $30 \times 8.8 \mathrm{~F} / \mathrm{W}$
2. 49×17 TIRE TOOLING AND EQUIPMENT

a. Carcass-W!nding Machine (T-120850)

The factors considered in the design of the $4 s \times 17$ prototype tire carcass-winding machine were (1) mechanical complexity as defined by the operations, requiring (2) machine vereatility for various sizes and for operation modifications, (3) adaptability to various types of filament reinforcements, and (4) simplicity of operation to minimize maintenance. The machine size, as finally agreed upon, will wind any size of tire for wheel sizes of 16 to 20 in . It will not wind the 56×16 Type VII tire, which has a rim diameter of 28 in . To include this size in the range would eliminate some of the smaller sizes that have greater utility. The machine can be modified however, if necessary to also wind the 56×16 tire. Drawings of the carcass winding machine are presented in Appendix III (T-120850).

The experience gained in the operation of the subscale tireWinding machine was applied to the design of the prototype tire winding machine. The new winding machine was designed to have the following improvements and advan qges over the subscale tire winding machine: (1) six dual payoff assemblies to minimize winding time, (2) ability to wind tape as well as cord, (3) a hysteresis-type brake cord-tensioning device to improve tension control, (4) a mechanical device for the application of insulation without requiring carcass removal, (5) a capability for changing from helical to radial winding by a simple exchange of geurs, (6) a feedback system (electromechanical) to correct machine-drive ratios as the diameter increases, and (7) an adjustable winding head to cover a broad jange of tire sizes. Figure 13

shows the 49×17 prototype tire winding machine. The cams for this winding machine were designed from formulas derived in a computer study program presented in Part II. Drawings for the cams used on the prototype tire-winding machine are shown in Appendix III.

The carcasowinding machine contains a ratio-adjust control that regulates the speed of the winding head relative to the mandrel speed. This control can be operated either manually or automatically. The automatic feedback control is a combination electromechanical system in which a sensor device automatically adjusts the rotation of the winding head to return the end count to the specified value when variation develops because of mandrel slippage.

Modifications were made to the automatic feedback control system to improve uniformity of cord spacing and end count. The sirst modifjcation consisted of a zero-null device to synchronize the mandrel with the master position control disk. The second was an error-amplitude-detection system which provides automatic measuring of the mandrel position error amplitude with respect to true position. Eacb of these modifications accomplished its intended purpose.

Examination of the winding machine during operation indicated that a very small but significant change in the mandrel speed occurs as covering of the rubber ply insulation by cord takes place. Traction improves as cord covers the tacky rubber surface. The cord spacing is reduced and the winding head speed must be increased when this occurs. Control of cord spacing, and ultimately the ply end count, requires constant observation of the cord lay down. Immediate application of corrective measures is necessary to maintain uniformity of cord spacing. The automatic Peedback control system is designed to provide cord spacing control by varying the speed of the winding head relative to the mandrel speed. Corrections can be made only twice during each mandrel revolution because only two sensing points are available. The addition of more pickup points such as metallic spots on the edge or inside of the FLA would improve the reaction rate of the automatic feedback control system. Perfection of this technique woula require considerable study and additional cost. By use of manual control, the operator is able to make corrections rapidiy when variable cord spacing appears.

Various techniques were considered for reducing the slippage between the drive belt and the tire carcass. The application of a rough surface on the belt would require a special mold and custom curing. This surface was, however, provided by application of $1 x$ in. panels of molded, adhesive-coated antislip rubb~r material to ce surface of, and perpendicular to, the movement of the belt. These \boldsymbol{v} nels, shown in figure 14, provide the required nonslip surface and increase the coefficient of friction between the tire carcass and the drive belt.

b. Handling and Curing Equipmert

Figure 15 shows the mandrel fabrication equipment for the 49×17 prototype tire. The mold cavity was fabricated from a glass-fabric/polyester resin laminate reinforced with steel rings to support the sand-mandrel halfsection which weighed up to 175 lb . The insert was fabricated from U.tracal-30 plaster. The mandrel turnover device is designed for inverting the mandrel half after the initial cure. The sling shown here is used to support the mandrel half after removal from the mold and during bonding. The mandrel locating device, or "spider," is designed to support the tophalf of the mandrel during bonding. Special adjusting screws locate the top-half with respect to the bottom-half to provide exact mandrel-width control.

Figure 16 shows the RLA building mandrel disassembled. The mandrel is made of aluminum and has two removable inserts used in forming the chamfer areas in the RLA. A drawing of the RLA building mandrel is shown in Appendix III.

The carcass handing truck is shown in Figure 17 . This truck is used for transporting sand mandrels and the rubber-covernd mandrel into and out of the curing oven.

A special washout device was designed to remove the mandrel from the 49×17 tire. This equipment consists of a syphon tube that fits inside the air inlet tube, a sand trap, and a vacuum source for pulling sand and water out of the tire. This equipment is shown schematically in Figure 18.

Other tooling used in the fabrication of 49×17 prototype tires is shown in the following documented drawings on file:

Figure 16. RTA Building-Mandrel, Disassembled

Figure 17. Carcass Handling Truck

Tool Number
T-1286126 (Aerojet)
T-1286127 (Aerojet)
T-1286128 (Aerojet)
T-1236129 (Aerojet)
T-120802 (Aerojet)
T-120854 (Aerojet)
T-1286141 (Aerojet)
DK-j646 (General THre)
DK-5647 (General T1r)
BK-4251 (General THre)
BK-4255 (General TIre)
221 A215 (General Tire)
221 A216 (General Tire)

Description

Mold, Sand Mandrel - 49×17 Tire
Handiling Tongs - 49×17 Tire
Inverting Fixture - 49×17 Tire
Handling Harness - 49×17 Tire
Handling Cart - 49×17 Tire
Handling Fixture - 49×17 Tire
Test Mandrel
Bottom Half Stamping Arrangement -
49×17 IHre
Top Half Stamping Arrangement - 49×17 Tire Interchangeable Plate - 49×17 Tire Spacing Arraneement - 49×17 Tire
Tire Test Rim - 49×17 Tire
Tire Test Rim Side Plates - 49×17 Tire

SECTION V

PROCESS DEVELOPMENT (TASK C)

The objective of this program phase was to isolate and solve those manufacturing and processing problems that might arise in the fabrication of various types of filament-wound constructions and reinforcements by the fabrication and testing of subscale tires. Three constructions were evaluated: bias cord path, radial cord path, and modified-geodesic cord path. The bias and modified-geodesic tires were reinforced with nylon cords; the radials were reinforced with glass and steel wire cords in addition to nylon.

1. FABRICATION OF SUBSCALE IIRES - 30×8.8 TYPE VII

a. Conventional Tires

(1) Fabrication

Twelve 30×8.822 PR tires were fabricated by conventional nethods to provide controls for the filament-wound tires. The same cord, 3360/2 nylon, was used in the fabrication of the eight-ply bias-angle control tires selected for use in the subscale tire program.

(2) Static Testing

Table XIV lists the staic testing date for the conventional control tires. All requirements of MIL-T-5041, the conventional tire specification, are met. The static deflection (31.5\%) shown is an average the deflection tires. This is the percent deflection to be used to describe curves taken during dynamic tests may the rated conditions. Load-deflection of changes in the method and equipment

Load-deflection curves for six pressures are shown for Tires A-10 and A-13 in Figures 19 and 20. Tire A-13 is more representative of a conventional cord tire. The major differences between the two tires of the A-10 tire upon bottoming.
(3) Dynamic Testing

Five conventional control tires were subjected to endurance tests; five others were emplo, in in take-off tests. All tires satisfactorily completed the requirements of the static tests and the 25 cycles of the 40 mph outboard 10°-camber test of the basic test method. In the constant roll test, which was performed after the 25 cycles of the camber test, it was necessary to reduce the speed to 3.2 mph to maintain an average temperature below $200^{\circ} \mathrm{F}$. After data analysis, a final speed-time curve of $3.5 \pm 0.3 \mathrm{mph}$ was established.
STATIC TEST DATA ON 30×8.8 22PR T-VI
(Conventional Bias Nvion; Tire Serial Number 15955.014/A)

A-11
53.20
$45 *$
1070
(Bead break)
295
(12 psi drop
In 5.5 days)

$\frac{A-10}{53.40}$
$\underline{\text { MIL-T-5041 }}$

$71(\max)$
$50-200$
$1035(\mathrm{~min})$
1035 (min)
5\% (max)
295
295
-
-
-
295
$29.50 \pm=20.40$
0.35 to 8.90
27.40
7.90 (max)
295
21,000
28.35
$12.61-14.36$
Indicator malfunction-visual estimate: 170 psi minimum.

Figure 20. Load-Deflection of Conventional Tire A-13 at Various Inflation Pressures
b. Filament-Wound Tires

(1) Fabrication

Five constructions of filament-wound tires were fabricated in the proces; development phase of the program to evaluate different reinforcing materials and to obtain useful processing data preparatory to fabrication of prototype tires. Table XV gives the basic construction features of these fire types of 30×8.8 tires. Included for comparison are the construction features of the control, or conventional 30×8.8
22 PR tire.

TABLE XV
CONSTRUCTION FEATURES OF 30×8.822 PR TIRES

		Carcass			Belt				
Type	Estimated Wt. (Ib)	Cord Type	No, of Plies	Cured EPI*	Cured Angle(${ }^{\circ}$)	Type Cord	No. of Plies	Cured EPI	Cured Anglei*)
Conventional Bias	53	$3360 / 2$ nylon	3	16	33.5				
F/W Bias	49.2	$\begin{aligned} & 3360 / 2 \\ & \text { nylon } \end{aligned}$	8	16	33.5				
F/W Geodesic	49.8	$\begin{aligned} & 3360 / 2 \\ & \text { nylon } \end{aligned}$	4	6.2	62.8	$\begin{aligned} & 5 / 3 \\ & \text { glass } \end{aligned}$	6	16	30
F/W Radial Nylon	49.8	$\begin{aligned} & 3360 / 2 \\ & \text { nylon } \end{aligned}$	4	10	90.0	$\begin{aligned} & 5 / 3 \\ & \text { glass } \end{aligned}$	6	16	15
F/W Radial Glass	49.3	$\begin{aligned} & 5 / 3 \\ & \text { glass } \end{aligned}$	3	12.4	90.0	$\begin{aligned} & 5 / 3 \\ & \text { glass } \end{aligned}$	6	16	15
F/W Radial Wire	54.6	$\begin{aligned} & 7 \times 3 \\ & \text { wire } \end{aligned}$	2	12	90.0	7×3 wire	4	18	20

* $\mathrm{EPI}=$ ends per inch

Detailed instructions were p:epared for the fabrication of each construction shown above. They are presented in Appendix VI as Engineering Manufacturing Instructions.

It was planned to fabricate ten 30×8.8 tires of each of the five types of construction described above in the process development phase. Because of technical difficulties and a decision to concentrate effort on the fabrication of 49×17 prototype tires only, twenty-two filament-wound subscale tires were produced. Of this number, frur were of the bias nylon type, four were of the geodesic nylon type, five were of the radial nylon type, four were of the radial glass type, and five were of the radial wire configuration. Following are the identifying symbols for each of these types:
BN - Bias nylon
GN - Geodesic nylon
RN - Radial nylon
RG - Radial glass
RW - Radial wire

The winding data for these tires is summarized in Table XVI. (a) End-Count Control

The data show that endrcount variation is greatest in the bias-wound tires and least in the radial-wound tires. The higher variation shown by the bias-wound tires is caused by winding on a slip pattern and minor, but 3ignificant, slippage of the carcass on the driving belt. The slippage or rolling of the cords on the sidewall resulis in variation in cord placement. The gradual change from a rubbercovered mandrel to a cord-covered mandrel in contact with the driving belt procuces variable frictional resistance and slippage. Adjustments in the ratio control are made to compensate for these conditions. The response is not r pid enough, however, to maintain accurate end-count control.

The high desree of uniformity in end count for the radial tires is due to the nonsis (90°) winding path and to better treation on the belt. Winding of the cord perpendicular to the mandre? does not introduce any slif ppage or rolling of the cord. The direction of the cord with relation to the driving belt on rodial-wound tires alsc contributes to a more uniform wrap by providing a cog-type surface. This is demonstrated in Figure 21 showing the winding of a radial wire 30×8.8 carcass.

It is believed that the use of rubber-cement-coated cord, as developed in the 49×17 prototype tire chase of the program, would improve the end-count control on the 30×8.8 subscale tires. Resuits have shown that less slippage and rolling of the cords resu cement-coated cord is used.

TABLE XVI

WINDING DATA FOK 30×8.822 PR F/W TIRES

Tire Ident.	Spec. Ends per Ply	Actual Ends per Ply							Averace Ply Ends	\% strength Level(Ret'. Min. Ends)
		$1 \quad 2$	3	4	per		7	8		
BN-1	755	608648	655	694	691	670	520	546	629	81
BN-2	755	607597	660	603	546	\%.05	733	6	638	84
BN-3	720	$460 \quad 476$	688	674	716	756	728	714	652	90.0
BN-4	720	692690	712	660	660	711	716	662	688	94.6
GN-1	555	572632	477	640					580	94.5
GN-2	555	698566	590	464					578	92.8
GN-3	555	621596	590	568					594	102.5
GN-4	555	598628	614	624					616	104.5
RN-1	883	890892	894	896					893	101.1
RN-2	:83	898882	884	900					891	100.9
RN-3	883	910890	980	900					900	101.9
RN-4	883	884886	885	890					886	100.3
RN-5	883	893890	896	896					894	101.5
RG-1	1091	10921098	1092						1094	100.3
RG-2	1091	10661084	1094						1081	99.1
RG-3	1091	10701082	1092						1081.	99.1
RG-4	1091	10761080	1090						1082	99.2
RW-1	1055	10511076							1063	100.7
RW-2	1055	10601068							1064	100.8
RW-3	1055	10701076							1073	101.7
RN-4	1055.	10561060							1058	100.1
RW-5	1055	10661074							1074	101.4

(b) Cured Cord Angles

Dynamic tests have shown that good performance is obtained when the cord angle is within a certain range. This range has been established for various stations around the tire for bias and geodesic cord paths, and the winding cams were designed to produce cord angles within the specified range. The following stations were selected as points where cord angles were checked after cure of the tires.

Station No. Location	
	At the crown centerline
2	1.5 in. from the crown centerline
3	3.0 in. from the crown centerline
4	4.5 in. from the crown centerline
5	6.0 in. from the crown centerline
6	At the ID centerline

The cord angles were checked on BN-1 (bias nylon) and GN-1 (geodesic nylon) to determine how close they were to the target values. The results were:

Cured Cord Angles Along the Neutral Axis (${ }^{\circ}$)

The cord angles (\pm) obtained on tire BN-1 versus the desired cured cord angle were:

Crown	$+6^{\circ}$
Upper sidewall	0°
At maximum section	-5°
At flange	-10°
Along ID	-14°

The cured cord angles on tire $B N-1$ were obviously too far from the target values to provide good dynamic performance. It was decided that a new mandrel profile and winding path were required to correct the cord angles. This necessitated a new mold for the mandrel and a new cam for the winding machine.

The cured cord-angles on tire GN-1 were very close to the target values except for Station 6 at the ID centerline. This angie, however, is not critical inasmuch as the cords in this area are not flexed. The mandrel and cord path for the geodesic tires were considered acceptable. Figure 22 shows a geodesic filament-wound carcass.

The following cured cord angles were obtained on two path was made:

Tire Ilent.	Station ${ }^{\text {Cu }}$	ed Cord	s Along	Neutral Axis (${ }^{\circ}$)		Station 6
		Station?	$\text { Station } 3$			
	$\mathrm{T}^{\text {a }}$ - $\mathrm{A}^{\text {a }}$	T A		Station 4	Station 5	
				A	$\underline{\mathrm{T}} \mathrm{A}$	T A
	33.536 .5	34.3 -	38.8 ---			
BN-4	33.537 .0	34.3 37.4	38.8 - 41.7	$46.2-2.7$	$53.5-2-$	62.0 ---
				46.249 .7	53.552 .6	62.053 .0

The cured angles obtained with $t_{1}, 2$ modified bias configuration were definitely improved over the values obtained on the first tire although not as much as desired. It was decided to continue fabrication of these tires and determine the effect of the cord angles on dynamic performance.

(c) Tire Weights

Table XVII gives the total tire weights for the 30×8.8 subscale tires. Included also are the control tire weight and the carcass weights for each.

Examination of the tire weight values shows that the geodesic nylon and the radial nylon tires offer the greatest potential for weight reduction of filament-wound tires. Tire GN-2 showed 16.1% reduction and RN-5 showed 18.8% reduction when compared with a conventional 30×8.8 tire. The radial wire tires showed an increase in weight over the woundional tires even though they were unly two-ply tires. The biaswound tires were approximately 9 to 10% lower in weight than the conventional

(d)
 Winding time of Radial vs Blas Cord Paths

The time required to wind a radial cord path is much $1 e s s$ than the time required to wind bias or geodesic cord paths. The shortcr radial winding time is due to the fact that the radial winding cord is applicd on a non-bıip path, not involving spool movement on the winding head. The rudial winding can, the:efore be accomplished near to the machine's full speed. The approximate winding-time ratio for radial wrap vs bias wrap is one-to-eight.

TABLE XVII

30×8.822 PR TIRE WEIGHTS (100% MANDREL REMDVAL)

T're Ident.	Type Tire	Estimated Weight (1b)	Carcass Weight (1b)	Totel Actual Weight (lb)	\% of Control
A-1	Control	53.0			
BN-1	Bias	49.2	39	49.3	
BN-2				49.3	92.7
$\mathrm{BN}-3$			37	48.0	90.5
BN-4			37	47.3	89.3
			40	49.5	93.3
GN-1	Geodesic	49.8	28	44.5	
GN-2			28		
GN-3				44.8	84.5
GN-4				44.5	83.9
			28	46.0	86.8
RN-1	Radial Nylon	49.8	30	48.2	
RN-2			28		91.0
RN-3				47.3	89.4
RN-4			27	45.2	85.3
RN-5			26	44.3	83.5
			25	43.0	81.2
RG-1	Radial Glass	49.3	29		
RG-2			30		91.0
RG-3			30	49.1	91.8
RG-4			30	48.0	90.7
			30	44.5	84.0
RW-1	Radial Wire	54.6	34		
Rw-2				56.5	106.7
RW-3			33	55.5	104.8
RW-4			32	54.5	103.0
RW-5			30	51.7	97.4
			31	54.2	102.2

(2) Test Results

(a) Alr Retention

An alr-retention test was made on tire $B N-1$ to determine how well it compared with the air retention of conventional tires.

This test was made accorling to MIL-T-5041D. The specification requires that the tire resiain inflated for 24 hours, during which time normal growth in dimension occurs. The pressure is then adjusted to the operating level and held for another $2 f$ hours. The air loss is based on the drop in pressure after adjustment. Following are the results obtained on tire GN-I:

Time	Eressure (psi)	
Initial	295	78
After one day	284	76
After adjustment	295	76
One day after adjustment	292	74
Air loss - 0.6\%		

The air loss permitted b_{j} the specification is 5.0%. The 0.6% value, therefore, indicates that the filament-wound ti, e, after a successful cure, has excellent air-retention characteristics.

(b) Burst Strength

The burst strength requirement of the $30 \times 8.822 \mathrm{PR}$ tire is 1035 ps 3 . The burst pressure attained by tire BN-2 was 1090 psi , which is 5% uver the minimum requirements. Tire BN-4 burst at 930 psi which is 90% of the minimum requirement. Both of the bias nylon tires burst in the crown area.

Tire GN-I attained a burst strength of 710 psi . The break was in the carcass at the heel. The cord structure in this tire was tight. Tire GN-2 burst at 550 psi due to a break in the RLA. Tight cord segments were also noted in this tire. Tire GN-4 burst at 675 psi at a sidewall blister.

Tire RG-3 had a burst strength of 545 psi . The carcass cords ruptured on the ID at an air port. Inspection showed a broken RLA in this area.

Tire RW-2 falled in the hydrostatic burst test at 700 psi. Tire RW-5 would not hold water pressure above 620 psi. This tire started leaking at a depression where cords are separated for the air port. The cord structure in this tire was loose.

The relatively low burst strength values of the filament-wound 30×8.8 subscale tires were due to a variety of causes. In some cases, the cord structure was tight and in the others loose. In either case, the load-carrying capacity of the tire was not uniform and
some cords carried more of the load produced by the inflation pressure than others. The cure for this condition is completely uniform cord tension. Magnetic brake tension devices were installed on the winding machine late in the subscale tire program. Additional studies will be required to determire their value in tension control.

The failure of some of the subscale tires on burst was due to a break in the RLA. This situation was recognized and a stronger RLA was incorporated in the tire construction. No more failures of the RLA occurred after this change was made.

(c) Performance of Subscale Tires

on the subscale tires.
Table XVIII shows a summary of the results obtained

Analysis of the general sumnary of results on the 30×8.8 tires shows that, in addition to mechanical failure, there was a high number of cure 'ailures due to causes such as tightness and looseness of cords, RLA kreaks, and variable cord lengths. Inasmuch as the filamentwound carcass must support the air-containing menber (the inner liner) during cure, the need for accurate cord wrapping tension and placement is obvious. If the cords are too locse, insufficient support is provided. If they are too tight and not backed up by tread and sidewall rubber, the inner liner will be extruded between cords. The large-diameter cords (0.042 in.) and the spacing between cords inherent in a filament-wound construction do not provide the best support for the inner liner. Although the most obvious failure is that which occurs during cure, the low burst strength values and low air retention could be attributed to a weakened inner liner. Smaller cords (0.029 in . in diameter), as used in the 30 x 7.7 tire program, would provide more liner support and should be considered in future studies. A full molded inner liner should also be considered.

The strength requirements of radial tires would, however, not permit the use of smaller-diameter cords. The losses during cure of this type of tire were particularly high during the current program. This occurred in spite of the fact that the end count control of these tires, as shown in Table XVI, was very accurate. The causes of these cure failures can be attributed to heat shrinkage of the nylon during cure and lack of cord length control of the glass and wire reinforsements during winding. Correction of the shrinkage problems requires changing to a larger green carcass profile. Glass and wire cord, being essentially nonextensible, require very accurate control of the length of each wrap. The results of a wrap that is too loose or too tight are shown in the summary in Table XVIII, which shows that cure failures were encountered in radial wire tires under each condition. In fact, the tolerance limits in wire cord length

TABLE XVIII

GENERAL SUMMARY OF RESULTS ON SUBSCALE 30×8.8 TIRES

Bias Nylon (8 plies)

BN-1 - Cured OK. Tight cordr. Cord angle out of specification
BN-2 - Cured OK. Crown burst 1090 psi
BN-3 - Cured OK. New cord path. Failed on air retention test.
BN-4 - Cured OK. Crown burst 930 psi. Failed on air retention.
Geodesic Nylon (4 plies) (6 breakers)
GN-1 - Cured OK. Tight cords. Bead heel burst 710 psi. RLA break
GN-2 - Cur id OK. Tight cords. Burst at 550 psi. RLA break
GN-3 - Lost during cure due to crimped fill line.
GN-4 - Cured OK. Burst at 675 psi. Failed on air retention test.
Radial Nylon (4 plies) (6 breakers)
RN-1 - Lost during washout due to defective drain valve.
RN-2 - Lost during cure. High cord shrinkage during cure
RN-3 - Lost during cure. High cord shrinkage during cure.
RN-4 - Lost during cure. High cord shrinkage during cure. Radial Glass (3 plies) (6 breakers)

RG-1 - Lost during cure. Tight wrap. Short cord length.
RG-2 - Lost during cure. Tight wrap. Short cord length.
RG-3 - Cured OK. Loose wrap. Burst at 545 psi at air port
RG-4 - Lost during cure due to sidewall rupture
RG-5 - clured OK. Loose wrap. Burst at 620 psi at bead ledge. Radial Wire (2 plies) (4 breakers)

RW-1 - Blistered during cure. Loose wrap.
RW-? - Cured OK except for one blister. in blister.
RW-3 - Lost during cure. Tight wrap. Cavity in shoulder area.
RIV-4 - Lost during cure. Cavity in shoulder area
RW-5 - Cured OK. Loose wrap. Burst at 450 psi at port area.
based on the analysis of the loose- and tight-cord tires must be within a 0 to 0.45% range in the overall tire assembly. It is doubtful if such close dimension control can be realized in commercial practice. These results, however, emphasize the need for "total assembly control" which can only be achieved by an intensive etudy program.

(3) Nondestructive Test Methods

(a) Visual Inspection

The inspaction of conventional tires is a relatively uncomplicated process because it is possible to use visual inspection with reasonable expectation of detecting flaws. This is because the npen structure of a conventional tire permits viewing both the inside and outside of the tire. Other more sophisticated techniques such as fluoroscopy, radiography, ultrasonic, infrared, ani microwave may be used on conventional tires if desired (Ref. 1). Visual inspection, however, is still the most popular NDT method. The inspection techniques that can be used in filament-wound tires are, however, somewhat limited because of the closed structure inherent in this type of tire.

(b) Ultrasonics

An ultrasonic technique was considered but was elininated because of the need for a transmitting transducer on one side of the section being examined and a receiving transducer on the other side. This scanning procedure is not feasible for F / W tires. The usefu-ness of this technique for inspection of filament-wound tires would be definitely linited.
(c) Infrared

The infrared NDT technique has been used to detect tire delaminations and temperature buildup during dynamic operation (Ref. 2). A test method that can be used under static conditions, however, is needed for filament-wound tires.
(d) Microwave

Microwave inspection techniques have been proposed as NDT methods for tires (Ref. 3). A short study of microwave inspection was conducted at Aerojet's Sacramento facility on two tires (30×7.7) from a previous progran. Visual inspection showed no defects. The tires were given a cursory exami ration to determine the optimum inspection band. The Ka band (26 to 40 GHz) and K band (18 to 26 GHz) were used. The Ka
band equipment provided adequate penetration but the initial investigation revealed no defects. A complete evaluation of this technique would require an extensive study of tires with built-in defects.

(e) Holography

Holography has been used experimentally to study derects in conventional tires (Ref. 4). The results of a study performed for General Tire and Rubber Company by GC Optronics, Inc. showed that such structural features as tread, liner, fabrir, and calendar splices we:e clearly revealed. Correlation between radial-force variations and fringe concentricity (particularly in the turnup region) was observed. Holographin nondestructive testing is based on two holographic recordings of the same object in a single photographic emulsion with the object having been slightly displaced between recordings. When such a hologram, containing these two wavefronts, is reconstructed, the two wavefronts are simultan recreated. Variations occur in the geometry of a fringe, to the deformation of the surface. The deformation of the object depen on the significant structural strergth of material properties as well as the defects. Information about these properties and characteristics can be directly obtained from the holographic interference patterrs. This technique could be considered for application to the inspection of filamentwound tires.
(f) Radiographic Inspection
giv $1 n g$ better than 0.7% radiographic NDT technique has been reported as wound tire (Ref. 1). The a of this technique as a method of qu this study concluded, "The application tire may be expensive but will be quality control during production of this periodic maintenance inspection of the aircraft n_{n} duction and during

(g) Fluoroscopic Inspection

The fluoroscopic NDT method was adopted for use in the current program because the technique of usirg this method has been in use at General Tire and Rubber Company for several years and has proven quite successful for detection cu flaws in a tire carcass. The fluoroscopic unit used is a Picker Fluoroscope, a 100 kva unit with 500 -watt peak power. It is adapted to Polaroid photographic capability. With this instrument, it is possible to determine the angle of the cord path, foreign objects, blister or bubbles, inner liner separations, and sand clinging on the inside of the carcass. The density and mass of the RLi and carcass
along the ID do not permit detection of defects in this area and, therefore, limit the usefulness of fluoroscopic examination. A study of advanced techniques for NDT of filament-wound tires may provide the information needed for complete inspection of the finished product.

(4) Quality Assurance Plan

Quality assurance was considered of major importance in this manufacturing methods program. The primary objectives of quality assurance were to record and document variables associated with tire quality, and to use the results of these findings to improve methods and processes to assure that the manufacturing processes produces a tire of the quality level designated by drawings and sprecifications. The approved quality assurance plan covered the following areas.

(a) Procured Material Control

Quality Engineering reviewed purchase requisitions and prepared inspection procedures for purchased raw materials, assemblies, and services. The purpose of this review was to assure that specific quality requirements, such as compliance with applicable specifications, certifications, technical data, and identification of materials, were a part of the purchase order. Inspection instructions listed the sequence of characteristics to be inspected, inspection techniques, and tools or gages to be used, and provided space for "acceptance stampoff" of characteristics by the inspector.

Because of the proprietary nature of this propram, the greater portion of the productive 1f:H materials were provided by General Tire and Rubber Company (GT\&R), Akron, Chio. Materials were accepted on the basis of an acceptable certificate of conformance. In accordance with accepted industry practice, the rubber compounds were certified by the compounder and the textiles were certified by the textile engineer. In addition to these c irtifications, laboratory evaluation work was performed (adhesive testing, for exampie) to insure conformance with the prescribed properties. All other material (glass roving, slass fabric, valve parts, etc.) was purchased from Aerojet supplier's who have consistentiy met standards of quality and reliability establisiaed by the company and verified by survey and/or performance. These materials were accepted at Receiving Inspection on an acceptable certification of conformance, unless otherwise specified. Non-conforming materials detected during inspection were documented, identified, and segregated for nonconforming material action.

(b) Procured Sercies (GT\&R)

The final fabrication and testing of filament-wound tires were performed by General Tire and Rubber Company in accordance with Aerojet' ε purchase order. This included the application of the tread, sidewall, filler, and chafer material, and final curing. Internal quality control methods presently being used in producing aircraft tires were employed in this proeram.

The areas of control were in-process testing of raw materials, surveillance inspection throughout the fabrication process,. final visual inspection, and fluoroscopic inspection.
(c) Engineering Documents

Quality Engineering reviewed engineering documents pertinent to the program to identify special controls, processes, test equipment, fixtures, and tooling to assure product quality.
(d) Integrated Incpection Planning

The in-process inspection planning was integrated with the Engineering Manufacturing Instruction (EMI) for each tire size and construction. These EMI's were used during the process development phase of the subscale and prototype tire fabrication. Quality Engineering reviewed these documents and set up fabrication inspection points to assure satisfactory product quality.

