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 LAGOON Final Report / Demonstration, 
 Including OSS Contributor Ascendency 

 Galois and the University of Vermont 
 In compliance with the fourth milestone of DARPA SocialCyber: 

 Comprehensive Summary 
 DoD applications continue to rely on Open Source Software (OSS) for economic and labor force 
 purposes. Ensuring the supply-chain integrity of these dependencies is crucial for the security of 
 downstream applications. The LAGOON project has resulted in a brand-new, open source 
 platform which helps analysts understand OSS communities from a social-oriented security 
 perspective. Focusing on the observable artifacts produced within these communities, LAGOON 
 provides a full suite of tools for ingesting different kinds of data, fusing it into a unified, 
 sociotechnical and spatiotemporal graph, and then leveraging Machine Learning (ML)-enabled 
 capabilities to help predict and prevent future attacks against OSS software that has real-world 
 effects on downstream projects, all of which is shown in the figure below. The platform is 
 currently designed to be an efficient tool for Observe, Orient, Decide, Act (OODA) loop 
 scenarios, though a continuous integration version could be developed in the future. 

 Specific LAGOON results and capabilities funded by SocialCyber 
 ●  DoD-relevant use cases  for LAGOON or other SocialCyber  platforms. We have 

 identified multiple different, real-world software supply-chain attacks which could be 
 detected through the data and algorithms available through LAGOON. Specifically, these 
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 attacks stem from either a central contributor becoming dissatisfied with their project or 
 its user base, or from a low-contribution community member who attempts to assert the 
 requisite authority in order to get a malicious patch accepted. Therefore, LAGOON’s 
 focus on both quantifying and predicting the wellbeing of core maintainers via toxicity, as 
 well as characterizing new contributors, is aligned with detecting real-world attacks. 

 ●  Open source products  , the  LAGOON  and  OCEAN  software.  These allow for the ingest 
 of multiple data sources, fusing them into one sociotechnical temporal graph, and 
 running various analyses on the result. Each new community ingested only takes a few 
 hours of human time. The LAGOON repository includes a ready-to-go, 1.5GB database 
 of the CPython and LXML communities, including 39699 users (with Have I Been Pwned 
 data for 36424 of them), 207120 git commits, 799019 OCEAN mailing list messages, 
 31500 GitHub pull requests, 50133 GitHub conversations, 570 Python Enhancement 
 Proposals (PEPs), and 19737 files from the Python + LXML communities. The ingest of 
 more data happens in layered batches, allowing for incremental or partial updates, 
 where the order of data ingestion is often irrelevant to the correctness of the system. 

 ●  Reports on contributor and organizational dynamics  within OSS communities. which 
 demonstrate the qualities of different community members, including contributor 
 ascendency and power on both technical and social levels. Ability to temporally 
 characterize a contributor’s involvement and authority over the community. Allowed us to 
 identify “trending topic” vs “broad topic” contributors. Ability to look at organizational 
 factors of the Python community. 

 ●  Investigation of LXML CVEs  using the LAGOON platform.  Looking at seven CVEs 
 related to the popular LXML library, LAGOON’s database was searched for evidence of 
 these CVEs being tied to deliberate attacks. While we were able to identify the 
 contributors and commits tied to many of these vulnerabilities, we found them to be the 
 results of legitimate oversight instead of coordinated attacks. Similar processes were 
 conducted on CPython CVEs to investigate the feasibility of connecting them to specific 
 files within the project’s source code; 16 CVEs resulting from specific files were found. 

 ●  Publications highlighting the SocialCyber program  .  Three publications were 
 submitted as part of these efforts; two accepted to the 2022 Mining Software 
 Repositories conference (  LAGOON  and  OCEAN  , both accepted),  and one to the 2022 
 Sunbelt conference (pending notification). The publications cover both the LAGOON and 
 OCEAN software, as well the use of these tools to study the networks within OSS 
 development communities. 

 ●  Understanding of the predictive power of aggregate toxicity versus constellations 
 of toxicity  within the Python community. Specifically,  we note that aggregating toxicity in 
 a neighborhood around a contributor or topic of interest is insufficient for making 
 predictive claims about a contributor disengaging from the project, topping out at 3% 
 improvement compared to a naive guess. On the other hand, ML methods can leverage 
 constellations of toxicity within the sociotechnical graph to account for variations in 
 contributors disengaging 11.7% better than a naive guess. 

 ●  OSS-community-aware toxicity detector  fine-tuned from  the BERT language model. 
 This model was trained on data from Wikipedia edits, which helped to tune it toward 
 polysemy-aware modalities of toxicity, as one would expect in the more professional 

https://github.com/GaloisInc/SocialCyberLAGOON
https://github.com/google/project-OCEAN
https://arxiv.org/abs/2201.11657
https://bagrow.com/pdf/warrick2022-mailing-v1.pdf
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 environment of OSS development. On a held-out set from the Wikipedia edits, this 
 model achieved 90% accuracy. However, on a balanced set hand-labeled from the 
 CPython OSS community, the BERT model achieved 69% accuracy, whereas a previous 
 wordlist-based approach only achieved 40% accuracy. 

 ●  Social network analysis of OSS integrating toxicity classification  exploring the 
 social effects of toxicity in the collaboration networks of the Python community. We find 
 that users producing messages classified as toxic tend to be more active and central 
 than users with no messages classified as toxic, but have fewer collaborators per 
 project. 

 ●  Future research objectives  which could be used to  significantly improve on results 
 from the SocialCyber program. Expanding the scope of analysis and focusing on 
 foundational advances to the science of dealing with large, complicated sociotechnical 
 systems are both crucial. Expanding the scope includes both considering multiple OSS 
 communities in tandem, as modern software tends to have a supply chain that includes 
 multiple OSS dependencies, as well as looking at a large array of perspectives on that 
 data from those communities. That is, the SocialCyber program both provides a way to 
 look at OSS communities holistically and demonstrates that these communities are rich 
 macrocosms of human interaction. Understanding this complex fabric in isolation – that 
 is, only looking at artifacts from OSS communities – is less likely to be successful than 
 understanding it in the context of other social and behavioral research. For foundational 
 advances in science, we point to the rampant overfitting that happens with a rich graph 
 of interactions as LAGOON provides, and how mechanisms of dealing with that 
 overfitting are necessary for results that generalize well. Other topics are provided too. 

 DoD-relevant use cases 
 Examples of historic attacks which LAGOON seeks to detect include: the  pushing of malicious 
 commits to the Linux kernel  , the  unpublishing of LeftPad  ,  the  deliberate corruption of Faker.js by 
 its author  , and the  unauthorized publishing of malicious  versions of UA-Parser.js  . All of these 
 attacks are DoD-relevant: with an increasing reliance on OSS, the attack surface accessible by 
 these software supply-chain attacks just keeps growing. Procedural attempts at addressing 
 these vulnerabilities exist, such as dependency freezing or semantic versioning, but each has 
 their own issues. While freezing dependencies might prevent pulling newly pushed malicious 
 code, as proposed in  this article about UA-Parser.js  ,  it also prevents necessary security patches 
 for zero days from being pulled into production deployments. On the other hand, semantic 
 versioning was proposed as a means of ensuring interoperability and availability of security 
 patches, yet it is fundamentally driven by human processes, and its patchwork adoption makes 
 it not a reliable means of preventing supply-chain dependency attacks. One might make the 
 claim that the DoD could simply eschew OSS; however, the cost of that would likely be 
 prohibitive if adopted on a large scale. To quote the Army on a Modular Open Systems 
 Approach, which relies on integration of OSS: “While it’s hard to quantify the ROI (savings, cost 
 avoidance), it is clear that MOSA is the right strategy in many cases and should always be 
 considered. Based on projected savings in the area of avionics, convergence of hardware and 

https://www.theverge.com/2021/4/30/22410164/linux-kernel-university-of-minnesota-banned-open-source
https://www.theverge.com/2021/4/30/22410164/linux-kernel-university-of-minnesota-banned-open-source
https://qz.com/646467/how-one-programmer-broke-the-internet-by-deleting-a-tiny-piece-of-code/
https://www.siliconrepublic.com/enterprise/github-marak-squires-colors-faker-npm-corrupt-open-source
https://www.siliconrepublic.com/enterprise/github-marak-squires-colors-faker-npm-corrupt-open-source
https://blog.openreplay.com/another-npm-package-is-highjacked-and-it-s-your-fault-that-this-happened
https://blog.openreplay.com/another-npm-package-is-highjacked-and-it-s-your-fault-that-this-happened
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 software to a MOSA construct is expected to yield an ROI in the hundreds of millions of dollars.” 
 [  https://apps.dtic.mil/sti/pdfs/AD1040338.pdf  ] 

 While the technical substance of these attacks varies, the majority either stem from a central 
 contributor becoming dissatisfied with their project or its user base, or from a low-contribution 
 community member who attempts to assert the requisite authority in order to get a malicious 
 patch accepted  2  . By definition, low-contribution community  members have little data with which 
 to discern their intent, and on significant OSS projects, often cannot modify the primary source 
 code repository without a core maintainer’s sign-off. OSS projects therefore rely almost wholly 
 on the wellbeing and alertness of their core maintainers, making most of these supply-chain 
 vulnerabilities largely the result of social processes. This is not the same as arguing that the 
 only community members worth understanding are the core maintainers; the LAGOON project 
 was designed specifically to capture the effects of this general public on the core maintainers, 
 and to help identify concerted efforts which might be coordinated, emotional denial of service 
 attacks against an OSS project’s maintainers. That is, toxicity and other interpersonal 
 dimensions tied to project communications affect the psychology of an OSS project’s 
 maintainers, which in turn can lead to a maintainer becoming disgruntled or otherwise unable to 
 safeguard the project. 

 LAGOON is therefore a general purpose security platform for projects that rely on OSS. It is 
 designed to be pointed at one or more OSS projects, and multiple data sources which provide 
 artifacts that give information on the community defined by these projects. It then provides a 
 suite of tools and reports that allow analysts to inspect a variety of socially-focused, 
 security-relevant qualities, such as sub-team associations, the ebb and flow of a contributor’s 
 influence (ascendency), likelihood of a core maintainer becoming disengaged, or gathering a list 
 of maintainers responsible for a specific file or feature set. 

 Add new layers / what differentiates LAGOON from similar platforms. Novelty of developed 
 platform. Talk about database flexibility – allowing broad experiments rather than deep. Pull 
 from our MSR 2022 paper. 

