
1
Common Exploits and How to Prevent Them
Secure Coding Symposium

Sep 8, 2016

[DISTRIBUTION STATEMENT A] This material has been approved for public
release and unlimited distribution.

Software Engineering Institute

Carnegie Mellon University

Pittsburgh, PA 15213

© 2016 Carnegie Mellon University

[Insert Distribution Statement Here]

REV-03.18.2016.0

Common Exploits
and How to Prevent Them

David Svoboda

2
Common Exploits and How to Prevent Them
Secure Coding Symposium

Sep 8, 2016

[DISTRIBUTION STATEMENT A] This material has been approved for public
release and unlimited distribution.

Copyright 2016 Carnegie Mellon University

This material is based upon work funded and supported by the Department of Defense under Contract No.
FA8721-05-C-0003 with Carnegie Mellon University for the operation of the Software Engineering Institute, a
federally funded research and development center.

Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s)
and do not necessarily reflect the views of the United States Department of Defense.

References herein to any specific commercial product, process, or service by trade name, trade mark,
manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or
favoring by Carnegie Mellon University or its Software Engineering Institute.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE
MATERIAL IS FURNISHED ON AN “AS-IS” BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO
WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT
NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR
RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE
ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR
COPYRIGHT INFRINGEMENT.

[Distribution Statement A] This material has been approved for public release and unlimited distribution. Please
see Copyright notice for non-US Government use and distribution.

This material may be reproduced in its entirety, without modification, and freely distributed in written or electronic
form without requesting formal permission. Permission is required for any other use. Requests for permission
should be directed to the Software Engineering Institute at permission@sei.cmu.edu.

CERT® is a registered mark of Carnegie Mellon University.

DM-0003973

3
Common Exploits and How to Prevent Them
Secure Coding Symposium

Sep 8, 2016

[DISTRIBUTION STATEMENT A] This material has been approved for public
release and unlimited distribution.

Secure Coding Tutorial

Introduction

Injection

• SQL

• OS Command

• Format String

Memory Corruption

• Buffer Overflow

Concurrency

Privilege Escalation

• Java Applet

Conclusion

4
Common Exploits and How to Prevent Them
Secure Coding Symposium

Sep 8, 2016

[DISTRIBUTION STATEMENT A] This material has been approved for public
release and unlimited distribution.

© 2016 Carnegie Mellon University

[Insert Distribution Statement Here]

Secure Coding Tutorial

Introduction

5
Common Exploits and How to Prevent Them
Secure Coding Symposium

Sep 8, 2016

[DISTRIBUTION STATEMENT A] This material has been approved for public
release and unlimited distribution.

Security Flaws

A software defect is the encoding of a human error

into the software, including omissions

A security flaw is a software defect that poses a

potential security risk

Eliminating software defects eliminates security

flaws

6
Common Exploits and How to Prevent Them
Secure Coding Symposium

Sep 8, 2016

[DISTRIBUTION STATEMENT A] This material has been approved for public
release and unlimited distribution.

Vulnerabilities

A security policy is the definition of the security
requirements for the system, for example, a
statement of which resources may be accessed and
how

A vulnerability is a set of conditions that allows an
attacker to violate an explicit or implicit security
policy

A security flaw can cause a program to be
vulnerable to attack
But not all security flaws lead to vulnerabilities

7
Common Exploits and How to Prevent Them
Secure Coding Symposium

Sep 8, 2016

[DISTRIBUTION STATEMENT A] This material has been approved for public
release and unlimited distribution.

Exploits

An exploit is a program or technique that takes

advantage of a security vulnerability to violate an

explicit or implicit security policy

Vulnerabilities in software are subject to exploitation

Exploits can take many form including

•worms

•viruses

• trojans

8
Common Exploits and How to Prevent Them
Secure Coding Symposium

Sep 8, 2016

[DISTRIBUTION STATEMENT A] This material has been approved for public
release and unlimited distribution.

Proof-of-Concept Exploits

May be developed to prove the existence of a

vulnerability

Are beneficial when properly managed

In the wrong hands can be quickly transformed into

a worm or virus or used in an attack

9
Common Exploits and How to Prevent Them
Secure Coding Symposium

Sep 8, 2016

[DISTRIBUTION STATEMENT A] This material has been approved for public
release and unlimited distribution.

Mitigations

Mitigations are methods, techniques, processes,

tools, or runtime libraries that can prevent or limit

exploits against vulnerabilities

At the source code level, a mitigation may involve

replacing an unbounded string copy operation with a

bounded one

At a system or network level, a mitigation may

involve turning off a port or filtering traffic to prevent

an attacker from accessing a vulnerability

10
Common Exploits and How to Prevent Them
Secure Coding Symposium

Sep 8, 2016

[DISTRIBUTION STATEMENT A] This material has been approved for public
release and unlimited distribution.

MITRE Common Weakness Enumeration (CWEs)

• Hierarchical, a

“tree” of

weaknesses

• Lists languages

each weakness

can occur in

• Simple examples

of vulnerable code

https://cwe.mitre.org/

https://cwe.mitre.org/

11
Common Exploits and How to Prevent Them
Secure Coding Symposium

Sep 8, 2016

[DISTRIBUTION STATEMENT A] This material has been approved for public
release and unlimited distribution.

Rank Score ID Name

[1] 93.8 CWE-89
Improper Neutralization of Special Elements used in an SQL
Command ('SQL Injection')

[2] 83.3 CWE-78
Improper Neutralization of Special Elements used in an OS
Command ('OS Command Injection')

[3] 79.0 CWE-120
Buffer Copy without Checking Size of Input ('Classic Buffer
Overflow')

[4] 77.7 CWE-79
Improper Neutralization of Input During Web Page
Generation ('Cross-site Scripting')

[5] 76.9 CWE-306 Missing Authentication for Critical Function

[6] 76.8 CWE-862 Missing Authorization

[7] 75.0 CWE-798 Use of Hard-coded Credentials

[8] 75.0 CWE-311 Missing Encryption of Sensitive Data

[9] 74.0 CWE-434 Unrestricted Upload of File with Dangerous Type

[10] 73.8 CWE-807 Reliance on Untrusted Inputs in a Security Decision

2011 CWE/SANS Top 25 Most Dangerous
Software Errors

http://cwe.mitre.org/top25/#Listing

http://cwe.mitre.org/top25/#CWE-89
http://cwe.mitre.org/top25/#CWE-78
http://cwe.mitre.org/top25/#CWE-120
http://cwe.mitre.org/top25/#CWE-79
http://cwe.mitre.org/top25/#CWE-306
http://cwe.mitre.org/top25/#CWE-862
http://cwe.mitre.org/top25/#CWE-798
http://cwe.mitre.org/top25/#CWE-311
http://cwe.mitre.org/top25/#CWE-434
http://cwe.mitre.org/top25/#CWE-807
http://cwe.mitre.org/top25/#Listing

12
Common Exploits and How to Prevent Them
Secure Coding Symposium

Sep 8, 2016

[DISTRIBUTION STATEMENT A] This material has been approved for public
release and unlimited distribution.