(e) In-Process Control

Quality Engineering performed in-process surveillance throughout the process development phase of the program to assure that variables associated with the tire quality were accurately measured, recorded and documented in the EMI. After fabrication of the tires was complete, quality Engineering checked these for final workmanship and dinensional requirements.
(f) Final Inspection

Final product acceptance at Aerojet consisted of verification of complete documentation, visual inspection for good workmanship and dimensional checks as required to assure acceptability to GT\&R tooling. Each tire shipped to GT\&R was accompanied by an inspection acceptance sheet. Final acceptance at GT\&R was in accordance with established standards presently being employed on military aircraft tires. These standards included visual inspection for workmanship and sample fluoroscopic inspection for carcass defects, tread blows, tears, blisters, etc. Qualification and final static and dynamic testing were in accordance with Specification MLL-T-5041D and USAF Drawing No. 60D2561-J.

SECTION VI

PROCESS AND EQUIPMENT DEMONSTRATION (TASK D)

The purpose of this task was to evaluate the design, processes and equipment by the fabricatior and testing of prototype 49×1726 PR tires. During the performance of this task, tire design and fabrication procedures, tool design, and processing methods were crifically analyzed and, where necessary, were modified to improve the quality of the finished product. Static tests were conducted according to MIL-T-5041D and dynamic tests were corducted according to USAF Drawing 60D2561-J.

1. EQUIPMENT AND PROCESS CHECKOUT

a. Filament-Winding Machine

The tire-winding nachine was checked out previous to acceptance in accordance with "Checkout Process Specification, 49 x 17 Tire Winding Machine" Appendix IV). One of the improved features of this machine is the ply insulation applicator which provides for the application of the insulation to the carcass while the carcass is in the machine. The ply insulation applicator performed satisiactorily on the sides of the carcass. The flat crown of the 49×17 prototype tire, however, does not permit the use of the applicator in this area because of the distance between the pressure roller and the crown of the tire. A modification of the platform on which the applicator is mounted and of the control cam would be required to permit the use of the mechanical ply stock applicator on this size of tire. During the current program, the insulation layer at the crown was applied as a 12-in.-wide sheet. This procedure was quite satisfactory. The ply insulation mechanical applicator provided a substantial time saving over the hand technique as used on the subscale tire. A detailed procedure for tire-winding machine operation is presented in Appendix V, "Instruction Manual for Toroidal-Winding Machine. "

b. Process Checkout

The following preliminary manufacturing procedure was prepared for the filament-wound $49 \times 1726 \mathrm{PR}$ tire.
(1) Materials and Components

Rim-locking assembly (RLA): glass fabric and glass roving reinforced plastic composite

Winding mandrel: SR-6 sand composition
Textile cord: Type 6-6 nylon 3360/2

Elastomers as follows:

Inner liner: $0.025-\mathrm{in}$. gage of Compound XK-985B (Neop/NR/SER) XGP-192: $13-\mathrm{in}$. width of Compound XK-985B XGP-191: 2-in. width of Compound XK-985B

Ply stock: $0.025-1 n$. gage of Compound XK-984A (NR/BR) XGP-193: 13-in. width of Compound XK-984A XCP-194: 2-in. width of Compound XK-984A
(2) Terminology

For definitions of the terms that are used in this section of the report, refer to the list "Definition of Terms" that appears following the Table of Contents.
(3) Fabrication Procedures
(a) Mandrel

Fill the bottom of the mold with SR-6 sana material.
Lower the insert into the mold, locate, and force in place.

Tamp sand around the mandrel and compact it well.
Smooth off top edge and remove insert and center plug.

Lower the bond-locating device into the inner wall until it seats in lower plate and forms lifting channels.

Cure $2-1 / 2 \mathrm{hr}$ at $250^{\circ} \mathrm{F}$ in an air-circulating oven.
Invert the mandrel and cure $1-1 / 2 \mathrm{hr}$ at $250^{\circ} \mathrm{F}$.
Attach the sling to the turnover plate and invert again.

Complete above steps for other mandrel half.
Pick up the second mandrel half with bonding device.
Apply paste of SR-6 and Steinex C to edge of mandrel.

Mate the two halves and position with adjustable
screws.

Cure the bonded mandrel one hour at $250^{\circ} \mathrm{F}$.
(b) Rim Locking Assembly (RLA)

Line the mandrel with Stvle 341 glass fabric
preyreg.
Apply second layer of Style 341 , glass fabric prepreg.

Wind S-901 prepreg roving over fabric prepreg.
Build up layers of fabric and roving to specified

Wind one edge of the RLA with S-901 prepreg roving, under 10 lb of tension, to the specified contour.

Position the valve reinforcements according to Aerojet Drawing No. 1269203 (See Figure 28, page 30).

Wind $3-901$ prepreg roving over rilnforcements to opposite edge.

Wrap the wound shell with nylon shrink tape and cure 2 hr at $200^{\circ} \mathrm{F}$, plus 2 hr at $250^{\circ} \mathrm{F}$, plus 4 hr at $325^{\circ} \mathrm{F}$.

Remove the tape and buff off resin flash.
Bore holes 180° apart, face off the flange pad and cut chamfer.

Sarcublast the RLA shell and apply Chemlok 205 primer and Chemlok 220 cover coat. Dry 15 minutes between coats.

Clean the bushing and nut with Hughson B727-6 paste.

Apply Chemlok 205 primer and Chemlok 220 cover coat to both.

Assemble the bushing and nut in RLA shell and tighten.

Drill holes and insert dowel pins.
Wrap the RLA shell with one layer of XGP-192 liner rubber.

Vacuum bag the assembly and cure 60 minutes at $285^{\circ} \mathrm{F}$.
(c) Mandrel-RLA Assembly

- Insert the rubber-covered RLA into the mandrel.

Apply one layer of XGP-191 liner-rubber radially around the mandrel and RLA.

Apply two lasers of XGP-191 circumferentially from bead to bead.

Apply one layer of XGP-192 along the RLA ID and stitch to the XGP-191.

Vacuum bag cure the assembly 120 min . at $285^{\circ} \mathrm{F}$.
Cool the assembly slowly.
Blend the RLA edge into the mandrel contour with XGP-194, ply insulation.

Wash the cured inner liner with toluene and buff lightly.

Brush a layer of XK-985B liner dispersion over inner liner.

NOTE: Dispersion to consist of $22 \% \mathrm{XK}-985 \mathrm{~B}$ in toluene by weight.
(d) Cord Treatment

- Make up a 25% by weight dispersion of XK-984A ply stock in white gas. Mix thoroughly.

Place dispersion in dip tank and thread two cords through tank and Teflon wiper.

Run dispersion-coated cords pas: two 7-ft-long Chromalox radiant heaters and cver spools for twz passes.

Wind on two spools. Total travel - 80 ft . Control speed and heat to produce tacky but ary surface on cord.
(e) Winding of Carcass

Install the mandrel-RLA assembly in the filamentwinding machine and assemble winding head.

Apply the starter layer by building up one ply of XGF-194 from bead to bead and one layer of XGP-193 along the ID.

Attach one cord to the starter layer and wind several revolutions. Adjust the ratio control to obtain the correct cord spacing (approximately 0.080 in .).

Remove the cord wrap and attach six cords.
Wind one ply of cord to produce:
Crown angle - 40°
Total ends per ply - 1230 ± 30
Ends per inch - 14.14 ± 0.14
Appli one layer of XGP-194 from bead to bead.
Apply one layer of XGP-193 along the ID.
Wind second ply of cord and continue applying insulation and cord until eight cord plies have been applied. NOTE: The winding direction is to be alternated from ply to ply.

Apply layer of XGP-193 and XGP-194 over last ply of cord and remove carcass from machine.

Wrap the carcass in polyethylene film and place in shipring crate.
(f) Commont Assembly

Cleanse outer carcass surface with white gas.
Apply two $0.030-1 n$. layers of $\mathrm{XK}-985 \mathrm{~B}$ on carcass ID.

Attach rectangular filler strips on each side of heel.

Apply $3.25-1.4$. wide chafer around filler strip and along sidewail.

Apply 5.25-in.-wide chafer over first chafer
Apply lower sidewall from chafer to 33.0-in. diameter.

Mount carcass on Orbitread machine
Insert program control card in machine and apply tread.

Remove carcass from Orbitread machine and set up in washout equipment.

90 mince $140^{\circ} \mathrm{F}$ water into cavity and soak for

Invert carcass and soak for 60 minutes.

- Remove sand and water by vacuum extraction.

Insert segmented curing ring and inflate to 5 psi.
Lubricate chafer area and exterior of tire.
Awl at top of bead heel filler to 0.010-in. depth at 2-in. intervals
(g) Curing

> Connect high-pressure lines, thermocouple monitor, and pressure gage to press. Check cure cycle.
> Lower carcass into mold and install curing line.
> Close mold and start cure cycle.
> Open mold and remove water in tire by vacuum.

Trim flash and vents.
Awl to depth of 0.25 in. every 4 in . between bead corrugations.

Visually inspect exterior of tire.
Inspect for blisters, separations, and cord path angle with fluoroscope.
2. FABRICATION OF 49×17 PROTOTYPE TIRES
a. Technical Review

During the preliminary phases of the fabrication effort, several problem areas were reviewed by technical representatives of AFML, GT\&R, and Aerojet. A summary of the discussion is presented here.
(1) Cord Placement

Emphasis was placed on the importance of accurate cord placement in obtaining cured tires for testing. If the cords are not accurately placed and do not have the proper spacing, the inner liner may blow out during the cure. The ultimate and most desirable condition is the parallelism of cords evenly spaced and completely surrounded by rubber as obtained in calendered cord fabric. This condition cannot be completely achieved in filament winding because of the large cord diameter (0.042 in .) and the simultaneous movement of the mandrel and the winding head. It is also impossible to stitch the ply insulation between the cords when they are close together. It is necessary, however, to approach this condition as closely as possible.

The cord angle is also very critical and it is desirable that it be within the specified range to provide the calculated burst strength and good dynamic performance. The optimum cured crown angle was described as 35°. The crown angle as wound should be 39.4° to produce the above cured angle. The wound angle, however, is dependent on the cam design and is not subject to operator manipulation. The cured crown angle of 35° was selected to ensure tread retention during high-speed operation. Tests on conventional tires, however, showed that tread retention is maintained with a cured crown angle of $36.5^{\circ} \pm 1^{\circ}$. This angle was selected as the target for the 49×17 prototype tires.
(2) Cord End-Count

The control of end count is also considered very impcrtant. The target in the initial fabrication program was 1200 ends per ply for the
neutral axis. For a tire with a cured crown angle $r_{2} 35^{\circ}$, this end count would produce a tire with a burst factor (burst pressure/operating pressure) of 4.0 . The burst factor, however, is dependent on the cured angle as well as the end count of the reinforcement. It was determined that a somewhat higher end count was required for the crown angle obtained during cure. The mirimum burst factor required by the specification was 3.50. It was desired to maintain a safety margin over this minimum. A target of 1230 ± 30 ends per ply was selected for the 49×17 tire to provide a burst factor of approximately 3.70 .

(3) Stitching Rollers

It was suggested that a pressure roller be mounted on the frame for use in stitching down the cords in the shoulder area. It was assumed that stitching would hold the cords in place and prevent the rolling of cords that had uccurred in the filament-winding of the 30×8.8 subscale tires. If a roller were attached to the frame of the machine, it would have to apply pressure inmediately after the cord was laid down. This rould require a set of two rollers on each side of the mandrel to function when the cord angle was reversed after each ply. It was decided to postpone the installation of stitching rollers until the efficiency of the cement-coated cord in maintaining cord placement was determined.

(4) Inner-Liner Integrity

A method of checking the integrity of the inner liner before and after wrapping was suggested as a processing safeguard. The current practice of building up three layers of calendered stock for the liner should normally ensure a leak-tight liner. Various techniques had previously been tried for check $u g$ the integrity of the liner, and some had not proven successful. Pressurization with air or a halogen gas had been found unsatisfactory because, when this is done, the liner lifted off the mandrel and bagging occurred which could not be tolerated. The application of vacuum inside the mandrel and retention for a period of time was adopted and successfiully used in the prototype tire program.

(5) Bleeder Cloth

To save time, it was suggested that a fabric bag be used as a bleeder cloth, instead of fabric tape, curing the vacuum-bag curing of the isner linel. Although wrapping with tape is a rather time-consuming process, it provides a method for holding the inner liner tightly against the mandrel, an important requirement. Tape also is adaptable to the irregular shape of the part and is not easily distorted during the cure. To avoid wrinkles and folds in the inner liner, very accurate tailoring of a fabric bag would be required.

b. Processing Improvements

During the fabrication effort, a number of processing problems were encountered. The following is a brief discussion of the processing improvements that were adopted to alleviate these problems.
(1) Inner-Liner Fabrication

The planned fabrication procedure for the inner liner was circumferential winding of two-inch-wide tape from bead to bead. Three layers of inner liner were selected for the buildup to avoid leaks. During the early fabrication of prototype tires, considerable bagginess in the liner occurred at the edge of the RLA. This resulted in an undesirable buildup in this area. The problem was solved by applying the initial wrap radially. The second and third layers were applied as circumferential wraps.
(2) Bonding of Liner to Mandrel

A problem encountered in the filament-winding of the first tire was the formation of a bubble between the mandrel and the inner liner at the contact point between the rubber-covered mandrel and the carriar belt in the winding machine. This bubble caused cord stretching and distortion in the crown area. Bubble formation was attributed to liner separation from the mandrel because of repeated rotation of this assembly during machine setup. Normally, the inner liner is slightly adhered to the mandrel. The problem of the bubble formation was solved by application of a layer of inner-liner dispersion on the sand mandrel before cure of the inner liner at the crown extending outward two inches from the bonding line. This dispersion preserved the bond of the inner liner to the sand mandrel long enough to prevent bubble formation.

(3) Retention of Cords on Side of Carcass

Two cord payoff heads were employed in the first winding trials. It was found, however, that the tack of the cord was not adequate to hold it in place on the sides of the carcass. More rolling and sliding of cords appeared to take place on the 49×17 tire than was observed on the 30×8.8 tire ecause of the larger radius of the side wall. Variations in tension and winding speed were tried without success. To alleviate this condition, the cord was coated with a cement made from the ply stock and dried by festooning it between roilers and conveying it past Chromalox heaters. Figure 23 is a schematic layout of this operation. The cementcoated cord had excellent tack and showed very little sliding or rolling on the carcass. Six payoff heads were used successfully on all of the

Figure 23. Schematic Layout of Cord Treating, Equipment
49×17 tires. Cord crossovers were not entirely eliminated, however, and were more prevalent on the side of the carcass where the cord is carried under the RILA and up the side of the carcass. Complete elimination of cord crossovers in the winding pattern selected for this tire does not appear to be technically feasiole. This winding pattern is based on the path produced by calendered parallel cord fabric laid on a flat drum and inflated from the inside preparatory to curing. This produces a reverse S curve in the cord path on one side, and the filament-winding process must duplicate it. In the winding of this path, the cord from the payoff head must cross over (in space) the cord already in place and then clear this cord before it is affixed to the carcass. The cord being laid down does not always clear the cord in place and a crossover occurs. A modification of the winding path or a lower end count, which would provide more space between cords, would reduce or eliminate crossovers.

(4) Cord Bridging

The cams for the T-120850 toroical winding machine are designed to produce a rather abrupt change in direction of the cord when it passes from the side of the toroid to the inside of the toroid in order us produce the desired bias path on each side. In winding the 49×17 tire, it would be desirable for the cord to be perpendicular to the inside center line of the carcass. This is impossible because of the simultaneous movement of the mandrel and winding head. As a result of this movement and the large width of the 49×17 tire, bridging of the cords takes place on the inside between the two contact points on the edge of the RLA. This produces an air gap of $1 / 4$ to $3 / 4 \mathrm{in}$. between the inside surface of the RLA and the layer of cords. It was necessary to hand stitch the cords to the ply insulation on the preceding layer to reduce this air gap. The remaining air, which could not be entirely eliminated by hand stitching, was forced out of the carcass by the segmented curing rings. This procedure was satisfactory in eliminating any deleterious affect caused by cord-bridging across the rim-locking assembly's inner side.

(5) Orbitread Equipment

The AMF Series 200 Orbitread Machine operated satisfactorily in the application of the tread on the 49×17 tire. It was not entirely satisfactory in the application of the sidewalls of this tire because of gouging by the stitcher in the area of receding curvature on the carcass. This occurred when the extruded strip was started at a tire diameter of 26 inches. When the start was made at 28 -inches diameter or higher, no gouging took place. Because of this condition, the lower part of the sidewall was applied by hand using calendered stock.

(6) Adhesion of Inner Liner Compounā to Rim-Locking Assembly

The purpose of covering the RLA with inner liner compound was to protect the composite's outside surface from the curing medium. Although excellent adhesic, n between these members was ohf aired in laboratory studies (see Table X on page 36), there occurred several instances of poor adhesion
on the inside tire cavity after the final cure. Willa the blisters appeared between the rubber and the RLA presented an undesirable appearance, they did not interrere with RLA functioning. Longer solvint drying time and more hand stitching were tried but with only moderate success. Further investigation of this problem using higher curing pressures, special tie cements, or a lower final curing temperature is indicated.

(7) Open Splices in Inner Liner

last tire cured
Open liner splices were observed in a sectioned part of the or of an entrapped appearance and had been checked for air re liner had been subjected to two curing steps air retention after the first cure. An undercure
 inner liner's hower liner's main body. Considerable solvent, evaporation time was provided; more complete solvible that residual solvent still remained. Provision for
(8) Adhesion Between Plies

Separation between the inner liner and the plies and between individual plies was observed for the tires that failed to cure and the tires that failed uring dynamic testing. The tires that failed to cure properly contained inner liner openings. These openings permitted the curing medium to enter the cavity between liner and plies before bonding was accomplished. Separations were also caused during dynamic testing by sudden surges of inflation air through the perforated liner.

Prevention of separation during curing can be achieved by avoiding inner-liner openings during fabrication. A technique to prevent inner-liner openings was tried. Three-ply inner-liner buildup and leak testing after the initial cure were followed in the fabrication effort to insure an integral liner. Iner surface buffing and the use oi a Neoprene tie cement improved bonding of the cured liner to the uncured ply compound. Full molding of the inner liner was also considered. This technique, however, did not eliminate the difficult bonding of a cured Neoprene clastomer compound to an uncured compound of different elastomeric composition.

A proposed solution to the separations produced during dynamic testing was the removal of inner liner from the area of cord abrasion. This was done because cord abrasion produced performation to the outside of the RLA in the last tire tested. The validity of this proposed solution was not determined because of tire curing failure. Further investigation of this approach is recommended.

c. Fabrication Operations

A detailed procedure for all fabrication operations for the 49×17 tire is presented in Appendix VI, entitled "Engineering Manufacturing Instructions" (EMI). Figure 24 shows a process flow chart for tire-carcass buildup. The following is a discussion of process modifications and the man-hour requirements for these operations.

(1) Mandrel

The operations followed in the fabrication of mandrels are those shown in Paragraph (a) of Section IV, 1 - Equipment and Process Checkout. The tooling performed satisfactorily and no modifications were required.

It was found after fabrication of the first; 49×17 prototype tire that the section width of the cured tires was larger than desired'so a decision was made to reduce the mandrel width sum ting with tire LAN-3 10 . This was accomplished by scraping out $1 / 4 \mathrm{in}$. of the mandrel material on each side of the center plug before curing the mandrel.

A study of the effect of compacting pressure and cure time on the sand mandrel washout time was made to establish optimum processing conditions. Two-inch diameter by four-inch long plugs were molded from SR- 6 sand compound and subjected to varying cure times and compacting pressures. The plugs were then inmersed in $125^{\circ} \mathrm{F}$ water and the time for complete disintegration was determined. The standard cure of $2-1 / 2 \mathrm{hr}$ at $250^{\circ} \mathrm{F}$ in the mold and $3-1 / 2 \mathrm{hr}$ at, $250^{\circ} \mathrm{F}$ out of ti.e mold was used for the corpacting test. The standard cure of $2-2 / 2 \mathrm{hr}$ at $250^{\circ} \mathrm{F}$ in the mold plus varying cure times out of the mold on specimens compacted under 8 psi pressure was used in the investigation of cure time. The results of these studies were:

Effect of Compacting Pressure		Effect of Cure Time	
Pressure (psi)	Washout Time (min.)	Total Cure (hr)	Washout Time (min.)
4	2	6	2
8	3	8.5	2
16	4	14.5	4

The test resiits indicate that higher compacting pressures and long curing times do increase the washout time. The increased washout time is moderate and would not produce any major difficulties in processing. The results indicate that long cure times should be avoided to prevent low solubility and long washout time.

The fabrication of the sand mandrel is a two-man operation, requiring ten hours for completion.

[^5]圈

適

MATE MANDREL AND RLA
Figure 24
85
(2) Rim Locking Assembly (RLAA)

The RLA was fabricated according to the procedures described in Paragraph (b) of Section IV, 1 - Equipment and Process Checkout. The only modification required for the tooling was the addition of inserts in each of the vent openings to improve the locating of the holes for the drilling operation.

Figures 25 and 26 show the RLA shell before and after being covered with rubber. The rubber covering was reduced frcm two thicknesses to one on tire LBN-7 and all succeeding tires to provide less buildup on the inside of the carcass and easier insertion of the curing mold rings. A 1.6-1b weight saving resulted from this reduction.

The fabrication of the RLA is partially a two-man operation and partially a one-man operation. A total of 32 man-hours are required for this operation.
(3) Mandrel-RLA Assembly

The fabrication procedure for the mandrel-RLA assembly, which includes the inner liner fabrication, is described in Paragraph (c) of Section IV, 1 - Equipment and Process Checkout. Figure 27 shows a wrapped mandrel ready for vacuum cure. The inner liner was checked for leaks after cure by subjecting it to a vacuum of $15-1 n$. of Hg for five minutes. Retention of vacuum was considered evidence of a leak-proof liner. The mandrel-RIA assembly fabrication is a one-man operation requiring ten man-hours.
(4) Cord Treatment

The procedure used for coating the cord with cement is described in Paragraph (d) of Section IV, 1 - Equipment and Process Checkout. This is a one-man operation, requiring twenty man-hours per tire.

The coating of the $3360 / 2$ nylon cord with rubber cement to improve uncured adhesion during fabrication subjects the cord to a moderate amount of heat and tension. A study of the effect of this treatment on tensile and elongation was made to determine if any change in properties took place. Fourteen-inch leigths of the uncoated and coated cord were wrapped around a capstan and pulled to produce tensile failure on the Instron test machine. The elongation was measured on a 10-in. maasured length of the cord. The results

Figure 25. 49×17 Rim-Lock Shell with Bushings and Nuts

Figure 26. Phiber-Covered 49×17 Rim-Locking Assembly

are tabulated below:

Specimen Number	Treatment of Cord		Ulimate Ioad (1b)	Elongation ir 10-in. (\%)
1	Uncoated		118	
2	Uncoated		116	15
3	Uncoated		117	16.5
4	Uncoated		119	18
		Average	117.5	16.5
5	Coated		114	16
6	Coated		112	16
7	Coated		115.5	16.5
		Average	113.8	16.2

The results indicate that coating of the cords does not produce any major change in the properties of the cord. The nominal tensile strength of the $3360 / 2$ nylon cord has been listed as 120 lb 9. The slightly lower tensile strength shown in the above data can be attributed to the treatment given this cord in the application of the bonding material by the producer of the cori and is not considered a significant reduction in strength. The fabric laboratory of General Tire concurred in these findings.

(5) Winding of Carcass

The procedure used in winding of the tire carcass is described in Paragraph (e) of Section IV, 1 - Equipment and Process Checkout. Figure 28 shows the filament winding of a 49×17 tire. This is basically a one-man operation. Total time requirements can be reduced, however, by an additional helper for preparation and assistance in insulation application. The total fabrication time for eight windup plies is twenty man-hours. An additional two man-hours are required to install the mandrel and RLA in the machine, and three man-hours to remove, measure and prepare the mandrel for shipment.

Table XIX lists the values for cord ends per ply of each tire.
The progresaive improvement in operation and control of the filament-winding machine is shown by the trend of the average cord ends per ply toward the target value of 1230. Both manual control and automatic feedback control were used in the winding of tires. Although the automatic device provides good control of total end count, the cord

[^6]
＊
盖苟 苐羔
＊

CORE EMDS PER PLY－ 49×1726 PR TIRES品

壱｜cccccccc｜cc頻 ＊

spacing is not as uriform as desired because of a tendency to over-compensate. In manual operation, the operator can make changes rapidly and can avoid over-compensation. Automatic control, however, is desirable and would be a necessity in a production operation.

(6) Orbitreading and Mandiel Removal

The procedures used in preparation of the tire for application of the tread and for mandrel removal are described in Paragraph (f) of Section IV, 1 - Equipment and Process Checkout. The application of the filler strip and chafer strips is performed by one operator. Orbitreading is a one-man operation as is the mandrel removal. The time requirement for these operations is eight man-hours. The vacuum process for mandrel removal was used after the fabrication of tire LBN-1. The efficiency of this operation is shown by the following values, Table $X X$.

TABLE XX

MANDREL REMOVAL DATA - $49 \times 17 \mathrm{~F} / \mathrm{h}$ TIRES

Tire No.	Mandrel Wt. (lb)	Mandrel Weight Removed (1b)	\% Removal
LBN-1	353	148	
LBN-2	355	148	42
LBN-3	307	351.8	98.9
LBN-4	309	308.2	99.9
LBN-5	312	N/R	99.7
LBN-6	333	N/R 316.8	N/R
LBN-7	314	316.8 311.9	95.1
LBN-8	319	311.9	99.7
LBN-9	325	- 325	100
LBN-10	324	$\begin{array}{r}325 \\ \hline 324\end{array}$	100
LBN-11	332	324	100
LBN-12	328	332 318	100
LBN-13	330	318	97.0
LBN-14	310	328.9	99.7
LBN-15	308	$\begin{aligned} & N / R \\ & 305.5 \end{aligned}$	N / R 99.4
	Curing		

The procedure used in curing of the tire is described in Paragraph (g) of Section IV, 1 - Equipment and Process Checkout. A smalldiameter quick-disconnect fill line in the curing equipment was replaced by a large-diameter straight-through line after the curing of tire LBN-1 which was lost in the cure because of sediment in the line. A pressure gage was also installed on the drain line to ensure full curing pressure. A thermocouple was placed in the internal fill line at the flexible line connection after the cure of tire LBN-3 which was lost in the cure when it was inadvertently filled with 250 psi air instead of hot water. This thermocouple provided continuous monitoring of the inside temperature during cure. The mold external temperature was also monitored.
d. Estimated Production Fabrication Time

Preparation, loading, unloading, and curing are one-man operations requiring five man-hours.

The man-hour requirements for a full scale production operation were estimated on the basis of the following assumptions: (1) adequate production equipment would be provided; (2) the winding machine would be automated to the maximum degree possible; (3) the mandrel and rim-locking assembly would be fabricated by standard short-cycle procsdures; and (4) the cord and rubber would be supplied ready for imediate installation in the winding machine. Table XXI is a comparison of these high-volume production man-hour requirements for a filan nt-wound 49×17 tire compared with the actual man-hour requirements of a small scale operation.

Table XXI Man-Hour Requirements

Operation	Low Volume Production (Actual)	High Volume Production (Estimated)
Mandrel Fabrication	10	1.00
RLA Fabrication	32	2.20
RLA-Mandrel Mating	10	2.50
Cord Cementing	20	0
Mandrel Installation in Machine	2	1.25
"'inding of 8 plies	20	9.00
Carcass Removal from Machine	3	1.25
Filler, Chafer Strip Application	2	1.50
Orbitreading	2	1.50
Mandrel Washout	4	2.50
Loading, Curing, Unloading, Finishing	5	3.00
Total	110	25.70

It will be noted that the estimated man-hour requirements for a full scale production operation for the 49×1726 PR filament-wound tire are substantially lower than those required for low volume production. These estimates are based on maximum utilization of men and equipment. A meaningful comparison with the man-hour requirements of conventional $49 \times 1726 \mathrm{PR}$ aircraft-tire production is not available because of variations in manufacturing procedures between producers.

e. Weight Reuuction

Potential weight saving is one of the advantages of filamentwound tires; so, a continuing study was made of aress where weight reductions could be made. The specified maximum weight of the 49×17 tire when manufactured to USAF Drawing 60D2561-J is 215 lb . In the " K " revision of this drawing, the nonskid depth was increased from 0.30 to 0.40 in . A maximum weight for this tire has not yet been established, although it would probably be approximately 218 lb . A conventional tire fabricated to this latest revision by General Tire was reported as weighing 189 lb. The estimated weight of the original design of the filament-wound 49×17 tire was 182 lb . This represents a weight saving of 16.5% when compared with the estimated specified maximum weight of 218 lb . The weight saving of the filament-wound tire, when compared with the reported actual weight of a conventional tire, was 3.5%.

A weight of 196 lb for tire LBN-2 exceeded the target weight of 182 lb . The following areas of weight reduction in tire LBN-3 and all succeeding tires are:

Mandrel width and end count reduction	3.00 lb
ID elastomer gage reductions	2.4 lb
Tread shoulder reduction	3.34 lb
Sidewall gage reduction	4.50 lb
Total estimated weight reduction	

The weight of tire LBN-4 was reported by GT\&R as being 182 lb , sc the changes produced the desired reduction in total weight. An additional reduction in weight of 6.0 ib was produced by a reduction in the ply insulation thickness from 0.025 to 0.020 in .

Table XXII shows the component and total tire weights.

