

TECHNICAL REPORT 3320 SEPTEMBER 2023

# Santa Margarita Estuary 2022 Sediment Monitoring Report (Project PEMEC2743)-FINAL (MAY 2023)

Molly Colvin Kara Sorensen, Ph.D Nicholas Hayman Cassandra Sosa Ignacio Rivera-Duarte NIWC Pacific

DISTRIBUTION STATEMENT A: Approved for public release. Distribution is unlimited.



# Santa Margarita Estuary 2022 Sediment Monitoring Report (Project PEMEC2743)-FINAL (MAY 2023)

Molly Colvin Kara Sorensen, Ph.D Nicholas Hayman Cassandra Sosa Ignacio Rivera-Duarte NIWC Pacific

DISTRIBUTION STATEMENT A: Approved for public release. Distribution is unlimited.

#### **Administrative Notes:**

This report was approved through the Release of Scientific and Technical Information (RSTI) process in July 2023 and formally published in the Defense Technical Information Center (DTIC) in September 2023.





NIWC Pacific San Diego, CA 92152-5001

# NIWC Pacific San Diego, California 92152-5001

P.M. McKenna, CAPT, USN Commanding Officer

M.J. McMillan Executive Director

#### **ADMINISTRATIVE INFORMATION**

This document was authored in January 2023 by NIWC Pacific Code 71750 and 71760 Staff for the Water Quality Section Head, Environmental Security, Marine Corps Base Camp Pendleton. This work is being conducted under project order M330002121666 (Encore No. PEMEC2743). For any project related inquiries contact Project manager Dr. Kara Sorensen.

Released by John deGrassie, Division Head Advanced Systems and Applied Sciences Under authority of Carly A. Jackson, Department Head Science and Technology

# **Data Quality Assurance:**

- NIWC Pacific Bioassay Laboratory is a certified laboratory under the State of California Department of Health Services, Environmental Laboratory Accreditation Program (ELAP), Certificate No. 2601; State of Washington Department of Ecology, Lab ID. No. F893.
- All data have been reviewed and verified.
- Any test data discrepancies or protocol deviations have been noted in the summary report pages.

This is a work of the United States Government and therefore is not copyrighted. This work may be copied and disseminated without restriction.

Editor: MRM

#### **EXECUTIVE SUMMARY**

This report describes results of sediment monitoring conducted in the Santa Margarita River Estuary (SMRE) located on Marine Corps Base Camp Pendleton (MCBCP) in 2022, performed on behalf of the MCBCP Environmental Security (ES) Staff, as part of their Municipal Watershed Monitoring Program. MCBCP voluntarily complies with certain additional monitoring requirements of the San Diego Regional Water Quality Control Board (SDRWQCB) National Pollutant Discharge Elimination System (NPDES) Municipal Separate Storm Sewer System (MS4) permit, Number CAS0109266 / Order Number R9-2013-0001, as amended by Order Number R9-2015-0001 and Order Number R9-2015-0100 (collectively referred to as the Phase I MS4 permit). The work described here is intended to assist evaluation of the California Sediment Quality Objectives (CASQO) for the SMRE. This effort also leverages data collected under the SMRE monitoring program as mandated under the SDRWQCB Investigative Order (IO) No. R9-2019-0007 (referred to here as the Order). The monitoring work was conducted by the Energy and Environmental Science Branch at the Naval Information Warfare Center (NIWC) Pacific.

Sediment monitoring was conducted at three (3) locations on 12 July 2022, during the summer index period and following the analytical techniques and quality controls/assurances as required under the Sediment Quality Assessment Technical Support Manual and as specified under the SMRE IO Workplan and Quality Assurance Project Plan (QAPP; SCCWRP, 2014; Weston, 2019a,b). Samples were analyzed for standard sediment quality characteristics and benthic community composition, and were tested for toxicity with marine amphipods (Eohaustorius estuarius) and Mediterranean mussel (Mytilus galloprovincialis) embryos using standardized protocols (SCCWRP, 2014; Weston, 2019a,b).

The sediment evaluation showed that all three stations were categorized as "Likely Unimpacted" using standard CASQO guidance. In addition, as part of the SMRE IO Monitoring Program, benthic community data were also analyzed using the multivariate-AZTI's Marine Biotic Index (M-AMBI) approach, which categorized all three stations as "Unimpacted".

Historical sediment monitoring of stations in the SMRE has been conducted since 2009. With the exception of station SMRE-1 in 2015, from 2009 through 2019 all stations were categorized as either "Likely Unimpacted" or "Unimpacted" using standard SQO guidance. Station SMRE-1 was found to be "Possibly Impacted" in 2015 primarily due to both the chemical and benthic indicator lines of evidence exhibiting "moderate" levels of disturbance.



# TABLE OF CONTENTS

| Li | st of T | ables                                                                          | viii |
|----|---------|--------------------------------------------------------------------------------|------|
| Li | st of F | igures                                                                         | ix   |
| 1. | Intr    | oduction                                                                       | 1    |
|    | 1.1.    | Study Area                                                                     | 1    |
|    | 1.2.    | Site Background                                                                | 4    |
|    | 1.3.    | Monitoring History                                                             | 5    |
| 2. | Me      | :hods                                                                          | 5    |
|    | 2.1.    | Sediment Collection and Processing                                             | 5    |
|    | 2.2.    | Analytical Methods                                                             | 9    |
|    | 2.2.    | 1. Benthic Community Analysis                                                  | 9    |
|    | 2.2.    | 2. Sediment Chemistry                                                          | 10   |
|    | 2.2.    | 3. Sediment Toxicity                                                           | 12   |
| 3. | 202     | 2 Monitoring Results and Assessment                                            | 17   |
|    | 3.1     | Benthic Community Analysis                                                     | 17   |
|    | 3.2     | Bulk Sediment Chemistry                                                        | 18   |
|    | 3.2.    | 1 Physical chemistry                                                           | 18   |
|    | 3.2.    | 2 Metals                                                                       | 19   |
|    | 3.2.    | 3 PAHs, Pesticides and PCBs                                                    | 20   |
|    | 3.2.    | 4 Chemistry Line of Evidence                                                   | 24   |
|    | 3.2.    | 5 Quality Control Results                                                      | 24   |
|    | 3.3     | Toxicity Tests                                                                 | 25   |
|    | 3.3.    | 1 10-day Amphipod Survival Test                                                | 25   |
|    | 3.3.    | 2 2-day Sediment-Water Interface Test with Bivalve Embryos                     | 25   |
|    | 3.3.    | 3 Integration of Toxicity Test Results                                         | 26   |
|    | 3.3.    | 4 Toxicity QA/QC                                                               | 27   |
|    | 3.3.    | 5 Reference Toxicant Testing                                                   | 27   |
|    | 3.4     | Sediment CASQO Assessment and Receiving Sediment Monitoring Evaluation         | 27   |
| 4. | Cor     | nparison of 2022 Results to Historical Monitoring Results                      | 29   |
|    | 4.1     | Comparison of 2022 Benthic Community Analysis to Historical Monitoring Results | 29   |
|    | 4.2     | Comparison of 2022 Sediment Chemistry to Historical Monitoring Results         | 30   |

| 4.2.1 PAHs, Pesticides and PCBs                                                                                                                                                                                      | 30          |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| 4.2.2 Metals                                                                                                                                                                                                         | 31          |
| 4.3 Comparison of 2022 Sediment Toxicity to Historical Monitoring Results                                                                                                                                            | 33          |
| 4.4 Comparison of 2022 CASQO Assessment to Historic Monitoring Results                                                                                                                                               | 34          |
| 5. Conclusions                                                                                                                                                                                                       | 36          |
| 6. References                                                                                                                                                                                                        | 37          |
| Appendices                                                                                                                                                                                                           |             |
| Appendix A: Sediment Benthic Community Report                                                                                                                                                                        |             |
| Appendix B: Sediment Chemistry Analytical Report                                                                                                                                                                     |             |
|                                                                                                                                                                                                                      |             |
| LIST OF TABLES                                                                                                                                                                                                       |             |
| Table 1 Sample station locations.                                                                                                                                                                                    | 6           |
| Table 2 Sediment chemistry analyses and respective analytical methods.                                                                                                                                               | 10          |
| Table 3 Bulk sediment chemical analytes measured following CASQO requirements                                                                                                                                        | 11          |
| Table 4 Specifications for 10-day whole sediment acute exposure test using the marine Eohaustorius estuarius                                                                                                         |             |
| Table 5 Specifications for 2-day sublethal exposure test using the Mediterranean muss galloprovincialis embryo-larvae at the sediment-water interface                                                                | •           |
| Table 6 Sampling station conditions.                                                                                                                                                                                 | 17          |
| Table 7 Summary of benthic community abundance, richness, diversity, evenness, and dominant                                                                                                                          | ce data. 17 |
| Table 8 Summary of individual benthic community indices scores and categories and integrat community indicator. Categories are Reference, Low Disturbance (Low), Moderate D. (Moderate), and High Disturbance (High) | isturbance  |
| Table 9 Summary of M-AMBI benthic community indices scores and condition. Conditions are Low Disturbance, Moderate Disturbance, and High Disturbance.                                                                |             |
| Table 10 Bulk sediment total organic carbon and sediment grain size concentrations in units of sediment monitoring stations.                                                                                         | •           |
| Table 11 Bulk sediment metals concentrations (mg/kg) for sediment monitoring stations, as well guidelines.                                                                                                           | _           |
| Table 12 Bulk sediment PAH concentrations in µg/kg for sediment monitoring stations                                                                                                                                  | 21          |

| Table 13 Bulk sediment chlorinated pesticide concentrations in μg/kg for sediment monitoring stations. 22                                                                                                           |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Table 14. Bulk sediment PCB congener 8-209 concentrations in μg/kg for sediment monitoring stations                                                                                                                 |
| Table 15 Chemistry indices and Overall Integrated Chemistry LOE for sediment monitoring stations Categories are Minimal Exposure (Min. Exp.), Low Exposure, Moderate Exposure, and High Exposure                    |
| Table 16 Mean percent survival for the 10-day whole sediment acute exposure test with <i>E. estuarius</i> 25                                                                                                        |
| Table 17 Summary of Statistical Results for 2-day Sediment-Water Interface Test with <i>M. galloprovincialis</i>                                                                                                    |
| Table 18 Toxicity Line of Evidence.                                                                                                                                                                                 |
| Table 19 Individual chemistry, toxicity, and benthic community LOE and overall station CASQC assessment based on integrated MLOE.                                                                                   |
| Table 20 CASQO assessment incorporating the M-AMBI benthic community line of evidence                                                                                                                               |
| Table 21 Mean Integrated Benthic Community Score by year (2010-2022)                                                                                                                                                |
| Table 22 Estuary Sediment Contaminant Parameters reported above Method Reporting Limits (2009-2022)                                                                                                                 |
| Table 23 Summary of historic Estuary Sediment Metal Concentrations (2009-2022)                                                                                                                                      |
| Table 24 Historic Estuary Sediment Toxicity (Average Mean % Survival) between 2010-202234                                                                                                                           |
| Table 25 Historical CASQO assessment at sites within the SMRE (Table adapted from CH2M, 2019)35                                                                                                                     |
| LIST OF FIGURES                                                                                                                                                                                                     |
| Figure 1 Santa Margarita River Estuary Watershed.                                                                                                                                                                   |
| Figure 2 Santa Margarita River Estuary.                                                                                                                                                                             |
| Figure 3 Sediment stations, MA1, MA2 and E3 at Santa Margarita Estuary (SME). Historic monitoring stations noted with pink markers.                                                                                 |
| Figure 4 Subsampler/ BCA sample collection. The SUBS sampler in water just prior to collecting sample (left). Suction tube method of draining water, in this case into tray for benthic sample collection (right) 8 |
| Figure 5 Toxicity test organisms used for the sediment toxicity line of evidence: <i>Eohaustorius estuariu</i> . (left) and <i>Mytilus galloprovincialis</i> (right).                                               |
| Figure 6 Flow chart for determining the <i>E. estuarius</i> toxicity response category (SCCWRP, 2014) 15                                                                                                            |
| Figure 7 Flow chart for determining the <i>M. galloprovincialis</i> toxicity response category (SCCWRP, 2014)                                                                                                       |
| Figure 8 Mean percent survival for the 10-day whole sediment acute exposure test with <i>E. estuarius</i> . Contro Sed – control sediment.                                                                          |

| Figure 9 Mean PNA for the 2-day SWI exposure with <i>M. galloprovincialis</i> . ST – screen tube control 20 |
|-------------------------------------------------------------------------------------------------------------|
| Figure 10 Estuary Sediment Concentration Trends for Arsenic, Copper, Lead, Nickel and Zinc (2009-2022)      |
|                                                                                                             |

# **List of Acronyms**

ASTM American Society for Testing and Materials

BCA Benthic Community Analysis
BRI Benthic Response Index

CA LRM California Logistic Regression Model CASQO California Sediment Quality Objectives

cfs cubic feet per second

CETIS Comprehensive Environmental Toxicity Information System

CSI Chemical Score Index

DDD dichlorodiphenyldichloroethane
DDE dichlorodiphenyldichloroethylene
DDT dichlorodiphenyltrichloroethane

DO Dissolved Oxygen

EC<sub>50</sub> Median Effective Concentration

ERL Effects Range Low
ERM Effects Range Medium
ES Environmental Security

Ft Feet

HDPE High density polyethylene

HMWPAH High Molecular Weight Polycyclic Aromatic Hydrocarbons

IBI Index of Biotic Integrity
IO Investigative Order

I-5 Interstate 5

LC<sub>50</sub> Median Lethal Concentration

LOE Line of Evidence

LMWPAH Low Molecular Weight Polycyclic Aromatic Hydrocarbons

M-AMBI multivariate-AZTI's Marine Biotic Index MCBCP Marine Corps Base Camp Pendleton

MDL Method Detection Limit
MLOE Multiple Lines of Evidence
MRL Method Reporting Limit

MS4 Municipal Separate Storm Sewer System

ND Not detected (non-detect)

NIWC Naval Information Warfare Center

NOAA National Oceanic and Atmospheric Administration NPDES National Pollutant Discharge Elimination System

PAHs Polycyclic Aromatic Hydrocarbons

PCBs Polychlorinated Biphenyls
PNA Percent Normal Alive
PSU Practical salinity units
QA Quality Assurance

QAPP Quality Assurance Project Plan

QC Quality Control

RBI Relative Benthic Index

RIVPACS River Invertebrate Prediction and Classification System

RL Reporting Limit

SCCWRP Southern California Coastal Water Research Project SDRWQCB San Diego Regional Water Quality Control Board

SM Standard Method

Santa Margarita River Estuary Sediment-Water Interface **SMRE** SWI TOC Total Organic Carbon

United States Environmental Protection Agency United States Geological Survey USEPA

USGS

#### 1. Introduction

This report describes results of sediment monitoring conducted in the Santa Margarita River Estuary (SMRE) located on Marine Corps Base Camp Pendleton (MCBCP) in 2022, performed on behalf of MCBCP Environmental Security (ES) Staff, in support of their Municipal Watershed Monitoring Program (MCBCP, 2020). MCBCP is included in the National Pollutant Discharge Elimination System (NPDES) requirements of the State Water Resources Control Board Small Municipal Separate Storm Sewer System (MS4) permit, NPDES Number CAS0000004 / Water Quality Order Number 2013-0001-DWQ, and subsequent amendments (collectively referred to as the Phase II MS4 permit). However, MCBCP voluntarily complies with certain additional monitoring requirements of the San Diego Regional Water Quality Control Board (SDRWQCB) MS4 permit, NPDES Number CAS0109266 / Order Number R9-2013-0001, as amended by Order Number R9-2015-0001 and Order Number R9-2015-0100 (collectively referred to as the Phase I MS4 permit). The work described herein is intended to evaluate the current California Sediment Quality Objectives (CASQO) for the SMRE. While a complete CASQO analysis of estuary sediments was not included in some of the previous municipal watershed monitoring reports, results from this effort were compared to prior year data (CH2M, 2016; CH2M, 2018; CH2M, 2019). This effort also leverages data collected under Investigative Order (IO) Number R9-2019-0007 issued by the SDRWQCB (Sorensen et al., 2023). The monitoring was conducted by the Energy and Environmental Science branch at the Naval Information Warfare Center (NIWC) Pacific.

Sediment monitoring was conducted at three (3) locations on 12 July 2022, during the summer index period, following the analytical techniques and quality controls/assurances as required under the Sediment Quality Assessment Technical Support Manual and as specified under the SMRE IO Workplan and Quality Assurance Project Plan (QAPP; SCCWRP, 2014; Weston, 2019a,b). Samples were analyzed for standard sediment quality characteristics and benthic community composition, and were tested for toxicity with marine amphipods (Eohaustorius estuarius) and Mediterranean mussel (Mytilus galloprovincialis) embryos using standardized protocols (SCCWRP, 2014; Weston, 2019a,b). This report describes the methods, results and data evaluation used to meet the monitoring goals following the CASQO line of evidence (LOE) framework to assess sediment quality using various metrics.

#### 1.1. Study Area

MCBCP is the largest expeditionary training facility on the West Coast. The facility covers approximately 150,000 acres, with an average daytime population of approximately 70,000. It spans from southern Orange County to northeastern San Diego County and is home to multiple expeditionary forces, special operations battalions, tactical support activities, assault, medical and air units, and recruitment and field training forces.

The SMRE (herein referred to as the Estuary) is part of the Santa Margarita Watershed (Figure 1) and sits entirely within the boundaries of MCBCP (Figure 2). It is a fairly linear water body that extends approximately 2.4 miles along its longitudinal axis to the northeast from the ocean. The perennial wetted portion of the Estuary is roughly 98 acres. It is  $\sim 0.6$  miles across at its widest point along its

western edge, but rapidly narrows to about 1/10th that distance at the Interstate Highway 5 (I-5) bridges. The Estuary continues to narrow to the northeast and can be as narrow as 20 feet (ft) across in the upper reaches. The Estuary is very shallow, with water depths commonly less than one meter, and ranging up to ~5 m under the bridges, presumably as a result of scouring. A large portion of the western Estuary is not wetted or has water depths of only a few inches at low tide.

The Estuary receives freshwater inflow from the Santa Margarita River, with a median daily discharge 1 of about 6.5 cubic ft per second (cfs) based on data from the United States Geological Survey (USGS) gage 11046000, located about five miles upstream of the Estuary mouth. Maximum inflows, as high as 44,000 cfs, occur during winter storms. Surface water inflows can diminish to zero during the summer dry period as confirmed by visual observations (Sorensen et al., 2021, 2022 and 2023). Surface water runoff is affected by upstream runoff, evapotranspiration demands by phreatophytes, upstream diversions, and pumping of the groundwater basin. Hydrodynamic modeling results have identified and confirmed that there is a groundwater flow into the Estuary from the watershed even during the dry season.

When open to the ocean, the Estuary is influenced by semi-diurnal tides that typically result in two high and two low water periods a day. During this time, the ocean can have a strong influence on Estuary hydrodynamics and basic water quality parameters. Previous monitoring of water quality in the Estuary (Katz and Rivera-Duarte, 2012) showed that this ocean influence results in a steep longitudinal gradient in water quality parameters in the vicinity of the I-5 bridges that can be thought of as a transition from a western ocean-dominated lower Estuary segment to an eastern river-dominated upper Estuary segment.

The Estuary does not always have a connection to the ocean, however, and can be isolated through buildup of a large beach berm. Historical gage data collected near the I-5 bridges between 1981 and 2010 (USGS gage 11046050) show that the mouth was essentially closed to the ocean (with < 0.1 ft change in water elevations each day, showing no tidal influence) 22% of the time. The size, depth, and location of the opening through the beach berm is in constant flux as a result of competing forces of freshwater flow through the Estuary, wave action and long-shore sediment drift along the beach. The beach berm tends to increase in height through the summer dry period, reducing the overall amount of tidal exchange with the Estuary, even if it remains open. This berm height effectively controls the lowest level of water in the Estuary, which is only augmented (or increased) when the tides are able to bring ocean water above the berm. Data collected from 2014 to 2016 shows that when the mouth is effectively closed from exchange, the highest spring tides can overtop the berm, adding ocean water

<sup>&</sup>lt;sup>1</sup> Median daily discharge from USGS Gage 11046000 for the period from January 1981 through September 2020. Prior to January 1980, the gage was located at different locations downstream and statistics are not comparable.

to the Estuary and raising its level (Katz et al., 2018). The Estuary mouth can be opened or enlarged very quickly during large winter storms.

In January of 2017, a historic rain event occurred (total monthly precipitation of >6 inches) which resulted in an episodic river flow event of greater than 25,000 cfs. This resulted in significant flushing and scouring of the Estuary (herein referred to as a "reset event"). Incidentally, similar reset events occurred at the end of 2019 and early 2020.



Figure 1 Santa Margarita River Estuary Watershed.

Note: Figure by Stetson Engineering from Sorensen et al., 2021 Red Box indicates location of Estuary and location of this study, relative to rest of watershed Grey area indicates MCBCP base boundaries



Figure 2 Santa Margarita River Estuary.

Note: Figure by Stetson Engineering from Sorensen et al., 2021

#### 1.2. Site Background

MCBCP voluntarily complies with several watershed monitoring components for the SDRWQCB MS4 NPDES permits, and has elected to perform watershed monitoring in accordance to protocols specified in permit A of the Phase I MS4 Permit, outlined in their Municipal Watershed Monitoring Guide (dated June 2, 2016). This Municipal Watershed Monitoring Guide summarizes annual monitoring requirements which include, among other requirements, ambient bay (Estuary) monitoring. The ambient bay monitoring portion of the requirement is designed to provide an overview of the Estuary's health, and consists of water and sediment chemistry, sediment toxicity, and benthic infauna analyses. Previous Estuary monitoring seasons completed under MCBCP's Municipal Watershed Monitoring Program occurred in 2002-2004, 2005-2006, and 2008-2019 (CDM, 2009; CH2M, 2016; CH2M, 2018; CH2M, 2019). This report will only focus on sediment quality, sediment toxicity, and benthic community analysis (BCA), and will then calculate an integrated score for each monitoring site using these LOEs. The results from the 2022 monitoring event will then be compared to historic results for the same analyses.

#### 1.3. Monitoring History

Between 2009 to 2019, the ambient bay (Estuary) monitoring component of the MCBCP Municipal Watershed Monitoring Program focused on collecting and analyzing sediment from three locations within the Estuary. While the exact location of sampling slightly changed from year to year, sampling sites were generally labeled as outlet (SME-3; located close to the Estuary mouth), middle (SME-2; located close to the southbound I-5 bridge), and inlet (SME-1; located on the east side of the Stuart Mesa bridge) monitoring points (Figure 2). For these efforts, sediments were characterized using several parameters including chemistry (and texture), toxicity, and BCA, all used to inform CASQO analysis (CDM, 2009; CH2M, 2016; CH2M, 2018; CH2M, 2019).

Sediment chemistry and texture analyses typically included: total organic carbon (TOC), grain size and some combination of polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs) (Aroclors), synthetic pyrethroid insecticides, organophosphate pesticides, organochlorine pesticides, and heavy metals. Inclusion of analyses for all these chemistry classes and parameters varied from year to year.

Sediment toxicity analysis typically included an acute and chronic measurement and followed United States Environmental Protection Agency (USEPA) approved methods and CASQO guidelines. Species analyzed varied, but generally consisted of an amphipod (e.g. *Eohaustorius estuarius*) and mussel (e.g. *Mytilus galloprovincialis*). The BCA methods followed CASQO protocols for identification of benthic macroinvertebrates (SCCWRP, 2014).

Finally, an overall station score was generally calculated in each monitoring year following the California multiple LOE (MLOE; Chemistry, toxicity, benthic community) methods and procedures (SCCWRP, 2014).

Collection of samples generally involved use of some form of a grab sampler from each site and consisted of either a composited sample from multiple small grabs or one larger grab sample that was separated into sub samples for each of the various analyses performed for each site. Sampling generally occurred in the recommend sampling period of early summer (June or July) to align with the summer index growth period. For a complete description of methods used and parameters measured per each of the monitoring years, refer to the annual municipal monitoring reports (CDM, 2009; CH2M, 2016; CH2M, 2018; CH2M, 2019).

#### 2. METHODS

To assess sediment quality under the CASQO framework in 2022, three main analyses were completed: BCA, sediment chemistry and sediment toxicity. Field collection of sediment samples and BCA were leveraged with other monitoring efforts under a current five-year monitoring program for the SMRE in response to IO R9-2019-0007.

#### 2.1. Sediment Collection and Processing

As with historical sampling described above, the 2022 effort collected sediment samples from three stations in the SMRE (Table 1, Figure 3), placed in the same general vicinity as historic municipal

watershed monitoring locations but aligned with current monitoring stations under the SMRE IO (R9-2019-0007). These three sampling locations are located in approximately the "inlet", "midpoint" and "outlet" points of the Estuary. Historic monitoring locations are also provided in Table 1 (and shown in Figure 3) for comparative purposes.

**Table 1 Sample station locations.** 

| Station ID | General<br>Location                    | Latitude<br>(Degree N) | Longitude<br>(Degree W) |  |  |  |
|------------|----------------------------------------|------------------------|-------------------------|--|--|--|
|            | 202                                    | 22 Sites               |                         |  |  |  |
| MA1 / W1   | Outlet                                 | 33.23402               | -117.4133               |  |  |  |
| MA2 / W8   | Midpoint                               | 33.23547               | -117.40857              |  |  |  |
| Е3         | Inlet                                  | 33.23783               | -117.39352              |  |  |  |
| I          | Historic Sites (approximate locations) |                        |                         |  |  |  |
| SME-3      | Outlet                                 | 33.23385               | -117.41335              |  |  |  |
| SME-2      | Midpoint                               | 33.23437               | -117.41130              |  |  |  |
| SME-1      | Inlet                                  | 33.23513               | -117.40929              |  |  |  |



Figure 3 Sediment stations, MA1, MA2 and E3 at Santa Margarita Estuary (SME). Historic monitoring stations noted with pink markers.

Sediment samples were collected by NIWC staff using a Multi-Substrate Subtidal Sampler (SUBS-Sampler; Patent No. 11,054,345 B2; Figure 4) with a 4-inch diameter (0.008 m²) core barrel, as per Bight Regional Monitoring suggestions for brackish estuarine sampling (McLaughlin et al., 2019). This sampler design was chosen due to the shallow water depths of the Estuary stations (averaging approximately 1.5 ft), requiring manual operation which prevented the use of a large grab sampling device.





Figure 4 Subsampler/ BCA sample collection. The SUBS sampler in water just prior to collecting sample (left). Suction tube method of draining water, in this case into tray for benthic sample collection (right).

For BCA, all sediment samples were collected in subtidal conditions and the entire contents of the grab sample (including water) were placed in plastic containers and transported back to the shoreline for further processing. Samples were sieved through a 0.5-mm mesh screen to remove sediment fines. All residual sediment, debris, shells, and benthic organisms remaining on the screen were carefully collected into labelled wide-mouth bottles. Samples were "fixed" on-site in formalin buffered with borax and diluted by seawater to create a 5% formalin preservative. The benthic samples were stored at ambient temperature throughout transit and shipped to the EcoAnalysts benthic laboratory in Moscow, Idaho for further processing and identification. A copy of the chain of custody form is provided in Appendix A.

For the chemistry and toxicity sediment samples, additional grab samples were collected and placed in high density polyethylene (HDPE) bag liners by NIWC Pacific personnel. Between sites, all equipment was thoroughly washed and rinsed with ambient water and then deionized water to avoid cross-contamination. Chemistry and toxicity samples were then transferred to the NIWC Pacific Bioassay Laboratory in insulated ice chests containing blue ice. Upon receipt at the NIWC Pacific Bioassay Laboratory, arrival temperature of the samples was documented, and samples were stored at 4°C until processing.

At the NIWC Pacific Bioassay Laboratory, sediment samples were thoroughly homogenized and subsamples from each station were collected into the following containers for chemistry analysis:  $1 \times 8$  oz. amber glass jar (for total organic carbon and trace metals) and  $3 \times 4$  oz. amber glass jars (for

organic contaminants). These samples were shipped priority overnight in insulated ice chests containing blue ice to Weck Laboratories, Inc. in Industry City, CA on 13 July 2022. Copies of the chain of custody forms for chemistry are provided in Appendix B.

The remaining homogenized sediment material was press-sieved through a 1-mm sieve to remove native organisms and potential predators before being placed into toxicity exposure chambers at NIWC Pacific. Copies of the chain of custody forms for toxicity are provided in Appendix C.

#### 2.2. Analytical Methods

Samples were analyzed for BCA metrics by EcoAnalysts Inc., for bulk chemistry by Weck Laboratories, and for toxicity by NIWC Pacific's Bioassay Lab. Complete reports for the BCA and bulk chemistry analyses are provided in Appendix A and B, respectively; toxicity test data and statistical summaries are provided in Appendix C. The following sections summarize the analytical methods for each set of parameters.

#### 2.2.1. Benthic Community Analysis

All BCA samples were processed by EcoAnalysts Inc. using CASQO protocols for identification of benthic macroinvertebrates (SCCWRP, 2014) and in accordance to SMRE IO approved Workplan and QAPP (Weston, 2019a,b). Briefly, at the laboratory, samples were transferred to 70% ethanol for long-term preservation and storage. Organisms were then separated into vials according to major taxon categories (e.g., mollusks, crustaceans, annelids, etc.) under a dissecting microscope until 100% of the sample was sorted. A quality assurance (QA) check consisting of a 10% re-sort of each sample was performed by staff who did not initially sort the sample to assure  $\geq$  95% accuracy in the removal of all macrofauna from each sample.

All sorted organisms were identified by qualified taxonomists down to the lowest practical taxonomic level (generally considered to be genus/species) and enumerated. A quality control (QC) check was performed by conducting a full taxonomic re-analysis of two samples by taxonomists who did not originally identify the organisms.

Following guidance outlined by the CASQO framework and in accordance with the IO workplan (Weston, 2019a), determination of benthic community condition was investigated using four indices (Index of Biotic Integrity [IBI], Relative Benthic Index [RBI], Benthic Response Index [BRI], and River Invertebrate Prediction and Classification System [RIVPACS]). These indices characterize the sample into one of four categories of disturbance (Reference, Low, Moderate, and High), and are based on the level of abundance, the variety of taxa, and signs of stress. The results of these four indices were then summarized into one integrated benthic indicator value for each sample, which forms the benthic community LOE that goes into the CASQO MLOE calculation for that site.

As part of the SMRE IO monitoring program and in an effort to determine whether community effects as deemed by the CASQO methods are due potentially to anthropogenic disturbance or are environmentally driven, the M-AMBI was also computed. The M-AMBI is more suitable for dynamic estuaries such as the SMRE as it is more inclusive of benthic assemblages unique to lower saline environments and those in which a natural salinity gradient is present (Gillett et al., 2019). For a

complete description of M-AMBI analysis methods and raw data associated with this analysis, refer to Sorensen et al. (2023).

### 2.2.2. <u>Sediment Chemistry</u>

Weck Laboratories analyzed bulk sediment samples for grain size, percent solids, total organic carbon (TOC), cadmium, copper, lead, mercury, zinc, a suite of low and high molecular weight PAHs, a suite of chlorinated pesticides, and a suite of 51 PCB congeners. This included all 18 PCB congeners used in the calculation of the CASQO chemistry LOE. The analyses and published protocols that were followed are shown in Table 2. A full list of analytes measured is presented in Table 3. A full suite of QC samples was prepared for every analysis batch including a procedural blank, matrix spike, matrix spike duplicate, duplicates, a laboratory control sample and standard reference material.