Common Vulnerabilities and Exposures

https://cve.mitre.org/index.html

Maintained by

List of known vulnerabilities in popular software.

Cross-referenced with

https://cve.mitre.org/index.html

13
Common Exploits and How to Prevent Them
Secure Coding Symposium

Sep 8, 2016

[DISTRIBUTION STATEMENT A] This material has been approved for public
release and unlimited distribution.

OWASP Top 10 2013

https://www.owasp.org/index.php/Top_10_2013-Top_10

A1-Injection

A2-Broken Authentication and Session Management

A3-Cross-Site Scripting (XSS)

A4-Insecure Direct Object References

A5-Security Misconfiguration

A6-Sensitive Data Exposure

A7-Missing Function Level Access Control

A8-Cross-Site Request Forgery (CSRF)

A9-Using Components with Known Vulnerabilities

A10-Unvalidated Redirects and Forwards

• Focused on web

vulnerabilities

https://www.owasp.org/index.php/Top_10_2013-Top_10
https://www.owasp.org/index.php/Top_10_2013-A1-Injection
https://www.owasp.org/index.php/Top_10_2013-A2-Broken_Authentication_and_Session_Management
https://www.owasp.org/index.php/Top_10_2013-A3-Cross-Site_Scripting_(XSS)
https://www.owasp.org/index.php/Top_10_2013-A4-Insecure_Direct_Object_References
https://www.owasp.org/index.php/Top_10_2013-A5-Security_Misconfiguration
https://www.owasp.org/index.php/Top_10_2013-A6-Sensitive_Data_Exposure
https://www.owasp.org/index.php/Top_10_2013-A7-Missing_Function_Level_Access_Control
https://www.owasp.org/index.php/Top_10_2013-A8-Cross-Site_Request_Forgery_(CSRF)
https://www.owasp.org/index.php/Top_10_2013-A9-Using_Components_with_Known_Vulnerabilities
https://www.owasp.org/index.php/Top_10_2013-A10-Unvalidated_Redirects_and_Forwards

14
Common Exploits and How to Prevent Them
Secure Coding Symposium

Sep 8, 2016

[DISTRIBUTION STATEMENT A] This material has been approved for public
release and unlimited distribution.

CERT Secure Coding Standards

CERT C Secure Coding Standard

• Version 1.0 (C99) published in 2009

• Version 2.0 (C11) published in 2014

• ISO/IEC TS 17961 C Secure Coding Rules Technical

Specification

• Conformance Test Suite

CERT C++ Secure Coding Standard

• Version 1.0 under development

CERT Oracle Secure Coding Standard for Java

• Version 1.0 (Java 7) published in 2011

• Java Secure Coding Guidelines

• Subset applicable to Android development

• Android Annex

The CERT Perl Secure Coding Standard

• Version 1.0 under development

https://www.securecoding.cert.org/confluence/x/BgE

https://www.securecoding.cert.org/confluence/x/BgE

15
Common Exploits and How to Prevent Them
Secure Coding Symposium

Sep 8, 2016

[DISTRIBUTION STATEMENT A] This material has been approved for public
release and unlimited distribution.

Secure Coding Tutorial

Introduction

Injection

• SQL

• OS Command

• Format String

Memory Corruption

• Buffer Overflow

Concurrency

Privilege Escalation

• Java Applet

Conclusion

16
Common Exploits and How to Prevent Them
Secure Coding Symposium

Sep 8, 2016

[DISTRIBUTION STATEMENT A] This material has been approved for public
release and unlimited distribution.

© 2016 Carnegie Mellon University

[Insert Distribution Statement Here]

Secure Coding Tutorial

Injection

17
Common Exploits and How to Prevent Them
Secure Coding Symposium

Sep 8, 2016

[DISTRIBUTION STATEMENT A] This material has been approved for public
release and unlimited distribution.

Injection

Malicious user input is sent to some kind of processor

AKA ‘eval’ problems

Processor Injection Type

HTML Parser (inc. Web Browser) Cross-Site Scripting (XSS)

Shell OS Command

C printf() function family Format String

Database SQL

Regular Expression Library Regex

File access function (eg fopen()) Pathname

XML XML

18
Common Exploits and How to Prevent Them
Secure Coding Symposium

Sep 8, 2016

[DISTRIBUTION STATEMENT A] This material has been approved for public
release and unlimited distribution.

Secure Coding Tutorial

Introduction

Injection

• SQL

• OS Command

• Format String

Memory Corruption

• Buffer Overflow

Concurrency

Privilege Escalation

• Java Applet

Conclusion

19
Common Exploits and How to Prevent Them
Secure Coding Symposium

Sep 8, 2016

[DISTRIBUTION STATEMENT A] This material has been approved for public
release and unlimited distribution.

© 2016 Carnegie Mellon University

[Insert Distribution Statement Here]

Secure Coding Tutorial

SQL Injection Demo

20
Common Exploits and How to Prevent Them
Secure Coding Symposium

Sep 8, 2016

[DISTRIBUTION STATEMENT A] This material has been approved for public
release and unlimited distribution.

Rank Score ID Name

[1] 93.8 CWE-89
Improper Neutralization of Special Elements used in an SQL
Command ('SQL Injection')

SQL Injection

A1-Injection

IDS00-J. Prevent SQL injection

http://cwe.mitre.org/top25/#CWE-89
https://www.owasp.org/index.php/Top_10_2013-A1-Injection
https://www.securecoding.cert.org/confluence/display/java/IDS00-J.+Prevent+SQL+injection

21
Common Exploits and How to Prevent Them
Secure Coding Symposium

Sep 8, 2016

[DISTRIBUTION STATEMENT A] This material has been approved for public
release and unlimited distribution.

Trust Boundaries

Software often contains multiple components & libraries

Each component may operate in one or more trusted domains

• Details of trusted domains driven by architecture, security policy,

required resources, functionality, etc.

Example:

• Component A can access file-system, but lacks any network

access

• Component B has general network access, but lacks access to

the file-system and the secure network

• Component C can access a secure network, but lacks access to

the file-system and the general network

22
Common Exploits and How to Prevent Them
Secure Coding Symposium

Sep 8, 2016

[DISTRIBUTION STATEMENT A] This material has been approved for public
release and unlimited distribution.

Trust Boundary Security

Programs must take steps to ensure that any data that

crosses a trust boundary is both

• Appropriate

• Non-malicious

This can include appropriate

• Canonicalization / Normalization

• Input Sanitization

• Validation

23
Common Exploits and How to Prevent Them
Secure Coding Symposium

Sep 8, 2016

[DISTRIBUTION STATEMENT A] This material has been approved for public
release and unlimited distribution.

Trust Boundary Diagram

Core of Trusted
Component

Canonicalize

/ Normalize

Input

Sanitization

Validation

Output

Sanitization
Output

SanitizationOutput

Sanitization

Trust Boundary

Inputs

Outputs

ValidInvalid

24
Common Exploits and How to Prevent Them
Secure Coding Symposium

Sep 8, 2016

[DISTRIBUTION STATEMENT A] This material has been approved for public
release and unlimited distribution.