TABLE XXII

MATERLAL WEIGHTS (LB) - 49×17 F/W TIRES

$\begin{aligned} & \text { Tire } \\ & \text { No. } \end{aligned}$	RLA Shell	F / W Carcass	Tread and Assembly	Total Tire
LBN-1	23.0	126	69.0	
LBN-2	23.5	124	72.0	196
LBN-3	22.5	124	66.0	182
LBN-4	22.0	123	65.1	182
LBN-5	21.5	123	N/R	184
LBN-6	22.6	123	53.0	176
LBN-7	22.0	120	58.0	178
LBN-8	21.8	123	65.2	180
LBN-9	22.0	123	61.3	180
LBN-10	20.8	126	63.4	180
LBN-11	22.2	124	53.0	184
LBN-12	20.0	115	60.1	173
LBN-13	22.0	111	64.0	174
LBN-14	20.0	111	N/R	N/R
LBN-15	127.5	233	62.0	N/R 296

The data in Table XXII show that the reductions in weight of the RLA and in ply insulation thickness contributed very little to a jeduction in total weight. The major contribution was made by a reduction in the tread and component assembly. Tires LBN-12, LBN-13 and LBN-15 containsd modified RLA configurations. The lowest total tire weight of the remainder was shown by tire LBN-6 which also had the lowest tread and assembly weight. Potential future reductions in this area could be the use of exact weight treads and sidewalls.

e. Testing and Analysis

The purpose of this phase of the work was to camonstrate the performance characteristics of a filament-wound 49×1726 FR Type VII Aircraft Tire. As a basis of evaluation, the test criteria of MLL-T-5041D, "Tires, Pneumatic, Aircraft," and USAF Drawing No. 60D2561-J were used.
(1) Mounting

The mounting of conventional tires relies on inflation to seat the beads. With filament-wu flanges inward to the tire bead heel. This mounting is accomplished by applying the load with a load machine.

A specially designed 49×1726 2R aircraft wheel was used for static testing. A cast-aluminum test-wheel with a rim contour in accordance with the profile specified in Military Standard MS 24368 (USAF) was used for dynamic testing.

Static Testing

The static test datz obtained on tires LBN-2 and LBN-4 are summarized in Table XXIII. The static testing of tires LBN-2 and LBN-4 was confined to jneasurements and hydrostatic burst testing. More extensive static tes",ing was delayed pending the completion of dynamic testing. It was believed that the anticipated design changes for inprovement of dynamic life would invalidate the static test results obtained on preliminary construction designs.

Tire LBN-2 showed a hydrostatic burst-test pressure of 670 psi which compared favorably with that predicted. This produced a burst factor (burst pressure/operating pressure) of 3.94. Tire LBN-2 had a range of 1191 to 1371 wraps per ply which indicated 104.3% of the required strength level. This indicated that more reinforcement was incorporated in this tire than was required by the specified minimum burst factor of 3.50 , as shown in USAr Drawing 60D2561-J. The ruptire location in this tire was in the crown area which is normally considered a desirable failure point.

Tire LBN-4 showec a hydrostatic burst test pressure of 625 psi which was below the $655 \mathrm{p}^{2}$ predicted value. This produced a burst factor of 3.67. Tire LBN-4 had a range of 1206 to 1272 wraps per oly which should have produced 100.56% of the required strength level. This indicates that the full strength of the cord was not attained because of nomuniformity of end count and spacing of cords. The value of 3.67 for the burst factor, however, is safely above the 3.50 specification minimum and indicates that the selected range of 1230 ± 30 end count provides a satisfactory margin of safety. Tire LBN-4 exhibited adequate air retention capability in that the loss of air was less than half that permitted by the specification. The OD of tire LBN-4 was close to the maximum allowable, although within the specification. The section width was 0.51 in , over the maximum, even though the winding mandrel for this tis'e had been reduced by 0.405 in. The high section wiath was attributed to the low crown winding angle and excessive cord length in the outer plies. To increase the crown winding angle would have required the fabrication of new winding cams for the filament-winding machine. This did not appear to be justified until the results of the dynamometer tests showed the effect of a low crown winding angle on dynamic performance.

(3) Dynamic Testing

Dynamic testing was conducted in accordance with USAF Drawing No. 60D2561, Revision J. Each test was preceded by a two-mile, $30-\mathrm{mph}$ taxi roll at 170 psi ard $39,600-\mathrm{lb}$ load. F've $49 \times 17 \mathrm{~F} / \mathrm{W}$ tires were subjected to this test. Three of these tires were of the original

TABLE XXIII

STATIC TEST DATA - 49×17 F/W TIRES

Item

em	Specified	LBN-2	LBN-4
Air Retention	5\% Maximum Loss 12 Hr Minimum	N / R^{2}	2.35\%
Inflated Dimensions			
Inflation (psi)	170	170	170
Outside Diameter (in.)	47.70-48.75	N/R	48.72
Section Width (in.)	16.40-17.25	N/R	17.76
Shoulder Diameter (in.)	43.00	N/R	42.93
Shoulder Width (in.)	14.50 Maximum	N/R	14.44
Hydrostatic Burst Pressure			
Burst Pressure (psi)			
Predicted		680	680
Actual	595 Minimum	670	625
Burst Factor (Actual)	3.5 Minimum	3.94	3.67
Rupture Location		Carcass Crown	Carcass Crown

[^7]design and construction. Table XXIV shows the data obtained on the three tires. Data obtained on the two tires of revised design will be reported in a later section. Figure 29 shows a $49 \times 17 \mathrm{~F} / \mathrm{W}$ tire mounted for testing on the dynamometer.

(a) Air Retention and Inflated Dimensions

The standard $36-\mathrm{hr}$ air retention test was conducted on only one tire, LBN-5. Due to the need for expediting the dynamic testing, the remaining tires were helic inflated for only 18 hours. A 15 pei pressure drop to allow for growth was established for these tires. All met this requirement. The inflated $O D$ of the iires was near.the maximum and the section widths exceeded the allowed m ximum. These results were the same as obtained in static testing.

(b) Deflection

The deflection of these tires under load met the specification requirements. After the early failure of Tire LBN-5, a safety measure was instituted that prevented deflector measurements after the break-in cycle.

(c) Dynamic Test Results

Examination of Table XXIII shows that these tires failed during the following time periods:
Tire Failure Period

LBN-5 Between speeds of 70 to 100 mph in the acceleration segment of the first taxi takeoff cycle.
LBN-7 Midway of the taxi segment of the first take-off cycle.
LBN-8 During break-in.
All tires failed in the bead area because of chafing at the $0.5-\mathrm{in}$. rim lock edge radius. The sequence of events leading to failure was (1) chafing through the inner liner under the RLA, (2) loss of internal pressure and increase in deflection, (3) abrading of cords to separation through four or five inner plies, and (4) total structural failure of carcass requiring unlanding. The total mileage span of the failures ranged from 1.877 to 5.06 miles. Total flex cycles or tire revolutions ranged from 920 to 2480 . The chafing is the result of relative movement between the carcass and the rim lock. The magnitude of this movement increases rapidly as the chafing progresses.

3. DESIGN AND PRCCESS EVALUATION

A. Analysis of Dynamometer Test Results

The early failures of three prototype tires on the dynamic test indicated a major design deficiency and the need for corrective measures. Inspection of the failed tires and analysis of the results resulted in selection of the following factors as being important in the solution of the problem:

Abrasion of the cords at the $0.50-\mathrm{in}$. radius of the RLA

- Extension during flexing of cords and rubber at the edge of the RLA
- Lacis of clamping pressure at the heel of the tire in the bead area
- Lack of adhesion between the rubber-covered RLA and the inner liner.

A decision was made to fabricate three tires of a modified design and fabrication procedire that included the following:

- Recutting the 5° taper on the inside of the RIA to a point $3-1 / 2$ in. from the centerline to increase clamping pressure.
- Increasing the xadius at the edge of the RLA to reduce stress concentration on the cords in this area.
- Incorporating a barrier membrane between the edge of the RIA and the inner liner to prevent contamination in this area.
- Incorporating rubber-coated fabric separators between cord plies to raise the modulus of the composite and reduce cord
b. Fabrication and Testing of First Design Modification
(1) Pabrication

The mndified design of the RIA profile is shown in Figure 30. This design was stress analyzed with the conclusion that the modified RLA would withstand dynamic testing if the imposed loads were no greater than those associated with the rated tire pressure of 170 psi .

Rim locking assembly shells on hand were recut to the modified design for tires LBN-12, LBN-13, and LBN-14.

A membrane of the inner liner compound was attached to the outside of the RLA and the inner liner to prevent contamination of the cavity between the edge of the RLA and the inner liner. This modification is shown

MODIFICATION OF RLA PROFILE

Figure 30

Figure 31

Sever. reinforcing inserts of $0.029-1 n .-t h i c k$ rubber-covered $840 / 2$ nylon cord were placed between the cord plies around the edge of the RLA to reduce cord chafing and increase the molulus of the rubber/cord composite. These are shown in Figure 32.

A rubber filler strip was vulcanized to the flange area of both sides of the tires to increase the cured rim width dimension.

(2) Testing and Analysis of Fesults

THres LBN-12 and LBN-13 were subjected to the dynamic test requirements specified on USAF Drawing 60De56lJ. The outside diameters of these tires were within the specified limits. The section width of tire LBN-12 was 0.18 in. over, and that of tire LBN- 13 was 0.28 in . over the specified maximu. The deflections of these tires under a 39,600-1b load were well within the specification limits. The dynamic test data for tires LBN-12 and LBN-13 are shown in Table XXV.

Both tires completed the break-in cycle, but failed during the acceleration segment of the first taxi-takeoff cycle. It was reported that blisters appeared on the sidewall during the acceleration of the tires. Examination showed that the inner liner was sheared off at the underside of the RLA, although it was well-bonded inbcard from the separation. The breaks in the inner liner permitted the inflation air to enter the carcass and produce blisters under the sidewall. The cords were broken in the same area as in earlier tires and extended to the fourth and fifth plies. There was also some delamination in the RIA, either due to rotation of the edge of the RLA or to the absence of a glass fabric envelope around the 341 glass laminate.

The failure of tires LBN-12 and LBN-13 during dynamic testing at approximately the same speed and time period as tires LBN-5, LBN-7, and LBN-8 showed that the design modifications did not produce any inprovement in dynamic performance. The chafing of the cords at the edge of the RLA continued in spite of an increase in radius of 2.00 in . In this area. The incorporation of fabric inserts between the plies did not reduce this chafing, and the increase in modulus produced by this construction obviously did not contribute to an increase in dynamic life. Although the clamping pressure was increased by extension of the taper on the underside of the RIA and by the filler strips vulcanized to the flange areas, there still was considerable distortion of the carcass in this area. The fallure of the inner liner during the early stages of the dynamic test was quite obvious and indicated a ieed for redesign of the liner. A cross section of tire LBN-12 is shown in Figure 33. The failure area is shown in Figure 34.

The processing and cure of tire LBN-14, which was of the same design as tires LBN-12 and LBN-13, was delayed to permit curing of this tire in the recut mold. Curing was accomplished in the recut mold. The tire had an average cured rim width dimension of 13.253 in ., which compares with the design width of 13.250 in. After tire LBN- 14 was cured, a blown area between plies 7 and 8 in the crown and a small sidewall blow within ply 8 was observed. These were caused by the failure of the inner liner to contain the internal curing medium. The location of the opening in the inner liner that permitted the leakage could not be determined.

DESIGN OF REINFORCING INSERTS
Figure 32
TABLE XXV

The results of the tests on tires of modified design and construction were analyzed at a technical conference attended by representatives of USAF, Aerojet, and GT \& R. It was concluded that the major cause of the failure of filament-wound tires during dynamic testing was the outbcard deflection of the RIA which permitted lifting of the tire from the rim and excessive movement of the cords in this area. It was decided to fabricate an additional tire to determine the effect of increased RIA stiffness and the following recommended design modifications on dynamic performance:

- Rigidize the RLA by fabricating from steel and use brass plating for adhesion
- Incorporate a high-modulus rubber filler on the inside of the RLA to reduce cord chafing
- Relocate the inner liner to the outside diameter of the RLA to preserve tire inflation during dynamic operation
- Adhesively bond the inner liner to the carcass by a suitable cement to promote improved tire integrity

Recut the mold to a larger rim width end the bead ring to a smaller diameter to increase clamping pressure on the test wheel
c. Fabrication of Second Design Modification
(1) Modification of RLA

Type 4130 steel was selected for the RLA of the second modified design because of its high modulus and machineability. A stress analysis was made of four configurations using this steel; the design shown in Figure 35 was selected. This steel RLA weighed 127.50 lb which is approximately 105 ib more than the resin/glass-fabric composite RIA. Following is a comparison of the hoop strain of the steel RLA with those of the composite RLA's used on the various sizes of bias path filament wound tires.

Tire	Type	Inflation	Hoop Strain (in./in.)	
Slze	RIA	Pressure (psi)	Maximum Allowable	Calculated
30×7.7	Composite	$\begin{aligned} & 165 \text { (rated) } \\ & 660 \text { (burst) } \end{aligned}$	$\begin{aligned} & 0.008 \\ & 0.015 \end{aligned}$	$\begin{aligned} & 0.0032 \\ & 0.0126 \end{aligned}$
30×8.8	Composite	$\begin{aligned} & 295 \text { (rated) } \\ & 1035 \text { (burst) } \end{aligned}$	$\begin{aligned} & 0.0065 \\ & 0.0120 \end{aligned}$	0.0021
49×17	Composite	$\begin{aligned} & 170 \text { (rated) } \\ & 595 \text { (burst) } \end{aligned}$	$\begin{aligned} & 0.0090 \\ & 0.0170 \end{aligned}$	0.007
49×17	Composite	595 (burst)	0.0170	0.011*
49×17	4130 Steel	595 (burst)	0.0170	0.0025

[^8]This comparison shows that the calculated hoop strain of the steel RIA is approximately one-third that of the standard design in a resin/glassfabric composite and one-fourth that of the modified RLA used in tires LBN-12, LBN-13, and LBN-14.

It was planned to use brass plate on the steel RLA to obtain maximum adhesion. The bonding of rubber to brass, however, requires relatively high molding pressures. A vacuum-bag curing pressure of 14.5 psi is used in the curing of rubber on the mandrel and RIA in the F/W tire process. The adhesion of rubber to brass plate under these low pressure conditions was questioned, so a bonding study was conducted. The results of this study showed that a resin adhesive system, Chemlok 205 - Chemlok 220 , produced seven times higher peel adhesion than brass plate under the same curing conditions. On the basis of this study, the resin adhesive system was selected for bonding the high-modulus rubber and the inner-liner rubber to the steel RIA. Degreasing and buffing were used to prepare the surface of the RLA for bonding.
(2) High-Modulus Rubber on RIA

In the standard construction of the F/W 49×17 tire, a low-modulus rubber compound was bonded to the RIA. Although a bonding system had been developed that produced failure in the rubber itself, shear fallure occurred between the glass composite and the inner liner during dynamic testing. This indicates that extremely high shearing forces are exerted at the interface. It was decided that a stepdown in modulus from the RIA to the cord/rubber composite was desirable to accommodate these high shearing forces. Accordingly, Compound XB1097, a high modulus compound of 300 was selected for
bonding directly to the steel RLA. Compound $K-70$, an intermsdiate modulus compound based on NR; was sei-cted for the middle layer. Compound XK984A, the is shown in Figure 36 , has a low modulus. The buildup of these compounds is shown in Figure 36.
(3) Reinforcing Inserts between Cord Plies

On tires JBN-12, LBN-13 and LBN-14, cord-reinforced inserts were used between plies. Although no improvement in dynamic performance was shown by these tires, the cause of early failure was attributed to other factors than the inserts. The value of the cord in the inserts was questioned in that most of the rubber insulation had been forced out from between the cords. It was decided to use unreinforced rubber inserts in tire LBN-15 to provide separation between plies. The location of these inserts is shown in Figure 36.

(4) Relucation of Inner Iiner

The relocation of the inner liner from the underside of the RLA to the outside of the RLA was made by first bonding a flap across the outside diameter of this member, then splicing this cured flap to the remainder of the inner liner. A Chemlok 205-220 resin adhesive system was used for bonding the inner liner compound XK985B, to the steel RIA. Anchorweld S0-132D adhesive wrap used for bonding the buffed cured flap of XK98,5B to the uncured toroidal wrap of this compound.

(5) Bonding of Inner Ifiner to Pl_{y} Insulation

The adhesion of the inner liner to the ply insulation has been marginal on some of the filament-wound tires because of (a) bonding a cured compound to an uncured compound, (b) bonding of two dissimilar polymers, was tried but unbond the processing cycle. Buffing of the cured inner liner application of Alschorweld so- were atill observed. A combination of buffing and tire LBN-15.
(6) Recutting of THre Mold

The rim width deminsions of the tire mold were increased from 13.250 to 13.406 in. It was estimated that this change would produce approximately $0.056-1 n$. interference with the rim when mounted. The bead rings were recur from $4 / 64$ to $6 / 64$ in. or by 50%.

(7) Filament-Winding of Carcass

Eight plies of $3360 / 2$ nylon cord were filament-wound over the rubber-covered mandrel in the usual manner. The nontacky surface of the K-70 inserts at the radius in the heel area produced considerable rolling of the cords on the side of the carcass so a layer of ply stock dispersion was applled

to hold the cords in place. The weight of the carcass, which was 105 lb heavier than a normal carcass, produced more wobbling and lateral movement on the belt than is isually experienced. Cord spacing weis sonewhat difficult to control because of this condition. The heavy carcass weight also caused peeling of the nonskid panels from the driving belt. This was corrected by dusting the surface of the panel with zinc stearate.

The following, Table XXVI, is a tabulation of the winding data on tire LBN-15:

TABLE XXVI
WINDING DATA FOR TIRA LBN-15
Winding Data

$\begin{aligned} & \text { Ply } \\ & \text { No. } \end{aligned}$	Cord Encis Per Ply	Crown Cord Angle (${ }^{8}$)	Cord Ends per Inch	
1	1296	40	10	14
2	1200	40	9	12
3	1248	40	9	14
4	1236	40	8	11
5	1260	40	9	14
6	1243	40	7	13
7	1236	40	7	14
8	1248	40	8	12
Average	1246		8	13

(8) Application of Components and Tread

The breaker, filler, chafer strips, and ID liner were applied to the carcass before Orbitreading. After the tread was applied, the remaining sections of the sidewalls were applied by hand. Following are the weights of the components of tire LBN-15:

Steel RLA shell	127.5 lb
Cord and elastomer	105.5 lb
Breaker, sidewalls, filler, etc.	15.0 lb
Orbitread	$48.0 \mathrm{J.b}$
Total weight of tire	296.0 lb

Curing

The green tire was externally lubricated and the bead ledges were lightly lubricated with a silicone solution. It was awled at the top of the bead heel filler to a depth of 0.10 in. (through the two 0.50 chafers). During the first insertion of the segmented curing-ring, some interference was noted. The ring was removed and the plies were thoroughly stiched down. The segmented curing-ring was then inserted without difficulty. No problems were encountered in the closing of the mold.

Upon mold opening, it was noted that the tread was depressed in one area, indicating the presence of a separated segment. A small (l-in. diameter) blister with a $2-1 \mathrm{n}$. -long feeder along the cord path was noted directly above the upper bead corrugation. Water exuded rapidly from this blister when it was awled 90 hr aftar cure.
d. Analysis of Results on Tire LBN-15

A complete failure analysia was performed on tire LBN- 15 to determine the cause of the large blister that occurred during cure. Fluoroscopic inspection confirmed the presence of the blister. A scentalator test using 10 psi of Freon, a pressurization test of 50 psi nitrogen, and inflation to 170 psi operating pressure, however, failed to show any openings in the tire.

A white waxy deposit found on the cords in the blown area was identified as depolymerized nylon which is produced by a combination of heat and moisture. The heat was supplied by the curing medium and the moisture must have been forced through the inner liner during the high pressure cure. The presence of water in the carcass was conflimed by the mall blister under the sidewall.

The opening in the liner through whic'a we.ter entered the carcass was either an open splice observed in the liuer or a perforation found in the inner liner along the sidewall below the blister. This perforation must have occurred between vacuum testing of the liner and curing of the tire as it would not have held any vacuum. A possible cause suggested for the cut was the falling of a broken section of the sand mandrel during the turnover operation used in the washout. A second scuffed area found near the perforation tended to confirm this explanation. The open splice in the liner appeared to be caused by solvent trapped from the bonding cement.

Removal of the tread section over the blister showed the breaker, the 8th ply, and the 7th ply bonded to the tread. The condition of the remainder of the plies was fair, but the carcass could have no more than 50% of its design strength. The inner four plies would be operating under twice the design stress if a dynamic test were performed. The defect was not repairable so the tire waz not considered suitable for testing.

e．Performance of Prototype 49×17 Tires

Table XXVII is a summary of the reaults obtained on the 15 prototype 49×17 tires produced in the program．

Analysis of the general summary of results on the 49×17 tires shows the cure performance was good in that the only cure failures of the standard design tires were due to malfunctioning of equipment．The two cure failures in the modified design tires were due to openings in the liner，the cause of which was not definitely determined．The burst strength of the 49×17 tires was satisfactory as well es the air retention and the deflection characteristics． The section widths of all 49×17 tires exceeded the presoribed limit of 17.25 in ． by $0.54,0.51,0.29,0.28$ ，and 0.21 in．This condition was attributed to low cord angles and variable erd counts．

The dissappointing dynamic performance of the 49×17 tires was not explainable on the basis of any specific design feature or material weakness． The modified tires incorporating suggested improrements did not perform enough better than the standard design tires to justify any conclusions，and there was insufficient time remaining in the program to permit identification of the major contributing factors to poor dynamic performance．More time and a methodical approach would be required to identify specific design details for corrective treatment．The dosign features requiring additional investigation are：（1）stiffness of the rim－locking assembly；（2）modulus of the rubber and cord at the edge of the rim－locking assembly；and（3）improved inner－liner integrity effected by its transfer of the inner liner from the underside to the outside of the rim－locking assembly．

GENERAL SUMMARY OF RESUITS ON 49×1726 PR TIRES

Thre Ident.	Design	Results
LBN-1	Std	Thermocouple tire - Lost during cure due to sediment in pressure fill ine.
LBH-2	Std	Cured OK - Crown buret at 670 psi.
LBN-3	Std	Lost in cure due to inadvertent pressurization with air.
LBN-4	Std	Cured α K - Crown burst et 625 psi . Inflated dimensions α except section width.
LBN-5	Std	Cured OK - Air retention α_{K}, inflated dimensions oK except section width, deflection OK, completed break-in cycle, iailed on first taxi-takeoff cycle at 75 mph .
LBN-6	Std	Cured OK - Satisfactory for static testing.
LBN-7	Std	Cured OK - Alr retention OK, inflated dimensions oK except section width, deflection O, completed break-in cycle, failed at 5550 ft of taxi-takeori.
LBN-8	Std	Cured OK - Air retention OK, inflated dimerisions OK except section width, deflection OK, failed during break-in cycle.
LBN-9	Std	Cured CK - Satisfactory for static testing.
LBN-10	Std	Cured CK - Satisfactoryfor static testing.
LBN-11	Std	Cured OK in recut mold. Satisfactory for testing.
LBN-12	Modified	Cured OK - Air retention OK, inflated dimensions oK except section width, deflection OK, completed break-in cycle, failed in taxi-takeoff at 95 mph .
LBN-13	Modified	Cured KK - Air retention OK, inflated limensions α except section width, deflection OK, completed breai-in cycle, failed on texj-takeoff at 90 mph .
LBN-14	Modified	Cured in recut mold - Blistered in crown during cure.
LBN-15	Modified	Cured in recut mold - Blistered in plies during cure.

SECTION VII

CONCLUSIONS AND RECOMMENDATIONS

1. The feasibility of fabricating filament-wound oircraft tires using nylon, glass and wire cord reinforcements in blas, geodesic and radial cord paths was successfully demonstrated in a study program on 30×8.8 subscale tires. The curins difficulties encountered in this program with radial wound tires ndicate a possible requirement for a segmented type curing mold in place of the conventional clamshell type. Improved integrity of these tires during cure may also be provided by premolding the Iiner as an inner tube and splicing it on the sand mandrel. Additional studies of the geodesic cord path tire are recomended because of the weight-saving potential shown by this construction.
2. Mechanization of the tire filament-winding process and the insulationapplication process was demonstrated by the successful operation of the prototype tire winding machine and by production of large tires. Additional refinements contributing to tire fabrication mechanization include applying the tread and sidewalls to the filament-wound carcass while it is still in the winding-machine. The use of a calendered or extrusion-coated tire cord in the winding-machine should also be considered for providing more accurate cord spacing.
3. Optimum operating procedures were established for prototype tire filamentwinding equipment. The abrupt direction changes in the cord-laydown required by the bias design introduced cord crossovers are considered undesirable for good dynamic performance. Investization of improved cord tackifying techniques is recommended to correct this condition. Incorporation of additional sensing points on the fil:ment-winding machine is required to improve automatic feedbeck control of cord-end count.
4. Satisfactory strength, air retention and deflection characteristics were shown by all the 49×1726 PR prototype tires tested to these requirements.
5. Satisfactory dynamic performance was not achieved by the 49×17 prototype tire because of severe cord chafing at the underside of the rim-locking assembly. The chafing caused perforation of the inner liner, loss of pressure, breaking of the cord reinforcement, and unlanding of the tire before completion of one taxi take-off cycle. Design modifications, which include stress-concentration reduction, an increased bead area modulus, and cord reinforcement, produced no improvement in dynamic life. The dynamic performance of the 49 x i7 tire was poor when compared to the performance of the $30 \times 7.7 \mathrm{~F} / \mathrm{W}$ tire. In a previous Air Force program the $30 \times 7.7 \mathrm{~F} / \mathrm{W}$ tire survived 50 high -speed landing cycles. This dynamic performance disparity demonstrates the extremely difficult scaling up problems encountered in the current program. Redesign of the 49×17 tire and also the wheel may be required to produce a major performance improvement. The performance requirement is described in the military testing specification designated in USAF Drawing 60D2561J.
6. The manner and location of fai e of all filament-wound tires during dynamic testing for this and precedin programs are essentially the aame. The results indicate the need for a higher modulus and a lower deflection for the RLA and cord/rubber camposite. In addition, a better understanding of the forces imposed on the tire during dymamic teating is needea. Determination and analysis of these forces and deflections are pre-requisites to the modification of tire design and materials.
7. The versatility of the filament-winding concept in producing complicated cord paths for tires has becin demonstrated on Air Force programs. It is possible that some of these unique design configurations, which may not always be available in conventional fabrication methods, could produce tires of superior study of experimente. It is recommended that this versat ility be utilized in a the belted bias, the modifiedigns. The designs of current interest include and geodesic. An evaluation of or geodesic, and a combination of radial on the small winding machine, which has rigns would most profitab?y be conducted most of the features of the large winding machine. the optimum winding path for superior dynamic performance on smaination of results could then be applied to fabrication of a larger tire small tires, the

1. INTRODUCTION

In order to continuously wind filaments at specified angles on a toroidal mandrel, three motions are required from a winding machine:
A. Rotation of the mandrel about its own axis.
B. Rotation of the filament payoff head about the mandrel.
C. Displacement of the payoff head perpendicular to its plane of rotation.

A cam is required to provide the proper relationshif between the rotation and displacement of the payoff head for a specified angular position of the mandrel. The purpose of this computer program is to perform calculations for the design of these cams to be used in a filament-winding machine for the manufacture of filament-wound tires. Calculations are based on equations presented in Appendix VII and VIII.

II. COMPUTER REQUIREMENTS

This program was written in FORTRAN IV for the IBM $360 / 65$ digital computer and was compiled under the ' G ' level compilers. Required tape specifications are:

Input, Logical 5 (DDNAME = FT05F001)
Output
Printed, Logical 6 (DDNAME = FT06F001) Punzhed, Logical : \{DDNAME = FT01F001) Plotted, PLOT TAPE (DDNAME)

Data set PLOT TAPE is subsequently processed by a utility program, which directs the plot information to a Calcomp plotter. A card listing of the FORTRAN IV source decks for the computer program is given in Appendix 1%.

III. WRAP PROGRAM OPERATIONAL PROCEDURES

A. PROGRAM DESCRIPTION

The program is compose of a main program and seven function subprograms, which appear as external statements in the main program. A discussion of each of these components follows.

1. Main Piog=am

This deck contains the iteration scheme necessary to establish geometric continuity between the rotating mandrel and the revolving payoff head. The library integrating subroutine ROMBRG is called by this deck, as required.
a. Winding Path Table

The program begins by establishing a table of wap angles vs. radii from data contained in the common BLOCK DATA subprogram. b. Hyperbolic/Circular Section Intersection

Coordinates of the intersection of the hyperbola and adjacent circular secticn (R3P, AP) are established by means of slope equality based on an initial guess for the angle of advance across the hyperbola (DELTA). If convergerce is not obtained after KV iterations, calculations will proceed using the last calculated values for R3P and AP.

c. Total Angle of Advance and Arc Dengt Ω

Angles of advance across the remaining geometric sections are established by calling the library Romberg integration subprogram. Each specific function to be integrated is established in the corresponding external FUNCTION subroutine, and the function together with calculated limits are then incorporated into the ROMBRG call stacement. The total angle of advance (T; is the summation of the angles of advance across each geometric section (including the hyperbolic section).

Total arc length is calculated by the same techniques using the required FUNCTION subroutines.
d. Rotational Balance

The number of revolutions of the winding head (AN) is calculated and tested for an integer number. The purpose, here, is to obtain a practical gear ratio between the mandrel rotation and payoff head rotation. If $A N$ is not in integer, the initial guess for DELTA is incremented by DT/2.0 and steps b, through d, are repeated, until an integer value for $A N$ is obtained.

If convergence is not obtained in JMAX iterations, the initial input value for the number of rotations of the mandrel ($A M$) is incremented by 1.0 and steps b. through d. are rep sated.
e. Geometry Table

A table of points, spaced in equal angular increments (DELPHI), is generated for presentation as printed output and for use in the CAM program as punched card output.