Table 2 Sediment chemistry analyses and respective analytical methods.

| Parameter                              | Method                                                  |
|----------------------------------------|---------------------------------------------------------|
| Grain size                             | American Society for Testing and Materials (ASTM) D4464 |
| Total Solids                           | Standard Method (SM) 2540 B                             |
| Total Organic Carbon                   | USEPA 9060A                                             |
| Metals                                 | USEPA 6020A                                             |
| Mercury                                | USEPA 7471A                                             |
| PAHs, Pesticides, and PCB<br>Congeners | USEPA 8270C SIM                                         |

 $Table\ 3\ Bulk\ sediment\ chemical\ analytes\ measured\ following\ CASQO\ requirements.$ 

| Chemical Name             | Chemical  | Chemical Name                          | Chemical |
|---------------------------|-----------|----------------------------------------|----------|
|                           | Group     |                                        | Group    |
| Total Organic Carbon      | General   | 2,3,3',4'-Tetrachlorobiphenyl          | PCB 56   |
| Grain Size                | General   | 2,3,4,4'-Tetrachlorobiphenyl           | PCB 60   |
| Cadmium                   | Metal     | 2,3,4',6-Tetrachlorobiphenyl           | PCB 64   |
| Copper                    | Metal     | 2,3',4,4'-Tetrachlorobiphenyl          | PCB 66   |
| Lead                      | Metal     | 2,3',4',5-Tetrachlorobiphenyl          | PCB 70   |
| Mercury                   | Metal     | 2,4,4',5-Tetrachlorobiphenyl           | PCB 74   |
| Zinc                      | Metal     | 3,3',4,4'-Tetrachlorobiphenyl          | PCB 77   |
| Acenaphthene              | PAH       | 2,2',3,4,5'-Pentachlorobiphenyl        | PCB 87   |
| Anthracene                | PAH       | 2,2',3,5',6-Pentachlorobiphenyl        | PCB 95   |
| Biphenyl                  | PAH       | 2,2',3,4',5'-Pentachlorobiphenyl       | PCB 97   |
| Naphthalene               | PAH       | 2,2',4,4',5-Pentachlorobiphenyl        | PCB 99   |
| 2,6-Dimethylnaphthalene   | PAH       | 2,2',4,5,5'-Pentachlorobiphenyl        | PCB 101  |
| Fluorene                  | PAH       | 2,3,3',4,4'-PentachlorobiphenyL        | PCB 105  |
| 1-Methylnaphthalene       | PAH       | 2,3,3',4',6-Pentachlorobiphenyl        | PCB 110  |
| 2-Methylnaphthalene       | PAH       | 2,3,4,4',5-Pentachlorobiphenyl         | PCB 114  |
| 1-Methylphenanthrene      | PAH       | 2,3',4,4',5-Pentachlorobiphenyl        | PCB 118  |
| Phenanthrene              | PAH       | 3,3',4,4',5-Pentachlorobiphenyl        | PCB 126  |
| Benzo(a)anthracene        | PAH       | 2,2',3,3',4,4'- Hexachlorobiphenyl     | PCB 128  |
| Benzo(a)pyrene            | PAH       | 2,2',3,4,4',5-Hexachlorobiphenyl       | PCB 137  |
| Benzo€pyrene              | PAH       | 2,2',3,4,4',5'- Hexachlorobiphenyl     | PCB 138  |
| Chrysene                  | PAH       | 2,2',3,4,5,5'-Hexachlorobiphenyl       | PCB 141  |
| Dibenz(a,h)anthracene     | PAH       | 2,2',3,4',5,5'-Hexachlorobiphenyl      | PCB 146  |
| Fluoranthene              | PAH       | 2,2',3,4',5',6-Hexachlorobiphenyl      | PCB 149  |
| Perylene                  | PAH       | 2,2',3,5,5',6-Hexachlorobiphenyl       | PCB 151  |
| Pyrene                    | PAH       | 2,2',4,4',5,5'- Hexachlorobiphenyl     | PCB 153  |
| Alpha Chlordane           | Pesticide | 2,3,3',4,4',5-Hexachlorobiphenyl       | PCB 156  |
| Gamma Chlordane           | Pesticide | 2,3,3',4,4',5'-Hexachlorobiphenyl      | PCB 157  |
| Trans Nonachlor           | Pesticide | 2,3,3',4,4',6-Hexachlorobiphenyl       | PCB 158  |
| Dieldrin                  | Pesticide | 3,3',4,4',5,5'-Hexachlorobiphenyl      | PCB 169  |
| 2,4'-DDE                  | Pesticide | 2,2',3,3',4,4',5-Heptachlorobiphenyl   | PCB 170  |
| 2,4'-DDD                  | Pesticide | 2,2',3,3',4,5,6'-Heptachlorobiphenyl   | PCB 174  |
| 2,4'-DDT                  | Pesticide | 2,2',3,3',4,5',6'-Heptachlorobiphenyl  | PCB 177  |
| 4,4'-DDD                  | Pesticide | 2,2',3,4,4',5,5'-Heptachlorobiphenyl   | PCB 180  |
| 4,4'-DDE                  | Pesticide | 2,2',3,4,4',5',6-Heptachlorobiphenyl   | PCB 183  |
| 4,4'-DDT                  | Pesticide | 2,2',3,4',5,5',6-Heptachlorobiphenyl   | PCB 187  |
| 2,4'-Dichlorobiphenyl     | PCB 8     | 2,3,3',4,4',5,5'-Heptachlorobiphenyl   | PCB 189  |
| 2,2',5-Trichlorobiphenyl  | PCB 18    | 2,2',3,3',4,4',5,5'-Octachlorobiphenyl | PCB 194  |
| 2,3',6-Trichlorobiphenyl  | PCB 27    | 2,2',3,3',4,4',5,6-Octachlorobiphenyl  | PCB 195  |
| 2,4,4'-Trichlorobiphenyl  | PCB 28    | 2,2',3,3',4,5,5',6-Octachlorobiphenyl  | PCB 198  |
| 2,4,5-Trichlorobiphenyl   | PCB 29    | 2,2',3,3',4,5,5',6'-Octachlorobiphenyl | PCB 199  |
| 2,4',5-Trichlorobiphenyl  | PCB 31    | 2,2',3,3',4,5,6,6'-Octachlorobiphenyl  | PCB 200  |
| 2,3',4'-Trichlorobiphenyl | PCB 33    | 2,2',3,3',4,5',6,6'-Octachlorobiphenyl | PCB 201  |

| Chemical Name                     | Chemical<br>Group | Chemical Name                               | Chemical<br>Group |
|-----------------------------------|-------------------|---------------------------------------------|-------------------|
| 2,2',3,5'-<br>Tetrachlorobiphenyl | PCB 44            | 2,2',3,4,4',5,5',6-Octachlorobiphenyl       | PCB 203           |
| 2,2',4,5'-<br>Tetrachlorobiphenyl | PCB 49            | 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl    | PCB 206           |
| 2,2',5,5'-<br>Tetrachlorobiphenyl | PCB 52            | 2,2',3,3',4,4',5,5',6,6'-Decachlorobiphenyl | PCB 209           |

\*Shaded cells are used for PCB CASQO calculations.

#### 2.2.3. <u>Sediment Toxicity</u>

NIWC Pacific's Bioassay Laboratory conducted two toxicity tests on all samples in accordance with CASQO guidelines using standard methods (US EPA, 1994; ASTM E1367-03; SCCWRP, 2014).

Bulk sediment acute toxicity was evaluated using a 10-day amphipod (*Eohaustorius estuarius*) survival toxicity test (Figure 5). Sediment water interface (SWI) chronic toxicity was evaluated using a 2-day Mediterranean mussel (*Mytilus galloprovincialis*) embryo-larval development test (Figure 5). Negative controls consisting of sediment from the amphipod collection site were included in the 10-day whole sediment test. For the 2-day SWI test, a chamber control (screen tube) and a seawater negative control were also tested concurrently. In addition, a 4-day reference toxicant test and a 2-day reference toxicant test using cadmium and copper were conducted concurrently for the amphipods and Mediterranean mussels, respectively. Summaries of the test conditions are provided in Table 4 and Table 5.





Figure 5 Toxicity test organisms used for the sediment toxicity line of evidence: *Eohaustorius* estuarius (left) and *Mytilus galloprovincialis* (right).

All test chambers were set up with sediment, water and aeration on the day prior to test initiation. Screen tubes for the SWI test were gently introduced to each test chamber on the day of test initiation. Water quality parameters including pH, dissolved oxygen (DO), salinity, temperature and ammonia were measured in the overlying water prior to organism addition. Mussel embryos were introduced to the screen tubes and amphipods were introduced directly into each chamber. Daily observations of water quality, aeration and sediment condition (e.g., anoxia, microbial growth, etc.) were made.

At the end of the exposure period for the SWI toxicity test, screen tubes were carefully removed from the sediment and the embryos were washed into glass scintillation vials and preserved in 10% buffered formalin for later microscopic examination. At the end of the 10-day survival test with marine amphipods, surviving organisms were recovered by sieving sediment through a 500-µm mesh sieve

and were immediately enumerated. Ammonia in the overlying water was measured on the day of termination for both tests. The results from the two tests for each station were integrated into a single toxicity LOE metric following the CASQO framework.

Table 4 Specifications for 10-day whole sediment acute exposure test using the marine amphipod *Eohaustorius estuarius*.

| Test period                  | 7/15/2022 – 7/25/2022                                                                                         |  |  |  |
|------------------------------|---------------------------------------------------------------------------------------------------------------|--|--|--|
| Test organism                | Marine amphipod – Eohaustorius estuarius                                                                      |  |  |  |
| Test organism source         | Northwestern Aquatic Sciences (Newport, OR)                                                                   |  |  |  |
| Test duration; endpoint      | 10-day; survival                                                                                              |  |  |  |
| Test solution renewal        | None                                                                                                          |  |  |  |
| Feeding                      | None                                                                                                          |  |  |  |
| Test Chamber size/type       | 1L glass mason jar                                                                                            |  |  |  |
| Test sediment depth          | 2 cm                                                                                                          |  |  |  |
| Test sediment manipulation   | Homogenized and sieved to <1.0 mm                                                                             |  |  |  |
| Overlying water volume       | 800 ml                                                                                                        |  |  |  |
| Control sediment source      | Sediment from amphipod collection site, Yaquina Bay, OR                                                       |  |  |  |
| Test temperature             | 15 ± 1 °C                                                                                                     |  |  |  |
| Test salinity                | $32 \pm 2 \text{ PSU}$                                                                                        |  |  |  |
| Light quality                | 10-20 μE/m²/s (Ambient laboratory levels)                                                                     |  |  |  |
| Photoperiod                  | Continuous light (24 hr), ambient laboratory lighting                                                         |  |  |  |
| Aeration                     | Laboratory filtered air, continuous (1-2 bubbles per second delivered through capillary tubing)               |  |  |  |
| No. of organisms per chamber | 20                                                                                                            |  |  |  |
| No. of replicates            | 5                                                                                                             |  |  |  |
| Overlying water source       | Filtered (0.45 µm) natural seawater collected from near the mouth of San Diego Bay at NIWC Pacific Laboratory |  |  |  |
| Test acceptability criteria  | ≥ 90% mean survival in control sediment                                                                       |  |  |  |
| Reference toxicant           | Cadmium chloride (CdCl); 96-h water only exposure; six concentrations (4 replicates each)                     |  |  |  |
| Test protocol                | US EPA, 1994; ASTM E1367-03; SCCWRP, 2014                                                                     |  |  |  |

Table 5 Specifications for 2-day sublethal exposure test using the Mediterranean mussel *Mytilus galloprovincialis* embryo-larvae at the sediment-water interface.

| Test Period                  | 7/15/2022 – 7/17/2022                                                                                        |  |  |  |
|------------------------------|--------------------------------------------------------------------------------------------------------------|--|--|--|
| Test organism                | Mediterranean mussel – Mytilus galloprovincialis                                                             |  |  |  |
| Test organism source         | Field collected in Mission Bay, San Diego, CA                                                                |  |  |  |
| Test duration; endpoints     | 48 hr; embryo-larval percent normal alive                                                                    |  |  |  |
| Test solution renewal        | None                                                                                                         |  |  |  |
| Feeding                      | None                                                                                                         |  |  |  |
| Test Chamber size/type       | 1L glass mason jar w/ polycarbonate screen tubes with 25 μm mesh                                             |  |  |  |
| Test sediment depth          | 5 cm                                                                                                         |  |  |  |
| Test sediment manipulation   | Homogenized and sieved to <1.0 mm                                                                            |  |  |  |
| Overlying water volume       | 300 ml                                                                                                       |  |  |  |
| Test temperature             | 15 ± 1 °C                                                                                                    |  |  |  |
| Test salinity                | $32 \pm 2 \text{ PSU}$                                                                                       |  |  |  |
| Light quality                | 10-20 μE/m <sup>2</sup> /s (Ambient laboratory levels)                                                       |  |  |  |
| Photoperiod                  | 16 hr light/ 8 hr dark                                                                                       |  |  |  |
| Aeration                     | Laboratory filtered air, continuous (1-2 bubbles per second delivered through capillary tubing)              |  |  |  |
| No. of organisms per chamber | ~250 eggs, appropriate sperm density to provide > 90% fertilization success (determined in a pre-test trial) |  |  |  |
| No. of replicates            | 5                                                                                                            |  |  |  |
| Overlying water source       | Filtered (0.45 µm) natural seawater collected from near the mouth of San Diego Bay at SSC Pacific Laboratory |  |  |  |
| Test acceptability criteria  | ≥ 80% survival in control                                                                                    |  |  |  |
| Reference toxicant           | Ammonia chloride (NH <sub>4</sub> Cl); 48-h water only exposure; seven concentrations (5 replicates each)    |  |  |  |
| Test protocol                | Anderson, 1996 (modified); USEPA, 1995                                                                       |  |  |  |

For purposes of interpretation, data from the 10-day survival test were categorized by following the flow chart in Figure 6 (SCCWRP, 2014):

1) First, if mean percent survival was greater than 90%, the sample was deemed Non-toxic. If mean percent survival for each treatment was less than 90%, the data were adjusted to the control response (i.e. [mean survival of test sample/mean survival of control]\*100]).

2) Second, after control normalization, if the mean percent survival was greater than 82%, the non-normalized data were statistically compared to the control response using a student's t-test assuming unequal variance. If the sample was found to be not significantly different from the control, the sample was deemed Non-toxic. If the sample was found to be significantly different from the control, the sample was deemed to be of Low Toxicity. This procedure would continue following the flow chart for samples with lower survival rates.



Figure 6 Flow chart for determining the *E. estuarius* toxicity response category (SCCWRP, 2014).

For purposes of interpretation, data for the 2-day sublethal exposure test were categorized by following the flow chart in SCCWRP (2014):

- 1) First, if mean percent normal alive (PNA) was greater than 80%, the sample was deemed Nontoxic. If mean PNA for each treatment was less than 80%, the data were adjusted to the control response (i.e. [mean PNA of test sample/mean PNA of control]\*100]).
- 2) Second, after control normalization, if the mean control-adjusted PNA was greater than 77%, the non-normalized data were statistically compared to the control response using a student's t-test assuming unequal variance. If the sample was found to be not significantly different from

the control, the sample was deemed Non-toxic. If the sample was found to be significantly different from the control, the sample was deemed to be of Low Toxicity. This procedure would continue following the flow chart for samples with lower control-adjusted PNA values.



Figure 7 Flow chart for determining the *M. galloprovincialis* toxicity response category (SCCWRP, 2014).

#### 3. 2022 MONITORING RESULTS AND ASSESSMENT

Sampling details and a general description of sediments at time of collection are provided in Table 6 (where PSU indicates practical salinity units).

Table 6 Sampling station conditions.

| Station ID | Sample<br>Date | Collection<br>Time | Marine (>27 PSU)<br>OR<br>Brackish (<27 PSU) | Sampling<br>Depth<br>(ft) | General<br>Characteristics            |
|------------|----------------|--------------------|----------------------------------------------|---------------------------|---------------------------------------|
| MA1 / W1   | 12 Jul 2022    | 09:25              | Marine                                       | 1.6                       | brown, sandy                          |
| MA2 / W8   | 12 Jul 2022    | 10:35              | Marine                                       | 1.9                       | brown, silty<br>clay, sulfide<br>odor |
| Е3         | 12 Jul 2022    | 14:14              | Brackish                                     | 1.0                       | brown, sandy                          |

#### 3.1 Benthic Community Analysis

Benthic community analysis results for each station are summarized in Table 7. The complete results can be found in Appendix A. The table contains the measured abundance and taxa values along with several standard indices used to assess community metrics such as richness, diversity, dominance and evenness.

The taxonomy QC samples passed, achieving an average 95.8-97.7% similarity between the original and QC identifications. The individual and integrated index scores for each station are shown in Table 8. When averaged together into one score, known as the Integrated Benthic Indicator, stations MA1 and E3 were categorized as High Disturbance and station MA2 was categorized as Moderate Disturbance. Using the M-AMBI method to assess benthic community condition, all three stations were categorized as Low Disturbance.

Table 7 Summary of benthic community abundance, richness, diversity, evenness, and dominance data.

|                                      | Station ID |      |      |
|--------------------------------------|------------|------|------|
| Benthic Community Index              | MA1        | MA2  | E3   |
| Total Abundance (Individuals/0.1 m²) | 33         | 1240 | 678  |
| Richness<br>(Taxa/0.1 m²)            | 12         | 20   | 15   |
| Shannon-Wiener Diversity             | 1.75       | 1.54 | 1.77 |
| Pielou's Evenness                    | 0.70       | 0.51 | 0.65 |
| Schwartz Dominance                   | 4          | 3    | 4    |

Table 8 Summary of individual benthic community indices scores and categories and integrated benthic community indicator. Categories are Reference, Low Disturbance (Low), Moderate Disturbance (Moderate), and High Disturbance (High).

| <b>Benthic Community Index</b> |                 | Station ID |           |          |  |  |
|--------------------------------|-----------------|------------|-----------|----------|--|--|
|                                |                 | MA1        | MA2       | Е3       |  |  |
| IBI                            | Score           | 2          | 1         | 3        |  |  |
| 1D1                            | Category        | Moderate   | Low       | High     |  |  |
| DDI                            | Score           | 0.05       | 0.58      | 0.25     |  |  |
| RBI                            | Category        | High       | Reference | Low      |  |  |
| BRI                            | Score           | 47.44      | 66.52     | 77.80    |  |  |
| DKI                            | Category        | Low        | Moderate  | High     |  |  |
| DIVDACC                        | Score           | 0.19       | 0.52      | 0.38     |  |  |
| RIVPACS                        | Category        | High       | Moderate  | Moderate |  |  |
| Integrated Ber                 | nthic Indicator | High       | Moderate  | High     |  |  |

Table 9 Summary of M-AMBI benthic community indices scores and condition. Conditions are Reference, Low Disturbance, Moderate Disturbance, and High Disturbance.

| Station ID | M-AMBI Score | M-AMBI<br>Condition |
|------------|--------------|---------------------|
| MA1        | 0.53         | Low Disturbance     |
| MA2        | 0.53         | Low Disturbance     |
| E3         | 0.52         | Low Disturbance     |

#### 3.2 Bulk Sediment Chemistry

Bulk sediment chemistry results are summarized in Table 10 through Table 14. The dataset includes five metal concentrations, 18 PAHs, 10 chlorinated pesticides and 18 PCBs that are required to perform the CASQO calculations as well as total organic carbon, percent fines, and the additional PCB congeners specifically requested by the SDRWQCB. Data are presented as reported by the analytical Lab. All QC parameters were within the established control limits. The complete results including QA are in Appendix B.

#### 3.2.1 Physical chemistry

A summary of the physical sediment metric results is presented in Table 10. Sediment percent fines (<0.63µm) were 0.56, 0.54 and 4.97% in site samples MA1, MA2 and E3, respectively. TOC measurements were 0.116, 0.679 and 0.138% for sites MA1, MA2 and E3, respectively. Total solids measured 72.5, 68.7 and 64.6% for MA1, MA2 and E3, respectively. Site sediments were composed primarily of medium sized (MA1 and MA2) and fine (E3) sand.

Table 10 Bulk sediment total organic carbon and sediment grain size concentrations in units of percent for sediment monitoring stations.

|                           | Measurement                 | \$    | Station ID |       |  |  |  |
|---------------------------|-----------------------------|-------|------------|-------|--|--|--|
|                           | (%)                         | MA1   | MA2        | Е3    |  |  |  |
| Tot                       | al Organic Carbon<br>(TOC)  | 0.116 | 0.679      | 0.138 |  |  |  |
|                           | Total Solids                | 72.5  | 68.7       | 64.6  |  |  |  |
| Gravel (>2mm)             |                             | 0.00  | 0.00       | 0.00  |  |  |  |
|                           | Coarse<br>(0.5-2mm)         | 10.18 | 14.88      | 3.68  |  |  |  |
| Sand                      | Medium<br>(0.25-0.5mm)      | 61.91 | 56.42      | 28.76 |  |  |  |
|                           | Fine (0.0625-0.25mm)        | 27.35 | 28.15      | 62.58 |  |  |  |
| Silt (0.00391 - 0.0625mm) |                             | 0.22  | 0.33       | 4.35  |  |  |  |
| Clay<br>(<0.00391mm)      |                             | 0.34  | 0.21       | 0.62  |  |  |  |
|                           | Percent Fines (Silt + Clay) | 0.56  | 0.54       | 4.97  |  |  |  |

## 3.2.2 Metals

The bulk sediment metals data are presented in Table 11. Cadmium and Mercury were not detected (ND) in all three samples. Copper measured 3.1, 3.5 and 15 mg/kg in MA1, MA2 and E3, respectively. Lead measured 1.2, 0.87 and 4.0 mg/kg for sites MA1, MA2 and E3, respectively, and Zinc measured 9.7, 12 and 49 mg/kg MA1, MA2 and E3, respectively. CASQO maximum reporting limits (RL) and laboratory achieved RL are also reported for metals in Table 11.

The National Oceanic and Atmospheric Administration (NOAA) Screening Quick Reference Tables (Buchman, 2008) Effects Range Low (ERL) and Effects Range Medium (ERM) concentrations for inorganic contaminants in marine sediments are also included in Table 11. The ERL represents a value at the low end of the range at which toxicity may begin to be observed in sensitive species and the ERM is the median concentration at which toxicity may be observed. ERL and ERM concentrations are used as benchmarks that, if exceeded, could result in occasional toxicity to marine organisms.

Table 11 Bulk sediment metals concentrations (mg/kg) for sediment monitoring stations, as well as general guidelines.

|         | CASQ           |                      | Method | S   | tation ID |    |                  |                  |
|---------|----------------|----------------------|--------|-----|-----------|----|------------------|------------------|
| Analyte | O<br>Max<br>RL | Achieved<br>RL Range | DL     | MA1 | MA2       | Е3 | ERL <sup>1</sup> | ERM <sup>1</sup> |
| Cadmium | 0.09           | 0.28 - 0.31          | 0.083  | ND  | ND        | ND | 1,200            | 9,600            |
| Copper  | 52.8           | 0.69 - 0.77          | 0.40   | 3.1 | 3.5       | 15 | 34,000           | 270,000          |
| Lead    | 25.0           | 0.69 - 0.77          | 0.29   | 1.2 | 0.87      | 4  | 46,700           | 218,000          |
| Mercury | 0.09           | 0.014 -<br>0.015     | 0.0079 | ND  | ND        | ND | 150              | 710              |
| Zinc    | 60.0           | 6.9 - 7.7            | 3.3    | 9.7 | 12        | 49 | 150,000          | 410,000          |

<sup>&</sup>lt;sup>1</sup>Screening values are from Buchman (2008). ND indicates measured value was below method detection limit.

#### 3.2.3 PAHs, Pesticides and PCBs

Bulk sediment PAH, Pesticide and PCB data as well as CASQO maximum RL and laboratory achieved RL are presented in Table 12, Table 13, and Table 14, respectively. All measurements for these analytes were ND. For all of these analyses, the sample and/or sample extract was diluted prior to preparation due to matrix interferences. The method detection limit (MDL) and method reporting limit (MRL) were raised due to this required dilution. A few of the PCBs listed in Table 3 were not include in the PCB analytes provided by the analytic laboratory. However, none of the missing PCBs were part of the required PCBs needed for calculating the CASQO and it is unlikely that the analytes would have resulted in any detectable concentrations.

Table 12 Bulk sediment PAH concentrations in  $\mu g/kg$  for sediment monitoring stations.

|                                 | CASQO                                                | Achieved             | Method        |                  | Station ID       |       |  |  |  |  |
|---------------------------------|------------------------------------------------------|----------------------|---------------|------------------|------------------|-------|--|--|--|--|
| Analyte                         | Max RL (μg/kg)                                       | RL Range<br>(µg/kg)* | DL<br>(ug/kg) | MA1              | MA2              | Е3    |  |  |  |  |
|                                 | Low Molecular Weight PAHs (LMWPAH) in units of μg/kg |                      |               |                  |                  |       |  |  |  |  |
| Naphthalene                     | 20                                                   | 97 - 120             | 7.3           | ND               | ND               | ND    |  |  |  |  |
| 1-<br>Methylnaphthale<br>ne     | 20                                                   | 97 - 120             | 6.1           | ND               | ND               | ND    |  |  |  |  |
| 2-<br>Methylnaphthale<br>ne     | 20                                                   | 97 - 120             | 6.1           | ND               | ND               | ND    |  |  |  |  |
| 2,6-<br>Dimethylnaphth<br>alene | 20                                                   | 97 - 120             | 9.3           | ND               | ND               | ND    |  |  |  |  |
| Acenaphthene                    | 20                                                   | 97 - 120             | 5.3           | ND               | ND               | ND    |  |  |  |  |
| Biphenyl                        | 20                                                   | 97 - 120             | 7.8           | ND               | ND               | ND    |  |  |  |  |
| Fluorene                        | 20                                                   | 97 - 120             | 6.1           | ND               | ND               | ND    |  |  |  |  |
| Phenanthrene                    | 20                                                   | 97 - 120             | 6.5           | ND               | ND               | ND    |  |  |  |  |
| 1-<br>Methylphenanth<br>rene    | 20                                                   | 97 - 120             | 12            | ND               | ND               | ND    |  |  |  |  |
| Anthracene                      | 20                                                   | 97 - 120             | 9.0           | ND               | ND               | ND    |  |  |  |  |
|                                 |                                                      | High Mo              | olecular We   | eight PAHs (HMWI | PAH) in units of | μg/kg |  |  |  |  |
| Pyrene                          | 80                                                   | 97 - 120             | 39            | ND               | ND               | ND    |  |  |  |  |
| Fluoranthene                    | 80                                                   | 97 - 120             | 39            | ND               | ND               | ND    |  |  |  |  |
| Benzo(a)anthrac<br>ene          | 80                                                   | 97 - 120             | 35            | ND               | ND               | ND    |  |  |  |  |
| Dibenz(a,h)anthr acene          | 80                                                   | 97 - 120             | 45            | ND               | ND               | ND    |  |  |  |  |
| Chrysene                        | 80                                                   | 97 - 120             | 6.2           | ND               | ND               | ND    |  |  |  |  |
| Benzo(a)pyrene                  | 80                                                   | 97 - 120             | 49            | ND               | ND               | ND    |  |  |  |  |
| Benzo(e)pyrene                  | 80                                                   | 97 - 120             | 14            | ND               | ND               | ND    |  |  |  |  |
| Perylene                        | 80                                                   | 97 - 120             | 12            | ND               | ND               | ND    |  |  |  |  |
| Sum L                           | MWPAH                                                | I                    |               | ND               | ND               | ND    |  |  |  |  |
| Sum H                           | IMWPAH                                               | I                    | 1             | ND               | ND 111 to 1      | ND    |  |  |  |  |

<sup>\*</sup> Due to the nature of matrix interferences, sample and/or sample extract was diluted prior to preparation. The MDL and MRL were raised due to the dilution. ND indicates concentration was below method detection limits.

Table 13 Bulk sediment chlorinated pesticide concentrations in  $\mu g/kg$  for sediment monitoring stations.

| Analyte             | _       | Achieved<br>RL Range | Vietnaa III. |     | Station ID |    |  |
|---------------------|---------|----------------------|--------------|-----|------------|----|--|
| Analyte             | (μg/kg) | (µg/kg)*             | (µg/kg)      | MA1 | MA2        | Е3 |  |
| Dieldrin            | 2.5     | 61 - 80              | 13           | ND  | ND         | ND |  |
| Chlordane (tech)    | 0.50    | 1200 -<br>1600       | 270          | ND  | ND         | ND |  |
| Alpha-<br>Chlordane | 0.54    | 61 - 80              | 15           | ND  | ND         | ND |  |
| Gamma-<br>Chlordane | 4.6     | 61 - 80              | 14           | ND  | ND         | ND |  |
| Trans-Nonachlor     | 0.5     | 61 - 80              | 7.3          | ND  | ND         | ND |  |
| 2,4'-DDD            | 0.5     | 61 - 80              | 11           | ND  | ND         | ND |  |
| 4,4'-DDD            | 0.5     | 61 - 80              | 13           | ND  | ND         | ND |  |
| 2,4'-DDE            | 0.5     | 61 - 80              | 10           | ND  | ND         | ND |  |
| 4,4'-DDE            | 0.5     | 61 - 80              | 14           | ND  | ND         | ND |  |
| 2,4'-DDT            | 0.5     | 61 - 80              | 13           | ND  | ND         | ND |  |
| 4,4'-DDT            | 2.5     | 61 - 80              | 13           | ND  | ND         | ND |  |

<sup>\*</sup> Due to the nature of matrix interferences, sample and/or sample extract was diluted prior to preparation. The MDL and MRL were raised due to the dilution. ND indicates measured value was below method detection limit.

Table 14. Bulk sediment PCB congener 8-209 concentrations in  $\mu g/kg$  for sediment monitoring stations.

|             | CASQO             | Achieved            | Method DL |     | Station ID |    |
|-------------|-------------------|---------------------|-----------|-----|------------|----|
| Analyte     | Max RL<br>(mg/kg) | RL Range<br>(mg/kg) | (mg/kg)   | MA1 | MA2        | E3 |
| PCB 005/008 | 3.0               | 32 - 81             | 32        | ND  | ND         | ND |
| PCB 18      | 3.0               | 32 - 81             | 32        | ND  | ND         | ND |
| PCB 27      | 3.0               | 32 - 81             | 32        | *   | *          | *  |
| PCB 28      | 3.0               | 32 - 81             | 32        | ND  | ND         | ND |
| PCB 29      | 3.0               | 32 - 81             | 32        | *   | *          | *  |
| PCB 31      | 3.0               | 32 - 81             | 32        | ND  | ND         | ND |
| PCB 33      | 3.0               | 32 - 81             | 32        | ND  | ND         | ND |
| PCB 44      | 3.0               | 32 - 81             | 32        | ND  | ND         | ND |
| PCB 49      | 3.0               | 32 - 81             | 32        | ND  | ND         | ND |
| PCB 52      | 3.0               | 32 - 81             | 32        | ND  | ND         | ND |
| PCB 56      | 3.0               | 32 - 81             | 32        | ND  | ND         | ND |

|             | CASQO Achieved Metho |                  | Method DL |     | Station ID |    |
|-------------|----------------------|------------------|-----------|-----|------------|----|
| Analyte     | Max RL<br>(mg/kg)    | RL Range (mg/kg) | (mg/kg)   | MA1 | MA2        | E3 |
| PCB 60      | 3.0                  | 32 - 81          | 32        | ND  | ND         | ND |
| PCB 64      | 3.0                  | 32 - 81          | 81        | *   | *          | *  |
| PCB 66      | 3.0                  | 32 - 81          | 81        | ND  | ND         | ND |
| PCB 70      | 3.0                  | 32 - 81          | 32        | ND  | ND         | ND |
| PCB 74      | 3.0                  | 32 - 81          | 32        | ND  | ND         | ND |
| PCB 77      | 3.0                  | 32 - 81          | 32        | ND  | ND         | ND |
| PCB 87      | 3.0                  | 32 - 81          | 32        | ND  | ND         | ND |
| PCB 95      | 3.0                  | 32 - 81          | 32        | ND  | ND         | ND |
| PCB 97      | 3.0                  | 32 - 81          | 32        | ND  | ND         | ND |
| PCB 99      | 3.0                  | 32 - 81          | 81        | ND  | ND         | ND |
| PCB 101     | 3.0                  | 32 - 81          | 32        | ND  | ND         | ND |
| PCB 105     | 3.0                  | 32 - 81          | 81        | ND  | ND         | ND |
| PCB 110     | 3.0                  | 32 - 81          | 81        | ND  | ND         | ND |
| PCB 114     | 3.0                  | 32 - 81          | 32        | ND  | ND         | ND |
| PCB 118     | 3.0                  | 32 - 81          | 81        | ND  | ND         | ND |
| PCB 126     | 3.0                  | 32 - 81          | 32        | ND  | ND         | ND |
| PCB 128     | 3.0                  | 32 - 81          | 32        | ND  | ND         | ND |
| PCB 132/153 | 3.0                  | 32 - 81          | 81        | ND  | ND         | ND |
| PCB 137     | 3.0                  | 32 - 81          | 81        | *   | *          | *  |
| PCB 138/158 | 3.0                  | 32 - 81          | 81        | ND  | ND         | ND |
| PCB 141     | 3.0                  | 32 - 81          | 81        | ND  | ND         | ND |
| PCB 146     | 3.0                  | 32 - 81          | 32        | *   | *          | *  |
| PCB 149     | 3.0                  | 32 - 81          | 81        | ND  | ND         | ND |
| PCB 151     | 3.0                  | 32 - 81          | 32        | ND  | ND         | ND |
| PCB 156     | 3.0                  | 32 - 81          | 32        | ND  | ND         | ND |
| PCB 157     | 3.0                  | 32 - 81          | 32        | ND  | ND         | ND |
| PCB 169     | 3.0                  | 32 - 81          | 81        | ND  | ND         | ND |
| PCB 170     | 3.0                  | 32 - 81          | 81        | ND  | ND         | ND |
| PCB 174     | 3.0                  | 32 - 81          | 32        | ND  | ND         | ND |
| PCB 177     | 3.0                  | 32 - 81          | 32        | ND  | ND         | ND |
| PCB 180     | 3.0                  | 32 - 81          | 32        | ND  | ND         | ND |
| PCB 183     | 3.0                  | 32 - 81          | 81        | ND  | ND         | ND |
| PCB 187     | 3.0                  | 32 - 81          | 81        | ND  | ND         | ND |
| PCB 189     | 3.0                  | 32 - 81          | 81        | ND  | ND         | ND |
| PCB 194     | 3.0                  | 32 - 81          | 81        | ND  | ND         | ND |
| PCB 195     | 3.0                  | 32 - 81          | 32        | ND  | ND         | ND |
| PCB 198     | 3.0                  | 32 - 81          | 81        | *   | *          | *  |
| PCB 199     | 3.0                  | 32 - 81          | 32        | ND  | ND         | ND |
| PCB 200     | 3.0                  | 32 - 81          | 81        | *   | *          | *  |
| PCB 201     | 3.0                  | 32 - 81          | 32        | ND  | ND         | ND |
| PCB 203     | 3.0                  | 32 - 81          | 32        | ND  | ND         | ND |
| PCB 206     | 3.0                  | 32 - 81          | 32        | ND  | ND         | ND |

|          |                    | Achieved            | Method DL |     | Station ID |           |
|----------|--------------------|---------------------|-----------|-----|------------|-----------|
| Analyte  | Max RL<br>(mg/kg)  | RL Range<br>(mg/kg) | (mg/kg)   | MA1 | MA2        | <b>E3</b> |
| PCB 209  | 3.0                | 32 - 81             | 32        | ND  | ND         | ND        |
| Sum PCBs |                    |                     |           | ND  | ND         | ND        |
| Sum NO   | Sum NOAA 18 PCBs** |                     |           | ND  | ND         | ND        |

Due to the nature of matrix interferences, sample and/or sample extract was diluted prior to preparation. The MDL and MRL were raised due to the dilution; \* - MISSING ANALYTES. \*\* - Sum NOAA 18 includes the sum of PCB congeners 8, 18, 28, 44, 52, 66, 101, 105, 118, 128, 138, 153, 170, 180, 187, 195, 206, and 209. ND indicates measured value was below method detection limit.

#### 3.2.4 Chemistry Line of Evidence

The chemistry results were analyzed using two indices: the California Logistic Regression Model (CA LRM) and the Chemical Score Index (CSI), shown in

Table 15. Integration of these two indices yields the Chemistry LOE (SCCWRP, 2014) under CASQO. The integrated results showed that all three stations had Minimal Exposure.