 Open source products 
 The open source  OCEAN  and  LAGOON  repositories allow  users to ingest and explore 
 sociotechnical artifacts resulting from OSS projects, including mailing list messages, source 
 code repositories, GitHub pull requests, and Python Enhancement Proposals (PEPs; a key 
 organizational mechanism of the Python community). These artifacts give insight into members 
 of OSS communities, and let analysts inspect these members’ power within OSS organizations 
 as well as those members’ social pressures and responses to those pressures. To provide 
 mailing list capabilities, LAGOON leverages the Open-source Complex Ecosystem And 
 Networks (OCEAN) partnership between the University of Vermont and Google Open Source. 
 To provide GitHub pull request capabilities, LAGOON leverages TwoSix labs’ scraper, which 

 2  The exception to this dichotomy – UA-Parser.js – could be caught by adding a check for discrepancies 
 between deployment code (as available from NPM) with underlying source code (as available on GitHub). 

https://apps.dtic.mil/sti/pdfs/AD1040338.pdf
https://github.com/google/project-OCEAN
https://github.com/GaloisInc/SocialCyberLAGOON
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 was also created as part of the SocialCyber program. 

 As a case study, LAGOON focused on  CPython  , the most widely used implementation of the 
 Python programming language. To demonstrate agility, we also added  LXML  , the rank #67 most 
 downloaded package from Python’s PyPI package repository, which has accrued  seven CVEs 
 over the years. Adding the LXML source code repository and GitHub pull requests to the 
 database only took about 3 hours of human effort to identify data sources and queue them up to 
 be pulled into the platform. 

 Reports on contributor and organizational dynamics 
 LAGOON looks at individual contributors from two perspectives: the breadth of their technical 
 involvement and the extent of their organizational influence. Technical involvement is measured 
 through the Index of Maximum Concurrent Files (IMCF), which measures the attack surface 
 available to a contributor if they were malicious. Organizational influence is investigated via 
 Python Enhancement Proposals, the core mechanism by which architectural decisions for 
 Python are made. Putting these two quantities together gives a comprehensive view of a 
 contributor’s involvement in the OSS project: 

https://github.com/python/cpython
https://github.com/lxml/lxml
https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=lxml
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 Both of these are detailed in below sections, notably “Contributor ascendency” and 
 “Organizational structures amongst Python contributors.” 

 Investigation of LXML CVEs 
 An ideal outcome from SocialCyber would be specific examples of attacks against OSS. 
 Generally, while investigating the CPython implementation of Python, we found the community 
 to be healthy, with files being actively maintained by numerous contributors. No evidence of 
 deliberate attacks was found in this community. 

 To increase our chances of finding attacks, we decided to look at the LXML library, which is 
 downloaded 33.6 million times per month and has 7 CVEs. Additionally, this library is poorly 
 funded, an environment which might permit malicious commits more readily than the base 



 DISTRIBUTION STATEMENT A. Approved for public release.                                         HR00112190092 

 Python OSS. Using the LAGOON database and software, we investigated these CVEs, working 
 backward through the source code repository and tooling to find the commits which allowed for 
 these vulnerabilities. Our investigation found these CVEs to derive from legitimate oversights 
 rather than deliberate efforts. 

 The process of investigating CVEs is detailed in the “Since the M6 Milestone” section 
 “Investigation of LXML CVEs.” 

 Additionally, linkage from CPython CVEs to specific source code files was investigated using the 
 LAGOON platform. In total, 16 CVEs were found to have descriptions that contained enough 
 information to link them to specific source code files. Future work could use this information to 
 identify if these CVEs were the results of deliberate efforts. This effort is detailed in the “Since 
 the M6 Milestone” section “Linking CPython CVEs to Source Code Files.” 

 Publications highlighting the SocialCyber program 
 Three publications were submitted: two to the 2022 Mining Software Repositories (MSR) 
 conference, and one to the 2022 Sunbelt conference. Pre-prints are available for the papers 
 submitted to MSR on  LAGOON  and  OCEAN  . 

 A literature survey was also conducted which places LAGOON’s results in context of other 
 researchers’ efforts; notably, there is evidence that in volunteer-driven efforts, like OSS, 
 community toxicity leads to disengagement, which leads to declines in product quality. For OSS, 
 a decline in quality implies the potential for uncaught vulnerabilities. The LAGOON platform 
 allows for researchers to explore these hypotheses in greater detail specifically as they relate to 
 OSS projects. 

https://arxiv.org/abs/2201.11657
https://bagrow.com/pdf/warrick2022-mailing-v1.pdf
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 This is covered in more detail in the “Since the M6 Milestone” section, under the “Publications 
 and academic merit” subsection. 

 Understanding of the predictive power of aggregate toxicity 
 versus constellations of toxicity 
 Disengagement was chosen as an example metric that we might automatically compute and 
 predict for contributors. As noted previously, disengagement leads to a reduction in project 
 quality, and actively reduces the number of maintainers with enough familiarity to ensure 
 security. 

 Since there is not much published work in this space, we discuss results in terms of percent 
 improvement over a naive baseline. Initial results on predicting disengagement using 
 information from the Python community looked only at aggregates. Even well-known ML 
 methods, like the Graph Convolutional Network (GCN), effectively only look at the aggregate of 
 a local neighborhood, and then re-combine this aggregate using standard weight-then-activate 
 layers. Our best models that leveraged simple aggregates were able to predict disengagement 
 3% better than the naive baseline. 

 On the other hand, recent advances in ML have yielded concepts like the transformer’s 
 multi-headed attention block. By adapting this block to work with a GCN-like architecture, we 
 produced an architecture that was able to leverage the full constellation of data around a 
 contributor. That is, rather than only computing based on simple mean aggregates, the 
 transformer-enhanced GCN could look at multiple views of the data simultaneously, granting 
 attention to whichever aspects improve computation the most. This model was able to predict 
 disengagement 11.7% better than the naive baseline. We also demonstrated that this model 
 was able to make significant use of toxicity information (“badwords” below) in the service of 
 predicting disengagement: 
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 OSS-community-aware toxicity detector 
 Sentiment classification in professional contexts is a difficult problem. For example, toxicity 
 filters from the wider internet often flag “black” as used more often in toxic contexts than 
 well-meaning ones. However, the Python community uses a piece of software called “black” for 
 no-nonsense, automatic formatting of code. These overloaded words, or polysemy, illustrate that 
 each community or subcommunity has different aspects which they consider to be toxic. 

 To deal with this, a BERT-based toxicity classifier was fine-tuned from a labeled dataset of 
 Wikipedia edits. This scored 90% accurate on a balanced set from the Wikipedia data. We then 
 hand-labeled all of the commits from the Python community, and constructed a balanced 
 dataset of 50 toxic and 50 non-toxic examples specifically from our target community. The 
 fine-tuned toxicity classifier scored 69% accuracy on this dataset, demonstrating the difficulty of 
 transferring sentiment analysis results between communities. However, this is compared to 40% 
 accuracy on the Python toxicity dataset from our previous, bad-word-list-based approach. 

 As an example of a sentence which looks toxic to a word filter, because of the word “hate”, but 
 is correctly identified as non-toxic by the BERT classifier, consider this sentence: 
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 [NOT TOXIC] “I hate to call them 'keyword' arguments when they aren't (check with 
 the\nkeyword module: it will confirm they aren't keywords!-).” 

 More details may be found in the “Verifying transfer of domain-specific toxicity from Wikipedia to 
 OSS” section later in this report. 

 Social network analysis of OSS integrating toxicity classification 
 To reduce the complexity of the sociotechnical system studied by LAGOON, we projected OSS 
 projects on co-committing networks. This network representation acts as a proxy for a 
 collaboration network as it captures user interactions through the co-editing of shared files. 
 Doing so then opened the toolbox of social network analysis as a means to investigate how 
 toxicity affects collaborations and productivity. 

 We found that accounts sending messages classified as toxic tend to slow down productivity 
 and collaborations on specific pieces of software (toxic commit messages). Perhaps as a 
 consequence, we also observed that these accounts generally gain less collaborations per 
 activity over time and, more directly, work on files with less collaborators. All together, this 
 analysis demonstrates the mostly speculated impact of toxicity in OSS and highlights a potential 
 pathway for targeted social attacks to slow down productivity and compromise OSS 
 communities. 

 Future research objectives 
 The following would be appropriate avenues for continued exploration, and to develop tools that 
 significantly improve on results from the SocialCyber program: 

 ●  Research on code / community health metrics that directly lead to CVEs in an OSS 
 project would be immensely helpful for follow on work. There is currently no unified 
 understanding of the qualities of a project that allow for the intrusion of malicious code. 
 The SocialCyber program was a significant step toward being more aware of the 
 interrelation between a project’s social environment and the security of its technical 
 artifacts, and yet this domain needs significantly more study. 

 ●  A wider scope of projects and communities being investigated by each team would help 
 test out the completeness of this approach for detecting supply-chain vulnerabilities in 
 OSS. Most modern projects do not rely on a single OSS dependency. In fact, often tens 
 or hundreds of packages are pulled in, either directly or as dependencies of 
 dependencies. In these real-world scenarios, being able to cope with the scale of many 
 OSS communities becomes vital for assembling a reliable dashboard to help with 
 assessing the overall security of a downstream project. We note that the inclusion of 
 LXML into the LAGOON database was a step in this direction. 

 ●  The basic science surrounding graph NNs, particularly as it relates to overfitting 
 mitigation, needs to be improved. Since graphical relations are composed of unique 
 constellations of data (as opposed to, e.g., uniform images), it is easy for ML methods to 
 memorize the data rather than compute a generalizing function. This problem is 
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 demonstrated by results from Graph Convolutional Networks (GCNs), where a 2-hop 
 neighborhood is the maximum beneficial function to compute. Large, complex social 
 graphs, like those found in SocialCyber, need advances in the fundamental science 
 underlying learning on graphical data in order to leverage all available information. 

 ●  The integration of a wide set of influence cues would allow analysts to better tie 
 observations in OSS communities to wide psychology or sociology literature. Due to the 
 breadth of data available from OSS communities, pulling in external studies that lend 
 credibility to certain interpretations of the data might be a great way to cut through some 
 of the overfitting endemic to the SocialCyber problem. For example, in collaboration with 
 the University of Florida, one might integrate the  Potentiam dataset  to differentiate 
 between contributors posturing with loss framing to persuade the community away from 
 potentially more secure architectures, versus those who speak more objectively. 

 ●  A more generalizable mechanism is needed for automatically identifying architectural 
 decisions and authoritative figures in those decisions. Our analyses used the PEP 
 mechanism which was unique to the Python community. While these analyses were 
 highly insightful, they are specific to Python, and a more generalized mechanism would 
 likely need to rely more heavily on natural language processing to cover formal decision 
 processes. 

 ●  A better understanding and ability to compute different subcommunities of interaction 
 amongst contributors. Our results found that some teams interact more toxically within 
 themselves, yet that particular team was no more or less productive than other teams. 
 This is an example of a subculture, or group of people within the larger OSS community 
 that interact differently with one another. Being able to identify and handle these 
 subcommunities will result in a more accurate understanding of the overall community 
 and its rich internal dynamics. 