2. Subprogram FUNCTION FT2X (PHI)

The purpose of this subroutine is to define a function of PHI for determination of the angle of adrance (TH2X) across each circular secticn (2X) by Romberg integration techniques. The function has the form:
$f(\$)=\frac{b \tan \alpha}{r_{1}+b \cos c}$
3. Subprogram FUNCTION FS2X (PHI)

The purpose of this subroutine is to define a function of PHI for determination of the arc length (S2X) across each circular section (2X) by Romberg integration techniques. The function has the form:

$$
f(t)=\frac{b}{\cos \alpha}
$$

One subroutine of this form is required for each of the three circular sections.
4. Subprogram FUNCTION ABL (R)

This subroutine is used to interpolate for wrap angles $\{A L(I)$ at radial points $\{\mathbb{R}$ (I) $\}$ which lie in between the input values of $\operatorname{radii}\{\operatorname{RAD}(I)\}$.
B. INPUT INFORMATION

Data are e itered into the main program through labeled COMMON by using a BLOCK DATA subprogram. A series of eleven DATA cards irs the BLOCK DATA subprogram define all variables required to execute the program. See Appendix X for a sample problem.

1. Wrap Pattern for Circular Sections

Three cards are required to describe wrap angles at up to 30 designated radial stations.
a. DATA DEGR/ヶ Enter the "degree" value of the wrap angle for each station in columns 17-71, as needed \longrightarrow !
b. DATA AMIN $\leftarrow \longleftarrow$ Enter the "minute" value of the wrap angle for each station in columns 17-71, as needed \longrightarrow /
c. DATARAD/ \longleftarrow Enter the station diameter in columns $16-71$, as needed $\longrightarrow 1$

2. Wrap Pattern for Outer Cylinder

If the wra! angle varies across the outer cylindrical section of the mandrel, this wrap angle variation with increasing polar distance (YC) is designated by three additional cards. The value of the wrap angle recorded for the last station in this series of cards must agree with the value of the wrap angle recorded for the first station in the preceding series of cards. The maximum number of variations in angle across the outer cylinder is fixed at 10 .

Card 4. DATA DGR/↔-Enter the "degree" value of the wrap angle for each station in columns $16-71$, as needed $\longrightarrow /$

Card 5. DATA AMM/ - Enter the "minate" value of the wrap angle for each station in columns $16-71$, as needed \longrightarrow /

Card 6. DATA YC/ \longleftarrow Enter the station polar distance in cotumns 15-71, as needed $\longrightarrow /$

If the wrap angle does not vary across the outer cylindrical section, enter $10 \% 0.0$ between the slash marks orl each card and set $N 4=1$ on Card 11.

3. Circular Section Geometry

A series of three cards is used to describe the parameters required to generate the three :ircular sections of the mandrel. Liefer to Figure 1 for a pictorial representation of these values.

Card 7. DATA D2, D3 $/ \leftarrow$ Enter values $\longrightarrow /$
Card 8. DATAR1, R2, R3/ \longleftarrow Enter values \rightarrow /
Card 9. DATA L1, L2, L3/ \longleftarrow Enter values \rightarrow /

4. Control Data

The next two cards complete the series of da a required to run a single case. All parameters are defined in the nomenclature (Section V).

Card 10. DATA S'1, ST3, RRHO1, DELPHI, ALMIN, ALMAX $/ \longleftarrow$ Enter Values $\longrightarrow /$

Card 11. DATA NO, N4, AM, DELTA, DLO $/ \leftarrow$ Enter data \rightarrow \rightarrow,
It should be noted that $N 4=1$, if the cylinder wrap angle variation option is not used.

C. OUTPUT INFORMATION

1. Punched Card Output

The primary output of the wrap program is a series of punched manila cards, the number of which (NPTS) is calculated from the equation:

$$
\text { NPTS }=\frac{180^{\circ}}{\text { DELPHI }}+(\mathrm{N} 4-1)+1.5
$$

Each card contains values for PHI, R, Y, THETA, AL, and ARC at DELPHI increments along the mandrel surface. Two additional cards containing geometric data (L1, L3, R2, R3, SR1, YB, R3P, AP, DELTA) corr.plete the series of punched output. This series of cards if used as input to the C\&M program.

2. Printed Output

Since the previously discussed punched output is not interpreted, the same data is represented as printed output for inspection. In addition, many of the calculated parameters in the program are printed (see the source listing, Appendix IX so that the nonconvergence of iteration schemes and nonpractical solutions can be remedied by adjustment of data on input cards 10 and 11. Appendix X contains output for a sample problem.
D. ADDITIONAL COMMENTS

A few special situations were encountered during program "check out" which may lead to undesirable cam designs. These cases are discussed, and methods for controlling the situations are presented in the following paragraphs.

1. Nonconvergence of R3P/AP

Convergence of the iteration scheme for determination of the coordinates of the hyperbola/circle itersection is represented by an equality
between AP and APP. Inspection of the printed output will sometimes reflect an inequality in these values, although the program proceeded to completion. In most cases, equality can be obtained by changing the iteration increment (DLO) by a power of ten. The printed output will dictate whether an increase or decrease in $D L O$ is required to force convergence.

2. Impractical Gear Ratio (AN/AM)

Since the required gear ratio for controlling rotational motion is highly sensitive to the input value of DELTA, cases may arise which converge on undesirable gear ratios, as a result of an improper estimate of DELTA. Values for DELTA will normally range from 5° to 40°. depending on the amount of bridging (depth of hyperbola) required to establisha wrap pattern. For most mandrel geometries, a value of 15° or 7° for DELTA will produce gear ratios of $3: 1$ or $4: 1$, respectively.

In some instances, the relaxation of the limits (ALMAX/ALMIN) of the wrap angle at the last contour point will produce the additional range in parameters required to converge on a desirable gear ratio.

3. Depth of Hyperbola

In theory, a large number of hyperbolas will satisfy the requirements for a specific wrap pattern and mandrel geometry. A practical consideration is the interference of the bridged filament with the revolving payoff head, a situation caused by a calculated hyperbola, which is too deep for the specified radius of travel of the payoff head. Since the depth of the hyperbola is directly proportional to the value of DELTA, a decrease in DELTA will produce a more shallow hyperbola.

4. Control of Surface being Wrapped

For thin-walled toroids, the surface (mandrel, outside or neutral axis) used to establish the required wrap pattern does not influence the cam design. As more layers are added, the thickness of the wall increases, and it may be necessary to establish different cam designs for control of the wrap pattern on the outer surfaces. Control of the surface being wrapped is established by fixing ST1 at a value for the liner inickness and allowing ST3 to vary from zero to the maximum value of the thickess. Differences in cam designs should be noted, in order to establish whether the required degree of wrap pattern accuracy is obtained at the outer surfaces.

IV. CAM DESIGN PROGRAM OPERA TIONAL PROCEDURES

A. PROGRAM DESCRIPTION

The program consists of a main program and one subprogram, GETST, both of which were written to be used in conjunction with the previouslydescribed WRAP program. A discussion of the primary functions of the program is presented below.

1. Main Program

a. Basic Input

The program begins by reading a title card, control
parameter cards and the data cards generated by the WRAP program. A sample input sheet is coatained in Appendix X.
b. Initialize Plot Routine

If graphical representation of vutput data is desired, the nain program calls the library subroutine PLOTS to initialize the ploiting routines.

c. OMO "Do" Loop

The angular displacement of the filament at zero time (OM0) is initialized and the subprogram GETST is called. The subprogram calculates a cam design for the given OMO and returns. OMO is then incremented by DOM0, and the process repeated until NLOOP cam designs are produced.

2. Subprogram GETST

This deck controls the solution of all equations used to obtain a cam design and calls the CALCOMP plot routines, as required.
a. Geometry Table

The program begins by completing the data table for the sthe: two quadrants of the mindrel cross section from mirror image data generated by the WRAP program.
b. Calculation of EP

The angular position of the payoff heat, at time equals zero (EP), is calculated from the quadratic equation as outlined in Appendix VII.
c. Iteration for Time Variable

The payoff head is assumed to have unit velocity $\left\langle O M_{2}=1.0\right)_{\text {, }}$, and the velocity of the mandrel is computed as:

$$
\mathrm{OM1}=\frac{\operatorname{THETA}(P)}{\pi}
$$

Following the procedure outlined in Appendix VII the time variable $\{\mathrm{T}(\mathrm{I})\}$ is computed by itcration techniques. If a solution is not found after JMAX iterations, $T(I)$ is set at $T(I-1)$ and the program continues.

A special option in the program (ILOC=1) allows the payoff head to follow the contour of the mandrel, instead of rotating about a fixed coordinate system. This option provides a separate set of equations for use in the iteration scheme for $T(I)$ and in the later calculation of Sij. If the option is used, a message: "PAYOFF HEAD IS ON SURFACE OF MANDREL," is printed.
d. Displacement of Payoff Head

At this point in the program, the values of all variables are known, and the displacement of the payoff head $\mid S(I)]$ is computed directly as a function of its angular position:

$$
Z Z(I)=O M 2|T(I)|+E P
$$

These two variables, evaluated at equal angular increments around the contour, are the data required for a specific cam design.
e. Interference between Payoff Head and Mandrel

A special test, outlined in Appendix VIII, determines whether the payoff head has penetrated the space occupied by the toroid. If this situation has occurred, a message: "*** CASE TERMINATED *** PAYOFF HEAD PENETRATED MANDREL, " is printed.

f. CALCOMP Plot Routines

If NPLOT is input as 0 , an additional table of $\mathrm{S}(\mathrm{I})$ versus $Z Z(I)$ data is prepared for plot output. The CALCOMP suprort routines required to prepare the plot are then called. These routines, which are available from the 360 l ibrary, are:

Routine Name

PLOT
AXIS
LINE
NUMBER SYMBOL

PAGE

Function

Moves pen from one point to another. Draws coordinate axis (X or Y). Draws a curve through a set of points. Draws a floating point number. Draws BCD information. Provides restart points on plot tape.

B. INPUT INFORMATION

The following sequence of punched cards numerically defines the case to be analyzed.

1. Card 1

Columns 1 to 20 may contain any title information and will head the printed and plotted output.
2. Card 2

This card contains option control parameters. A value must be entered for each parameter.

Columns 1-12	No. of Data Cards - M
$13-24$	Contour Follower Option - ILOC
$25-36$	Debug Option - PRINT
$37-48$	Plot Option - NPLOT

The Debug and Contour Follower options are obtained by placing the integer, 1, in the appropriate column; if the options are not required, the character, 0 , is used. If NPLOT is equal to the character, 0 , selected printed data will also be plotted on graph paper, The integer, 1 , is used if no plot is required.
3. Card 3

This card contains additional control parameter information.
Columns 1-12 Radial Distance to Center of Rotation of Payoff Head - H
13-24 Radius of Rotation of Payoff Head - K
25-36 Angular Displacement of Filament from Plane of Payoff Head at Zero Time - OMO
37-48 OMO Increment - DOM 0
49-60 No. of Increments required - NLOOP
The maximum number of increments, which may be applied to OMO, is ten (i.e., NLOOP $=10$).

4. Cards 4 and 5

These two cards are punched output from the WRAP program. Data contained on Card 4 are:

Columns 1-12	Polar Distance to Generator of Circular Section III - LI
13-24	Polar Distance to Generator of Circular Section IV - L3
25-36	Radius of Circular Section
37-48	Radius of Circular Section IV - R3
49-60	Radial Distance to Generator of Section III - SRI
61-72	Polar Distance to Intersection of Sections III and IV - YB

Data contained on Card 5 are:

Columns 1-12	Radial Coordinate of Hyperbola Intersection - R3P
$13-24$	Polar Cordinate of Hyperbola Intersection - AP
$25-36$	Angle of Advance across Hypberbola - DELTA

5. Cards 6 through M

This series of punched cards is obtained as output from the WRAP program and completes the necessary input to run a given case.
C. OUTPUT INFORMATION

1. Printed Output

Output for each cam design begins with the title and a brief listing of control parameters.
a. Radial Distance to Center of Rotation of Payoff Head - H
b. Radius of Rotation of Paycff Head - K
c. Angular Displacement of Filament at Zero Time - OMO
d. Angular Velocity of Mandrel - OM:
e. Angular Velocity of Payoff Head - OM2

Following this data, a table of values for PHI, R, THETA, ALPHA, Y, TLME, S, ZZ , and Z is printed out for 360° of the mandrel contour. Is should be noted that the angular position of the payoff head as a function of time is:

$$
Z=T H E T A(I)-O M O-O M 1\lceil T(I!\}
$$

2. Plotted Output

Stroke limite tions of the payoff head make it desirable to have a pictorial representation of all cam designs for inspection. The plot option
satisfies this requirement by graphically representing NLOOP cam designs [$\mathrm{S}(\mathrm{I})$ versus $\mathrm{ZZ}(\mathrm{I})$ as a function of OMO. It should be noted that both cam shape and total stroke are quite sensitive to OMO.

V. NOMENCLATURE

Fortran Syanbol	Engineering Symbol	Description	Units
A LM:AX	-		Unit
ALMIN	-	Maximum value of ALPHA (N 0)	degrees
ALPHA	-	Minimum value of ALPHA (N0)	degrees
ALPHA, AL	α	Winding angle at point i	degrees
ALPN	α_{p}	Winding angle at point	degrees
ALQ	α q	Winding	degrees
AM	${ }^{(1)}$	Winding angle at point q	degrees
	X	Number of rotations of mandrel	
N	N	Number of revolutions of payoff head	
AP, APP	y_{p}	Polar coordinate of hyperbola intersection	in.
ARC	S	Arc length to point i	
DELPHI	-	Increment of phi 100 ng filament	in.
DISLTA	Δ	Angle of advance across hath	degrees
DLO	-	Increment	degrees
DOMO	-	Increment of OMO	in.
D T	Δ_{Δ}	Increment of DELT	degreez
D2	-	Cross section center-to-center diameter	degrees in.
D3	-	Minimum mandrel diameter	
EP	ϵ	Angular position of payoff head at $t=0$	in. radius
H	h	Radial distance to center of rotation of payoff head	in.
ILOC	-	Parameter controlling contour follower option	-

Fortran Syrnbol	Engineering Symbol	Description	Units
K	k	Radius of Rotation of Payoff	
L1	c	Polar Distance to Generator of Circular Section III	in. in.
L2	a	Polar Distance to Generator of Circular Sectior: II	in.
L3	f	Polar Distance to Generator of Circular Section IV	in.
M	-	Number of Georretry Data Cards for CAM Program	-
NPLOT	-	Parameter Controlling Plot Option	-
N0	-	Number of Points in Input Table for Circular Sections	-
N4	-	Number of Points in Input Table for Cylindrical Section	-
OM0	ω_{0}	Angular Displacement of Filament at $t=0$	degrees
OM1	w_{1}	Angular Velocity of Mandrel	rad/sec
OM2	6/2	Angular Velocity of Payoff Head	rad/sec
PHI	す	Angle Between Normal and Plane Parallel and through Axis of Rotation at point i	degrees
PRINT	-	Parameter Controlling Debug Option	
R, RAD	r	Radial Distance from Mandrel Axis of Rotation to Point i	in.
RB	r_{r}	Radius at Intersection of Sections III and IV	in.
RRHOI	-	Number of Cords per inch	1/in
$\mathrm{RI}+\mathrm{ST}$	b	Radius of Circular Section II	in.
R2+ST	d	Radius of Circular Section III	iu.

Fortran Symbol	Engineering Symbol	Description	Units
$\mathrm{R} 3+\mathrm{ST}$	g	Radius of Circular Section IV	in.
R3P	${ }^{r_{p}}$	Radiua Coordinate of Hyperbola Intersection	in.
SDEL	S_{V}	Filament Arc Length across Hyperbola	in.
S	S (0)	Displacernent of Payoff Head	in.
SI	S_{1}	Filament Arc Length acrose Section I	in.
SR1	${ }_{1}$	Radial Distance to Generator of Section III	in.
SR2	${ }^{2}$	Radial Distance to Geserator of Section IV	in.
ST	-	Normal Distance from Mandrel Surface to Surface used for Calculaticns	in.
*T1	-	Thickness of Liner	in.
ST3	-	Thickness of Wrap	in.
S2A	$\mathrm{S}_{\text {II }}$	Filament Arc Length across Section II	in.
S2B	$\mathrm{S}_{\text {III }}$	Filament Arc Length across Section III	in.
S2C	$S_{\text {IV }}$	Filament Arc length across Section IV	in.
T	t	Total Angle of Advance	degrees
THETA	θ	Angle of Advance to Point i	degrees
THI	θ_{1}	Angle of Advance across Section I	drgrees
TIME, T(I)	t	Time to Arrive at Point i	sec.
TH2A	$\theta_{\text {II }}$	Angie of Advance across Section II	degrees
TH2B	$\theta_{\text {III }}$	Angle of Advance across Section III	degrees
TH2C	θ IV	Angle of Advance across Section IV	degrees
Y, YC	\%	Polar Distance to Point i	in.
2	ψ	Angular Displacement of Filament	radius
27	δ	Angular Position of Payoff Head	degrees

MANDREL GEOMETRY REQUIRED FOR WRAP PROGRAM INPUT

Figure 1

APPENDIX I
STRESS ANALYSIS RIM-LOCKING ASSEMBLY $49 \times 17 \mathrm{TIRE}$

I. OBJECTIVE

The purpose of this appendix is to provide stress analysis of the 49×17 Rim-Locking as:embly (RLA) to establish the desigi, validity and to determine the expected safety margins.

II. SUMMARY

This stress analysis was conducted for the design shown in Aerojet Drawing 1269207. The basic design criteria considered were

- Design burst pressure, 595 psi
- Casing load at rim, $4520 \mathrm{lb} / \mathrm{in}$.
- Allowable houp strain, 0.017 in/in.
- Allowable lateral deflection, 0.094 in.

The calculated safety margins were based on minimum allowable ultimate strengths of composite materials. They indicate that the RLA is adequate for the specified load conditions.

III. DISCUSSION

A. DESCKKIPIION

The schematic below shows the relationship beiween the RLA, tire carcass, and rim in addition to the location of imposed loads.

The cylindrical portion of the RLA is constructed from interspersed layers of laterally-oriented 34l-Glass cloth and hoop-directed S-901 Glass filaments encased in an epoxy matrix. The end rings are sections built up from additional hoop-directed glass roving/epoxy. Two additional layers of 18l-Glass Cloth, biased at 4c; egrees, cover the entire inside diameter and the edges of the rings.

The rim is assumed to offer rigid support for the RLA, both laterally in tension and circumferentially in compression. Because of this rigid support along the inside diameter and the opposing external pressure along the outside diameter of the RLA, structural instability is not expected.

B. MATERIAL PROPERTIES

The following material properties were taken from MII-HNDBK-17 (Reference I-1):

$$
\begin{aligned}
& \text { 1. 341-Glass Fabric/Epoxy } \\
& \text { a. Compression } \\
& E_{L}=5.12 \times 10^{6} \mathrm{psi}, F_{C U}=60,000 \mathrm{psi} \\
& E_{H}=2.08 \times 10^{6} \mathrm{psi}, F_{C U}=26,300 \mathrm{psi} \\
& \text { b. Tension } \\
& E_{L}=4.58 \times 10^{6} \mathrm{psi}, F_{T U}=85,000 \mathrm{psi} \\
& E_{H}=1.82 \times 10^{6} \mathrm{psi}, F_{T U}=10,200 \mathrm{psi} \\
& \text { c. Flexure } \\
& E_{L}=5.00 \times 10^{6} \mathrm{psi}, F_{B}=110,000 \mathrm{psi} \\
& E_{H}=1.93 \times 10^{6} \mathrm{psi}, F_{B}=21,700 \mathrm{psi} \\
& \text { 2. I81-Glass Fabric/Epoxy } \\
& E_{H}=E_{L}=2.2 \times 10^{6} \mathrm{psi} \\
& F_{T U}=F_{C U}=26,600 \mathrm{psi}
\end{aligned}
$$

The allowable ultimate tensile strength of the S-901 Glass/epoxy hoop composite was determined from the Aerojet Structural Materials Handbook (Reference I-2) as follows:
$F_{T U}=K_{I} \quad P_{V G} \sigma_{F, M D N}$
where
$\sigma_{\mathrm{F}, \mathrm{MIN}}=415,000$ psi ultimate filament strength
$\mathrm{P}_{\mathrm{VG}}=0.673$ percent glass by volume
$\mathrm{K}_{1}=0.85$ correction for diameter
$\mathrm{F}_{\mathrm{TU}}=0.85(.673)(415,000)=235,000 \mathrm{psi}$

The directional moduli of the hoop composite are

$$
\begin{aligned}
& E_{H}=0.673\left(12.4 \times 10^{6}\right)=8.35 \times 10^{6} \mathrm{psi} \\
& E_{L}=0.5 \times 10^{6} \mathrm{psi}(\text { matrix only })
\end{aligned}
$$

Additional allowable strengths of the total interspersed
cylindrical section of the RLA were determined by testing actual specimens.
The results were

$$
\begin{aligned}
& F_{C U, M I N}=34,900 \mathrm{psi} \\
& F_{B, M D N}=68,400 \mathrm{psi}
\end{aligned}
$$

It is assumed that Poisson's Ratio is negligible for all composite materials used in the analysis.

IV. ANALYSIS

A. COMPOSITE CYLINDRICAL SECTIUN

At a distance from the ring section, the RLA may be treated as a right circular cylinder subjected only to an end load. The resulting compressive stress is

$$
\sigma_{C}=\frac{P_{0}}{\mathrm{TC}_{1}}
$$

where

$$
\begin{aligned}
& \mathrm{P}_{0}=4520 \mathrm{lb} / \mathrm{in} \\
& \mathrm{t}_{\mathrm{C}_{1}}=0.25 \mathrm{in} . \\
& \sigma_{\mathrm{C}}=\frac{4520}{0.25}=18,100 \mathrm{psi}
\end{aligned}
$$

The margin of safety is
M.S. $=\frac{{ }_{F}{ }_{C U}}{\sigma_{C}}-1$
M.S. $=\frac{34,900}{18,100}-1=+0.93$
B. DISCONTINUIIT ANALYSIS

At the discontinuity, the RLA is separated into two circular free bolies (ring and cylinder) subjected to the loads and bending moments shown in Figure I-1. Section properties are calculated, rotations and deflections of each free body are equated, and the discontinuity stresses at the juncture are established ${ }_{\text {. }}$

1. Cylinder - Composite Beam Properties

The thickness of each composite layer is $0.010 \mathrm{in.}$, and from View A of Figure I-l the total material thicknesses are

$$
\begin{aligned}
& t_{341}=0.260 \mathrm{in} . \\
& t_{181}=0.020 \mathrm{in} . \\
& t_{901}=0.070 \mathrm{in} . \\
& t_{c}=0.350 \mathrm{in} .
\end{aligned}
$$

a. Modulus

The composite modulus in the longitudinal

$$
\begin{aligned}
& \text { direction is } \\
& E_{L C}=\frac{\Sigma E_{I C 2^{\circ}} t_{2}}{t_{C}} \\
& \mathrm{E}_{\mathrm{LC}}=\frac{[0.5(.07)+5.0(.260)+2.2(.02)] \times 10^{6}}{0.350} \\
& \mathrm{E}_{\text {LC }}=3.94 \times 10^{6} \mathrm{psi} \\
& \mathrm{E}_{\mathrm{HC}}=\frac{\sum_{\mathrm{E}_{\mathrm{HC} 2}} \mathrm{t}_{2^{\circ}}}{\mathrm{t}_{\mathrm{C}}} \\
& E_{H C}=\frac{[8.35(.07)+1.93(.260)+2.2(.02)] \times 10^{6}}{0.350} \\
& E_{H C}=3.23 \times 10^{6} \mathrm{psi} \\
& \text { b. Neutral Axis } \\
& \text { The neutral axis of the cylinder section is } \\
& \overline{\mathrm{x}}_{\mathrm{C}}=\frac{\sum_{E_{L C 2^{\circ}} \mathrm{t}_{2^{\circ}}} \overline{\mathrm{x}}_{2^{\circ}}}{\mathrm{E}_{I C}{ }^{\mathrm{t}} \mathrm{C}}
\end{aligned}
$$

For ease of calculation, the cylinder can be divided into two symmetrical sections ' a ' and ' b ' as shown in Figure I-1. Then,

$$
\begin{aligned}
& \overline{\mathrm{x}}_{C}=\frac{E_{L C A}{ }^{t_{C A}} \overline{\mathrm{x}}_{A}+\mathrm{E}_{L C B}{ }^{t_{C B}} \overline{\mathrm{x}}_{B}}{E_{I C}{ }^{t_{C}}} \\
& \overline{\mathrm{x}}_{\mathrm{C}}=\frac{[.5(.07)+5.0(.240)] .195+[2.2(.02)+5.0(.02)] .020}{3.94(0.350)} \\
& \overline{\mathrm{x}}_{\mathrm{C}}=\frac{1.235(.195)+0.144(0.020)}{1.379}
\end{aligned}
$$

$$
\bar{X}_{C}=0.177 \mathrm{in}
$$

c. Flexural Rigidity

The flexural rigidity per inth of circumference is calculated from

$$
\begin{aligned}
& D_{C}=E_{I C} I_{C}=1 / 12\left[\left(E_{I C A} t_{C A}\right) t_{C A}^{2}+\left(E_{I C B} t_{C B}\right) t_{C B}^{2}\right] \\
& +\left(E_{L C A} T_{C A}\right)\left(\bar{X}_{A}-\bar{X}_{C}\right)^{2}+\left(E_{L C B} T_{C B}\right)\left(\bar{X}_{C}-\bar{X}_{B}\right)^{2} \\
& D_{C}=10^{6} \frac{1.235(.31)^{2}+0.144(.04)^{2}}{12}+1.235(.018)^{2}+0.144(.157)^{2} \\
& D_{C}=13,860 \mathrm{lb}-\mathrm{in} . \\
& \text { d. Stiffness } \\
& \text { The modulus of the beam foundation (stiffness) is } \\
& \mathrm{k}_{\mathrm{C}}=\frac{\mathrm{E}_{\mathrm{HC}}{ }^{\mathrm{t}}{ }_{\mathrm{C}} \mathrm{C}}{\mathrm{R}_{\mathrm{C}}{ }^{2}}
\end{aligned}
$$

with

$$
\begin{aligned}
& R_{C}=R_{2^{\circ}}+\bar{x}_{C}=10.375+0.177=10.552 \mathrm{in} . \\
& k_{C}=\frac{3.23 \times 10^{6}(.350)}{(10.552)^{2}} \\
& k_{C}=10,150 \mathrm{lb} / \mathrm{in} .^{3}
\end{aligned}
$$

e. Beam Characteristic (λ)

The beam characteristic is defined to be

$$
\begin{aligned}
& \lambda_{C}{ }^{4}=\frac{k C}{4 D_{C}} \\
& \lambda_{C}{ }^{4}=\frac{10,150}{4(13,860)}=0.183 \mathrm{in}^{-4}
\end{aligned}
$$

and it follows that

$$
\lambda_{C}^{3}=0.208 \mathrm{in}^{-3},{\lambda_{C}}^{2}=0.428 \mathrm{in}^{-2}, \lambda_{C}=0.654 \mathrm{in}^{-1}
$$

2. Ring - Composite Properties

The required ring dimensions are:

$$
\begin{aligned}
& A=0.4 \text { in., } t_{C A}=0.31 \mathrm{in.,} \mathrm{t}_{\mathrm{CB}}=0.04 \mathrm{in} ., \ell_{\mathrm{CA}}=0.626 \mathrm{in} . \\
& \ell_{R}=1.126 \text { in., } t_{R}=0.75 \mathrm{in} .
\end{aligned}
$$

a. Centroid

The lateral distance to the centroid of the ring is

$$
R^{=}=\frac{\sum_{E^{\prime}}^{n} A_{2^{\circ}} \bar{Y}_{2^{\circ}}}{\sum E_{H 2^{\circ}} A_{2^{\circ}}}
$$

Again using the ' a ' and ' b ' sections for the extension of the cylinder into the ring:

$$
\begin{aligned}
Y_{R}= & \left\{\left(E_{H C A} t_{C A}\right) \ell_{C A} \bar{Y} A+\left(E_{N C B} t_{C B}\right) \ell_{R} \bar{Y} \bar{B}\right. \\
& \left.+E_{H C D}\left[a \ell_{R}^{2} / 2+t_{C A}\left(\ell_{R}^{2}-\ell_{C A}^{2}\right) / 2\right]\right\} / \\
& \left\{\left(E_{H C A} t_{C A}\right) \ell_{C A}+\left(E_{H C B} t_{D B}\right) \ell_{R}+E_{H C D}\left[\varepsilon_{R}+t_{C A}\left(\ell_{R}-\ell_{C A}\right)\right]\right\} \\
Y_{R}= & \{[8.35(.07)+1.93(.24)]\{.626)(.313) \\
& +[2.2(.02)+1.93(.02)](1.126)(.563) \\
& \left.\left.+8.35\left[.4(1.126)^{2} / 2+.31\left(1.126^{2}-0.626^{2}\right) / 2\right]\right\} /\right\} \\
& \{[8.35(.07)+1.93(.24)](.626)+[2.2(.02)+1.93(.02)](1.126) \\
& +8.35[.4(1.126)+.31(1.126-0.626)]\} \\
Y= & \frac{3.5090}{5}=0.8046=0.605 \text { in. }
\end{aligned}
$$

The radial distance to the centroid of the ring is $\bar{x}_{R}=\frac{\sum_{E_{2}} E_{2^{\circ}} A_{2} \bar{X}_{2^{\circ}}}{\sum_{n 2^{\circ}} A_{2^{\circ}}}$

$$
\begin{aligned}
\bar{x}_{R}=\frac{1}{5.8046}\{ & \{1.048(.626)(.195)+0.083(1.126)(.02) \\
& +8.35[.4(1.126)(.55)+.31(.5)(.195)]\}
\end{aligned}
$$