Table 15 Chemistry indices and Overall Integrated Chemistry LOE for sediment monitoring stations. Categories are Minimal Exposure (Min. Exp.), Low Exposure, Moderate Exposure, and High Exposure.

| Chamis                            | stry Index | Station ID |           |           |  |  |  |
|-----------------------------------|------------|------------|-----------|-----------|--|--|--|
| Chemis                            | on y muex  | MA1        | MA2       | <b>E3</b> |  |  |  |
| CA                                | Score      | 0.06       | 0.07      | 0.26      |  |  |  |
| LRM                               | Category   | Min. Exp.  | Min. Exp. | Min. Exp. |  |  |  |
| CCI                               | Score      | 1.00       | 1.00      | 1.00      |  |  |  |
| CSI                               | Category   | Min. Exp.  | Min. Exp. | Min. Exp. |  |  |  |
| Integrated<br>Chemistry Indicator |            | Min. Exp.  | Min. Exp. | Min. Exp. |  |  |  |

#### 3.2.5 Quality Control Results

All QC parameters were within the established control limits.

The RL for all metal analyses were below the established CASQO max RL except for cadmium. The analytical laboratory confirmed that the increased cadmium RL was a result of the dry weight correction factor and not a result of an interference.

The RLs for all organic analyses were above the established CASQO max RL due to the nature of matrix interferences. The samples and/or sample extracts were diluted prior to preparation and the MDL and MRL were raised due to the dilution.

# 3.3 Toxicity Tests

## 3.3.1 10-day Amphipod Survival Test

The amphipod 10-day whole sediment toxicity test resulted in controls that met test acceptability criteria of 90% survival. All water quality parameters measured were within the recommended range for the duration of the test. Mean survival was 100, 98 and 100% for stations MA1, MA2 and E3, respectively (

Table 16, Figure 8). Mean percent survival was greater than 90% for all samples, and thus all were deemed Non-toxic. Bench water quality and count sheets associated with the toxicity tests are provided in Appendix C.

Table 16 Mean percent survival for the 10-day whole sediment acute exposure test with *E. estuarius*.

| Station ID       | Mean %<br>Survival | % Difference from Control | Toxic<br>Response |
|------------------|--------------------|---------------------------|-------------------|
| Control Sediment | 100                | -                         | -                 |
| MA1              | 100                | 0.0%                      | Non-toxic         |
| MA2              | 98                 | -2.0%                     | Non-toxic         |
| E3               | 100                | 0.0%                      | Non-toxic         |



Figure 8 Mean percent survival for the 10-day whole sediment acute exposure test with *E. estuarius*. Control Sed – control sediment.

# 3.3.2 2-day Sediment-Water Interface Test with Bivalve Embryos

The Mediterranean mussel 2-day SWI toxicity test resulted in controls that met or exceeded test acceptability criteria of 80% normal (

# Table 17). Mean PNA was 84.9, 88.9 and 83.0% for stations M1, M2 and E3, respectively (

Table 17). All water quality parameters were within the recommended range for the duration of the test. For this monitoring event, all samples resulted in non-normalized PNA of greater than 80%, therefore all samples were deemed Non-toxic, and further assessment from the flow chart was not needed. Category score results are shown in Table 17. Bench water quality and count sheets associated with the toxicity tests are provided in Appendix C.

Table 17 Summary of Statistical Results for 2-day Sediment-Water Interface Test with *M. galloprovincialis*.

| Station ID          | Mean<br>PNA (%) | % Difference from Control | Toxic<br>Response |
|---------------------|-----------------|---------------------------|-------------------|
| Screen Tube Control | 91.9            | -                         | -                 |
| MA1                 | 84.9            | -7.6%                     | Non-toxic         |
| MA2                 | 88.9            | -3.3%                     | Non-toxic         |
| E3                  | 83.0            | -9.7%                     | Non-toxic         |

PNA - Percent Normal Alive



Figure 9 Mean PNA for the 2-day SWI exposure with *M. galloprovincialis*. ST – screen tube control.

## 3.3.3 <u>Integration of Toxicity Test Results</u>

To determine the overall Toxicity LOE for each station, numeric category scores were applied to each sample based on the response (Non-toxic = 1, Low Toxicity = 2, Moderate Toxicity = 3, High Toxicity = 4; SCCWRP 2014). Then the numeric category scores from each individual toxicity test were averaged. For the three stations tested, all were deemed Non-toxic with LOE category scores of 1 (Table 18).

|            | Numeric Ca                    |                                            |                                  |  |
|------------|-------------------------------|--------------------------------------------|----------------------------------|--|
| Station ID | 10-day Whole<br>Sediment Test | 2-day Sediment-<br>Water Interface<br>Test | Overall Toxicity<br>LOE Category |  |
| MA1        | 1                             | 1                                          | 1 – Non-toxic                    |  |
| MA2        | 1                             | 1                                          | 1 – Non-toxic                    |  |
| E3         | 1                             | 1                                          | 1 – Non-toxic                    |  |

Table 18 Toxicity Line of Evidence.

## 3.3.4 Toxicity QA/QC

A few QA/QC deviations from USEPA and internal protocols that occurred during testing were noted on raw data sheets. A thorough review of the data and test procedures did not identify any likely impacts on test results as a result of these deviations; therefore, all presented data were deemed acceptable.

All tests were conducted within the recommended 1-month holding time. Temperatures of the samples were within the USEPA recommend range of 0-6°C. Control test acceptability criteria were met for both the amphipod whole-sediment test and the bivalve SWI toxicity test. Total ammonia concentrations were below those that would be anticipated to be toxic to the test endpoints, with overlying water concentrations less than 1.2 mg/L in both tests (Appendix C). A glossary of the qualifier codes used on the test datasheets is provided at the end of Appendix C.

## 3.3.5 Reference Toxicant Testing

A 4-day and a 2-day reference toxicant test using cadmium chloride (CdCl<sub>2</sub>) and copper sulfate (CuSO<sub>4</sub>) were conducted concurrently for the amphipods and Mediterranean mussels, respectively. The laboratory controls associated with these tests met test acceptability criteria. Statistical analyses were conducted using Comprehensive Environmental Toxicity Information System (CETIS) Software, Version 1.9.7.9 (Tidepool Scientific Software). For the amphipod reference toxicant test, the median lethal concentration (LC<sub>50</sub>) was 11.3  $\mu$ g/L which fell within two standard deviations of the laboratory's historical means (8.91  $\pm$  5.8  $\mu$ g/L), indicating sensitivity to cadmium was consistent with that historically observed for amphipods. In addition, for the Mediterranean mussel reference toxicant test, the median effective concentration (EC<sub>50</sub>) for the PNA was 6.12  $\mu$ g/L which fell within two standard deviations of the laboratory's historical means (8.2  $\pm$  3.9  $\mu$ g/L), indicating sensitivity to copper was consistent with that historically observed for Mediterranean mussels.

# 3.4 Sediment CASQO Assessment and Receiving Sediment Monitoring Evaluation

The analytical chemistry, toxicity, and benthic community LOE results for each sediment sampling location were used to determine an overall station evaluation of sediment quality. The CASQO MLOE category was assigned to each sample using the lookup tables in the CASQO CalcTool V5.5.xls with guidance from the CASQO Technical Support Manual (SCCWRP, 2014). The individual LOE and overall MLOE for each station are shown in Table 19. The three stations at SMRE exhibited minimal chemistry indicators, were all non-toxic, and showed moderate to high disturbance categories for the benthic community using CASQO indices (but low disturbance using the M-AMBI). Overall, these stations were all categorized as "Likely Unimpacted".

Table 19 Individual chemistry, toxicity, and benthic community LOE and overall station CASQO assessment based on integrated MLOE.

|                                      | Station ID           |                         |                      |  |  |  |
|--------------------------------------|----------------------|-------------------------|----------------------|--|--|--|
| Line of Evidence                     | MA1                  | MA2                     | E3                   |  |  |  |
| Integrated<br>Chemistry<br>Indicator | Minimal<br>Exposure  | Minimal<br>Exposure     | Minimal<br>Exposure  |  |  |  |
| Integrated<br>Toxicity               | Non-toxic            | Non-toxic               | Non-toxic            |  |  |  |
| Integrated Benthic Indicator         | High<br>Disturbance  | Moderate<br>Disturbance | High<br>Disturbance  |  |  |  |
| CASQO Weight of Evidence             | Likely<br>Unimpacted | Likely<br>Unimpacted    | Likely<br>Unimpacted |  |  |  |

Table 20 shows the overall CASQO assessment using the M-AMBI BCA analyses. All three stations were categorized as Unimpacted with this approach.

Table 20 CASQO assessment incorporating the M-AMBI benthic community line of evidence.

|                                                | Station ID |            |            |  |  |  |
|------------------------------------------------|------------|------------|------------|--|--|--|
| Line of Evidence                               | MA1        | MA2        | E3         |  |  |  |
| CASQO Weight<br>of Evidence with<br>M-AMBI BCA | Unimpacted | Unimpacted | Unimpacted |  |  |  |

#### 4. COMPARISON OF 2022 RESULTS TO HISTORICAL MONITORING RESULTS

# 4.1 Comparison of 2022 Benthic Community Analysis to Historical Monitoring Results

Historic BCA individual indices and integrated scores ranged from low to high among sites and within a given year. Between 2010 and 2016, the mean integrated score across all three stations was ranked as moderate to high disturbance levels (Table 21). Note, a BCA analysis was not performed in monitoring year 2009 (CDM, 2009). In addition, it should be noted, that between 2014-2016, the overall CASQO benthic LOE was not calculated (CH2M, 2016). Values presented in those years were interpreted values by the study team in 2019 (CH2M, 2019). However, these interpreted values do align with a similar pattern of improvement over time that was reported for other parameters within the Estuary for those monitoring years (CH2M, 2019). This is further supported by a similar decrease in disturbance levels following the 2017 Estuary reset event. Finally, decreased disturbance levels were reported throughout the Estuary between 2017-2019. It should be noted, that this same trend (i.e. improvement in Estuary conditions following Estuary reset events) has been reported in other separate studies of the Estuary between 2015-2020 (Katz et al., 2016; Sorensen et al., 2020). Overall the 2022 BCA scores are consistent with what has reported historically for these locations (CH2M, 2019; Sorensen et al., 2022).

Table 21 Mean Integrated Benthic Community Score by year (2010-2022).

| Year  | Mean Integrated Score <sup>1</sup> |
|-------|------------------------------------|
| 2010  | Moderate                           |
| 2011  | Moderate                           |
| 2012  | Moderate                           |
| 2013  | High                               |
| 2014* | Moderate                           |
| 2015* | Moderate                           |
| 2016* | High                               |
| 2017  | Moderate                           |
| 2018  | Low                                |
| 2019  | Low                                |
| 2022  | Moderate                           |

#### Notes:

- (1) Mean disturbance level of three monitoring stations reported for that year
- (2) \* SQO not calculated in this year, indicates these were interpreted values by author (CH2M, 2019)
- (3) Table generated from data previously reported in CH2M, 2019

# 4.2 Comparison of 2022 Sediment Chemistry to Historical Monitoring Results

Overall, the 2022 sediment chemistry concentrations are consistent with what has been reported historically for these sites within the Estuary (CH2M, 2019).

## 4.2.1 PAHs, Pesticides and PCBs

Over the 10-year monitoring period, the ambient bay monitoring results, with a few exceptions, showed that all PAHs and synthetic pyrethroids were either not-detected or at a concentration which fell below the RL but above the MDL (i.e. an estimated but relatively low value). A qualitative summary of parameters which were measured above the RL and MRL is provided in

Table 22 below. Note, a summary of PCBs is not included in this table as the presence of PCBs in estuary sediment samples historically has not been detected. All measured values were for the most part below the NOAA marine sediment screening ERL and ERM values for inorganic and organic contaminants (Buchman, 2008).

Table 22 Estuary Sediment Contaminant Parameters reported above Method Reporting Limits (2009-2022).

| Parameter                 | 2009  | 2010   | 2011  | 2012   | 2013  | 2014  | 2015  | 2016 | 2017 | 2018 | 2019 | 2022 |
|---------------------------|-------|--------|-------|--------|-------|-------|-------|------|------|------|------|------|
| F                         | olycy | clic / | \roma | atic H | ydro  | carbo | ns (P | AHs) |      |      |      |      |
| Acenaphthene              |       |        |       |        |       |       |       |      |      |      |      |      |
| Acenaphthylene            |       |        | Х     | х      |       |       |       |      |      |      |      |      |
| Anthracene                |       |        |       |        |       |       |       |      |      |      |      |      |
| Benzo(a)anthracene        |       |        |       |        |       |       |       |      |      |      | Х    |      |
| Benzo(b)fluoranthene      | Х     |        |       |        |       |       |       |      |      | Х    |      |      |
| Benzo(k)fluoranthene      |       |        |       |        |       |       |       |      |      |      |      |      |
| Benzo(g,h,i)perylene      |       |        |       |        |       |       |       |      |      | х    |      |      |
| Benzo(a)pyrene            |       |        |       |        |       |       |       |      |      |      |      |      |
| Chrysene                  |       |        |       |        |       |       |       |      |      | Х    | х    |      |
| Dibenz(a,h)anthracene     |       |        |       |        |       |       |       |      |      |      |      |      |
| Fluoranthene              |       |        |       |        |       |       |       |      |      | х    | х    |      |
| Fluorene                  |       |        |       | х      |       |       |       |      |      |      |      |      |
| Indeno(1,2,3-cd)pyrene    |       |        |       |        |       |       |       |      |      |      |      |      |
| Naphthalene               |       |        | х     |        |       |       |       | х    |      |      |      |      |
| Phenanthrene              |       |        | Х     |        |       |       |       |      |      | х    | х    |      |
| Pyrene                    |       |        |       |        |       |       |       |      |      | х    | х    |      |
|                           |       | S      | ynthe | tic P  | yreth | roids |       |      |      |      |      |      |
| Allethrin                 |       |        |       |        |       |       |       |      |      |      |      |      |
| Bifenthrin                | Х     |        | Х     |        |       |       |       |      |      |      |      |      |
| Cyfluthrin                |       |        |       |        |       |       |       |      |      |      |      |      |
| Cypermethrin              |       |        | Х     |        |       |       |       |      |      |      |      |      |
| Danitol (Fenpropathrin)   |       |        |       |        |       |       |       |      |      |      |      |      |
| Deltamethrin              |       |        |       |        |       |       |       |      |      |      |      |      |
| L-Cyhalothrin             |       |        |       |        |       |       |       |      |      |      |      |      |
| cis-Permethrin            |       |        |       |        |       |       |       |      |      |      |      |      |
| trans-Permethrin          |       |        |       |        |       |       |       |      |      |      |      |      |
| Prallethrin               |       |        |       |        |       |       |       |      |      |      |      |      |
| Fluvalinate               |       |        |       |        |       |       |       |      |      |      |      |      |
| Esfenvalerate/Fenvalerate |       |        |       |        |       |       |       |      |      |      |      |      |

#### Notes:

## 4.2.2 Metals

Between 2009 and 2016, several measured sediment metal concentrations remained relatively constant (e.g. copper, zinc, and nickel) while others appeared to gradually increase (e.g. arsenic and lead). As a result of the January 2017 Estuary reset event, substantial reductions in sediment metal concentrations were observed in 2017. Overall, measured concentrations were half that of concentrations reported in 2009. Between 2017-2019, overall metal concentrations stayed below previously reported concentrations and were fairly consistent throughout this period. Table 23 provides a summary of measured metals in the Estuary. Concentrations provided represent the highest concentrations measured amongst the three

<sup>(1)</sup> x indicates parameter detected in at least 1 of the 3 sites at concentration above reporting limit (RL)

<sup>(2)</sup> Blank cells indicate parameter report at all sites as either non detect or below RL but above method detection limit (estimated value)

<sup>(3)</sup> Table adapted from data reported in CH2M, 2019

<sup>(4) 2022</sup> data added for comparative purposes

monitoring stations for that monitoring year. Overall, the 2022 metal concentrations are consistent with what has been reported historically for these sites within the Estuary (CH2M, 2019).

Table 23 Summary of historic Estuary Sediment Metal Concentrations (2009-2022).

| Parameter | Units    | 2009  | 2010   | 2011     | 2012     | 2013  | 2014  | 2015  | 2016  | 2017  | 2018  | 2019  | 2022  |
|-----------|----------|-------|--------|----------|----------|-------|-------|-------|-------|-------|-------|-------|-------|
| Antimony  | μg/dry g | 0.09  | <0.042 | <4.9-5.1 | <6.2-6.5 | 0.19  | 0.10  | 0.21  | 0.16  | 0.12  | 0.12  | 0.08  | *     |
| Arsenic   | μg/dry g | 2.01  | 2.72   | <2.5     | <1.2-1.3 | 4.02  | 2.49  | 4.70  | 4.16  | 1.54  | 1.50  | 0.84  | *     |
| Cadmium   | μg/dry g | 0.10  | <0.042 | <2.5     | <0.6-0.7 | 0.16  | 0.85  | 0.12  | 0.13  | 0.05  | 0.04  | 0.03  | *     |
| Chromium  | μg/dry g | 18.18 | 17.20  | 14.00    | 14.90    | 51.38 | 21.98 | 34.60 | 31.23 | 27.24 | 11.30 | 13.90 | *     |
| Copper    | μg/dry g | 10.89 | 9.45   | 12.00    | 5.90     | 17.65 | 11.22 | 16.28 | 18.64 | 5.75  | 5.11  | 3.36  | 15.00 |
| Lead      | μg/dry g | 3.55  | 2.17   | 3.10     | 1.40     | 5.11  | 3.44  | 3.96  | 7.13  | 1.77  | 1.22  | 1.07  | 4.00  |
| Nickel    | μg/dry g | 6.71  | 6.91   | 5.40     | 4.60     | 11.99 | 7.37  | 11.49 | 12.68 | 4.35  | 2.77  | 2.85  | *     |
| Selenium  | μg/dry g | 0.11  | 0.03   | <4.9-5.1 | <6.2-6.5 | 0.22  | 0.13  | 0.31  | 0.24  | 0.09  | 0.17  | 0.07  | *     |
| Zinc      | μg/dry g | 42.93 | 44.90  | <4.9-5.1 | 24.50    | 63.96 | 42.27 | 69.55 | 64.61 | 25.24 | 16.80 | 15.70 | 49.00 |

#### Notes:

- (1) Highest concentration recorded in any of the three stations sampled that year presented in table
- (2) < indicates vaue was below RL but above MDL (estimated value)
- (3) Table adapted from CH2M, 2019 and includes data collected in 2022
- (4) \* indicates metal not measured for this year

An example of metal concentrations trends is provided in Figure 10. For a more detailed description of observed individual metal concentrations by monitoring station and year, refer to prior annual municipal monitoring reports (CDM, 2009; CH2M, 2016; CH2M, 2018; CH2M, 2019).



#### Notes:

- (1) Star indicates signifianct rain event occured resulting in high volume river flow (> 25,000 cubic feet per second (CFS)
- (2) Presented values are highest concentration recorded in any of the three stations sampled that year
- (3) Figure generated from data previously reported in CH2M, 2019
- (4) Data collected in this 2022 has been included and is highlighted with shaded box.

Figure 10 Estuary Sediment Concentration Trends for Arsenic, Copper, Lead, Nickel and Zinc (2009-2022).

When comparing all of the sediment chemistry results, overall, the 2022 sediment chemistry LOE scores are consistent with what has been reported historically for these sites within the Estuary (CH2M, 2019).

## 4.3 Comparison of 2022 Sediment Toxicity to Historical Monitoring Results

Historic sediment toxicity in the Estuary from 2010 through 2022, based on average percent survival per year, are summarized in

**Table** 24. Note, no sediment toxicity data were reported for 2009 (CDM, 2009). Excluding 2011, mean survival rates have general increased with the average between the three stations ranging between 90-99%. In some years, individual station mean survival was below the laboratory negative control survival, but were generally not below the CASQO set mean for normally developed larvae of 82.1 to

92% with control of 91%. For 2022, the average was 99%. Thus, based on CASQO standards, Estuary sediments for all monitoring years except 2011 have been classified as non-toxic (CH2M, 2019).

Table 24 Historic Estuary Sediment Toxicity (Average Mean % Survival) between 2010-2022.

| Year | Average <sup>1</sup> Mean (%) Survival |
|------|----------------------------------------|
| 2010 | 90                                     |
| 2011 | 74*                                    |
| 2012 | 90*                                    |
| 2013 | 93                                     |
| 2014 | 94                                     |
| 2015 | 96                                     |
| 2016 | 98                                     |
| 2017 | 99                                     |
| 2018 | 96                                     |
| 2019 | 93                                     |
| 2022 | 99                                     |

#### Notes:

- (1) Average acrossed 3 monitoring stations
- (2) \*Indicates at leat one or more of the three stations had a value that was statistically significant reduction from the laboratory control.
- (3) Table generated from data previously reported in CH2M, 2019
- (4) Average of 2022 data added for comparison

#### 4.4 Comparison of 2022 CASQO Assessment to Historic Monitoring Results

Finally, a CASQO MLOE analysis was performed for each of the three monitoring sites from 2009 to 2019. In general, when looking across all 10 monitoring years, sediment toxicity was categorized as "non-toxic" or "low toxicity". The benthic community integrated scores between sites has shown a little more variability, ranging from low to high disturbance. With few exceptions (2015, one site), all monitoring sites within the Estuary over the years have been reported as "minimal exposure" to chemical contaminants. This minimal exposure classification means that the level of contamination is unlikely to result in adverse effects to marine organisms (Bay et al., 2013). The overall CASQO calculation per location assessment has remained relatively consistent over the years, with a classification of as either "Unimpacted" or "Likely Unimpacted". Table 25 shows historical CASQO assessments for sites SME-1, SME-2 and SME-3. For comparison purposes, 2022 station MA1 is in close proximity with historical station SME-3 and MA2 is in close proximity to historical station SME-1. Thus, results of the 2022 study are consistent with previous assessments of the SMRE in that the Estuary is considered Likely Unimpacted when using the CASQO MLOE or Unimpacted when applying the M-AMBI with other sediment lines of evidence.

Table 25 Historical CASQO assessment at sites within the SMRE (Table adapted from CH2M, 2019).

| Sampling Year | Station ID <sup>A</sup> | CASQO Assessment   |
|---------------|-------------------------|--------------------|
|               | SME-1                   | Likely Unimpacted  |
| 2009          | SME-2                   | Likely Unimpacted  |
|               | SME-3                   | Likely Unimpacted  |
|               | SME-1                   | Likely Unimpacted  |
| 2010          | SME-2                   | Likely Unimpacted  |
|               | SME-3                   | Likely Unimpacted  |
|               | SME-1                   | Likely Unimpacted  |
| 2011          | SME-2                   | Likely Unimpacted  |
|               | SME-3                   | Likely Unimpacted  |
|               | SME-1                   | Likely Unimpacted  |
| 2012          | SME-2                   | Likely Unimpacted  |
|               | SME-3                   | Likely Unimpacted  |
|               | SME-1                   | Likely Unimpacted  |
| 2013          | SME-2                   | Likely Unimpacted  |
|               | SME-3                   | Likely Unimpacted  |
| 2014*         | SME-1                   | Likely Unimpacted  |
|               | SME-2                   | Unimpacted         |
|               | SME-3                   | Likely Unimpacted* |
|               | SME-1                   | Possibly Impacted  |
| 2015*         | SME-2                   | Likely Unimpacted  |
|               | SME-3                   | Likely Unimpacted* |
|               | SME-1                   | Likely Unimpacted* |
| 2016*         | SME-2                   | Likely Unimpacted  |
|               | SME-3                   | Likely Unimpacted  |
|               | SME-1                   | Likely Unimpacted  |
| 2017          | SME-2                   | Likely Unimpacted  |
|               | SME-3                   | Likely Unimpacted  |
|               | SME-1                   | Unimpacted         |
| 2018          | SME-2                   | Unimpacted         |
| 2018          | SME-3                   | Likely Unimpacted  |
|               | SME-1                   | Unimpacted         |
| 2019          | SME-2                   | Unimpacted         |
|               | SME-3                   | Unimpacted         |
|               | MA1 / W1                | Likely Unimpacted  |
| 2022          | MA2 / W8                | Likely Unimpacted  |
|               | E3                      | Likely Unimpacted  |

<sup>&</sup>lt;sup>A</sup> – Historical station SME-1 is comparable to station MA2; Historical station SME-3 is comparable to station MA1 \* Some BMI index scores were not calculated by the CASQO calculator because there were too few taxa or organisms; however, a manual calculation or interpretation of these indices, consistent with the CASQO guidance, is presented.

#### 5. CONCLUSIONS

This report described results of a 2022 sediment monitoring effort conducted in the SMRE located on MCBCP. This work was performed on behalf of the MCBCP ES staff as part of their Municipal Watershed Monitoring Program. The MCBCP Municipal Watershed Monitoring program has been in effect since 2009 and specific components, including ambient lagoon (Estuary) monitoring requirements, were outlined in their 2016, Municipal Watershed Monitoring Program Guidebook (MCBCP, 2016). The overall ambient bay monitoring requirement was designed to provide an overview of the Estuary's health and consists of water chemistry, sediment toxicity, sediment chemistry, and benthic infauna sampling. Previous monitoring seasons completed under MCBCP's Municipal Watershed Monitoring Program occurred in 2002-2004, 2005-2006, and 2008-2019 (CDM, 2009; CH2M, 2016; CH2M, 2018; CH2M, 2019).

For 2022, similar to prior years, sediment monitoring efforts were conducted at three (3) locations in the Estuary during the summer index growth period. In keeping with the CASQO MLOE approach and current monitoring requirements under Investigative Order No. R9-2019-0007 (SDRWB, 2019; Weston, 2019a), sediment samples from each location were analyzed for standard sediment quality characteristics, BCA and toxicity testing (SCCWRP 2014; Weston, 2019a & b). An LOE score for each of the three components was calculated for each site and combined to calculate an overall site-specific sediment quality assessment.

The 2022 results are summarized in the following. For the sediment quality/chemistry LOE, all three sites were characterized as "minimal exposure," indicating that exposure to these sediments is unlikely to result in adverse effects to marine organisms. For the BCA LOE, under the CASQO calculations, the three sites were ranked from moderate to high disturbance levels. However, applying the M-AMBI calculation to the BCA LOE evaluation, all three sites were ranked at low level disturbance. For the sediment toxicity LOE, all three sites were classified as non-toxic. Finally, the overall site-specific sediment quality evaluation categorized all three sites as "Likely Unimpacted" using the CASQO guidance or "Unimpacted" applying the M-AMBI approach.

Finally, results of this year's sediment analysis yield similar results to what has been reported previously under the MCBCP Municipal Watershed Monitoring Program. Sediment toxicity has generally been categorized as non-toxic, BCA has been variable, and chemical contamination has been generally categorized as minimal exposure, with the resultant overall sediment quality remaining relatively consistent over the years, with a classification of as either "Unimpacted" or "Likely Unimpacted".

#### 6. REFERENCES

- American Society for Testing and Materials (ASTM). 2006. E1367-03 Standard Guide for Conducting 10-Day Static Sediment Toxicity Tests with Marine and Estuarine Amphipods. *Annual Book of Standards, Water and Environmental Technology, Vol. 11.05*, West Conshohocken, PA.
- Anderson, B.S., J.W. Hunt, M. Hester and B.M. Phillips. 1996. Assessment of sediment toxicity at the sediment-water interface. pp. 609-624 in: G.K. Ostrander (ed.), Techniques in aquatic toxicology. CRC Press Inc. Boca Raton.
- Bay, S.M., D.J. Greenstein, S.L. Moore, K.J. Ritter, and J.A. Ranasinghe. 2013. Evaluation of Sediment Condition Using California's Sediment Quality Objectives Assessment Framework. Southern California Coastal Water Research Project. July.
- Buchman, M.F. 2008. NOAA Screening Quick Reference Tables, NOAA OR&R Report 08-1. Seattle WA, Office of Response and Restoration Division, National Oceanic and Atmospheric Administration, 34 pages.
- CDM. 2009. Santa Margarita River Estuary Monitoring Project Data Usability and Assessment Review Field Measured Data Final June 2009. CDM, Denver, CO.
- CH2M. 2016. Annual Self-Monitoring Report for 2014-2015 Municipal Watershed Monitoring and Compliance Requirements. Marine Corps Base Camp Pendleton, California.
- CH2M. 2018. Annual Self-Monitoring Report for 2016-2017 Municipal Watershed Monitoring and Compliance Requirements. Marine Corps Base Camp Pendleton, California.
- CH2M. 2019. Annual Self-Monitoring Report for 2018-2019 Municipal Watershed Monitoring and Compliance Requirements. Marine Corps Base Camp Pendleton, California.
- Gillett, D., Parks, A., and Bay, S. 2019. Calibration of the Multivariate AZTI Marine Biotic Index (M-AMBI) for Potential Inclusion into California Sediment Quality Objective Assessments in San Francisco Bay.
- Katz, C.N. and I. Rivera-Duarte. 2012. Santa Margarita Estuary Water Quality Monitoring Data, Final Report. Space and Naval Warfare Systems center Pacific, Technical Report 2008, August 2012, 82 pp. http://oai.dtic.mil/oai/oai?verb=getRecord&metadataPrefix=html&identifier= ADA568985
- Katz, C., I. Rivera-Duarte, K. Sorensen, B. Chadwick. 2018. Santa Margarita Estuary Water Quality Monitoring Data. Space and Naval Warfare Systems Center Pacific, Technical Report 3125, February 2018, 178 pp.
- MCBCP. 2020. "Santa Margarita River Estuary and Watershed Monitoring and Assessment Program Workplan Final Version," dated January 16, 2020.
- McLaughlin, K., M. Sutula, and M. Molina. 2019. Standard Operating Procedure (SOP) for Macroalgal Collection in Estuarine Environments. Technical Report 872. Southern California Coastal Water Research Project. Costa Mesa, CA.
- SCCWRP. 2014. Sediment Quality Assessment Technical Support Manual. Technical Report 777. Southern California Coastal Water Research Project, Costa Mesa, CA. http://ftp.sccwrp.org/pub/download/DOCUMENTS/TechnicalReports/777\_CASQO\_TechnicalManual.pdf

- San Diego Regional Water Quality Control Board (San Diego Water Board). 2019. Investigative Order R9-2019-0007. An order directing the Cities of Murrieta, Temecula, and Wildomar, the Counties of San Diego and Riverside, the Riverside Flood Control and Water Conservation District, and the United States Marine Corps Base Camp Pendleton to design and implement a water quality improvement monitoring and assessment program for eutrophic conditions in the Santa Margarita River Estuary and watershed, California. 9 May 2019.
- Sorensen, K., K. Carlin, C. Sosa, J. Leather, and I. Rivera-Duarte, 2020. Santa Margarita Estuary, Water Quality monitoring Data, 2017-2018, Final Report. Naval Warfare Information Center Pacific, San Diego CA.
- Sorensen, K., I. Rivera-Duarte, C. Sosa, K. Carlin, S. Reich, M. Palmer, J. Barnard., 2021. Santa Margarita River Estuary and Watershed Monitoring and Assessment Program, Investigative Order No. R9-2019-0007. 2020-2021 Annual Report. Prepared by Naval Warfare Information Center Pacific, San Diego CA, and Stetson Engineers Inc, Carlsbad, CA
- Sorensen, K., I. Rivera-Duarte, C. Sosa, K. Carlin, S. Reich, M. Palmer, J. Barnard., 2022. Santa Margarita River Estuary and Watershed Monitoring and Assessment Program, Investigative Order No. R9-2019-0007. 2021-2022 Annual Report. Prepared by Naval Warfare Information Center Pacific, San Diego CA, and Stetson Engineers Inc, Carlsbad, CA
- Sorensen, K., I. Rivera-Duarte, C. Sosa, K. Carlin, S. Reich, M. Palmer, J. Barnard., 2023. Santa Margarita River Estuary and Watershed Monitoring and Assessment Program, Investigative Order No. R9-2019-0007. 2022-2023 Annual Report. Prepared by Naval Warfare Information Center Pacific, San Diego CA, and Stetson Engineers Inc, Carlsbad, CA
- Tidepool Scientific Software. 2000-2020. CETIS Comprehensive Environmental Toxicity Information System Software, Version 1.9.7.9.
- U.S. Environmental Protection Agency (USEPA). 1994. Methods for assessing the toxicity of sediment-associated contaminants with estuarine and marine amphipods. EPA/600/R-94/025. Office of Research and Development, U.S. Environmental Protection Agency. Narragansett, RI.
- USEPA. 1995. Short-term methods for estimating the chronic toxicity of effluents and receiving waters to west coast marine and estuarine organisms. EPA/600/R-95/136. Office of Research and Development. Cincinnati, OH.
- Weston Solutions, 2019a. Final Monitoring and Assessment Workplan, Santa Margarita River Estuary and Watershed Monitoring and Assessment Program. Prepared for California Regional Water Quality Control Board, San Diego Region. Prepared by Weston Solutions, Inc. November 2019.
- Weston Solutions, 2019b. Final Quality Assurance Project Plan (QAPP), Santa Margarita River Estuary and Watershed Monitoring and Assessment Program. Prepared for California Regional Water Quality Control Board, San Diego Region. Prepared by Weston Solutions, Inc. November 2019.

# APPENDIX A – SEDIMENT BENTHIC COMMUNITY REPORT



# BENTHIC COMMUNITY CONDITION ANALYSIS IN SUPPORT OF THE SANTA MARGARITA RIVER ESTUARY INVESTIGATIVE ORDER (NO. R9-2019-0007) MONITORING AND ASSESSMENT PROGRAM: YEAR 3

# **Prepared for:**

Stetson Engineers Inc 2171 E. Francisco Blvd Suite K San Rafael, CA 94901

#### Prepared by:

EcoAnalysts, INC. 4770 NE View Drive PO Box 216 Port Gamble, Washington 98364

Submittal Date: 10/19/22

EcoAnalysts Report ID: PG101822.01



All results herein are consistent with our laboratory's quality assurance program. All results are intended to be considered in their entirety, and EcoAnalysts is not responsible for use of less than the complete report. The results summarized in this report apply only to the sample(s) evaluated. This document is uncontrolled when printed or accessed from electronic distribution.