 ●  Better language modeling tools, which can more accurately predict sentiment or intent 
 within natural language messages  in technical domains  ,  would greatly boost the 
 confidence of presented results. While we were able to utilize the state-of-the-art BERT 
 model to achieve an accuracy of 69% at detecting toxicity within the CPython OSS 
 community, there clearly is significant progress to be made before reaching 95% 
 confidence. While the current accuracy levels are enough for cursory analysis, 
 operationalizing results would benefit from more accuracy in the underlying methods. 

 ●  Integration of static analysis-based tools with the social-centric tools. The social-centric 
 approaches that fall under SocialCyber are necessary, and perhaps even principal to the 
 health of an OSS project given how subtly malicious effects may be implemented. 
 Nonetheless, as an additional prior that helps focus analyst attention, being able to 
 leverage static analyses to help identify potentially malicious code, and combining that 
 with social awareness of the contributors, would be a more holistic approach. This would 
 be a significant effort, however, and would likely be closer to productization than 
 standard prototype development. We note that recent improvements in ML, such as 
 Code2vec, might also be of use in identifying code abstractions that correlate to specific 
 maintainer mentalities or intents. 

https://github.com/danielaoliveira/Potentiam
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 Since the M6 milestone 
 Since the M6 milestone, Galois and UVM have refined the LAGOON platform. LAGOON has 
 been used to derive results for multiple academic publications that emphasize the necessity of 
 the SocialCyber program. Additionally, we have provided evidence that detecting malicious 
 contributors before they cause harm to OSS projects is feasible. We have ingested the LXML 
 community as well, to demonstrate the agility of our toolchain and ability to deal with numerous 
 dependencies of a downstream project. New reports and metrics have been integrated into 
 LAGOON to help better characterize the ascendency of community members for both social and 
 technical involvement in the projects being investigated. These improvements are summarized 
 through the key achievements of the last three months: 

 ●  (Galois)  Demonstrated contributor ascendency  to effective  authorities on the CPython 
 and LXML projects with two approaches: 1)  tracking  architectural decisions  via the 
 PEP collaboration mechanism, and 2)  looking at a contributor’s  potential attack 
 surface  via the Index of Maximum Concurrent Files  (IMCF). 

 ●  (Galois)  Submitted a paper to the MSR 2022 Data and  Tool Showcase Track 
 documenting the LAGOON platform and its capabilities (  arXiv:2201.11657  ). 

 ●  (UVM)  Submitted two publications  : a  paper to the MSR  2022 Data and Tool 
 Showcase  Track, which focuses on the OCEAN dataset,  as well as a  talk to the 
 Sunbelt 2022 Conference  , which leverages LAGOON to  examine, “how toxic 
 interpersonal signals impact and reflect collaboration and prestige in the open source 
 Python language development community.” 

 ●  (Galois)  Ingested the `lxml` OSS project  alongside  CPython  to demonstrate 
 LAGOON’s ability to cope with communities comprised of multiple OSS projects. to 
 demonstrate ease of using LAGOON tooling on larger, multi-project communities. 

 ●  (Galois)  Investigation of LXML CVEs  using the LAGOON  platform. Looking at seven 
 CVEs related to the popular LXML library, LAGOON’s database was searched for 
 evidence of these CVEs being tied to deliberate attacks. While we were able to identify 
 the contributors and commits tied to many of these vulnerabilities, we found them to be 
 the results of legitimate oversight instead of coordinated attacks. 

 ●  (UVM)  Linkage from CPython CVEs to source code files  using the LAGOON 
 platform. In total, 16 CVEs were found to have descriptions that contained enough 
 information to link them to specific source code files. Future work could use this 
 information to identify if these CVEs were the results of deliberate efforts. 

 ●  (Galois)  Collaborated with RiverLoop / TwoSix to add  GitHub pull request data  into 
 the LAGOON platform; this was made straightforward due to the powerful modular 
 architecture of LAGOON. Between CPython and LXML, this resulted in the addition of 
 31500 GitHub pull requests and 50133 GitHub conversations to the database. 

 ●  (UVM) Verified  transfer of learning from fine-tuned  toxicity detection  on a 
 Wikipedia-derived dataset to the OSS-specific mailing list for the Python community. 
 Accuracy of 90% on the Wikipedia-derived dataset became 69% on OSS-specific data. 

 ●  (UVM) Leveraging domain-specific toxicity filter,  re-ran network analyses  . Discovered 
 that  users producing messages classified as toxic  tend to be very active but less 
 collaborative  than users with no messages classified  as toxic. 

https://arxiv.org/abs/2201.11657
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 ●  (UVM) Literature review demonstrating that  disengagement reduces the quality of 
 volunteer-driven efforts  . Since OSS is predominantly  a volunteer effort, and its security 
 is part of its quality, this demonstrates that  disengagement  might allow for malicious 
 contributors to commit weird machines  . 

 ●  (Galois)  Identified potentially overlooked source  code regions  with low or 
 anomalous maintainer patterns. 

 ●  (Galois) Leveraged ML to identify malicious users by predicting their status in the  Have I 
 Been Pwned  (HIBP) database. 

 ●  (Galois) Leveraged UVM’s BERT-based classifier to  re-analyze PEPs and contributor 
 disengagement using new toxicity features  . 

 ●  (Galois)  Numerous improvements to LAGOON’s UI  , including  better data accessibility, 
 significantly faster entity search, and clickable GitHub links to ease integration with other 
 data sources. 

 Contributor ascendency 
 As of M6, we had demonstrated LAGOON’s ability to assess both: 1) a contributor’s effective 
 authority with respect to architectural decisions, and 2) the change in that authority over the 
 project’s lifetime. That work was presented in the section on “Organizational structures amongst 
 Python collaborations,” which has been reiterated in the final sections of this report. Briefly, it 
 involved looking at Python Enhancement Proposals (PEPs), the decision unit of the Python 
 programming language. PEPs are formal proposals written by one or more community 
 members, which go through a rigorous approvals process. The process is reasonably 
 discriminative, with 59% of PEPs being adopted by the community on average. 

 To enhance this report to account for critical code contributions for M9, we’ve conceptualized 
 and implemented an Index of Maximum Concurrent Files (IMCF). The IMCF measures the area 
 of potential attack surface for a contributor if they were malicious; this is derived from the 
 breadth of a contributor’s impact on the code base. The index is created by looking at all 
 commits a community member is responsible for, including those attached to pull requests  3  . 
 Each file touched by these commits then gets its own list of times at which that specific file was 
 touched by this user. These touches are then convolved with a Gaussian kernel with a standard 
 deviation of half a year, and then divided by the maximum height of such a Gaussian for a single 
 file and clamped to a maximum of 1. The result is then summed across all files the user has 
 ever touched, which produces a temporal graph like the first one below: 

 3  Due to  issue #3 in TwoSix’s GitHub scraper  , many  pull requests were not correctly associated with 
 commits in the git repository at time of program conclusion. As a result, the included plots primarily 
 address influence resulting from direct code contributions rather than review activities. 

https://github.com/twosixlabs/github_scraper/issues/3
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 When paired with reports on organizational power, such as the above PEP involvement, this 
 provides a comprehensive view of each contributor’s ascendency in terms of both technical and 
 social capital within the given OSS community. 

 For reference, here are a few more key contributors; notably, Guido formally stepped down as 
 Python’s “Benevolent Dictator for Life” (BDFL) in July 2018, though still seems reasonably 
 involved with the project; Victor Stinner is a core contributor who’s organizational connections 
 were analyzed as part of the “Organizational structures amongst Python collaborations” section: 
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 More broadly, here is a characterization of the contributors with the highest IMCF within the last 
 three years: 
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 Notably, this points at another potential vulnerability in modern codebases: automated 
 contributions from bots like GitHub or Miss Islington, the latter of which is Python-specific. 
 Generally, these bots are trusted and fulfill either a security or developer quality-of-life function; 
 however, these bots themselves are composed of code which might be targeted by malicious 



 DISTRIBUTION STATEMENT A. Approved for public release.                                         HR00112190092 

 commits. Furthermore, as indicated in the figure above, commits from these bots can touch 
 many different files simultaneously, making it difficult for human reviewers to verify the security 
 of the entire patch. 

 In summary, the IMCF provides a means of looking at the scope of each contributor’s critical 
 code contributions. This quantity corresponds to the attack surface available to that contributor if 
 they were malicious. Importantly, changes in IMCF over time demonstrate a contributor’s 
 ascendency in terms of ability to directly inject malicious code. The IMCF can be coupled with 
 knowledge of a contributor’s involvement with organizational decisions, such as PEPs, in order 
 to also gauge their ability to enact architectural changes that would increase the efficacy of 
 malicious code. These two numbers can both be plotted over time, and together provide a 
 reasonably comprehensive view of influence on any OSS project. While these numbers cannot 
 be used to directly make claims regarding the intent of a contributor, they could be used to 
 determine the importance of that contributor’s intent to the overall project’s health and security. 

 Investigation of LXML CVEs 
 Common Vulnerability Exposures (CVEs) are a common means of tracking security issues in 
 popular software projects and libraries. In an attempt to find coordinated attacks against 
 software within the larger OSS community, we looked at  the LXML library  . LXML ranks #67 on 
 PyPI’s most downloaded packages list as of March 1st 2022, with 33.6 million downloads per 
 month, and has 7 CVEs  according to MITRE  . Despite  large adoption, LXML’s funding is small, 
 amounting to just under 3400 EUR/year on average for 2019 and 2020. Therefore, LXML would 
 be a reasonable target for a coordinated effort. 

 In an attempt to find such a coordinated effort, we used LAGOON tooling to look at the various 
 LXML CVEs and work backward. The CVEs are detailed here: 

 CVE-2021-438 
 18 

 lxml is a library for processing XML and HTML in the Python 
 language. Prior to version 4.6.5, the HTML Cleaner in 
 lxml.html lets certain crafted script content pass through, as 
 well as script content in SVG files embedded using data URIs. 
 Users that employ the HTML cleaner in a security relevant 
 context should upgrade to lxml 4.6.5 to receive a patch. 
 There are no known workarounds available. 

 CVE-2021-335 
 11 

 Plone though 5.2.4 allows SSRF via the lxml parser. This 
 affects Diazo themes, Dexterity TTW schemas, and 
 modeleditors in plone.app.theming, plone.app.dexterity, and 
 plone.supermodel. 

https://github.com/lxml/lxml
https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=lxml
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-43818
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-43818
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-33511
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-33511
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 CVE-2021-289 
 57 

 An XSS vulnerability was discovered in python-lxml's clean 
 module versions before 4.6.3. When disabling the 
 safe_attrs_only and forms arguments, the Cleaner class does 
 not remove the formaction attribute allowing for JS to bypass 
 the sanitizer. A remote attacker could exploit this flaw to run 
 arbitrary JS code on users who interact with incorrectly 
 sanitized HTML. This issue is patched in lxml 4.6.3. 

 CVE-2020-277 
 83 

 A XSS vulnerability was discovered in python-lxml's clean 
 module. The module's parser didn't properly imitate browsers, 
 which caused different behaviors between the sanitizer and 
 the user's page. A remote attacker could exploit this flaw to 
 run arbitrary HTML/JS code. 