$\bar{x}_{R}=\frac{2.4506}{5.8046}=0.422 \mathrm{in}$.
b. Fiexural Rigidity

The flexural rigidity of the ring is calculated from

$$
D_{R}=(E I)_{R}=\sum^{n} E_{H C 2^{\circ}} I_{2^{\circ}}
$$

$$
D_{R}=\sum^{n}\left(E_{H C} T_{C}\right)_{2^{\circ}}{ }_{2}^{3} / 12+\left(E_{H C} T_{C}\right)_{2^{\circ}}{ }_{2} \circ\left(\bar{X}_{R}-\bar{X}_{2^{\circ}}\right)^{2}
$$

$$
D_{R}=10^{6}\left\{\frac{1.048(.626)^{3}+0.083(1.126)^{3}+8.35\left[.4(1.126)^{3}+.31(.5)^{3}\right]}{12}\right.
$$

$$
+1.048(.626)(.292)^{2}+0.083\left(1.126 j(.042)^{2}\right.
$$

$$
\left.+8.35\left[.4(1.126)(.042)^{2}+.31(.5)(.271)^{2}\right\}\right\}
$$

$$
D_{R}=6.134 \times 10^{6} \mathrm{lb}-\mathrm{in} .^{2}
$$

3. Ring Distortion

The ring is assumed to be subjected to a uniformly distributed twisting couple of M_{t} in-lb per linear inch, which causes the ring to rotate about its centroid through an angle,

$$
\theta_{R}=\frac{M_{T} R_{R}^{2}}{D_{R}} \quad \text { (Reference } I-3 \text {, page 225) }
$$

The bending moment is

$$
\begin{aligned}
M_{T} R_{R} & =P_{0} e_{0} R_{2}+V_{1} Y_{R} R_{C}-\left(P_{0}-P_{1}\right) e_{0} R_{C} \\
& -\rho a\left(R_{A}-R_{R}\right) R_{A}+\rho \ell_{R}\left(Y_{R}-\ell_{R} / 2\right) R_{0} \\
& -M_{1} R_{C}
\end{aligned}
$$

The load $\left(P_{1}\right)$ is calculated fram a force balance on the ring in the lateral direction:

$$
\Sigma F=\left(P_{0}-P_{1}\right) 2 \pi R_{C}-p a\left(2 \pi R_{A}\right)=0
$$

Solution of the equation yields

$$
P_{1}=P_{0}-\frac{\rho a R_{A}}{R_{C}}
$$

with

$$
\begin{aligned}
& R_{A}=R_{2}+t_{C}+a / 2 \\
& R_{A}=10.375+0.350+0.200=10.325 \mathrm{in} . \\
& P_{1}=4520-595(.4)(10.925) / 10.552 \\
& P_{1}=4520-246=4274 \mathrm{lb} / \mathrm{in} .
\end{aligned}
$$

and with

$$
\begin{aligned}
& e_{0}=\bar{x}_{R} \bar{X}_{C}=0.422-0.177=0.245 \mathrm{in} . \\
& R_{R}=R_{2^{\circ}}+\bar{x}_{R}=10.375+0.422=10.797 \mathrm{in} . \\
& R_{0}=R_{2^{\circ}}+t_{R}=10.375+0.750=11.125 \mathrm{in} .
\end{aligned}
$$

the bending moment is

$$
\begin{aligned}
M_{T} R_{R} & =4520(.245)(10.375)+V_{1}(.605)(10.552) \\
& -246(.245)(10.552)-595(.4)(.128)(10.925) \\
& +595(1.126)(.042)(11.125)-M_{1}(10.552)
\end{aligned}
$$

$$
M_{1} R_{R}=10,833+6.384 V_{1}-10.552 M_{1}
$$

The rotation becomes

$$
\begin{aligned}
& \theta_{R}=\frac{10.797}{6.134 \times 10^{6}}\left\{10833+6.384 \mathrm{v}_{1}-10.552 \mathrm{M}_{1}\right\} \\
& \theta_{R}=\left[190.7+0.1124 \mathrm{v}_{1}-0.1857 \mathrm{M}_{1}\right] \times 10^{-3}
\end{aligned}
$$

is given by

$$
\delta_{R}=\frac{R_{R} \sum P_{X} R_{X}}{\sum E_{H 2^{\circ}} A_{2^{\circ}}}-Y_{R} \theta_{R}
$$

$$
\delta_{R}=10.797\left[4520(10.375)-595(1.126)(11.125)-10.552 v_{1}\right] / 5.8046 \times 10^{6}
$$

$$
-0.605\left[190.7+0.1124 \mathrm{v}_{1}-0.1857 \mathrm{M}_{1}\right] \times 10^{-3}
$$

$$
\delta_{R}=\left\{0.1122 M_{1}-0.0876 \mathrm{~V}_{1}-42.0\right\} \times 10^{-3}
$$

4. Cylinder Distortion

The cylinder is subjected to uniformly distributed discontinuity forces $\left(V_{1}\right)$ and bending moments $\left(M_{1}\right)$. The rotation (Reference I-3), Cases 14 and 15 , p. 302) of the neutral axis is

$$
\begin{aligned}
& \theta_{C}=\frac{v_{1}}{2 D_{C} \lambda_{c}{ }^{2}}+\frac{M_{1}}{D_{C} \lambda_{C}} \\
& \theta_{C}=\frac{v_{1}}{2(13860)(.428)}+\frac{M_{1}}{13860(.654)} \\
& \theta_{C}=\left\{0.0843 v_{1}+0.1103 M_{1}\right\} \times 10^{-3}
\end{aligned}
$$

The radial deflection of the cylinder (Reference I-3, Cases 14 and 15, p. 302) is

$$
{ }_{c}{ }_{c}=\frac{v_{1}}{2 D_{c} \lambda_{c}^{3}}+\frac{M_{1}}{2 D_{c} \lambda_{c}{ }^{2}}
$$

$$
{ }^{\delta_{C}}=\frac{V_{1}}{2(13860)(.280)}+\frac{M_{1}}{2(13860)(.428)}
$$

$$
\delta_{c}=0.1288 \mathrm{~V}_{1}+0.0843 \mathrm{M}_{1} \times 10^{-3}
$$

5. Discontinuity Forces \& Moments

Equating the rotation (2quation 2) and the deflection (Equation 3) of the cylinder to the rotetion (Equation 4) and the deflection (Equation 5) of the ring, respectively, yields the following relations:

$$
M_{1}=1505+7.756 \mathrm{v}_{1}
$$

$$
v_{1}=-6835+10.609 \mathrm{M}_{1}
$$

Simultaneous solution of Equations 6 \& 7 yields

$$
x_{1}=634 \mathrm{in} .-\mathrm{Ib} / \mathrm{in} .
$$

$$
\mathrm{V}_{1}=109 \mathrm{lb} / \mathrm{in} .
$$

C. HOOP SIRAIN

The maximum teasile strain is the hoop direction occurs at the extreme end of the ring section of the RIA and is given by the equation

$$
\varepsilon_{\theta_{\max }}=\frac{\delta_{R}+\left(\ell_{R}-\bar{Y}_{R}\right) \theta_{R}}{R_{2^{\circ}}}
$$

where, from Equation 3, the deflection is

$$
\begin{aligned}
& { }_{\sigma_{R}}=\{0.1122(634)+0.0876(109)-42.0\} \times 10^{-3} \\
& \delta_{R}=0.039 \mathrm{in} .
\end{aligned}
$$

and the rotation, from Equation 2, is

$$
\begin{aligned}
& \theta_{R}=\{190.7-0.1124(109)-0.1857(634)\} \times 10^{-3} \\
& \theta_{R}=0.061 \text { radian }
\end{aligned}
$$

The maximum tensile strain is

$$
\varepsilon_{\theta_{\max }}=\frac{0.039+0.521(.061)}{10.375}=0.007 \mathrm{in} . / \mathrm{m}
$$

and the margin of salety is

$$
\text { M.S. }=\frac{0.017}{0.007}-1=+1.43
$$

D. LATERAL DEFLECTION
A. suming no lateral deflection occurs across the ring and the cylinder is of minimum thickness ($t_{C l}$), then the lateral deflection is

$$
\Delta L_{C}=\frac{P_{1} l^{\prime} C_{1}}{E_{L C 1} t_{C 1}}
$$

where

$$
\begin{aligned}
& \ell_{C l}=9.624 \mathrm{In} . \\
& E_{I C 1} t_{C l}=[0.5(.05)+5.0(.180)+2.2(.02)] \times 10^{6} \\
&=0.97 \times 10^{6}
\end{aligned}
$$

Thus,

$$
\Delta U_{C}=\frac{4274(9.624)}{0.97 \times 10^{6}}=0.042 \mathrm{in} .
$$

and the margin of safety is

$$
\text { M.S. }=\frac{0.094}{0.042}-1=+1.24
$$

E. MAXIMMM STRESSES

1. Lateral Stress in Cylindrical Section

a. Tensile Stress

The maximum tensile stress occurs in the inside
fibers of the 181-Glass Fabric. The combined, membrane and bending, stress is

$$
\begin{aligned}
& \sigma_{T_{181}}=\frac{M_{1} E_{L_{181}} \bar{X}_{C}}{D_{C}}-\frac{P_{1} E_{L_{181}}}{E_{L C}{ }_{C}{ }_{C}} \\
& \sigma_{T_{181}}=\frac{634\left(2.2 \times 10^{6}\right)(.177)}{13860}-\frac{4274\left(2.2 \times 10^{6}\right)}{3.94 \times 10^{6}(.35)} \\
& \sigma_{T_{181}}=17,800-6800=11,000 \mathrm{psi}
\end{aligned}
$$

The margin of safety is

$$
\text { M.S. }=\frac{26,600}{11,000}-1=+1.42
$$

b. Compressive Stress

The maximum compressive stress due to the lateral
load and bending moment occurs in the outside fibers of the 341-Glass Fabric:

$$
\begin{aligned}
& \sigma_{C_{341}}=\frac{M_{1} E_{L_{341}}\left(X_{\max }-\bar{X}_{C}\right)}{D_{C}}+\frac{P_{1} E_{L_{341}}}{E_{I C}{ }_{C}} \\
& \sigma_{C_{341}}=\frac{634\left(5.0 \times 10^{6}\right)(.163)}{13860}+\frac{4274\left(5.0 \times 10^{6},\right.}{3.94 \times 10^{6}(.35)} \\
& \sigma_{C_{341}}=37,300+15,500=52,800 \mathrm{psi}
\end{aligned}
$$

The margin of safety is

$$
\text { M.S. }=\frac{60,000}{52,800}-1=+0.14
$$

2. Hoop Stress in Cylindrical Section

The maximum hoop stress in the cylinder due to the shear load and bending moment is given by

$$
\begin{aligned}
& \sigma_{T}=\frac{2 M_{1} \lambda_{C}{ }^{2} R_{C}}{T_{C}}+\frac{2 v_{1} \lambda_{C} R_{C}}{t_{C}} \\
& \sigma_{T}=\frac{2(634)(.428)(10.552)}{0.35}-\frac{2(109)(.654)(10.552)}{0.35} \\
& \sigma_{T}=16,400-4300=12,100 \mathrm{psi}
\end{aligned}
$$

Assuming that the S-901 Glass/Epoxy composite carries the entire hoop load, the composite stress is

$$
\begin{aligned}
& \sigma_{\mathrm{T}_{970}}=\sigma_{\mathrm{T}} \frac{{ }_{\mathrm{t}}^{\mathrm{C}}}{} \\
& \sigma_{970} \\
& \mathrm{~T}_{970}=\frac{12,100(.35)}{0.07}=60,500 \mathrm{psi}
\end{aligned}
$$

The margin of safety is

$$
\text { M.S. }=\frac{235,000}{60,5,50}-1=+2.88
$$

3. Hoop Stress in Ring

The maximum hoop stress in the ring, due to bending, occurs in the hoop composite at the outer edge and is given by

$$
\sigma_{T}=\frac{M_{T} R_{R} E_{H_{g 70}}\left(\ell_{R}-\overline{\mathrm{y}}_{\mathrm{R}}\right)}{\mathrm{D}_{\mathrm{R}}}
$$

From Equation 1, the bending mument is

$$
\begin{aligned}
& M_{T} R_{R}=10,833-6.384(109)-10.552(634) \\
& M_{T} R_{R}=3450 \text { in. }-1 \mathrm{~b}
\end{aligned}
$$

and the hoop stress is

$$
\sigma_{T}=\frac{3450\left(8.35 \times 10^{6}\right)(.521)}{0.6134 \times 10^{6}}-24,500 \mathrm{psi}
$$

The margin of safety is

$$
\text { M.S. }=\frac{235,000}{24,500}-1=+ \text { HIGH }
$$

REFERENCES

I-1. Military Hendbook 17, Dlastics for Flight Vehicles, Part I, November 1959.
I-2. Structural Materials Handbook, Aerojet-General Corporation, Structural Materials Division, February 1964.

I-3. R. J. Roark, Formulas for Stress and Strain, 4th Edition, McGraw-Hill, New York, 1965.

APPENDIX II

TAPE WINDING OF 6-PLY TOROIDAL TIRE

APPENDIX II

tape winding of 6-ply toroidal tire

1. REFERENCES

Techuical Report, Filament-Wound Toroldal TIre, AFML-TR-67-154, June 1967, by Frank S. Salcedo (Table I, used in 3 below).

Dwg. No. BK-3300 by the General Tire and Rubber Co.--Nandrel; Rim-Locking Ring Details, 30×7.7 toroidal tire, T-VII 12 PR.

2. GENERAL DESCRIPTION

This design analysis will determine the wall thickness and configuration of a torus-shaped carcass made from six plies wrapped with nylon calendered tapes.

A water-soluble mandrel and inserted rim-locking fing are wrapped with neoprene-rubber tape, then vacuum-bagged and cured at $250^{\circ} \mathrm{F}$, constituting a solid, rigid structure--the mandrel assembly.

The mandrel is located in a winding machine which provides three basic motions to produce desired winding path of each ply:
a. Rotation of the mandrel at constant angular velocity about tiae axis of the toroid.
b. Rotation of the filament-payoff head at constant angular velocity around a portion of the toroid.
c. Incremental movement of the filament-payoff head to accomplish an accurate filament path during rotation of the winding head.

The wrapped tape edges are adtuent to each other on the crown of each ply, and begin to overiap on both siaas of the carcass. This overlap increases toward the inside of the torus where it is uniformily distributed because of the cylindrical shape.

The tape is $0.047-1 n$, thick and $0.25-\mathrm{in}$, wide.
3. WINDING PATH AT NEUIRAL CARCASS AXIS

The neutral axis is the surface between plie. 3 and 4 in the carcass structural reinforcement.

NEUTRAL STATION	NESUIRAL-STATION DIAMEIKR (IN.)	NEUTRAL WTIDIMG PATH	
		DEGREES	Minuies
1 (crown OD)	26.65	53	51
2	26.62	53	46
3	26.40	53	8
4	26.08	52	2
5	25.48	50	32
6	24.82	49	3
7	24.08	46	51
8	23.22	44	43
9	22.28	42	28
10	21.28	40	3
11	20.30	37	58
12	19.32	35	50
13	18.32	33	43
14	17.38	3.1	47
15	16.58	30	3

NOIE: The angles listed above are applied to each ply.

(4) CROSS SECTION THROUGH MANDREL ASS'Y FIND 6-PLY CARCASS (SEE NOTE BELOW.).

NOTE: ALL DIMENSIONS ARE PRIOR TO CURING. (START OF OVERLAPPING) (WHILE CARCASS IS STILL OH THE MANDREL)
(5) MHNUFEL COMFIGUKHTION FOR $1^{\text {ST }}$ PL;

SECTION " $A-A^{\prime}$
α - WINDING ANGLE ON CROWN OD.
β - WINDING ANGLE ON I.D. OF TORUS. A MANDREL $0 . D, \quad 26.250 \mathrm{NN}$.
1 $\quad \begin{array}{r}.080 \mathrm{NN} \\ \hline 66.330 \mathrm{NN} .\end{array}$
$O D=66: 330 \mathrm{IN}$.

PIH-LOCKIIK RSS'Y. IND. $-16,335$ IN.
LINER (.04 $\mathrm{Ht} . \times \mathrm{Ci}) \quad \frac{-.080 \mathrm{~N} .}{16.255} \mathrm{~N}$.
$I . D .=16.255 \mathrm{NN}$.

THE DIAMETERS OF IVEUTRAL STATION'د 1,2 \& 3 ARE GREATER THAN THE COMPUTED OD. (ABOVE); THEREFORE THEIR AVERAGE WINDING ATYGLE SUPPOSED TO BE TRANSPOSED TO THE ORIGINAL, STAFFING SLIFFHCE RT THE CROWN OF THE MANDREL IS:
FFROM (3):

STATION	STATION DIR
	26.65
3	26.68
3	26.40

NOIL: HS WILL BE NOTED IN THE FOLLOWING COMPUTATIONS, THE DIFFERENCES IN ARC AND CHORD LENGTHS GRE INSIGNIFICANT (1 IT PLY ON CROWN ARC $=. \angle 211741 \mathrm{NNCH}$; CHORE $=.4211235 \mathrm{INCH}$). THEREFORE, THE CHORD LENGTHS WERE USED TO REPRESENT A SURFACE.

(5) cont.
a) overlapping dimensicinal magnitude on station N : 15

$$
\begin{aligned}
& \alpha=30^{\circ} \mathrm{g}^{\prime} \\
& \nless n=59^{\circ} 51^{\prime}
\end{aligned}
$$

CIRCUM, ${ }^{\circ}$ F DIA. ST $N: 15=2 \pi R=16.58 \times 耳=52.061 \mathrm{H}$

$$
\frac{\text { GIRCUM ST. Ni } 15}{N: \text { OF TAPES }}=\frac{5 e .0618}{196.3}=.865 \quad \widehat{A B}=.065
$$

$$
\overparen{A B}=\frac{\pi F \angle}{180}
$$

$$
\gamma=\frac{\overparen{A B} \times 180}{\pi R}=\frac{.265 \times 180}{I \times 0.29}=1.83^{\circ} \quad\left[\frac{6}{2}=0^{\circ} 55^{\circ}\right]
$$

$$
\begin{aligned}
& \overline{A B}=R R \sin \frac{\gamma}{2}=16.58 \times \sin 0^{\circ} 55^{\prime}=16.58 \times .016=.26548 \\
& \overline{O K}=\overline{H B} \sin 59^{\circ} 51^{\prime}=.2652 \overline{6} \times .864 A^{\circ} 11=.82939
\end{aligned}
$$

$$
\begin{aligned}
& . .2500^{\prime \prime} \text { - TAPE WIOTH } \\
& .2894^{\prime \prime} \text { BK } \\
& .0206^{\prime \prime} \text { - OVERLAPPING RT POINT " } B \text { " }
\end{aligned}
$$

(b) OVERLAFPIFG DIMEMSIONAL MAGNITUDE ON STATION N:IA

$$
\alpha=31^{\circ} 47^{\prime}
$$

$$
\Varangle A=58^{\circ}-13^{\prime}
$$

CIRCUM, ${ }^{\circ}$ F DIA. ST. $N=14=$ CJR $=17.38 \times \pi=54.5732$ $\frac{\text { CIRCUM ST.N:IA }}{M \text { IOF TAPES }}=\frac{54.5732}{196.3}=.27801 \quad \quad$ PB $=.278$ $\overparen{A B}=\frac{\pi R \%}{180} \quad \gamma=\frac{\overparen{A B} \times 180}{\pi R}=\frac{.218 \times 180}{\pi \times 6.69}=1.833^{\circ}$

$$
\left[\frac{\gamma}{2}=0^{\circ} 55^{\circ}\right]
$$

$$
\begin{aligned}
& \overline{H E}=E R \sin \frac{5}{C}=17.38 \cdot \sin 0^{\circ} 55^{\prime}=17.38 \cdot .016=.27808 \\
& \overline{B K}=. A B \times \sin 56^{\circ} 13=.27806 \times .85004=.236: .8
\end{aligned}
$$

$$
\begin{aligned}
& .2500^{\prime \prime} \text { - TAPE WIDTH } \\
& -.2364^{\prime \prime}-\frac{8 H}{} \\
& .0136^{\prime \prime}-0 V E R L H P H I H G \text { AT POINI " } B^{\prime \prime} \\
& \hline
\end{aligned}
$$

(5) CMI.
(C) OVERLAPPING DIMENGIONAL MAGNITUDE ON STATION NO 13

$$
\begin{aligned}
\alpha & =33^{\circ} 43^{\prime} \\
4 A & =56^{\circ} 17^{\prime}
\end{aligned}
$$

CIRCUM. ${ }^{\circ}$ F DIF. $\operatorname{ST} . N: 13=2 \pi R=18.3 E \times J=57.5248$ $\frac{\text { CRCUA } 5 T, N: 13}{\text { Mi OF TAPES }}=\frac{57.52 A B}{196.3}=.29304 \quad \overparen{\text { AB }}=.893$ $\overparen{A B}=\frac{\pi R \gamma}{180} \quad \gamma=\frac{\overparen{A B} \times 180}{\pi R}=\frac{.293 \times 180}{\pi \times 9.16}=1.83^{\circ}$

$$
\left[\frac{\gamma}{E}=0^{\circ} 55\right]
$$

$$
\begin{aligned}
& \overline{H B}=2 R \sin \frac{6}{2}=18.32 \times \sin 0^{\circ} 55^{\prime}=18.35^{\prime} \times .016=.29312 \\
& \overline{B K}=\overline{A B} \sin 56^{\circ} 17^{\prime}=.29312 \times .83179=.2436
\end{aligned}
$$

$$
\begin{aligned}
& .2500 " \text { - TAPE WIDTH } \\
& -.2438 \text { " - BK } \\
& .0062-\text { OVERLHPMIHS AT POINT "B" }
\end{aligned}
$$

(d) OVERLFPPDING DIMEN UIONFL MAGNITUDE ON STATION NOIR

$$
\begin{aligned}
\alpha & =35^{\circ} 50^{\prime} \\
\times A & =54^{\circ} 10^{\prime}
\end{aligned}
$$

CIRCUM. ${ }^{\circ}$ F DIF. ST, $M^{\prime}=12=2 J R=19.32 \cdots \pi=60.6648$

$$
\frac{\text { CIRCUM. ST. Nïle }}{H=\text { OF TRPE }}=\frac{60.6648}{136.3}=.30904
$$

$$
\widehat{A B}=\frac{\pi R x}{180} \quad r=\frac{A B \times 180}{\pi R}=\frac{.309 \times 180}{\pi \times 9.66}=1.83^{\circ}
$$

$$
\left[\frac{6}{\varepsilon}=0^{\circ} 55^{1}\right]
$$

$\overline{F B}=2 R \sin \frac{\gamma}{P_{1}}=14.32 \times \sin 0^{\circ} 55^{\circ}=19.32 \times .016=.30912$
$\overline{B K}=A C \sin 54^{\circ} 10^{\circ}=.30912 \times .81072=.8506$

HOIE. GHF UNEG NOT EXIST; THEREFORE, OVERLHFFIT, M MUST STRRT BETWEEN STHTION N\& 12 AMD SI'FIION $N \cong 13$.

$$
\begin{aligned}
& \text { _.2500"——THPE WIOTH } \\
& \text { - E'ECG" }-\overline{B K} \\
& =.{ }^{9} 06^{\prime \prime} \text { THO OVERLARPIIG (GHF) }
\end{aligned}
$$

(5) CONT.
(c) SHAMETER ON WHICH OVERLAPPING BEGINS OH STATIOH NO 12 AND STATIOM $N \circ=13$, ANGLE $\gamma=1.83^{\circ}$ TTHERE-
PCRE, ON HMY DIHMETER BETWEEN THESE STATIONS, KX 15 COMSTANT,

$$
\gamma=1.83^{\circ} \quad \frac{\gamma}{2}=0^{\circ} 55^{\circ}
$$

$$
\overline{A B}=8 R \sin \frac{\sigma}{2}
$$

$$
2 R=\frac{\overline{A B}}{\sin \frac{\gamma}{2}}=\frac{.308}{.016}=19.25
$$

$1^{\text {ST PLY OVERLFIPPING BEGINS ON JIF. } 19.25 \text { INCHES. }}$
6) CRRCAGS DIHMETERS AT SURFHCE OF EFICH PLLY

$6^{\text {TH }}$ PLY IS WRAPPED ON DIAMETERS:
$O D_{1}=8 E .80$ HICHES
I. $0=15.316 \mathrm{~N}=\mathrm{HES}$

II-10

I.D. CIRCUM $=$ R π 汚 $=15.316 * I=48$.09e

$$
\frac{\text { I.D.CIFCUHA. }}{N=O F \text { TAPES }}=\frac{48.092}{196.4}=.2448 \quad \widehat{B B 1}=.2448 \mathrm{NHCH}
$$

$$
\begin{array}{ll}
\beta=50^{\circ} \mathrm{g}^{\prime} & \widehat{B B_{1}}=\frac{3 r \delta}{180} \\
\forall E=59^{\circ} \mathrm{s1}^{\prime} & \tilde{\delta}=\frac{B E_{1} \times 180}{\pi r}=\frac{.8 .448 \times 180}{\pi \times 7.656}=1.83^{\circ}\left[\frac{\tilde{\sigma}}{\mathrm{E}}=0^{\circ} 55^{\prime}\right]
\end{array}
$$

$$
\begin{aligned}
& \overline{B B^{\prime}}=2_{2} \sin \frac{\delta}{E}=15.316 \times \sin \left(0^{\circ} 55^{\prime}\right)=15.316 \times .016=.245056 \\
& R^{\prime} M
\end{aligned}=\overline{B B^{\prime}} \sin \left(59^{\circ} 51^{\prime}\right)=.245056 \times .86471=.2119
$$

NOTE: GVEFRLHPPING BEGINS HLL DIMENSIONS OF ERCH
-. 2500 - TRPE WIOTH
.E119 - BIK
.0381 INCH OVERLAMNINO AT POINT "B'." ON DIH. 19.25 INCHES (AS OH IST PLY) BECPUSE
STATION RRE THE SRME.

(8) COMCLUSIONS

THE WRAPPING TECHNIQUE FOR EACH CONSECUTIVE PLY IS THE SAME IN SPITE OF THE CHANGING LEFT AND FIGHT HAND WINDING DIRECTICMS.

IN EACH PLY THE BEGINNING OF OVERLAPPING IS ESTABLI SHED AT THE DIAMETER 19.25 INCHESTHIS WAY, EACH WY CONSISTS OF SINGLE AND DOUBLE THICKNESSES RELATIVE TO THE ABOVEMENTIONED DIAMETER.

TAKING PL 6 PLIES IN CONSIDERATION, WE BUILD UP IR PLIES WALL AT THE INSIDE TORIJS, MAKING IV. $=15.127$ INCYESMINIMUM. WIUTH OF THE CARCASS TORUS WILL CORRESPOND TO 7.708 INCHES ANU THE CROWN DIM. TO 26.894 INCHES.

NOTE: THESE DIMENSIONS ARE PRIOR TO CURING (WHILE CARCASS IS STILL ON THE MANDREL).

APPENDX III

Engineering Drawings

III-I

Appendix III

Engineering Drawings

30×8.822 PR Subscale Tire and 49×1726 PR Prototype Tire
Reproduced on succeeding figes are the following drawings of tooling for the 30×8.8 and 49×17 tires

Drawing No.

T-120850, Shef.ts 1-14
T-120853-1
T-120853-2
T-120853-3
T-120853-4
T-1286108-1
T-1286108-2
T-1286125
DK 4784
DK 5619-2
DK 5620-1
DK 5621-1
DK 5622
DK 5623
DK 5649

Title

Tire Winding Machine 49×17
Cam-Payoff Head 30×8.8 Bias Tire
Cam-Pressure Roller 30×8.8 Bias Tire
Cam-Payoff Head 30×8.8 Geodesic Tire
Cam-Payoff Head 30×8.8 Bias Tire
Cam-Payoff Head 49×17 Bias Tire
Cam-Pressure Roller 49×17 Bias Tire
Mandrel-Rim Lock Assy - 49×17 Tire
Segmented Curing Ring - $30 \times 8.8 \mathrm{~F} / \mathrm{W}$ Tire
Cavity Profile and Tread - 49×17 Tire
Tire Mold Details - 49×17 Tire
Bead Rings - 49×17 Tire Mold
Segmented Curing Ring - 49×17 Tire
Items Detail Segmented Curing Ring - 49×17 Tire Curing Ring Assembly Detail - 49 x 17 Tire Mold

itwhi inlju. nvuon

W压皿

H0JIT:

$10 \quad 10 \quad 1 \quad 8 \quad 1 \quad 7 \quad 1 \quad 0 \quad 1$

A

APPENDIX IV

CHECKOUT PROCESS SPECIFICATION
$49 \times 1 /$ TIRE-WINDING MACHINE

APPENDIX IV

CHECKOUT PROCESS SPECIFICATION, 49×17 TIRE-WINDING MACHINE

1. SCOPE

a. This document establishes the procedure to be followed in checking the winding machine that will be used to fabricate the filament-wound carcass for 49×17 tires.
b. Carcass fabrication consists of applying alternate layers of reinforce-ment-cord and rubber-squeegee plies. The cord will be applied to the mandrel in alternate right- and left-hand patterns lising a prescribed tension. The insulation-squeegee plies will be positioned over each layer of cord.
c. The manufacturing techniques and equipment developed for the program will be verified with the fabrication and testine of $49 \times 17,26-\mathrm{ply}$ 1ated, Type VII, aircraft tires.