**PREPARED BY:** 

Michelle Knowlen

Project Manager / Senior Aquatic Toxicologist and Benthic Ecologist

QA Review:

Jay Word

EcoAnalysts, Inc.

# **CONTENTS**

| 1.    | INTRODUCTION                                           | 2  |
|-------|--------------------------------------------------------|----|
| 2.    | METHODS                                                | 2  |
| 2.1   | Sample Collection                                      | 2  |
| 2.2   | Sample Processing                                      |    |
| 2.3   | Benthic Sample Sorting and Taxonomy                    | 4  |
| 2.4   | Statistical Analysis                                   | 4  |
| 2.4.1 | SQO Benthic Community Condition                        | 5  |
| 2.4.2 | Diversity and Evenness Indices                         |    |
| 2.4.3 | M-AMBI Analyses                                        | 8  |
| 3.    | BENTHIC COMMUNITY RESULTS                              | 9  |
| 3.1   | Diversity and Evenness Indices                         | 9  |
| 3.2   | Community Condition Indices and CASQO Line of Evidence | 9  |
| 3.3   | M-AMBI Results                                         | 11 |
| 4.    | DISCUSSION                                             | 12 |
| 5.    | CONCLUSION                                             | 15 |
| 6.    | REFERENCES                                             | 16 |

# **TABLES**

| Table 2-1: Benthic Community Sample Collection Summary                                                               | 2    |
|----------------------------------------------------------------------------------------------------------------------|------|
| Table 2-2: IBI Metrics and Reference Ranges                                                                          |      |
| Table 2-3: IBI Score Thresholds                                                                                      |      |
| Table 2-4: RBI Score Thresholds                                                                                      |      |
| Table 2-5: BRI Score Thresholds                                                                                      | 6    |
| Table 2-6: RIVPACS Score Thresholds                                                                                  | 7    |
| Table 2-7: M-AMBI Score Thresholds                                                                                   | 8    |
| Table 2-8: M-AMBI Salinity Inputs                                                                                    | 8    |
| Table 3-1: Diversity, Taxa Richness, and Evenness Results for SMRE Stations                                          | 9    |
| Table 3-2: CASQO Metrics for Stations Below I-5 Bridge                                                               |      |
| Table 3-3: CASQO Metrics for Stations Between Bridges                                                                | . 10 |
| Table 3-4: CASQO Metrics for Stations Above Stuart Mesa Bridge                                                       | . 11 |
| Table 3-5: M-AMBI Results for Year 3 Dataset                                                                         | . 11 |
| Table 4-1: M-AMBI vs CASQO Condition Categories for Year 3 (2022)                                                    | . 14 |
| FIGURES                                                                                                              |      |
| Figure 2-1: Benthic Community Stations of SMRE                                                                       | 3    |
| Figure 4-1: CASQO Integrated Benthic Indicator Rankings and Condition Categories for SMRE Stations Years 1 through 3 | in   |
| Figure 4-2: M-AMBI Scores and Condition Categories for SMRE Stations in Years 1 through 3                            |      |

# **APPENDICES**

Appendix A: Benthic Community Data

**Benthic Indices** 

Taxonomy QC Report Sorting QC Report

Appendix B: Benthic Infauna Sample CoC

# **ACRONYMS AND ABBREVIATIONS**

AMBI: AZTI Marine Biotic Index

BCA: Benthic Community Analysis

BRI: Benthic Response Index

CASQO: California Sediment Quality Objectives

CoC: Chain of Custody

EG: Ecological Group

ft: Feet

IBI: Index of Biotic Integrity

LOE: Line of Evidence (in reference to CASQO)

LPTL: Lowest Practicable Taxon Level

M-AMBI: Multivariate AZTI Marine Biotic Index MCBCP: Marine Corps Base Camp Pendleton

m: Meter

mm: Millimeter

NIT: Negative Indicator Taxa

NIWC PAC: Naval Information Warfare Center Pacific

PIT: Positive Indicator taxa

QA/QC: Quality Assurance / Quality Control

RBI: Relative Benthic Index

RIVPACS: River Invertebrate Prediction and Classification System

SCCWRP: Southern California Coastal Water Research Project

SDI: Swartz Dominance Index

SMRE: Santa Margarita River Estuary

TWV: Taxa Weighted Value

Report # PG101822.01 iv EcoAnalysts, Inc.

# **EXECUTIVE SUMMARY**

Marine Corps Base Camp Pendleton (MCBCP) is monitoring water quality and biological condition of sediments within the Santa Margarita River Estuary (SMRE) to determine the overall health of the ecosystem as part of a 4-year investigative order (No. R9-2019-0007). As part of the program, a benthic community assessment is to be conducted each year. The results that follow document the third year of the monitoring program.

For Year 3, the benthic community sample collection occurred on July 12, 2022. All samples were collected by personnel from the Energy and Environmental Sciences Group of the Naval Information Warfare Center Pacific (NIWC PAC). A total of nine stations were sampled, with three stations in each of the main estuary locations: below the I-5 bridge (and closest to the mouth), above the Stuart Mesa bridge (and furthest upstream), and between these two bridges. The stations were selected to equally represent each of the three estuary hydrographic regimes. Each infaunal sample was collected using a 4-inch diameter (0.008 m²) Multi-Substrate Subtidal Sampler (SUBS-Sampler; NC 110686 Patent Pending) and sieved onsite by a representative from EcoAnalysts.

Once processed, specimens from benthic infauna samples were identified to the lowest practicable level by qualified taxonomists and enumerated. Under California Sediment Quality Objectives (CASQO) guidance, benthic community data were analyzed using standard diversity and evenness measures as well as the following indices: the Index of Biotic Integrity (IBI), the Relative Benthic Index (RBI), the Benthic Response Index (BRI), and the River Invertebrate Prediction and Classification System (RIVPACS). The integration of these indices is accomplished by calculating the median value for the four scores, which was then categorized into an overall level of disturbance known as the Integrated Benthic Indicator. Additionally, the data was analyzed using the Multivariate AZTI Marine Biotic Index (M-AMBI) which has been recently calibrated and updated for California estuarine habitats.

Overall, the benthic communities of the 2022 survey had high abundance and moderate taxa richness. Most were dominated by a handful of brackish amphipods. Survey-wide, stations averaged 696 individuals per 0.008 m², and ranged from 33 to 1240 individuals per 0.008 m². The highest abundance was at station MA2 (above the Stuart Mesa bridge), while the lowest abundance was at station MA1 (nearest the estuary mouth). Station MA2 and MA3 had the highest taxa richness (20 taxa) while station M8 and MA5.5 had the lowest (9 taxa). Similar to prior surveys, the communities that were present were notably different below the I-5 bridge and above the Stuart Mesa bridge. The samples collected closer to the mouth of the estuary contained more mollusks and marine-tolerant taxa while those further upstream above the Stuart Mesa bridge contained stress-tolerant taxa that thrive in brackish conditions.

Of the nine stations, none were categorized at a reference or low level of disturbance based on the CASQO integrated score. Five stations were categorized at a moderate level of disturbance (MA2, MA3, MA4, M8, and MA5) while four stations were of high level of disturbance (MA1, E3, E5, and MA5.5). Similar to prior years, the individual CASQO indices ranged widely in categorization of the stations.

For the Year 3 (2022) dataset, the M-AMBI ranked two stations (E5 and MA5.5) at a reference level, four stations at a low level of disturbance (MA1, MA2, M8, and E3), and three stations at a moderate level of disturbance (MA3, MA4, and MA5). None of the stations were classified as being highly disturbed by the M-AMBI. While both the CASQOs and M-AMBI agreed that stations MA3, MA4, and MA5 were moderately impacted, they disagreed on the level of impact at all other stations, especially at those located above the Stuart Mesa Bridge.

# 1. INTRODUCTION

As part of a continuing commitment to monitoring and maintaining healthy water quality conditions within the Santa Margarita River Estuary (SMRE), Marine Corps Base Camp Pendleton (MCBCP) evaluates present and future conditions within the estuary to assess if water quality goals are being met. An investigative order (No. R9-2019-0007) was issued by the San Diego Regional Water Quality Control Board in 2019 to monitor water quality and nutrient loading reductions over a 4-year period. Samples were collected by the Energy and Environmental Sciences Group of the Naval Information Warfare Center Pacific (NIWC PAC) at SMRE stations throughout the summer and fall months of 2021 and analyzed for an assortment of nutrient-specific chemistry analytes as well as benthic community condition in accordance with the California Sediment Quality Objectives (CASQO). The biological results for Year 3 of the investigative order monitoring are included in this report.

#### 2. METHODS

# 2.1 Sample Collection

All sediment samples were collected by representatives from NIWC Pacific and processed onsite by a senior scientist from EcoAnalysts. Nine stations were sampled for benthic community analysis (BCA) on July 12, 2022 (Table 2-1). One sample was collected at each station using a Multi-Substrate Subtidal Sampler (SUBS-Sampler; NC 110686 Patent Pending) with a 4-inch diameter (0.008 m²) core barrel, as per Bight Regional Monitoring suggestions for brackish estuarine sampling. This sampler design was chosen due to the shallow water depth of the SMRE stations (averaging approximately 1 ft), requiring manual operation which prevented the use of a large grab sampler.

An overview map of all benthic community stations is presented in Figure 2-1 (plotted from station coordinates at time of collection: due to the dynamic nature of the estuary, some stations may appear to be on land). Three stations were sampled from each location within the estuary. Station MA1, MA2, and MA3 were below the I-5 bridge and closest to the mouth of the estuary. Stations E3, E5, and MA5.5 (E7) were furthest upstream and located above the Stuart Mesa Bridge. Stations MA4, M8, and MA5 were located in the middle of the estuary between the two bridges.

| Location                    | Station    | Latitude (°N) | Longitude (°W) | Depth (ft) | Collection<br>Date | Collection Time |
|-----------------------------|------------|---------------|----------------|------------|--------------------|-----------------|
|                             | MA1        | 33.23401      | -117.41337     | 1.6        | 7/12/22            | 0940            |
| Below I-5<br>Bridge         | MA2        | 33.23546      | -117.40857     | 1.9        | 7/12/22            | 1042            |
| 21.480                      | MA3        | 33.23453      | -117.40858     | 0.8        | 7/12/22            | 0910            |
|                             | MA4        | 33.23622      | -117.4024      | 1.3        | 7/12/22            | 1213            |
| Between<br>Bridges          | M8         | 33.23744      | -117.39791     | 0.5        | 7/12/22            | 1303            |
| 2                           | MA5        | 33.23781      | -117.39543     | 2.2        | 7/12/22            | 1320            |
|                             | E3         | 33.23787      | -117.39352     | 1.0        | 7/12/22            | 1530            |
| Above Stuart<br>Mesa Bridge | E5         | 33.23714      | -117.38986     | 0.7        | 7/12/22            | 1500            |
|                             | MA5.5 (E7) | 33.23747      | -117.38808     | 0.8        | 7/12/22            | 1442            |



Figure 2-1: Benthic Community Stations of SMRE

## 2.2 Sample Processing

After collection, benthic infauna samples were brought to shore and sieved through a 0.5-mm mesh screen to remove sediment fines. All residual sediment, debris, shells, and benthic organisms remaining on the screen were carefully collected into labelled wide-mouth bottles. Samples were "fixed" on-site in 10% buffered formalin and diluted by seawater to create a 5% formalin preservative. The benthic samples were stored at ambient temperature throughout transit and shipped to the EcoAnalysts benthic laboratory in Moscow, ID.

# 2.3 Benthic Sample Sorting and Taxonomy

Benthic samples arrived at the Moscow EcoAnalysts facility in good condition. All benthic samples were processed by EcoAnalysts using the CASQO and Bight 2018 protocols for identification of benthic macroinvertebrates (SCCWRP 2014 and 2018). At the laboratory, samples were transferred to 70% ethanol for long-term preservation and storage. The sorting process entailed placing small quantities of sample in a petri dish, removing all organisms under a dissecting microscope, and placing them into vials according to major taxon categories (e.g. mollusks, crustaceans, annelids, etc.). This process was continued until 100% of the sample was sorted. Sorted material was then transferred back to the original sample container and underwent a quality assurance (QA) check to control for thoroughness and consistency in sample sorting. During the sorting QA, 10% of each sample was re-sorted to ensure a 95% organism removal efficacy. This sorting review was performed by staff who did not initially sort the sample.

All specimens were identified by qualified taxonomists to the lowest practicable taxonomic level (LPTL) and enumerated (SCAMIT 2021). In most cases this was genus or species level; those organisms identified to a higher taxonomic level were due to a qualifier, such as damage or immaturity of the specimen. As a quality control (QC) check, a full taxonomic re-analysis of two samples was performed by taxonomists who did not originally identify the organisms. Any significant identification discrepancies and their resolutions were noted in the QC report. If taxonomy results between the original and QC IDs were >10% different, a reconciliation between the taxonomists occurred. All benthic data and results of the taxonomy QC are presented in Appendix A.

# 2.4 Statistical Analysis

All benthic data were reviewed for adherence to the CASQO Line of Evidence (LOE) framework. CASQO statistical analyses and calculations were performed using the Data Integration Tool v. 5.7 and the RIVPACS Benthic Index Calculator Tool, both of which are available through the Southern California Coastal Water Research Project (SCCWRP) website (www.sccwrp.org). These calculators categorize and compare the data with a SCCWRP reference database based on sample location (latitude and longitude) as well as collection depth. Diversity and evenness indices were calculated using PRIMER v. 7 software (Clarke and Gorley 2015) whereas dominance scores were calculated in Excel. An additional Multivariate AZTI Marine Biotic Index (M-AMBI) analysis was conducted using the newly developed R software script calibrated to CASQO conditions (Gillett et al. 2019) and using R v. 4.0.3 (R Core Team 2020). This script is available for download through the SCCRP website.

Prior to any statistical analysis, all benthic identifications with qualifiers (such as from damaged or juvenile specimens lacking key identifying features) and which were marked as "non-distinct" taxa by the taxonomists were aggregated with similar or higher-level taxa to avoid artificial inflation of community richness and diversity indices. All epifauna, such as corals or sponges, were noted if present (annotated as "large/rare" in the dataset) but not included in any statistical analyses.

# 2.4.1 SQO Benthic Community Condition

The LOE for determination of benthic community condition closely followed CASQO guidance and was investigated using four indices: the Index of Biotic Integrity (IBI), the Relative Benthic Index (RBI), the Benthic Response Index (BRI), and the River Invertebrate Prediction and Classification System (RIVPACS). The outcome of these independent indices characterizes the sample into one of four categories of disturbance: Reference, Low, Moderate, and High. An integrated result from these four indices is created by calculating the median value of the four category scores. This creates one categorical value known as the Integrated Benthic Indicator. If this score falls between two categories, the value is rounded up to the next highest integer, as per SQO guidance (SCCWRP 2014).

## 2.4.1.1 Index of Biotic Integrity

The IBI compares four metrics for a sample against the ranges as expected under reference conditions (Table 2-2). A sample metric that falls outside of its reference range is given a score of 1, while those that are within range are given a score of 0. The sum value of these four metrics indicates the level of disturbance for a sample (Table 2-3).

**Table 2-2: IBI Metrics and Reference Ranges** 

| Metric                       | Reference Range |  |  |
|------------------------------|-----------------|--|--|
| Total Number of Taxa         | 13 to 99        |  |  |
| Number of Mollusk Taxa       | 2 to 25         |  |  |
| Abundance of Notomastus sp.  | 0 to 59         |  |  |
| Percentage of Sensitive Taxa | 19 to 47.1      |  |  |

Table 2-3: IBI Score Thresholds

| IBI Score | Category             | Category Score |
|-----------|----------------------|----------------|
| 0         | Reference            | 1              |
| 1         | Low Disturbance      | 2              |
| 2         | Moderate Disturbance | 3              |
| 3 or 4    | High Disturbance     | 4              |

#### 2.4.1.2 Relative Benthic Index

The RBI compares a weighted sum of multiple community metrics with the sample abundance of positive indicator taxa (PIT; *Monocorophium insidiosum*, *Asthenothaerus diegensis*, and *Goniada littorea*) which are typically found in healthier habitats and the presence/absence of negative indicator taxa (NIT; *Capitella capitata* complex and Oligochaeta) which are more tolerant of stressful conditions within impacted areas. The results are compared against predictive disturbance level categories. Prior to calculations, the taxa richness and abundance data per sample is normalized in relation to the habitat and the values are scaled accordingly. These scaled metrics are combined to create a Taxa Weighted Value (TWV). Samples that contain the NIT in any abundance receive a -0.1 NIT value for each NIT taxa present (if both NIT are present, the NIT value = -0.2). The PIT value is obtained through the following equation (where *N* is abundance):

$$PIT = \frac{\sqrt[4]{N_{M.insidiosum}}}{\sqrt[4]{473}} + \frac{\sqrt[4]{N_{A.diegensis}}}{\sqrt[4]{27}} + \frac{\sqrt[4]{N_{G.littorea}}}{\sqrt[4]{15}}$$

Using these values, the Raw RBI score is then calculated and converted to a final RBI Score, which is compared against the RBI disturbance level categories (Table 2-4):

$$Raw RBI = TWV + NIT + (2 \times PIT)$$

$$RBI Score = \frac{Raw RBI - 0.03}{4.69}$$

Table 2-4: RBI Score Thresholds

| RBI Score       | Category             | Category Score |
|-----------------|----------------------|----------------|
| > 0.27          | Reference            | 1              |
| > 0.16 - ≤ 0.27 | Low Disturbance      | 2              |
| > 0.08 - ≤ 0.16 | Moderate Disturbance | 3              |
| ≥ 0.08          | High Disturbance     | 4              |

#### 2.4.1.3 Benthic Response Index

The BRI weighs the abundance of pollution-tolerant taxa within a sample against the predictive disturbance level categories. The pollution tolerance score (*P*) is obtained for each species using the most current literature (SCCWRP Species List 2022). The BRI score is then calculated with the following equation:

$$BRI Score = \frac{\sum (\sqrt[4]{N_i} \times P_i)}{\sum \sqrt[4]{N_i}}$$

Where *N* is abundance of a species (*i*). This score is compared against the BRI disturbance level categories to determine level of community impact (Table 2-5).

Table 2-5: BRI Score Thresholds

| BRI Score         | Category             | Category Score |
|-------------------|----------------------|----------------|
| < 39.96           | Reference            | 1              |
| ≥ 39.96 - < 49.15 | Low Disturbance      | 2              |
| ≥ 49.15 - < 73.27 | Moderate Disturbance | 3              |
| ≥ 73.27           | High Disturbance     | 4              |

# 2.4.1.4 River Invertebrate Prediction and Classification System

The RIVPACS is a predictive model that compares the number of observed taxa present (O) in a sample to that expected (E) under minimal disturbance conditions (i.e. reference locations). This is done in a three-step calculation. First, the model determines the probability of the test sample belonging to a reference sample group from one of twelve Southern California marine bays due to physical features (such as depth, latitude, and longitude). Second, the taxa and abundance lists are determined for the expected (E) sample community based on the distribution of reference taxa as well as the probabilities calculated in the first step. Lastly, the observed number of reference taxa (O) in the test sample is counted and the O/E (Observed/Expected) RIVPACS score is calculated. This value is then compared to disturbance level categories (Table 2-6).

Report # PG101822.01 6 EcoAnalysts, Inc.

**Table 2-6: RIVPACS Score Thresholds** 

| RIVPACS Score   | Category             | Category Score |  |
|-----------------|----------------------|----------------|--|
| > 0.90 - < 1.10 | Reference            | 1              |  |
| > 0.74 - ≤ 0.90 |                      |                |  |
| or              | Low Disturbance      | 2              |  |
| ≥ 1.10 - < 1.26 |                      |                |  |
| > 0.32 - ≤ 0.74 |                      |                |  |
| or              | Moderate Disturbance | 3              |  |
| ≥ 1.26          |                      |                |  |
| ≤ 0.32          | High Disturbance     | 4              |  |

# 2.4.2 Diversity and Evenness Indices

In addition to taxa richness (the number of unique taxa in a sample) and total abundance (the sum of organisms in a sample), three standard biodiversity measures were used to calculate benthic community diversity and evenness: the Shannon-Wiener Diversity Index, Pielou's Evenness Index, and Swartz Dominance Index.

#### 2.4.2.1 Shannon-Wiener Diversity Index

This index is a quantitative measure of the biodiversity within a sample based on the number of different types of species (taxa) that occur. The result of this diversity index increases both when abundance and evenness increases. The measure is depicted as H' and is calculated based on the following formula:

$$H' = -\sum_{i=1}^{R} p_i \ln p_i$$

Where R is the richness of the dataset in terms of total number of different taxa,  $p_i$  is the proportion of individuals belonging to the ith species in the dataset.

#### 2.4.2.2 Pielou's Evenness Index

Evenness is a measure of biodiversity that quantifies how equivalent the community is numerically. The evenness index (J') describes how close in abundance each species is within a given taxonomic group for a given sample. The evenness of a population can be represented by Pielou's evenness index:

$$J' = \frac{H'}{\log_{e} S}$$

Where S is abundance of organisms and H' is Shannon-Wiener diversity. J' is constrained between 0 and 1, with more evenly distributed communities having higher J' values.

#### 2.4.2.3 Swartz Dominance Index

Swartz Dominance Index (SDI) is a community evenness index that ranks taxa accounting for 75% of a sample's total abundance (taxa ranked from most to least abundant, with the first taxon for which the cumulative percentage is greater than 75% is the last organism included). The higher the SDI value, the less likely a community is experiencing stress.

Report # PG101822.01 7 EcoAnalysts, Inc.

# 2.4.3 M-AMBI Analyses

In an effort to determine whether community effects as deemed by the CASQOs are due to potentially anthropogenic disturbance or are environmentally driven, an additional analysis was conducted on Year 3 data. This Multivariate AZTI Marine Biotic Index (M-AMBI) is a benthic community index more suitable for dynamic estuaries such as SMRE. Commonly used in European surveys and recently calibrated for West Coast waters (Gillet et al. 2015, Pelletier et al. 2018, and Gillett et al. 2019), the M-AMBI is more inclusive of benthic assemblages unique to lower saline environments and those in which a natural salinity gradient is present. It is also designed for continental-scale applicability.

Each taxon in a sample is assigned an Ecological Group (EG) from I to V that corresponds to its tolerance level. The EG reference database was recalibrated for US and West Coast taxa (Gillett et al. 2015) and employed for AZTI Marine Biotic Index (AMBI) scoring. The AMBI score is a calculation based on the abundance of taxa within each EG (Borja et al. 2000). The M-AMBI is then a weighted tolerance index that combines a site's diversity, richness, and AMBI score via a factor analysis and compared to salinity-driven thresholds to create a M-AMBI score ranging from 0 (bad) to 1.0 (good). This score is then categorized to determine a site's condition and level of disturbance (Table 2-7). For the SMRE monitoring program, the updated M-AMBI condition categories that are "CASQO compatible" were used (Gillett et al. 2019).

Salinity inputs for each station were 24-hr averages taken over the BCA collection period during a full tidal cycle from the nearest water quality monitoring station to capture extremes in salinity exposure within the estuary (Table 2-8). Taxa that did not have EG values assigned at the species level were bumped back to genus level if an EG value was available.

Table 2-7: M-AMBI Score Thresholds

| M-AMBI Score    | Category             |  |
|-----------------|----------------------|--|
| ≥ 0.58          | Reference            |  |
| < 0.58 - ≥ 0.48 | Low Disturbance      |  |
| < 0.48 - ≥ 0.39 | Moderate Disturbance |  |
| < 0.39          | High Disturbance     |  |

Table 2-8: M-AMBI Salinity Inputs

| Station    | Avg 24-hr Salinity (ppt) | Water Quality Monitoring Station Location |  |  |
|------------|--------------------------|-------------------------------------------|--|--|
| MA1        | 32.1                     | Estuary Mouth (MA1)                       |  |  |
| MA2        |                          |                                           |  |  |
| MA3        | 34.2                     | I-5 Bridge                                |  |  |
| MA4        |                          |                                           |  |  |
| M8         |                          |                                           |  |  |
| MA5        | 31.0                     | Stuart Mesa Bridge                        |  |  |
| E3         |                          |                                           |  |  |
| E5         | 17.4                     | Farthest Unstream (MAF E)                 |  |  |
| MA5.5 (E7) | 17.4                     | Farthest Upstream (MA5.5)                 |  |  |

# 3. BENTHIC COMMUNITY RESULTS

The CASQO analysis of community condition, univariate results from the benthic community metrics, and M-AMBI results are presented in the following sections. The taxonomy QC samples passed, achieving an average 95.8-97.7% similarity between the original and QC identifications. All benthic community data, metrics, and taxonomy QC results are presented in Appendix A while the sample Chain of Custody (CoC) is provided in Appendix B.

#### 3.1 Diversity and Evenness Indices

The total abundance of organisms, taxa richness, and community composition indices were calculated for each station (Table 3-1). Abundance ranged from 33 to 1240 individuals per 0.008 m², with station MA2 being the most abundant and station MA1 being the least. The average abundance across all stations was 696 individuals per 0.008 m².

Station MA2 and MA3 had 20 taxa per 0.008 m<sup>2</sup>, which was the highest taxa richness in the survey. Station M8 and MA5.5 had the lowest taxa richness (9 taxa per 0.008 m<sup>2</sup>). The average richness across all stations was 14 taxa. Diversity ranged from a score of 1.16 (station MA4) to 1.80 (station E5 and MA5.5). Dominance scores were similar at most stations, generally measuring 3 to 4. Stations MA3 and MA4 had the lowest dominance with a score of 2.

| Table 3-1: Diversity, Taxa | Richness, and Evenness | Results for SMRE Stations |
|----------------------------|------------------------|---------------------------|
|----------------------------|------------------------|---------------------------|

|                                             |      | Stations     |      |                 |      |      |                          |      |               |
|---------------------------------------------|------|--------------|------|-----------------|------|------|--------------------------|------|---------------|
|                                             | Ве   | low I-5 Brid | lge  | Between Bridges |      |      | Above Stuart Mesa Bridge |      |               |
| Benthic<br>Community<br>Index               | MA1  | MA2          | МАЗ  | MA4             | M8   | MA5  | E3                       | E5   | MA5.5<br>(E7) |
| Total Abundance (no of indiv. per 0.008 m²) | 33   | 1240         | 369  | 466             | 729  | 1176 | 678                      | 1071 | 500           |
| Richness<br>(no of taxa per<br>0.008 m²)    | 12   | 20           | 20   | 16              | 9    | 12   | 15                       | 12   | 9             |
| Shannon-<br>Wiener<br>Diversity             | 1.75 | 1.54         | 1.19 | 1.16            | 1.42 | 1.45 | 1.77                     | 1.80 | 1.80          |
| Pielou's<br>Evenness                        | 0.70 | 0.51         | 0.40 | 0.42            | 0.65 | 0.58 | 0.65                     | 0.73 | 0.82          |
| Swartz<br>Dominance                         | 4    | 3            | 2    | 2               | 3    | 3    | 4                        | 4    | 4             |

#### 3.2 Community Condition Indices and CASQO Line of Evidence

All four indices in the CASQO LOE scored all stations with a broad range of disturbance levels from reference to high disturbance (Table 3-2 through Table 3-4). The Integrated Benthic Indicator summarizes the four index results into one category by calculating the median of the four category scores. None of the SMRE survey stations were categorized at a reference or low level of disturbance.

Five stations were categorized at a moderate level of disturbance (MA2, MA3, MA4, M8, and MA5) while four stations were of a high level of disturbance (MA1, E3, E5, and MA5.5).

Table 3-2: CASQO Metrics for Stations Below I-5 Bridge

|                                                    |                      | Station  |           |           |  |  |  |
|----------------------------------------------------|----------------------|----------|-----------|-----------|--|--|--|
| Benthic Community Index                            |                      | MA1      | MA2       | MA3       |  |  |  |
| IBI                                                | Score                | 2        | 1         | 0         |  |  |  |
| IDI                                                | Disturbance Category | Moderate | Low       | Reference |  |  |  |
| DDI                                                | Score                | 0.05     | 0.58      | 0.10      |  |  |  |
| RBI                                                | Disturbance Category | High     | Reference | Moderate  |  |  |  |
| BRI                                                | Score                | 47.44    | 66.52     | 68.43     |  |  |  |
| DKI                                                | Disturbance Category | Low      | Moderate  | Moderate  |  |  |  |
| DIVIDACE                                           | Score                | 0.19     | 0.52      | 0.69      |  |  |  |
| RIVPACS                                            | Disturbance Category | High     | Moderate  | Moderate  |  |  |  |
| Integrated Benthic Indicator (Overall Disturbance) |                      | High     | Moderate  | Moderate  |  |  |  |

Table 3-3: CASQO Metrics for Stations Between Bridges

|                                                       |                      | Station  |           |           |
|-------------------------------------------------------|----------------------|----------|-----------|-----------|
| Benthic Community Index                               |                      | MA4      | M8        | MA5       |
| IBI                                                   | Score                | 1        | 1         | 1         |
|                                                       | Disturbance Category | Low      | Low       | Low       |
| RBI                                                   | Score                | 0.07     | 0.40      | 0.50      |
|                                                       | Disturbance Category | High     | Reference | Reference |
| BRI                                                   | Score                | 68.52    | 116.27    | 91.31     |
|                                                       | Disturbance Category | Moderate | High      | High      |
| RIVPACS                                               | Score                | 0.57     | 0.38      | 0.38      |
|                                                       | Disturbance Category | Moderate | Moderate  | Moderate  |
| Integrated Benthic Indicator<br>(Overall Disturbance) |                      | Moderate | Moderate  | Moderate  |

Table 3-4: CASQO Metrics for Stations Above Stuart Mesa Bridge

|                                                       |                      | Station  |           |            |
|-------------------------------------------------------|----------------------|----------|-----------|------------|
| Benthic Community Index                               |                      | E3       | E5        | MA5.5 (E7) |
| IBI                                                   | Score                | 3        | 2         | 3          |
|                                                       | Disturbance Category | High     | Moderate  | High       |
| RBI                                                   | Score                | 0.25     | 0.46      | 0.24       |
|                                                       | Disturbance Category | Low      | Reference | Low        |
| BRI                                                   | Score                | 77.80    | 95.15     | 92.67      |
|                                                       | Disturbance Category | High     | High      | High       |
| RIVPACS                                               | Score                | 0.38     | 0.19      | 0.38       |
|                                                       | Disturbance Category | Moderate | High      | Moderate   |
| Integrated Benthic Indicator<br>(Overall Disturbance) |                      | High     | High      | High       |

#### 3.3 M-AMBI Results

For the Year 3 dataset, M-AMBI consistently scored with a range of conditions (Table 3-5). Those furthest upstream (E5 and MA5.5) were classified as reference. The stations closest to the mouth of the estuary (MA1 and MA2) as well as one station in the middle of the estuary (M8) and one upstream station (E3) were categorized at a low level of disturbance. Stations MA3, MA4, and MA5 were classified as having moderate disturbance. None of the stations were scored at a high disturbance level.

Table 3-5: M-AMBI Results for Year 3 Dataset

|         |            | Year 3 (2022) |                      |  |
|---------|------------|---------------|----------------------|--|
|         |            | M-AMBI Score  | M-AMBI Condition     |  |
| Station | MA1        | 0.53          | Low Disturbance      |  |
|         | MA2        | 0.53          | Low Disturbance      |  |
|         | MA3        | 0.44          | Moderate Disturbance |  |
|         | MA4        | 0.42          | Moderate Disturbance |  |
|         | M8         | 0.54          | Low Disturbance      |  |
|         | MA5        | 0.47          | Moderate Disturbance |  |
|         | E3         | 0.52          | Low Disturbance      |  |
|         | E5         | 0.78          | Reference            |  |
|         | MA5.5 (E7) | 0.67          | Reference            |  |

# 4. DISCUSSION

Similar to the Year 2 2021 survey, the Year 3 survey resulted in a high abundance at all but one station (MA1) with a moderate level of taxa richness at all stations. Most communities were somewhat evenly composed with the exception of MA3 and MA4. These stations were dominated by only two taxa. There was little agreement between the CASQO indices for SMRE stations located throughout the estuary; most stations were assigned a mixture of disturbance categories for the same sample (such as Reference, Low Disturbance, and High Disturbance). In Year 3, the CASQO Integrated Benthic Indicator for all stations is above the "bad" threshold of moderate to high disturbance (Figure 4-1). None of the stations were classified under the "good" threshold of reference to low disturbance. Overall, CASQO results were similar to those seen in the Year 1 survey.



Figure 4-1: CASQO Integrated Benthic Indicator Rankings and Condition Categories for SMRE Stations in Years 1 through 3

(Red: High Disturbance, Yellow: Moderate Disturbance, Blue: Low Disturbance, Green: Reference)

It's important to note that the CASQO benthic indices are currently calibrated for only two California habitat types: San Francisco polyhaline and southern California marine bays (SCCWRP 2014). The Santa Margarita Estuary is neither of these and is a dynamic watershed that experiences a range of temperatures and salinities within a small area. As such, the SMRE survey benthic dataset was compared against reference communities of which it has little similarity. Additional multivariate analyses (M-AMBI) were thus conducted to provide another line of evidence alongside the CASQOs that may be more applicable to the dynamic estuarine environment these communities are a component of. Similar to Years 1 and 2, this approach was conducted on this year's dataset (Year 3) to provide consistency across the multiyear program (Figure 4-2).

The M-AMBI ranked all but three of the 2022 Year 3 stations into higher disturbance categories than the Year 2 2021 survey (Figure 4-2). However, few stations were categorized within the "bad" threshold of moderate to high disturbance, with the exception of MA3, MA, and MA5 (none of which were classified as highly disturbed). All three of the stations above the Stuart Mesa Bridge (E3, E5 and MA5.5) improved over the Year 1 2020 survey, two of which (E5 and MA5.5) are classified at a reference level. In addition, the M-AMBI consistently categorized stations at a lower level of disturbance than the CASQOs (Table 4-1). In the Year 3 survey, stations MA3, MA4, and MA5 were the only stations to be similarly categorized by M-AMBI and the CASQOs at a moderate disturbance level.



