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Abstract

Monolithic kernels have been the traditional design choice of many modern operat-
ing systems for practical and historical reasons. Though monolithic systems excel in
performance, they suffer from exposure to security vulnerabilities. The past 6 years
of published Linux CVE data has revealed hundreds of security vulnerabilites that
can potentially be exploited by an attacker to escalate privileges and leak sensitive
user data. Though some of these vulnerabilites can be mitigated with proper memory
safety enforcement, others require privilege separation to ensure code only accesses
data that is explicitly granted by a developer. We present Hardware-Assisted Kernel
Compartments (HAKC), a solution that mitigates exposure to security vulnerabilities
by leveraging modern commodity Arm hardware and automatic LLVM instrumenta-
tion to enforce compartmentalization in an effective manner without requiring sig-
nificant developer effort. Using Arm Pointer Authentication Codes (PAC) and Arm
Memory Tagging Extensions (MTE), HAKC enforces a two-tier compartmentalization
scheme that is performant and provides flexibilty for up to 4 * 1015 compartments,
which, when compared to prior works, is orders of magnitude more compartments
afforded to developers. To test HAKC, we implemented a compartmentalization pol-
icy for nf_tables, a commonly used packet filtering LKM. LKMs are prime targets
for compartmentalization because CVE analysis has shown that most kernel vulnera-
bilites reside in LKMs, and the HAKC two-tiered compartmentalization scheme easily
adapts to LKM logical groupings of kernel subsystem functionality. Evaluations show
that we are able to acheive strong security enforcement without adding significant
overhead.
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Chapter 1

Introduction

The monolithic kernel architecture has been the de facto design standard in operat-

ing systems since the inception of Unix in 1969. By allowing most kernel code to

share memory and run in hardware privileged mode, this style of architecture enables

functionality, performance in terms of speed, and ease of development [1]. However,

these advantages come with the cost of a large bug-prone code base with few mecha-

nisms for component isolation. As a result, any vulnerability in the operating system

compromises the entire system.

Operating system vulnerabilities pose major risks in monolithic operating systems

because the kernel generally has full control of user space processes. This implies that

an attacker with access to kernel space can compromise a user’s passwords, crypto-

graphic keys, and other sensitive data. Today, Linux, a monolithic operating system

that was originally intended for experimental PC operating system development, is

used for billions of applications, ranging from high performance computing, to PC’s

and IoT devices, including surveillance cameras, routers and modems, smartwatches,

android based mobile devices, fitness trackers, smart TV’s, among other things [2].

The progression of IoT has resulted in a larger and ever increasing reliance on com-

puting devices connected to the internet. This fact, combined with the ubiquitous

use of Linux and other monolithic operating systems is a serious cause for concern

and motivation for further research in mitigating operating system vulnerabilities.

Software and hardware defenses have been developed to mitigate kernel vulnera-
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bilities. Some software protections such as KAISER [3] and KASAN [4] help enforce

memory safety. Various control flow integrity schemes (CFI) have been developed

as software protections against ROP attacks (Section 2.1.2). Other defenses such as

Intel’s SMAP/SMEP [5] utilize hardware to prevent the kernel from accessing and ex-

ecuting user data and code, thereby enforcing privilege separation. These defenses are

only capably of thwarting a subset of possible attacks, as some attacks will leverage

programmer errors to change program behavior in a manner that is completely within

the specification as defined by the programmer (see Section 2.1.3). Some solutions to

combat programmer error include formal verification of programs, concolic execution,

and use of memory safe languages (Section 2.4,Section 2.5,Section 2.6). Unfortunately,

each of these solutions comes with a cost, making there application in modern day

kernels challenging.

Another approach to mitigating the impacts of kernel vulnerabilities is to devise

mechanisms that enforce privilege separation. Privilege separation refers to minimiz-

ing code data access privilege to only that which is necessary for correct execution

of a program. Compartmentalization is the concept of enforcing privilege separation

by segmenting a software system into various components with minimized interde-

pendence. A privilege policy, either manually or automatically defined, then controls

interactions between compartments (we will use the word compartment and partition

interchangeably). We can define isolation as an extreme form of a compartmentaliza-

tion scheme in which there is zero communication between compartments. Applica-

tions supported by the same operating system that do not share data would be con-

sidered isolated. Through compartmentalization, system exposure to vulnerabilities

is limited to the component or module containing the vulnerability, thus providing

protections against malicious attackers who could not otherwise be thwarted with

traditional software defenses.

Linux contains kernel source code findings, such as developer error or security

weaknesses, that can be exploited by a malicious attacker (i.e., compromising user-

to-user and user-to-kernel isolation, or unintended user-privilege escalation). To help

understand the nature of mitigating such vulnerabilities, the last 6 years of Linux
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Figure 1-1: 567 Linux kernel vulnerabilities from 2015-May 2021. Note that Remain-
ing is comprised of vulnerabilities caused by logic errors, race conditions, and integer
overflow

reported CVEs were analyzed and categorized by whether memory safety or privilege

separation would be required to mitigate the vulnerability. These decisions were base

on textual analysis (i.e., arbitrary code execution falls under privilege separation,

while use-after-free falls under the memory safety).

Figure 1−1 describes the CVE analysis findings. The results show that 193 known

Linux kernel vulnerabilities can be mitigated only with proper memory safety enforce-

ment, and only proper privilege separation enforcement can provide defenses against

229 known vulnerabilities. Furthermore, 71 of known vulnerabilities require either

privilege separation or memory safety. These observations are the primary motiva-

tion behind exploring the efficacy of using kernel compartmentalization to enforce

privilege separation.

The Linux source code is comprised of a relatively small core of functionality,

such as memory mapping and context switching logic, along with a relatively large

amount of peripheral functionality, such as networking support, filesystem support,

and device drivers. This peripheral functionality can be compiled as a Linux Kernel

Module (LKM), and be dynamically linked to the kernel image upon necessary use.

Of the 567 vulnerabilities analyzed, 301 were found in the drivers/ and sound/
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directories of the kernel source. Since most of the code in these two directories is

intended to be used as part of an LKM, we can safely conclude that the majority of

vulnerabilities are located in LKMs.

Software-based compartmentalization schemes have been proposed — such as

microkernel architectures or isolation through sandboxing — but generally incur

non-negligible overhead and/or do not enforce compartmentalization at the granu-

larity required to mitigate fine-grained attacks (such as intra-page control-oriented

attacks Section 2.1.2). In contrast, hardware defenses are generally more performant,

as the responsibility of enforcing compartmentalization is enforced through archi-

tectural functionality. However, until recent developments, conventional hardware

mechanisms have lacked support for compartmentalization schemes at the granular-

ity required to thwart sub-page size attacks in a performant manner. For example,

mechanisms such as virtual addressing only compartmentalize at the granularity of

individual pages. Other mechanisms such as the Ring Privilege Model, incur signif-

icant overhead upon switching privilege modes (Section 2.7). Though past research

efforts have focused on improving hardware mechanisms to support fine-grained com-

partmentalization, most tested schemes are implemented in emulation and have not

been adopted in commercial hardware.

Arm has recently released two hardware extensions, Arm Pointer Authentication

Codes (PAC) and Arm Memory Tagging Extension (MTE) [6, 7]. PAC is an architec-

tural extension that is intended to be used to cryptographically enforce code-pointer

integrity (CPI). MTE is an architectural extension that is designed to be used as a

lock-and-key mechanism for pointers accessing data.

We present Hardware-Assisted Kernel Compartments (HAKC), a novel compart-

mentalization framework that uses these two new additions to the Arm architecture to

effectively compartmentalize the Linux kernel in a fine-grained manner. HAKC pro-

vides developers with a compartmentalization API that allows developers to define a

two-tier compartmentalization policy consisting of cliques and compartments. Cliques

represent logical designations of code and data, while compartments represent logical

sets of cliques. HAKC optimizes for high performance inter-clique transitions, allow-
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ing developers to test compartmentalization policy designs that explore performance

and security trade-offs. Additionally, HAKC allows developers to define an order of

magnitude more compartments than past hardware enforced compartmentalization

frameworks have traditionally allowed. HAKC minimizes developer effort by using

a Clang LLVM compiler pass to inject instrumentation into source files. LKMs will

be used as targets of HAKC implementation for two reasons. First, as revealed with

the CVE data analysis (Figure 1− 1), LKMs are the source of the majority of CVEs.

Second, LKMs provide a logical boundary between Linux kernel subsystems. Kernel

functionality related to a specific task, such as IPv6 protocol logic and packet filtering

functionality are designated to separate modules.

The following sections will present the design and implementation of HAKC, as

well as the application of HAKC for compartmentalizing the nf_tables LKM, a

widely used packet filtering module.
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Chapter 2

Background

The following sections outline the major attacks and vulnerabilities that motivate

research in kernel vulnerability mitigation, as well as traditional efforts to thwart

attacks that leverage such vulnerabilities through language based defenses, operating

system design, and hardware based defenses.

2.1 Attacks and Traditional Defenses

Research in compartmentalization is generally motivated by attacks that have been

discovered over time. The following sections broadly discuss general types of attacks

and traditional defenses.

2.1.1 Code-injection Attacks

Such as C/C++ lack memory error checking functionality such as array bounds check-

ing (more on safe/unsafe languages in Section 2.6). This gives rise to buffer-overflow

attacks, which leverage common memory errors in unsafe languages to write data

outside the bounds of an array. At one point, buffer-overflow attacks were capable

of arbitrary code injection to alter the behavior of a program. For example, buffer-

overflow attacks could leverage a lack of bounds checks on arrays to write data past

the end of an array. If the array is located on the stack, then stack data can be

14



corrupted or modified, allowing an attacker to inject code and run malicious code

by modifying pointer values stored on the stack. Although code injection attacks

pose serious threats to legacy software systems, the implementation of page protec-

tion schemes such as Data Execution Prevention (DEP) in x86 and Arm architec-

tures [8, 9] and W⊕X in operating systems page protections in operating systems

such as Linux have mitigated such attacks by making data regions non-executable

and disabling write permission for executable memory respectively. As we will see

in the next section, buffer-overflow attacks are still relevant today because of there

ability to aid in control-flow and data-oriented attacks.