Validation

Validation: The process of checking inputs to ensure that they fall

within the intended input domain of the receiver

• Prevent errors, by disallowing invalid inputs

• Typically does not modify input

Details are specific to particular systems, inputs, etc.

Examples:

• Does input number fall within required numeric range?

• Can not open a nonexistent file for reading.

• Temporal properties: Unix sudo command requires

authentication

- Unless user previously authenticated within the past 30 seconds

25
Common Exploits and How to Prevent Them
Secure Coding Symposium

Sep 8, 2016

[DISTRIBUTION STATEMENT A] This material has been approved for public
release and unlimited distribution.

Sanitization

Sanitization: The process of ensuring that data to be passed to a

subsystem does not violate a system’s security policy.

• Often converts valid-but-insecure input into invalid input.

• Applies equally to input and output.

- Output sanitization usually prevents sensitive information leak.

• When platform provides sanitization routines, use them!

Examples:

• Elimination of unwanted characters from input string by means

of removing, replacing, encoding, or escaping the characters

• Prevent user from specifying pathname to file they lack privilege

to access

• Prevent user from executing Javascript or SQL

26
Common Exploits and How to Prevent Them
Secure Coding Symposium

Sep 8, 2016

[DISTRIBUTION STATEMENT A] This material has been approved for public
release and unlimited distribution.

Canonicalization / Normalization

Useful precursor to string validation.

Canonicalization: Reducing the input to its simplest equivalent

known form (aka canonical form)

Examples:

• Resolving ./ or ../ in path names and URLs

• Conversion of case-insensitive strings to lowercase

Normalization: Conversion of input to a standard form (not

necessarily simplest)

Examples:

• Unicode conversion (to NFKC or NFKD)

27
Common Exploits and How to Prevent Them
Secure Coding Symposium

Sep 8, 2016

[DISTRIBUTION STATEMENT A] This material has been approved for public
release and unlimited distribution.

Canonicalize / Normalize
before Sanitizing / Validating 1

An application forbids <script> tags in its input

• Part of strategy to avoid XSS attacks

Input string could be user controlled

Recall:

• Java uses Unicode for its Characters

- Unicode V4 in Java SE6

- Unicode V6 in Java SE7

28
Common Exploits and How to Prevent Them
Secure Coding Symposium

Sep 8, 2016

[DISTRIBUTION STATEMENT A] This material has been approved for public
release and unlimited distribution.

Canonicalize / Normalize
before Sanitizing / Validating 2

Suppose the input string were

String s = "\uFE64" + "script" + "\uFE65";

• FYI: these are the Unicode 'SMALL LESS-THAN SIGN’ and
'SMALL GREATER-THAN SIGN’ characters

• They aren’t the standard angle brackets

• But they normalize to the standard angle brackets

If normalization performed after sanitization:

• The sanitization check fails to spot them

• Then the normalization changes them to ‘<‘ and ‘>’

A <script> tag can sneak through the checking!

29
Common Exploits and How to Prevent Them
Secure Coding Symposium

Sep 8, 2016

[DISTRIBUTION STATEMENT A] This material has been approved for public
release and unlimited distribution.

Vulnerable Code 1

boolean isPasswordCorrect(String name, char[] password)

throws SQLException, ClassNotFoundException {

Connection connection = getConnection();

...

String pwd = new String(password);

String sqlString = "SELECT * FROM Users WHERE name = '”

+ name + "' AND password = '" + pwd + "'";

Statement stmt = connection.createStatement();

ResultSet rs = stmt.executeQuery(sqlString);

if (!rs.next()) {

return false;

}

30
Common Exploits and How to Prevent Them
Secure Coding Symposium

Sep 8, 2016

[DISTRIBUTION STATEMENT A] This material has been approved for public
release and unlimited distribution.

Vulnerable Code 2

boolean isPasswordCorrect(String name, char[] password)

throws SQLException, ClassNotFoundException {

Connection connection = getConnection();

...

String pwd = new String(password);

String sqlString = "SELECT * FROM Users WHERE name = '”

+ name + "' AND password = '" + pwd + "'";

Statement stmt = connection.createStatement();

ResultSet rs = stmt.executeQuery(sqlString);

if (!rs.next()) {

return false;

}

password should not be stored in the database

or a java.lang.String unencrypted. Ideally

we'd hash it here so the database sees only the

hashed password.

Name and password are never sanitized

before being added to SQL command!

31
Common Exploits and How to Prevent Them
Secure Coding Symposium

Sep 8, 2016

[DISTRIBUTION STATEMENT A] This material has been approved for public
release and unlimited distribution.

© 2016 Carnegie Mellon University

[Insert Distribution Statement Here]

Secure Coding Tutorial

SQL Injection Mitigation Demo

32
Common Exploits and How to Prevent Them
Secure Coding Symposium

Sep 8, 2016

[DISTRIBUTION STATEMENT A] This material has been approved for public
release and unlimited distribution.

Mitigation

boolean isPasswordCorrect(String name, char[] password)

throws SQLException, ClassNotFoundException {

Connection connection = getConnection();

...

String pwd = new String(password);

String sqlString =

"SELECT * FROM Users WHERE name=? AND password=?";

PreparedStatement stmt =

connection.prepareStatement(sqlString);

stmt.setString(1, name);

stmt.setString(2, pwd);

ResultSet rs = stmt.executeQuery();

if (!rs.next()) {

return false;

}

Sanitizes input by rules

of this SQL parser.

Don’t forget to
hash password!

33
Common Exploits and How to Prevent Them
Secure Coding Symposium

Sep 8, 2016

[DISTRIBUTION STATEMENT A] This material has been approved for public
release and unlimited distribution.

SQL Injection Summary

Sanitize the input to your database queries!

• Be wary of string concatenation

• Strings being joined may originate from different trust

domains.

• Use sanitization provided by your platform
(java.sql.PreparedStatement)

Don’t worry if your sanitization invalidates the input.

• Butchered input less egregious than injection!

Language-independent (specific to SQL, not Java)

34
Common Exploits and How to Prevent Them
Secure Coding Symposium

Sep 8, 2016

[DISTRIBUTION STATEMENT A] This material has been approved for public
release and unlimited distribution.

Secure Coding Tutorial

Introduction

Injection

• SQL

• OS Command

• Format String

Memory Corruption

• Buffer Overflow

Concurrency

Privilege Escalation

• Java Applet

Conclusion

35
Common Exploits and How to Prevent Them
Secure Coding Symposium

Sep 8, 2016

[DISTRIBUTION STATEMENT A] This material has been approved for public
release and unlimited distribution.

© 2016 Carnegie Mellon University

[Insert Distribution Statement Here]

Secure Coding Tutorial

OS Command Injection Demo

36
Common Exploits and How to Prevent Them
Secure Coding Symposium

Sep 8, 2016

[DISTRIBUTION STATEMENT A] This material has been approved for public
release and unlimited distribution.