Figure 4-2: M-AMBI Scores and Condition Categories for SMRE Stations in Years 1 through 3 (Red: High Disturbance, Yellow: Moderate Disturbance, Blue: Low Disturbance, Green: Reference)

Table 4-1: M-AMBI vs CASQO Condition Categories for Year 3 (2022)

|         |            | Year 3 (2022)             |                          |  |
|---------|------------|---------------------------|--------------------------|--|
|         |            | M-AMBI Condition Category | CASQO Condition Category |  |
| Station | MA1        | Low Disturbance           | High Disturbance         |  |
|         | MA2        | Low Disturbance           | Moderate Disturbance     |  |
|         | MA3        | Moderate Disturbance      | Moderate Disturbance     |  |
|         | MA4        | Moderate Disturbance      | Moderate Disturbance     |  |
|         | M8         | Low Disturbance           | Moderate Disturbance     |  |
|         | MA5        | Moderate Disturbance      | Moderate Disturbance     |  |
|         | E3         | Low Disturbance           | Moderate Disturbance     |  |
|         | E5         | Reference                 | High Disturbance         |  |
|         | MA5.5 (E7) | Reference                 | High Disturbance         |  |

Similar to prior surveys, the community compositions of the three sampling areas in the estuary in Year 3 were noticeably different from one another. Below the I-5 bridge, stations contained more marinetolerant taxa and mollusks than stations furthest upstream, with the additional appearance of the brackish amphipods Grandidierella japonica, Monocorphium acherusicum, and Monocorphium insidiosum. Stations MA2 and MA3 contained the highest number of taxa in this year's survey with communities composed of different polychaete taxa, mollusks, crustaceans, and other taxa groups. Stations that were furthest upstream above the Stuart Mesa bridge contained organisms more tolerant of brackish conditions, including Trionia imitator (a small brackish snail), Capitella capitata (an opportunistic, sedentary polychaete that is tolerant of stressful conditions), M. insidiosum, and Cerithidea californica (a common marine snail found in salt marshes and tidal flats in California). Stations located between both bridges contained a mix of marine and brackish taxa that were more common to upstream locations and were dominated by G. japonica, C. capitata, M. insidiosum, and C. californica. Clusters of small sea anemones were collected at stations in both the middle of the estuary as well as those above the Stuart Mesa Bridge. Overall, these results mirror those obtained from previous surveys in which the communities were symptomatic of a strong salinity gradient, with higher numbers of taxa that are more tolerant of large swings in conductivity thriving upstream.

The high numbers of oligochaetes present at most stations between both bridges as well as those above the Stuart Mesa Bridge may contribute to the moderate to high disturbance rankings expressed by the CASQOs, as all oligochaetes are numerically considered to be tolerant taxa via SCCWRP protocol and are thus left at the subclass level of Oligochaeta (SCCWRP 2014). The calibrated M-AMBI drops this higher-level taxon due to the abundance of both tolerant and intolerant oligochaete species within transitional ecosystems.

## 5. CONCLUSION

Most of the stations sampled in the Year 3 SMRE survey had high abundance and a moderate taxa richness. Benthic assemblages were dominated at most stations by brackish amphipods. The CASQOs categorized most stations in the Year 3 survey at a moderate level of disturbance and four stations (MA1, E3, E5, and MA5.5) at a high level of disturbance. The M-AMBI ranked the stations furthest upstream (E5 and MA5.5) at a reference level. Stations located closest to the mouth of the estuary (MA1 and MA2) were of low disturbance while those located in the middle of the estuary were a mix of low to moderate disturbance.

For the Year 3 dataset, the M-AMBI results agreed with the CASQO ranking at three stations (MA3, MA4, and MA5) with a moderate level of disturbance. All other stations were consistently categorized lower in disturbance than the CASQOs, however.

Similar to previous years, the westernmost sampling area below the I-5 bridge and those upstream above the Mesa Stuart bridge contained different benthic communities in the Year 3 survey, with westernmost stations being composed primarily of marine polychaetes, crustaceans and mollusks while stations in eastern part of the estuary contained high numbers of opportunistic brackish water crustaceans and stress-tolerant taxa (such as oligochaetes, the polychaete *Capitella capitata* and the amphipod *Monocorphium insidiosum*).

# 6. REFERENCES

- Borja, A., Franco, J., and Pérez, V. 2000. A marine biotic index to establish the ecological quality of soft-bottom benthos within European estuarine and coastal environments. Mar. Pollut. Bull. 40, 1100-1114.
- Clarke, KR and Gorley, RN. 2015. PRIMER v7: User Manual/Tutorial. PRIMER-E, Plymouth, 296pp.
- Gillett, D., Parks, A., and Bay, S. 2019. Calibration of the Multivariate AZTI Marine Biotic Index (M-AMBI) for Potential Inclusion into California Sediment Quality Objective Assessments in San Francisco Bay. SFEI Contribution #939. San Francisco Estuary Institute, Richmond, CA.
- Gillett, D., Weisberg, S., Grayson, T., Hamilton, A., Hansen, V., Leppo, E., Pelletier, M., Borja, A., Cadien, D., Dauer, D., Diaz, R., Dutch, M., Hyland, J., Kellogg, M., Larsen., P., Levinton, J., Llansó, R., Lovell, L., Montagna, P., Pasko, D., Phillips, C., Rakocinski, C., Ananda Ranasinghe, J., Sanger, D., Teixeira, H., Van Dolah, R., Velarde, R., and Welch, K. 2015. Effect of ecological group classification schemes on performance of the AMBI benthic index in US coastal waters. Ecol. Indic. 50, 99-107.
- Pelletier, M., Gillett, D., Hamilton, A., Grayson, T., Hansen, V., Leppo, E., Weisberg, S., and Borja, A. 2018. Adaptation and application of multivariate AMBI (M-AMBI) in US coastal waters. Ecol. Indic. 80, 818-827.
- R Core Team. 2020. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna Austria. Available from: https://www.R-project.org
- SCCWRP. 2018. Southern California Bight 2018 Regional Marine Monitoring Program: Quality Assurance Manual. Prepared by: Bight '18 Sediment Quality Planning Committee. Costa Mesa, CA.
- SCCWRP. 2014. Sediment Quality Assessment Technical Support Manual: Technical Report 777. Costa Mesa, CA.
- SCCWRP Species List. 2022. Retrieved from:
- https://www.sccwrp.org/about/research-areas/additional-research-areas/sediment-quality/sediment-quality-assessment-tools/

#### **APPENDIX A**

**Benthic Community Data** 

**Benthic Indices** 

**Taxonomy QC Report** 

#### 2022 Taxa List with EG Assignments

| Taxa Group      | Таха                             | Ecological Group (EG)<br>via Gillett 2015 and<br>Gillett 2019 | EXCLUDE from Dataset Entirely (not relevant to benthic community) | MA1     | MA2     | МАЗ     | MA4     | M8     | MA5     | E3      | E5      | MA 5.5<br>(E7) |
|-----------------|----------------------------------|---------------------------------------------------------------|-------------------------------------------------------------------|---------|---------|---------|---------|--------|---------|---------|---------|----------------|
| Annelida        | Armandia brevis                  | IV                                                            | .,                                                                | 1       | 0       | 1       | 0       | 0      | 0       | 0       | 0       | 0              |
|                 | Boccardiella hamata              | III                                                           |                                                                   | 0       | 0       | 1       | 0       | 0      | 0       | 0       | 0       | 0              |
|                 | Capitella capitata Complex       | IV                                                            |                                                                   | 0       | 0       | 0       | 0       | 1      | 197     | 107     | 275     | 119            |
|                 | Caulleriella hamata              | NOT ASSIGNED                                                  |                                                                   | 0       | 1       | 0       | 0       | 0      | 0       | 0       | 0       | 0              |
|                 | Caulleriella pacifica            | II                                                            |                                                                   | 0       | 0       | 0       | 1       | 0      | 0       | 0       | 0       | 0              |
|                 | Ctenodrilus sp.                  | NOT ASSIGNED                                                  |                                                                   | 0       | 0       | 0       | 2       | 0      | 0       | 0       | 0       | 0              |
|                 | Dorvilleidae                     | NOT ASSIGNED                                                  |                                                                   | 0       | 0       | 0       | 0       | 0      | 1       | 0       | 1       | 0              |
|                 | Hesionura elongata               | II                                                            |                                                                   | 1       | 0       | 0       | 0       | 0      | 0       | 0       | 0       | 0              |
|                 | Mediomastus ambiseta             | IV                                                            |                                                                   | 0       | 3       | 0       | 0       | 0      | 0       | 0       | 0       | 0              |
|                 | Mediomastus sp.                  | III                                                           |                                                                   | 0       | 0       | 4       | 0       | 0      | 0       | 0       | 0       | 0              |
|                 | Oligochaeta                      | EXCLUDE                                                       |                                                                   | 0       | 0       | 0       | 6       | 0      | 153     | 215     | 0       | 133            |
|                 | Orbinia johnsoni                 | I (as Orbinia)                                                |                                                                   | 1       | 0       | 0       | 0       | 0      | 0       | 0       | 0       | 0              |
|                 | Piscicolidae                     | NOT ASSIGNED                                                  |                                                                   | 0       | 0       | 0       | 0       | 0      | 0       | 0       | 3       | 0              |
|                 | Polydora cirrosa                 | II                                                            |                                                                   | 0       | 0       | 0       | 0       | 0      | 9       | 167     | 115     | 55             |
|                 | Prionospio sp.                   | III                                                           |                                                                   | 17      | 2       | 1       | 0       | 0      | 0       | 0       | 0       | 0              |
|                 | Pseudopolydora paucibranchiata   | IV                                                            |                                                                   | 0       | 1       | 0       | 0       | 0      | 0       | 0       | 0       | 0              |
|                 | Scoletoma sp.                    | II                                                            |                                                                   | 0       | 2       | 0       | 0       | 0      | 0       | 0       | 0       | 0              |
|                 | Scoloplos acmeceps               | 1                                                             |                                                                   | 0       | 0       | 0       | 5       | 0      | 0       | 0       | 0       | 0              |
|                 | Spio filicornis                  | III<br>                                                       |                                                                   | 0       | 0       | 1       | 0       | 0      | 0       | 0       | 0       | 0              |
|                 | Spiophanes duplex                | III                                                           |                                                                   | 0       | 0       | 2       | 0       | 0      | 0       | 0       | 0       | 0              |
|                 | Spirorbinae                      | NOT ASSIGNED                                                  |                                                                   | 0       | 175     | 0       | 0       | 0      | 0       | 0       | 0       | 0              |
| Bivalvia        | Bivalvia                         | NOT ASSIGNED                                                  |                                                                   | 2       | 1       | 10      | 5       | 0      | 0       | 0       | 0       | 0              |
|                 | Cryptomya californica            | II                                                            |                                                                   | 1       | 0       | 0       | 0       | 0      | 0       | •       | 0       | 0              |
|                 | Laevicardium substriatum         |                                                               |                                                                   | 0       | 0<br>21 | 1       | 0       | 0      | 0       | 0       | 0       | 0              |
|                 | Modiolus modiolus                | II                                                            |                                                                   | 0       |         | 0       | 0       | 0      | 0       | 0       | 0       | 0              |
|                 | Solen rostriformis               |                                                               |                                                                   | 0       | 0       | 0<br>1  | 1<br>0  | 0      | 0       | 0       | 1<br>0  | 0<br>0         |
| 0               | Venerupis philippinarum          |                                                               |                                                                   |         |         |         |         |        |         |         |         |                |
| Gastropoda      | Acteocina inculta Acteocina sp.  | II<br>II                                                      |                                                                   | 0       | 0       | 1<br>0  | 4<br>0  | 1<br>0 | 0       | 0<br>1  | 0       | 0<br>55        |
|                 | Acteocina sp.<br>Bulla gouldiana | "                                                             |                                                                   | 0       | 0       | 0       | 0       | 0      | 5       | 0       | 0       | 0              |
|                 | Cerithidea californica           | ,<br>                                                         |                                                                   | 0       | 0       | 3       | 4       | 47     | 109     | 78      | 47      | 78             |
|                 | Gastropoda                       | NOT ASSIGNED                                                  |                                                                   | 0       | 1       | 0       | 3       | 2      | 0       | 3       | 0       | 5              |
|                 | Haminoea sp.                     | II                                                            |                                                                   | 0       | 1       | 0       | 0       | 0      | 0       | 0       | 0       | 0              |
|                 | Mytilus edulis complex           | III (as Mytilus edulis)                                       |                                                                   | 0       | 0       | 0       | 0       | 0      | 0       | 0       | 2       | 0              |
|                 | Truncatelloidea                  | NOT ASSIGNED                                                  |                                                                   | 0       | 0       | 0       | 0       | 0      | 24      | 0       | 0       | 0              |
|                 | Tryonia imitator                 | I (as Tryonia)                                                |                                                                   | 0       | 0       | 0       | 0       | 0      | 0       | 0       | 62      | 0              |
| Crustacea       | Ericthonius brasiliensis         | II                                                            |                                                                   | 0       | 137     | 0       | 0       | 0      | 6       | 0       | 0       | 0              |
| Orastacca       | Grandidierella japonica          | <br>III                                                       |                                                                   | 5       | 14      | 240     | 201     | 29     | 26      | 1       | 77      | 2              |
|                 | Mayerella acanthopoda            | "                                                             |                                                                   | 0       | 1       | 1       | 0       | 0      | 0       | 0       | 0       | 0              |
|                 | Monocorophium acherusicum        | ;;<br>                                                        |                                                                   | 1       | 205     | 84      | 222     | 0      | 0       | 0       | 0       | 0              |
|                 | Monocorophium insidiosum         | III                                                           |                                                                   | 0       | 624     | 0       | 0       | 254    | 627     | 51      | 355     | 49             |
|                 | Oxyurostylis pacifica            | i                                                             |                                                                   | 1       | 0       | 0       | 0       | 0      | 0       | 0       | 0       | 0              |
|                 | Pachygrapsus crassipes           | NOT ASSIGNED                                                  |                                                                   | 0       | 0       | 0       | 0       | 0      | 0       | 1       | 0       | 0              |
|                 | Paradexamine sp.                 | III                                                           |                                                                   | 0       | 9       | 0       | 0       | 0      | 1       | 0       | 0       | 0              |
|                 | Podocerus cristatus              | III                                                           |                                                                   | 0       | 3       | 0       | 0       | 0      | 0       | 0       | 0       | 0              |
|                 | Pontogeneia inermis              | NOT ASSIGNED                                                  |                                                                   | 1       | 23      | 3       | 3       | 220    | 18      | 6       | 23      | 4              |
|                 | Rudilemboides stenopropodus      | II                                                            |                                                                   | 0       | 0       | 0       | 1       | 0      | 0       | 0       | 0       | 0              |
| Other Organisms | Actiniaria                       | NOT ASSIGNED                                                  |                                                                   | 0       | 0       | 3       | 6       | 174    | 0       | 40      | 110     | 0              |
|                 | Branchiostoma californiense      | 1                                                             |                                                                   | 1       | 0       | 0       | 0       | 0      | 0       | 0       | 0       | 0              |
|                 | Leptosynapta sp.                 | II                                                            |                                                                   | 0       | 0       | 0       | 1       | 0      | 0       | 0       | 0       | 0              |
|                 | Lineidae                         | II                                                            |                                                                   | 0       | 0       | 0       | 0       | 0      | 0       | 5       | 0       | 0              |
|                 | Maculaura alaskensis Cmplx       | II                                                            |                                                                   | 0       | 13      | 6       | 0       | 0      | 0       | 1       | 0       | 0              |
|                 | Nematoda                         | III                                                           | Yes (meiofauna)                                                   | 3       | 50      | 17      | 4       | 0      | 0       | 0       | 0       | 0              |
|                 | Nemertea                         | EXCLUDE                                                       |                                                                   | 0       | 0       | 0       | 0       | 1      | 0       | 0       | 0       | 0              |
|                 | Paranemertes californica         | III                                                           |                                                                   | 0       | 0       | 1       | 1       | 0      | 0       | 1       | 0       | 0              |
|                 | Parviplana hymani                | NOT ASSIGNED                                                  |                                                                   | 1       | 0       | 3       | 0       | 0      | 0       | 0       | 0       | 0              |
|                 | Phoronis sp.                     | II                                                            |                                                                   | 0       | 0       | 2       | 0       | 0      | 0       | 0       | 0       | 0              |
|                 | Stylochus exiguus                | NOT ASSIGNED                                                  |                                                                   | 0       | 3       | 0       | 0       | 0      | 0       | 0       | 0       | 0              |
|                 | Zygonemertes virescens           | II                                                            |                                                                   | 0       | 0       | 0       | 0       | 0      | 0       | 1       | 0       | 0              |
|                 | RAW ABUNDANCE                    |                                                               |                                                                   | 36      | 1290    | 386     | 470     | 729    | 1176    | 678     | 1071    | 500            |
|                 | ADJUSTED ABUNDANCE               |                                                               |                                                                   | 33      | 1240    | 369     | 466     | 729    | 1176    | 678     | 1071    | 500            |
|                 | RICHNESS                         |                                                               |                                                                   | 12<br>4 | 20<br>3 | 20<br>2 | 16<br>2 | 9<br>3 | 12<br>3 | 15<br>4 | 12<br>4 | 9<br>4         |
|                 | DOMINANCE                        |                                                               |                                                                   | 4       | 3       | 2       | 2       | 3      | 3       | 4       | 4       | 4              |

#### PG - Stetson Santa Margarita Estuary 2020-2023

| Eco Analysts, inc. |
|--------------------|
|--------------------|

| LIFE IN WATER                |                       |                      | Below I-5 Bridge     |                      |                      | Between Bridges      |                      |                      | Above Stuart Mesa Bridge |                      |
|------------------------------|-----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|--------------------------|----------------------|
|                              | Sample ID             | MA1                  | MA2                  | MA3                  | MA4                  | M8                   | MA5                  | E3                   | E5                       | MA5.5                |
|                              | Time                  | 940                  | 1042                 | 910                  | 1213                 | 1303                 | 1320                 | 1530                 | 1500                     | 1442                 |
|                              | Collection Date       |                      | 07-12-2022           | 07-12-2022           | 07-12-2022           | 07-12-2022           | 07-12-2022           | 07-12-2022           | 07-12-2022               | 07-12-2022           |
|                              | Percent Subsampled    |                      | 100.00               | 100.00               | 100.00               | 100.00               | 100.00               | 100.00               | 100.00                   | 100.00               |
|                              | EcoAnalysts Sample ID | 8235.2-2             | 8235.2-3             | 8235.2-1             | 8235.2-4             | 8235.2-5             | 8235.2-6             | 8235.2-9             | 8235.2-8                 | 8235.2-7             |
|                              |                       |                      |                      |                      |                      |                      |                      |                      |                          |                      |
| CASQO Benthos Metrics        |                       |                      |                      |                      |                      |                      |                      |                      |                          |                      |
| BRI Score                    |                       | 47.44                | 66.52                | 68.43                | 68.52                | 116.27               | 91.31                | 77.80                | 95.15                    | 92.67                |
| BRI Category                 |                       | Low Disturbance      | Moderate Disturbance | Moderate Disturbance | Moderate Disturbance | High Disturbance     | High Disturbance     | High Disturbance     | High Disturbance         | High Disturbance     |
| IBI Score                    |                       | 2                    | 1                    | 0                    | 1                    | 1                    | 1                    | 3                    | 2                        | 3                    |
| IBI Category                 |                       | Moderate Disturbance | Low Disturbance      | Reference            | Low Disturbance      | Low Disturbance      | Low Disturbance      | High Disturbance     | Moderate Disturbance     | High Disturbance     |
| RBI Score                    |                       | 0.05                 | 0.58                 | 0.10                 | 0.07                 | 0.40                 | 0.50                 | 0.25                 | 0.46                     | 0.24                 |
| RBI Category                 |                       | High Disturbance     | Reference            | Moderate Disturbance | High Disturbance     | Reference            | Reference            | Low Disturbance      | Reference                | Low Disturbance      |
| RIVPACS Score                |                       | 0.19                 | 0.52                 | 0.69                 | 0.57                 | 0.38                 | 0.38                 | 0.38                 | 0.19                     | 0.38                 |
| RIVPACS Category             |                       | High Disturbance     | Moderate Disturbance | Moderate Disturbance | Moderate Disturbance | Moderate Disturbance | Moderate Disturbance | Moderate Disturbance | High Disturbance         | Moderate Disturbance |
| Integrated Benthic Indicator |                       | High Disturbance     | Moderate Disturbance | Moderate Disturbance | Moderate Disturbance | Moderate Disturbance | Moderate Disturbance | High Disturbance     | High Disturbance         | High Disturbance     |

### Year 3 (2022) Benthic Community Evenness and Diversity

|       | Evenness | Diversity |
|-------|----------|-----------|
| MA1   | 0.70     | 1.75      |
| MA2   | 0.51     | 1.54      |
| MA3   | 0.40     | 1.19      |
| MA4   | 0.42     | 1.16      |
| M8    | 0.65     | 1.42      |
| MA5   | 0.58     | 1.45      |
| E3    | 0.65     | 1.77      |
| E5    | 0.73     | 1.80      |
| MA5.5 | 0.82     | 1.80      |

### Year 3 2022 M-AMBI Output via R

| StationID | Replicate | SampleDate | Latitude | Longitude SalZone | AMBI_Score  | MAMBI_Score | Orig_MAMBI_Condition | New_MAMBI_Condition  | Use_MAMBI | Use_AMBI        | YesEG    |
|-----------|-----------|------------|----------|-------------------|-------------|-------------|----------------------|----------------------|-----------|-----------------|----------|
| 1 MA1     | 1         | 7/12/2022  | 33.23401 | -117.4134 WEH     | 2.318181818 | 0.53        | Good                 | Low Disturbance      | Yes       | Yes             | 87.87879 |
| 2 MA2     | 1         | 7/12/2022  | 33.23546 | -117.4086 WEH     | 2.299596774 | 0.525       | Moderate             | Low Disturbance      | Yes       | Yes             | 83.54839 |
| 3 MA3     | 1         | 7/12/2022  | 33.23453 | -117.4086 WEH     | 2.792682927 | 0.442       | ! Moderate           | Moderate Disturbance | Yes       | Yes             | 94.85095 |
| 4 MA4     | 1         | 7/12/2022  | 33.23622 | -117.4024 WEH     | 2.845493562 | 0.422       | ! Moderate           | Moderate Disturbance | Yes       | Yes             | 95.92275 |
| 5 M8      | 1         | 7/12/2022  | 33.23744 | -117.3979 WEH     | 1.263374486 | 0.539       | Good                 | Low Disturbance      | Yes       | Not Recommended | 45.40466 |
| 6 MA5     | 1         | 7/12/2022  | 33.23781 | -117.3954 WEH     | 2.607142857 | 0.467       | ' Moderate           | Moderate Disturbance | Yes       | With Care       | 79.59184 |
| 7 E3      | 1         | 7/12/2022  | 33.23787 | -117.3935 WEH     | 2.685840708 | 0.519       | Moderate             | Low Disturbance      | Yes       | With Care       | 76.10619 |
| 8 E5      | 1         | 7/12/2022  | 33.23714 | -117.3899 MH      | 1.443977591 | 0.781       | . High               | Reference            | Yes       | With Care       | 55.7423  |
| 9 MA5.5   | 1         | 7/12/2022  | 33.23747 | -117.3881 MH      | 2.466       | 0.669       | Good                 | Reference            | Yes       | With Care       | 74.4     |

#### **Stetson Santa Margarita Benthos 2022**

Sort Report



LIFE IN WATER

|                    |           |            |             |                    | Estimated  | Estimated            |           |
|--------------------|-----------|------------|-------------|--------------------|------------|----------------------|-----------|
| <b>EcoA Sample</b> |           | Collection |             | % Primary          | Pre-Rinse  | Post-Rinse           | Estimated |
| ID                 | Sample ID | Date       | Sorter      | Subsampled Matrix  | Volume (L) | Volume (L) QC Sorter | %Efficacy |
| 8235.2-1           | MA3       | 07/12/2022 | C. Barrett  | 100 Fine Organic   | 1.61       | 0.01 C. Barbour      | 100       |
| 8235.2-2           | MA1       | 07/12/2022 | C. Barrett  | 100 Fine Organic   | 1.4        | 0.5 C. Barbour       | 100       |
| 8235.2-3           | MA2       | 07/12/2022 | C. Barrett  | 100 Vegetation     | 0.24       | 0.12 C. Barbour      | 98.93     |
| 8235.2-4           | MA4       | 07/12/2022 | C. Barrett  | 100 Inorganic      | 1.15       | 0.01 C. Barbour      | 100       |
| 8235.2-5           | M8        | 07/12/2022 | M. Reuscher | 100 Filamentous Al | 0.13       | 0.08 C. Barbour      | 97.37     |
| 8235.2-6           | MA5       | 07/12/2022 | C. Bertolli | 100 Coarse Organic | 0.46       | 0.13 C. Barbour      | 98.26     |
| 8235.2-7           | MA5.5     | 07/12/2022 | C. Bertolli | 100 Filamentous Al | 2          | 0.1 C. Barbour       | 100       |
| 8235.2-8           | E5        | 07/12/2022 | C. Bertolli | 100 Filamentous Al | 2.45       | 0.1 C. Barbour       | 96.53     |
| 8235.2-9           | E3        | 07/12/2022 | C. Bertolli | 100 Coarse Organic | 1.55       | 0.1 C. Barbour       | 96.12     |

#### **Taxonomy ID QC Percent Similarity**

Percent Similarity =

100.00

| 8235.2- | 2                           |            |                        |                  |            |   |    |        |          |                | Comparison Date: 1   | 0/11/2022 11:14:25 |
|---------|-----------------------------|------------|------------------------|------------------|------------|---|----|--------|----------|----------------|----------------------|--------------------|
| Compor  | nent: Crustacea             |            |                        |                  |            |   |    |        |          |                |                      |                    |
|         | Collection Date             | Sample ID  |                        | Time             |            |   |    |        |          |                |                      |                    |
|         | 07/12/2022                  | MA1        |                        | 940              |            |   |    |        |          |                |                      |                    |
|         |                             | Or         | iginal Taxonomis       | t - D. Dru       | ımm        |   |    |        | QC Taxo  | nomist         | - M. Hill            |                    |
| TIN     | TAXON                       | NOTE       | AB                     | L                | Р          | Α | AB | L      | Р        | Α              | NOTE                 | DIFF.              |
| 5555    | Grandidierella japonica     |            | 5                      | 5                | 0          | 0 | 5  | 5      | 0        | 0              |                      | 0                  |
| 6463    | Monocorophium acherusicum   |            | 1                      | 1                | 0          | 0 | 1  | 1      | 0        | 0              |                      | 0                  |
| 9801    | Oxyurostylis pacifica       |            | 1                      | 1                | 0          | 0 | 1  | 1      | 0        | 0              |                      | 0                  |
| 10891   | Pontogeneia inermis         |            | 1                      | 1                | 0          | 0 | 1  | 1      | 0        | 0              |                      | 0                  |
|         |                             |            | 8                      |                  |            |   | 8  |        |          |                | Difference =         | 0                  |
|         |                             |            |                        |                  |            |   |    |        |          |                | Percent Similarity = | 100.00             |
| 8235.2- | 2                           |            |                        |                  |            |   |    |        |          |                | Comparison Date: 1   | 0/11/2022 10:21:32 |
| •       | nent: General               |            |                        |                  |            |   |    |        |          |                |                      |                    |
|         | Collection Date             | Sample ID  |                        | Time             |            |   |    |        |          |                |                      |                    |
|         | 07/12/2022                  | MA1        |                        | 940              |            |   |    |        |          |                |                      |                    |
|         |                             |            | iginal Taxonomis       |                  |            |   |    |        | QC Taxo  |                |                      |                    |
| TIN     | TAXON                       | NOTE       | AB                     | L                | Р          | Α | AB | L      | Р        | Α              | NOTE                 | DIFF.              |
| 1401    | Bivalvia                    |            | 2                      | 2                | 0          | 0 | 2  | 2      | 0        | 0              |                      | 0                  |
| 11208   | Branchiostoma californiense |            | 1                      | 1                | 0          | 0 | 1  | 1      | 0        | 0              |                      | 0                  |
| 6851    | Cryptomya californica       |            | 0                      | 0                | 0          | 0 | 1  | 1      | 0        | 0              |                      | -1                 |
| 4387    | Mya arenaria                |            | 1                      | 1                | 0          | 0 | 0  | 0      | 0        | 0              |                      | 1                  |
| 67      | Nematoda                    |            | 3                      | 3                | 0          | 0 | 3  | 3      | 0        | 0              |                      | 0                  |
| 10657   | Parviplana hymani           |            | 1                      | 1                | 0          | 0 | 1  | 1      | 0        | 0              |                      | 0                  |
|         |                             |            | 8                      |                  |            |   | 8  |        |          |                | Difference =         | 0                  |
|         |                             |            |                        |                  |            |   |    |        |          |                | Percent Similarity = | 87.50              |
| 8235.2- |                             |            |                        |                  |            |   |    |        |          |                | Comparison Date: 1   | 0/12/2022 11:10:23 |
|         | nent: Annelids              |            |                        |                  |            |   |    |        |          |                |                      |                    |
|         | Collection Date             | Sample ID  |                        | Time             |            |   |    |        |          |                |                      |                    |
|         | 07/12/2022                  | MA1        |                        | 940              |            |   |    |        |          |                |                      |                    |
| TIN     | TAXON                       | Or<br>NOTE | iginal Taxonomis<br>AB | t - L. Flah<br>L | nerty<br>P | Α | AB | Q<br>L | C Taxono | omist - 0<br>A | C. Barrett<br>NOTE   | DIFF.              |
|         |                             | NOTE       |                        |                  |            |   |    |        |          |                | INUTE                |                    |
| 6550    | Armandia brevis             |            | 1                      | 1                | 0          | 0 | 1  | 1      | 0        | 0              |                      | 0                  |
| 9290    | Hesionura elongata          |            | 1                      | 1                | 0          | 0 | 1  | 1      | 0        | 0              |                      | 0                  |
| 14416   | Orbinia johnsoni            |            | 1                      | 1                | 0          | 0 | 1  | 1      | 0        | 0              | 1 from reject vial   | 0                  |
| 6338    | Prionospio                  |            | 17                     | 17               | 0          | 0 | 17 | 17     | 0        | 0              |                      | 0                  |
|         |                             |            | 20                     |                  |            |   | 20 |        |          |                | Difference =         | 0                  |

Comparison Date: 10/11/2022 11:33:45 8235.2-9

| 0233.2-  | 9                          |             |                |            |       |   |     |     |         |         | Companson Date: 1    | 0/11/2022 11:33:43 |
|----------|----------------------------|-------------|----------------|------------|-------|---|-----|-----|---------|---------|----------------------|--------------------|
| Compor   | nent: Crustacea            |             |                |            |       |   |     |     |         |         |                      |                    |
|          | Collection Date            | Sample ID   |                | Time       |       |   |     |     |         |         |                      |                    |
|          | 07/12/2022                 | E3          |                | 1530       |       |   |     |     |         |         |                      |                    |
|          |                            | Orig        | inal Taxonomis | t - D. Dru | mm    |   |     | (   | QC Taxo | nomist  | - M. Hill            |                    |
| TIN      | TAXON                      | NOTE        | AB             | L          | Р     | Α | AB  | L   | Р       | Α       | NOTE                 | DIFF.              |
| 5555     | Grandidierella japonica    |             | 1              | 1          | 0     | 0 | 1   | 1   | 0       | 0       |                      | 0                  |
| 7157     | Monocorophium insidiosum   |             | 51             | 51         | 0     | 0 | 51  | 51  | 0       | 0       |                      | 0                  |
| 14413    | Pachygrapsus crassipes     |             | 1              | 1          | 0     | 0 | 1   | 1   | 0       | 0       |                      | 0                  |
| 10891    | Pontogeneia inermis        |             | 6              | 6          | 0     | 0 | 6   | 6   | 0       | 0       |                      | 0                  |
|          |                            |             | 59             |            |       |   | 59  |     |         |         | Difference =         | 0                  |
|          |                            |             |                |            |       |   |     |     |         |         | Percent Similarity = | 100.00             |
| 8235.2-9 | 9                          |             |                |            |       |   |     |     |         |         | Comparison Date: 1   | 0/11/2022 11:45:13 |
| Compor   | nent: General              |             |                |            |       |   |     |     |         |         | ·                    |                    |
|          | Collection Date            | Sample ID   |                | Time       |       |   |     |     |         |         |                      |                    |
| (        | 07/12/2022                 | E3          |                | 1530       |       |   |     |     |         |         |                      |                    |
|          |                            | Origi       | inal Taxonomis | t - S. Her | igen  |   |     | (   | QC Taxo | nomist  | - M. Hill            |                    |
| TIN      | TAXON                      | NOTE        | AB             | L          | Р     | Α | AB  | L   | Р       | Α       | NOTE                 | DIFF.              |
| 6648     | Acteocina                  |             | 0              | 0          | 0     | 0 | 1   | 1   | 0       | 0       |                      | -1                 |
| 4045     | Actiniaria                 |             | 40             | 40         | 0     | 0 | 43  | 43  | 0       | 0       |                      | -3                 |
| 12432    | Cerithidea californica     |             | 78             | 78         | 0     | 0 | 78  | 78  | 0       | 0       |                      | 0                  |
| 77       | Gastropoda                 |             | 3              | 3          | 0     | 0 | 3   | 3   | 0       | 0       |                      | 0                  |
| 6813     | Lineidae                   |             | 1              | 1          | 0     | 0 | 5   | 5   | 0       | 0       |                      | -4                 |
| 8163     | Maculaura alaskensis Cmplx |             | 0              | 0          | 0     | 0 | 1   | 1   | 0       | 0       |                      | -1                 |
| 1381     | Nemertea                   |             | 7              | 7          | 0     | 0 | 0   | 0   | 0       | 0       |                      | 7                  |
| 9691     | Paranemertes californica   |             | 1              | 1          | 0     | 0 | 1   | 1   | 0       | 0       |                      | 0                  |
| 7475     | Zygonemertes virescens     |             | 1              | 1          | 0     | 0 | 1   | 1   | 0       | 0       |                      | 0                  |
|          |                            |             | 131            |            |       |   | 133 |     |         |         | Difference =         | -2                 |
|          |                            |             |                |            |       |   |     |     |         |         | Percent Similarity = | 93.70              |
| 8235.2-9 | 9                          |             |                |            |       |   |     |     |         |         | Comparison Date: 1   | 0/13/2022 12:58:04 |
| Compor   | nent: Annelids             |             |                |            |       |   |     |     |         |         | ·                    |                    |
|          | Collection Date            | Sample ID   |                | Time       |       |   |     |     |         |         |                      |                    |
| (        | 07/12/2022                 | E3          |                | 1530       |       |   |     |     |         |         |                      |                    |
|          |                            | Origin      | nal Taxonomist | - M. Reus  | scher |   |     | Q   | C Taxon | omist - | C. Barrett           |                    |
| TIN      | TAXON                      | NOTE        | AB             | L          | Р     | Α | AB  | L   | Р       | Α       | NOTE                 | DIFF.              |
| 9762     | Capitella capitata Complex |             | 107            | 107        | 0     | 0 | 103 | 103 | 0       | 0       |                      | 4                  |
| 4        | Oligochaeta                |             | 215            | 215        | 0     | 0 | 211 | 211 | 0       | 0       |                      | 4                  |
| 9807     | Polydora cirrosa           |             | 167            | 167        | 0     | 0 | 168 | 168 | 0       | 0       |                      | -1                 |
|          |                            |             | 489            |            |       |   | 482 |     |         |         | Difference =         | 7                  |
|          |                            | MA1 Tayonor | my QC AVG %    | (all       |       |   |     |     |         |         | Percent Similarity = | 99.30              |
|          |                            | WAT TAXOUUT | ily QU AVG %   | lan        | 97.7  |   |     |     |         |         |                      |                    |