 CVE-2020-271 
 97 

 ** DISPUTED ** TAXII libtaxii through 1.1.117, as used in 
 EclecticIQ OpenTAXII through 0.2.0 and other products, 
 allows SSRF via an initial http:// substring to the parse 
 method, even when the no_network setting is used for the 
 XML parser. NOTE: the vendor points out that the parse 
 method "wraps the lxml library" and that this may be an issue 
 to "raise ... to the lxml group." 

 CVE-2018-197 
 87 

 An issue was discovered in lxml before 4.2.5. 
 lxml/html/clean.py in the lxml.html.clean module does not 
 remove javascript: URLs that use escaping, allowing a remote 
 attacker to conduct XSS attacks, as demonstrated by "j a v a 
 s c r i p t:" in Internet Explorer. This is a similar issue to 
 CVE-2014-3146. 

 CVE-2014-314 
 6 

 Incomplete blacklist vulnerability in the lxml.html.clean 
 module in lxml before 3.3.5 allows remote attackers to 
 conduct cross-site scripting (XSS) attacks via control 
 characters in the link scheme to the clean_html function. 

 Commits pertaining to recent CVEs from this list and external to the LXML project may be found 
 by running the following in the LAGOON CLI: 

 >> 
 sess().query(sch.FusedEntity).where(sch.FusedEntity.attrs['m 
 essage'].astext.op('~*')('cve-20')).count() 

 This reveals 144 commits related to any 2000-or-later CVEs; if we filter purely for the above list, 
 which are LXML specific, we find precisely one commit, the details of which can be viewed in 
 LAGOON’s UI: 

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-28957
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-28957
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-27783
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-27783
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-27197
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-27197
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-19787
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-19787
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-3146
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-3146
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 We can use LAGOON’s GitHub integration to click on the “commit_sha” link, revealing that the 
 change automatically strips the “formaction” element in order to prevent arbitrary javascript from 
 being run on users’ machines: 

 In this case, it would be very difficult to prove that whoever made the sanitizing list omitted 
 ̀formaction` deliberately. We could use `git blame` to find out who that was: 
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 Which reveals that code as 14 years old, and as being committed by the original maintainer of 
 LXML, Stefan Behnel. 

 We could investigate the intent of the committer who fixed the CVE, Kevin Chung / ColdHeat via 
 the LAGOON UI. In this case, the contributor only has the one commit, which demonstrably 
 makes the project more secure by resolving a CVE. 

 This whole process took about 5-10 minutes for the CVE. For other CVEs which were not 
 explicitly mentioned in commit messages, a few of them could be linked to specific commits via 
 MITRE’s “References” section, which occasionally includes links to specific commits on GitHub. 

 None of the CVEs inspected in relation to the LXML project demonstrated evidence of a 
 coordinated attack, and instead appeared to be instances of legitimate oversight. 

 Linking CPython CVEs to Source Code Files 
 We also investigated CVEs within the core CPython library. To match CVEs with the appropriate 
 file(s) in our database, we downloaded all CVEs ascribed to the core Python library from 
 https://www.cvedetails.com/vulnerability-list/vendor_id-10210/Python.html  .  The format governing 
 the submission of CVEs does not include a field which uniquely identifies which files in an open 
 source repository contribute to the CVE. The only field of the CVE which potentially contains 
 information about relevant files is the description. So we searched these descriptions for 
 common phrases that indicate that one of the words in the phrase is a file name, and matched 
 these with filenames in the database. We then manually checked these and matched records 
 with clear indications of filename. We found that the majority of the examples in this 
 cvedetails.com  database under Python were actually  third party libraries incorrectly ascribed to 
 CPython such as Pillow and urllib3. We managed to match 16 CVEs to files in our database 
 using these methods. These CVEs are shown below. 

 CVE ID  Description  files_affected  file_id 

 CVE-2019-16056 

 An issue was discovered in Python through 2.7.16, 3.x through 
 3.5.7, 3.6.x through 3.6.9, and 3.7.x through 3.7.4. The email 
 module wrongly parses email addresses that contain multiple @ 
 characters. An application that uses the email module and 
 implements some kind of checks on the From/To headers of a 
 message could be tricked into accepting an email address that 
 should be denied. An attack may be the same as in 

 _parseaddr.py | 
 Lib/urllib2.py 

 133102 | 
 141890 

https://www.cvedetails.com/vulnerability-list/vendor_id-10210/Python.html
https://www.cvedetails.com/vulnerability-list/vendor_id-10210/Python.html
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 CVE-2019-11340; however, this CVE applies to Python more 
 generally. 

 CVE-2021-3177 

 Python 3.x through 3.9.1 has a buffer overflow in PyCArg_repr in 
 _ctypes/callproc.c, which may lead to remote code execution in 
 certain Python applications that accept floating-point numbers as 
 untrusted input, as demonstrated by a 1e300 argument to 
 c_double.from_param. This occurs because sprintf is used 
 unsafely. 

 Modules/_ctypes/callp 
 roc.c>  133191 

 CVE-2019-20907 

 In Lib/tarfile.py in Python through 3.8.3, an attacker is able to 
 craft a TAR archive leading to an infinite loop when opened by 
 tarfile.open, because _proc_pax lacks header validation.  Lib/tarfile.py  133253 

 CVE-2021-3426 

 There's a flaw in Python 3's pydoc. A local or adjacent attacker 
 who discovers or is able to convince another local or adjacent 
 user to start a pydoc server could access the server and use it to 
 disclose sensitive information belonging to the other user that 
 they would not normally be able to access. The highest risk of this 
 flaw is to data confidentiality. This flaw affects Python versions 
 before 3.8.9, Python versions before 3.9.3 and Python versions 
 before 3.10.0a7.  Lib/pydoc.py  133547 

 CVE-2020-8492 

 Python 2.7 through 2.7.17, 3.5 through 3.5.9, 3.6 through 3.6.10, 
 3.7 through 3.7.6, and 3.8 through 3.8.1 allows an HTTP server to 
 conduct Regular Expression Denial of Service (ReDoS) attacks 
 against a client because of 
 urllib.request.AbstractBasicAuthHandler catastrophic 
 backtracking.  Lib/urllib/request.py  133637 

 CVE-2022-0391 

 A flaw was found in Python, specifically within the urllib.parse 
 module. This module helps break Uniform Resource Locator (URL) 
 strings into components. The issue involves how the urlparse 
 method does not sanitize input and allows characters like '\r' and 
 '\n' in the URL path. This flaw allows an attacker to input a crafted 
 URL, leading to injection attacks. This flaw affects Python versions 
 prior to 3.10.0b1, 3.9.5, 3.8.11, 3.7.11 and 3.6.14.  Lib/urllib/parse.py  133857 

 CVE-2021-23336 

 The package python/cpython from 0 and before 3.6.13, from 
 3.7.0 and before 3.7.10, from 3.8.0 and before 3.8.8, from 3.9.0 
 and before 3.9.2 are vulnerable to Web Cache Poisoning via 
 urllib.parse.parse_qsl and urllib.parse.parse_qs by using a vector 
 called parameter cloaking. When the attacker can separate query 
 parameters using a semicolon (;), they can cause a difference in 
 the interpretation of the request between the proxy (running with 
 default configuration) and the server. This can result in malicious 
 requests being cached as completely safe ones, as the proxy 
 would usually not see the semicolon as a separator, and therefore 
 would not include it in a cache key of an unkeyed parameter.  Lib/urllib/parse.py  133857 

 CVE-2019-9636 

 Python 2.7.x through 2.7.16 and 3.x through 3.7.2 is affected by: 
 Improper Handling of Unicode Encoding (with an incorrect netloc) 
 during NFKC normalization. The impact is: Information disclosure 
 (credentials, cookies, etc. that are cached against a given 
 hostname). The components are: urllib.parse.urlsplit, 
 urllib.parse.urlparse. The attack vector is: A specially crafted URL 
 could be incorrectly parsed to locate cookies or authentication 
 data and send that information to a different host than when 
 parsed correctly. This is fixed in: v2.7.17, v2.7.17rc1, v2.7.18, 
 v2.7.18rc1; v3.5.10, v3.5.10rc1, v3.5.7, v3.5.8, v3.5.8rc1, 
 v3.5.8rc2, v3.5.9; v3.6.10, v3.6.10rc1, v3.6.11, v3.6.11rc1, v3.6.12, 
 v3.6.9, v3.6.9rc1; v3.7.3, v3.7.3rc1, v3.7.4, v3.7.4rc1, v3.7.4rc2, 
 v3.7.5, v3.7.5rc1, v3.7.6, v3.7.6rc1, v3.7.7, v3.7.7rc1, v3.7.8, 
 v3.7.8rc1, v3.7.9.  Lib/urllib/parse.py  133857 

 CVE-2021-29921 

 In Python before 3,9,5, the ipaddress library mishandles leading 
 zero characters in the octets of an IP address string. This (in some 
 situations) allows attackers to bypass access control that is based  Lib/ipaddress.py  133906 
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 on IP addresses. 

 CVE-2020-14422 

 Lib/ipaddress.py in Python through 3.8.3 improperly computes 
 hash values in the IPv4Interface and IPv6Interface classes, which 
 might allow a remote attacker to cause a denial of service if an 
 application is affected by the performance of a dictionary 
 containing IPv4Interface or IPv6Interface objects, and this 
 attacker can cause many dictionary entries to be created. This is 
 fixed in: v3.5.10, v3.5.10rc1; v3.6.12; v3.7.9; v3.8.4, v3.8.4rc1, 
 v3.8.5, v3.8.6, v3.8.6rc1; v3.9.0, v3.9.0b4, v3.9.0b5, v3.9.0rc1, 
 v3.9.0rc2.  Lib/ipaddress.py  133906 

 CVE-2020-26116 

 http.client in Python 3.x before 3.5.10, 3.6.x before 3.6.12, 3.7.x 
 before 3.7.9, and 3.8.x before 3.8.5 allows CRLF injection if the 
 attacker controls the HTTP request method, as demonstrated by 
 inserting CR and LF control characters in the first argument of 
 HTTPConnection.request. 

 Lib/test/multibytecode 
 c_support.py  134444 

 CVE-2019-9674 
 Lib/zipfile.py in Python through 3.7.2 allows remote attackers to 
 cause a denial of service (resource consumption) via a ZIP bomb.  Lib/zipfile.py  134751 

 CVE-2019-16935 

 The documentation XML-RPC server in Python through 2.7.16, 3.x 
 through 3.6.9, and 3.7.x through 3.7.4 has XSS via the server_title 
 field. This occurs in Lib/DocXMLRPCServer.py in Python 2.x, and in 
 Lib/xmlrpc/server.py in Python 3.x. If set_server_title is called 
 with untrusted input, arbitrary JavaScript can be delivered to 
 clients that visit the http URL for this server. 