2.1.2 Control-flow Attacks

Although code injection attacks have mostly been thwarted through DEP and W⊕X

memory permissions, control-flow attacks utilize gadgets, or preexisting code, to al-

ter program execution. Though the attacker is restricted to only using gadgets to

achieve a goal, most programs include libraries that significantly increase a program’s

exploitable attack surface. Control-flow attacks will leverage memory errors in unsafe

languages such as C/C++ to modify function pointer values, i.e., stack based return

values, stack based jump values (Jump-oriented attacks), and heap based pointer

values.

Various control-flow integrity (CFI) schemes have been developed to combat this

style of attack by focusing on preserving the original call graph that was intended

by the developer [10]. CFI solutions can vary in precision because of a lack of static

information provided by a control-flow graph (CFG). For example, forward edges in

a CFG represent all the functions that can be called by another function. These call

instructions can include pointers to functions, which are computed during runtime.

The possibility of forward edges can make forward edge CFI very imprecise. Backward

edges in the (CFG) are easier to enforce with high precision because information on

parent functions can be obtained during runtime. The use of shadow stacks is one

example of CFI enforcement, which consists of storing metadata on a separate stack

to detect when return pointers have been modified by an attacker [11]. Other more
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modern techniques for enforcing CFI involve cryptographically securing pointers (see

Chapter 7).

Attacks such as control-flow attacks require knowledge of data and code memory

locations. Traditionally, page-table hardware mechanisms were intended to enforce

memory isolation at the granularity of individual pages. These isolation mechanism

however has been broken with SPECTRE/Meltdown [12, 13] attacks, which utilize

side-channel attacks and out-of-order execution to bypass CPU ring privilege checks

and gain access to kernel memory. Memory location randomization techniques such

as KASLR, which are intended to make data and code location discovery difficult, are

subverted by these attacks and other side-channel attack. Kernel page-table isolation

(KPTI, originally KAISER [3]) defends against Meltdown by maintaining both kernel

side and user side page-tables, switching between these tables on a context switch.

The user side page-table only contains kernel memory that should be accessed in user

space (ring 3 privilege). Although KPTI enforces KASLR, KASLR is regarded as

ineffective in protecting the operating system from an attacker that executes code

in the kernel context [14]. This is a motivation for further exploration of kernel

compartmentalization.

2.1.3 Data-oriented Attacks

Rather than modify function pointers, as is the case with control-flow attacks, data-

oriented attacks focus on modifying data and data pointers. Works have shown

that data-oriented attacks can leak sensitive user information in a similar manner

to control-flow attacks [15]. One such example of real-world data-oriented attack

is a Linux CVE-2016-4997 [16]. This vulnerability allows a user to provide a value

to cleanup code in the IPv4 packet filtering system which can corrupt a value later

used for pointer computation. The possible resulting damage of this exploit is any

arbitrary integer being decremented, which could result in privilege escalation of a

user process. This vulnerability, and data-oriented attack vulnerabilities in general

are concerning because an attacker can change privileges and leak sensitive informa-

tion, from user space, without violating the control flow intended by developers. An
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effective compartmentalization policy would limit the memory accessible by such an

exploit, likely preventing damage such as unwarranted privilege escalation.

2.2 Compartmentalization by Operating

System Design

The rise of complex attacks such as data-oriented attacks has motivated researches

to explore compartmentalization as a simpler and more robust method of mitigating

control-flow/data-oriented attacks. As will be discussed in the following sections,

some such efforts include total operating system redesign.

2.2.1 The Spectrum of Operating System

Compartmentalization

Kernel compartmentalization can be thought of as a spectrum of isolation granularity

(Figure 2 − 1), where on one extreme exists monolithic kernels with minimal isola-

tion, and on the other extreme exists zero-kernel operating systems, which utilize

advancements in tagged architectures to achieve extremely fine-grained compartmen-

talization between components [17]. The following sections provide greater detail of

several unique operating system architectures with varying degrees of compartmen-

talization and mechanisms for mitigating security vulnerabilities.

2.2.2 Monolithic Kernels

As discussed earlier, the monolithic kernel design has been adopted by several preva-

lent operating systems, including Linux based operating systems and Windows. Since

the kernel in these systems has access to all memory, optimization can be made in

terms of performance and ease of development. Unlike a microkernel architecture

which typically requires 4 (and sometimes more) context switches on a system call,

system calls in a monolithic kernel can take as little as two context switches. This

results in better performance. Furthermore, one can argue that the use of shared
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Figure 2-1: Compartmentalization as a spectrum of granularity. Notice that mono-
lithic kernel and microkernel designs utilize Ring privileges to enforce isolation be-
tween user space and kernel space. The zero-kernel does not rely on Ring privileges
for isolation, as memory is compartmentalized to the required granularity to enforce
necessary isolation.

global data structures in monolithic kernels allows for easier development, as any

piece of code in the kernel can access any necessary data structure. These design

choice priorities result in minimal isolation between unrelated components such as

drivers and schedulers. Often times, global access to kernel heap memory creates

opportunities for attackers to access memory regions unrelated to the source of the

security vulnerability [18]. As mentioned before, there exist hardware mechanisms

such as SMEP/SMAP and page-table privilege checking to enforce memory isolation

between the user-to-user and kernel-to-user logical boundaries at the granularity of

pages. However, these mechanisms do nothing to enforce isolation within the kernel.

As a result, a vulnerability in the kernel can compromise the memory of the entire

system, including that of all user processes.

2.2.3 Microkernels

Microkernels such as Minix 3 [19] and the L4 family of operating systems (include

SeL4 [20]) attempt to improve compartmentalization by moving kernel logic, tradi-

tionally found in monolithic systems, to user space. This provides the advantages of

isolating bug-prone logic such as driver code as well as reducing the size of the kernel,
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which is considered the trusted computing base (TCB). This results in microkernels

having significantly less trusted code (code operating in ring 0) than monolithic ker-

nels - Minix 3 only has 4,000 lines of code while Linux has about 2.5 million lines of

code. Consequentially, there is a significant decrease in the total number of expected

kernel bugs [21]. The benefits realized from a smaller trusted computing based come

with the cost of high inter-process communication (IPC). For example, consider Re-

doxOS [22], a developing microkernel written in Rust [23]. If a Redox user process

is writing to a file, several context-switches need to occur. First, a context-switch

from user to kernel space occurs. In kernel space, the destination for the system call

is processed and the appropriate module is determined. Next, data is passed from

the kernel to the filesystem module, result in another context-switch from kernel to

user space. Once the fileystem has completed, either writing to an in-memory buffer

or invoking two more context-switches to write to disk, control is passed back to

the kernel, and then to the user, resulting in a total of at least 4 but (possibly 6)

context switches. Efforts have been made to reduce the overhead of a context-switch

through virtualized compartmentalization efforts, but these efforts generally involve

the implementation of a hypervisor (see Section 2.2.4).

2.2.4 Exokernels and Unikernels

The concept of the Exokernel was introduced in 1995 as a re-definition of tradi-

tional operating system abstractions [24]. Rather than supporting filesystem, driver,

and networking functionality in a privileged kernel space, as monolithic systems like

Linux do, Exokernel leaves the implementation of such functionalities to applications.

Applications then interface with a smaller and simplified "kernel" that multiplexes

hardware interfaces such as disks and networking cards. This concept rooted in the

common end-to-end argument in system design, where functionality is minimized in

a low-level interface to increase flexibility for high level users of that interface.

The Exokernel abstraction forces traditional operating system functionalities, such

as virtual address managing and IPC, to be implemented as libraries in applications.

This has several major benefits. First, the Exokernel TCB is significantly smaller than
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monolithic systems because only the multiplexing of hardware resources needs to be

trusted. Second, applications now have the flexibility to tailor traditional operating

abstractions to there own needs. For example, applications that run independently

on a machine may only require simple virtual memory abstractions if the application

is focused on performance over security.

Inspired by the Exokernel computing environment, research efforts have proposed

Unikernels as a modern operating system design to improve performance, security,

and simplicity in cloud computing and embedded contexts [25, 26, 27, 28, 29, 30, 31].

Unlike the term Exokernel, the term Unikernel refers to the integration of LibraryOS’s

with applications. In a Unikernel based environment, the task of multiplexing hard-

ware is placed on a hypervisor. Unikernel designs are particularly interesting in

there cloud computing applications, as cloud computing applications generally focus

on singular tasks (i.e., a webserver or database). One such example of an imple-

mented Unikernel design is MirageOS [28]. Implemented in OCaml, a memory safe

language, MirageOS moves traditional operating system functionality like networking

and filesystem management to OCaml implementations that are compiled as libraries

and linked into application images. This results in a simpler computing environment

with a smaller attack surface, as only necessary kernel code is compiled into the ap-

plication image, while maintaining adequate performance. Furthermore, small image

sizes allow for rapid rebooting, which is a direct advantage over virtual machines

that manage entire traditional operating systems. Although efforts have been made

to convert widely used operating systems to Unikernel structures, common industry

reliance on monolithic computing stacks has made adoption slow.

2.2.5 Hypervisors/Virtualization based Microkernels

Similar to microkernel designs, efforts have been made to compartmentalize operat-

ing systems by leveraging hypervisors to isolate kernel subsystems [32, 33, 34, 35].

VirtuOS [32] is one example of a hypervisor based operating system isolation scheme

that utilizes Xen to isolate kernel subsystems into separate service domains. VirtuOS

uses less context switches during inter-domain communication when compared to tra-
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ditional microkernel implementations. This is due to VirtuOS’s implementation of

exceptionless systems calls, which provide direct communication avenues between do-

mains. Despite this optimization, inter-domain communication overhead is incurred

from inter-domain data copying, file descriptor translation, and migration of other

domain-specific information. Fault isolation is achieved between domains by using

Xen to isolate domains, where each domain is designated a slim copy of a kernel

binary. One unfortunate downside to VirtuOS, and other hypervisor based operat-

ing system compartmentalization schemes, is the increase in TCB, as the hypervisor

becomes another trusted component in the software stack. This is a motivation for

exploration into alternative compartmentalization schemes that do not increase the

TCB.

2.2.6 Zero-kernel Operating Systems

On the far end of the compartmentalization spectrum, Zero-kernels rely on advance-

ments in hardware isolation support to compartmentalize every facet of the traditional

monolithic kernel. Tagged SoC architectures can be used to enforce control-flow and

data access security policies at the granularity of individual words. Dover was used to

compartmentalize ZKOS, a zero-kernel operating system in which every component of

the traditional kernel is compartmentalized to a finer granularity than that of which

can be achieved by monolithic and microkernel architectures [17]. However, architec-

tures that provide such rich tagging schemes are Dover are unlikely to be adopted by

industry any time soon, as most work has focused on tagging memory with limited

tag bits.