Rank Score ID Name

[2] 83.3 CWE-78
Improper Neutralization of Special Elements used
in an OS Command ('OS Command Injection')

OS Command Injection

A1-Injection

IDS07-J. Sanitize untrusted data passed to the Runtime.exec() method

ENV33-C. Do not call system()

IDS31-PL. Do not use the two-argument form of open()

http://cwe.mitre.org/top25/#CWE-78
https://www.owasp.org/index.php/Top_10_2013-A1-Injection
https://www.securecoding.cert.org/confluence/display/java/IDS07-J.+Sanitize+untrusted+data+passed+to+the+Runtime.exec()+method
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=2130132
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=76775519

37
Common Exploits and How to Prevent Them
Secure Coding Symposium

Sep 8, 2016

[DISTRIBUTION STATEMENT A] This material has been approved for public
release and unlimited distribution.

Vulnerable Code 1

perl -e 'while (<>) {print "contents: $_";}' *

which is equivalent to:

perl -n -e 'print "contents: $_";' *

which is equivalent to:

perl -p -e '$_ = "contents: $_";' *

38
Common Exploits and How to Prevent Them
Secure Coding Symposium

Sep 8, 2016

[DISTRIBUTION STATEMENT A] This material has been approved for public
release and unlimited distribution.

Vulnerable Code 2

while (<>) {

print "contents: $_";

}

is also shorthand for:

foreach (@ARGV) {

open(my $file, $_);

while (<$file>) {

print "contents: $_";

}

}

39
Common Exploits and How to Prevent Them
Secure Coding Symposium

Sep 8, 2016

[DISTRIBUTION STATEMENT A] This material has been approved for public
release and unlimited distribution.

Vulnerable Code 3

while (<>) {

print "contents: $_";

}

is also shorthand for:

foreach (@ARGV) {

open(my $file, $_);

while (<$file>) {

print "contents: $_";

}

}

Executes shell

command if argument
begins or ends with |

40
Common Exploits and How to Prevent Them
Secure Coding Symposium

Sep 8, 2016

[DISTRIBUTION STATEMENT A] This material has been approved for public
release and unlimited distribution.

Perl open()

open FILEHANDLE,EXPR

open FILEHANDLE,MODE,EXPR

…

Opens the file whose filename is given by EXPR, and

associates it with FILEHANDLE.

…

For three or more arguments if MODE is |- , the filename is

interpreted as a command to which output is to be piped, and

if MODE is -| , the filename is interpreted as a command that

pipes output to us. In the two-argument (and one-argument)

form, one should replace dash (-) with the command.

open (Perl 5 version 24.0 documentation)

http://perldoc.perl.org/functions/open.html

41
Common Exploits and How to Prevent Them
Secure Coding Symposium

Sep 8, 2016

[DISTRIBUTION STATEMENT A] This material has been approved for public
release and unlimited distribution.

Vulnerable Code 4

perl -e 'while (<>) {print "contents: $_";}' *

which is equivalent to:

perl -n -e 'print "contents: $_";' *

which is equivalent to:

perl -p -e '$_ = "contents: $_";' *

All these forms

are vulnerable
too!

42
Common Exploits and How to Prevent Them
Secure Coding Symposium

Sep 8, 2016

[DISTRIBUTION STATEMENT A] This material has been approved for public
release and unlimited distribution.

Mitigation

use Carp;

foreach $arg (@ARGV) {

open(my $file, "<", $arg) \

or croak "cannot open $arg";

while (<$file>) {

print "contents: $_";

}

}

IDS31-PL. Do not use the two-
argument form of open()

EXP30-PL. Do not use deprecated or
obsolete functions or modules (eg die())

EXP32-PL. Do not ignore function return values

Sorry, no short way to write this code!

https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=76775519
https://www.securecoding.cert.org/confluence/display/perl/EXP30-PL.+Do+not+use+deprecated+or+obsolete+functions+or+modules
https://www.securecoding.cert.org/confluence/display/perl/EXP32-PL.+Do+not+ignore+function+return+values

43
Common Exploits and How to Prevent Them
Secure Coding Symposium

Sep 8, 2016

[DISTRIBUTION STATEMENT A] This material has been approved for public
release and unlimited distribution.

OS Command Injection Summary

Sometimes the easier code is the less secure code.

Beware obscure features!

• They may be more useful to attackers than you.

Layers of abstraction help to obscure features.

• Perl’s file-open mechanism buried under

• <> operator.

• –n option

• –p option

Use the three-argument version of open()

• 2nd argument indicates whether to open file or run

command

44
Common Exploits and How to Prevent Them
Secure Coding Symposium

Sep 8, 2016

[DISTRIBUTION STATEMENT A] This material has been approved for public
release and unlimited distribution.

Secure Coding Tutorial

Introduction

Injection

• SQL

• OS Command

• Format String

Memory Corruption

• Buffer Overflow

Concurrency

Privilege Escalation

• Java Applet

Conclusion

45
Common Exploits and How to Prevent Them
Secure Coding Symposium

Sep 8, 2016

[DISTRIBUTION STATEMENT A] This material has been approved for public
release and unlimited distribution.

© 2016 Carnegie Mellon University

[Insert Distribution Statement Here]

Secure Coding Tutorial

Format String Injection Demo

46
Common Exploits and How to Prevent Them
Secure Coding Symposium

Sep 8, 2016

[DISTRIBUTION STATEMENT A] This material has been approved for public
release and unlimited distribution.

Rank Score ID Name

[23] 61.0 CWE-134 Uncontrolled Format String

Format String Injection

A1-Injection

FIO30-C. Exclude user input from format strings
IDS06-J. Exclude unsanitized user input from format strings
IDS30-PL. Exclude user input from format strings

CVE 2015-8617

http://cwe.mitre.org/top25/#CWE-134
https://www.owasp.org/index.php/Top_10_2013-A1-Injection
https://www.securecoding.cert.org/confluence/display/c/FIO30-C.+Exclude+user+input+from+format+strings
https://www.securecoding.cert.org/confluence/display/java/IDS06-J.+Exclude+unsanitized+user+input+from+format+strings?src=search
https://www.securecoding.cert.org/confluence/display/perl/IDS30-PL.+Exclude+user+input+from+format+strings
https://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2015-8617

47
Common Exploits and How to Prevent Them
Secure Coding Symposium

Sep 8, 2016

[DISTRIBUTION STATEMENT A] This material has been approved for public
release and unlimited distribution.

Format Strings 1

Format strings are character sequences consisting of
ordinary characters (excluding %) and conversion
specifications.

Ordinary characters are copied unchanged to the
output stream.

Conversion specifications

• convert arguments according to a corresponding
conversion specifier

• write the results to the output stream

Conversion specifications begin with a percent sign
(%) and are interpreted from left to right.

48
Common Exploits and How to Prevent Them
Secure Coding Symposium

Sep 8, 2016

[DISTRIBUTION STATEMENT A] This material has been approved for public
release and unlimited distribution.

Format Strings 2

If there are more arguments than conversion

specifications, the extra arguments are ignored.