 Lib/DocXMLRPCServer. 
 py | 
 Lib/xmlrpc/server.py 

 141985| 
 133642 

 CVE-2019-9948 

 urllib in Python 2.x through 2.7.16 supports the local_file: 
 scheme, which makes it easier for remote attackers to bypass 
 protection mechanisms that blacklist file: URIs, as demonstrated 
 by triggering a urllib.urlopen('local_file:///etc/passwd') call.  Lib/urlopen.py  146834 

 CVE-2018-208 
 52 

 http.cookiejar.DefaultPolicy.domain_return_ok in 
 Lib/http/cookiejar.py in Python before 3.7.3 does not correctly 
 validate the domain: it can be tricked into sending existing 
 cookies to the wrong server. An attacker may abuse this flaw by 
 using a server with a hostname that has another valid hostname 
 as a suffix (e.g., pythonicexample.com to steal cookies for 
 example.com). When a program uses http.cookiejar.DefaultPolicy 
 and tries to do an HTTP connection to an attacker-controlled 
 server, existing cookies can be leaked to the attacker. This affects 
 2.x through 2.7.16, 3.x before 3.4.10, 3.5.x before 3.5.7, 3.6.x 
 before 3.6.9, and 3.7.x before 3.7.3.  Lib/http/cookiejar.py 

 136105 

 Publications and academic merit 
 Three publications were submitted: two to the 2022 Mining Software Repositories conference, 
 and one to the 2022 Sunbelt conference. The abstracts and details are reproduced below. 

 Additionally, a literature survey was conducted to uncover ties between LAGOON’s primary 
 metric of toxicity and security-centric concerns within OSS software projects. 

 Given that open source projects are by definition, volunteer endeavors, the factors that influence 
 sustained volunteerism are frequently investigated. These investigations often assume that 
 disengagement is worth preventing to ensure high project quality [Fang & Neufeld, 2009; Lu et 
 al., 2022, Miller et al., 2019 ]. Additionally, these efforts suggest the value of LAGOON and 
 OCEAN, which enable future large-scale studies and might be used to find actionable results 



 DISTRIBUTION STATEMENT A. Approved for public release.                                         HR00112190092 

 that “could significantly increase the sustainability of open source ecosystems” [Miller et al., 
 2019]. 

 However, while the outcomes of volunteer disengagement in OSS projects have been studied in 
 terms of project failure [Coelho & Valente, 2017], and individual recognition of performance 
 [Roberts et al., 2006], the impact that disengagement has on the quality (and by extension the 
 security) of OSS projects which do not fail is under-researched. Knowledge from other domains 
 [Zhou et al., 2008] suggests that satisfaction is positively related to product quality. Thus, we 
 would expect project dissatisfaction resulting from toxicity to negatively impact code quality, and 
 by extension, security. 

 Additionally, Colazo [2010] and Peng et al. [2013] demonstrated that interpersonal dynamics 
 can affect code quality through mechanisms besides disengagement. Colazo theorized that one 
 of these mechanisms was “groupthink”, whereby isolated teams developed homogeneous sets 
 of beliefs which hindered creativity and critical thinking. Toxicity could potentially act in a related 
 manner, where toxic individuals bully others into accepting their set of beliefs or become 
 themselves immune to productive critical analysis by simply being too wearisome to critique (his 
 is illustrated in the figure below). 

 While early detection systems for open source software vulnerabilities do exist [Iorga et al., 
 2020; Iorga et al. 2021], to the best of our knowledge, none of these utilize features based on 
 interpersonal contributor dynamics such as those the LAGOON tooling is designed to generate, 
 despite the fact that research suggests interpersonal dynamics affect product quality as 
 measured by metrics other than security[]. More research using the LAGOON tooling will lead to 
 better answers to these questions, as we are able to link community toxicity to vulnerabilities 
 either discovered through LAGOON or published via CVEs. 
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 LAGOON: An Analysis Tool for Open Source Communities 
 Accepted at MSR 2022 Data and Tool Showcase Track 
 arXiv available:  arXiv:2201.11657 

 Abstract: This paper presents LAGOON -- an open source platform for understanding the 
 complex ecosystems of Open Source Software (OSS) communities. The platform currently 
 utilizes spatiotemporal graphs to store and investigate the artifacts produced by these 
 communities, and help analysts identify bad actors who might compromise an OSS project's 
 security. LAGOON provides ingest of artifacts from several common sources, including source 
 code repositories, issue trackers, mailing lists and scraping content from project websites. 
 Ingestion utilizes a modular architecture, which supports incremental updates from data sources 
 and provides a generic identity fusion process that can recognize the same community 
 members across disparate accounts. A user interface is provided for visualization and 
 exploration of an OSS project's complete sociotechnical graph. Scripts are provided for applying 
 machine learning to identify patterns within the data. While current focus is on the identification 
 of bad actors in the Python community, the platform's reusability makes it easily extensible with 
 new data and analyses, paving the way for LAGOON to become a comprehensive means of 
 assessing various OSS-based projects and their communities. 

 The OCEAN mailing list data set: Network analysis spanning mailing lists 
 and code repositories 
 Accepted at MSR 2022 Data and Tool Showcase Track 
 Preprint available:  https://bagrow.com/pdf/warrick2022-mailing-v1.pdf 

 Abstract: Communication surrounding the development of an open source project largely occurs 
 outside the software repository itself. Historically, large communities often used a collection of 
 mailing lists to discuss the different aspects of their projects. Multimodal tool use, with software 
 development and communication happening on different channels, complicates the study of 
 open source projects as a sociotechnical system. Here, we combine and standardize mailing 
 lists of the Python community, resulting in 954,287 messages from 1995 to the present. We 
 share all scraping and cleaning code to facilitate reproduction of this work, as well as smaller 
 datasets for the Golang (122,721 messages), Angular (20,041 messages) and Node.js (12,514 
 messages) communities. To showcase the usefulness of these data, we focus on the CPython 
 repository and merge the technical layer (which GitHub account works on what file and with 
 whom) with the social layer (messages from unique email addresses) by identifying 33% of 
 GitHub contributors in the mailing list data. We then explore correlations between the valence of 
 social messaging and the structure of the collaboration network. We discuss how these data 
 provide a laboratory to test theories from standard organizational science in large open source 
 projects. 

https://arxiv.org/abs/2201.11657
https://bagrow.com/pdf/warrick2022-mailing-v1.pdf
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 Open is not always welcoming: Examining how toxic interpersonal signals 
 impact and reflect collaboration and prestige in the open source Python 
 language development community 
 Submitted to Sunbelt 2022 

 Abstract: According to most indices, Python is the most popular programming language 
 worldwide. Combining decades of commit records with community mailing-lists, we have 
 created a temporally fine-grained, multi-perspective view of the open source community 
 developing the Python language. Our goal is to explain contributor quality dynamics, such as 
 disengagement or accession, through analysis of interpersonal signals in the mailing-list data 
 (e.g. toxicity). We do this by examining structural changes in the co-commit interaction 
 networks, in reference to categorical changes like appointment of topical experts. 

 We find that a small group of (community-officiated) experts make up over half of commits and 
 messages. In the co-commit network this translates to higher mean degree and betweenness 
 centrality compared to non-experts, by factors of four and ten, respectively. Despite this, we find 
 that community-appointed experts are like average contributors in many respects. Compared to 
 non-experts, experts had no significant differences in levels of ambient toxicity among 
 collaborators nor in levels of toxic word use themselves. However, when first designated 
 experts, contributors experienced a decline in ambient toxicity of collaborators. These 
 preliminary results are surprising considering the association between power and negative ties 
 noted by prior research, suggesting differences between centrally-organized institutions and 
 self-organized open source communities. 

 Adding new data sources with minimal human effort 
 The LAGOON platform was designed with a number of features which make it easy to ingest 
 new or updated information. A few key architectural decisions make this possible: 

 1)  A layered, batch-oriented ingestion system, which makes it easy to replace or 
 incrementally update old information. 

 2)  An integrated entity fusion system to merge identities of e.g. users which may occur in 
 multiple different data sources, or even multiple times within a single data source. This 
 makes the order in which data was ingested irrelevant to the correctness of the system. 

 3)  A flexible database model: data within LAGOON is categorized as either an entity or an 
 observation between one or two entities. Observations additionally have a timestamp, 
 which is used to represent temporal interactions within the graph. Furthermore, entities 
 may be amended in subsequent batches, by adding a layer of attribute updates. 

 The efficacy of this model was proven in the last three months since M6, as we accomplished 
 the following quickly: 

 1)  With the help of RiverLoop / TwoSix labs, we added a module that pulls in GitHub pull 
 requests. Building this module took about 10 hours of developer time, and now any OSS 
 project hosted on GitHub can have this information scraped into LAGOON. 
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 2)  A “Have I Been Pwned” module was added to collect information on breaches containing 
 the email addresses seen within the OSS community. This module took about 5 hours of 
 developer time, and will continue to work with all emails added to LAGOON in the future. 

 3)  A natural language processing-based toxicity classifier was added to supplement the 
 wordlist-based approach from past results. 

 4)  To showcase how LAGOON might scale out to larger OSS dependency networks than a 
 single project, we ingested the LXML project alongside CPython. This took less than 3 
 hours of human effort to identify data sources and pull them into LAGOON. 

 Cross-reference of suspicious Linux kernel contributors 
 We received a list of 32 suspicious email addresses from Dave Aitel, who investigated the Linux 
 kernel OSS project in collaboration with Margin Research on the SocialCyber program. We 
 checked to see if any of these addresses were reused within the CPython or LXML 
 communities. Unfortunately, none of the addresses from the Linux Kernel Mailing List (LKML) 
 were used in the communities covered by LAGOON’s investigations. 

 Verifying transfer of domain-specific toxicity from Wikipedia to 
 OSS 

 In order to test the ability of the BERT-based toxicity classifier to transfer to the target 
 community and genre, all OSS email messages from the CPython community were classified 
 using the BERT tool, and a random balanced set of 100 messages were sampled (50 classified 
 as toxic, 50 not), and independently hand-coded by two researchers on the UVM team, 
 achieving 88% interrater agreement. After reconciling all conflicting categories between human 
 raters, the BERT and exclusion-word toxicity tools were each tested against the resulting 
 human-coded gold standard, resulting in an accuracy score of 69% for the BERT-based 
 classifier and a 40% accuracy score for the exclusion-word-based filter. 

 Example messages: 
 1) [NOT TOXIC] “Would Stackless have a better chance of making it into the core if its initial 
 PEP talked only about increasing performance and removing limits on recursion?  This 
 advantage is not as "sexy" as continuations, but is also less controversial.” 

 2) [NOT TOXIC] “First of all, fully specifying all the type checking rules would make for a really 
 long and boring PEP (a much better specification would probably be the mypy source code).” 