2. MACHINE CAPABIIITIES

a. Capacity - 38-in. OD minimum to 50-in. OD maximum, with maximum cross section of 18 in . (diameter)
b. Winding patterns - radial and helical
c. Payoff system - six payoff assemblies and six pressuie-roller assemblies (cam-controlled)
d. Tension system - 12 adjustable hysteresis tension devices, range 0 to 6 in. $-0 z$
e. Winding-head speed range - 2 to 40 rpm
f. Rubber applicator - cam-controlled.
3. MBCHANICAL SYSTEMS CHECK PRIOR TO OPERATION
a. Check the oil level in the variable-speed transmission and all speed reducers.
b. Check all transmissions for freedom of movement.
c. Check the alignment of all shaft couplings.
d. Check the alignment of all jack shafts and bearings.
e. Check all timing belts, chains, and sprockets for alignment and proper tension.
f. Check the backlash, aligrment, and lubrication of all gears.
g. Check al slides for alignment and freedom of movement.
h. Check all payoff assemblies and pressure-roller assemblies for alignment and freedom of movement.
i. Check the tension range of all tension devices.
4. ELECTRICAL SYSTEMS CHECK
a. Visually inspect all wiring and terminal connections.
b. With power cn , check the operation of the mandrel and carriage drive motor as follows:
(1) Check the direction of rotation.
(2) Check the forward and reverse operation of the muinc.
(3) Depress the machine-run buttion, and check the syeed range with the speed control.
c. With the pc ser on, check the operation of the ratio-adjust actuator as follows:
(1) Set the ratio-adjust selector switch in the manual position and check the range of the actuator with the ratio-adjust control.
(2) Set the motor-selector switch in the forward position and start the motor.
(3) Set the ratio-adjust control to the approximate ratio required.
(4) Depress the run button and adjust the machine speed.
(5) Check the actuation of the automatic control by observing the ratio indicator. The mandrel and carriage are synchronized when readings on the indicator stabilize.
d. With the power on, check the operation of the rubber applicator as follows:
(1) Set the motor-selector switch in the reverse position and start the motor; set the rubber-applicator selector switch in the manual position and check the limits of rotation of the rubber-applicator head by adjusting the manual position control
(2) Set the rubber-applicator selector switch in the "auto" position and check the automatic control as follows:
(a) Set the motor-selector switch in the reverse position and start the motor.
(b) Depress the run button and adjust the machine speed.
ic) Visually check the rubber-applicator rotation as the mandrel rotates. (Rotational feed is controlled by a cam coupled to the mandrel drive.)
5. OPERATIONNL CHECK
a. Winding-Operation Check
(I) Install the test mandrel in the machine.
(2) Install the crange gears and cams required for bias winding.
(3) Install spools of cord on the tension devices.
(4) Select the direction of the winding head (carriage).
(5) Thread the cord through the payoff system, anchor it to the mandrel, and set the tension.
(6) Fagage the pressure roiler with the mandrei.
(7) Set the motor-selector switch in the forward position and start the motor.
(8) Set the ratio-adjust selector switch in the "auto" position and set the ratio-adjust control to the approximate ratio required.
(9) Depress the run button and adjust the machine speed.
(10) Wind the test pattern.
(11) Stop the machine, and check the cord angles.
b. Rubber-Application Check
(1) Disengage the winding head and pressure rollers, and cut the cords.
(2) Set the motor-selector switch in the reverse position and start the motor.
(3) Set the rubber-applicator selector switch in the "auto" position.
(4) Depress the run button and adjust the machine speed.
(5) Fun the machine until the rubber strip reaches the starting position.
IV-4
(6) Stop the machine, thread the rubber through the system, and anchor the strip to the mandrel.
(7) Engage the rubber-stitching roller with the mandrel.
(8) Start the machine to apply rubber and check the lead.
(9) Stop the machine.

6. REFERENCES

T. R. Henderson, J. A. Holloway, M/Sgt. H. P. McMakin, "Radiographic Techniques for Examining the Filament-Wound Tire," AFNL TR-68-275,
November 1968.

Heinrich, R. H. "Simulated Service Testing," Rubber World, May 1968
Hothschild, R., "Principels and Applications of Microwave in Material Testing," Bulletin 1000 of Microwave Instruments Co., Corona del Mar,

Study of Tire Uniformity Structural Features, and Defects by Halographic $\frac{\text { Nondestructive Testing (HNDT), GC Optronics, Inc., Ann Arbor, Michigan }}{\text { Jan. 29, } 1969}$

APPERNDIX V
INSTRUCTION MANUAL FOR A TOROIDAL WINDING MACHINE

I. INIRODUCTION

The winding machine described in this manual is designed to produce fila-ment-wound toroidal shapes on a toroidal mandrel. The machine possess a high degree of versatility in that reinforcing filaments or tapes can be laid on the mandrel in bias, geodesic, radial, or other cord path combinations. This manual presents specific procedures for operating this machine according to AGC Drawing No. T-120850.

II. CAPABILITIES

The toroidal winding machine will wind predetermined helical patterns on toroidal mandrels ranging in size from 38 inches to 50 inches (outside diameter) with a cross section diameter ranging from 10 inches to 18 inches. The number of helical circuits (winding-head revolutions per one mandrel revolution) ranging from 2:1 through 2000:1 are determined by four change-gears located in the machine's right side. The number of turns (winding head revolutions) are indicated by an electrical counter located on the control panel. The gear changes required to produce the desired number of cords-per-inch can be determined using the formuli given in Section VB. Change-gears to produce the cord-per-inch shown in Section $5 b$ are provided to fulfill any additional pattern requirements. Change-gears ranging from 40 to 120 teeth are required. These gears may be purchased as "off-the-shelf" items fiom transmission product distributors throughout the United States and Canada.

III. DESCRIPTION

A. DRIVES

The mandrel and winding-head are driven by one prime mover. To compensate for the changing drive ratio between the prime mover and mandrel, a variable-speed gear box is employed between the prime mover and winding-head. An electro-mechanical pickup, located between the mandrel and winding-head coordinates the mandrel and winding-head rotation ratio. Driven through changegears the electro-mechanical pickup instantaneously senses and corrects wind-ing-head speed variations, initiating speed corrections through the variablespeed gear box. The change-gears select the required winding pattern. Winding speed is controlled by the variable-speed prime mover. To wind right-or left-hand helical patterns, the winding-head is rotated clockwise or counterclockivise. The direction of winding-head rotation is selected through a reversing gear box.

B. MANDREL SUPPORT

The winding-machine utilizes the rotating-mandrel, friction-drive concept. The mandrel is supported by three "endless" timing-belt assemblies and four-roller assemblies mounted on four cross slides. Adjustment for diameter change is accomplished by adjusting the cross slides. The cross slides are similar in appearance to a four-jaw lathe chuck. A change in cross section adjustment is accomplished by adjusting the four rollerassemblies, each assembly consisting of two self-centering rollers. The mandrel is driven by the lower timing belt. This belt contacts 25% of the mandrel's O.D., minimizing drive slippage and reducing local pressure due to mandrel weight.

C. WINDING-HEAD

1. The winding-head rotating about the tire's cross section carries spools of cord, hysteresis brakes, payoff-head assemblies, and pressureroller assemblies. The cord is dispensed from a spool, tensioned by a hysteresis brake. It is passed over intermediate guide-rollers and is applied to the mandrel surface by a cam-controlled payoff-roller. To minimize the machine setup time required for changing from right- to left-hand helical patterns, right- and left-hand tension brakes, paynff rollers, and pressure rollers are provided.
2. The winding-head consists of a gear-driven ring-assembly supported by four bearing-assemblies. A quadrant of the ring assembly is removable to provide an opening for mandrel installation and removal. The quadrant is positioned for removal by rotating the winding-head manually until the wind-ing-head lock-pin can be inserted in the index hole provided in the ring assembly. As a safety feature the lock pin can not be inserted until the cam adsembly is removed. The cam assemblies mounted on the winding-head supportbracket consist of two sections. When changing winding-pattern the cams are removed and replaced by removing four thumb-screws.
3. The payoff roller, supported by the winding-head, is adjustable in directions parallel and perpendicular to the winding head's axis of rotation and radially about the perpendicular adjustment. The parallel and radial adjustments are used to align the payoff-roller with the predetermined winding path. The payoff roller's circular path about the tire cross-section is set with the perpendicular adjustment.
4. In operation the payor'f head, supported by the winding head, rotates in a circular path about the tire's cross section. While traveling in a circular path, the payoff head is also capable of reciprocating parallel to the winding head's rotation axis. This reciprocating motion is controlled by a cam mounted on the winding-head support. The cam provides a means of modifying the basic path of the payoff head generated by the change-gears. Two cams are provided to minimize machine setup time when changing from right- to left-hand helical patterns. The right- or left-hand cam is selected by loosening a lock screw, positioning the cam-follower over the required cam and tightening the lock screw.

D. PRESSURE ROLJER

A pressure roller is provided for use for winding-patterns which are on a slip path. This roller assembly, supported by the winding-head, is spring-loaded against the mandrel surface, rolling on the cord as the cord is applied. The pressure roller's radial position in relation to the tire's cross section is controlled by a non-rotating cam mounted on the winding-head support. A radial adjustment is provided for setting the winding-head's initial pressure.

E. RUBBER APPLICATOR

The rubber-applicator assembly, mounted on the aachine's left side, consists of a gear-driven ring-assembly supported by four bearing-assemblies. The ring-assembly, rotating through a 270 degree arc about the tire's cross
section, carries a rub ${ }^{2}$-applicator head. The rubber-applicator head supports a spool of rubber tock. It guides the rubber strip to the mandrel and stitches the rubber to the mandrel surface. The rubber-applicator ring-assemChange centered about the tire's cross section by adjusting the cross slide. roller assen section adjustment is accomplished by adjusting the stitchingroller assembly is sprin ilde-mounted on the ring assembly. The stitchinging roller is not in use, it is manually retracted surface. When the stitchposition with a lock which is provided. The meted and locked in retracted a circular path about the tire's cross section abplicator head rotates in center. The rubber-applicator head's rotation as the tire rotates about its which is driven by the mandrel drive.

IV. MACHTNE INSTALLATION

The machine weighs approximately 8000 lbs . The weight is distributed over four leveling-pads. The machine occupies an approximate six-foot-by -six-foot area and is approximately seven feet in height (after leveling). The machine may be put into operation after the following tasks are performed: The machine is placed on the steel leveling pads provided, and leveled by adthen install four leveling screws in the machioe base. A circuit breaker is machine as shown one 30 cycle, 3 -phase line and connected to the achine as shown on the wiring diagram (E-101523, Sheet 6).

V. MACHINE SETUP

A. MACHIVE PREPARATION

The machine should be kept clean. It is especially important that no rubber cement is allowed to accumulate which would interfere with any of the machin should structions should be made by rotating the winding-head by hand.

B. CHANGE-GEAR SELECTION

1. The number of helical circuits (winding-head revolutions per one mandrel revolution) and cords-per-inch (winding head advance in one mandrel revolution) are selected by placing four predetermined change-zears on their corresponding shafts in the change-gear box. The change-gear box is located in the right side of the machine.
2. The gears may be changed by pulling off the retaining knobs, unlocking the "pork chop" and the cluster-gear shaft-housing. The predetermined gears are then placed on the corresponding shafts. The cluster-gear "Buft-housing is a justed until minimun backlash is obtained between "A" and "B" gears and lock. The "pork chop" is rotated about "A" gear until minimum preloaded; is obtained between "C" and "D" gears and lock. Gears should not be preloaded; i.e., a slight backlash is preferable to preloading.
3. The change gears for the ratios listed in the following tab block are supplied with the machine. Additional ratios that may be required for future patterns can be determined by the formula given in " 4 " below:

4. Change-gear formuia

A = Input-gear teeth
$\mathrm{BRC}=$ Cluster-gear teeth
$D=$ Output-gear teeth
$P=$ Carriage revolutions
$\mathrm{M}=$ Mandrel revolutions

$$
\frac{A}{B} \cdot \frac{C}{D}=\frac{2 P-4 M}{P}
$$

C. CONIROL OF CAM-PAYOFF HEAD

To program a cord path about the toroid, a revolution ratio for the mandrel and the winding-head is selected. Based on this ratio, payoff head positions are programmed in relation to the angular rotation of the wind-ing-head about the toroid's cross section. Equations for digital computer solutions, required when programming the machine's motions, may be obtained from the following: Computer Program for the Design of Cams to Filament-Wind Tires, Contract F33615-67-C-1726, Project 360-7.

VI. MACHINE OPERATION

A. MANDREL INSTALLATION DIRECTIONS

1. Place the winding-head gear-shift lever in neutral position.
2. Remove the cam assembly's front section by removing upper and lower thumb-screws.
3. Rotate the winding-head manually until the winding-head lockpin can be inserted in the index hole.
4. Remove the four bolts which attach the removable quadrant to the winding-head ring-assembly.
5. Remove the winding-head quadrant by swinging it out on the upper hinge; hoist.
6. Aljust the four mandrel-support cross-slides to clear the mandrel which is to be installed.
7. Adjust four cross-section guide-roller assemblies to clear the mandrel.
8. Open the four front cross-section guide-rollers by hinging them outwardly to clear the mandrel outside diameter.
9. Attach the slings to the mandrel and hoist in the machine. As the mandrel is lowered into the machine, release the lower belt-tensioner.
10. Adjust the lower two mandrel-support slides and the two lower cross-section guide-rollers in order to raise and center the mandiel.
11. Adjust the upper two mandrel-support slides within one inch of the mandrel, and adjust the upper two cross-section rollers to center the mandrel.
12. Remove the slings from the mandrel.
13. Lock the lower belt-tensioner.
14. Install the quadrant in the winding-head ring-assembly by hanging it onto the upper hinge. Lower it slowly until it engages with the main ring-assembly. There must be no mismatch of the outer bearing surface at either joint. Install four bolts into the quadrant and tighten.
15. Disengage the winding-head lock-pin.
16. Install the cam assembly and attach it with upper and lower thumb screws.

B. RUBBER-APPLICATOR OPERATION

1. Set the "FOR.-REV." selector to "REV."
2. Set the speed adjustment control to "ZERO."
3. Set the rubber-applicator selector to "AUTO."
4. Remove the Number 12 tension device from the winding-head. Rotate the head so that the head's open space is at the lower in-board side. This is done to permit full travel of the rubber-applicator head in the bead area.
5. Depress "FOR.-REV." button to start motor.
6. Depress "RUN" button.
7. Center the rubber-applicator head about the mandrel by adjusting the slides.
8. Check the rubber-applicator head's position. The head may be positioned at the start position by allowing the machine to run; or it can be positioned by resetting the cam. The cam is located in the change-gear compartment located below the control panel.
9. Start the rubber strip by threading it over the guide roller and tacking it to the mandrel.
10. Engage the stitching-roller with the mandrel by releasing the lock.
11. Start rotatine the mandrel by increasing the speed-adjustment
control.
12. After rubber application the applicator head nay be positioned in the rear by selecting "MANUAL" and adjusting the manual-control pot.
13. For normal or emergency stop, depress the "STOP" button
14. To shut down the machine, depress the "MOTOR SIOP" button and set the rubber-applicator selector to the "OFF" position.

C. HELICAI (BIAS-) WINDING OPERATION - MANUAL CONTROL

1. Install the change-gears selected for wiuding operatinn.
2. Install the cord spools on spindles of tension devices and tighten collet by turnine the knurled knob clockwise.
3. Set tension by rotating the tension-device hnusing.
4. Select for a clockwise or counterclocirwise cam by loosening the lock screw, positioning the cam follower over the selected cam, and tightening the lock screw.
5. Select the winding-head's direction of rotation by shifting the winding-head gear-shift level to a clockwise or a counterclockwise position.
6. Adjust the upper two mandrel-support slides to apply light pressure on mandrel. (After winding each layer, all four slides are retracted equally to compensate for the diameter increase.)
7. Adjust the four cross-section guide-roller assemblles, allowing 0.03 to 0.06 in. clearance to the mandrel, and lock with hand cranks (after winding each layer-reset clearance).
8. Adjust, the lower belt-tensioner by loosening the hand crank momentarily, and tightening after each layer.
9. Set "FOR.-REV." selector to "FOR."
10. Set the speed-adjustment control to "ZERO."
11. Depress the "FOR.-FEV." button to start the motor.
12. Attach one cord to the me drel's surface.
13. Set the ratio-adjust control to approximate the ratio required.
14. Depress the "RUN" button.
15. Start the mandrel rotation by increasing the speed-adjustment control.
16. Hold the ratio-adjust selector in the manual position (approximately 30 seconds) and release.
17. Wind test pattern and reset ratio-adjust control; hold ratio-adjust selector in manual position after each setioing until required cord spacing is obtained.
18. Stop mandrel rotation by setting the speed-adjustment control on "Zero."
19. Remove the cord test-pattern.
20. Set the revolution counter to "TERO."
21. Thread each of the six cords through the guide rollers and attach to the mandrel surface. While threading each cord, the winding head can be rotated and stopped for access by using the speed-adjustment control.
22. After threading, increase the speed with the speci-edjustment control and reset the ratio-adjustment control. Hold the ratio-adjust selector in the manual position after each seting, as required to maintain proper cord spacing.
23. After the wind is completed, set the speed-adjust control on "TERO."
24. For normal or emergency stop, depress the "STOP" button (letting the motor run).
25. To shut down the machine, depress the "MOTOR STOP" button.
26. Place the winding-head gear-shift level in the neutral position.
D. HELICAL (BI'S-) WINDING OPERATION - AUTOMATIC CONTROL

The use of this control requires a minimum of eight three-quarter inch diameter metallic discs or plugs which are equally spaced on the toroid inside diameter.

1. Follow the manual control steps "1" through "11."
2. Loosen the hand knob and set the mandrel-position sensor three-eighths of an inch from the metallic disc, or plug on the mandrel's inner diameter (using the plastic feeler-gage).
3. Depress the "RUN" button.
4. Thread each of the six cords through the guide rollers and attach the cords to the mandrel surface. While threading each cord, the winding-head can be rotated and stopped using the speed-adjust control.
5. Set the ratio-adjust control to approximate the ratio required.
6. Set the ratio-adjust selector to "AUMO."
7. Se's the revolution-counter to "gero."
8. Start mandrel rotation and increase speed with the speedajjust control.
9. After the wind is completed, set the speed-adjust control
10. For a normal or emergency stop, depress the "STOP" button (letting the motor run).
11. To shut down the machine, depress the "MOTOR STOP" button.
12. Place the winding-head gear-shift lever in neutral position.
13. Loosen the hand knob and retract the mandrel position-sensor before removing the mandrel from the machine.

E. RADIAI-WINDING OPERATION

1. Steps "1" through "3" and "5" through "ll" are the same as manual control. For Step " 4 " remove all the cam followers.
2. Set the ratio-adjust control on "500."
3. Depress the "RUN" button.
4. Thread each of the six cords through the guide-rollers and attach to the mandrel surface. While threading each cord, the winding-head can be rotated and stopped by using the speed-adjust control.
5. Set the revolution-counter to "ZERO."
6. Start the mandrel with the speed-adjust control.
7. Hold the ratio-adjust eelector in the manual position (for approximately 30 seconds); then return to the "OFF" position.

Steps " 24, " " 25 " and " 26 ." machine stop is the same as for the manual control

APPENDIX VI
E.M.I. (ENGINEERING MANUFACTURING INSTRUCTIONS)

Nos

Appendix VI
E.M.I. Engineering Manufacturing Instructions

Reproduced on succeeding pages are the following E.M.I. Engineering Manufacturing Instructions for the 30×8.822 PR and 49×1726 PR FilamentWound Tires.

EMI - 30×8.8 Bias Nylon Tire
2MI - 30×8.8 Geodesic Nylon Tire
TMI - 30×8.8 Radial Nylon Tire
iwI - 30×8.8 Radal Glass Tire
IMI - 30×8.8 Radial Wire Tire
EMI - 49×17 Bias Nylon Tire

	Rrt Munber 1 ISas9		
(0R\%.	Operation titie	Nore.	Copertion tine
0	momer frecration		
\ldots	nup pratatea		
$\stackrel{\square}{9}$	\%man		
05	Camem kimice		
σ	Timentiom		
9	Fomesties		
	-		
	--u-u-		

	\square		
	-		
	\square		
E			
E	-		
	\square		-----
	-		
			- -

ENGINEERING MANUFACTURING INSTRUCTION INSTRUCTION SHEET | OPER. NO. | REV NO. | $\begin{array}{l}\text { PART NO. } \\ 1269159\end{array}$ | $\begin{array}{l}\text { PART NAME Carcass FW } \\ 30 \times 8.8 ~ 22 ~ P R ~ B i a s ~ N y i o n ~\end{array}$ |
| :---: | :---: | :--- | :--- | DESCRIPTION Mold, Sand Mandrel Vibrator, Syntron ST-3

Drill, Hand w/drill \#31 Mandrel, RLA Bias
Winding Machint, Toroidal
Winding Machine, Horizontal
Turntable, Horizontal
Winding Machine, $6^{\prime \prime}$ Vertical Lavup Fixture

ory

$$
\begin{aligned}
& \text { T-120852 } \\
& \text { AGC Inv. \# }
\end{aligned}
$$

$$
\begin{aligned}
& \text { T-120848 } \\
& \text { AGC Inv. } \# 0191
\end{aligned}
$$

Tool NUMBER
AGC Inv. \#nv. \#101517
AGC Iny. \#40191-2
AGC Inv. 401518

TOOLING

$$
\text { NSN } \ldots
$$

DATE OF CHG.
ENGINEERING MANUFACTURING INSTRUCTION

ENGINEERING MANUFACTURING INSTRUCTION

ENGINEERING MANUFACTURING INSTRUCTION
Page 01-1
INSTRUCTION SHEET

ENGINEERING MANUFACTURING INSTRUCTION
INSTRUCTION SHEET
OPER NO of PART NO. 1269159 PART NAME Carcass FW 30x8.8 22PR B Bas Nylon
Page 01-3

ENGINEERING MANUFACTURINC INSTRUCTION INSTRUCTION SHEET

ENGINEERING MANUFACTURING INSTRUCTION

Page 02-3
ENGINEERING MANUFACTURING INSTRUCTION
INSTRUCTION SHEET

Page 02-4
ENGINEERING MANUFACTURING INSTRUCTION

Page 03-1
ENGINEERING MANUFACTURING INSTRUCTION
INSTRUCTION SHEET

OPER NO. 33 PART NO. 1269159	PART NAME Carcass FW 30x8.8 22 PR Bias Nylor
RIM-LOCKING ASSEMBLY LINER APPLICATION	
1. Scuff sand RLA P/N 1269151 as required. Wash s	surfaces with acetone.
2. Coat all surfaces with Chemloc 203 primer. adhesive and dry 10 minutes $9150^{\circ} \mathrm{F}$.	Dry 10 minutes.e $150^{\circ} \mathrm{F}$. Recoat with Chemloc 220
3. Cut (4) $3^{\prime \prime}$ dia O.D. $-0.5^{\prime \prime}$ dia I.D. donuts from donut rings.	XGP-120A rubber. Preply into (2) each (2) layer
4. Position $3^{\prime \prime}$ dia rings over holes in rim-locking holes in RLA.	assembly O.D. Keep $0.5^{\prime \prime}$ center hole centered with
5. Wash in acetone bushing P/N 1269153 and washer Operation \#2 above..	P/N 1269152. Air dry. Coat external surfaces as in
6. Press bushings through rubber rings on RLA with between bushing and RLA hole to act as seal.	flange on O.D. of RLA. There should be rubber captured
chamfered inner edge outward 7. Install washerf over protruding end of bushing.	See Sketch \#
7a. Swage lip of bushing onto washer using $74^{\circ} / 90^{\circ}$	cone in arbor press. SKETCH \#4

ENGINEERING MANUFACTURING INSTRUCTION
instruction sheet

ENGINEERING MANUFACTURING INSTRUCTION INSTRUCTION SHEET

| OPER NOD4 | PART NO. 1269159 | PART NAME Carcass FW 30x8.8 22 PR | Bias Nyion |
| :--- | :--- | :--- | :--- | :--- |

INNER LTVER FABRICATION:

1. Dry fit RLA ($\mathrm{P} / \mathrm{N} 1269154-1$) into mandrel. Trim mandrel as required. Heoen
Alr
2. Mate RLA with mandrel. Install assembly in vertical support fixture. Coat I.D. of nill filler to dispersion. Center RLA. Allow dispersionalrel and RLA as required.
Roll up $2^{\prime \prime}$ wide strips of XCP-120A rubber.
Starting at I.D. of tire radially wrap strips until torus is covered with une laver of rubber. Use
$1 / 8^{\prime \prime}$ overlap.
Transfer assembly to horizuntal turn table (AGC 40191-2).
Starting at bead heel circumferentially wrap $2^{\prime \prime}$ wide strips of XGP-120A rubber. Contimue to bead heel on opposite side. Stitch thoroughly to remove air between lat and 2nd ply.
Repeat step \#6 continuing rubber approximately $1 / 2$ in over edge of RLA. Stitch to remove air between 2nd and 3 rd ply.
Cut openings at two bushings. Wrap entire torus with prereleased cotton shrink tape. Apply vacuum bag. Check for leaks.
Install pait in oven and cure per separate instructions.
After cool dow, remove bag and bleeder cloth.
Trim rubber at bushings as required and insert 2 plugs (shop aids).
Inspect for cure, blisters and lack of bond at seams.

ENGINEERING MANUFACTURING INSTRUCTION
instruction sheet

engineering manufacturing instruction

INSTRUCTION SHEET

Page 06-1
ENGINEERING MANUFACTURING INSTRUCTION
INSTRUCTION SHEET

PER No 06	PART NO 1269159	

INSPECTION:

1. Measure and record: O.D. Section Width
Carcass Weight
2. Verify I.D. number and prepare thippection geceptance tag.

Page 07-1
engineering manufacturing instruction

ENGINEERING

 MANUFACTURING INSTRUCTION

Carcene, T.W. Tyr
PART NAME $30 \times 8.822 P R$. Geodesic Nylor

- PART NUMBER 1269158

PRELIMINARY

- NEXT ASSEMBLY A-5068A-2
- EFFECTIVE TIRE

SERIAL NUMBER 15955.022/B-1

AEROSET-GEmEAAL CBRPERATIBE azusa, califorma

VI-22

ENGINEERING MANUFACTURING INSTRUCTION INSTRUCTION SHEET

DESCRIPTION
Mold, Sand Mandre!
Vibrator, Syntroa ST-3 Drill, Hand w/drill \#31
Mandrel, RLA Radial
Winding Machine, Toroidal
Winding Machine, Horizontal
Turntable, Horizontal
Vertical Layup Fixture
DATE S.HANGE AND EFFECTIVITY
OATE of Cuct

ENGINEERING MANUFACTURING INSTRUCTION

ENGINEERING NANUFACTURING INSTRUCTION

Page 01-1
ENGINEERING MANUFACTURING INSTRUCTION

OFER NOO1	PART	1269158	PART NA	Carcase FW 30×8. 22 PR reoodesic Nylon		
MANDREL PR TJARATION: 1. Wax all mold surfaces with Kanaba wax. 2. Porition cavity section ($\mathbf{T}-120855-10$) $)$ nto platform of Syntron vibrator. 3. Install contor core ($\mathrm{T}-120853-102$) emall ond down, over $3 / 4$ din. centor pin and into meting ourface of cavity sholl. 32. Woigh out in 4 containors 28 of SR-6 samd.						
PREPARED			TOOL ENGR		PROJECT ENGR.	DAIE
CHECKED			COGN. ENGR.			

Page 01-3

ENGINEERING MANUFACTURING INSTRUCTION

Page 02-3
ENGINEERING MANUFACTURING INSTRUCTION
INSTRUCTION SHEET

ENGINEERING MANUFACTURING INSTRUCTION
INSTRUCTION SHEET

ENGINEERING MANUFACTURING INSTRUCTION
INSTRUCTION SHEET

| OPER NO 04 | PART NO 1269158 | PART NAME Carcase FW 30×8.8 |
| :--- | :--- | :--- | :--- | :--- |
| 22 PR Geodesic Nyion | | |

1. Dry fit RLA (P/N 1269154-3) into mandrel. Trim mandrel as required,

INNER LINER FABRICATION:

PREPARED BY			TOOL ENGR			PROJECT ENGR.	DATE
CHECKED BY			COGN. ENGR.				

[NGINEERING MANUFACTURING INSTRUCTIDN INSTKURTIOA SHEET
Page 05-1

NOILJHHISNI ONI甘ח1J甘triN甘V ONIH3JVITN

INSTRUITION SHEET

| OFEK NU O5 FAKT NO 1269158 | PART NAME CKI＂ss FW 30x8．8 22 FR | Geodesic Nylon |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

8．While tire is turning，wipe entire surface of tire vith white ges．Maintain tire rotating to air dry．
While tire is rotating engage winding ring by moving gear level to the left．This will cauge ring to turn counterclochorise（left belix）．
are on the left aide can．Inatall vinding reels on vinding Stop machine．Ensure that payoff cam followers are on the left alde cas．
ring．Thread cord through rollera press on rubber．Lover preasure rollers to mandrel surface．
Start mandrel rotation．Quickiy increase apeed to 15 KM ．Adjumt cord apming by turning varieble gear Starting as required．Increasing numbers increases the cond end－covart（reduces spacing betveen corda）． Stop mandrel rotation when proper cord epacing is atteined，i．e．，7．32 ends per inch．
Cut off cord from tire carcass．Set machine counter to sero．
Begin tire mandrel rotation and wind a complete layer of cord．Make adjustamta as necmasary to variable gear ratio setting to maintain uniform end conunt．When cord closes with first revolution，turn off mackire． gear risengage winding ring by moving lever to conter position．
Record number of cords．Page $06-1$ ．Total cords 555．Angle of crown 24° ．
Rotate mandrel and paint with dispersion of xap－121．Contime rotation for 10 drartea to dry．
Repeat Step \＃5 and remove tire．Place on horizontal tura table． Repent Steps \＃2，4，6，7， 8 ．
Place cam follower rollers on right cem．Fngage winding ring for right helix（wove handie to right）． Repeat Steps \＃10 through \＃15． Repeat Steps \＃he through \＃19 until a total of 4 cond plies and 5 rubber lavers．Cord path directione will
 With a silver pen write identification number on aiderall（I．D．number ahown on cover page of these
instructions．）Also show mandrel weight．Drav line at center line of crown．

FRLPARED EY		TOOL ENGR			PROJE T ENGR．	DATE
CHECKED BY		COGN．ENGR．				

ENGINLERING MANUFACTURING INSTRUCTION
INSTRUCTION SHEET

馀 HNMA

ENGINEERING MANUFACTURING INSTRUCTION

Engineering manufacturing instruction
INSTRUCTION SHEET

VI -43
ENGINEERING MANUFACTURING INSTRUCTION instruction sheet
Page 01-1
ENGINEERING MANUFACTURING INSTRUCTION
INSTRUCTION SHEET

Page 01-2 ENGINEERING MANUFACTURING INSTRUCTION instruction Shet

ENGINEERING MANUFACTURING INSTRUCTION

INSTRUCTION SHEET

VI-48

ENGINEERING MANUFACTURING INSTRUCTION

Page 02-2

Page 02-3
ENGINEERING MANUFACTURING INSTRUCTION INSTRUCTION SHEET

ENGINEERING MANUFACTURING INSTRUCTION
instruction sheet

| OPER NO 03 | PART NO. 1269155 | PART NAME Carcass FW 30×8.8 PR Radial Nylon | |
| :--- | :--- | :--- | :--- | :--- |

RIM-LOCKING ASSEMBLY LINER APPLICATION
2. Coat all surfaces with Chemlock 203 adhesive. Dry 15 minutes @ $150^{\circ} \mathrm{F}$. Repeat with Chemlock 220. Cut (4) 3" dia. O.D. $-0.5^{\prime \prime}$ dia. I.D. donuts from XGP-120A rubber. Preply into (2) each (2)-layer donut rings.
Position $3^{\prime \prime}$ dia. rings over holes in rim-locking assembly O. D. Keep $0.5^{\prime \prime}$ center hole centered with holes in RLA. Wash in acelone, bushing. Py as in Step \#2.
5. Wash in acetone, bushing, P/N 1269153, and washer, P/N 1269152. Air dry. Coat external suriaces
Press bushings through rubber rings on RLA with flange on O. D. of RLA. There should be rubber captured between bushing and RLA hole to act as seal. Install washer (chamfered inner edge outward) over protruding end of bushing. See Sketch \#4. 7a. Tlange lip of bushing onto washer using $74^{\circ} / 90^{\circ}$ cone. SKETCH \#4

BUSHING

PREPARED BY			TOOL ENGR.		
PHECKED BY			COGN. ENGR.		