2.3 Embedded Systems Compartmentalization

To minimize power and space consumption, embedded architectures traditionally lack

virtual addressing capabilities. Often times the operating system and application

are compiled into one image and share an address space. The prevalence of IoT

devices have raised concerns over the lack of isolation and privilege separation for
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software running on embedded devices. Efforts have been made to provide inter-

process as well as intra-process isolation using tagging extensions [36] as well as the

Memory Protection Unit (MPU) commonly found in embedded devices [37, 38]. Other

efforts target the lack of Control Flow Integrity (CFI) on embedded devices through

a hardware performant extensions [39].

2.4 Formal Verification

As discussed earlier, common developer errors such as exceeding the bounds of an

array, improper integer range checking, and use of null-pointers are not only a source

of bugs but also a source of potential attack exploits. Inspection and rigorous testing

have been used to locate software errors, especially as code develops. However, these

methods are only as rigorous as the inputs to the system and, consequentially, the

code paths that are tested.

Formal verification of software systems targets this problem by mathematically

proving the correctness of the system against a formal specification defined by a

developer. A system that is formally proven to be correct adheres to the formal

specification of the developer and is free from possible developer induced bugs such

buffer-overflow issues and lack of integer bounds checking.

Given the importance of security in operating system code, there has been research

in applying formal verification methods to operating system development. One such

example is SeL4 [20], a microkernel based off the L4 microkernel. SeL4 is unique in

that the core kernel code is mathematically proven to be correct.

Unfortunately, the security benefits of formal verification of code comes with sub-

stantial costs. Firstly, formal verification requires immense computation power, mak-

ing correctness proofs for large code bases infeasible. SeL4’s small design of less than

10,000 loc, thanks to a microkernel architecture, makes formal verification on the

kernel core feasible. However, formal verification of larges systems such as Linux,

consisting of 25 million loc, is computationally infeasible. Furthermore, formal ver-

ification only guarantees correctness against a formally defined specification by a
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developer. Errors in the formal specification directly translate to errors in the code

base. Additionally, unlike core kernel code, application specific extensions to SeL4

are not formally verified, increasing the attack surface of a system.

2.5 Symbolic and Concolic Execution

Traditionally programs are tested against test suites that apply specially selected

inputs to uncover bugs in functions and systems in general. Since developers select

inputs to test with, the quality of testing is constrained by the quality of inputs chosen

by a developer. With this common practice of testing comes the risk of failing to check

inputs that can result in unexpected security vulnerabilities, i.e., buffer-overflow.

Symbolic execution is the systematic abstract analysis of code to ascertain inputs

that will result in a program error. Unlike traditional testing, which uses concrete

values to test a program, symbolic executors model inputs as abstract symbols. The

symbolic executor than executes every possible code path, applying constraints to

symbolic inputs as branches are encountered. Once a code path terminates, an SMT

solver is used to calculate possible values for inputs such that the constraints on those

inputs are satisfied, allowing a developer to test an error prone code path using the

concrete values provided by the symbolic executor.

Unfortunately symbolic executors cannot be used on every program, as some pro-

grams have a computationally infeasible number of code-paths. This has resulted

in the exploration of Concolic executors, which replace certain symbolic values with

concrete values to avoid exploring infeasible code-paths [40, 41, 42]. For large code

bases such as Linux, symbolic/concolic executors can leave large parts of the code

base relatively unexplored, making language based and compartmentalization security

schemes contenders in mitigating vulnerabilities and defending against vulnerability

exploitation.
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2.6 Language Based Defenses

Another approach to defending against malicious attacks is the use of a safe languages

to mitigate memory errors. The following sections outline the difference between safe

and unsafe languages and the benefits and costs associated with each.

2.6.1 Memory Safety

Memory safety refers to the restrictions a language places on a developer in order

to minimize accidental memory accesses that deviate from the developers intentions.

Memory Safety can be broken down into two components: Spatial Memory Safety

and Temporal Memory Safety.

Spatial Memory Safety refers to restrictions a language places on a developer to

mitigate accidental or intentional memory reads and writes to locations outside the

bounds of the developers specifications. For example, when a developer allocates

an array, the developer does not intend for data to be written outside the bounds

of that array. Languages, such as Go [43], enforce a developers intentions such as

bounded array reading and writing by adding runtime checks to array reads and

writes. Reads and writes of an array that exceed the bounds of an array will result

in a runtime error. Of course, these runtime checks come with a performance cost.

Languages also implement static type checking to enforce spatial memory safety. A

compiler will ensure that objects are treated as there original instantiation types

unless otherwise specified by a developer (i.e., through casting). Static type checking

ensures developers do not accidentally mistake the types of objects, preventing data

from being corrupted and written outside the bounds of the object. This advantage

comes with the cost of less flexibility for the developer. The use of pointers to access

arbitrary regions of memory violate static type safety rules, and must be explicitly

stated by the developer. This often results in pieces of code being wrapped in unsafe

blocks, which void all language memory safety guarantees.

Unlike spatial memory safety, temporal memory safety focuses on the time at

which a region of memory is used. More specifically, languages that enforce memory
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safety mitigate accidental re-use of an object after the object as been reallocated for

a different purpose. Temporal memory safety is therefore primarily concerned with

heap based memory, as developers continuously allocate/free/reallocate heap memory

at runtime. Oftentimes languages such as Java will provide a garbage collection

system that monitors the use of objects, only freeing objects when there are no longer

references to an object. This relieves developers from the burden of tracking the

lifetime of memory, but comes at the cost of increased performance overhead during

runtime.

2.6.2 Safe and Unsafe Languages

Languages such as C/C++ are extremely popular choices for system implementations

because they provide flexibility in terms of memory access and performance in terms

of speed. Despite these benefits, these languages do not implement the static or dy-

namic spatial and temporal memory safety checks other languages perform, exposing

systems implemented in these languages to a plethora of developer errors and security

vulnerabilities [44].

Unlike unsafe languages, safe languages provide the statically and dynamically

enforced memory safety mechanisms. For example, Go is a statically type checked

language that provides a garbage collector to enforce temporal memory safety. Al-

though garbage collectors are the general mechanism safe languages leverage to en-

force temporal safety, some system languages like Rust [23] are able to statically

enforce temporal memory safety at compile time, removing the need for a costly

runtime garbage collector. Rust ascertains lifetime information by enforcing a strict

ownership model and, in some cases, requiring that developers specify the lifetime of

an object [23]. When used for low-level systems development, safe languages provide

an unsafe specifier that can be used to subvert memory safety restrictions. The

unsafe specifier is generally used when accessing memory in an unsafe manner (i.e.,

reading input from memory mapped devices or operating system context-switching).

To gain the security benefits of safe languages, developers should minimize the use

of unsafe languages. However, in practice, unsafe blocks have been shown to be used
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extensively [45].

2.6.3 Operating System Safe Language Implementations

At the level of language selection for operating system implementation, we have seen

operating systems written in memory and type safe languages to help eliminate vul-

nerabilities. Examples include BiscuitOS, a monolithic kernel written in Go [46],

RedoxOS [22] and TockOS [47], microkernels written in Rust, and Singularity, a mi-

crokernel variant written in Sing# [48].

Singularity is an operating system written by Microsoft Research and released in

2007. The goals of the project were to utilize a type safe and memory safe language to

write a trustworthy operating system. Although Singularity is technically classified

as a microkernel, the system differs in that all processes (including the kernel) share

the same address space. Memory safety is enforced with the concept of a Software-

Isolated Process (SIP), which utilizes garbage collection and static verification to

guarantee that pointers cannot accidentally access memory outside of granted re-

gions. Additionally, communication between SIPs is secured through contract-based

channels that are enforced by the Sing# language and allow applications to agree on

a verifiable communication method.

Unfortunately, the aforementioned operating systems come with significant costs.

Written in a high-level language with a garbage collector, BiscuitOS experiences slow-

downs of 5-15% when compared to Linux [46]. Singularity provides improved security

of modern kernels at the cost of a dramatic redesign that is infeasible to implement

for large existing kernels such as Linux. Although these systems are mostly imple-

mented with safe languages, they still contain bits of unsafe code that are required

for low-level memory and register manipulation. The existence of unsafe code and

costly adoption is yet another motivation for exploring kernel compartmentalization.
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2.7 Compartmentalization with Hardware

Most of what has been discussed thus far relates to software defenses against malicious

attacks. The following section explore innovations in hardware defenses that enforce

isolation and security policies. See Chapter 7 for a more extensive overview of modern

hardware based compartmentalization efforts.

2.7.1 Virtual Addressing

Almost all conventional modern CPUs support virtual addressing schemes that allow

the operating system to manage process access to memory at a granularity of page

(typically 4KB in size). Virtual addressing is the main mechanism utilized by mono-

lithic operating systems to enforce user-to-user and user-to-kernel isolation. Memory

privilege enforcement, normally implemented as Page Table Entry (PTE) flags, also

give operating systems flexibility in determining what kind of permissions to grant a

process at the granularity of pages. This allows operating systems to enforce W⊕X

permissions and DEP on code regions in a virtual address space. Additionally, micro-

kernels leverage this hardware functionality to maintain separation between domains.

Other work has focused on using the isolation benefits of virtual addressing to move

driver implementations to user space for Linux subsystems. Sud [49] moves devices

drivers to user space and relies Linux kernel virtualization in user space to prevent

malicious drivers from accessing memory outside their defined scope.

2.7.2 Protection Ring Model

The Protection Ring Model is a privilege separation mechanism implemented in most

conventional CPUs that categorizes instruction privileges in 3 or 4 rings. Operating

systems typically execute instructions in Ring 0 as this is the most privileged ring,

allowing full access to all instructions, memory, and peripheral devices. User process

normally execute in Ring 3, the least privileged ring. Normal monolithic operating

systems generally operate in two rings, using Ring 0 for kernel execution and Ring 3

for user process execution. Recent CPUs from AMD and Intel that support hypervisor
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virtualization now offer Ring -1. This allows guest operating systems to operate in

Ring 0, independently from one another.