 3) [NOT TOXIC] “I hate to call them 'keyword' arguments when they aren't (check with 
 the\nkeyword module: it will confirm they aren't keywords!-).” 
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 4) [TOXIC] “You Jewish Muslims are your own enemy you get used by Israel as tools and then 
 you get rejected by Muslims too. I honestly don?t know how these people can be so inhuman” 

 5) [TOXIC] “Those numbers are ridiculous! The only thing they prove is that Congiano should 
 not be programming computers. Anyone getting such results should take a serious look at their 
 algorithm instead of blaming the language. I don't care if it takes 31.5 seconds to compute 36 
 Fibonacci numbers in Python 2.5.1 with the dumbest possible algorithm” 

 6) [TOXIC] “Devin, When someone asks me to download a compressed file, its just like the 
 SCAM junk email I get all too often. If the OP would learn how to post on usenet, I would have 
 been happy to help out. I apologize to the group, but the OP needs to learn how to post” 

 Messages 3, 5, and 6 were misclassified by the exclusion-word filter, but accurately classified by 
 the BERT classifier.  Although message 3 contained the word “hate”, it did not actively express 
 antisocial sentiment.  Meanwhile, messages 5 and 6 above were classified as non-toxic by the 
 exclusion-word filter, as they contain no explicit words, whereas the BERT-based classifier was 
 able to correctly identify both as toxic in tone. 

 Updated network analysis using domain-specific toxicity 
 The detail and breadth of the collaboration data available lends itself to several forms of network 
 analysis. At the most fine-grained level, the interactions can be represented as a temporal 
 tripartite network of contributors, commits, and files, where contributors are connected to 
 commits, which are connected to files (and contributors). 

 To get an overall sense of how users which are flagged toxic differ in their commit-activity from 
 those who are not, we first look at one version of the aggregated unipartite projection network of 
 contributors where two contributors are connected if they have ever committed to the same file 
 in the same year. The ‘degree’ or number of connections in said network represents how many 
 other people they have collaborated with by working on the same file. This value is influenced 
 by both the number of commits that contributors make, but also the number of collaborators per 
 file committed to. In order to characterize this relationship more fully, in the figure on the left 
 below,  we look at the degree on the y-axis and the number of commits on the x-axis and find 
 that contributors active on the social layer (the mailing list) are active on GitHub. Looking at the 
 figure on the right below, we see these toxic users tend to work on files with less collaborators. 

 Aggregated over all years 
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 To get a sense of how the number of collaborators per file committed to contributes to this effect, 
 we examined the bipartite projection network of files and contributors, aggregated at the yearly 
 level. We found that past 2005, the mean number of collaborators per file committed to for 
 contributors who had at least one message labeled toxic that year was lower than those who 
 had no messages labeled toxic. 

 Viewing the mean values of number of collaborators per file committed to for these two groups 
 (those with messages labeled toxic in a given year and those without) over the past two 
 decades we see that this emerged as a trend around 2005 and remains consistent since. 
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 Investigating potential mechanisms explaining why toxic contributors work on files with less 
 collaborators, we find that when a commit is made to a file that includes a commit message 
 labeled as toxic, the time between commits by the same author to that file is higher than the 
 time between commits by the same author for files where non-toxic commits are made. This 
 was determined by examining the tripartite temporal network. Considering every author, file pair 
 where the author committed to that file multiple times. For each of these author, file pairs, we 
 iterated through sequential pairs of commits by that author and checked whether they had a 
 commit from at least one other author between them, ignoring  those that did not for better 
 comparison. With the remaining pairs of sequential commits, we recorded the time difference 
 and categorized them by whether or not there was a toxic commit between them. This analysis 
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 highlights one key effect of toxicity: slowing down (and potentially ending) collaborations. 

 Considering that the contributors engaging in toxic behavior had higher levels of activity and 
 more connections, but lower number of collaborators per file, one consequence of that from a 
 network perspective is higher centralization according to other network centrality measures 
 besides degree. Looking again at the unipartite projection co-commiting network, now 
 aggregated at the yearly level, we calculate the eigenvector centrality of contributors for each 
 year and group them by whether or not they sent messages labeled toxic that year. 

 Eigenvector centrality of node  in the network  represented by adjacency matrix A is the  𝑣     𝑣  𝑡ℎ 

 value in the vector  x  which satisfies the following  matrix equation:  Ax  =  λ  x  , and represents 
 centrality both in terms of number of connections but also centrality of those connections. This 
 vector of centralities was calculated and histograms were generated for each year, three of 
 which are shown below. Additionally, we plotted the mean values for these categories for the 
 past two decades and found that nodes with messages labeled toxic are consistently more 
 central than nodes without, though the network as a whole becomes less centralized in 2017 
 when the number of contributors increased dramatically. One mechanism for this increase in 
 centrality for toxic nodes is again related to the slower productivity and overall disengagement of 
 their collaborators. Toxic nodes can gain in centrality simply because others slow down or leave. 
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 Analyzing Have I Been Pwned data 
 The Have I Been Pwned (HIBP) database, accessible via the website 
 https://haveibeenpwned.com/  or its associated APIs,  can be used to obtain the ‘breaches’ and 
 ‘pastes’ that any email address has been involved in. Breaches are incidents where data is 
 inadvertently exposed in a vulnerable system, while pastes constitute information that has been 
 pasted to a publicly facing website designed to share content such as Pastebin. Such personal 
 information getting exposed may raise the overall vulnerability of the owner of the email 
 address, which may increase their chances of being a recipient of toxicity. This led us to 
 investigate the correlation between toxicity and the number of breaches a person’s email has 
 been involved in. 

 Toxicity information is taken from the text entities – mailing list and commit messages – in the 
 1-hop neighborhood of a person in LAGOON’s sociotechnical graph. We used a single feature – 
 the score of the aforementioned BERT-based toxicity classifier, which is between 0 and 1 with a 
 higher score indicating a more toxic message. Toxicity scores were aggregated across all 

https://haveibeenpwned.com/
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 messages in the neighborhood by taking the average of either a) the top 10% of scores, or b) 
 the top 10 scores. 

 For obtaining breaches, we restricted the emails to only those for the 1772 persons with at least 
 one commit in the entire temporal history of the sociotechnical graph. This helps in weeding out 
 fake persons with spam email IDs. Our improved entity fusion module also helped in weeding 
 out spam. 

 The plots below show results of regressing aggregated toxicity on the number of breaches. Note 
 that we used the number of breaches as the independent variable. The scatter plots show all 
 the 1772 persons. The red lines are the best fit lines obtained from training a linear regressor on 
 70% of the data; the remaining 30% is used as test data. 

 The top figure aggregates the top 10% of toxicity scores, which has 31.8% correlation with the 
 number of breaches. The coefficient of determination (R  2  ) is 0.1 for both training and test data. 
 The bottom figure aggregates the top 10 toxicity scores and increases these numbers to 45.1% 
 correlation and R  2  value of 0.2 for both training  and test data. 
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 The noteworthy result from the above plots is that getting one’s email breached, which is a 
 proxy for having a longer-term internet presence, is tied to receiving higher levels of toxicity. 
 This in turn may lead to vulnerabilities / instabilities in an OSS community. 

 The bottom figure is included to illustrate an alternative view, which does not look at the 
 distribution of toxicity but rather the soft maximum of toxicity. Since the soft maximum is affected 
 by the volume of messages a user is exposed to, and the volume of messages is also roughly 
 correlated to that user’s general level of activity, it becomes easier to show that breaches are 
 related to toxicity, because the underlying hypothesis is that activity implies activity. 
 Unfortunately, this hinders our ability to assess the effects of one-off toxicity incidents: because 
 users who are more active are more likely to have experienced toxicity, it’s difficult to find a very 
 active user who has not experienced toxicity, which would be necessary to begin discussing the 
 effects of one-off toxicity. 

 Re-analyzing PEPs and contributor disengagement using new 
 toxicity features 
 We had previously used toxicity features from bad word lists to differentiate ‘good’ PEPs from 
 ‘bad’ PEPs – these results are described in more detail in the latter section on Past Results. 
 Briefly, PEPs are Python Enhancement Proposals, we classify them as good if their status is 
 ‘Active’, ‘Accepted’, ‘Final’ or ‘Superseded’, and bad if their status is ‘Withdrawn’, ‘Rejected’ or 
 ‘Deferred’. 
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 We re-ran the earlier analyses after replacing the bad word list features with toxicity scores 
 obtained from the BERT-based classifier. Scores are considered in both the 1-hop and 2-hop 
 neighborhood of PEPs in the sociotechnical graph, i.e. messages referencing a PEP, and 
 messages referencing such messages (as before, the term ‘messages’ here includes both 
 mailing list and commit messages present inside LAGOON). Toxicity scores were aggregated by 
 taking the average of the top 10% of scores. 

 The results are shown below for the 1-hop and 2-hop neighborhoods in the top and bottom 
 figure, respectively. While the 1-hop results do not indicate that bad PEPs have more toxicity 
 surrounding them (in fact, they weakly indicate the contrary), the 2-hop results do show that bad 
 PEPs have more toxic messages around them. 
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 The nature of these plots is interesting, particularly because our past results described later 
 indicate that bad word based toxicity does not differentiate between PEPs. In general, such 
 toxicity aggregation methods perform inferior to ML based techniques since, as will be shown 
 later, the former do not consider the constellation of toxicity around a user, while the latter do. 
 However, BERT based toxicity classifier scores perform better than bad word based toxicity, 
 which we hypothesize is because the former does not suffer from the limitations of the latter 
 which can indicate a message such as “It’s not possible to destroy static types at Python exit” as 
 toxic due to the presence of the word ‘destroy’. 

 We also attempted to use the BERT based toxicity classifier scores to predict contributor 
 disengagement. While our past results had used bad word counts as features for several ML 
 techniques, the current results perform a simpler linear regression of disengagement on toxicity. 
 The regression models were not very successful. 

 Investigation of potentially-overlooked source code changes 
 One potential vector of attacking an OSS project is to find a file which has been abandoned by 
 core maintainers. Since files that have been abandoned for a long time might have less 
 stringent quality checks, pushing malicious code to these code regions might be easier. 

 LAGOON is now packaged with a report that looks at all tracked source code files, and compiles 
 a list of commits and maintainers that have touched those files within the last 3 years. Then, 
 starting with those files who have the fewest unique maintainers, the script prints statistics about 



 DISTRIBUTION STATEMENT A. Approved for public release.                                         HR00112190092 

 contributors to those files who have only touched the file once throughout the project’s history. 
 The result looks like this: 

 These files may then be investigated in the UI to find potentially malicious commits to areas of 
 the code which are in regions that may be overlooked by the community. For example, 
 ̀Lib/bisect.py` is a very highly used library that does not receive many updates. Yet, user 
 132852, Sergey Golitsynskiy, pushed exactly one commit to CPython that affected this core 
 module. Through the UI, we can see (and verify) that this was a documentation change: 

 However, there was another change from a new maintainer to `Lib/bisect.py`, by user 131606. 
 Using the new GitHub integration, we can see that this commit removed duplicate code: 
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 While generally these changes look safe, this still demonstrates the ability of a 
 SocialCyber-derived tool such as LAGOON to provide statistical priors that point to commits 
 requiring greater scrutiny due to the sociotechnical histories of their contributors. 