ENGINEERING MANUFACTURING INSTÉUCTION

instruction sheet

ENGINEERING MANUFACTURING INSTRUCTION
Page 04-1 INSTRUCTION SHEET

ENGINEERING MANUFACTURIIV INSTRUCTION

INSTRUCTIUN SHEET

ENGINEERING MANUFACTURING INSTRUCTION

INSTRUCTION SHEET

$\mathrm{t}-9028 \mathrm{ed}$

VI-56
VI-57

ENGINEERING MANUFACTURING INSTRUCTION

Engineering manufacturing instruction

INSTRUCTION

 INSTRUCTION SHEET

ENGINEERING MANUFACTURING INSTRUCTION INSTRUCTION SHEET

ENGINEERING MANUFACTURING INSTRUCTION

INSTRUCTION SHEET

Page 02-3
ENGINEERING MANUFACTURING INSTRUCTION

INSTRUCHON SHEET

ENGINEERING MANUFACTURING INSTRUCTION INSTRUCTION SHEET

Page 03-2
ENGINEERING MANUFACTURING INSTRUCTION INSTRUCTHON SHEET

ENGINEERING MANUFACTURING INSTRUCTION
INSTRUCTION SHEET

OPER NO 04 PAR	PART NO	1269156	PART N	IAME	Carcass FW 30x8.8 22 PR Radial Glas:			
INNER LINER FABRICATION:								
1. Dry fit RLA (P/N 1269154-4) into mandrel. Trim mandrel as required. Recoat with PVA as required. Air 2. Mate RLA with mandrel. Install assembly in vertical support fixture. Coat I. D. of RLA with rubber disper Allow dispersion to air dry 20 minutes. Blend profile with mandrel and RLA as required.								
3. Roll up $2^{\prime \prime}$ wide strips of XGP-120A rubber.								
4. Starting at I . D. of tire, radially wrap stripe until toruc is covered with one layer of rubber. Use $3 / 88^{\prime \prime}$ overlap.								
5. Transfer assembly to horizontal turn table (AGC-40191-2).								
6. Starting at bead heel, circurnferentially wrap $2^{\prime \prime}$ wide strips of XGP-120A rubber. Cort inue to bead heel on opposite side. Stitch thoroughly to remove air between lat and 2nd ply.								
7. Repeat Step $\# 6$ zontinuing rubber approximately $1 / 2 \mathrm{in}$. over edge of RLA. Stitch to remove air between 2nd and 3 re ply.								
8. Cut openings at two bushings. Wrap entire torus with prereleased cotton shrink tape. Apply vacuum bag. Check for leaks.								
9. Install part in oven and cure per separate instructions.								
10. After cool down, remove bag and bleeder cloth.								
11. Trim rubber at bushings as required and insert 2 plugs (shop aids).								
12. Inspect for cure, blisters and lack of bond at seams.								
PREPARED EY	EY		TOOL ENGR				PKOJECT ENGR.	DATE
CHECKED BY			COGN. ENGR.					

Page 05-2
ENGINEERING MANUFACTURING INSTRUCTION
INSTRUCTION SHEET

| OPER NO 05 | PART NO. 1269156 | PART NAME Carcas FW F 30x8.8 |
| :--- | :--- | :--- | :--- | :--- | :--- |

engineering manufacturing instruction
instruction sheet

Page 07-1

ENGINEERING MANUFACTURING INSTRUCTION TABLE OF CONTENTS

INSTRUCTION SHEET
ENGINEERING MANUFACTURING INSTRUCTION

TOOL NUMBER

T-120849
AGC Inva 1401517

NSN
110
-1
1
1
1
1 269157

\[

\]

ENGINEERING MANUFACTURING INSTRUCTION
INSTRUCTION SHEET

VI -80

engineering manufacturing instruction

 INSTRUCTION SHEET

Page 01-2 engineering manufacturing instruction INSTRUCTION SHEET

Page 01-3
ENGINEERING MANUFACTURING INSTRUCTION
INSTRUCTION SHEET

Page 02-1

INSTRUCTION
 ENGINEERING MANUFACTURING

INSTRIICTION SHEET

ENGINEERING MANUFACTURING INSTRUCTION

Page 02-3

Page 03-1
ENGINEERING MANUFACTURING INSTRUCTION INSTRUCTION SHEET

Vi-88
Page 03-2 ENGINEERING MANUFACTURING INSTRUCTION INSTRUCTION SHEET

PREPARED QY			TOOL ENGR.			PROJECT ENGR.	DATE
CHECKED BY			COGN. ENGR.				

ENGINEERING MANIJFACTURING INSTRUCTION
INSTRUCTION SHEET

ENGINEERING MANUFACTURING INSTRUCTION

Page 06-1

ENGINEERING MANUFACTURING INSTRUCTIONS

PART NAME: CARCÁSS FW 49×1726 PR TYPE \mathbb{Z} AIRCRAFT TIRE, BIAS NYLON
PART NUMBER: 1269202
ENSINEERING MANUFACTURING INSTRUCTION INSTRUCTION SHEET
ENGINEERING MANUFACTURING INSTRUCTION INSTRUCTION SHEET

20. Coat mating surfaces with slurry of Stienex "C". Install (4) four T-1286127-118 locating blocks on pads of handling harness ($\mathrm{T}-286129$).
21. Using handling tongs ($\mathrm{T}-1286127$), pick up upper mandrel half and position on to lower mandrel half.
22. Using jack screws in base of handing tongs, adjust height of mandrel using template (T-1286127-117) from face of pads on handling harness. Add bonding slurry as required to insure minimum porosity of bond, 23. Place mandrel in preheated oven $\left(250^{\circ} \mathrm{F}\right)$ for one (1) hour.
24. Cool down in oven or remove from oven and cool under asbestos blanket.
25. When cool, scuff bond resin flush with adjacent surfaces using mushroom sander.

ENGINEER: AG MANUFACTURING INSTRUCTION INSTRUCTION SHEET
 from sand mandrel.
15. Replace mandrel into oven and continue cure for (1) one and $1 / 2$ hours. Remove from oven and cover with asbestos
blanket to control cooling rate and prevent cracking from thermal shock. blanket to control cooling rate and prevent cracking from thermal shock
16. Wash all mold details in warm water and rewax per Operation \#l.
17. Repeat Operation 1 through 16 to make other mandrel half.
18. After both mandrel halves have cooled, bolt handing harness ($T-1286129-101$) over sand mandrel to inverting
fixture plate. Pick up and invert mandrel assembly, setting mandrel down on steel cart with handling harness
(T-1286129) between cart and mandrel. Remove inverting fixture and plate.
19. Using inverting fixture, lift first mandrel half and position handling tongs (T-1286127-101) centrally in mandrel ID. Extend three pins and lower mandrel into preformed notches. Remove inverting fixture.
Page 2 of 3
in int

18. After both mandrel halves have cooled, bolt handling harne
\square
VI -100
ENGINEERING MANUFACTURING INSTRUCTION

PER NO	PART NO. 1269207	$\begin{array}{ll} \hline \text { PART NAME } & \begin{array}{l} \text { Shell Rim Lock } \\ 49 \times 17 \mathrm{FW} \text { AF Tire } \end{array} \\ \hline \hline \end{array}$
RIM LOCK FABRICATION:		
1. Prepare mandrel ($\mathrm{T}-1286125$) as follows :		
a. Disassemble, clean and coat all details with DC-20 or R-671. Bake on for four (4) hours at $300^{\circ} \mathrm{F}$.		
b. Reassemble, precoating all details in contact with resin, using Kanaba Wax.		
2. Install mandrel in winding machine (AGC No. 26725).		
3. Precut (2) strips prepreg 341 glass cloth, 16 in . wide $\times 60 \mathrm{in}$. long. Cut V notches every 3 in. on side.		
4 in . on both edges. 4. Cut (1) 13.5 in . wide $x 131 \mathrm{in}$. length, prepreg 341 glass cloth. Nip edges 1 in . to 1.5 in . every 3 in . to Cut (8) 9.7 in . wide $\times 132 \mathrm{in}$. lengths, prepreg 341 glass cloth. Cut (8) 1.6 in , wide $\times 135 \mathrm{in}$. lengths, prepreg 341 glass eloth.		
5. Cut (4) 4 in . dia discs of prepreg 341 glass cloth. Apply ${ }^{3}$ small prepreged discs over each boss insert.		
as required, using 20 -end S -H5s prepreg roving. 6. Wrap 16 in . wide prepreg 341 glass cloth on mandrel. Tension as required to corform to mandrel. Tie in place		

9.
10.
5.0
11. Lay up plies, 2 each of each size, centered over pins in plug in mandrel. Start with 6.6 in. diameters and finishing with 7.0 in. diameters. Repeat on second boss. Continue hoop wrap across center section from that

VI-102
ENGINEERING MANUFACTURING INSTRUCTION Page 2 of 3 INSTRUCTION SHEET

OPER NO	PART NO 1269207	PART NAMEShell Rim Iock 49×17 FW AF Tire	

12. Wrap (2) lengths 1.6 in , wide strips 341 cloth using manual tension. Position outboard edge of strips approximately over edge of laminatu applied in Operation No. 8 and 9 above. Inboard edge of strip should be
approximately 2.8 in . from outer edge of mandrel. Secure wrap in place using 20 -end roving with $10 /$ i/tension per strand.
approximately 2.8 in . from outer edge of mandrel. Secure wrap in place using 20 -end roving with $10 / \mathrm{f}$ tension per strand.
13. Fepeat Operation No. 12 for second buildup of 1.6 in . wide strips. roving to center section.
14. Repeat Operations 12,13 and 14 for opposite side buildup. Trim both outer edges as required.
15. Wrap hoop windings as required to approx profile required. Use shop aid template of contour. Apply (1) ply of
16. Over wrap rim lock with bias cut dacron cloth. Then overwrap rim lock with (2) layers of shrink tape, using care to maintain contour of part.
17. Position mandrel assembly in oven and cure as follows:
$250^{\circ} \mathrm{F}$ - 4 hours or continuous rate of rise, $50^{\circ} \mathrm{F}$ per hour. A chart record of cure temp and time is required. $250^{\circ} \mathrm{F}=4$ hours
$325^{\circ} \mathrm{F}=4$ hours
18. Cool in oven at rate of approximately $50^{\circ} \mathrm{F}$ per hour.
19. Remove shrink tape and bleeder cloth. Measure oD. If larger than 22.280 dia, send to machine shop for trimning
to size ($22.250 \pm .030$ dia).
20. Remove part from mandrel. Remove flash as required. Generate ,05R on outer edges as required by hand sanding or filing.
21. Deliver rim lock to machine shop for boring, facing and Chaifering.
22. Using srall drill, drill through rim lock using conical depressions on ID for location. These holes eust be accurately irilled as they will be used to locate centers of pockets on ID.
23. Set up on notary table using suitable shop aid clamping.
24. Using holes drilled above, locate centers of premolded pockets and bore 2.062 dia (2) places per drawing.

VI-103
ENGINEERING MANUFACTURING INSTRUCTION Instruction sheet

VI-104

Page 1 of 2 MANUFACTURING INSTRUCTION INSTRUCTION SHEET

| OPER NO. | PART NO. 1269203 | PART NAMERim Lock Assembly
 $49 \times 17 \mathrm{FW}$ AF Tire | |
| :--- | :--- | :--- | :--- | :--- |

RIM LOCK ASSEMBLY:

1. Wash shell-rim lock (P / N 1269207) in acetone.
2. Coat all surfaces with Chemlock 205 Primer. Dry 15 minutes © $150^{\circ} \mathrm{F}$. Repeat with Chemlock 220 Adhesive.

Cut (4) 6 in. dia OD $\times 1.5$ dia ID donuts from XK-985 rubber. Preply into (2) each two-layer donut rings.
4. Position 6 in. dia rings over holes in shell OD, 1.5 dia must be concentric with holes in shell. Precoat area with Gasoline/XK-985 Dispersion. with Chemlock 205 and 220. Dry as in Step \#2.
8. Lubricate MS28775-130 0-ring with YK-985/ the lateral axid of the shell.
Trim excess rubber from ID of shell. Bushing should be positioned so that the extruding rubber ring thru hole. the lateral axia of the shell.
7. Clamp bushing in place, using " C " clamp or temporarily inserting nut. Drill (2) holes . 125 dia thru hules in
should be flush or below surface of bushing.
assemble nut to bushing quickly before dispersion dries out orspersion and instain 0-ring on Nut, P/N 1269209, and assemble nut to bushing quickly before dispersion dries out. Cinch nut down, using shop aid spanner. There should
9. Precoat all surfaces of rim lock assembly with XK-985/dispersion. Air dry.
10. Cut (4) strips 13 in . wide x 22 in . long of XGP-192 (XK-985 compound).
11. Apply 13 in . wide x 22 in . long elastomer to ID of rim lock. Overlap ends $1 / 8 \mathrm{in}$. Center each ply and carry
sides around outer radius to outer edge. Stagger joints of second ply. Stitch rubber AR to remove air.
12. Cover outside of rim lock with 2 in . wide strips XGP-191 (XK -985 compotnd). Use $1 / 8 \mathrm{in}$. wide side and end lap joints. (2) plies should be applied, staggexing joints as required. Stit $\boldsymbol{\text { in }}$ rubber $A R$ to remove air.

Cant

$$
\begin{aligned}
& \text { 13. Wrap with prereleased cotton shrink cloth. Vacuum bag. } \\
& \text { 14. Cure } 60 \text { minutes at } 285^{\circ} \mathrm{F} \text {. } \\
& \text { 15. Remove bag and bleeder. Clean up as required. } \\
& \text { 16. Inspect for cure hardness, blisters or delamination. } \\
& \text { 17. Mark with } \mathrm{S} / \mathrm{N} \text {. }
\end{aligned}
$$

engineering manufacturing instruction

INSTRUCTION SHEET

Page 1 of 1
 ENGINEERING MANUFACTURING INSTRUCTION

instruction shert

-

1. Dry fit RLA, P/N 1269203, into sand mandrel. Trim mandrel and/or RLA rubber liner as required. Buif ID of RLA and coat with dispersion.
2. Mste RLA with mandrel. Pick up and support mandrel using T-1286129 handling harness. Place on handling cart,
T-120854.
3. Coat area around circumference of mandrel approximately 2 in . each side of bond line with 12% dispersion of
XK-985B compound and toluene. DO NOT ATTEMPT TO GET HEAVY COAT OR SATURATE SURFACE.
4. Radially wrap mandrel using 2 in. wide XGP-191 liner stock using $1 / 8 \mathrm{in}$. overlap at crown.
5.
6. Circumferentially wrap two plys using 2 in. wide XGP-191 from bead to bead. Wrap one ply of 13 in. wide XGP-19e along ID, stretching as necessary to make joint outside RLA OD. NOTE: Last ply of 2 in . vide stock should stop
approximately 2 in . outside bead area. Stitch all plys thoroughly.
7. Cut openings at two bushings. Hrap entire torus with pre-released cotton shrink tape. Apply vacuum bag. Check for leaks. Vacuum tap should be over one of the bushings.
Install part in oven and cure 90 minutes at $285^{\circ} \mathrm{F}$. Cure chart required.
8. Cool slcvly. Remove vacuum bag and bleeder cloth.
Plug the two valve openings and pull vacuum on liner through suitable fitting. Carcess liner must be leak-free not less than 5 min .
9. Wipe carcass liner with Toluol or Benzine to remove all contaminates. Buff surface of inner liner. Apply by
brush Anchorweld Sol32D over complete liner surface. Air dry.
10. Using handling harness, lift and position mandrel/carcus in winding machine, T-120850. Release belt tension as mandrel is lowered into position. Retract sensor before installing. Rough position lateral guide rollers. Position
lower support slides to index marks, and zero graduated collars. Tension belt. Position upper stabilizing belts.
Insure all -+ ing surraces are clean and free of burrs, etc. Tap ring detailid as necessary with rawhide mallet to insure pruper seanine of ring companents

INSTRUCTION SHEET

7. Cont'nue wrap until 1230 ± 30 cords have been applied. Cord spacing should be uniform with space between cords not to esceed .080. Cord end count normal to cord path should be 13.71 to 14.61 per inch. Cord angle should be $49^{\circ} / 49^{\prime} / 51^{\circ} 26^{\prime}$, target angle is $50^{\circ} 46^{\prime}$. If any of these parameters are exceeded, contact project engineer. There
should be a minimum of crossed over cords. No cords on crown shall be abraded by belt. Record on data sheet total cords, crown angle and ends per inch.
8. Using elastomer application head, apply 2 in. wide XGP-194 from shoulder to bead on both sides. Apply 13 in. wide $x 133 \mathrm{in}$. long strip XGP-193 on crown. Bring cord cut ends out at shoulder. Apply 8 in. :ide by 12 in. long strips of XGP-12PA rubber along ID. Stretch XGP-122A and join on side wall at outer RLA diameter. Separate cords
 as required. Stitch insulation as required.
9. Back out lower slides 0.057 . Rotate mandrel until plugs coincide with flange on elastomer application support and check as Oper 7 above. Adjust slides equally to get same gap as in Oper 7 above.

ENGINEERING MANUFACTURING INSTRUCTION

INSTRUCTION SHEET Pago 1 of 1
OPER NO. \quad PART NO. 1269202 PART NAME Carcass Receiving 1. Visually inspect the unopened crate for any external orate damage, which would indicate any danage due to
shipping and subsequent damage to the tire carcass. 2. Cut and discard orate lid metal retaining bands and lift crate lid vertically until tire is cleared. 3. Inspect exposed tire for any damage or broken mandrel in the exposed areas.

Use two 3.5×60 inch nylon cinch slings, inserted at the crate hub cutoouts 180° apart, for removing the using a metal single tree for cornecting to se and remove oracass from the crate with a differential riat etal single tree for connecting to the two nylon cinch slings.
5. Place, without impacting, the carcass in an upright position, remove the protective polyethelene urapping, and screw the valve plugs in so they do not extend inward beyond the depressed carcass.
6. Weigh, inspect for damage, measure for dimensional conformity, and lay flat on the pewer farn table.
ENGINEERING MANUFACTURING INSTRUCTION

| OPER NO. | PART HO. 1269202 | PART NAME Component Assembly | 49×17 P-4 Bias Wylon |
| :--- | :--- | :--- | :--- | :--- | :--- |

10. Mount the carcass by the I.D. on cantilevered arm cart and transport to the Orbitread machine area.
${ }^{1}$ Orilitread - Trade name of American Machine and Foundry Company
ENGINEERING MANUFACTURING INSTRUCTION
Page 1 of 1

OPER NO.	PART NO. 1269202	PART NAME Orbitread	49×17 P-4 3ias N-Ion

1. Set Orbitread model 2006 as follows:

a.) 20^{n} hub (Disconnect tira pressure line).
b.) Low sprocket ratio on the tire rotational drive.
c. . Insert double strainer in extruder.
e.) Place rubber tire centering adaptor cylinder around the $O_{*} D_{*}$ of the 20^{*} hub.
 by the hoise. (CAUTION: DO NOT DIPACT THE CRBITREAD MACHINE WITH THE SIRE WETGHT.) with the tire axle line near coincident with the hub axie line, expand the $20^{\circ \prime}$ hub, with the adaptor oylinder, until it just makes contact with the tire I.D. (Minor raieing or lowering of the tire may be required for total contact).
full travel. Lower the sling for a slow trangfer of the tire veight to the hub. Remove sling and hoist. Drive the tire rotation slowly to allow full positive expansion of all hub segnents. Lightly suab the tread area with white gas and allow to completely dry.
$\dot{~}$
4. Repeat step 3 above axcept use $\$ 2$ pass sachine control card. tread stock pibbonine control card in machine and set pot dials as specified on the card. Feed XT-4822i specified vinding radius shown on the control card and index the tire to the starting position (This is controlled by the machine control card). Apply tread stook of 12 pass. after application, measure the applied atation gauges. . by manual machine operation.
5. The finished applied tread is ganged. 411 light or starved areas will be inereased to the desired gauge
6. Return the tire to the building area and veigh the entire assenbly.
ENGINEERING MANUFACTURING INSTRUCTION
Page 1 of 2

1. Introduce hot tap water (approximately 1400 F) into the tire cavity and fill the tire. When the tire is half frain condition to atart through the drain line. When drainage begins edjust the fill valve for a nominal mandrel will be starting to break-up on the lower half of the tire.
2. Rotate the utility truck tub 180° so that the previously top half of the tire is then on the bottom. The hot water flow is to be continued for 60 minutes. Inspect the tire to insure the mandrel has dissolved and Rotate the tire to an upright position with the drain pipe on the bottos and drain the tire uith the supply valve in the off poaition and the fill line vent valve to the atmosphere in the open posilion to prevent pulling a vacuur in the tire cavity during drain.
3. When drain is complete, remove the drain line from the $l^{\prime \prime}$ pipe in the tire. Leave the tire in an upright position with the connected fill line at the top position and the other open pipe at the bottom position. This is the set-up for the grendular sand extraction.
4. A trap of at least 40 gallon capecity is to be placed in a vacuum line between the vacuum pump and tire.
The

ENGINEERING MANUFACTURING INSTRUCTION

VT-115
engineering manufacturing instruction

ENGINEERING MANUFACTURING INSTRUCTION instruction sheet

VI-117
ENGINEERING MANUFACTURING INSTRUCTION

APPENDIX VII

ANALYSIS OF A WTNDING MACHINE DESIGN FOR A FILAMENT-WOUND TIRE

APPENDIX VII

ANALYSIS OF A WINDING MACHINE DESIGN FOR A FILAMENT-WOUND TIRE by M. Claire Zethraeus, Computing Sciences Division

Equations are derived in a form suitable for digital computer solution to solve the following design problem: A filament payoff head is rotating at constant velocity around a portion of a toroidal mandrel. The mandrel is also rotating at constant velocity about the axis of the toroid. It is desired to so design a cam to provide a third motion to the payoff head (perpendicula: to a plane which contains the toroid axis and the plane of rotation of the payof head) that filamente will be deposited on a specified path on the mandrel.

The winding machine has been designed to wind a tire of a specified shape. The shape considered has un outer cylindrical section, three circular toroidal sections, and an inner cylindrical section (see Figure VII-l). The filament is fed from a payoff head rotating at a constant angular velocity on a cylindrical surface with axis of rotation in the plane of symmetry and tangent to a circle of given radius (see FigureVII-2). The filament will be continuously wound while the mandrel also rotates at a different constant velocity. The winding angles are specified in a trie as a function of radial distance from the mandrel axis of rotation (Table VII-1). The payoff head is displaced parallel to the axis of the cylinder in addition to the uniform angular motion in order to lay the filament at the specified angle.

The total angle of advance, θ_{T}, of the winding mandrel required for one revolution of the payoff head will be determined first(sec Figure VII-3). © is used to determine the relative angular velocities of the mandrel and the payoff' head.

Next a series of points, J_{1}, along the filament path spaced in equal increments of ϕ are selected. ϕ_{i} is the orientation of an outward normal to the surface of the mandrel.

The displacement, $S(8)$, of the payoff head is then determined for each of these points. $S(8)_{1}$ is the value of the z-coordinate of the position, H_{i}, of the payoff head while filament is laid on the point $J_{1} . H_{i}$ is the point of

Figure VII-1. Geometry of Filament-Wound Tire Winding Mandrel

Figure VII-2. TH re Mandrel and Filament Head

Figure VII-3. Mandrel and Filament Path

CORD WINDING PATH FOR $30 \times 7.712 P R$ FILAMEMNT-WONND TIRE

Reference: Mandrel Profile - DK-22T7-1

(The vinding angle is that angle made between the cord and a plane through the axis of tire rotation measured in the plane tangent to the mandrel.)

The winding angle shown is that at a etven station on the periphery of the mandrel. The angle at a given station shall be maintained in auccessive plies on a plane passing through the normal to the mandrel surface station.

Mandrel Station	Station Radius	Winding Path	
		Degrees	Minutes
1 (OD)	12.9375	51	38
2	12.930	51	35
3	12.840	51	5
4	12.650	50	3
5	12.375	48	35
6	12.015	46	44
7	11.60	44	40
8	11.13	42	25
9	10.635	40	7
10	10.14	37	55
11	9.65	35	47
12	9.175	33	47
13	8.75	32	1
14 (D)	8.4375	30	$\left(+5^{\circ} \frac{45}{10}\right.$ only)

intersection with the payoff head cylinder of a line tangent to the filament at J_{1} (see Figures VII-4 and VII-5).

The Total Angle of Advance, θ_{T} :
Since the mandrel is divided into five geometric sections, it is necessary to determine separately the angle of advance across each. Because of the toroidal shape, filament bridging occurs across the inner sections of the mandrel. The equations of the surface are as follows:

Section I, Outer Cylindrical Portion

$$
r=r_{1}+b
$$

where
$r_{1}=$ the radial distance from the mandrel axis of rotation to the
$b=$ the thickness of previous layers plus the rarius of the circle in Section II.

Section II, Circular Toroidal Portion

$$
\left(r-r_{1}\right)^{2}+(y-a)^{2}=b^{2}, \text { for } y>a \text { and } r_{1}<r \leq r_{1}+b
$$

Section III, Circular Toroidal Portion

$$
\left(r-r_{1}\right)^{2}+(y-c)^{2}=d^{2}, \text { for } y>a \text { and } r_{b} \leq r<r_{1} \text {, where } r_{b} \text { is }
$$

the radius at the intersection of Sections III and IV.

Section IV, Circular Toroidal Portion

$$
\begin{equation*}
\left(r-r_{2}\right)^{2}+(y-f)^{2}=g^{2}, \text { for } y>f \text { and } r_{p}<r<r_{b} \text {, where } r_{p} \text { is } \tag{1}
\end{equation*}
$$

the radius at the intersection P of the bridged portion and section IV.

Section V, Briäged Portion
Using Figures VII-6 and VII-7, the minimum point of filament bridging occurs at

$$
r=r_{p} \cos \Delta
$$

Figure VII-4. Displacement, $\mathbf{s}(\delta)$, of Payoff Head

Figure VII-j. Geometric Relationships, Displacement of Head

P'gure VII-6. Minimum Point Q of Filament on Hyperbola

Figure VII-7. Point M on Filament
where
Δ is the angle of advance acrose section V.

For a point U on the bridged filament

$$
r_{m} \cos s \sim r_{p} \cos \Delta
$$

where g is the angle between chords from the origin to M and to Q, the minimum point of the hyperbola.

Then, using Figure VII-8

$$
\frac{r_{m} \sin \xi}{r_{p} \sin \Delta}=\frac{y_{m}}{y_{p}}
$$

and

$$
r_{m}^{2}=r_{p}^{2} \cos ^{2} \Delta+\left(\frac{y_{m}}{y_{p}}\right)^{2} r_{p}^{2} \sin ^{2} \Delta
$$

or

$$
\left(\frac{r_{m}}{r_{p}}\right)^{2}-\left(\frac{y_{m}}{y_{p} / \sin \Delta}\right)^{2}=\cos ^{2} \Delta
$$

and in general

$$
\begin{equation*}
\left(\frac{r}{x_{p}}\right)^{2}-\left(\frac{y}{y_{p} / \sin \Delta}\right)^{2}=\cos ^{2} \Delta \tag{2}
\end{equation*}
$$

Equation (2) describes a hyperbols. It is necesaary to develop equations for only $i / 2$ of the mandrel surface, since the mandrel is symetric about the horizontal plane $y=0$.

Equation (1) at the point P becomes

$$
\begin{equation*}
y_{p}=r+\sqrt{g^{2}-\left(r_{p}-r_{2}\right)^{2}} \tag{3}
\end{equation*}
$$

Figure VII-8. Winding Angle at Q

Figure VII-9. Geometric Relationships, Winding Angle

The slope of the hyperbola [Equation (2)] and the slope of Section IV [Equation (1)] are equel at the point P.