97.7 groups):

Benthic Community Condition Analysis In Support of the Santa Margarita River Estuary Investigative Order Monitoring and Assessment Program: Year 3

**APPENDIX B** 

**Benthic Infauna Sample CoC** 

### **CHAIN OF CUSTODY**



EcoAnalysts, Inc. 4770 NE View Dr., Port Gamble, WA. 98364 Tel: (360) 297-6040

| Destination: EcoAnalysts              | Samp         | le Originator (Organiza    | ation): Eto Aralyst | 3            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Report Re | sults To: | Midulle | Groi | nen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Phone:                                  | /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                         |
|---------------------------------------|--------------|----------------------------|---------------------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-----------|---------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|
| Destination Contact: Michelle Knowlen |              | SON WHO COLLECTE           | D SAMPLE: Michelle  | knowl        | un                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Contact N | ame:      |         |      | /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Fax:                                    | /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                         |
| Date: 7 13 12  Turn-Around-Time: S.A. | Addre        | 100 of f p 1250            | tamble WA           | 28364        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Lab Addre | ess:      | 1       | /    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Email:                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |
| Project Name:                         | Phon         | e: 340-297 -               | 6040 ex 6056        |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ana       | lyses:    |         | l.   | nvoicing To:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |
| SMPE Yr.3 (Stetson) Contract/PO:      | Fax:         |                            | –<br>Cecoanalyts-co | m            | SOA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |           |           |         | C    | Comments or Special Full SOVE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | I Instructions:                         | A/QC on a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2 samples<br>i processed on<br>0.5mm si |
| No. Sample ID                         | Matrix       | Volume & Type of Container | Date & Time         |              | ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |           |           |         |      | Preservation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Sample Temp<br>Upon Receipt             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | AB ID                                   |
| 1 MA3                                 | sed          | なしとし、立し                    | x1 7/12/22 091      | 0            | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |           |           |         |      | Formalin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                         | - 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                         |
| 2 MA1                                 | 1            | ZUXI                       | 7/12/22 0940        |              | L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |           |           |         |      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |
| 3 MA2                                 |              |                            | 7/12/22 1042        |              | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |           |           |         |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ×                                       |
| 4 MAY                                 |              |                            | 7/12/22 1213        |              | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |           |           |         |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |
| 5 146                                 |              |                            | 7/12/22 1303        |              | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |           |           |         |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |
| 6 MAS                                 |              | 2L X 1                     | 7 12 22 1320        |              | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |           |           |         |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |
| 7 MA5.5                               |              | YLXI                       | 7/12/22 1442        |              | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |           |           |         |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |
| 8 ES                                  |              | 4LX1 -                     | ×1 7/12/22 1500     |              | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |           |           |         |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •                                       |
| 9 E3                                  |              | YLXI                       | 7/12/22 1530        |              | ·×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.        |           |         |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |
| 10                                    | 3137         | 10101                      | 1333                |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |           |         |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |
| 11                                    |              |                            |                     |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |           |         |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |
| 12                                    |              |                            |                     |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |           |         |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ,                                       |
| 13                                    |              |                            |                     |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |           |         |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |
|                                       |              |                            |                     |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |           |         |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |
| 14                                    |              |                            |                     |              | AND THE PERSON AND TH |           |           | 1.0     |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |
| 15                                    |              |                            |                     |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |           |         |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |
| 16                                    |              |                            |                     |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |           |         |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |
| 17                                    | 1            |                            |                     |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |           |         |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |
| 18                                    |              |                            | ,                   |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |           |         |      | THE RESIDENCE OF THE PERSON OF |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |
| 20                                    | 1.           |                            |                     |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |           |         |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |
| Relinquished by:                      |              | Received                   | i by:               |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Relinqu   | ished by: |         |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Received by:                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Matrix Codes                            |
| Print Name: Midwle Lenower            | Print Name   | Max Ries                   |                     | Print Nam    | e:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |           |           |         | F    | Print Name:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | FW = Fresh Water                        |
| Signature: M. 2                       | Signature:   | 1100                       |                     | Signature:   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |           |         | 5    | Signature:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                         | And the season of the season o |                                         |
| Affiliation:                          | Affiliation: | MASSE                      |                     | Affiliation: |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |           |         |      | Affiliation:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | - · · · · · · · · · · · · · · · · · · · |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SB = Salt & Brackish Water              |
| (Carmams 13                           |              | EcolAnalyst                | s,lnc.              |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |           |         |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SS = Soil & Sediment                    |
| Date/Time: 7 13 22 1000               | Date/Time    | 7/18/22                    | 1100                | Date/Time    | :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |           |           |         | ľ    | Date/Time:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |

#### APPENDIX B - SEDIMENT CHEMISTRY ANALYTICAL REPORT



**FINAL REPORT** 

Work Orders: 2G14040 Report Date: 1/05/2023

**Received Date:** 7/14/2022

Project: SME Sediment Monitoring Turnaround Time: Normal

Phones: (619) 221-5296

Fax:

P.O. #:

**Billing Code:** 

Attn: Cassandra Sosa

Client: U.S. Naval Information Warfare Center Pacific

53475 Strothe Rd., Bldg. 111 Code 71760

San Diego, CA 92152

Dod-Elap anab #ADE-2882 • Dod-ISO anab # • Elap-Ca #1132 • Epa-Ucmr #Ca00211 • HW-Doh #4047 • ISO17025 anab #L2457.01 • Lacsd #10143 • Nelap-Or #4047

This is a complete final report. The information in this report applies to the samples analyzed in accordance with the chain-of-custody document. Weck Laboratories certifies that the test results meet all requirements of TNI unless noted by qualifiers or written in the Case Narrative. This analytical report must be reproduced in its entirety.

Dear Cassandra Sosa,

Enclosed are the results of analyses for samples received 7/14/22 with the Chain-of-Custody document. The samples were received in good condition, at 5.6 °C and on ice. All analyses met the method criteria except as noted in the case narrative or in the report with data qualifiers.

Reviewed by:

Chris Samatmanakit Project Manager

1: State











**FINAL REPORT** 

U.S. Naval Information Warfare Center Pacific 53475 Strothe Rd., Bldg. 111 Code 71760 San Diego, CA 92152 Project Number: SME Sediment Monitoring

Project Manager: Cassandra Sosa

Reported:

01/05/2023 17:58



#### Case Narrative

Report revised with additional SVOC analytes requested. -CSS 1/5/23



#### Sample Summary

| Sample Name | Sampled By      | Lab ID     | Matrix | Sampled        | Qualifiers |
|-------------|-----------------|------------|--------|----------------|------------|
| MA1         | Nicholas Hayman | 2G14040-01 | Solid  | 07/12/22 09:25 |            |
| MA2         | Nicholas Hayman | 2G14040-02 | Solid  | 07/12/22 10:35 |            |
| E3          | Nicholas Hayman | 2G14040-03 | Solid  | 07/12/22 14:40 |            |



### **Analyses Accreditation Summary**

| Analyte                    | CAS#       | Not By                                  | ANAB     |
|----------------------------|------------|-----------------------------------------|----------|
|                            |            | NELAP                                   | ISO 1702 |
| FPA 160.3M in Solid        |            |                                         |          |
| % Solids                   |            | <b>/</b>                                |          |
| FPA 9060A in Solid         |            |                                         |          |
| Total Organic Carbon (TOC) |            | <b>/</b>                                |          |
| GC/MS/MS in Solid          |            | ·                                       |          |
| PCB-3                      | 2051-62-9  | <b>J</b>                                |          |
| PCB-8                      | 34883-43-7 | J J                                     |          |
| PCB-18                     | 37680-65-2 | <b>.</b>                                |          |
| PCB-33                     | 38444-86-9 | <b>.</b>                                |          |
| PCB-52                     | 35693-99-3 | <b>)</b>                                |          |
| PCB-49                     | 41464-40-8 | J J                                     |          |
| PCB-44                     | 41464-39-5 | <b>.</b>                                |          |
| PCB-37                     | 38444-90-5 | <b>.</b>                                |          |
| PCB-74                     | 32690-93-0 | <b>.</b>                                |          |
| PCB-70                     | 32598-11-1 | <b>.</b>                                |          |
| PCB-95                     | 38379-99-6 | <b>.</b>                                |          |
| PCB-66                     | 32598-10-0 | <b>.</b>                                |          |
| PCB-101                    | 37680-73-2 | <b>'</b>                                |          |
| PCB-99                     | 38380-01-7 | <b>'</b>                                |          |
| PCB-119                    | 56558-17-9 | <b>'</b>                                |          |
| PCB-97                     | 41464-51-1 | <b>'</b>                                |          |
| PCB-87                     | 38380-02-8 | <b>'</b>                                |          |
| PCB-81                     | 70362-50-4 | <b>'</b>                                |          |
| PCB-110                    | 38380-03-9 | <b>'</b>                                |          |
| PCB-77                     | 32598-13-3 | <b>'</b>                                |          |
| PCB-151                    | 52663-63-5 | <b>'</b>                                |          |
| PCB-149                    | 38380-04-0 | <b>'</b>                                |          |
| PCB-123                    | 65510-44-3 | <b>'</b>                                |          |
| PCB-118                    | 31508-00-6 | J                                       |          |
| PCB-114                    | 74472-37-0 | J                                       |          |
| PCB-168                    | 59291-65-5 | J                                       |          |
| PCB-105                    | 32598-14-4 | J                                       |          |
| PCB-141                    | 52712-04-6 | >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> |          |
| PCB-138                    | 35065-28-2 | シ                                       |          |

2G14040 Page 2 of 31



FINAL REPORT

U.S. Naval Information Warfare Center Pacific 53475 Strothe Rd., Bldg. 111 Code 71760 San Diego, CA 92152 Project Number: SME Sediment Monitoring

Project Manager: Cassandra Sosa

Reported:

01/05/2023 17:58

### Analyses Accreditation Summary

| Analysis                      | CAS #      | Net D.     | ANAB      |
|-------------------------------|------------|------------|-----------|
| Analyte                       | CAS#       | Not By     |           |
|                               |            | NELAP      | ISO 17025 |
| GC/MS/MS in Solid (Continued) |            |            |           |
| PCB-158                       | 74472-42-7 | <b>√</b> . |           |
| PCB-126                       | 57465-28-8 |            |           |
| PCB-187                       | 52663-68-0 | <b>/</b>   |           |
| PCB-183                       | 52663-69-1 |            |           |
| PCB-128                       | 38380-07-3 |            |           |
| PCB-167                       | 52663-72-6 |            |           |
| PCB-174                       | 38411-25-5 |            |           |
| PCB-177                       | 52663-70-4 |            |           |
| PCB-156                       | 38380-08-4 |            |           |
| PCB-201                       | 40186-71-8 |            |           |
| PCB-157                       | 69782-90-7 |            |           |
| PCB-180                       | 35065-29-3 |            |           |
| PCB-169                       | 32774-16-6 |            |           |
| PCB-170                       | 35065-30-6 |            |           |
| PCB-203                       | 52663-76-0 |            |           |
| PCB-189                       | 39635-31-9 |            |           |
| PCB-195                       | 52663-78-2 |            |           |
| PCB-194                       | 35694-08-7 |            |           |
| PCB-206                       | 40186-72-9 |            |           |
| PCB-209                       | 2051-24-3  |            |           |
| 1,3-Dimethyl-2-nitrobenzene   | 81-20-9    |            |           |
| Triphenyl phosphate           | 115-86-6   |            |           |



FINAL REPORT

U.S. Naval Information Warfare Center Pacific 53475 Strothe Rd., Bldg. 111 Code 71760 San Diego, CA 92152 Project Number: SME Sediment Monitoring

Project Manager: Cassandra Sosa

Reported:

01/05/2023 17:58

Sample Results

| Sample:       | MA1                          |                                 |            |                | Sam                                     | pled: 07/ | 12/22 9:25 by N | licholas Hayma |
|---------------|------------------------------|---------------------------------|------------|----------------|-----------------------------------------|-----------|-----------------|----------------|
| Analyte       | 2G14040-01 (Solid)           | Result                          |            | MRL            | Units                                   | Dil       | Analyzed        | Qualific       |
| -             | sticides and/or PCBs by GC/E |                                 |            |                | • • • • • • • • • • • • • • • • • • • • |           | 7               | <b></b>        |
| Method: EPA   | 8081A                        |                                 |            | Instr: GC07    |                                         |           |                 |                |
| Batch ID: W   |                              | Preparation: EPA 3546/Microwave |            | Prepared: 07/  | 19/22 08:10                             |           |                 | Analyst: RJ0   |
| 2,4'-DDD -    |                              | ND                              |            | 61             | ug/kg dry                               | 5         | 07/29/22        | M-02, M-0      |
| 2,4'-DDE -    |                              | ND                              |            | 61             | ug/kg dry                               | 5         | 07/29/22        | M-02, M-0      |
| 2,4'-DDT      |                              | ND                              |            | 61             | ug/kg dry                               | 5         | 07/29/22        | M-02, M-0      |
| 4,4′-DDD -    |                              | ND                              |            | 61             | ug/kg dry                               | 5         | 07/29/22        | M-02, M-0      |
| 4,4'-DDE      |                              | ND                              |            | 61             | ug/kg dry                               | 5         | 07/29/22        | M-02, M-0      |
| 4,4′-DDT -    |                              | ND                              |            | 61             | ug/kg dry                               | 5         | 07/29/22        | M-02, M-0      |
| Aldrin        |                              | ND                              |            | 61             | ug/kg dry                               | 5         | 07/29/22        | M-02, M-0      |
| alpha-BHC     |                              | ND                              |            | 61             | ug/kg dry                               | 5         | 07/29/22        | M-02, M-0      |
| alpha-Chlor   | rdane                        | ND                              |            | 61             | ug/kg dry                               | 5         | 07/29/22        | M-02, M-0      |
| beta-BHC      |                              | ND                              |            | 61             | ug/kg dry                               | 5         | 07/29/22        | M-02, M-0      |
| Chlordane (   | (tech)                       | ND                              |            | 1200           | ug/kg dry                               | 5         | 07/29/22        | M-02, M-0      |
| delta-BHC     |                              | ND                              |            | 61             | ug/kg dry                               | 5         | 07/29/22        | M-02, M-0      |
| Dieldrin      |                              | ND                              |            | 61             | ug/kg dry                               | 5         | 07/29/22        | M-02, M-0      |
| Endosulfan    | 1                            | ND                              |            | 61             | ug/kg dry                               | 5         | 07/29/22        | M-02, M-0      |
| Endosulfan    | II                           | ND                              |            | 61             | ug/kg dry                               | 5         | 07/29/22        | M-02, M-0      |
| Endosulfan    | sulfate                      | ND                              |            | 61             | ug/kg dry                               | 5         | 07/29/22        | M-02, M-0      |
| Endrin        |                              | ND                              |            | 61             | ug/kg dry                               | 5         | 07/29/22        | M-02, M-0      |
| Endrin alde   | hyde                         | ND                              |            | 61             | ug/kg dry                               | 5         | 07/29/22        | M-02, M-0      |
| gamma-BH      | C (Lindane)                  | ND                              |            | 61             | ug/kg dry                               | 5         | 07/29/22        | M-02, M-0      |
| gamma-Chl     | lordane                      | ND                              |            | 61             | ug/kg dry                               | 5         | 07/29/22        | M-02, M-0      |
| Heptachlor    |                              | ND                              |            | 61             | ug/kg dry                               | 5         | 07/29/22        | M-02, M-0      |
| Heptachlor    | epoxide                      | ND                              |            | 61             | ug/kg dry                               | 5         | 07/29/22        | M-02, M-0      |
| Methoxychl    | or                           | ND                              |            | 61             | ug/kg dry                               | 5         | 07/29/22        | M-02, M-0      |
| Toxaphene     |                              | ND                              |            | 1800           | ug/kg dry                               | 5         | 07/29/22        | M-02, M-0      |
| trans-Nona    | chlor                        | ND                              |            | 61             | ug/kg dry                               | 5         | 07/29/22        | M-02, M-0      |
| Surrogate(s)  |                              |                                 |            |                |                                         |           |                 |                |
| Decachloro    | biphenyl                     | 75%                             | Conc: 72.6 | 21-125         |                                         |           | 07/29/22        |                |
| Tetrachloro   | -meta-xylene                 | 55%                             | Conc: 53.5 | 23-138         |                                         |           | 07/29/22        |                |
| nventional C  | hemistry/Physical Parameter  | s by APHA/EPA/ASTM Methods      |            |                |                                         |           |                 |                |
| Method: EPA   | 160.3M                       |                                 |            | Instr: BAL04   |                                         |           |                 |                |
| Batch ID: W   | /2G1058                      | Preparation: _NONE (METALS)     |            | Prepared: 07/  | 18/22 09:29                             |           |                 | Analyst: ch    |
| % Solids      |                              | 72.5                            |            | 0.100          | % by Weight                             | 1         | 07/19/22        |                |
| etals (Non-Ad | queous) by EPA 6000/7000 Se  | eries Methods                   |            |                |                                         |           |                 |                |
| Method: EPA   | 6020                         |                                 |            | Instr: ICPMS05 | 5                                       |           |                 |                |
| Batch ID: W   |                              | Preparation: EPA 3050B          |            | Prepared: 07/  |                                         |           |                 | Analyst: ALI   |
| Cadmium, 7    | Total                        | ND                              |            | 0.28           | mg/kg dry                               | 1         | 07/19/22        |                |



FINAL REPORT

U.S. Naval Information Warfare Center Pacific 53475 Strothe Rd., Bldg. 111 Code 71760 San Diego, CA 92152 Project Number: SME Sediment Monitoring

Project Manager: Cassandra Sosa

Reported:

01/05/2023 17:58

(Continued)

|  | / | V | c |
|--|---|---|---|
|  |   | 7 | - |

#### Sample Results

| Sample:      | MA1                          |                                 |               | San          | npled: 07/ | 12/22 9:25 by N | Vicholas Hayman        |
|--------------|------------------------------|---------------------------------|---------------|--------------|------------|-----------------|------------------------|
| Analyte      | 2G14040-01 (Solid)           | Result                          | MRL           | Units        | Dil        | Analyzed        | (Continued)  Qualifier |
| -            | queous) by EPA 6000/7000 Se  |                                 | WIKE          | Onits        | Dii        | Allalyzeu       | Quanner                |
| Method: EPA  | 6020                         |                                 | Instr: ICPMS0 | )5           |            |                 |                        |
| Batch ID: W  | V2G0976                      | Preparation: EPA 3050B          | Prepared: 07  | /15/22 09:50 |            |                 | Analyst: ALN           |
| Copper, To   | otal                         | 3.1                             | 0.69          | mg/kg dry    | 1          | 07/22/22        | _                      |
| Lead, Tota   |                              | 1.2                             | 0.69          | mg/kg dry    | 1          | 07/19/22        |                        |
| Zinc, Total  |                              | 9.7                             | 6.9           | mg/kg dry    | 1          | 07/22/22        |                        |
| Method: EPA  | 7471A                        |                                 | Instr: HG03   |              |            |                 |                        |
| Batch ID: W  | V2G1177                      | Preparation: EPA 7471A          | Prepared: 07  | /19/22 09:24 |            |                 | Analyst: KVM           |
| Mercury, To  | otal                         | ND                              | 0.014         | mg/kg dry    | 1          | 07/20/22        |                        |
| rganic Carbo | n In Soil/Solid by EPA 9060A |                                 |               |              |            |                 |                        |
| Method: EPA  | 9060A                        |                                 | Instr: TOC02  |              |            |                 |                        |
| Batch ID: W  | V2H0270                      | Preparation: EPA 9060M          | Prepared: 08  | /03/22 08:16 |            |                 | Analyst: ajc           |
| Total Orga   | nic Carbon (TOC)             | 845                             | 200           | mg/kg        | 1          | 08/03/22        |                        |
| CB Congener  | Screen by GCMS SIM           |                                 |               |              |            |                 |                        |
| Method: GC/  | MS/MS                        |                                 | Instr: GCMS1  | 5            |            |                 |                        |
| Batch ID: W  |                              | Preparation: EPA 3546/Microwave | Prepared: 07  |              |            |                 | Analyst: EFC           |
| PCB-101      |                              | ND                              | 32            | ug/kg dry    | 1          | 08/03/22        | M-02                   |
| PCB-105      |                              | ND                              | 32            | ug/kg dry    | 1          | 08/03/22        | M-02                   |
| PCB-110      |                              | ND                              | 32            | ug/kg dry    | 1          | 08/03/22        | M-02                   |
| PCB-114      |                              | ND                              | 32            | ug/kg dry    | 1          | 08/03/22        | M-02                   |
| PCB-118      |                              | ND                              | 32            | ug/kg dry    | 1          | 08/03/22        | M-02                   |
| PCB-119      |                              | ND                              | 32            | ug/kg dry    | 1          | 08/03/22        | M-02                   |
| PCB-123      |                              | ND                              | 32            | ug/kg dry    | 1          | 08/03/22        | M-02                   |
| PCB-126      |                              | ND                              | 32            | ug/kg dry    | 1          | 08/03/22        | M-02                   |
| PCB-128      |                              | ND                              | 32            | ug/kg dry    | 1          | 08/03/22        | M-02                   |
| PCB-132/1    | 53                           | ND                              | 32            | ug/kg dry    | 1          | 08/03/22        | M-02                   |
| PCB-138      |                              | ND                              | 32            | ug/kg dry    | 1          | 08/03/22        | M-02                   |
| PCB-141      |                              | ND                              | 32            | ug/kg dry    | 1          | 08/03/22        | M-02                   |
| PCB-149      |                              | ND                              | 32            | ug/kg dry    | 1          | 08/03/22        | M-02                   |
| PCB-151      |                              | ND                              | 32            | ug/kg dry    | 1          | 08/03/22        | M-02                   |
| PCB-156      |                              | ND                              | 32            | ug/kg dry    | 1          | 08/03/22        | M-02                   |
| PCB-157      |                              | ND                              | 32            | ug/kg dry    | 1          | 08/03/22        | M-02                   |
|              |                              | ND                              | 32            | ug/kg dry    | 1          | 08/03/22        | M-02                   |
|              |                              | ND                              | 32            | ug/kg dry    | 1          | 08/03/22        | M-02                   |
| PCB-167      |                              | ND                              | 32            | ug/kg dry    | 1          | 08/03/22        | M-02                   |
| PCB-166      |                              | · · ·                           |               |              |            |                 | M-02                   |
|              |                              | ND                              | 32            | ug/kg dry    | 1          | 08/03/22        | M-02                   |
| PCB-170      |                              | · · ·                           | 32            | ug/kg dry    | 1          | 08/03/22        |                        |
| . 02         |                              | ND                              | 32            | ug/kg dry    | 1          | 08/03/22        | M-02                   |
| PCB-177      |                              | ND                              | 32            | ug/kg dry    | 1          | 08/03/22        | M-02                   |
| G14040       |                              |                                 |               |              |            |                 | Page                   |



FINAL REPORT

U.S. Naval Information Warfare Center Pacific 53475 Strothe Rd., Bldg. 111 Code 71760 San Diego, CA 92152 Project Number: SME Sediment Monitoring

Project Manager: Cassandra Sosa

Reported:

01/05/2023 17:58

#### Sample Results

(Continued)

| Sample: MA1                        |                                 |                 | San       | npled: 07/ | 12/22 9:25 by N      | ,            |
|------------------------------------|---------------------------------|-----------------|-----------|------------|----------------------|--------------|
| 2G14040-01 (So                     | lid)                            |                 |           |            |                      | (Continued   |
| Analyte                            | Result                          | MRL             | Units     | Dil        | Analyzed             | Qualifie     |
| CB Congener Screen by GCMS SI      | M (Continued)                   |                 |           |            |                      |              |
| Method: GC/MS/MS                   |                                 | Instr: GCMS1    |           |            |                      |              |
| <b>Batch ID:</b> W2G1437<br>PCB-18 | Preparation: EPA 3546/Microwave | Prepared: 07/   |           | 1          | 00/02/22             | Analyst: EFC |
|                                    | ND                              | 32<br>32        | ug/kg dry | 1          | 08/03/22<br>08/03/22 | M-02         |
| . 02 .00                           | ND                              | 32              | ug/kg dry |            | 08/03/22             |              |
| . 02 .00                           |                                 |                 | ug/kg dry | 1          |                      | M-02         |
| . 65 .67                           |                                 | 32              | ug/kg dry | 1          | 08/03/22             | M-02         |
| . 02 .00                           | 2                               | 32              | ug/kg dry | 1          | 08/03/22             | M-02         |
| 1 05 101                           | ND                              | 32              | ug/kg dry | 1          | 08/03/22             | M-02         |
|                                    | ND                              | 32              | ug/kg dry | 1          | 08/03/22             | M-02         |
| . 02 .00                           | ND                              | 32              | ug/kg dry | 1          | 08/03/22             | M-02         |
| . 02 20 .                          | ND                              | 32              | ug/kg dry | 1          | 08/03/22             | M-02         |
| . 02 200                           | ND                              | 32              | ug/kg dry | 1          | 08/03/22             | M-02         |
| 1 05 200                           | ND                              | 32              | ug/kg dry | 1          | 08/03/22             | M-0:         |
|                                    | ND                              | 32              | ug/kg dry | 1          | 08/03/22             | M-0.         |
| . 02 20/0 .                        | ND                              | 32              | ug/kg dry | 1          | 08/03/22             | M-0          |
| . 02 0                             | ND                              | 32              | ug/kg dry | 1          | 08/03/22             | M-0:         |
| PCB-33                             | ND                              | 32              | ug/kg dry | 1          | 08/03/22             | M-02         |
| PCB-37                             | ND                              | 32              | ug/kg dry | 1          | 08/03/22             | M-0          |
| PCB-44                             | ND                              | 32              | ug/kg dry | 1          | 08/03/22             | M-0          |
| PCB-49                             | ND                              | 32              | ug/kg dry | 1          | 08/03/22             | M-0          |
| PCB-52                             | ND                              | 32              | ug/kg dry | 1          | 08/03/22             | M-0          |
| PCB-56/60                          | ND                              | 32              | ug/kg dry | 1          | 08/03/22             | M-02         |
| PCB-66                             | ND                              | 32              | ug/kg dry | 1          | 08/03/22             | M-02         |
| PCB-70                             | ND                              | 32              | ug/kg dry | 1          | 08/03/22             | M-02         |
| PCB-74                             | ND                              | 32              | ug/kg dry | 1          | 08/03/22             | M-02         |
| PCB-77                             | ND                              | 32              | ug/kg dry | 1          | 08/03/22             | M-0          |
| PCB-8                              | ND                              | 32              | ug/kg dry | 1          | 08/03/22             | M-0          |
| PCB-81                             | ND                              | 32              | ug/kg dry | 1          | 08/03/22             | M-0          |
| PCB-87                             | ND                              | 32              | ug/kg dry | 1          | 08/03/22             | M-0          |
| PCB-95                             | ND                              | 32              | ug/kg dry | 1          | 08/03/22             | M-0          |
| PCB-97                             | ND                              | 32              | ug/kg dry | 1          | 08/03/22             | M-0          |
| PCB-99                             | ND                              | 32              | ug/kg dry | 1          | 08/03/22             | M-0          |
| Surrogate(s)                       |                                 |                 |           |            |                      |              |
| 1,3-Dimethyl-2-nitrobenzene        | 60% Co.                         | nc: 158 0.1-141 |           |            | 08/03/22             |              |
| Triphenyl phosphate                | 149% Co.                        | nc: 392 15-179  |           |            | 08/03/22             |              |

Semivolatile Organics - Low Level by GC/MS SIM Mode

2G14040 Page 6 of 31



FINAL REPORT

U.S. Naval Information Warfare Center Pacific 53475 Strothe Rd., Bldg. 111 Code 71760 San Diego, CA 92152 Project Number: SME Sediment Monitoring

Project Manager: Cassandra Sosa

Reported:

01/05/2023 17:58

5

#### Sample Results

| Sample:                         | MA1                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  | San           | npled: 07/ | 12/22 9:25 by N | icholas Hayman |
|---------------------------------|-------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|---------------|------------|-----------------|----------------|
|                                 | 2G14040-01 (Solid)            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |               |            |                 | (Continued)    |
| Analyte                         |                               | Result                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | MRL              | Units         | Dil        | Analyzed        | Qualifier      |
| Semivolatile (                  | Organics - Low Level by GC/MS | SIM Mode (Continued)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  |               |            |                 |                |
| Method: EP/                     | A 8270C SIM                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Instr: GCMS0     | 06            |            |                 |                |
| Batch ID: \                     |                               | Preparation: EPA 3546/Microwave                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Prepared: 07     | 7/21/22 10:53 |            |                 | Analyst: rmr   |
| 1-Methyln                       | naphthalene                   | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 97               | ug/kg dry     | 1          | 07/28/22        | M-02           |
| 1-Methylp                       |                               | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 97               | ug/kg dry     | 1          | 07/28/22        | M-02           |
| 2,6-Dimet                       | thylnaphthalene               | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 97               | ug/kg dry     | 1          | 07/28/22        | M-02           |
| 2-Methyln                       | naphthalene                   | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 97               | ug/kg dry     | 1          | 07/28/22        | M-02           |
| Acenaphth                       | hene                          | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 97               | ug/kg dry     | 1          | 07/28/22        | M-02           |
| Acenaphth                       | hylene                        | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 97               | ug/kg dry     | 1          | 07/28/22        | M-02           |
| Anthracen                       | ne                            | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 97               | ug/kg dry     | 1          | 07/28/22        | M-02           |
| Benzo (a)                       | anthracene                    | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 97               | ug/kg dry     | 1          | 07/28/22        | M-02           |
| Benzo (a)                       | pyrene                        | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 97               | ug/kg dry     | 1          | 07/28/22        | M-02           |
| Benzo (b)                       | fluoranthene                  | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 97               | ug/kg dry     | 1          | 07/28/22        | M-02           |
| Benzo (e)                       | pyrene                        | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 97               | ug/kg dry     | 1          | 07/28/22        | M-02           |
| Benzo (g,l                      | h,i) perylene                 | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 97               | ug/kg dry     | 1          | 07/28/22        | M-02           |
| Benzo (k)                       | fluoranthene                  | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 97               | ug/kg dry     | 1          | 07/28/22        | M-02           |
| Biphenyl                        |                               | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 97               | ug/kg dry     | 1          | 07/28/22        | M-02           |
| Chrysene                        |                               | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 97               | ug/kg dry     | 1          | 07/28/22        | M-02           |
| Dibenzo (                       | a,h) anthracene               | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 97               | ug/kg dry     | 1          | 07/28/22        | M-02           |
| Fluoranthe                      | ene                           | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 97               | ug/kg dry     | 1          | 07/28/22        | M-02           |
| Fluorene                        |                               | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 97               | ug/kg dry     | 1          | 07/28/22        | M-02           |
| Indeno (1.                      | ,2,3-cd) pyrene               | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 97               | ug/kg dry     | 1          | 07/28/22        | M-02           |
| Naphthale                       |                               | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 97               | ug/kg dry     | 1          | 07/28/22        | M-02           |
| Perylene                        |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 97               | ug/kg dry     | 1          | 07/28/22        | M-02           |
| Phenanthi                       |                               | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 97               | ug/kg dry     | 1          | 07/28/22        | M-02           |
| Pyrene                          | . 61.6                        | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 97               | ug/kg dry     | 1          | 07/28/22        | M-02           |
| ·                               |                               | , in the second |                  | aging ary     | '          | 01,20,22        | IVI-UZ         |
| Surrogate(s) <b>2-Fluorob</b> i | iphenyl                       | 70% Cor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | nc: 3420 0.1-109 |               |            | 07/28/22        |                |
| Nitrobenzo                      |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | nc: 3350 0.1-107 |               |            | 07/28/22        |                |
| Terphenyl                       |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | nc: 4020 28-128  |               |            | 07/28/22        |                |



FINAL REPORT

U.S. Naval Information Warfare Center Pacific 53475 Strothe Rd., Bldg. 111 Code 71760 San Diego, CA 92152 Project Number: SME Sediment Monitoring

Project Manager: Cassandra Sosa

Reported:

(Continued)