2.7.3 Arm PAC and MTE

Unlike the previously discussed hardware tagging extensions, Arm has also released a

Memory Tagging Extension (MTE) [7] and Pointer Authentication Codes (PAC) [6]

extension profiles for the ArmV8-8.5 architecture. These extensions will be imple-

mented in hardware, making them particularly attractive for compartmentalization

implementation. HAKC relies on these extensions and will be discussed in more depth

in upcoming chapters.
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Chapter 3

Design

The following sections present the design of Hardware-Assisted Kernel Compartments,

HAKC, a kernel compartmentalization framework that leverages Arm PAC and MTE

hardware extensions as well as Clang LLVM analysis and instrumentation to enforce

a two-tier compartmentalization scheme.

3.1 High Level Design Decisions

As discussed earlier, HAKC is intended to compartmentalize the Linux kernel, focus-

ing on, but not limited to, LKM compartmentalization. HAKC supports a two-tier

compartmentalization scheme consisting of cliques and compartments. Each clique

is a unique logical grouping of data and code that resides within a compartment.

HAKC is agnostic towards compartmentalization granularity, allowing developers to

test both course-grained and fine-grained compartmentalization schemes. HAKC en-

ables developers to regulate inter-compartment and inter-clique data and control flow

by providing an API developers can use to define flow policies. The following sections

describe both relevant Arm extensions and HAKC design in greater detail.
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64-Bit Pointer

64-Bit Modifier

128-Bit Key

PACDA

64-Bit PointerPACPAC

Bit 55

(a) A pointer, modifier, and 128-bit key are used to
compute a PAC that is stored in the upper bits of the
resulting pointer. Bit 55 determines whether the top or
bottom half of the address space is used.

Extension Description
PAC<key> Signing instruction
AUT<key> Authentication instruction

IA,IB Instruction Keys
DA,DB Data Keys
GA General Key

(b) PAC relevant architectural ex-
tensions

Figure 3-1: PAC implementation and generation

3.2 Arm PAC and MTE

The following sections describe the relevant details of Arm PAC and MTE hardware

security primitive implementations.

3.2.1 Arm Pointer Authentication Code (PAC) Extension

PAC is an is an Armv8-A hardware extension that allows software to cryptographically

harden the integrity of a pointer value. PAC leverages the fact that upper bits of

pointer values are generally unused for addressing, and can be utilized to store pointer

metadata information.

Figure 3 − 1a outlines the basic usage of PAC to sign a pointer. The PAC ar-

chitectural extension provides several new instructions that can be categorized into

a signing group and authenticating group (Figure 3− 1b). During signing, a pointer

and modifier are passed as input to a specified PAC<key> instruction. The resulting

PAC is stored in the upper bits of the pointer. During authentication, an AUT<key>

instruction is used to compute a new PAC given a pointer, modifier and key. If the

computed PAC does not equal the PAC stored in the upper bits of the pointer, an

AUT<key> returns an invalid pointer.

PACs are computed using a cryptographically secure hardware implemented QARMA

block cipher [50]. The PAC size can range from 3 to 31 bits depending on the size
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64-Bit Pointer

4-Bit Tag

32-Byte Array Safe Memory

Accessible Memory 
(colors match)

Inaccessible Memory 
(colors mismatch)

(a) The 4-bit pointer tagged is compared against the
4-bit memory tag. Unequal tags incur a memory fault.
One can think of tagging memory as "coloring", where
a 4-bit tag yields 16 colors

Extension Description
STG Tag store instruction
ST2G 2 granule tag store instruction
LDG Tag load instruction

(b) MTE relevant architectural
extensions

Figure 3-2: MTE implementation

of the virtual address space used (which ranges from 32 to 52 bits), and if memory

tagging is enabled (which uses 1 byte, more on this in Section 3.2.2). As shown in

Figure 3 − 1b, PAC provides 5 different 128-bit keys that can be used during PAC

signing/authentication.

3.2.2 Arm Memory Tagging Extension (MTE)

MTE is designed to allow developers to improve the spatial memory safety of software

by tagging every 16-bytes of memory with a 4-bit tag. Using the top-byte-ignore

(TBI) architectural feature, a 4-bit tag is also stored in the top byte of a pointer.

We can refer to these tags as "colors", where each memory and pointer are colored

from a possible selection of 16 different colors. When a load or store is performed,

MTE functionality will check if the pointer color and memory color match, throwing

a memory error upon mismatch. As shown in Figure 3 − 2a, this scheme can be

used to enforce memory safety. For example, one can color memory after the end of

an array, preventing attack methods such as buffer-overflow. MTE provides several

instructions to load and store tags at provided memory addresses (Figure 3− 2b).

Unfortunately using MTE’s tagging scheme only allows for up to 16 unique com-

partments in any compartmentalization scheme. For large systems such as Linux, a

larger number of compartments would yield better security. HAKC proposes solution

that leverages MTE to provide 4 * 1015 compartments.
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3.3 Threat Model

The attacker is assumed to not have root access in the system, and is therefore unable

to modify kernel modules. However, the attacker is able to invoke arbitrary system

calls and can send arbitrary data to the kernel (for example via netfilter, which sup-

ports socket communication between user space and kernel modules). Furthermore,

LKMs are not considered to be malicious, but only exploitable through security vul-

nerabilities. All non-compartmentalized kernel code is considered trusted, as verifying

the integrity of non-compartmentalized kernel code and data passed to LKMs is con-

sidered computationally infeasible (see Section 2.4 for prior work on such verification

problems). The Arm core SoC is also part of the trusted computing base with several

exceptions, IO devices, direct memory access (DMA), and side-channel attacks such

as SPECTRE [12] and Meltdown [13].

3.4 Compartmentalization Scheme

As stated earlier, HAKC allows developers to define a two-tiered compartmentaliza-

tion scheme consisting of cliques and compartments. To allow developers to easily

test different compartmentalization configurations, HAKC provides a developer API

that defines logical grouping and flow policies as follows:

1. Clique, a logical grouping of code and data that is associated with a single color.

There is maximum of 16 possible cliques.

2. Compartment, a logical grouping of one or more cliques, associated with a com-

partment ID (248 possible values). All data within a compartment is owned by

exactly one clique.

3. Clique Access Policy, control-flow and data-flow policy defining what cliques

have access to the current clique. This is a binary value indicating if one clique

can transfer control-flow to another clique.
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4. Compartment Access Policy, control-flow and data-flow policy defining the entry

and exit cliques for a given compartment, as well as which compartments have

access to the given compartment.

Furthermore, we define the following terms to capture compartmentalization rel-

evant events during execution:

1. ownership, the logical assignment of data and code to a singular clique. Own-

ership can be transferred.

2. control flow, the execution of instructions. Includes direct and indirect calls.

3. data flow, the access of data by load and store instructions.

4. inter-clique transition, when control flow and data flow occur over the boundary

of two cliques. This can occur as a result of a load, store, direct, or indirect

function call. Clique access policies are enforced during an inter-clique transi-

tion.

5. inter-compartment transition, when control flow and data flow occur over the

boundary of two compartments. This can occur as a result of a direct or indi-

rect function call. Compartment access policies are enforced during an inter-

compartment transition. Ownership of data and code is transferred upon inter-

compartment transitions.

To aid in describing various compartmentalization policies, let’s define some help-

ful notations. Let 𝐶𝑖,𝑗 refer to a clique with color 𝑖 and compartment 𝑗. Let 𝑃𝑖,𝑗 be a

set of colors representing the access policy for 𝐶𝑖,𝑗. Let 𝐴𝑗 represent the compartment

with id 𝑗, and 𝑇𝑗 be a tuple of sets of entry and exit cliques that represents the access

policy for 𝐴𝑗.

Figure 3−3 presents an example compartmentalization policy graph. The directed

edges represent clique and compartment access policies, where the existence of an edge

indicates that a source claque has granted access to a target claque. For example, 𝐶𝑦,3

would have an access policy 𝑃𝑦,3 = {𝑟, 𝑔}, because 𝐶𝑦,3 has edges directed towards
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0 13 4

Figure 3-3: Compartmentalization policy graph. Outline boxes represent compart-
ments, circles represent cliques. Directed edges represents clique and compartment
access policies.

the red and green cliques. On the other hand, clique 𝐶𝑟,3 would have access policy

𝑃𝑟,3 = ∅, as all edges point towards the red clique. Note in compartment 𝐴1, there

is a clique 𝐶𝑝,1 that is completed isolated, meaning there exists no access policy in

𝐴1 that contains the color 𝑝. In compartment 𝐴0, we see that it is possible for two

cliques, 𝐶𝑦,0 and 𝐶𝑝,0, to grant mutual access to each other. Notice some cliques are

compartment entrances (outlined in a bold line) while others are compartment exits

(outlined in a dotted line).

3.5 Arm PAC and MTE Compartmentalization

Enforcement

This sections discusses the design decisions made to utilizing PAC and MTE to sup-

port and enforce compartmentalization.

3.5.1 Compartmentalization Data Storage

To properly enforce a secure compartmentalization scheme, clique colors, compart-

ment IDs, and access policy information must be stored properly.

The top-byte-ignore architectural feature (TBI) is used to store compartment I.D.s

in the top byte of a pointer. Colors are stored as MTE tags. Each clique contains

meta-data that represents policies defined by the developer (Figure 3− 4).
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Figure 3-4: This is per-clique meta-data that is defined by a developer

3.5.2 Compartmentalization Enforcement

In general, pointers are signed using PAC (see Figure 3− 1a). For a given clique 𝐶𝑟3 ,

a singing token 𝑇𝑜𝑘𝑠 (see Figure 3 − 4) is used as a modifier. This signing token

is formed by concatenating a 48-bit string representing the compartment I.D. (3 in

the case of 𝐶𝑟3) with a 16-bit bitmap, where the index for color 𝑟 is set to a 1, and

all other values are set to 0. This signing token effectively acts as a unique context

for signing the pointer. Pointers located in different compartments/cliques would be

signed with a modifier representing a different context. Currently, the compartment

I.D., 3, is then stored in the top byte of the pointer (thanks to TBI). Since all cliques

within the same compartment share a compartment I.D., the compartment I.D. can

be stored in other places as well without inducing a significant performance cost.

Using MTE instructions, the object pointed to by the pointer is then colored 𝑟. The

color and compartment I.D. will be used for authentication in the future. A PAC

signing instruction is then used to embed a PAC in the upper bits of the pointer.