If there are not enough arguments for all the conversion

specifications, the results are undefined.

49
Common Exploits and How to Prevent Them
Secure Coding Symposium

Sep 8, 2016

[DISTRIBUTION STATEMENT A] This material has been approved for public
release and unlimited distribution.

Degrees of Severity

CIA Triad:

• Confidentiality

• Integrity

• Availability

CERT Severity Levels:

Severity—How serious

are the consequences of
the rule being ignored?

Value Meaning Examples of Vulnerability

1 low denial-of-service attack, abnormal

termination

2 medium unintentional information disclo-

sure

3 high run arbitrary code,

 privilege escalation

50
Common Exploits and How to Prevent Them
Secure Coding Symposium

Sep 8, 2016

[DISTRIBUTION STATEMENT A] This material has been approved for public
release and unlimited distribution.

Crashing a Program

An invalid pointer access or unmapped address read

can be triggered by calling a formatted output function:

printf("%s%s%s%s%s%s%s%s%s%s%s%s");

The %s conversion specifier retrieves memory at an

address specified in the corresponding argument on the

execution stack.

Because no string parameters are supplied, printf()

reads arbitrary memory locations from the stack until

• the format string is exhausted

• an invalid pointer or unmapped address is encountered

51
Common Exploits and How to Prevent Them
Secure Coding Symposium

Sep 8, 2016

[DISTRIBUTION STATEMENT A] This material has been approved for public
release and unlimited distribution.

Viewing Memory Content

The %s conversion specifier displays memory at the

address specified by the argument pointer as an

ASCII string until a null byte is encountered.

If an attacker can manipulate the argument pointer
to reference a particular address, the %s conversion

specifier will output memory at that location.

52
Common Exploits and How to Prevent Them
Secure Coding Symposium

Sep 8, 2016

[DISTRIBUTION STATEMENT A] This material has been approved for public
release and unlimited distribution.

The %n Conversion Specifier

Formatted output functions are dangerous because
most programmers are unaware of their capabilities.

On platforms where int and addresses are the same
size (such as x86-32), the ability to write an integer to
an arbitrary address can be used to execute arbitrary
code on a compromised system.

The %n conversion specifier

• was created to help align formatted output strings

• writes the number of characters successfully output to
an integer address provided as an argument

53
Common Exploits and How to Prevent Them
Secure Coding Symposium

Sep 8, 2016

[DISTRIBUTION STATEMENT A] This material has been approved for public
release and unlimited distribution.

Format String Injection Summary

Even popular software like PHP is insecure!

Beware obscure features!

• They may be more useful to attackers than you.

Sanitize your format strings!

• Use string literals

• Or use less powerful functions

• fputs() instead of fprintf()

Occurs in any language with format strings

But worse in C-like languages

• because they are not memory-safe!

54
Common Exploits and How to Prevent Them
Secure Coding Symposium

Sep 8, 2016

[DISTRIBUTION STATEMENT A] This material has been approved for public
release and unlimited distribution.

Secure Coding Tutorial

Introduction

Injection

• SQL

• OS Command

• Format String

Memory Corruption

• Buffer Overflow

Concurrency

Privilege Escalation

• Java Applet

Conclusion

55
Common Exploits and How to Prevent Them
Secure Coding Symposium

Sep 8, 2016

[DISTRIBUTION STATEMENT A] This material has been approved for public
release and unlimited distribution.

© 2016 Carnegie Mellon University

[Insert Distribution Statement Here]

Secure Coding Tutorial

Memory Corruption

56
Common Exploits and How to Prevent Them
Secure Coding Symposium

Sep 8, 2016

[DISTRIBUTION STATEMENT A] This material has been approved for public
release and unlimited distribution.

Memory Corruption

All software uses memory.

Java and many newer languages protect memory

from careless reads & writes:

• Array reads & writes are bounds-checked

• Memory not freed until no longer needed

• Dereferencing null pointers causes termination

C opted to be fast & efficient rather than safe.

57
Common Exploits and How to Prevent Them
Secure Coding Symposium

Sep 8, 2016

[DISTRIBUTION STATEMENT A] This material has been approved for public
release and unlimited distribution.

Secure Coding Tutorial

Introduction

Injection

• SQL

• OS Command

• Format String

Memory Corruption

• Buffer Overflow

Concurrency

Privilege Escalation

• Java Applet

Conclusion

58
Common Exploits and How to Prevent Them
Secure Coding Symposium

Sep 8, 2016

[DISTRIBUTION STATEMENT A] This material has been approved for public
release and unlimited distribution.

© 2016 Carnegie Mellon University

[Insert Distribution Statement Here]

Secure Coding Tutorial

Buffer Overflow Demo

59
Common Exploits and How to Prevent Them
Secure Coding Symposium

Sep 8, 2016

[DISTRIBUTION STATEMENT A] This material has been approved for public
release and unlimited distribution.

Rank Score ID Name

[3] 79.0 CWE-120
Buffer Copy without Checking Size of Input
('Classic Buffer Overflow')

Buffer Overflow

STR31-C. Guarantee that storage for strings has sufficient
space for character data and the null terminator

http://cwe.mitre.org/top25/#CWE-120
https://www.securecoding.cert.org/confluence/display/c/STR31-C.+Guarantee+that+storage+for+strings+has+sufficient+space+for+character+data+and+the+null+terminator

60
Common Exploits and How to Prevent Them
Secure Coding Symposium

Sep 8, 2016

[DISTRIBUTION STATEMENT A] This material has been approved for public
release and unlimited distribution.

What Is a Buffer Overflow?

A buffer overflow occurs when data is written outside
of the boundaries of the memory allocated to a
particular data structure.

Destination
Memory

Source
Memory

Allocated Memory (12 Bytes) Other Memory

16 Bytes of Data

Copy
Operation

61
Common Exploits and How to Prevent Them
Secure Coding Symposium

Sep 8, 2016

[DISTRIBUTION STATEMENT A] This material has been approved for public
release and unlimited distribution.

Buffer Overflows

Are caused when buffer boundaries are neglected and

unchecked

Can occur in any memory segment

Can be exploited to modify a

• variable

• data pointer

• function pointer

• return address on the stack

Smashing the Stack for Fun and Profit (Aleph One, Phrack 49-14, 1996) provides

the classic description of buffer overflows.

http://phrack.org/issues/49/14.html#article

62
Common Exploits and How to Prevent Them
Secure Coding Symposium

Sep 8, 2016

[DISTRIBUTION STATEMENT A] This material has been approved for public
release and unlimited distribution.

Smashing the Stack

Occurs when a buffer overflow overwrites data in the

memory allocated to the execution stack.

Successful exploits can overwrite the return address

on the stack, allowing execution of arbitrary code on

the targeted machine.

This is an important class of vulnerability because of

the

•occurrence frequency

•potential consequences

63
Common Exploits and How to Prevent Them
Secure Coding Symposium

Sep 8, 2016

[DISTRIBUTION STATEMENT A] This material has been approved for public
release and unlimited distribution.