 Continued improvements to user interface 
 The LAGOON interface has received multiple updates since the M6 milestone, including: 
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 ●  Data is now more accessible via a default focus lock on the main element. Since focus is 
 locked by default, the default action is to show more information on a selected node. As 
 the sociotechnical graph used by LAGOON is very dense, we found this to be the more 
 common mode of user interaction. 

 ●  Batch information is now annotated by all fusions in the UI. This makes finding the 
 provenance of different data snippets significantly easier. 

 ●  Entity search is now significantly faster, due to the addition of a full text index with 
 greater flexibility than in previous versions. 

 ●  Entity search now looks at multiple aliases for the same fused entity. For example, 
 “Stefan Behnel” often goes by the alias “scoder”; both of these terms will now find that 
 person. 

 ●  Commit objects now have a clickable link to the commit on GitHub, which provides 
 access to additional tools for source code repositories. 

 Past Results 
 Included below are sections from the M1, M3, and M6 reports, near verbatim, which are relevant 
 to the high-level objectives and accomplishments of the LAGOON program. That is, these 
 sections allow for interpretation of this document as a standalone report with all findings. 

 Organizational structures amongst Python collaborations 
 Our efforts toward uncovering organizational subgroups proved successful at discovering 
 collaborative relationships amongst contributors. We focused particularly on how these 
 relationships develop over time. These relations were considered with specific interest in 
 identifying potentially subversive elements, though we have no conclusions supporting the 
 existence of subversive elements within the CPython community at this time. 
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 Since the growth of Python is predominantly organized around PEPs, we first looked at which 
 community members were proposing alterations to the language, and the success rate of their 
 proposals. In a healthy community, initial rejections can be constructive, leading to positive 
 contributions in the future. On the other hand, unhealthy communities might transition from 
 rejections to disengagement with the project. Conversely, regardless of community health, a 
 contributor which pushes for many PEPs that are rejected may be trying to fatigue the 
 community into eventually accepting a compromising idea. 

 An interesting dichotomy appears here, where the majority of PEP proposers are usually 
 successful with their bids to affect the community. This could be a result of the barriers to 
 creating a PEP -- one probably wants to secure sufficient buy-in on an idea before going 
 through the formal process. The result is reminiscent of survivorship bias, in that the majority of 
 proposed changes to Python which can be tracked are already in the late stages of ideation. 
 This phenomenon might be unavoidable, as mailing lists and larger discourse necessarily 
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 happen after proposed design changes become public, rather than during the creation of the 
 design. 

 Looking at accept/reject rates does make apparent a few potentially suspicious contributors: 
 Nick Coghlan, Moshe Zadka, and Jim Jewett have a greater than 50% reject rate. This could be 
 part of the learning process, but it’s interesting that so few core Python contributors follow this 
 pattern. 

 Most PEPs are written by a single author, but some have multiple. If we look at the following 
 symmetric matrix of collaborations amongst the top 40 authors, with the diagonal removed, we 
 can see that multi-author PEPs do not give a strong indication about groups of authors which 
 frequently collaborate. Note that the axis only goes to 5 here, whereas many PEP authors have 
 written significantly more than 5. 
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 PEPs with multiple authors had somewhat different accept/reject statistics. Notably, while the 
 general accept:reject ratio for multi-author PEPs was around 2.4:1, those co-authored by 
 Python’s BDFL, Guido van Rossum, had an accept:reject ratio of 29:1. 

 In addition to direct collaborations through authorship, all PEPs have significant discussions on 
 the various Python mailing lists, and in particular on  python-dev@python.org  and 
 python-ideas@python.org  . These two mailing lists are  part of the OCEAN data from UVM, so 
 we also scraped their contents to find which community members were involved in the 
 discussions of all PEPs. From there, we can look at interactions amongst community members 
 over time as it relates to specific enhancement proposals. We tried plotting this as a graph 
 structure, but most community members were too connected to make sense of the resulting 
 visual. Instead, we looked at characterizing the organizational group around specific 
 contributors. For example, here is an analysis of PEPs created by Jim Jewett, one of the above 
 PEP authors who submitted many PEPs that were ultimately rejected: 

 The top plot shows how many PEPs Jim submitted over the years as a density plot with a 
 Gaussian kernel of half a year being one standard deviation, and is colored according to 
 whether or not their current statuses reveal them as accepted or rejected by the community. The 
 lower density plots show the probability that different community members were involved in 
 these same PEP discussions, and are sorted such that the members who most commented 
 when this member commented are at the top; i.e., descending  P(other contributor 
 wrote something about a PEP|this contributor wrote something about 
 that PEP). 

 We can see that Jim submitted 4 PEPs between 2007 and 2008, all of which were rejected. 
 These PEPs had less of the community involved in discussions around them. In contrast, Jim’s 
 accepted PEP from 2012 had discussions with participation from more of the community. To 
 draw further conclusions about Jim Jewett’s role within the Python community, we can look at a 

mailto:python-dev@python.org
mailto:python-ideas@python.org
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 similar plot plotted against all PEPs in which Jim participated in discussions, rather than only 
 PEPs created by Jim: 

 This demonstrates that Jim has significant involvement with the Python community outside of 
 his own PEPs. Interestingly, the PEPs that Jim gets involved with tend to involve much of the 
 community. This might be a symptom of Jim not being a committer to the CPython repository, 
 but rather a contributor limited to the exchange of ideas with the community. For contrast, here’s 
 a report for PEPs proposed by Victor Stinner, a core contributor with over five thousand commits 
 in the CPython repository: 

 And a matching report for Victor’s involvement in all PEPs, whether or not they created them: 
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 From these, we can start to tell a story: Victor was tangentially involved with the community 
 since 1999, and began significant contributions to Python between 2008 and 2009. Victor’s first 
 commit to CPython was from 2010, a year before his first PEP. Unlike Jim’s PEPs, which 
 fostered discussion amongst many community members, conversation around Victor’s PEPs 
 involved only a few key contributors. As time passed and Victor became more integrated with 
 the project, the number of community members involved in discussion of their PEPs declined, 
 though their PEPs were still often accepted. This illustrates that Victor is a fundamentally 
 different kind of contributor than Jim. Jim tested proposing major changes to Python a few 
 times, but only saw a 20% success rate across 5 PEPs. Jim continued to engage with the 
 community afterward, but stopped submitting PEPs. Victor’s first PEP was also ultimately 
 rejected, but they continued submitting PEPs, averaging out to just over a 50% success rate 
 across 25 PEPs. Whereas Jim’s involvement in PEPs was primarily restricted to large 
 discussions, Victor was involved in a larger number of discussions involving fewer contributors. 
 One way to divide these two patterns would be to consider Jim a “trending topic” contributor, 
 who engages primarily in topics which affect and are of interest to many users, whereas Victor is 
 more of a “broad topic” contributor who engages in a much more diverse set of topics, many of 
 which have fewer users interested in them. 

 If we flip back to Jim, and poke around the mailing list during one of their PEP discussions, most 
 of Jim’s messages and responses were technically-centered and bland from a toxicity / charged 
 emotions point of view. This could imply that Jim is a competent engineer without the language 
 design chops to advocate effectively for their PEPs. 

 For an example of a contributor with more interesting mailing list content, we consider Serhiy 
 Storchaka, who only helped author a single PEP, but whose community involvement otherwise 
 looks like Jim’s. It wasn’t difficult to find Serhiy’s technical knowledge being called into question 
 with some mild toxicity (the word “suck”): 
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 On 2/11/2016 11:01 AM, Ethan Furman wrote: 
 > On 02/11/2016 10:50 AM, Serhiy Storchaka wrote: 
 > > I have strong preference for more strict and simpler rule, used by 
 > > most other languages -- "only between two digits". Main arguments: 
 > 
 > > 2. Most languages use this rule. It is better to follow non-formal 
 > > standard that invent the rule that differs from rules in every other 
 > > language. This will help programmers that use multiple languages. 
 > 
 > If Python followed other languages in everything: 
 > 
 > 1) Python would not need to exist; and 
 > 2) Python would suck  ;) 
 > 
 > If our rule is more permissive that other languages then 
 > cross-language developers can still use the same style in both 
 > languages, without penalizing those who want to use the extra freedom 
 > in Python. 

 This doesn’t make Serhiy subversive or indicate that this is the reason Serhiy stopped 
 submitting PEPs though; it only supports that they are perhaps a more junior language 
 developer, whose strong opinions evoked lackluster responses that stymied further PEP 
 submissions. 

 We briefly explored using word cloud techniques to attempt to capture Serhiy or any other 
 author’s changing interests over several years; we include this to illustrate the point that such a 
 technique might be used to approximate concerns at the top of a contributor’s mind, however, 
 more filtering is probably needed to pull significant utility out of such an approach: 
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 A better approach might be to use e.g.  Shifterator  ,  which filters out common words based on a 
 reference corpus, and might let us better differentiate the technical interests of different 
 contributors. 

 To summarize our thoughts on the organizational structure of Python: 
 ●  Organizational structure in Python seems to be predominantly informal rather than 

 formal, due to the large number of messages discussing PEPs and the small list of 
 people actually writing PEPs. 

 ○  It seems that architects of specialized aspects of Python, like ctypes’ Thomas 
 Heller, are discussed according to the same structure. 

 ●  The majority of PEPs are accepted, though a healthy number are rejected. This 
 demonstrates that Python’s PEP approval system is discriminative, rather than a mere 
 formality. 

 ●  Due to the informal organization of PEP discussions, attempting to find cohesive, 
 disparate “groups” of contributors is very difficult, and such groups certainly would not 
 have clean separations between them. 

 ●  The influence of one contributor on another can be reasonably measured by looking at 
 how often their interactions coincide; this yields a distance metric which can be used to 
 conjecture about the relative influence between two contributors in the community. 

 ○  This is borrowing from topology discussions with Michael Robinson a bit; it’s 
 interesting that we can extend topology into the temporal domain relatively simply 
 by leveraging kernel densities. 