Upon pointer authentication, the contextual modifier is recreated by concatenat-

ing the compartment I.D. stored in the top byte of the pointer with the color of the

object of the pointer. A bitwise-or operation is then performed between the modifier

and access token 𝑇𝑜𝑘𝑎. In our running example, if 𝑇𝑜𝑘𝑎 does not contain a value of 1

at index 𝑟, or if the compartment I.D. of 𝑇𝑜𝑘𝑎 differs from that used when signing, 3,

the contextual modifier will not match the signing 𝑇𝑜𝑘𝑠, resulting in a failed authenti-

cation. The pointer and contextual modifier are then passed to a PAC authentication
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instruction, which verifies the PAC stored in the pointer. If the verification fails, the

pointer is tainted, resulting in a memory fault upon future dereference. If an attacker

changed the value of either the compartment I.D. or color, the attacker would need to

guess the value of the PAC. In the case of HAKC, a 16-bit PAC is used, so an attacker

would have a 1/216 chance of guessing the correct PAC. If the attacker fails to guess

the correct PAC (which is highly probable), then pointer authentication fails.

In order to ensure that control-flow and data-flow transitions abide to clique and

compartment access policies, access polices must be enforced for every unique store,

load, direct, and indirect call instructions. In C, this translates to every unique

pointer dereference, as well as every function call. Optimizations are made using an

LLVM compiler pass to avoid unnecessary policy checking. The following paragraphs

describe instruction specific details that are relevant to enforce control and data flow.

Call Instructions : Global values and stack allocated structs that are passed as

parameters to any function are signed. Call instructions are handled in different

manners depending on an inter-clique transition or an inter-compartment transition.

During an inter-clique transition, indirect call pointers are authenticated in the

general manner, where a compartment I.D. and color are retrieved to authenticate a

pointer against a contextual modifier.

If authentication fails for an indirect call, the indirect pointer is treated as an inter-

compartment call. Each clique has access to a valid target list 𝑉 . 𝑉 contains all the

possible compartments that a clique’s compartment is permitted to access. Iterating

through 𝑉 , the indirect call pointer is authenticated against each possible contextual

modifier. If an authentication check passes, the call is permitted. Parameters passed

during inter-compartment calls need to be resigned for the new compartment/clique

context. This results in transfer ownership of the data to the new compartment.

Upon return, data ownership is transferred back to the context of the caller. For

inter-compartment direct calls, only data ownership transferring is performed.

Loads and Stores : In order to ensure proper data-flow access policy enforcement,

policy checks must be made on loads and stores to memory addresses. These checks

involve general authentication as described earlier, where a contextual modifier is
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generated and certified by the clique access control token.

Data pointer authentication checks occur at the earliest moment in the execution

of an LLVM basic block. Special care is taken to assure that pointers are authenticated

before dereferences and pointer arithmetic occur. LLVM instrumentation is explained

in greater detail in Chapter 4.

3.6 Benefits of a Two-tiered Compartmentalization

Scheme

One could imagine a design in which the two-tiered compartmentalization scheme is

flattened, effectively removing the logical construction of a compartment. This alter-

native design would only consist of cliques, where each clique is indexed by unique

id/color combination. Unlike the two-tiered design, a flattened scheme would necessi-

tate that claque access policies encode the access policy of all possible cliques, which

can grow to be an infeasible amount of cliques. Although this hasn’t been tested, we

can confidently predict that checking a data structure that encodes this amount of

information would be orders of magnitude more expensive than checking a single 64-

bit integer. By having a two-tier compartmentalization scheme, clique access policies

only need to encode the access policy for 16 claques. In this way, the issue of costly

access policy data structures is moved from inter-claque flow to inter-compartment

flow (by needing to check a valid targets list). This is a conscious trade-off made to

optimize for inter-clique flow. Having inter-clique control and data flow perform faster

than inter-compartment control and data flow also allows developers to devise various

compartmentalization schemes that trade off performance and security. For example,

a scheme with minimal compartments will perform faster than a scheme with more

compartments, but will not be as secure as a scheme with maximal compartments.

This is directly tied to the resigning of data upon ownership transfer discussed earlier.

Although performance intensive, data resigning makes malicious inter-compartment

data flow more challenging.
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Chapter 4

Implementation

This chapter covers the implementation details of HAKC and HAKC compartmen-

tilzation scheme for the nf_tables LKM.

4.1 Developer Instrumentation

The current implementation requires developers to add source code instrumentation

to both specify compartmentalziation policies and apply various ownership transfers

that the LLVM compiler pass is unable to infer.

4.1.1 Policy Definition Instrumentation

As discussed earlier, developers have fine-grained control over the scope of cliques,

compartments, clique access policies, and compartment access policies. Currently, the

HAKC LLVM pass requires developers to specify these logical parameters in source

code. HAKC provides an API for developers to easily instrument regions of code with

defined policies.

Figure 4−1 presents an example developer use of the API to used compartmentalize

a file in the nf_tables module. The HAKC API provides macros that can be used

to specify clique color, compartment I.D., and whether the current clique can access

other compartments. These macros generate data structures that are then used during

38



1 // code snippet from net/netfilter/nf_tables_api.c
2 #include <linux/hakc.h>
3 #if IS_ENABLED(CONFIG_PAC_MTE_COMPART_NF_TABLES)
4 #include <linux/hakc−transfer.h>
5 HAKC_MODULE_CLAQUE(3, BLUE_CLIQUE, HAKC_MASK_COLOR(SILVER_CLIQUE));
6 HAKC_EXIT(HAKC_ENTRY_TOKEN(0, HAKC_MASK_COLOR(SILVER_CLIQUE)),
7 HAKC_ENTRY_TOKEN(1, HAKC_MASK_COLOR(SILVER_CLIQUE)));
8 #endif

Figure 4-1: Developer policy definition instrumentation

1 // code snippet from net/netfliter/nf_tables.c
2 // transfer function example
3 #if IS_ENABLED(CONFIG_PAC_MTE_COMPART_NF_TABLES)
4 DEFINE_HAKC_OUTSIDE_TRANSFER_FUNC(nf_tables_gettable, int,
5 struct net *net, struct sock *nlsk,
6 struct sk_buff *skb, const struct nlmsghdr *nlh,
7 const struct nlattr * const nla[],
8 struct netlink_ext_ack *extack)
9 {

10 net = hakc_transfer_to_clique(net, sizeof(*net), __claque_id,
__color, false);

11 skb = hakc_transfer_skb(skb, __claque_id, __color);
12 nlh = hakc_transfer_to_clique((void*)nlh, nlh−>nlmsg_len,

__claque_id, __color, false);
13 return nf_tables_gettable(net, nlsk, skb, nlh, nla, extack);
14 }
15 #endif

Figure 4-2: Developer manual transfer function

signing and authentication. In this case, the current clique can access blue and

silver cliques within the same compartment, and can access the silver entry cliques of

compartments 0 and 1.

4.1.2 Ownership Transfer Instrumentation

Along with policy specification, developers are required to provide transfer instrumen-

tation when compartment boundaries cannot be inferred. Figure 4− 2 is an example

piece of code that manually transfers nf_tables_gettable, a function that is called

by the kernel, outside the module. Since uninstrumented kernel code is consider

part of the trusted computing base, developers must manually transfer all data that

is passed as parameters into the function. Developers are currently also required to
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manually transfer kernel struct allocation. Some of these requirements will be relaxed

in future automated versions of HAKC (see Chapter 6).

4.2 LLVM Instrumentation

HAKC signing logic and authentication checks are added to source during compilation

with the Clang/LLVM/C++ compiler pass. HAKC uses the Clang LLVM API to

analyze and inject necessary instrumentation into source code. Source files with

developer instrumentation are analyzed. Code and data sections that require coloring

are indicated with special ELF file sections. Upon module load, these sections are

colored accordingly. Traditional page-level protections are also applied to relevant

code and data sections as per usual. Note, changing the color of a certain address

does not require write permissions to that address. The LLVM pass is capable of

even greater autonomy, relieving developers of most instrumentation. These future

possible changes are discussed in greater detail in Chapter 6.

4.2.1 Inter-Procedural Optimizations

The Linux kernel makes extensive use of functions that are restricted to being used

within one compilation unit, such as functions declared with the static keyword.

We can leverage this fact to minimize pointer authentication checks. For example,

if all caller functions to function 𝐹 authenticate a parameter for function 𝐹 , then

that parameter can be passed as an authenticated value, and authentication for that

parameter does not need to occur in 𝐹 . LLVM allows inter-procedural analysis to be

performed, where every function maintains a set of pointers, 𝑃𝑠𝑡𝑎𝑟𝑡,𝐹 , that are known

to be authenticated at 𝐹 ’s entry, as well as the set of pointers 𝐹 authenticates, 𝑃𝑎𝑢𝑡ℎ,𝐹 .

𝑃𝑠𝑡𝑎𝑟𝑡 is initially the empty set for all functions, and let 𝑃𝐹 = 𝑃𝑠𝑡𝑎𝑟𝑡,𝐹 ∪ 𝑃𝑎𝑢𝑡ℎ,𝐹 . At

every call site to 𝐹 , each pointer argument, 𝑝, is in the caller function’s 𝑃 , and if the

pointer argument is in all 𝑃 , then 𝑃𝑠𝑡𝑎𝑟𝑡,𝐹 = 𝑃𝑠𝑡𝑎𝑟𝑡,𝐹 ∪ 𝑝. This analysis repeats until a

steady state is achieved, and no 𝑃𝑠𝑡𝑎𝑟𝑡 changes. For the LKMs we compartmentalized,

this analysis reduced the number of data check insertions by 2%. The number of
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global variables that needed to be signed, because their addresses are passed to other

compartmentalization functions, is reduced by 8%. These reductions translate to

an average of 12% fewer data authentication checks and 19% fewer transfers during

experimentation.

4.2.2 Intra-Procedural Optimizations

Another opportunity for optimization comes from the observation that pointer au-

thentication checks do not need to occur until immediately before a pointer is deref-

erenced. For example, if a pointer 𝑝 is only dereferenced inside a single branch of

an if-statement, then 𝑝 will only needs to be authenticated inside that if-statement.