Vulnerable Code 1

printf("Enter a new first name.\n");

printf(">>> ");

rc = scanf("%s", records[idx].first_name);

if (rc != 1) {

printf("Invalid input.\n");

exit(1);

}

64
Common Exploits and How to Prevent Them
Secure Coding Symposium

Sep 8, 2016

[DISTRIBUTION STATEMENT A] This material has been approved for public
release and unlimited distribution.

Vulnerable Code 2

printf("Enter a new first name.\n");

printf(">>> ");

rc = scanf("%s", records[idx].first_name);

if (rc != 1) {

printf("Invalid input.\n");

exit(1);

}

Reads until space or
input exhausted

Completely oblivious to
end of buffer!

65
Common Exploits and How to Prevent Them
Secure Coding Symposium

Sep 8, 2016

[DISTRIBUTION STATEMENT A] This material has been approved for public
release and unlimited distribution.

Mitigation

void* rp;

…

printf("Enter a new first name.\n");

printf(">>> ");

rp = fgets(records[idx].first_name,

sizeof(records[idx].first_name), stdin);

if(rp == NULL) {

printf("Invalid input.\n");

exit(1);

}
Reads until input

exhausted or buffer
limit reached

66
Common Exploits and How to Prevent Them
Secure Coding Symposium

Sep 8, 2016

[DISTRIBUTION STATEMENT A] This material has been approved for public
release and unlimited distribution.

Buffer Overflow Summary

Sometimes the easier code is the less secure code.

• Many C standard library functions do no bounds check

• Use functions that check bounds (e.g., fgets())

• Can write outside array bounds without library function

• Make sure all array indexes & pointer arithmetic are

within range!

Not possible in memory-safe languages like Java and Perl

67
Common Exploits and How to Prevent Them
Secure Coding Symposium

Sep 8, 2016

[DISTRIBUTION STATEMENT A] This material has been approved for public
release and unlimited distribution.

Secure Coding Tutorial

Introduction

Injection

• SQL

• OS Command

• Format String

Memory Corruption

• Buffer Overflow

Concurrency

Privilege Escalation

• Java Applet

Conclusion

68
Common Exploits and How to Prevent Them
Secure Coding Symposium

Sep 8, 2016

[DISTRIBUTION STATEMENT A] This material has been approved for public
release and unlimited distribution.

© 2016 Carnegie Mellon University

[Insert Distribution Statement Here]

Secure Coding Tutorial

Concurrency

69
Common Exploits and How to Prevent Them
Secure Coding Symposium

Sep 8, 2016

[DISTRIBUTION STATEMENT A] This material has been approved for public
release and unlimited distribution.

Concurrency

Concurrency occurs when two or more separate execution flows
are able to run simultaneously [Dijkstra 65].

Examples of independent execution flows include

• threads

• processes

• tasks

Concurrent
execution of
multiple flows of
execution is an
essential part of a
modern computing
environment.

Single
core

multi-
thread

Multi-
core

multi-
thread

Single
core

single
thread

70
Common Exploits and How to Prevent Them
Secure Coding Symposium

Sep 8, 2016

[DISTRIBUTION STATEMENT A] This material has been approved for public
release and unlimited distribution.

Race Conditions

A race condition is an execution ordering of

concurrent flows that results in undesired behavior.

Race conditions are possible in runtime

environments, including operating systems, that

must control access to shared resources, especially

through process scheduling.

• Race conditions are a frequent source of vulnerabilities.

• Race conditions are particularly insidious because they are

non-deterministic or timing dependent.
- difficult to detect, reproduce, and eliminate

- can cause errors such as data corruption or crashes [Amarasinghe 2007].

71
Common Exploits and How to Prevent Them
Secure Coding Symposium

Sep 8, 2016

[DISTRIBUTION STATEMENT A] This material has been approved for public
release and unlimited distribution.

Deadlock

Deadlock occurs whenever two or more control flows block
each other in such a way that none can continue to execute.

Deadlock results from a cycle of concurrent execution flows
in which each flow in the cycle has acquired a
synchronization object that results in the suspension of the
subsequent flow in the cycle.

Deadlock can result in a denial-of-service attack.
• VU#132110 Apache HTTP Server versions 2.0.48 and prior

contain a race condition in the handling of short-lived
connections.

• When using multiple listening sockets, a short-lived connection
on a rarely-used socket may cause the child process to hold the
accept mutex, blocking new connections from being served until
another connection uses the socket.

72
Common Exploits and How to Prevent Them
Secure Coding Symposium

Sep 8, 2016

[DISTRIBUTION STATEMENT A] This material has been approved for public
release and unlimited distribution.

Concurrency Summary

Concurrency is hard.

• Bugs difficult to reproduce

• Lack of suitable test & debug tools

• Standardization is late and underspecified

• Lack of analysis tools

Main benefit is improved performance (limited by

parallelization quotient & Amdahl’s Law)

When building a concurrent application

• Make sure improved performance is worth the hassle.

• Establish a good simple design and enforce it!

73
Common Exploits and How to Prevent Them
Secure Coding Symposium

Sep 8, 2016

[DISTRIBUTION STATEMENT A] This material has been approved for public
release and unlimited distribution.

Secure Coding Tutorial

Introduction

Injection

• SQL

• OS Command

• Format String

Memory Corruption

• Buffer Overflow

Concurrency

Privilege Escalation

• Java Applet

Conclusion

74
Common Exploits and How to Prevent Them
Secure Coding Symposium

Sep 8, 2016

[DISTRIBUTION STATEMENT A] This material has been approved for public
release and unlimited distribution.

© 2016 Carnegie Mellon University

[Insert Distribution Statement Here]

Secure Coding Tutorial

Privilege Escalation

75
Common Exploits and How to Prevent Them
Secure Coding Symposium

Sep 8, 2016

[DISTRIBUTION STATEMENT A] This material has been approved for public
release and unlimited distribution.

Privilege System

Integrated with a larger system

Delegation of authority

Java privilege system

Grants different privileges to different code segments in

the same program

Other examples:

• UNIX privileges and permissions

• Windows NT-based privileges

• Android Permission System

76
Common Exploits and How to Prevent Them
Secure Coding Symposium

Sep 8, 2016

[DISTRIBUTION STATEMENT A] This material has been approved for public
release and unlimited distribution.

Well-Behaved Applets

Java applets run in a security sandbox
• Chaperoned by a SecurityManager, which throws a
SecurityException if applet tries to do anything
forbidden

Sandbox prevents applets from
• Accessing the file system

• Accessing the network
- EXCEPT the host it came from

• Running external programs

• Modifying the security manager

A signed applet may request privilege to do these
things.

77
Common Exploits and How to Prevent Them
Secure Coding Symposium

Sep 8, 2016

[DISTRIBUTION STATEMENT A] This material has been approved for public
release and unlimited distribution.

Secure Coding Tutorial

Introduction

Injection

• SQL

• OS Command

• Format String

Memory Corruption

• Buffer Overflow

Concurrency

Privilege Escalation

• Java Applet

Conclusion

78
Common Exploits and How to Prevent Them
Secure Coding Symposium

Sep 8, 2016

[DISTRIBUTION STATEMENT A] This material has been approved for public
release and unlimited distribution.