The slope of Section IV at any point is

$$
S L_{I V}=\frac{r_{2}-r}{y-f}
$$

and at P is

$$
\mathrm{SL}_{\mathrm{IV}}=\frac{r_{p}-r_{p}}{y_{p}-f}
$$

The slope of the hyperbolic section at any point is

$$
\Delta u_{v}=\frac{r y_{p}^{2}}{y r_{p} \sin ^{2} \Delta}
$$

and at P is

$$
\mathrm{SI}_{\mathrm{V}_{\mathrm{p}}}=\frac{\mathrm{y}_{\mathrm{p}}}{r_{\mathrm{p}} \sin ^{2} \Delta}
$$

Since $\mathrm{SL}_{\mathrm{IV}} \mathrm{p}_{\mathrm{p}}=\mathrm{SL}_{\mathrm{V}_{\mathrm{p}}}$

$$
\frac{y_{p}}{r_{p} \sin ^{2} \Delta}=\frac{r_{2}-r_{p}}{y_{p}-f}
$$

and it follows that

$$
\begin{equation*}
y_{p}=\frac{f+\sqrt{f^{2}+4 r_{p} \sin ^{2} \Delta\left(r_{2}-r_{p}\right)}}{2} \tag{4}
\end{equation*}
$$

The angle between the positive y-axis and an outward normal to the surface at P is

$$
\begin{equation*}
\phi_{y}=\tan ^{-1}\left(\frac{r_{2}-r_{p}}{y_{p}-1}\right) \tag{5}
\end{equation*}
$$

The winding angle at Q, the minimum point of the hyperbola, is (see Figure VII-8)

$$
\begin{equation*}
\alpha_{q}=\tan ^{-1}\left(\frac{r_{p} \sin \Delta}{y_{p}}\right) \tag{6}
\end{equation*}
$$

Using Figure VII-9, the winding angle α_{p} at the point P on the hyperbola is

$$
\begin{equation*}
\alpha_{p}=\cos ^{-1}\left\{\frac{-\left(C^{2}+D^{2}-2 C D \cos \Delta\right)+A^{2}+B^{2}}{2 A B}\right\} \tag{7}
\end{equation*}
$$

where

$$
\begin{aligned}
& A=\frac{y_{p}}{\cos \alpha_{q}} \\
& B=\frac{y_{p}}{\sin \emptyset_{p}} \\
& C=r_{q} \\
& D=r_{p}-\frac{y_{p}}{\tan \emptyset_{p}}
\end{aligned}
$$

The arc length across the hyperbolic portion is

$$
s_{v}=\frac{r_{p} \sin \Delta}{\sin \alpha_{Q}}
$$

The arc length of the filament across Section Is

$$
S_{I}=\frac{a}{\cos \alpha_{I}}
$$

where α_{I} is the winding angle across the outer cylinder obtained from Table VII-I Then the angle of advance across Section I is

$$
\begin{equation*}
\theta_{I}=\frac{S_{I} \sin \alpha_{I}}{r_{1}+b} \tag{8}
\end{equation*}
$$

Using Figure VII-10, on the circular sections

$$
\begin{aligned}
& d S \cos \alpha=\sqrt{d r^{2}+d y^{2}} \\
& d S \sin \alpha=r d \theta
\end{aligned}
$$

where θ is the angle of advance, 8 is the arc length, and α is the winding angle obtained from Table VII-I.

It follows the\%

$$
r d \theta=\tan \alpha \sqrt{d r^{2}+d y^{2}}
$$

Using the polar angle \varnothing

$$
\sqrt{d r^{2}+d y^{2}}=r_{c} d \phi
$$

where r_{c} is the radius of the circular portion and

$$
r=r_{0}+r_{c} \cos \phi
$$

Figure VII-10. Angle of Advance, θ, and Arc Length, S,
Across Circular Across Circular Sections
where r_{0} is the r-coordinate of the center of the circle.
Then

$$
r d \theta=r_{c} \tan \alpha d \phi=\left(r_{0}+r_{c} \cos \phi\right) d \theta
$$

and

$$
d \theta=\frac{r_{c} \tan \alpha d \phi}{r_{0}+r_{c} \cos \phi}
$$

Since

$$
\begin{aligned}
& d S=\frac{\sqrt{d r^{2}+d y^{2}}}{\cos \alpha} \\
& d S=\frac{r_{c} d \phi}{\cos \alpha}
\end{aligned}
$$

Then integrate

$$
\begin{equation*}
\theta_{I I}=\int_{\Phi_{I}}^{\Phi_{I I}} \frac{b \tan \alpha \phi}{r_{1}+b \cos \phi}, \quad s_{I I}=\int_{\Phi_{I}}^{\Phi_{I I}} \frac{b d \phi}{\cos \alpha} \tag{9}
\end{equation*}
$$

where

$$
\begin{array}{ll}
\Phi_{I}=0, & \Phi_{I I}=\pi / 2 \\
\theta_{I I I}=\int_{\Phi_{I I}}^{\Phi_{I I I}} \frac{d \tan \alpha \operatorname{co\phi }}{r_{1}+d \cos \phi}, & s_{I I I}=\int_{\Phi_{I I}} \frac{\operatorname{dd\phi }}{\cos \alpha}
\end{array}
$$

where

$$
\begin{align*}
& \Phi_{\text {III }}=\tan ^{-1}\left(\frac{y_{b}-y_{1}}{r_{1}-r_{b}}\right) \\
& \theta_{I V}=\int_{\Phi_{I I I}}^{\Phi_{I V}} \frac{g \tan \alpha d \phi}{r_{2}+g \cos \phi}, \quad S_{I V}=\int_{I I I}^{\Phi_{I V}} \frac{g d \phi}{\cos \alpha} \tag{11}
\end{align*}
$$

where

$$
\Phi_{I V}=\tan ^{-1}\left(\frac{y_{p}-f}{r_{2}-r_{p}}\right)
$$

Then the total angle of advance for one revolution of the payoff hest is

$$
\begin{equation*}
\theta_{T}=2\left(\theta_{I}+\theta_{I I}+\theta_{I I I}+\theta_{I V}+\Delta\right) \tag{12}
\end{equation*}
$$

After N revolutions of the payoff head and X rotations of the mandrel, the filament must be laid on the mandrel at a fractional angular displacement ρ from the filament initially wound on the mandrel.

For specified X and ρ

$$
\begin{equation*}
N \theta_{T}=2 \pi X+p \tag{12}
\end{equation*}
$$

Method of Computer Solution for θ_{T}, the Total Angle of Advance:
Initially the desired value for $X 1 s$ chosen and a first guess for Δ is made. For design parameters of the configuration, see Table VII-II.
(1) $\quad \theta_{\text {I }}$ is computed using Equation (8)
(i1) $\theta_{\text {II }}$ is computed using Equation (9)

TABLE VII-II

FIIAMIENT-WOUND TIRE DESIGN VALJES USED

Value, in.
a
0.531
b $\quad 2.760$
c $\quad 0.156$
d 3.135
f 2.031
$\mathrm{g} \quad 0.635$
$r_{1} \quad 10.4375$
$r_{2} \quad 8.625$
h $\quad 10.594$
k 3.75
ρ

X
$\tan ^{-1}\left\{\frac{1 / 21 \text { in }}{\left(r_{1}+b\right)}\right\}$
(iii) $\theta_{1, I}$ is computed using Equation (10)
(iv) $\quad r_{p}$ and y_{p} are computed using Δ and Equations (3) and (4)
(v) ϕ_{p} is computed using Equation (5)
(vi) $\quad \alpha_{\mathrm{q}}$ is computed using Equation (6)
(vii) α_{p} is computed using Equation (7)
(viii) α^{\prime} is computed by interpolating in the winding path table using r_{p}, α^{\prime} if used only to indicate whether α_{p} is withing the required range. ${ }^{\circ} \quad \underset{p}{\alpha^{\prime}}$
(ix) $\theta_{\text {IV }}$ is computed using Equation (11)
(x) $\quad \theta_{T}$ is computed using Equation (12)
(xi) N is computed using Equation (13)
(xii) If N is an integer then θ_{T} is the total angle of advance required, otherwise an increment of Δ i $T_{\text {computed using the following formula }}$

$$
\Delta_{\Delta}=\frac{1}{2}\left(\frac{\pi X+p}{N_{\text {truncated }}}-\theta_{T}\right)
$$

(xiii) The new Δ is computed by adding Δ_{Δ} to the previous L and the process is repeated from step (iv) until N is in integer.

The Displacement of the Payoff Head, $S(\delta)$:
During the wrapping process, the payoff head rotates at an angular velonity ω_{2} and the mandrel at an angular velocity ω_{1}. The time required for one revolution of the payoff head is

$$
T=2 \pi / \omega_{2}
$$

and for the mandrel to advance t.rough the angle θ_{T}

$$
T=\theta_{T} / \omega_{1}
$$

Then

$$
2 \pi \omega_{1}=\theta_{T} \omega_{2}
$$

The cylinder on which the payoff head rotates is

$$
(r-h)^{2}+y^{2}=k^{2}
$$

The position of the payoff head on the cylinder is (see Figure VII-4)

$$
\begin{aligned}
& r=h-k \cos \delta \\
& y=k \sin \delta \\
& z=S(\delta)
\end{aligned}
$$

where

$$
\begin{aligned}
& \delta=\omega_{2} t+c \\
& t=t i m e \\
& c=\text { angular position of the payoff head at time } t=0 .
\end{aligned}
$$

Let L be a straight line drawn tangent to the filament at the point J and intersecting the payoff head cylinder. Construct the coordinate system 0 such that the origin is at J and the coordinate axis r_{0} coincides with L (Figure VII-5).

The equations of L are

$$
\begin{aligned}
& y_{0}=0 \\
& z_{0}=0
\end{aligned}
$$

Rotate the y_{0} axis through the winding angle, $-\alpha$, to form system 1 for which

$$
y_{1}=y_{0}
$$

$$
\begin{aligned}
& z_{1}=z_{0} \cos \alpha+r_{0} \sin \alpha \\
& r_{1}=r_{0} \cos \alpha-z_{0} \sin \alpha
\end{aligned}
$$

Rotate the z_{1} axis through the angle ϕ to form system 2 for which

$$
\begin{aligned}
& y_{2}=y_{1} \cos \phi-r_{1} \sin \phi \\
& z_{2}=z_{1} \\
& r_{2}=r_{1} \cos \phi+y_{1} \sin \phi
\end{aligned}
$$

Rotate the y_{2} axis through $-\psi$, the angular displacement of the filament on the mandrel at time t, to form system 3 .

$$
t=\theta-\omega_{0}-\omega_{1} t
$$

where w_{0} is the angular displacement of the filament at $t=0$ and θ is the angle of advance.

Then

$$
\begin{aligned}
& y_{3}=y_{2} \\
& z_{3}=z_{2} \cos \psi+r_{2} \sin \\
& r_{3}=r_{2} \cos -z_{2} \sin
\end{aligned}
$$

Translate the origin of system 3 to the mandrel origin

$$
\begin{aligned}
& y=y_{3}+y_{j} \\
& z=z_{3}+r_{j} \sin \\
& r=r_{3}+r_{j} \cos \psi
\end{aligned}
$$

where r_{j} is the distance of J from the mandrel axis of rotation and y_{j} is the distance in the polar direction.

After the rotations and the translation, the equations of L may be represented as follows:

$$
\begin{aligned}
& y=-r_{0} \cos \alpha \sin \phi+y_{j} \\
& z=r_{0} \sin \alpha \cos \phi+r_{0} \cos \alpha \sin \phi \cos \phi+r_{j} \sin \\
& r=r_{0} \cos \alpha \cos \phi \cos \phi-r_{0} \sin \alpha \sin \phi+r_{j} \cos
\end{aligned}
$$

Eliminate x_{n} and substitute in (14) for r, y, and z.
Then

$$
\begin{align*}
& \frac{k \sin \delta-y_{j}}{-\cos \alpha \sin \phi}=\frac{h-k \cos \delta-r_{1} \cos \downarrow}{\cos \alpha \cos \phi \cos -\sin \alpha \sin \psi} \tag{15}\\
& \frac{x \sin \delta-y_{1}}{-\cos \alpha \sin \phi}=\frac{S(8)-r_{1} \sin }{\sin \alpha \cos \downarrow+\cos \alpha \sin \dagger \cos \phi} \tag{16}\\
& \frac{h-k \cos \delta-r, \cos \downarrow}{\cos \alpha \cos \phi \cos \downarrow-\sin \alpha \sin \dagger}=\frac{8(b)-r_{j} \sin \dagger}{\sin \alpha \cos \downarrow+\cos \alpha \cos \phi \sin } \tag{17}
\end{align*}
$$

At time $t=0, \theta=0, \alpha=\alpha_{q}, y_{j}=0, r_{j}=r_{q}$ since winding is assumed to begin at the point Q, the minimum point of the hyperbola.

At $t=0$, Equation (15) becomes

$$
\begin{equation*}
\frac{h-k \cos \varepsilon-r_{q} \cos \omega_{0}}{\sin \alpha_{q} \sin \omega_{0}}=\frac{k \sin \varepsilon}{\cos \alpha_{q}} \tag{18}
\end{equation*}
$$

Solve (1.8) :

$$
\begin{gathered}
h-r_{q} \cos \omega_{0}-k \cos \varepsilon=k \tan \alpha_{q} \sin \omega_{0} \sqrt{2-\cos ^{2}} \\
\left(h-r_{q} \cos \omega_{0}\right)^{2}-k^{2} \cos ^{2} c-2 k\left(h-r_{q} \cos \omega_{0}\right) \cos \\
=k^{2} \tan ^{2} \alpha_{q} \sin ^{2} \omega_{0}\left(1-\cos ^{2} c\right)
\end{gathered}
$$

The quadratic equation for cos a is

$$
\begin{gather*}
k^{2}\left(1+\tan ^{2} \alpha_{q} \sin ^{2} \omega_{0}\right) \cos ^{2} c-2 k\left(h-r_{q} \cos \omega_{0}\right) \cos \varepsilon \\
+\left(h-r_{q} \cos \omega_{0}\right)^{2}-k^{2} \tan ^{2} \alpha_{q} \sin ^{2} \omega_{0}=0 \tag{19}
\end{gather*}
$$

Cos c is the larger in magnitude of the roots of Equation (19).

Method of Computer Solution for $S(\delta)$, the Displacement of the Payoff Head:
First a table of points spaced in equal increments of ϕ along the filament path on the mandrel is constructed. For each point on the mandrel, the table contains values for ϕ, θ, α, r, and y
where
\emptyset_{1} is the angle an outward normal to the point 1 makes with a plane
θ_{i} is the angle of advance at the point 1.
α_{1} is the winding angle at 1 .
r_{1} is the radial distance of 1 from the mandrel axis of rotation.
y_{1} is the distance of 11.7 the polar direction.
Then ε is computed using Equation (19).

The payoff head is assumed to have unit velocity and the velocity of the mandrel is computed as

$$
\omega_{1}=\theta_{T} / 2 \pi
$$

Then for each point i, using an iterative solution, t_{i} is computed using Equation (15).

For each point i, $S(\delta)$ is computed directly vising Equation (16) or (17).
Values of $\mathrm{S}\left(\delta_{i}\right)$, the displacement of the payoff head, are tabulated for each δ_{i}, where δ_{i} is the angular position of the payoff head at time t_{1}. The results of one of the calculations are shown in Figure VII-11.

FIgure VII-11. Results of Calculation for $\mathrm{S}(\delta)$ vs δ

APPENDIX VIII

SUPPLEMENT TO THE WINDING-MACHINE DESIGN ANALYSIS

APPENDIX VIII

SUPPLEMENT TO THE WINDING-MACHINE DESIGN ANALYSIS

To generate equations for checking interference between payoff head and mandrel, assume first that r_{p} and y_{p} in the program are the values of r and y at the intersection of the hyperbola to the circle on the "surface for calculations." If they are not on this surface, then they must be corrected for it before the formulae below are used.

Next, check if $r_{i}<D_{2} / 2$. If rot, no intersection is possible (and formulae below are not valid).

If $r_{i}<D_{2} / 2$, then calculate:

$$
\begin{aligned}
& r_{c}=\sqrt{S^{2}+(h-k \cos \delta)^{2}} \\
& y_{c}=k \sin \delta
\end{aligned}
$$

These are polar coordinates of the payoff head at a particular value of $S=$ cam stroke
$h=$ cylinder center radial distance
$k=$ cylinder radius
$\delta=$ angular displacement of payoff head

We now must find which range y_{c} is in.

According to the range, different tests apply. If the answer to the test is YES, there is no interference. If the answer is NO, there is interference between payoff head and mandrel.

1. $\quad 0 \leq\left|y_{c}\right| \leq y_{p}$

$$
\text { is } r_{c}<r_{p}\left[\cos ^{2} \Delta+\left(\left|y_{c}\right| \sin \Delta / y_{p}\right)^{2}\right]^{1 / 2}
$$

Calculate limit for range of second test.

$$
y_{b} \doteq \frac{f g-c d}{g-d}
$$

This is the value of ' y ' at the intersection of circular regions III and IV.
2. $\quad y_{p}<\mid y_{c} d \leq y_{b}$

$$
\text { is } r_{c}<D_{2} / 2-\left[(\therefore \cdot g)^{2}-(f-c)^{2}\right]^{1 / 2}-\left[g^{2}-\left(\left|y_{c}\right|-f\right)^{2}\right]^{1 / 2}
$$

3. $\quad y_{b}<\left|y_{c}\right| \leq(d+c)$

$$
\text { is } x_{c}<D_{2} / 2-\left(d^{2}-\left(\left|y_{c}\right|-c\right)^{2}\right)^{1 / 2}
$$

4. $\left|y_{c}\right|>(d+c)$

All symbols conform to those used in the analysis contained in Appendix VII, except as defined above.

APPENDIX IX

FORTRAN IV COMPUIER LISITNG

FORTRAN IV COMPUTER LISTING

This section contains the program listing for both the WRAP program and the CAM program. The BLOCK DATA subprogram is listed in Appendix X as input for the sample problem.

PaGE 0002
10/28/23

OELTA u DELTA/RALIAN
CELIC $=$ CELTA
CELIC $=$ CELTA
OTO $=9999.0$
OC $1001=1, N C$
ALPHII $=$ DEGR 100
C
c
C
uuu

วิลิ๊ิ
0034
0035
0030
0031
0038
0038

$$
\begin{aligned}
& B=R 1+S T \\
& \text { ASTAR }=G * * 2-D * * 2
\end{aligned}
$$

page 0005

10/28/23

FGRTRAN IV G LEVEL O, MOD 0

$$
\begin{aligned}
& \text { PAGE } 0008 \\
& \text { 10/28/23 } \\
& \text { DATE }=07353 \\
& \text { main } \\
& \text { s2C; } \\
& \text { fortran iv g level o, mod o }
\end{aligned}
$$

$$
\begin{aligned}
& \text { C CALL RUABRGIFIZB,IC, PHIA, PMIB,Tinä: } \\
& \text { C CALL RUMERGIFIZB,IC, PHIA,PMIB,Tinab: } \\
& \text { CALL ROMBRGIFS28,10, PHIA,PHIB, S2BI } \\
& \begin{array}{l}
\text { WRITE }(6,5) \text { DELTA, SOEL,PHIO,PHI S PHIE, PHIC } \\
\text { FORMAT (2HOS, IPICE12.4) }
\end{array} \\
& \begin{array}{l}
\text { TH2C }=\text { TH2C }=\text { RADIAN } \\
\text { TH2E }=\text { TH2B RADIAN } \\
\text { TH2A TH2A RADIAN }
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \text { tit is total angle of advance un mandrel for } 1 \text { revclution of paycof } \\
& T=(T H I+D E L T A+T H 2 A+T H 2 B+T H 2 C) * 2.0 \\
& \text { an is number of revolliticns of payoff heac recuired } \\
& \begin{array}{l}
\mathrm{AN}=12.00 \text { PI*AM +RHOI /I } \\
\mathrm{NT}=A N+0.5
\end{array} \\
& \text { r compute delta t renuired } \\
& \text { OT = (2.0*P\{*AK + RHO)/FLDATINT) -T } \\
& \text { test for change in t }
\end{aligned}
$$

gortran iv g level o，mod c
CATE $=67353$
MAIN
IF（ABSIOI）．LT．1．OE－6）GO 10400
test fur change in di from previcus pass
IF（ABSCDT－DTO）．LT．1．OE－5）GO TC 310
OTC $=$ DT
CCMPUTE NEW CELTA
DELN＝DELTA＋OT 12.0
OELN＝DELN＊RADIAN
DT $=$ DT RADIAN
WRITE（6，7）RHO，ALPHINOI，T，AN，OT，DELN，ALPN，SINDN，AM NVINVY $!~ N 730 ~=~ N 77 O ~$
OELN＝UELN＇RADIAN
OT $=$ OT RAOIAN

C
C
C
DELIA＝DELN
CCMPUTE NEW ALPHA（HINDING PATH）
SINCN $=$ SINTOELNI
～
（ウ゚てl

PIII $=$ PI/2.C
IF (ABSIDS).LT.1.OE-2) GU TO 17
PHIAB = ATANZ(RBI.YBI)
GC 1018
7 PHID $=C .0$
PIII $=$ PI/2.C
IF IABS
PHIAS $=A T A N Z(R B I . Y E-2)$ GU TO 17
GC IO
CCNIINUE
IFIR3P-L
PHIC3=
PHIC3= +ATAN2((AP-C),(SRI-R3P))-PI/2.0
PHIEC $=$ PHIC3
$\mathrm{PHIEC}=\mathrm{PHIC} 3$
GC TO 42 C
$\begin{aligned} \forall 1 \nabla t & =E J I 4 d \text { OIH } \\ \text { JZ } & 0139\end{aligned}$
GC 1018 HanzlREITVIJ
C.ITE $=67353$
MAIN
U
N

GENERATE TABLE OF RADIUS (R), Y-COORDINATE (Y). ANGLE OF ADVANCE
(THETA). HINDING PATH MAKES WITH Y-AXIS (PHI)
$Y(1)=0 . C$
$R(1)=R 3 P * C D S(D E L T A)$
RHETAR $=0.0$
AL(1) $=A L G$
$A R C(1)=0.0$
NPTS IS NUMBER OF POINTS In TABLE
NP $=$ PI/CELPHI 1.5
NPS $=N 4-1$

5420

$5 n$
0
NO
NO
NON
0
00
00
00
DATE $=67353$

$$
\begin{aligned}
& \text { YII }=V C(N P T-11 \\
& \text { ALII }=A L C(N P T-11 \\
& A L P=A L I H
\end{aligned}
$$

$$
\begin{aligned}
& \text { ALP }=A L I I 1 \\
& \text { IFII.EQ.NP) GO TO } 555
\end{aligned}
$$

UY = YC(NPT-I+1) - YC(NPT-1)

$$
\begin{aligned}
& A R M=O Y / C L S(A L P) \\
& G C=554
\end{aligned}
$$

$$
\begin{aligned}
& G C: 554 \\
& A R M=0.0 \\
& G C \text { IC } 554
\end{aligned}
$$

$$
\begin{aligned}
J & =C . C \\
& =A / \operatorname{COS}(A L P H(1))
\end{aligned}
$$

C COMPUTE ALPHA HINDING PAIH USING TABLE

$$
A L(1)=T A B L(R(I))
$$

$$
\begin{aligned}
& \text { SINC }=\text { SIN(ALQ) } \\
& \text { PH }=-\operatorname{PHI}(1)
\end{aligned}
$$

$$
\begin{aligned}
& \text { ARM }=A / C O S 1 / \\
& \text { ALP }=A L P H(1)
\end{aligned}
$$

CCMFUTE WINDING PATH USING HYPERBOLA ECUATICN

$$
\cos C=\cos (A L O)
$$

\qquad

$554 \mathrm{R}(1)=\mathrm{SRO}+\mathrm{B}$
n in in

ThETA(I)=ARM*SIN(ALP)/RII)
ARC(I) $=A R C(I-1)+A R L+A R M$ ARC(I) = ARC (I-1) ARL*
IF(A4-LE. 11 GO TO 575
IFIRIII.LT
575 IFIRIIICLT.R3P) GO TO 590

$$
590 \operatorname{SiN} 2=\operatorname{SORT}(1.0-A \operatorname{COS}(k 3 P * \operatorname{COS}(D E L T A) / R(1)) * * 2)
$$

$$
\operatorname{CCSP}=\operatorname{COS}(P H)
$$

page 0001 $10128 / 23$

Page jocl
$10 / 28 / 23$

PAGE 0001
$10 / 28 / 23$
FLNCTIUN FTZC(PHI) (PHI)
COMPUTE VALUE FOR IANGLE OF AUVANCEI AS FUNCTION OF DO (PHI)
FCR ROMBERG INTEGRATION
CIRCULAR SECTIUN IIC
CCMMON/II/A, B, C, O,F,G,SRO,SRI,SRZ
REAL L.M -PHI INCOSI -PHII
$=S R 2+$ F/TANP
$=-1.0 /$ TANP
$S=M * * 2+1.0$
$S=2.0 * M *(L$
$S=(1-S R 2) *$
$\begin{array}{ll}C S & =1-B S+S O R T(A B S I B S * * 2-4 * 0 * A S * C S) \\ Y & 1 / 1 /(2.0 * A S)\end{array}$
TABL(R) SINIALP!/CCS(ALP)*G/(SR2 +G* COS(PHI))
N足足
ưưu

PAGE 0003
13/28/41
DATE $=67349$

$$
15139
$$

FORTRAN IV G LEVEL O, MOD C

(1)] =1IIS 3N1W:3130

新
(ILOC.GT.0) GO TO 8500
(ABS(SIN(PHI(1)) ${ }^{\text {LT.1.OE-2) GO TO }} 1250$
$1=$ THETACII-0MO
IF ti.0-ABSIS
$\mathrm{XB=TAN}$ (PHI2
GO TO 85C2

วิดี

[^9]Paice 0005


```
PAGE 0008
13/28/41
DATE = 67349
FORTRAN IV G LEVEL O, MOD O
```


APPENDIX

 x
SAMPLE PROBLEM

This appendi:- is included to demonstrate the use of the computur program to obtain a specific cam design. The sample problem is based on data listed in Appendix A and includes the following:

1. Wrap Program - 703A
a. Input Block Data
b. Output Data
2. Cam Program - 703B
a. Input Sheet
b. Output Data
c. Plotted Cam Design

The approximate running time is 2.5 minutes and 1.0 minutes for the WRAP Program and CAM Program, respectively.
WRAP PROGRAM OUTPUT

8.1775E OC 2.0316E CC $1.5659 E$ OC 2.0901E LC 2.0000E-04 1. 56 ,

| |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

AGC JOB NO. 703 B

CAM PROGRAM
BASIC INPUT

\section*{| TITLE CARD |
| :--- |
| SAMPLE PROBLEM |}

$$
\begin{array}{r}
\text { NPLゆT } \\
0
\end{array}
$$

$$
\begin{array}{|c|c|c|c|}
\hline H & K & \Phi M O & D \phi M O \\
\hline 10.594 & 3.75 & 2.5 & 2.5 \\
\hline
\end{array} \begin{array}{c|c|c|c}
\hline \text { The following sequence of cards are obtained } \\
\text { L- } & \mathrm{LB} & \mathrm{RZ} & \mathrm{R} 3 \\
\hline 0.15600 \mathrm{E} & 00 & 0.20310 \mathrm{E} 01 & 0.31350 \mathrm{E} \text { 01 } \\
\hline
\end{array}
$$

* Note: ' M ' Cards must be included

***** NUMERICAL SULUTICN OF WINOING MACHINE ECUATIONS *****

OM2*T-EP

theta

엉心.

OM2*T TEP

298.518
307.765
317.064
326.591
336.364
349.371
365.261
383.437
402.209
411.174

----- INPUT VALUES -....
K
KMEGA (10)
CMEGA 11$)$
CMEGA 121
EPSILON
\boldsymbol{x}

No． iotóóóóóóotóióotóoióóóóóo

OM2＊T＊EP

Ho an ioipilitioitioiiㅣ

theta

\vec{a}
I్⿰亻弋心

13. abstanct This work on the development of new and improved manufacturing methods, controls, equipment and processes was directed toward the fabrication of filamentwourn, continuous-cross-section aircraft tires. Nylon, glass and wire reinforcements in blas, geodesic, and radial types of filament-wound configurations were investi. gated in the fabrication of subscale, $30 \times 8.8,22$-ply-rated tires. Acceptable designs, materials and processes were developed for the fabrication of subscale tires. The findings of the work on subscale tires were applied to the fabrication of 49 x 17, 26 -ply-rated, prototype tires, which were made with nyion reinforcement in a bias-type configuration. A carcass-winding machine was designed and fabricated for the fabrication of prototype tires. It was capable of utilizing glass and wire rein forcements in geodesic and radial configurations in addition to the mylon reinforcement and bias configuration selected for the prototype tires. Operating procedures and control techniques were developed for the production of 49×17 tires. Two tires were fabricated which exceeded the burst pressure requirements of USAF Drawing No. 60D2561J, the document which outlines the requirements for tires of this size. The dynamic test requirements of USAF Drawing No. 60D2561J were not achieved by the 49×17 prototype tires. The results of the dynamic tests indicated that major design modifications are required to produce satisfactory dynamic performance in the large 49×17 tires used on the C-5A and similar aircraft. Part I of this report and appendices I through VI report the design, process development, tooling, fabrication and testing of both subscale and full scale tire sizes, supported by detailed stress ancly is for the rim-lccking assembly manufacturing instructions and equip-

FORM
1473

UNCLASSIFIED

Security Classification

[^0]: 1
 The first number of the tire designation refers to the outside diameter, and the second number refers to the width of the cross section at its maximum dimension when inflated.
 " $P R$ " is the abbreviation for ply rated, a term used by tire manufacturers to indicate relative strength values of tires.

[^1]: Nylon 6-6 cord (50 . Frincipal transverse stress: 4,660 lb/in. End-count (4 . cords 0.550 , and core 0.577. EPI design station: maximum EPI at bead, ratios (crown to bead): cured

[^2]: ${ }^{\text {a Strength design station: crown center line. Crown angle (carcass) for cured }}$ cords and core: 90°. Principal transverse stress: $4,660 \mathrm{lb} / \mathrm{in}$. Fnd-count (EPI) ratios (crown to bead): cured curds 0.550 , and core 0.577 . EPI design station: maximum EPI at bead, 15-1n. diameter.

[^3]: Principal circumferential stress $\left(F_{c}\right)=10,700 \mathrm{Ib} / \mathrm{in}$.

[^4]: ${ }^{\text {a }}$ Includes liner thickness of 0.080 in .
 ${ }^{\mathrm{b}}$ Carcass and breaker thicknesses.

[^5]: $1_{\text {LBN }}$ - large bias nylon

[^6]: ${ }^{9}$ General Tire and Rubber Co.

[^7]: a/R/R - Not recorded because of safety procedures exercised.

[^8]: * Based on modified RLA used in tires LBN-12, LBN-13, and LBN-14.

[^9]: GO TO 1499 OMC *TIII
 -
 ©
 ©

 IROOT $=1$
 GO TO 1499
 1225 S(I) $=$ RIII - SINIZ)
 Z-TMETA(I)-OMO-ONI*TII