Authentication checks for a given pointer 𝑝 can be placed at the closest parent block

of all blocks that dereference 𝑝. In certain edge cases, limiting pointers to one au-

thentication per function incurs overhead because two pointer dereferences may share

a parent block, but neither of the dereferences are made. This can occur if a pointer

is only dereferenced during error handling with a goto statement.

4.3 Linux Packet Filtering

Both nf_tables and ipv6 LKMs were used to test and evaluate HAKC. The following

sections will provide an in depth description of nf_tables and how it relates to the

greater networking stack, and highlight the efforts in compartmentalizing the module.

4.3.1 Linux Packet Filtering

Linux provides various modules and functionality to support packet filtering (i.e.,

ipchains, iptables, eBPF). For the purposes of HAKC testing, we have chosen

to compartmentalize nf_tables, a packet filtering module that is intended to be a

replacement for it’s predecessor iptables. The following sections will first provide an

overview of portions of the Linux networking stack relevant to packet filtering, then

discusses nf_tables related architecture and HAKC compartmentalization efforts.
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Figure 4-3: Diagram of the Linux networking stack architecture. User space ap-
plications communicate over Berkeley socket interface. Diagram taken from Affix
documentation [51]

4.3.2 Brief Overview of the Linux Networking Stack

At a high level, the Linux networking stack is responsible for managing packet traffic

flow through a machine. This includes packets received by applications, sent by

applications, as well as packets that are traveling to other machines on the network

(forwarding). Figure 4−3 presents a diagram of the Linux networking stack. The bulk

of packet processing occurs in the Protocol layer in Figure 4−3) where protocols such

as IPv4/IPv6 and TCP execute logic on incoming/outgoing packets. Applications

communicate to the kernel through protocol specific sockets (INET protocol in the

case of Figure 4 − 3). Linux makes extensive use of struct sk_buff, which is a

representation of a packet. Incoming packets are processed by physical devices (such

as a network card). Device drivers initialize struct sk_buff from packets. Pointers

to struct sk_buff and then passed between networking layers.

4.3.3 Netfilter

netfilter is a layer of infrastructure that is embedded in the network stack and

provides hooks kernel modules can use to attach functions in various places along

packet routing paths. Figure 4−4 presents a diagram of the packet routing throughout
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Figure 4-4: Diagram of netfilter hook locations with respect to routing. The green
dotted arrows represent packet traffic. Hooks are labeled in red. Diagram taken from
here [52]

.

the network stack. Each hook (labeled in red) allows kernel modules to access packets

along different stages and paths of routing. netfilter handles packets based on hook

function return values defined as follows [53]:

1. NF_ACCEPT : continue traversal as normal

2. NF_DROP : drop the packet

3. NF_STOLEN : Module taken over packet, don’t continue traversal

4. NF_QUEUE : queue packet

5. NF_REPEAT : call hook again

netfilter hook functions are passed packets on function invocation, and are free

to modify packet contents. This makes netfilter suitable for supporting function-

ality that leaves packets intact, like packet filtering, as well as functionality that

modifies packets, like network address translation.

4.3.4 nf_tables

nf_tables is a packet filtering module that utilizes netfilter to provide packet

filtering capabilities for user space processes. nf_tables provides an extensive API
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developers can use to filter and track packets at most netfilter hooks. The following

list is a subset of the API that is relevant to evaluation discussed later:

1. Tables: nf_tables implement functionality that includes connection tracking,

network address translation, and packet filtering. These tables consist of chains

and rules that define functionality.

2. Chains: sets of rules that are evaluated on packets.

3. Rules: formally defined pieces of logic that determine output an action for a

given packets attributes. Rules take as input packet attributes (i.e., interface

type, destination and source address, IP address values) and output a decision

(i.e., NF_ACCEPT or NF_DROP in the case of packet filtering).

nf_tables also provides users with the additional abilities such as counting or

logging packets, however this functionality was not tested during HAKC evaluation.

Through the netlink module, user space applications can communicate with the

nf_tables API over sockets. The user is able to specify which hook in the routing

path to attach a packet filter to, as well as the netfilter hook priority. nf_tables

both implements packet filters and modifies packet filters in real-time.

nf_tables is a desirable candidate for HAKC implementation testing for several

reasons. Firstly, nf_tables receives and processes potentially malicious user data

when constructing data structures. This information includes table name strings and

rule specifications. Secondly, nf_tables has direct access to critical packet informa-

tion, where modification could affect both the local machine and other machines on

the network.
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Chapter 5

Evaluation

When evaluating HAKC, we wanted to answer the following research questions:

1. What is the overhead imposed by HAKC?

2. What is the overhead of using multiple compartments in a single system?

3. Will users notice any difference in performance under real-world work loads?

To answer these questions, we used HAKC to compartmentalize the ipv6 and

nf_tables LKMs. The following sections describe our experimental setup, bench-

marks, and simulated user browsing data. We performed all evaluations on a Rasp-

berry Pi 4 8GB, and our kernel version was based off the Debian 5.10.24 source.

5.1 Instruction Analogs

As of June 2021, no hardware implementing MTE is available, and the most readily

available hardware implementing PAC are Apple devices containing the A12 proces-

sor, and are unfortunately heavily locked down. Therefore, in line with the evaluation

methodology of Liljestrand, et al. [54], we ensure correct functionality using emula-

tion, and measure overhead using instruction analogs. An instruction analog has the

same number of CPU cycles and memory footprint as the PAC/MTE instruction it is

intended to mimic, but does not perform security check. We use instruction analogs
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1 ldg xT, xN
2 ldr x16, [xN]
3 mov x17, #0xF0
4 lsl x17, x17, #49
5 and xT, x17, x17

1 stg xT, xN, imm
2 ldr x16, =TAG_MEM
3 mov x17, xT
4 lsr x17, x17, #49
5 str xT, [x16]

Figure 5-1: Implementation of MTE instruction analogs

to accurately estimate performance overhead in lieu of the actual instructions. The

PAC analogs are adapted from the PARTS system detailed in [54], and the following

describes the implementation of MTE analogs.

Version 5.10 of the Linux kernel uses the load and store instructions for single

or multiple tags, namely ldg, stg, ldgm, and stgm respectively. For the single tag

instructions, the kernel only uses the post-index encoding. Figure 5− 1 presents the

MTE instruction analog implementations. To simulate the ldg instruction, which

writes the tag to bits 49–53 of an input register, we perform a load of the target

address, and finally place a valid tag value in the appropriate register bits. To store

a tag, we retrieve the tag from bits 49–53 of the pointer address, and write to a

global variable. Multiple tag operations simply repeat these single tag operations.

We took care to ensure that memory accesses occur at every MTE instruction to

simulate a worse case memory tag access, but an actual implementation of MTE

could include tag caching or other performance enhancements. Thus, we claim that

our performance overhead is an estimation of worst case performance.

5.2 Single Compartment Performance Overhead

The following results were obtained by compartmentalizing ipv6 and nf_tables

LKMs into single compartments. A host machine running ApacheBench [55] was

used to benchmark a standard unmodified Apache web server running on a Rasp-

berry Pi. Each test was performed 10 times on files of size 1KB, 1MB, and 10MB.

Each set of figures presents the number of requests made per second and the amount

of KB of data transferred per second. We measured all performance overhead relative

to the unmodified kernel. Both kernels share the same user-space.
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Figure 5-2: ipv6 overhead normalized to unmodified kernel when transferring various
sized payloads.

5.2.1 ipv6

ipv6 was compartmentalized into one compartment consisting of two cliques that

shared mutual access to each other’s code and data.

The overhead measurements for ipv6 are listed in Figure 5 − 2, normalized to

the performance of the unmodified kernel. Overall, the performance of our ipv6

compartmentalized LKM is good compared to the baseline, with only a 20% reduction

in both requests per second and transfer rate in the worst case.

When the transfer size is small, the establishment of the TCP connection imposes

significant overhead relative to the actual transferring process. Once the TCP connec-

tion has been established, however, relatively few data checks need to be performed

to transfer the payload. This explains the low 2%–4% overhead for the 10MB pay-

load measurement; larger payloads spend less time establishing the TCP connection

relative to the total transfer time. Figure 5 − 3a shows this behavior in the HAKC

operations per KB Apache sends. HAKC operations include the number of compart-

ment transitions, the number of data pointer authentications, and the number of code

pointer authentications. While the number of operations per second either increase or

remain constant, the number of operations per KB of transmitted data monotonically

decreases with payload size.
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Figure 5-3: Average HAKC operations per second and per KB transmitted while
running ApacheBench.

5.2.2 nf_tables

nf_tables was compartmentalized as a single clique, using a different compartment

I.D. and clique color from those used for ipv6 compartmentalization. As with ipv6,

ApacheBench was also used to benchmark nf_tables, and all benchmark results are

normalized against the unmodified kernel. Each benchmark measures performance

for a single variable set to various parameters. Note that request and transfer results

appear equivalent as a result of truncation of normalized overhead values.
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Figure 5-4: Increasing rules with hook: INPUT, rule: DROP source address
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Figure 5-5: Increasing rules with hook: INPUT, rule: ACCEPT destination address

Figure 5− 4 details the change in request per second and data transfer per second

measurements as rules increase on the input hook. All rules were placed on a single

chain. Notice the percentage difference in standard deviation of 5, 10, and 20 rule

experimental results between 100KB and 10MB file transfer is around −44%. This

suggests the increase in file size transfer incurs extraneous overhead that increasingly

dominates the overhead incurred by packet filtering.

The experiment used to generate the measurements in Figure 5 − 5 only differs

from the experiment associated with Figure 5 − 4 in the type of rule used to match

packets. Rather than accepting packets for a matching IPv6 destination address,

this experiment drops packets for a matching IPv6 source address. The results in

Figure 5 − 5 are well within one standard deviation of the results in Figure 5 − 4.

Therefore, we can conclude that there is no significant difference between performance

of differing packet filtering rules.

Figure 5−6 demonstrates change in performance as the number of chains increase.

Each experiment was run with one rule per chain. Notice the percentage difference

in standard deviation of 5, 10, and 20 rule experimental results between 100KB and

10MB file transfers is around −40%. As with previously discussed experiments, this

suggests the increase in file size transfer incurs extraneous overhead that increasingly

dominates the overhead incurred by packet filtering.