© 2016 Carnegie Mellon University

[Insert Distribution Statement Here]

Secure Coding Tutorial

Java Applet Demo

79
Common Exploits and How to Prevent Them
Secure Coding Symposium

Sep 8, 2016

[DISTRIBUTION STATEMENT A] This material has been approved for public
release and unlimited distribution.

Rank Score ID Name

CWE-502 Deserialization of Untrusted Data

Java Applet Exploit

A4-Insecure Direct Object References

OBJ03-J. Prevent heap pollution
OBJ06-J. Defensively copy mutable inputs and mutable internal components
SER07-J. Do not use the default serialized form for classes with
implementation-defined invariants

CVE 2012-0507

https://cwe.mitre.org/data/definitions/502.html
https://www.owasp.org/index.php/Top_10_2013-A4-Insecure_Direct_Object_References
https://www.securecoding.cert.org/confluence/x/aoC2AQ
https://www.securecoding.cert.org/confluence/x/QIEVAQ
https://www.securecoding.cert.org/confluence/x/aYCpAQ
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-0507

80
Common Exploits and How to Prevent Them
Secure Coding Symposium

Sep 8, 2016

[DISTRIBUTION STATEMENT A] This material has been approved for public
release and unlimited distribution.

Trojan BackDoor.Flashback

Malware targeting Mac OS X

First discovered by Intego in September 2011
• Did not use Java then, mimicked Flash installer

Modified to use Java vul in March 2012
• Oracle had already released Java patch.

– But Apple hadn’t applied it!

Botnet of 600,000 infected Macs
• according to .

22,000 Macs still infected as of January 2014.

81
Common Exploits and How to Prevent Them
Secure Coding Symposium

Sep 8, 2016

[DISTRIBUTION STATEMENT A] This material has been approved for public
release and unlimited distribution.

Confused Deputy Problem 1

Q: If class A is unprivileged and class B is privileged, how do

we make sure that class A doesn’t trick class B into doing

something privileged on A’s behalf?

AB

82
Common Exploits and How to Prevent Them
Secure Coding Symposium

Sep 8, 2016

[DISTRIBUTION STATEMENT A] This material has been approved for public
release and unlimited distribution.

Confused Deputy Problem 2

A: Require that all callers are privileged before proceeding.

Security
Manager

AB

83
Common Exploits and How to Prevent Them
Secure Coding Symposium

Sep 8, 2016

[DISTRIBUTION STATEMENT A] This material has been approved for public
release and unlimited distribution.

Java Applet Summary

Even popular software like Java is insecure!

Privileged code is a more lucrative target than

unprivileged code!

• Vulnerabilties more costly

Beware obscure features!

• They may be more useful to attackers than you.

Beware Confused Deputy

Language-independent

84
Common Exploits and How to Prevent Them
Secure Coding Symposium

Sep 8, 2016

[DISTRIBUTION STATEMENT A] This material has been approved for public
release and unlimited distribution.

Secure Coding Tutorial

Introduction

Injection

• SQL

• OS Command

• Format String

Memory Corruption

• Buffer Overflow

Concurrency

Privilege Escalation

• Java Applet

Conclusion

85
Common Exploits and How to Prevent Them
Secure Coding Symposium

Sep 8, 2016

[DISTRIBUTION STATEMENT A] This material has been approved for public
release and unlimited distribution.

© 2016 Carnegie Mellon University

[Insert Distribution Statement Here]

Secure Coding Tutorial

Conclusion

86
Common Exploits and How to Prevent Them
Secure Coding Symposium

Sep 8, 2016

[DISTRIBUTION STATEMENT A] This material has been approved for public
release and unlimited distribution.

Rank Score ID Name

[1] 93.8 CWE-89
Improper Neutralization of Special Elements used in an SQL
Command ('SQL Injection')

[2] 83.3 CWE-78
Improper Neutralization of Special Elements used in an OS
Command ('OS Command Injection')

[3] 79.0 CWE-120
Buffer Copy without Checking Size of Input ('Classic Buffer
Overflow')

[23] 61.0 CWE-134 Uncontrolled Format String

CWE-502 Deserialization of Untrusted Data

2011 CWE/SANS Top 25 Most Dangerous
Software Errors

http://cwe.mitre.org/top25/#Listing

http://cwe.mitre.org/top25/#CWE-89
http://cwe.mitre.org/top25/#CWE-78
http://cwe.mitre.org/top25/#CWE-120
http://cwe.mitre.org/top25/#CWE-134
https://cwe.mitre.org/data/definitions/502.html
http://cwe.mitre.org/top25/#Listing

87
Common Exploits and How to Prevent Them
Secure Coding Symposium

Sep 8, 2016

[DISTRIBUTION STATEMENT A] This material has been approved for public
release and unlimited distribution.

Trust Boundary Diagram

Core of Trusted
Component

Canonicalize

/ Normalize

Input

Sanitization

Validation

Output

Sanitization
Output

SanitizationOutput

Sanitization

Trust Boundary

Inputs

Outputs

ValidInvalid

88
Common Exploits and How to Prevent Them
Secure Coding Symposium

Sep 8, 2016

[DISTRIBUTION STATEMENT A] This material has been approved for public
release and unlimited distribution.

Injection Summary

Sanitize any untrusted input that goes to a subsystem

• Databases

• OS Commands

• Format strings

• Web browser (HTML)

• Etc.

Use sanitization provided by your platform, if possible

• Java’s PreparedStatement

• Perl’s 3-argument open()

• POSIX’s realpath()

Don’t worry if your sanitization invalidates the input.

• Butchered input less egregious than injection!

Language-independent

89
Common Exploits and How to Prevent Them
Secure Coding Symposium

Sep 8, 2016

[DISTRIBUTION STATEMENT A] This material has been approved for public
release and unlimited distribution.

Complexity Summary

Beware obscure features!

• They may be more useful to attackers than you.

Layers of abstraction help to obscure features.

• Perl’s file-open mechanism buried under <>, –n, –p

• Many C library functions do not prevent buffer overflow.

• Buffer overflow also possible w/o library functions

• Quirks in Java’s

• SecurityManager

• ClassLoader

• Deserialization

90
Common Exploits and How to Prevent Them
Secure Coding Symposium

Sep 8, 2016

[DISTRIBUTION STATEMENT A] This material has been approved for public
release and unlimited distribution.

Memory Safety

Use a memory-safe language. (Java, Perl, others)

OR

Check all your:

• Array accesses

• Pointer arithmetic

• Memory allocation & deallocation

Prevent:

• Undefined Behavior

• C11 lists 203 cases of explicit undefined behavior.

• CERT rule violations

• The SEI CERT C Coding Standard lists 98 rules.

91
Common Exploits and How to Prevent Them
Secure Coding Symposium

Sep 8, 2016

[DISTRIBUTION STATEMENT A] This material has been approved for public
release and unlimited distribution.