 Aggregate Toxicity versus Constellations of Toxicity 
 Briefly, we want to re-emphasize a point with respect to the value of machine learning within 
 SocialCyber as it relates not only to generating features / sentiment analysis in messages, but 
 also to predicting contributor or organizational outcomes. It would be great if there were some 
 “simple” formula which demonstrated that specific constellations of interaction, or that toxicity in 
 general amongst a community were indicative of the community’s sentiment toward that topic. 

https://shifterator.readthedocs.io/en/latest/index.html
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 However, we found that  aggregate toxicity in messages discussing a PEP could not be 
 used to infer its success  . For example, below is a  plot showing toxicity in messages regarding 
 PEPs that were accepted vs those that were rejected. Both the 1-hop and 2-hop plots (meaning 
 immediate discussion relating to a PEP and messages discussing those messages) look similar 
 to the following: 

 There’s essentially no divide between the emotional strength of the community’s discourse 
 around a PEP and whether or not the PEP is accepted. We found a similar situation with respect 
 to toxicity and disengagement -- that is, the aggregate toxicity around a user was not useful to 
 predict that user’s disengagement.  However, ML methods  which considered the full 
 constellation of toxicity around a user were able to account for 11% of the variation  in 
 disengagement, and we would expect something similar for predicting PEP accept/reject rates. 
 This is  due to ML’s ability to exploit constellations  of toxicity in the sociotechnical graph, 
 instead of being limited to simple aggregates  . Even  more of the variation could probably be 
 explained with a better definition of toxicity: here, toxicity is computed in terms of counts of 
 specific bad words, which may have actually been used in an innocuous context. For example, 
 one of the tall bars in the figure is due to specific words being marked as toxic, though they 
 were used in non-toxic technical contexts: 

 ●  ‘destroy’ in “It’s not possible to destroy static types at Python exit” 
 ●  ‘xx’ in “The "xxlimited" module (Modules/xxlimited.c) was added as part of PEP 384 

 (Defining a Stable ABI), and is undocumented.” 
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 Therefore, since we can meaningfully predict disengagement with this relatively poor toxicity 
 metric, the question isn’t if we can begin to predict qualities within the sociotechnical graph, but 
 what qualities would be deemed most valuable to predict. 

 Predicting instability events 

 Transformer-enhanced Graph Convolutional Network 
 In a critical first step for SocialCyber, the LAGOON team has begun predicting the instability 
 event of contributor disengagement for the M3 milestone. We applied a transformer-enhanced 
 variant of the Graph Convolutional Network (GCN) to leverage both the topology of the 
 sociotechnical database (via the  type  of each entity)  and the extracted  badword  toxicity 
 information available in the prototype. This combination resulted in an 11.7% improvement in 
 predicting contributor disengagement when compared to a naive predictor, demonstrating that 
 both temporal topology and social toxicity information provide vital information regarding an 
 individual contributor’s stability. This is shown in the plot below. Numbers below 100% indicate 
 effective generalization from learning to contributors for which no instability information was 
 included in the training data. Also, outlier detection in the box plot demonstrates a greater 
 improvement when considering the median. 

 The remainder of this section presents the methodology used for this result. 
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 Data:  For gathered artifacts of CPython, including  the GitHub repository history and the OCEAN 
 message list data, contributors which interacted with CPython 100 or more times were 
 identified. This left 983 contributors as part of the data analysis. Of these contributors, 90% 
 were reserved for training, 5% for validation, and 5% for testing; these sets were not fixed, but 
 were shuffled for different trials to add generality to results. Time was treated as a continuous 
 dimension, with the algorithm considering as input all activity within a single window of half a 
 year for each evaluation. The algorithm’s output was based on all activity within the following 
 half-year window, without overlap. For each evaluation’s half year input window, the full 1-hop 
 sociotechnical subgraph around a contributor of interest would be extracted and used to predict 
 the “disengagement value” in the next half year window. Here, the disengagement value is: 

 𝑑𝑖𝑠𝑒𝑛𝑔𝑎𝑔𝑒𝑚𝑒𝑛𝑡 =  𝑚𝑖𝑛 (
β+    #  𝑐𝑜𝑚𝑚𝑖𝑡  𝑠 

 𝑜𝑢𝑡𝑝𝑢𝑡 

β+    #  𝑐𝑜𝑚𝑚𝑖𝑡  𝑠 
 𝑖𝑛𝑝𝑢𝑡 

−  1 ,     0 )

 And the loss used against the disengagement is a weighted variation of mean-squared-error 
 (MSE): 

 𝑙𝑜𝑠𝑠 =  #  𝑐𝑜𝑚𝑚𝑖𝑡  𝑠 
 𝑖𝑛𝑝𝑢𝑡 

* ( 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 −  𝑑𝑖𝑠𝑒𝑛𝑔𝑎𝑔𝑒𝑚𝑒𝑛𝑡 ) 2 

 Where  is a small value used to prevent division  by zero, and  is the number of β  #  𝑐𝑜𝑚𝑚𝑖𝑡  𝑠 
 𝑤𝑖𝑛𝑑𝑜𝑤 

 commits  directly from the contributor of interest  found in the specified time window. Any time 
 frames without commits in the input window were discarded from the data set; time frames 
 without commits in the output window were kept, as in some sense these windows indicate peak 
 disengagement. To contextualize the measured disengagement, the significance of each data 
 point was weighted (multiplied) by the number of commits in the input window, as shown in the 
 loss equation. Effectively, this weights core / highly active contributors higher than spurious 
 contributors. 

 For input available to the predictor, the basic graph structure within the input window was 
 augmented with the following information at each entity’s node: 

 ●  +type: Embeddings of dimension 4 were generated, and parameterized, for each 
 different type of entity in the database (person, git commit, message). 

 ●  +badwords: Multiple bad word lists (see Data Ingest Status) were used to create a proxy 
 measure for toxicity. For each OCEAN mailing list message in the database, the sum of 
 toxic words occurring in that message was attached to the corresponding node as a 
 discriminating feature. 

 Scoring:  For each scenario, a naive prediction was  learned over 5000 samples of a 
 1-neighborhood around the training set of significant contributors. The naive prediction 
 computed the weighted mean over the training set; thus, it is the best “1-parameter” predictor 
 possible. Then, a GCN with Transformer qualities was used to predict the disengagement value. 
 This prediction and the naive prediction were both scored in terms of mean-squared-error, and 
 then the GCN’s prediction was divided by the naive prediction’s MSE, resulting in a percent 
 improvement. This regularization step was important to calibrate for the differences in test sets 
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 across multiple runs -- that is, the mean disengagement value across runs was often very 
 different, effectively a result of cross-validation caused by choosing a different 5% segment of 
 the significant contributors on each run. This was done for 4 trials for each permutation of data 
 availability; notably, for “-type” the type embeddings were not included in available data, and for 
 “-badwords” the toxicity information was not included. 

 Results:  Both wordlist-based toxicity and type information  were helpful, though the combination 
 was most helpful, resulting in an average of 11.7% reduction in weighted MSE compared to the 
 naive solution. 

 Additionally, the UI was extended with a means of running and displaying this prediction on any 
 contributor in the database across the entire history of the project. The figure below is an 
 example screenshot of the UI plugin which shows a contributor’s actual versus predicted 
 disengagement in the CPython project at half-year intervals. The UI indicates that this 
 contributor was not part of the training data; that is, it is a test case, which demonstrates the 
 generalization capabilities of the prediction system. Notably, it correctly inferred that the 
 contributor was unlikely to become disengaged between 2007 and 2010. 

 Notably, we did try a version which used the 2-hop neighborhood around the contributor. This 
 2-hop variant was prone to over-fitting, and did not predict disengagement as successfully in a 
 generalizable way. 
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 Graph-based Multi-layer perceptron (G-MLP) 
 We also implemented an approach based on extracting features from the graph and applying a 
 multi-layer perceptron (MLP) neural network to predict contributor disengagement. This 
 approach currently results in a 6% improvement in predicting contributor activity disengagement 
 as compared to a naive predictor, with greater improvements possible by more extensive 
 exploration of the hyperparameter space. 

 The G-MLP approach temporally slices the graph into two-year windows with an overlap of one 
 year between adjacent windows. Toxicity features in the form of wordlist-based bad word counts 
 are extracted from a particular window, and used to predict contributor disengagement on the 
 next window. The features are summed over from all nodes one and two hops out from each 
 contributor. One significant source of improvement that we have already implemented is 
 processing the data to remove contributors who have no toxicity in any of these surrounding 
 nodes. 

 Disengagement is measured in two ways: 
 ●  Activity, which is the fractional reduction in a contributor’s activity from one window to the 

 next; 
 ●  Gaps, which is the number of ‘lean periods’ for a contributor in a window, where a lean 

 period is defined as a period of 6 months or more without any activity. 

 The figure below is an example of ‘gaps’ disengagement computed from the graph for a 
 particular contributor. Each vertical bar is the number of commits in a month (log scale). This 
 contributor became active in the middle of 2005 with 4 activities, then (potentially suspiciously) 
 did not engage until 2007. S/he was then active regularly until the end of 2014, following which 
 there were lean periods in 2015-16, the latter half of 2017, late 2018 to early 2019, and late 
 2019. Thus, taking 2017-2018 as an example window, the Gaps count is 2. 
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 Other approaches 
 We are currently implementing an approach based on GraphSage (Hamilton et al. 2017 
 https://arxiv.org/abs/1706.02216  ) – a popular method  for performing machine learning on graphs 
 that scales well to large graphs which have nodes and edges added with time, as is our case. 

 Ensemble machine learning methods such as gradient boosting and random forests are less 
 effective (4% improvement over a naive predictor) than the neural network methods discussed 
 thus far, however, they are excellent tools for predicting feature importance as described in the 
 next section. 

 Feature importance for prediction 
 As mentioned previously, the foremost way to improve prediction capabilities for instability 
 events will be to add better features to the data available to the predictor. Keeping this in mind, 
 we attempted to assess the importance of the different existing features using ensemble 
 machine learning methods. The features considered are 8 categories of bad words, each 
 summed over all the messages one and two hops out from contributors. The categories are as 
 mentioned before – words banned from ‘Google Instant’, a custom wordlist ‘Swearing’, and lists 
 of toxic words categorized into 'Generic', 'Appearance', 'Intelligence', 'Politics', 'Racial' and 
 'Sexual'. The importance was assessed from the results of the top 10% of gradient boosting 
 models. 

https://arxiv.org/abs/1706.02216
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 The percentage importance results shown above indicate that a count of the list of words 
 banned from the Google Instant platform is a feature of high importance when predicting 
 instability. In particular, aggregating this information from the larger group of messages 2-hops 
 away from a contributor is the foremost indicator of disengagement. Its effect is even more 
 prominent for Gaps disengagement as compared to Activity disengagement. Racially and 
 politically charged bad words are also useful features. On the flipside, bad words in the category 
 of ‘Appearance’ have negligible importance. 

 Identifying shared code segments 
 Characterization of the social history and technical ownership within the project is currently an 
 ad hoc process which can be managed and understood through the UI. Since the UI leverages 
 windows of time to filter and orient the analyst’s attention, one can search for a particular file, 
 such as .github/dependabot.yml. By looking at the spatiotemporal graph around this point, we 
 can see that this file has been modified by two contributors, Mariatta and John Losito (orange 
 squares). These contributors modified the file across 4 commits spanning October 2020 to 
 February 2021. We can also see that John Losito only created 1 of the commits, with Mariatta 
 creating the other 3 and committing all 4. Thus, Mariatta owns this particular section of the 
 CPython code, a deduction which can be drawn with a very small amount of interaction with the 
 UI. 
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