Figure 5−7 details experimental results of change in performance as rules increase
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Figure 5-6: Increasing chains with hook: INPUT, rule: DROP source address
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Figure 5-7: Increasing rules with hook: OUTPUT, rule: ACCEPT destination ad-
dress

on the output hook. All rules were placed on a single chain. Unlike the input hook,

which processes all incoming packets that are directed to a particular machine (ex-

cluding packets that are forwarded to other machines), the output hook processes

all packets that leave a machine (again, excluding forwarded packets). The average

percentage difference between 10MB and 100KB file transfers for 5, 10, and 20 rule

experimental results is around −51%. This indicates that performance increases as

file size increases. From the data presented, we can only infer the explanations of

this trend. One possible explanation could be that overhead incurred by larger file

sizes dominates packet filtering on the output chain. Another possibility is that op-
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Figure 5-8: Overhead imposed when using multiple Compartments in a single system,
normalized to the unmodified kernel (U) and single Compartments systems (S).

timizations are made for packets consisting of the same IPv6 data for a given set of

rules.

Overall, there is around a 40% decrease in performance for the doubling of rules

and chains. This is expected because rules and chains are applied in a linear fashion.

This effect of compounding overhead may be partially related to the compartmental-

ization policy tested. We leave the exploration of change in performance incurred by

different compartmentalization policies for future work.

5.3 Multiple Compartment System Overhead

Performance was also tested when both ipv6 and nf_tables LKMs are compartmen-

talized. Each LKMs compartmentalization policies forbid direct mutual transitions.

To measure the overhead of using both LKMs on the same system, we defined a

packet filter rule that drops packets with a source address from a specific IPv6 ad-

dress. We then ran our microbenchmark detailed in Section 5.2 using the unmodified

kernel, the compartmentalized kernel with only the ipv6 LKM compartmentalized,

and the compartmentalized kernel with both HAKC LKMs enabled. The results, nor-

malized to the unmodified kernel (U) and ipv6-only (S) kernel overheads, are listed

in Figure 5− 8.
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Website Delta (s) Stdev (s)
linkedin.com -0.47 0.065

hdfcbank.com -0.12 0.085
google.cn -0.068 0.086
bing.com -0.087 0.13

investing.com 38 62
okezone.com -11 20

cnn.com -9.8 15
yahoo.com -4.9 15

Table 5.1: The measured time differences between the compartmentalized kernel of
the lowest and highest standard deviations of unmodified kernel load times. Negative
delta numbers indicate slower compartmentalized load time.

The general trend regarding payload size and overhead shown in Figure 5 − 2 is

again present for the overhead against the unmodified kernel. However, the perfor-

mance relative to the single compartment system degrades with payload size. The

performance degradation comes from the additional compartment transitions the ker-

nel makes to perform both packet filtering and TCP functionality with every TCP

ACK packet received. This behavior is shown in Figure 5−3b, with the higher number

of data pointer authentications per kilobyte than with just IPv6 compartmentalized.

Regardless, Figure 5−8 shows a linear growth of 14%–19% per compartment when the

compartments are related, but provide orthogonal functionality. Compartmentalizing

both the IPv6 and packet filtering represents a worst case for performance loss, since

all HAKC operations for both LKMs will occur in tandem, and will thus be directly

compounded. A better compartmentalization policy will likely amortize individual

overheads to a lower total overhead, but we leave that evaluation for future work.

5.4 User Website Browsing

Using ApacheBench to measure raw performance does not necessarily provide a good

indication of whether a user will notice any performance difference when using the

compartmentalized kernel for everyday activities. For example, activities unrelated to

the kernel networking stack, such as routing delays, website rendering, or advertise-

ment negotiation, can add significant time to end-user web page loading. To answer
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Research Question 3, we want to measure any significant difference in IPv6 website

loading time between using the unmodified kernel and our compartmentalized ipv6

LKM given these external factors.

To that end, we created a Selenium script that spawns a headless Firefox instance,

and proceeds to play a specific YouTube video, and then visits the 50 most popular

websites (as determined by the Alexa Top 1M) that advertise an IPv6 address in

their DNS Authoritative Record (an AAAA entry). We disable all memory and disk

cache use and enable IPv6 use in Firefox. Additionally, before retrieving each website,

we delete all cookies, and perform a DNS query to ensure that ISP DNS entries are

fresh. Afterwords, we measure the time the Selenium web driver takes to fully render

the page, or the time the YouTube video takes to complete. To account for possible

differences in advertisements, we retrieve each website using the unmodified kernel

and compartmentalized kernel in turn before retrieving the next website. We repeated

this experiment 5 times, with each retrieval separated by approximately 1 hour.

Overall, we measured the average load time of the compartmentalized kernel to

be 1.19 ± 4.34 seconds slower than the unmodified kernel. Because the standard

deviation of load time differences is much larger than the average, we conclude that

the compartmentalized kernel is not significantly different from the unmodified kernel,

and that a user will not notice a difference using a compartmentalized kernel.

Despite our efforts to mitigate any possible difference between website retrievals,

we did measure large differences in load times of some websites, on both large and

short time retrieval spans. For example, investing.com would sometimes load in

4 seconds, and then after rebooting into a new kernel, the website would take 151

seconds. For this reason, we did not include investing.com in the average cited

above. We were unable to determine any correlation between time of day or kernel

type; the same website would be slow for the unmodified kernel at one time, and

similarly slow for the compartmentalized kernel at another time, while the different

kernels would statistically tie at every other time.

Table 5.1 lists the websites with the smallest and largest unmodified kernel load

time standard deviations, along with the measured time differences when using HAKC.
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79 int ip6_find_1stfragopt(struct sk_buff *skb , u8 ** nexthdr)
80 {
81 u16 offset = sizeof(struct ipv6hdr);
82 struct ipv6_opt_hdr *exthdr =
83 (struct ipv6_opt_hdr *)(ipv6_hdr(skb) + 1);
84 unsigned int packet_len = skb_tail_pointer(skb) -
85 skb_network_header(skb);
86 /* ... */
87 while (offset + 1 <= packet_len) {
88 struct ipv6_opt_hdr *exthdr;
89 switch (** nexthdr) {
90 /* ... */
91 }
92 offset += ipv6_optlen(exthdr);
93 *nexthdr = &exthdr ->nexthdr;
94 exthdr = (struct ipv6_opt_hdr *)
95 (skb_network_header(skb) + offset);
96 }
97

98 return offset;
99 }

Listing 5.1: CVE-2017-9074

In total, 20% (10/49) of the websites were measured to be faster using the compart-

mentalized kernel, and in all but one case, the load time delta was within 2 standard

deviations (95% confidence). This provides further evidence that HAKC compart-

mentalization would go unnoticed by users in everyday usage.

5.5 Security Evaluation – CVE Case Studies

To provide a security evaluation on real-world bugs, we will examine two chosen

vulnerabilities which will illustrate HAKC protection against bugs within and outside

of compartmentalized code: CVE-2017-9074 [56] and CVE-2019-14815 [57]. CVE-

2017-9074 is an internal IPv6 internal bug, while CVE-2019-14815 is an external bug

in the Marvell Wifi driver. Of the 567 CVEs in our analysis set (see Chapter 1), only

12 involved IPv6, demonstrating the importance of having compartments be hardened

against external bugs, as most kernel bugs will be outside of a compartment.

CVE-2017-9074 (Listing 5.1) allows for reading memory outside the bounds of the

intended object. The bug involves a missing check on offset against packet_len

that ensures that the code is reading within the bounds of the socket buffer, skb.

Through a series of system calls, a malicious user can craft an IPv6 packet that
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256 void mwifiex_set_uap_rates(
257 struct mwifiex_uap_bss_param *bss_cfg ,
258 struct cfg80211_ap_settings *params) {
259 struct ieee_types_header *rate_ie;
260 /* ... */
261

262 rate_ie = (void *) cfg80211_find_ie(WLAN_EID_SUPP_RATES , var_pos , len);
263 if (rate_ie) {
264 memcpy(bss_cfg ->rates , rate_ie + 1,
265 rate_ie ->len);
266 rate_len = rate_ie ->len;
267 }
268

269 rate_ie = (void *) cfg80211_find_ie(
270 WLAN_EID_EXT_SUPP_RATES ,
271 params ->beacon.tail ,
272 params ->beacon.tail_len);
273 if (rate_ie)
274 memcpy(bss_cfg ->rates + rate_len , rate_ie + 1,
275 rate_ie ->len);
276

277 return;
278 }

Listing 5.2: CVE-2019-14815

contains an invalid option, which causes offset to be much larger than the size of

the allocated buffer for skb. offset is used to compute *nexthdr, which is read in

the switch statement. This read is the out-of-bounds memory read.

HAKC prevents arbitrary out-of-bounds memory accesses like this, and instead

limits the code’s ability to only access the data explicitly allowable by the clique

ip6_find_1stfragopt belongs to. The large, corrupted offset value can place

exthdr in one of several places: 1) a different compartment and a different col-

ored clique; 2) a different compartment but the same colored clique; 3) the same

compartment and a different colored clique; and 4) the same compartment and the

same clique. In the first two situations, PAC authentication will fail because the

computed PAC context will not match the PAC context used to sign exthdr. The

third situation allows access only if the clique is accessible according to the defined

access-control policy, and the fourth situation will be allowed by HAKC.

To successfully perform this out-of-bounds read on HAKC-protected code, the

attacker would have to construct offset such that the resultant pointer points to

an accessible clique, and contains the correct signature. The first condition already

limits arbitrary accesses, and the second condition is computationally hard. This is
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how HAKC compartmentalizes code and data. The attacker is able to only access data

allowed by the access-control policy, even in the presence of bugs, and the attacker

must perform a computationally hard task to do so.

CVE-2019-14815 (Listing 5.2) is a bug in the Marvell Wifi driver that uses data

from user-space in memcpy without checking the data length, leading to a heap over-

flow. Assume that the attacker uses this CVE from uncompartmentalized code to

overwrite a pointer in compartmentalized code. The new pointer must again conform

to all data access policies, and must contain a valid signature for the new pointer.

Only if the new pointer is validly accessible and correctly signed, then the attack will

succeed. However, as mentioned earlier, satisfying all the conditions is computation-

ally hard.