Misc. Summary

• Even popular software like PHP is insecure!

• Sometimes the easier code is the less secure

code.

• It is cheaper to prevent vulnerabilities during

development.

• Stay up-to-date with patches.

• And make sure your platform does too.

92
Common Exploits and How to Prevent Them
Secure Coding Symposium

Sep 8, 2016

[DISTRIBUTION STATEMENT A] This material has been approved for public
release and unlimited distribution.

For More Information

Contact Presenter

David Svoboda

svoboda@cert.org

+1 412.268.3965

Contact CERT:

Software Engineering Institute

Carnegie Mellon University

4500 Fifth Avenue

Pittsburgh PA 15213-3890

USA

Visit CERT® websites:

http://www.cert.org/secure-coding

https://www.securecoding.cert.org

mailto:svoboda@cert.org
http://www.cert.org/secure-coding/
https://www.securecoding.cert.org/

93
Common Exploits and How to Prevent Them
Secure Coding Symposium

Sep 8, 2016

[DISTRIBUTION STATEMENT A] This material has been approved for public
release and unlimited distribution.

Software Engineering Institute

Carnegie Mellon University

Pittsburgh, PA 15213

© 2016 Carnegie Mellon University

[Insert Distribution Statement Here]

REV-03.18.2016.0

The End

94
Common Exploits and How to Prevent Them
Secure Coding Symposium

Sep 8, 2016

[DISTRIBUTION STATEMENT A] This material has been approved for public
release and unlimited distribution.

© 2016 Carnegie Mellon University

[Insert Distribution Statement Here]

Secure Coding Tutorial

HTML Injection (XSS) Demo

95
Common Exploits and How to Prevent Them
Secure Coding Symposium

Sep 8, 2016

[DISTRIBUTION STATEMENT A] This material has been approved for public
release and unlimited distribution.

Rank Score ID Name

[4] 77.7 CWE-79
Improper Neutralization of Input During Web
Page Generation ('Cross-site Scripting')

Cross-Site Scripting

A3-Cross-Site Scripting (XSS)

IDS33-PL. Sanitize untrusted data passed across a trust boundary

http://cwe.mitre.org/top25/#CWE-79
https://www.owasp.org/index.php/Top_10_2013-A3-Cross-Site_Scripting_(XSS)
https://www.securecoding.cert.org/confluence/display/perl/IDS33-PL.+Sanitize+untrusted+data+passed+across+a+trust+boundary?src=search

96
Common Exploits and How to Prevent Them
Secure Coding Symposium

Sep 8, 2016

[DISTRIBUTION STATEMENT A] This material has been approved for public
release and unlimited distribution.

Vulnerable Code (Java)

public void doGet(HttpServletRequest request,

HttpServletResponse response)

throws IOException, ServletException {

response.setContentType("text/html;charset=UTF-8");

try (PrintWriter out = response.getWriter()) {

// ...

String userName = request.getParameter("userName");

if (userName == null) {

// ...

} else {

out.println("It is a pleasure to meet you, ");

// Deletes non-character code points

out.println(userName.replaceAll("[\\p{Cn}]", ""));

out.println("!");

...

97
Common Exploits and How to Prevent Them
Secure Coding Symposium

Sep 8, 2016

[DISTRIBUTION STATEMENT A] This material has been approved for public
release and unlimited distribution.

Vulnerable Code (Java)

public void doGet(HttpServletRequest request,

HttpServletResponse response)

throws IOException, ServletException {

response.setContentType("text/html;charset=UTF-8");

try (PrintWriter out = response.getWriter()) {

// ...

String userName = request.getParameter("userName");

if (userName == null) {

// ...

} else {

out.println("It is a pleasure to meet you, ");

// Deletes non-character code points

out.println(userName.replaceAll("[\\p{Cn}]", ""));

out.println("!");

...

Normalizes input, but
does not sanitize it.

98
Common Exploits and How to Prevent Them
Secure Coding Symposium

Sep 8, 2016

[DISTRIBUTION STATEMENT A] This material has been approved for public
release and unlimited distribution.

Mitigation

private String sanitize(String s) {

// Deletes non-character code points

s = s.replaceAll("[\\p{Cn}]", "");

// Replace anything that is not alphanumeric

s = s.replaceAll("[^A-Za-z_]", "_");

return s;

}

out.println("It is a pleasure to meet you, ");

// Deletes non-character code points

out.println(sanitize(userName));

out.println("!");

...

Sanitization is done
after normalization!

99
Common Exploits and How to Prevent Them
Secure Coding Symposium

Sep 8, 2016

[DISTRIBUTION STATEMENT A] This material has been approved for public
release and unlimited distribution.

HTML Injection (XSS) Summary

Know your trust boundaries

• Can untrusted users access your website?

Sanitize your website’s input!

• Prevent users from entering

• Images

• Other HTML Tags

• Javascript

Don’t worry if your sanitization invalidates the input.

• Butchered input less egregious than XSS

Don’t forget to sanitize your website’s output, too!

• Purge sensitive information

Language-independent (not specific to Java)

100
Common Exploits and How to Prevent Them
Secure Coding Symposium

Sep 8, 2016

[DISTRIBUTION STATEMENT A] This material has been approved for public
release and unlimited distribution.

Perl

The summary is that when Perl opens files using <>, it uses Perl's

open syntax. And when you tell Perl to open a file that ends with |,

it treats it as a shell command to send input to, and executes it!

101
Common Exploits and How to Prevent Them
Secure Coding Symposium

Sep 8, 2016

[DISTRIBUTION STATEMENT A] This material has been approved for public
release and unlimited distribution.

Buffer Overflow Vulnerable Code

printf("Enter a new last name.\n");

printf(">>> ");

rc = scanf("%s", records[idx].last_name);

if(rc != 1) {

printf("Invalid input.\n");

exit(1);

}

102
Common Exploits and How to Prevent Them
Secure Coding Symposium

Sep 8, 2016

[DISTRIBUTION STATEMENT A] This material has been approved for public
release and unlimited distribution.

Key Ideas: Privilege Separation & Privilege
Minimization

Privilege Separation

• A system is decomposed into separate components

• Each component possesses only those privileges required for it to
function

• Consequence: component cannot perform other privileged operations

- Limits impact of errors and of successful attacks

Privilege Minimization

• Privileges are disabled most of the time

• Privileges are enabled exactly and only when required

• Consequences:

- Reduces amount of privileged code

• Easier to get it right

• Reduces cost of review

- Temporally limits certain attack opportunities

103
Common Exploits and How to Prevent Them
Secure Coding Symposium

Sep 8, 2016

[DISTRIBUTION STATEMENT A] This material has been approved for public
release and unlimited distribution.

Key Idea: Distrustful Decomposition

Components have limited trust in each other

• Similar to compartmentalized security

Consequence: Must manage interactions between components

with care

• Canonicalize, Sanitize, Normalize & Validate inputs

- Goal: Limit potential attacks

• Sanitize outputs

- Goal: Prevent information and capability leaks

• Addressed by rules shown later