Unfortunately, non-pointer compartmentalized data can be corrupted. However,

this will likely only cause a denial of service, which, though severe, is considered less

serious than privilege escalation. One mitigation would be to utilize the “traditional”

MTE, and store the color in the pointer along with the PAC signature. The MTE

hardware can check the color of accessed addresses, and check that value with stored

value, and throw a fault if they mismatch. The use of MTE and PAC in this way

reduces the available signature bits by half, making brute force guessing of a signature

easier.
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Chapter 6

Discussion

The following sections outline future plans for HAKC regarding improving ease-of-use,

performance, and breadth of application.

6.1 Performance Improvement

Although intra-procedural and inter-procedural LLVM analysis significantly reduce

unnecessary signing and authentication overhead, there may still exist opportunities

for performance improvement. One strategy that could possibly yield performance

gains is checking for repeated pointer authentication across phi node frontiers.

In LLVM, phi nodes represent static single-assignment (SSA) registers whose val-

ues come from a set of other registers but cannot be determined until runtime. This

is a common situation that is the result of SSA call graphs. For example, consider the

variable that is defined outside of an if block, and then reassigned inside that if block.

In LLVM, this variable would be represented by a phi node, with two parent regis-

ters. The first parent is in one basic block and the second is in another basic block.

Currently, pointer sources are ascertained by traversing backwards through LLVM

code, stopping at phi nodes. However, there is an opportunity for improvement here.

Rather than stopping the source search at a phi node, we can check if the registers of

all phi node input registers are authenticated. This will be a recursive check, stopping

when either we have reached a maximal depth, encountered the source of the pointer,
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or have encountered an authentication. This strategy of recursively checking phi node

input registers can further reduce unnecessary checks.

Leaf functions are functions in a compilation unit that do not make calls to other

functions. Leaf functions can be called from within or outside a translation unit.

Leaf functions may present an opportunity for performance improvement by inserting

copies of a leaf function into the translation unit that calls a leaf function. If the leaf

function is only called within a given compartment/clique, then the leaf functions

arguments may not need to be authenticated. This comes with a trade-off however,

because injecting leaf functions at there call sites will increases the size of the final

kernel image.

6.2 Automation

There are two facets to automation that are worth highlighting. The first component

is decreased developer instrumentation, and the second is automatic compartmen-

talization schemes that allow for security/performance trade-off testing. One way

to improve automation in either of these areas is by providing a graphical tool for

developers to easily select files and functions that belong in defined compartments/-

cliques. This would provide the LLVM pass with knowledge of what functions are not

part of a compartmentalization scheme, allowing for increased transfer instrumenta-

tion automation. Secondly, various compartmentalization tools could then be used

to generate compartmentalization policies that can be tested by the developer.

6.3 Other Areas of Application

Although HAKC has only been tested for LKM compartmentalization, HAKC can be

applied to other parts of the kernel as well as user space applications. For example,

HAKC can be used to compartmentalize unsafe driver code and extended Berkely

Packet Filtering (eBPF). eBPF is user space injected code into the kernel that can

be attached to hooks and make calls to certain modules. Although eBPF is sanitized
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before execution and is not turing complete, the Kernel could benefit from running

eBPF programs in compartmentalized memory spaces, further bolstering there se-

curity. Regarding user space applications, HAKC could be used to secure real-time

systems such as ROS, a middleware typically used for inter-process communication in

autonomous systems (such as satellites and robots). Since HAKC relies on hardware

to enforce compartmentalization, HAKC could assist efforts in compartmentalizing

hypervisors [58].
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Chapter 7

Related Work

Efforts have been made to devise hardware based strategies to enforce compartmen-

talization schemes to avoid software overhead. The following sections compare HAKC

to various hardware enforced compartmentalization efforts that are intended for user

or kernel space.

7.1 Hardware Safe Region Enforcement

Other works have focused on using hardware to support safe regions — regions of

memory only accessible by privileged instructions — but have only extended sim-

ulated hardware and have focused on user-space applications [59, 60]. One such

example is Microstache [59], which allocates a small region of memory that can only

be accessed by privileged instructions. To protect against side-channel attacks, safe

region memory is cached in a separate designated cache to mitigate exposure to side-

channel attacks. Imix [60] is an alternative safe region solution for x86 architectures,

allow pages to be tagged with a security sensitive permission that can only be ac-

cessed by privileged instructions. IMIX is intended to be used as a security primitive,

providing support for more complex security schemes that support control-flow and

code-pointer integrity (CPI).
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7.2 Hardware Pointer Tagging

One way to spatial memory safety is to associate bounds with each pointer that can

be checked at runtime. Traditionally, software based bounds checking schemes incurs

significant overhead. However, several efforts have focused on using hardware to

enforce pointer bounds checking. One such example is One solution, Hardbound [61],

allows software to define pointer bounds during runtime. These bounds are then

enforced by hardware during pointer loads and stores. Another approach, In-Fat

Pointer [62], which is able to achieve intra-object bounds granularity by storing meta-

data in the top 16 unused bits of pointers and storing tables that track sub-object

types. Unfortunately, neither of these solutions were implemented in conventional

hardware, and only In-Fat Pointer comes close to provide comparable granularity to

that of Arm MTE.

7.2.1 Intel MPK

Recent work has focused on extending hardware to support page-granularity protec-

tion keys. One such example is Intel Memory Protection Keys (MPK). MPK is an

x86 extension that allows individual pages to be tagged with a 4-bit domain id. This

allows a processes’s address space to be partitioned into at most 16 domains. Each

logical core also has a special register, PKRU, that dictates per-domain read and

write protections. The PKRU can be written to from user space by different threads

within a process, allowing for more flexibly and faster permission changes compared

to a traditional system call that modifies PTE flags.

MPK’s lack of restrictions on a processes’s ability to set page keys and the PKRU

increases the attack surface of a process if MPK related system calls and instruc-

tions are used irresponsibly. An attacker can easily change values in the PKRU to

grant access to all memory regions if the process is compromised. To combat this

issue, solutions have been proposed that use MPK to enforce isolation in a safe man-

ner [63, 64, 65, 66]. It should be noted that some of these solutions shown to be

vulnerable to various attacks that leverage Linux kernel system calls to subvert MPK
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permissions [67].

Another key based hardware solution, Donky [68], utilizes the top 10 bits of PTEs

on x86 and RISC-V architectures to store keys, allowing for 1024 possible memory

domains. Donky also provides a special user space protection key policy register

on x86 architectures that requires access through a call gate to a trusted handler,

alleviating the need for binary inspection of MPK-based applications to ensure safe

register use.

7.2.2 Intel SGX

Intel Software Guard Extensions (SGX) is an x86 hardware extensions that enables

both users and the operating system to define cryptographically protected enclaves.

All computation within these enclaves is trusted, but everything outside of an enclave,

including the operating system and hypervisor. Research efforts have shown that SGX

is vulnerable to side-channel attacks and is unable to protect malicious code running

inside an enclave from accessing data outside the enclave [69, 70].

7.2.3 Hardware Memory Tagging and Policy Enforcement

There are several works on using hardware tagging to support various compartmental-

ization and pointer bounds checking schemes [71, 72, 73], however most of these works

are implemented on simulated architectures. One effort in particular, Mondrix [74],

provides inter-modular Linux kernel compartmentalization using a 2-bit word granu-

larity tagging extension [75]. Unlike HAKC, Mondrix is implemented in simulation,

and requires a memory supervisor that monitors all kernel permission changes. Fur-

thermore, Mondrix only implements inter-module isolation, whereas HAKC supports

both inter-module and intra-module isolation.

Dover [76], an SoC that allows developers to tag each word in memory with meta-

data, and use that metadata to enforce various defined policies upon execution of

each instruction. Dover designates a separate execution core for enforcing policies in

parallel during program execution. Another such architecture is CHERI [77], which
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is intended to provide hardware capability enforcement by minimally extending cur-

rent existing architectures such as RISC-V and ArmV8-A. This architecture works

by storing double word length capabilities that contain four capability elements that

each help enforce a protection model for the associated memory address. The archi-

tecture also requires the maintaining of 1 bit validity tags for each capability. Arm re-

cently released Morello, an ArmV8-A architecture profile that implements a variant of

CHERI [77]. CheriBSD is a recompiled and slightly modified version of FreeBSD that

has been used to test the performance impacts of the CHERI extension. Benchmarks

have shown little performance impact on operating system code, but somewhat sig-

nificant performance impact on applications like language runtimes [77].Cheri’s fixed

capability model provides less flexibility than PAC, where arbitrary information can

be used as the context to sign pointers. Further, Cheri’s focus on capabilities misses

data-only attacks.

7.3 Arm PAC/MTE Efforts

Recent works have utilized Arm PAC to enforce control-flow integrity (CFI), spatial

memory safety, and code pointer integrity (CPI). PACStack [78] is a CFI scheme that

secures return addresses stored on the stack through a chain of hashing, where a hash

for each return pointer is unique based on the current execution path of a program.

PTAuth [79] enforces temporal memory safety by storing a unique id at the base of

data object, using the unique id as the PAC context during signing and authentication.

PARTS [54] is an LLVM instrumentation framework that utilizes PAC to support

a CPI scheme that is resistant to pointer-reuse attacks, and thwarts control-flow

and data-oriented attacks. Compared to these schemes, HAKC can provide wider

protection against many classes of attacks, and in some cases, like with PACStack,

can be used in conjunction. HAKC is the first design to the best of our knowledge

that utilize MTE-based isolation. However, designs have been proposed that would

leverage MTE-like architectural features to improve the Clang AddressSanitizer [80].
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Chapter 8

Conclusion

With the prevalence of monolithic kernel architectures and their relevance to the

growth of IoT, the issue of enforcing least privilege remains a very serious and rel-

evant concern whose potential solutions demand further research. Leveraging Arm

PAC and MTE, HAKC enforces least privileges by supporting a performant solution

to compartmentalization that, unlike past compartmentalization efforts, can be im-

plemented using commodity hardware and LLVM instrumentation. Using a two-tier

compartmentalization scheme that prioritizes inter-clique performance, developers are

afforded substantial flexibility in the number of compartments at their disposal and

are able to easily modify compartmentalization policies to test security-performance

trade-offs. Though HAKC is tested for LKM use, a lack of dependence on a TCB

makes HAKC an avenue of interest for compartmentalization outside the kernel. Web

servers, which hold sensitive user information largely exist as monoliths, and hyper-

visors, which struggle with security vulnerabilities incurred by monolithic design, are

two examples of systems that should be prioritized highly as future research for HAKC

compartmentalization.
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