01/05/2023 17:58



#### Sample Results

| Sample:      | MA2                           |                                  |            |               | Samp        | oled: 07/ | 12/22 10:35 by N | licholas Haymar |
|--------------|-------------------------------|----------------------------------|------------|---------------|-------------|-----------|------------------|-----------------|
|              | 2G14040-02 (Solid)            |                                  |            |               |             |           |                  |                 |
| Analyte      |                               | Result                           |            | MRL           | Units       | Dil       | Analyzed         | Qualifie        |
| nlorinated P | esticides and/or PCBs by GC/E | CD                               |            |               |             |           |                  |                 |
| Method: EP/  | A 8081A                       |                                  |            | Instr: GC07   |             |           |                  |                 |
| Batch ID:    |                               | Preparation: EPA 3546/Microwave  |            | Prepared: 07/ |             | _         | 07/00/00         | Analyst: RJG    |
| 2,4'-DDD     |                               |                                  |            | 76            | ug/kg dry   | 5         | 07/29/22         | M-02, M-04      |
| 2,4'-DDE     |                               | ND                               |            | 76            | ug/kg dry   | 5         | 07/29/22         | M-02, M-04      |
| 2,4'-DDT     |                               | ND                               |            | 76            | ug/kg dry   | 5         | 07/29/22         | M-02, M-04      |
| 4,4´-DDD     |                               | ND                               |            | 76            | ug/kg dry   | 5         | 07/29/22         | M-02, M-04      |
| 4,4´-DDE     |                               | ND                               |            | 76            | ug/kg dry   | 5         | 07/29/22         | M-02, M-04      |
| 4,4´-DDT     |                               | ND                               |            | 76            | ug/kg dry   | 5         | 07/29/22         | M-02, M-04      |
| Aldrin       |                               | ND                               |            | 76            | ug/kg dry   | 5         | 07/29/22         | M-02, M-04      |
| alpha-BH0    | 0                             | ND                               |            | 76            | ug/kg dry   | 5         | 07/29/22         | M-02, M-04      |
| alpha-Chl    | ordane                        | ND                               |            | 76            | ug/kg dry   | 5         | 07/29/22         | M-02, M-04      |
| beta-BHC     |                               | ND                               |            | 76            | ug/kg dry   | 5         | 07/29/22         | M-02, M-04      |
| Chlordane    | e (tech)                      | ND                               |            | 1500          | ug/kg dry   | 5         | 07/29/22         | M-02, M-04      |
| delta-BHC    |                               | ND                               |            | 76            | ug/kg dry   | 5         | 07/29/22         | M-02, M-04      |
| Dieldrin     |                               | ND                               |            | 76            | ug/kg dry   | 5         | 07/29/22         | M-02, M-04      |
| Endosulfa    | n I                           | ND                               |            | 76            | ug/kg dry   | 5         | 07/29/22         | M-02, M-04      |
| Endosulfa    | n II                          | ND                               |            | 76            | ug/kg dry   | 5         | 07/29/22         | M-02, M-04      |
| Endosulfa    | n sulfate                     | ND                               |            | 76            | ug/kg dry   | 5         | 07/29/22         | M-02, M-04      |
| Endrin       |                               | ND                               |            | 76            | ug/kg dry   | 5         | 07/29/22         | M-02, M-04      |
| Endrin ald   | lehyde                        | ND                               |            | 76            | ug/kg dry   | 5         | 07/29/22         | M-02, M-04      |
| gamma-B      | HC (Lindane)                  | ND                               |            | 76            | ug/kg dry   | 5         | 07/29/22         | M-02, M-04      |
| gamma-C      | ,                             | ND                               |            | 76            | ug/kg dry   | 5         | 07/29/22         | M-02, M-04      |
| Heptachlo    |                               | ND                               |            | 76            | ug/kg dry   | 5         | 07/29/22         | M-02, M-04      |
| Heptachlo    |                               |                                  |            | 76            | ug/kg dry   | 5         | 07/29/22         | M-02, M-04      |
| Methoxycl    | •                             | ND                               |            | 76            | ug/kg dry   | 5         | 07/29/22         | M-02, M-04      |
| Toxaphen     |                               | ND ND                            |            | 2300          | ug/kg dry   | 5         | 07/29/22         | M-02, M-04      |
| trans-Non    |                               | ND ND                            |            | 76            | ug/kg dry   | 5         | 07/29/22         | M-02, M-04      |
| Surrogate(s) |                               |                                  |            |               |             |           |                  | 02, 0           |
| _            | robiphenyl                    | 70%                              | Conc: 85.9 | 21-125        |             |           | 07/29/22         |                 |
| Tetrachlor   | ro-meta-xylene                | 53%                              | Conc: 64.8 | 23-138        |             |           | 07/29/22         |                 |
| onventional  | Chemistry/Physical Parameter  | rs by APHA/EPA/ASTM Methods      |            |               |             |           |                  |                 |
| Method: EP/  |                               | s sy na na y 21 ny no na meancus |            | Instr: BAL04  |             |           |                  |                 |
| Batch ID:    | W2G1058                       | Preparation: _NONE (METALS)      |            | Prepared: 07/ | 18/22 09:29 |           |                  | Analyst: cho    |
| % Solids     |                               | 68.7                             |            | 0.100         | % by Weight | 1         | 07/19/22         | •               |
| letals (Non- | Aqueous) by EPA 6000/7000 S   | eries Methods                    |            |               |             |           |                  |                 |
| Method: EP/  | A 6020                        |                                  |            | Instr: ICPMS0 | 5           |           |                  |                 |
| Batch ID:    | W2G0976                       | Preparation: EPA 3050B           |            | Prepared: 07/ | 15/22 09:50 |           |                  | Analyst: ALN    |
| Cadmium      | , Total                       | ND                               |            | 0.29          | mg/kg dry   | 1         | 07/19/22         |                 |
| G14040       |                               |                                  |            |               |             |           |                  | Page 8 of       |



FINAL REPORT

U.S. Naval Information Warfare Center Pacific 53475 Strothe Rd., Bldg. 111 Code 71760 San Diego, CA 92152 Project Number: SME Sediment Monitoring

Project Manager: Cassandra Sosa

Reported:

01/05/2023 17:58

| \ | 1 | / | L | • |
|---|---|---|---|---|
|   |   |   | 7 | , |

#### Sample Results

| ample:                    | MA2                           |                                          |                          | Sam           | piea: 07/1 | 12/22 10:35 by N | •           |
|---------------------------|-------------------------------|------------------------------------------|--------------------------|---------------|------------|------------------|-------------|
|                           | 2G14040-02 (Solid)            |                                          |                          |               |            |                  | (Continue   |
| Analyte                   |                               | Result                                   | MRL                      | Units         | Dil        | Analyzed         | Qualif      |
| -                         | Aqueous) by EPA 6000/7000 Se  | ries Methods (Continued)                 |                          |               |            |                  |             |
| lethod: EPA               |                               | B 41 FD4 2050D                           | Instr: ICPMS(            |               |            |                  |             |
| Batch ID: \<br>Copper, To |                               | <b>Preparation:</b> EPA 3050B <b>3.5</b> | <b>Prepared:</b> 07 0.73 | mg/kg dry     | 1          | 07/22/22         | Analyst: Al |
| Lead, Tota                |                               |                                          | 0.73                     | mg/kg dry     | 1          | 07/19/22         |             |
| Zinc, Total               |                               | 12                                       | 7.3                      | mg/kg dry     | 1          | 07/22/22         |             |
| ethod: EPA                | A 7471A                       |                                          | Instr: HG03              |               |            |                  |             |
| Batch ID: \               |                               | Preparation: EPA 7471A                   | Prepared: 07             | //19/22 09:24 |            |                  | Analyst: K  |
| Mercury, T                | Total                         | ND                                       | 0.015                    | mg/kg dry     | 1          | 07/20/22         | •           |
| anic Carbo                | on In Soil/Solid by EPA 9060A |                                          |                          |               |            |                  |             |
| ethod: EPA                | A 9060A                       |                                          | Instr: TOC02             |               |            |                  |             |
| Batch ID: \               | W2H0270                       | Preparation: EPA 9060M                   | Prepared: 08             | 3/03/22 08:16 |            |                  | Analyst:    |
| Total Orga                | anic Carbon (TOC)             | 4660                                     | 200                      | mg/kg         | 1          | 08/03/22         |             |
| Congener                  | r Screen by GCMS SIM          |                                          |                          |               |            |                  |             |
| ethod: GC                 | /MS/MS                        |                                          | Instr: GCMS1             | 15            |            |                  |             |
| Batch ID: \               |                               | Preparation: EPA 3546/Microwave          | Prepared: 07             |               | 0          | 00/00/00         | Analyst:    |
| PCB-101                   |                               | ND                                       | 81                       | ug/kg dry     | 2          | 08/03/22         | M-02, M     |
| PCB-105                   |                               | ND                                       | 81                       | ug/kg dry     | 2          | 08/03/22         | M-02, M     |
| PCB-110                   |                               | ND                                       | 81                       | ug/kg dry     | 2          | 08/03/22         | M-02, M     |
| PCB-114                   |                               | ND                                       | 81                       | ug/kg dry     | 2          | 08/03/22         | M-02, M     |
| PCB-118                   |                               | ND                                       | 81                       | ug/kg dry     | 2          | 08/03/22         | M-02, M     |
| PCB-119                   |                               | ND                                       | 81                       | ug/kg dry     | 2          | 08/03/22         | M-02, M     |
| PCB-123                   |                               | ND                                       | 81                       | ug/kg dry     | 2          | 08/03/22         | M-02, M     |
| PCB-126                   |                               | ND                                       | 81                       | ug/kg dry     | 2          | 08/03/22         | M-02, M     |
| PCB-128                   |                               | ND                                       | 81                       | ug/kg dry     | 2          | 08/03/22         | M-02, M     |
| PCB-132/1                 | 153                           | ND                                       | 81                       | ug/kg dry     | 2          | 08/03/22         | M-02, M     |
| PCB-138                   |                               | ND                                       | 81                       | ug/kg dry     | 2          | 08/03/22         | M-02, M     |
| PCB-141                   |                               | ND                                       | 81                       | ug/kg dry     | 2          | 08/03/22         | M-02, M     |
| PCB-149                   |                               | ND                                       | 81                       | ug/kg dry     | 2          | 08/03/22         | M-02, M     |
| PCB-151                   |                               | ND                                       | 81                       | ug/kg dry     | 2          | 08/03/22         | M-02, M     |
| PCB-156                   |                               | ND                                       | 81                       | ug/kg dry     | 2          | 08/03/22         | M-02, M     |
| PCB-157                   |                               | ND                                       | 81                       | ug/kg dry     | 2          | 08/03/22         | M-02, M     |
| PCB-158                   |                               | ND                                       | 81                       | ug/kg dry     | 2          | 08/03/22         | M-02, M     |
| PCB-167                   |                               | ND                                       | 81                       | ug/kg dry     | 2          | 08/03/22         | M-02, M     |
| PCB-168                   |                               | ND                                       | 81                       | ug/kg dry     | 2          | 08/03/22         | M-02, M     |
| PCB-169                   |                               | ND                                       | 81                       | ug/kg dry     | 2          | 08/03/22         | M-02, M     |
| PCB-170                   |                               | ND                                       | 81                       | ug/kg dry     | 2          | 08/03/22         | M-02, M     |
| PCB-174                   |                               | ND                                       | 81                       | ug/kg dry     | 2          | 08/03/22         | M-02, M     |
|                           |                               | ND                                       | 81                       | ug/kg dry     | 2          | 08/03/22         | M-02, M     |
|                           |                               | 9                                        |                          | J. 19 J       | -          |                  | Page 9      |



FINAL REPORT

U.S. Naval Information Warfare Center Pacific 53475 Strothe Rd., Bldg. 111 Code 71760 San Diego, CA 92152 Project Number: SME Sediment Monitoring

Project Manager: Cassandra Sosa

Reported:

01/05/2023 17:58

Samn

#### Sample Results

| ample: MA2               | 02 (C-11-1)                     |                                    | Sun            | ipieu. 077 | 12/22 10:35 by N     | (Continue   |
|--------------------------|---------------------------------|------------------------------------|----------------|------------|----------------------|-------------|
| Analyte                  | -02 (Solid)  Result             | MRL                                | Units          | Dil        | Analyzed             | Qualif      |
| 3 Congener Screen by G   |                                 | WIKL                               | Oillis         | Dii        | Allalyzeu            | Quaiii      |
| lethod: GC/MS/MS         |                                 | Instr: GCMS                        | 315            |            |                      |             |
| <b>Batch ID:</b> W2G1437 | Preparation: EPA 3546/Microwave |                                    | 07/21/22 10:56 |            |                      | Analyst: El |
|                          | ND                              | 81                                 | ug/kg dry      | 2          | 08/03/22             | M-02, M-    |
| PCB-180                  | ND                              | 81                                 | ug/kg dry      | 2          | 08/03/22             | M-02, M-    |
| PCB-183                  | ND                              | 81                                 | ug/kg dry      | 2          | 08/03/22             | M-02, M     |
| PCB-187                  | ND                              | 81                                 | ug/kg dry      | 2          | 08/03/22             | M-02, M     |
| PCB-189                  | ND                              | 81                                 | ug/kg dry      | 2          | 08/03/22             | M-02, M     |
| PCB-194                  | ND                              | 81                                 | ug/kg dry      | 2          | 08/03/22             | M-02, M     |
| PCB-195                  | ND                              | 81                                 | ug/kg dry      | 2          | 08/03/22             | M-02, M     |
| PCB-199                  | ND                              | 81                                 | ug/kg dry      | 2          | 08/03/22             | M-02, M     |
| PCB-201                  | ND                              | 81                                 | ug/kg dry      | 2          | 08/03/22             | M-02, N     |
| PCB-203                  | ND                              | 81                                 | ug/kg dry      | 2          | 08/03/22             | M-02, N     |
| PCB-206                  | ND                              | 81                                 | ug/kg dry      | 2          | 08/03/22             | M-02, N     |
| PCB-209                  | ND                              | 81                                 | ug/kg dry      | 2          | 08/03/22             | M-02, N     |
| PCB-28/31                | ND                              | 81                                 | ug/kg dry      | 2          | 08/03/22             | M-02, N     |
| PCB-3                    | ND                              | 81                                 | ug/kg dry      | 2          | 08/03/22             | M-02, N     |
| PCB-33                   | ND                              | 81                                 | ug/kg dry      | 2          | 08/03/22             | M-02, N     |
|                          | ND                              | 81                                 | ug/kg dry      | 2          | 08/03/22             | M-02, N     |
|                          | ND                              | 81                                 | ug/kg dry      | 2          | 08/03/22             | M-02, N     |
|                          | ND                              | 81                                 | ug/kg dry      | 2          | 08/03/22             | M-04, N     |
|                          |                                 | 81                                 | ug/kg dry      | 2          | 08/03/22             | M-02, N     |
|                          | ND                              | 81                                 | ug/kg dry      | 2          | 08/03/22             | M-02, N     |
|                          | ND                              | 81                                 | ug/kg dry      | 2          | 08/03/22             | M-02, N     |
|                          | ND                              | 81                                 | ug/kg dry      | 2          | 08/03/22             | M-02, N     |
|                          | ND                              | 81                                 |                | 2          | 08/03/22             | M-02, N     |
| . 02                     | ND ND                           |                                    | ug/kg dry      | 2          | 08/03/22             |             |
| 1 05 11                  | ND ND                           | 81<br>81                           | ug/kg dry      | 2          | 08/03/22             | M-02, N     |
|                          |                                 |                                    | ug/kg dry      |            |                      | M-02, N     |
|                          | ND ND                           | 81                                 | ug/kg dry      | 2          | 08/03/22             | M-04, N     |
|                          | ND                              | 81                                 | ug/kg dry      | 2          | 08/03/22             | M-02, N     |
|                          | ND                              | 81                                 | ug/kg dry      | 2          | 08/03/22             | M-02, N     |
| . 02 0.                  | ND ND                           |                                    | ug/kg dry      | 2          | 08/03/22             | M-02, N     |
|                          | ND                              | 81                                 | ug/kg dry      | 2          | 08/03/22             | M-02, N     |
| rrogate(s)               |                                 | 0                                  |                |            | 00/00/00             |             |
| 1,3-Dimethyl-2-nitrobe   | nzene 56%<br>108%               | Conc: 188 0.1-141 Conc: 365 15-179 |                |            | 08/03/22<br>08/03/22 |             |



FINAL REPORT

U.S. Naval Information Warfare Center Pacific 53475 Strothe Rd., Bldg. 111 Code 71760 San Diego, CA 92152 Project Number: SME Sediment Monitoring

Project Manager: Cassandra Sosa

Reported:

01/05/2023 17:58

#### Sample Results

| Sample:        | MA2                           |                                 |                |              | Sam       | pled: 07/1 | 2/22 10:35 by N | icholas Hayman |
|----------------|-------------------------------|---------------------------------|----------------|--------------|-----------|------------|-----------------|----------------|
|                | 2G14040-02 (Solid)            |                                 |                |              |           |            |                 | (Continued)    |
| Analyte        |                               | Result                          | N              | 1RL          | Units     | Dil        | Analyzed        | Qualifier      |
| Semivolatile ( | Organics - Low Level by GC/MS | SIM Mode (Continued)            |                |              |           |            |                 |                |
| Method: EP     | PA 8270C SIM                  |                                 | Instr:         | GCMS06       |           |            |                 |                |
|                | W2G1434                       | Preparation: EPA 3546/Microwave | •              | red: 07/21/2 |           |            |                 | Analyst: rmr   |
| •              | naphthalene                   | ND                              |                |              | ıg/kg dry | 1          | 07/28/22        | M-02           |
|                |                               | ND                              |                |              | ıg/kg dry | 1          | 07/28/22        | M-02           |
|                | , ,                           | ND                              |                |              | ıg/kg dry | 1          | 07/28/22        | M-02           |
| 2-Methyln      |                               | ND                              | 1              | 20 u         | ıg/kg dry | 1          | 07/28/22        | M-02           |
| Acenapht       | thene                         | ND                              | 1              | 20 u         | ıg/kg dry | 1          | 07/28/22        | M-02           |
| Acenapht       | thylene                       | ND                              | 1              | 20 u         | ıg/kg dry | 1          | 07/28/22        | M-02           |
| Anthracer      | ne                            | ND                              | 1              | 20 u         | ıg/kg dry | 1          | 07/28/22        | M-02           |
| Benzo (a)      | ) anthracene                  | ND                              | 1              | 20 u         | ıg/kg dry | 1          | 07/28/22        | M-02           |
| Benzo (a)      | ) pyrene                      | ND                              | 1              | 20 u         | ıg/kg dry | 1          | 07/28/22        | M-02           |
| Benzo (b)      | ) fluoranthene                | ND                              | 1              | 20 u         | ıg/kg dry | 1          | 07/28/22        | M-02           |
| Benzo (e)      | ) pyrene                      | ND                              | 1              | 20 u         | ıg/kg dry | 1          | 07/28/22        | M-02           |
| Benzo (g,      | ,h,i) perylene                | ND                              | 1              | 20 u         | ıg/kg dry | 1          | 07/28/22        | M-02           |
| Benzo (k)      | ) fluoranthene                | ND                              | 1              | 20 u         | ıg/kg dry | 1          | 07/28/22        | M-02           |
| Biphenyl       |                               | ND                              | 1              | 20 u         | ıg/kg dry | 1          | 07/28/22        | M-02           |
| Chrysene       | <b>;</b>                      | ND                              | 1              | 20 u         | ıg/kg dry | 1          | 07/28/22        | M-02           |
| Dibenzo (      | (a,h) anthracene              | ND                              | 1              | 20 u         | ıg/kg dry | 1          | 07/28/22        | M-02           |
| Fluoranth      | iene                          | ND                              | 1              | 20 u         | ıg/kg dry | 1          | 07/28/22        | M-02           |
| Fluorene       |                               | ND                              | 1              | 20 u         | ıg/kg dry | 1          | 07/28/22        | M-02           |
| Indeno (1      | ,2,3-cd) pyrene               | ND                              | 1              | 20 u         | ıg/kg dry | 1          | 07/28/22        | M-02           |
| Naphthale      | ene                           | ND                              | 1              | 20 u         | ıg/kg dry | 1          | 07/28/22        | M-02           |
| Perylene       |                               | ND                              | 1              | 20 u         | ıg/kg dry | 1          | 07/28/22        | M-02           |
| Phenanth       | nrene                         | ND                              | 1              | 20 u         | ıg/kg dry | 1          | 07/28/22        | M-02           |
| Pyrene         |                               | ND                              | 1              | 20 u         | ıg/kg dry | 1          | 07/28/22        | M-02           |
| Surrogate(s)   |                               |                                 |                |              |           |            |                 |                |
| 2-Fluorob      | piphenyl                      | 69%                             | Conc: 4110 0.1 | -109         |           |            | 07/28/22        |                |
| Nitrobenz      | zene-d5                       | 67%                             | Conc: 3980 0.1 | -107         |           |            | 07/28/22        |                |
| Terpheny       | /l-d14                        |                                 | Conc: 4830 28  | -128         |           |            | 07/28/22        |                |



FINAL REPORT

U.S. Naval Information Warfare Center Pacific 53475 Strothe Rd., Bldg. 111 Code 71760 San Diego, CA 92152 Project Number: SME Sediment Monitoring

Project Manager: Cassandra Sosa

Reported:

01/05/2023 17:58



#### Sample Results

| Sample:                       | E3                             |                                        |               |                          | Samı                       | pled: 07/1 | 2/22 14:40 by N | licholas Haymar |
|-------------------------------|--------------------------------|----------------------------------------|---------------|--------------------------|----------------------------|------------|-----------------|-----------------|
| A                             | 2G14040-03 (Solid)             | n                                      | 14            |                          | 11-26-                     | D'I        | A l             | 0               |
| Analyte<br>Iorinated Pe       | esticides and/or PCBs by GC/EC | Res                                    | SUIT          | MRL                      | Units                      | Dil        | Analyzed        | Qualifie        |
| Method: EPA                   | -                              |                                        |               | Instr: GC07              |                            |            |                 |                 |
| Batch ID: \                   |                                | <b>Preparation:</b> EPA 3546/Microwave |               | Prepared: 07             | //19/22 08:10              |            |                 | Analyst: RJG    |
| 2,4'-DDD                      |                                |                                        | ND            | 80                       | ug/kg dry                  | 5          | 07/29/22        | M-02, M-04      |
| 2,4'-DDE                      |                                |                                        | ND            | 80                       | ug/kg dry                  | 5          | 07/29/22        | M-02, M-04      |
| 2,4'-DDT                      |                                |                                        | ND            | 80                       | ug/kg dry                  | 5          | 07/29/22        | M-02, M-04      |
| 4,4´-DDD                      |                                |                                        | ND            | 80                       | ug/kg dry                  | 5          | 07/29/22        | M-04, M-0       |
| 4,4´-DDE                      |                                |                                        | ND            | 80                       | ug/kg dry                  | 5          | 07/29/22        | M-02, M-0       |
| 4,4´-DDT                      |                                |                                        | ND            | 80                       | ug/kg dry                  | 5          | 07/29/22        | M-02, M-04      |
| Aldrin                        |                                |                                        | ND            | 80                       | ug/kg dry                  | 5          | 07/29/22        | M-02, M-04      |
| alpha-BHC                     | 3                              |                                        | ND            | 80                       | ug/kg dry                  | 5          | 07/29/22        | M-02, M-04      |
| alpha-Chlo                    | ordane                         |                                        | ND            | 80                       | ug/kg dry                  | 5          | 07/29/22        | M-02, M-04      |
| beta-BHC                      |                                |                                        | ND            | 80                       | ug/kg dry                  | 5          | 07/29/22        | M-02, M-04      |
| Chlordane                     | (tech)                         |                                        | ND            | 1600                     | ug/kg dry                  | 5          | 07/29/22        | M-02, M-04      |
| delta-BHC                     | :                              |                                        | ND            | 80                       | ug/kg dry                  | 5          | 07/29/22        | M-02, M-0       |
| Dieldrin -                    |                                | ·                                      | ND            | 80                       | ug/kg dry                  | 5          | 07/29/22        | M-02, M-0       |
| Endosulfa                     | n I                            |                                        | ND            | 80                       | ug/kg dry                  | 5          | 07/29/22        | M-02, M-0       |
| Endosulfa                     | n II                           |                                        | ND            | 80                       | ug/kg dry                  | 5          | 07/29/22        | M-02, M-0       |
| Endosulfar                    | n sulfate                      |                                        | ND            | 80                       | ug/kg dry                  | 5          | 07/29/22        | M-02, M-0       |
| Endrin                        |                                |                                        | ND            | 80                       | ug/kg dry                  | 5          | 07/29/22        | M-02, M-0       |
| Endrin ald                    | ehyde                          |                                        | ND            | 80                       | ug/kg dry                  | 5          | 07/29/22        | M-04, M-0       |
| gamma-Bl                      | HC (Lindane)                   |                                        | ND            | 80                       | ug/kg dry                  | 5          | 07/29/22        | M-02, M-0       |
| gamma-Cl                      | hlordane                       |                                        | ND            | 80                       | ug/kg dry                  | 5          | 07/29/22        | M-02, M-0       |
| Heptachlo                     | r                              |                                        | ND            | 80                       | ug/kg dry                  | 5          | 07/29/22        | M-02, M-0       |
| Heptachlo                     | r epoxide                      |                                        | ND            | 80                       | ug/kg dry                  | 5          | 07/29/22        | M-02, M-0       |
| Methoxych                     | nlor                           |                                        | ND            | 80                       | ug/kg dry                  | 5          | 07/29/22        | M-02, M-0       |
| Toxaphene                     |                                |                                        | ND            | 2400                     | ug/kg dry                  | 5          | 07/29/22        | M-02, M-04      |
| trans-Nona                    | achlor                         | 1                                      | ND            | 80                       | ug/kg dry                  | 5          | 07/29/22        | M-02, M-04      |
| Surrogate(s) <b>Decachlor</b> | robiphenyl                     | 69                                     | 9% Conc: 88.6 | 21-125                   |                            |            | 07/29/22        |                 |
|                               |                                |                                        |               | 23-138                   |                            |            | 07/29/22        |                 |
| nventional                    | Chemistry/Physical Parameters  | by APHA/EPA/ASTM Methods               |               |                          |                            |            |                 |                 |
| Method: EPA                   | A 160.3M                       |                                        |               | Instr: BAL04             |                            |            |                 |                 |
| Batch ID: \                   | W2G1058                        | Preparation: _NONE (METALS)            |               | Prepared: 07             | //18/22 09:29              |            |                 | Analyst: cho    |
| % Solids                      |                                |                                        | 4.6           | 0.100                    | % by Weight                | 1          | 07/19/22        |                 |
| -                             | Aqueous) by EPA 6000/7000 Se   | ries Methods                           |               |                          |                            |            |                 |                 |
| Method: EPA                   |                                |                                        |               | Instr: ICPMS(            |                            |            |                 |                 |
| Batch ID: \<br>Cadmium,       |                                | Preparation: EPA 3050B                 | ND            | <b>Prepared:</b> 07 0.31 | 7/15/22 09:50<br>mg/kg dry | 1          | 07/19/22        | Analyst: ALN    |
| G14040                        |                                |                                        |               |                          |                            |            |                 | Page 12 of      |



FINAL REPORT

U.S. Naval Information Warfare Center Pacific 53475 Strothe Rd., Bldg. 111 Code 71760 San Diego, CA 92152 Project Number: SME Sediment Monitoring

Project Manager: Cassandra Sosa

Reported:

01/05/2023 17:58

|  |  | 5 |
|--|--|---|
|  |  | , |

#### Sample Results

| ample:                     | E3                            |                                         |                          | Sam          | ıpıea: 07/ | 12/22 14:40 by N | •            |
|----------------------------|-------------------------------|-----------------------------------------|--------------------------|--------------|------------|------------------|--------------|
|                            | 2G14040-03 (Solid)            |                                         |                          |              |            |                  | (Continue    |
| Analyte                    | A                             | Result                                  | MRL                      | Units        | Dil        | Analyzed         | Qualif       |
|                            | Aqueous) by EPA 6000/7000 Se  | eries Methods (Continued)               | Landa ICDNC              | ).F          |            |                  |              |
| lethod: EPA<br>Batch ID: \ |                               | Proposition, FDA 2050B                  | Instr: ICPMS             |              |            |                  | A made at Al |
| Copper, To                 |                               | <b>Preparation:</b> EPA 3050B <b>15</b> | <b>Prepared:</b> 07 0.77 | mg/kg dry    | 1          | 07/22/22         | Analyst: A   |
| Lead, Tota                 |                               | 4.0                                     | 0.77                     | mg/kg dry    | 1          | 07/19/22         |              |
| Zinc, Tota                 |                               | <b>49</b>                               | 7.7                      | mg/kg dry    | 1          | 07/22/22         |              |
| lethod: EPA                | A 7471A                       |                                         | Instr: HG03              |              |            |                  |              |
| Batch ID: \                | W2G1177                       | Preparation: EPA 7471A                  | Prepared: 07             | /19/22 09:24 |            |                  | Analyst: K   |
| Mercury, T                 | Total                         | ND                                      | 0.015                    | mg/kg dry    | 1          | 07/20/22         |              |
| anic Carbo                 | on In Soil/Solid by EPA 9060A |                                         |                          |              |            |                  |              |
| ethod: EPA                 | A 9060A                       |                                         | Instr: TOC02             |              |            |                  |              |
| Batch ID: \                | W2H0270                       | Preparation: EPA 9060M                  | Prepared: 08             | /03/22 08:16 |            |                  | Analyst:     |
| Total Orga                 | anic Carbon (TOC)             | 893                                     | 200                      | mg/kg        | 1          | 08/03/22         |              |
| Congener                   | r Screen by GCMS SIM          |                                         |                          |              |            |                  |              |
| ethod: GC                  | /MS/MS                        |                                         | Instr: GCMS1             | 5            |            |                  |              |
| Batch ID: \                |                               | Preparation: EPA 3546/Microwave         | Prepared: 07             |              | 4          | 00/02/02         | Analyst:     |
| PCB-101                    |                               | ND                                      | 41                       | ug/kg dry    | 1          | 08/03/22         | M            |
| PCB-105                    |                               | ND                                      | 41                       | ug/kg dry    | 1          | 08/03/22         | M            |
| PCB-110                    |                               | ND                                      | 41                       | ug/kg dry    | 1          | 08/03/22         | N            |
| PCB-114                    |                               | ND                                      | 41                       | ug/kg dry    | 1          | 08/03/22         | M            |
| PCB-118                    |                               | ND                                      | 41                       | ug/kg dry    | 1          | 08/03/22         | M            |
| PCB-119                    |                               | ND                                      | 41                       | ug/kg dry    | 1          | 08/03/22         | M            |
| PCB-123                    |                               | ND                                      | 41                       | ug/kg dry    | 1          | 08/03/22         | M            |
| PCB-126                    |                               | ND                                      | 41                       | ug/kg dry    | 1          | 08/03/22         | M            |
| PCB-128                    |                               | ND                                      | 41                       | ug/kg dry    | 1          | 08/03/22         | М            |
| PCB-132/1                  | 153                           | ND                                      | 41                       | ug/kg dry    | 1          | 08/03/22         | M            |
| PCB-138                    |                               | ND                                      | 41                       | ug/kg dry    | 1          | 08/03/22         | M            |
| PCB-141                    |                               | ND                                      | 41                       | ug/kg dry    | 1          | 08/03/22         | M            |
| PCB-149                    |                               | ND                                      | 41                       | ug/kg dry    | 1          | 08/03/22         | M            |
| PCB-151                    |                               | ND                                      | 41                       | ug/kg dry    | 1          | 08/03/22         | M            |
| PCB-156                    |                               | ND                                      | 41                       | ug/kg dry    | 1          | 08/03/22         | M            |
| PCB-157                    |                               | ND                                      | 41                       | ug/kg dry    | 1          | 08/03/22         | М            |
| PCB-158                    |                               | ND                                      | 41                       | ug/kg dry    | 1          | 08/03/22         | M            |
| PCB-167                    |                               | ND                                      | 41                       | ug/kg dry    | 1          | 08/03/22         | M            |
| PCB-168                    |                               | ND                                      | 41                       | ug/kg dry    | 1          | 08/03/22         | М            |
| PCB-169                    |                               | ND                                      | 41                       | ug/kg dry    | 1          | 08/03/22         | М            |
| PCB-170                    |                               | ND                                      | 41                       | ug/kg dry    | 1          | 08/03/22         | М            |
| PCB-174                    |                               | ND                                      | 41                       | ug/kg dry    | 1          | 08/03/22         | М            |
|                            |                               | ND                                      | 41                       | ug/kg dry    | 1          | 08/03/22         | M            |
|                            |                               |                                         | • •                      | J. J J       |            |                  |              |



FINAL REPORT

U.S. Naval Information Warfare Center Pacific 53475 Strothe Rd., Bldg. 111 Code 71760 San Diego, CA 92152 Project Number: SME Sediment Monitoring

Project Manager: Cassandra Sosa

Reported:

01/05/2023 17:58

#### Sample Results

| E3 2G14040-03 (Solid) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   | Saii                   | ipieu. 077 | 2/22 14:40 by N | (Continue   |
|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|------------------------|------------|-----------------|-------------|
| 2014040 03 (30110)    | Result                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | MRL               | Units                  | Dil        | Analyzed        | Qualif      |
| creen by GCMS SIM (C  | ontinued)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                   |                        |            |                 |             |
| S/MS                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Instr: GCMS1      | 15                     |            |                 |             |
| G1437                 | Preparation: EPA 3546/Microwave                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Prepared: 07      | //21/22 10:56          |            |                 | Analyst: El |
|                       | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 41                | ug/kg dry              | 1          | 08/03/22        | M-          |
|                       | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 41                | ug/kg dry              | 1          | 08/03/22        | M-          |
|                       | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 41                | ug/kg dry              | 1          | 08/03/22        | M           |
|                       | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 41                | ug/kg dry              | 1          | 08/03/22        | M-          |
|                       | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 41                | ug/kg dry              | 1          | 08/03/22        | M-          |
|                       | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 41                | ug/kg dry              | 1          | 08/03/22        | M           |
|                       | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 41                | ug/kg dry              | 1          | 08/03/22        | M           |
|                       | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 41                | ug/kg dry              | 1          | 08/03/22        | M           |
|                       | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 41                | ug/kg dry              | 1          | 08/03/22        | M           |
|                       | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 41                | ug/kg dry              | 1          | 08/03/22        | М           |
|                       | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 41                | ug/kg dry              | 1          | 08/03/22        | М           |
|                       | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 41                | ug/kg dry              | 1          | 08/03/22        | M           |
|                       | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 41                | ug/kg dry              | 1          | 08/03/22        | M           |
|                       | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 41                | ug/kg dry              | 1          | 08/03/22        | N           |
|                       | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 41                | ug/kg dry              | 1          | 08/03/22        | М           |
|                       | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 41                | ug/kg dry              | 1          | 08/03/22        | М           |
|                       | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 41                | ug/kg dry              | 1          | 08/03/22        | М           |
|                       | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 41                | ug/kg dry              | 1          | 08/03/22        | N           |
|                       | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 41                | ug/kg dry              | 1          | 08/03/22        | N           |
|                       | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 41                | ug/kg dry              | 1          | 08/03/22        | N           |
|                       | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 41                | ug/kg dry              | 1          | 08/03/22        | M           |
|                       | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 41                | ug/kg dry              | 1          | 08/03/22        | M           |
|                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 41                | ug/kg dry              | 1          | 08/03/22        | M           |
|                       | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 41                | ug/kg dry              | 1          | 08/03/22        | M           |
|                       | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 41                | ug/kg dry              | 1          | 08/03/22        | M           |
|                       | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 41                |                        | 1          | 08/03/22        | M           |
|                       | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 41                | ug/kg dry<br>ug/kg dry | 1          | 08/03/22        | M           |
|                       | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 41                | ug/kg dry              | 1          | 08/03/22        | M           |
|                       | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 41                | ug/kg dry              | 1          | 08/03/22        | M           |
|                       | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 41                | ug/kg dry              | 1          | 08/03/22        | M           |
|                       | , and the second |                   | ~g,g u.j               | '          | 33,30,EE        |             |
| -2-nitrobenzene       | 61%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Conc: 211 0.1-141 |                        |            | 08/03/22        |             |
| osphate               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Conc: 410 15-179  |                        |            | 08/03/22        |             |



**FINAL REPORT** 

U.S. Naval Information Warfare Center Pacific 53475 Strothe Rd., Bldg. 111 Code 71760 San Diego, CA 92152 Project Number: SME Sediment Monitoring

Reported:

01/05/2023 17:58

Sample Results

Project Manager: Cassandra Sosa

| Sample: E3             |                    |                                        |            |                | Sam       | pled: 07/ | 12/22 14:40 by N | icholas Hayman |
|------------------------|--------------------|----------------------------------------|------------|----------------|-----------|-----------|------------------|----------------|
| 2G140                  | )40-03 (Solid)     |                                        |            |                |           |           |                  | (Continued)    |
| Analyte                |                    | Result                                 |            | MRL            | Units     | Dil       | Analyzed         | Qualifier      |
| emivolatile Organics - | Low Level by GC/MS | SIM Mode (Continued)                   |            |                |           |           |                  |                |
| Method: EPA 8270C SI   | М                  |                                        |            | Instr: GCMS06  |           |           |                  |                |
| Batch ID: W2G1434      |                    | <b>Preparation:</b> EPA 3546/Microwave |            | Prepared: 07/2 |           |           |                  | Analyst: rmr   |
| 1-Methylnaphthalen     |                    | ND                                     |            | 110            | ug/kg dry | 1         | 07/28/22         | M-02           |
| 1-Methylphenanthre     |                    | ND                                     |            | 110            | ug/kg dry | 1         | 07/28/22         | M-02           |
| 2,6-Dimethylnaphth     | alene              | ND                                     |            | 110            | ug/kg dry | 1         | 07/28/22         | M-02           |
| 2-Methylnaphthalen     | e                  | ND                                     |            | 110            | ug/kg dry | 1         | 07/28/22         | M-02           |
| Acenaphthene -         |                    | ND                                     |            | 110            | ug/kg dry | 1         | 07/28/22         | M-02           |
| Acenaphthylene         |                    | ND                                     |            | 110            | ug/kg dry | 1         | 07/28/22         | M-02           |
| Anthracene             |                    |                                        |            | 110            | ug/kg dry | 1         | 07/28/22         | M-02           |
| Benzo (a) anthracer    | ne                 | ND                                     |            | 110            | ug/kg dry | 1         | 07/28/22         | M-02           |
| Benzo (a) pyrene       |                    | ND                                     |            | 110            | ug/kg dry | 1         | 07/28/22         | M-02           |
| Benzo (b) fluoranthe   | ene                | ND                                     |            | 110            | ug/kg dry | 1         | 07/28/22         | M-02           |
| Benzo (e) pyrene       |                    | ND                                     |            | 110            | ug/kg dry | 1         | 07/28/22         | M-02           |
| Benzo (g,h,i) peryle   | ne                 | ND                                     |            | 110            | ug/kg dry | 1         | 07/28/22         | M-02           |
| Benzo (k) fluoranthe   | ene                | ND                                     |            | 110            | ug/kg dry | 1         | 07/28/22         | M-02           |
| Biphenyl               |                    | ND                                     |            | 110            | ug/kg dry | 1         | 07/28/22         | M-02           |
| Chrysene               |                    | ND                                     |            | 110            | ug/kg dry | 1         | 07/28/22         | M-02           |
| Dibenzo (a,h) anthra   | acene              | ND                                     |            | 110            | ug/kg dry | 1         | 07/28/22         | M-02           |
| Fluoranthene           |                    | ND                                     |            | 110            | ug/kg dry | 1         | 07/28/22         | M-02           |
| Fluorene               |                    | ND                                     |            | 110            | ug/kg dry | 1         | 07/28/22         | M-02           |
| Indeno (1,2,3-cd) py   | /rene              | ND                                     |            | 110            | ug/kg dry | 1         | 07/28/22         | M-02           |
|                        |                    | ND                                     |            | 110            | ug/kg dry | 1         | 07/28/22         | M-02           |
| Perylene               |                    | ND                                     |            | 110            | ug/kg dry | 1         | 07/28/22         | M-02           |
| •                      |                    | ND                                     |            | 110            | ug/kg dry | 1         | 07/28/22         | M-02           |
|                        |                    | ND                                     |            | 110            | ug/kg dry | 1         | 07/28/22         | M-02           |
| Surrogate(s)           |                    |                                        |            |                | J. J J    | •         |                  |                |
| 2-Fluorobiphenyl       |                    | 63%                                    | Conc: 3380 | 0.1-109        |           |           | 07/28/22         |                |
| Nitrobenzene-d5        |                    | 61%                                    | Conc: 3300 | 0.1-107        |           |           | 07/28/22         |                |
| Terphenyl-d14          |                    | 74%                                    | Conc: 3970 | 28-128         |           |           | 07/28/22         |                |



**FINAL REPORT** 

U.S. Naval Information Warfare Center Pacific 53475 Strothe Rd., Bldg. 111 Code 71760 San Diego, CA 92152 Project Number: SME Sediment Monitoring

Project Manager: Cassandra Sosa

Reported:

01/05/2023 17:58



#### Quality Control Results

| Chlorinated Pesticides and/or PCBs by GC/EC | D      |     |                        |                       |             |                         |             |     |       |         |
|---------------------------------------------|--------|-----|------------------------|-----------------------|-------------|-------------------------|-------------|-----|-------|---------|
|                                             |        |     |                        | Spike                 | Source      |                         | %REC        |     | RPD   |         |
| Analyte                                     | Result | MRL | Units                  | Level                 | Result      | %REC                    | Limits      | RPD | Limit | Qualifi |
| tch: W2G1134 - EPA 8081A                    |        |     |                        |                       |             |                         |             |     |       |         |
| Blank (W2G1134-BLK1)<br>2,4'-DDD            | ND     | 2.5 | Prepa<br>ug/kg wet     | ared: 07/19/2         | 2 Analyzed: | 07/29/22                | !           |     |       |         |
| 2.4'-DDE                                    |        | 2.5 | ug/kg wet              |                       |             |                         |             |     |       |         |
| 2.4'-DDT                                    |        | 2.5 | ug/kg wet              |                       |             |                         |             |     |       |         |
| 4,4'-DDD                                    |        | 2.5 | ug/kg wet              |                       |             |                         |             |     |       |         |
| 4,4'-DDE                                    |        | 2.5 | ug/kg wet              |                       |             |                         |             |     |       |         |
| 4,4'-DDT                                    |        | 2.5 |                        |                       |             |                         |             |     |       |         |
| Aldrin                                      |        | 2.5 | ug/kg wet              |                       |             |                         |             |     |       |         |
| alpha-BHC                                   |        | 2.5 | ug/kg wet<br>ug/kg wet |                       |             |                         |             |     |       |         |
| alpha-Chlordane                             |        | 2.5 |                        |                       |             |                         |             |     |       |         |
| 1                                           |        |     | ug/kg wet              |                       |             |                         |             |     |       |         |
| beta-BHC Chlordane (tech)                   |        | 2.5 | ug/kg wet              |                       |             |                         |             |     |       |         |
| , ,                                         |        | 50  | ug/kg wet              |                       |             |                         |             |     |       |         |
|                                             |        | 2.5 | ug/kg wet              |                       |             |                         |             |     |       |         |
| Dieldrin Endosulfan I                       |        | 2.5 | ug/kg wet              |                       |             |                         |             |     |       |         |
|                                             |        | 2.5 | ug/kg wet              |                       |             |                         |             |     |       |         |
| Endosulfan II                               |        | 2.5 | ug/kg wet              |                       |             |                         |             |     |       |         |
| Endosulfan sulfate                          |        | 2.5 | ug/kg wet              |                       |             |                         |             |     |       |         |
| Endrin                                      |        | 2.5 | ug/kg wet              |                       |             |                         |             |     |       |         |
| Endrin aldehyde                             |        | 2.5 | ug/kg wet              |                       |             |                         |             |     |       |         |
| gamma-BHC (Lindane)                         |        | 2.5 | ug/kg wet              |                       |             |                         |             |     |       |         |
| gamma-Chlordane                             |        | 2.5 | ug/kg wet              |                       |             |                         |             |     |       |         |
| Heptachlor                                  |        | 2.5 | ug/kg wet              |                       |             |                         |             |     |       |         |
| Heptachlor epoxide                          |        | 2.5 | ug/kg wet              |                       |             |                         |             |     |       |         |
| Methoxychlor                                |        | 2.5 | ug/kg wet              |                       |             |                         |             |     |       |         |
| Toxaphene                                   |        | 75  | ug/kg wet              |                       |             |                         |             |     |       |         |
| trans-Nonachlor                             | · ND   | 2.5 | ug/kg wet              |                       |             |                         |             |     |       |         |
| Surrogate(s)  Decachlorobiphenyl            |        |     | ug/kg wet              | 20.0                  |             | 79                      | 21-125      |     |       |         |
| Tetrachloro-meta-xylene                     | 13.8   |     | ug/kg wet              | 20.0                  |             | 69                      | 23-138      |     |       |         |
|                                             | 70.0   |     |                        |                       |             |                         |             |     |       |         |
| LCS (W2G1134-BS1)<br>4,4'-DDD               |        | 2.5 | Prepa<br>ug/kg wet     | ared: 07/19/2<br>20.0 | 2 Analyzed: | : <b>07/29/22</b><br>78 | !<br>46-126 |     |       |         |
| 4,4´-DDE                                    |        | 2.5 | ug/kg wet              | 20.0                  |             | 84                      | 52-124      |     |       |         |
| 4,4'-DDT                                    |        |     |                        | 20.0                  |             | 102                     | 49-147      |     |       |         |
| ,,                                          |        | 2.5 | ug/kg wet              |                       |             |                         |             |     |       |         |
|                                             |        | 2.5 | ug/kg wet              | 20.0                  |             | 76<br>75                | 49-117      |     |       |         |
| alpha-BHC                                   |        | 2.5 | ug/kg wet              | 20.0                  |             | 75<br>04                | 49-125      |     |       |         |
| alpha-Chlordane                             |        | 2.5 | ug/kg wet              | 20.0                  |             | 84                      | 48-124      |     |       |         |
| beta-BHC                                    |        | 2.5 | ug/kg wet              | 20.0                  |             | 85                      | 50-128      |     |       |         |
| Chlordane (tech)                            |        | 50  | ug/kg wet              | 00.0                  |             |                         | 49-150      |     |       |         |
| delta-BHC                                   | 18.0   | 2.5 | ug/kg wet              | 20.0                  |             | 90                      | 49-139      |     |       |         |
| Dieldrin                                    | 4= -   | 2.5 | ug/kg wet              | 20.0                  |             | 78                      | 48-116      |     |       |         |



FINAL REPORT

U.S. Naval Information Warfare Center Pacific 53475 Strothe Rd., Bldg. 111 Code 71760 San Diego, CA 92152 Project Number: SME Sediment Monitoring

Project Manager: Cassandra Sosa

Reported:

01/05/2023 17:58



2G14040

### Quality Control Results

(Continued)

Page 17 of 31

| Chlorinated Pesticides and/or PCBs by GC/ECD | (Continued)        |       |           |                |                  |         |                |     |              |          |
|----------------------------------------------|--------------------|-------|-----------|----------------|------------------|---------|----------------|-----|--------------|----------|
| Analyte                                      | Result             | MRL   | Units     | Spike<br>Level | Source<br>Result | %REC    | %REC<br>Limits | RPD | RPD<br>Limit | Qualifi  |
| atch: W2G1134 - EPA 8081A (Continued)        | Result             | IVINE | Oilits    | Level          | Result           | MILE    | Lilling        | KFD | Lillit       | Quaiiii  |
| LCS (W2G1134-BS1)                            |                    |       | Dron      | ared: 07/19/2  | 2 Analyzad       | 07/20/2 | 2              |     |              |          |
| Endosulfan I                                 | 10.3               | 2.5   | ug/kg wet | 20.0           | .z Anaryzeu.     | 52      | 35-114         |     |              |          |
| Endosulfan II                                | 12.4               | 2.5   | ug/kg wet | 20.0           |                  | 62      | 41-121         |     |              |          |
| Endosulfan sulfate                           | 20.4               | 2.5   | ug/kg wet | 20.0           |                  | 102     | 52-139         |     |              |          |
| Endrin                                       | 17.2               | 2.5   | ug/kg wet | 20.0           |                  | 86      | 52-140         |     |              |          |
| Endrin aldehyde                              | 15.3               | 2.5   | ug/kg wet | 20.0           |                  | 77      | 32-113         |     |              |          |
| gamma-BHC (Lindane)                          | 15.0               | 2.5   | ug/kg wet | 20.0           |                  | 75      | 50-126         |     |              |          |
| gamma-Chlordane                              | 16.8               | 2.5   | ug/kg wet | 20.0           |                  | 84      | 49-123         |     |              |          |
| Heptachlor                                   | 16.7               | 2.5   | ug/kg wet | 20.0           |                  | 84      | 50-132         |     |              |          |
| Heptachlor epoxide                           | 16.1               | 2.5   | ug/kg wet | 20.0           |                  | 81      | 49-122         |     |              |          |
| Methoxychlor                                 | 25.3               | 2.5   | ug/kg wet | 20.0           |                  | 127     | 48-147         |     |              |          |
| Toxaphene                                    | ND                 | 75    | ug/kg wet |                |                  |         | 66-142         |     |              |          |
| iurrogate(s)                                 |                    |       |           |                |                  |         |                |     |              |          |
| Decachlorobiphenyl                           |                    |       | ug/kg wet | 20.0           |                  | 84      | 21-125         |     |              |          |
| Tetrachloro-meta-xylene                      | 14.7               |       | ug/kg wet | 20.0           |                  | 74      | 23-138         |     |              |          |
| Matrix Spike (W2G1134-MS1)                   | Source: 2G14040-01 |       | •         | ared: 07/19/2  | -                |         |                |     |              |          |
| 4,4'-DDD                                     |                    | 63    | ug/kg dry | 101            | ND               | 60      | 45-124         |     |              | M-02, M- |
| 4,4'-DDE                                     |                    | 63    | ug/kg dry | 101            | ND               | 63      | 29-139         |     |              | M-02, M- |
| 4,4'-DDT                                     |                    | 63    | ug/kg dry | 101            | ND               | 70      | 12-141         |     |              | M-02, M- |
| Aldrin                                       |                    | 63    | ug/kg dry | 101            | ND               | 55      | 19-140         |     |              | M-02, M- |
| alpha-BHC                                    |                    | 63    | ug/kg dry | 101            | ND               | 55      | 29-136         |     |              | M-02, M- |
| beta-BHC                                     |                    | 63    | ug/kg dry | 101            | ND               | 81      | 32-143         |     |              | M-02, M- |
| delta-BHC                                    |                    | 63    | ug/kg dry | 101            | ND               | 68      | 37-148         |     |              | M-04, M- |
| Dieldrin                                     |                    | 63    | ug/kg dry | 101            | ND               | 60      | 30-126         |     |              | M-02, M- |
| Endosulfan I                                 | 00.0               | 63    | ug/kg dry | 101            | ND               | 38      | 24-121         |     |              | M-02, M- |
| Endosulfan II                                |                    | 63    | ug/kg dry | 101            | ND               | 47      | 28-128         |     |              | M-02, M- |
| Endosulfan sulfate                           |                    | 63    | ug/kg dry | 101            | ND               | 78      | 40-140         |     |              | M-02, M- |
| Endrin                                       |                    | 63    | ug/kg dry | 101            | ND               | 63      | 37-143         |     |              | M-02, M- |
| Endrin aldehyde                              | 70.3               | 63    | ug/kg dry | 101            | ND               | 70      | 10-132         |     |              | M-02, M- |
| gamma-BHC (Lindane)                          |                    | 63    | ug/kg dry | 101            | ND               | 56      | 28-142         |     |              | M-02, M- |
| Heptachlor                                   |                    | 63    | ug/kg dry | 101            | ND               | 62      | 27-146         |     |              | M-04, M- |
| Heptachlor epoxide                           |                    | 63    | ug/kg dry | 101            | ND               | 59      | 37-126         |     |              | M-02, M- |
| Methoxychlor                                 |                    | 63    | ug/kg dry | 101            | ND               | 94      | 13-157         |     |              | M-02, M- |
| urrogate(s)  Decachlorobiphenyl              |                    |       | ug/kg dry | 101            |                  | 73      | 21-125         |     |              |          |
| Tetrachloro-meta-xylene                      |                    |       | ug/kg dry | 101            |                  | 58      | 23-138         |     |              |          |
| Matrix Spike Dup (W2G1134-MSD1)              | Source: 2G14040-01 | I     | Prep      | ared: 07/19/2  | 22 Analyzed:     | 07/29/2 | 2              |     |              |          |
| 4,4'-DDD                                     |                    | 62    | ug/kg dry | 99.2           | ND               | 60      | 45-124         | 0.5 | 25           | M-02, M- |
| 4,4´-DDE                                     | 63.2               | 62    | ug/kg dry | 99.2           | ND               | 64      | 29-139         | 1   | 25           | M-02, M- |
| 4,4'-DDT                                     | 68.1               | 62    | ug/kg dry | 99.2           | ND               | 69      | 12-141         | 3   | 25           | M-02, M- |



FINAL REPORT

U.S. Naval Information Warfare Center Pacific 53475 Strothe Rd., Bldg. 111 Code 71760 San Diego, CA 92152 Project Number: SME Sediment Monitoring

Project Manager: Cassandra Sosa

Reported:

01/05/2023 17:58



#### **Quality Control Results**

| Source: 2G14040- 56.0 55.2 83.5 67.7 59.5 | 62<br>62<br>62                                                         | ug/kg dry<br>ug/kg dry | Level ared: 07/19/2 99.2 99.2                                                                                                                                                                                                                        | ND                                                                                                                                                                                                                                                                                                                                                                                                               | %REC<br><b>07/29/22</b><br>57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Limits<br>2<br>19-140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>RPD</b> 0.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Limit<br>25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Qualifie M-02, M-04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|-------------------------------------------|------------------------------------------------------------------------|------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 56.0<br>55.2<br>83.5<br>67.7              | 62<br>62<br>62                                                         | ug/kg dry<br>ug/kg dry | 99.2                                                                                                                                                                                                                                                 | ND                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | M O2 M O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 56.0<br>55.2<br>83.5<br>67.7              | 62<br>62<br>62                                                         | ug/kg dry<br>ug/kg dry | 99.2                                                                                                                                                                                                                                                 | ND                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | M O2 M O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 55.2<br>83.5<br>67.7                      | 62<br>62                                                               | ug/kg dry              |                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                  | 57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 19-140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | M CO M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 83.5                                      | 62                                                                     |                        | 99.2                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | IVI-UZ, IVI-U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 67.7                                      |                                                                        |                        | 00.2                                                                                                                                                                                                                                                 | ND                                                                                                                                                                                                                                                                                                                                                                                                               | 56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 29-136                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 8.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | M-04, M-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| <b>0</b>                                  |                                                                        | ug/kg dry              | 99.2                                                                                                                                                                                                                                                 | ND                                                                                                                                                                                                                                                                                                                                                                                                               | 84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 32-143                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | M-02, M-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 50 F                                      | 62                                                                     | ug/kg dry              | 99.2                                                                                                                                                                                                                                                 | ND                                                                                                                                                                                                                                                                                                                                                                                                               | 68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 37-148                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | M-02, M-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 59.5                                      | 62                                                                     | ug/kg dry              | 99.2                                                                                                                                                                                                                                                 | ND                                                                                                                                                                                                                                                                                                                                                                                                               | 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 30-126                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | M-02, M-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 37.7                                      | 62                                                                     | ug/kg dry              | 99.2                                                                                                                                                                                                                                                 | ND                                                                                                                                                                                                                                                                                                                                                                                                               | 38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 24-121                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | M-02, M-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 46.8                                      | 62                                                                     | ug/kg dry              | 99.2                                                                                                                                                                                                                                                 | ND                                                                                                                                                                                                                                                                                                                                                                                                               | 47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 28-128                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | M-02, M-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 77.4                                      | 62                                                                     | ug/kg dry              | 99.2                                                                                                                                                                                                                                                 | ND                                                                                                                                                                                                                                                                                                                                                                                                               | 78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 40-140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | M-02, M-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 63.3                                      | 62                                                                     | ug/kg dry              | 99.2                                                                                                                                                                                                                                                 | ND                                                                                                                                                                                                                                                                                                                                                                                                               | 64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 37-143                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | M-02, M-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 71.3                                      | 62                                                                     | ug/kg dry              | 99.2                                                                                                                                                                                                                                                 | ND                                                                                                                                                                                                                                                                                                                                                                                                               | 72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10-132                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | M-02, M-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 56.2                                      | 62                                                                     | ug/kg dry              | 99.2                                                                                                                                                                                                                                                 | ND                                                                                                                                                                                                                                                                                                                                                                                                               | 57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 28-142                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | M-02, M-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 61.9                                      | 62                                                                     | ug/kg dry              | 99.2                                                                                                                                                                                                                                                 | ND                                                                                                                                                                                                                                                                                                                                                                                                               | 62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 27-146                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | M-02, M-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 60.1                                      | 62                                                                     | ug/kg dry              | 99.2                                                                                                                                                                                                                                                 | ND                                                                                                                                                                                                                                                                                                                                                                                                               | 61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 37-126                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | M-02, M-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 92.6                                      | 62                                                                     | ug/kg dry              | 99.2                                                                                                                                                                                                                                                 | ND                                                                                                                                                                                                                                                                                                                                                                                                               | 93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 13-157                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | M-04, M-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 73.4                                      |                                                                        | ug/kg dry              | 99.2                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                  | 74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 21-125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 57.5                                      |                                                                        | ug/kg dry              | 99.2                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                  | 58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 23-138                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| ts                                        |                                                                        |                        |                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Continue                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| APHA/EPA/ASTM Meth                        | ods                                                                    |                        |                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                           |                                                                        |                        | Spike                                                                                                                                                                                                                                                | Source                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | %REC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | RPD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Result                                    | MRL                                                                    | Units                  | Level                                                                                                                                                                                                                                                | Result                                                                                                                                                                                                                                                                                                                                                                                                           | %REC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Limits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | RPD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Limit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Qualific                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                           |                                                                        |                        |                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Source: 2G14040-                          | 01                                                                     | Prepa                  | ared: 07/18/2                                                                                                                                                                                                                                        | 22 Analyzed                                                                                                                                                                                                                                                                                                                                                                                                      | 07/19/22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                           | 46.8 77.4 63.3 71.3 56.2 61.9 60.1 92.6 73.4 57.5   APHA/EPA/ASTM Meth | 46.8 62                | 37.7 62 ug/kg dry 46.8 62 ug/kg dry 77.4 62 ug/kg dry 63.3 62 ug/kg dry 71.3 62 ug/kg dry 56.2 62 ug/kg dry 61.9 62 ug/kg dry 60.1 62 ug/kg dry 92.6 62 ug/kg dry 73.4 ug/kg dry 73.4 ug/kg dry 75.5 ug/kg dry Units  Source: 2G14040-01 Preparation | 37.7 62 ug/kg dry 99.2 46.8 62 ug/kg dry 99.2 77.4 62 ug/kg dry 99.2 63.3 62 ug/kg dry 99.2 71.3 62 ug/kg dry 99.2 56.2 62 ug/kg dry 99.2 61.9 62 ug/kg dry 99.2 60.1 62 ug/kg dry 99.2 92.6 62 ug/kg dry 99.2 73.4 ug/kg dry 99.2 73.4 ug/kg dry 99.2 57.5 ug/kg dry 99.2 57.5 Ug/kg dry 99.2 57.5 Ug/kg dry 99.2 58  APHA/EPA/ASTM Methods  Spike Result MRL Units Level  Source: 2G14040-01 Prepared: 07/18/2 | 37.7 62 ug/kg dry 99.2 ND 46.8 62 ug/kg dry 99.2 ND 77.4 62 ug/kg dry 99.2 ND 63.3 62 ug/kg dry 99.2 ND 71.3 62 ug/kg dry 99.2 ND 56.2 62 ug/kg dry 99.2 ND 61.9 62 ug/kg dry 99.2 ND 60.1 62 ug/kg dry 99.2 ND 92.6 62 ug/kg dry 99.2 ND 73.4 ug/kg dry 99.2 ND 73.4 ug/kg dry 99.2 ND 73.4 ug/kg dry 99.2 ND 75.5 Ug/kg dry 99.2 ND | 37.7 62 ug/kg dry 99.2 ND 38 46.8 62 ug/kg dry 99.2 ND 47 77.4 62 ug/kg dry 99.2 ND 78 63.3 62 ug/kg dry 99.2 ND 64 71.3 62 ug/kg dry 99.2 ND 72 56.2 62 ug/kg dry 99.2 ND 57 61.9 62 ug/kg dry 99.2 ND 62 60.1 62 ug/kg dry 99.2 ND 62 60.1 62 ug/kg dry 99.2 ND 61 92.6 62 ug/kg dry 99.2 ND 61 73.4 ug/kg dry 99.2 ND 93 73.4 ug/kg dry 99.2 ND 93  APHA/EPA/ASTM Methods  Spike Source Result MRL Units Spike Source Level Result %REC  Source: 2G14040-01 Prepared: 07/18/22 Analyzed: 07/19/27 | 37.7 62 ug/kg dry 99.2 ND 38 24-121 46.8 62 ug/kg dry 99.2 ND 47 28-128 77.4 62 ug/kg dry 99.2 ND 78 40-140 63.3 62 ug/kg dry 99.2 ND 64 37-143 71.3 62 ug/kg dry 99.2 ND 72 10-132 56.2 62 ug/kg dry 99.2 ND 57 28-142 61.9 62 ug/kg dry 99.2 ND 62 27-146 60.1 62 ug/kg dry 99.2 ND 61 37-126 92.6 62 ug/kg dry 99.2 ND 61 37-126 92.6 62 ug/kg dry 99.2 ND 93 13-157 73.4 ug/kg dry 99.2 ND 93 13-157 73.4 ug/kg dry 99.2 ND 93 13-157  T3.4 Ug/kg dry 99.2 ND 83 23-138  Source: 2614040-01  Result MRL Units Spike Source Result %REC Limits  Source: 2614040-01  Prepared: 07/18/22 Analyzed: 07/19/22 72.3 0.100 % by 72.5 | 37.7 62 ug/kg dry 99.2 ND 38 24-121 1 46.8 62 ug/kg dry 99.2 ND 47 28-128 2 77.4 62 ug/kg dry 99.2 ND 78 40-140 0.9 63.3 62 ug/kg dry 99.2 ND 64 37-143 0.5 71.3 62 ug/kg dry 99.2 ND 72 10-132 1 56.2 62 ug/kg dry 99.2 ND 57 28-142 0.6 61.9 62 ug/kg dry 99.2 ND 57 28-142 0.6 61.9 62 ug/kg dry 99.2 ND 62 27-146 1 60.1 62 ug/kg dry 99.2 ND 61 37-126 2 92.6 62 ug/kg dry 99.2 ND 93 13-157 2 73.4 ug/kg dry 99.2 ND 93 13-157 2 73.4 ug/kg dry 99.2 ND 93 13-157 2  75.5 Ug/kg dry 99.2 ND 86 23-138  Spike Source %REC Limits RPD  Source: 2G14040-01 Prepared: 07/18/22 Analyzed: 07/19/22 72.3 0.100 % by 72.5 0.4 | 37.7 62 ug/kg dry 99.2 ND 38 24-121 1 25  46.8 62 ug/kg dry 99.2 ND 47 28-128 2 25  77.4 62 ug/kg dry 99.2 ND 78 40-140 0.9 25  63.3 62 ug/kg dry 99.2 ND 64 37-143 0.5 25  71.3 62 ug/kg dry 99.2 ND 72 10-132 1 25  56.2 62 ug/kg dry 99.2 ND 57 28-142 0.6 25  61.9 62 ug/kg dry 99.2 ND 62 27-146 1 25  60.1 62 ug/kg dry 99.2 ND 62 27-146 1 25  60.1 62 ug/kg dry 99.2 ND 61 37-126 2 25  92.6 62 ug/kg dry 99.2 ND 93 13-157 2 25  73.4 ug/kg dry 99.2 ND 93 13-157 2 25  APHA/EPA/ASTM Methods  Spike Source Result REC RPD Limit  Source: 2614040-01 Prepared: 07/18/22 Analyzed: 07/19/22  72.3 0.100 % by 72.5 0.4 20 |



FINAL REPORT

U.S. Naval Information Warfare Center Pacific 53475 Strothe Rd., Bldg. 111 Code 71760 San Diego, CA 92152 Project Number: SME Sediment Monitoring

Project Manager: Cassandra Sosa

Reported:

01/05/2023 17:58



#### Quality Control Results

| Quality Control Res                      |                    |       |                    |               |             |          |        |     |       |          |
|------------------------------------------|--------------------|-------|--------------------|---------------|-------------|----------|--------|-----|-------|----------|
| Metals (Non-Aqueous) by EPA 6000/7000 Se | ries Methods       |       |                    |               |             |          |        |     |       |          |
|                                          | <b>.</b>           |       |                    | Spike         | Source      | 0/ DEC   | %REC   |     | RPD   | 6 U.C.   |
| Analyte                                  | Result             | MRL   | Units              | Level         | Result      | %REC     | Limits | RPD | Limit | Qualifie |
| atch: W2G0976 - EPA 6020                 |                    |       |                    |               |             |          |        |     |       |          |
| Blank (W2G0976-BLK1) Cadmium, Total      | ND                 | 0.20  | Prepared mg/kg wet | ared: 07/15/2 | 2 Analyzed: | 07/19/22 | 2      |     |       |          |
| Copper, Total                            |                    | 0.50  | 0 0                |               |             |          |        |     |       |          |
| Lead, Total                              |                    |       | mg/kg wet          |               |             |          |        |     |       |          |
|                                          |                    | 0.50  | mg/kg wet          |               |             |          |        |     |       |          |
| Zinc, Total                              | ND                 | 5.0   | mg/kg wet          |               |             |          |        |     |       |          |
| LCS (W2G0976-BS1)                        |                    |       | •                  | ared: 07/15/2 | 2 Analyzed: | 07/19/22 |        |     |       |          |
| Cadmium, Total                           | 33.3               | 0.20  | mg/kg wet          | 50.0          |             | 102      | 80-120 |     |       |          |
| Copper, Total                            |                    | 0.50  | mg/kg wet          | 50.0          |             | 96       | 80-120 |     |       |          |
| Lead, Total                              | 51.3               | 0.50  | mg/kg wet          | 50.0          |             | 103      | 80-120 |     |       |          |
| Zinc, Total                              | 45.8               | 5.0   | mg/kg wet          | 50.0          |             | 92       | 80-120 |     |       |          |
| Matrix Spike (W2G0976-MS1)               | Source: 2G14083-01 |       | Prep               | ared: 07/15/2 | 2 Analyzed: | 07/19/22 | 2      |     |       |          |
| Cadmium, Total                           | 52.9               | 0.20  | mg/kg wet          | 50.2          | ND          | 106      | 75-125 |     |       |          |
| Copper, Total                            | 43.5               | 0.50  | mg/kg wet          | 50.2          | 1.25        | 84       | 75-125 |     |       |          |
| Lead, Total                              | 51.6               | 0.50  | mg/kg wet          | 50.2          | ND          | 103      | 75-125 |     |       |          |
| Zinc, Total                              | 42.5               | 5.0   | mg/kg wet          | 50.2          | ND          | 85       | 75-125 |     |       |          |
| Matrix Spike Dup (W2G0976-MSD1)          | Source: 2G14083-01 |       | Prep               | ared: 07/15/2 | 2 Analyzed: | 07/19/22 | 2      |     |       |          |
| Cadmium, Total                           | 53.0               | 0.20  | mg/kg wet          | 50.3          | ND          | 105      | 75-125 | 0.1 | 20    |          |
| Copper, Total                            | 49.4               | 0.50  | mg/kg wet          | 50.3          | 1.25        | 96       | 75-125 | 13  | 20    |          |
| Lead, Total                              | 52.0               | 0.50  | mg/kg wet          | 50.3          | ND          | 104      | 75-125 | 0.8 | 20    |          |
| Zinc, Total                              | 46.8               | 5.0   | mg/kg wet          | 50.3          | ND          | 93       | 75-125 | 10  | 20    |          |
| atch: W2G1177 - EPA 7471A                |                    |       |                    |               |             |          |        |     |       |          |
| Blank (W2G1177-BLK1)                     |                    |       | Prep               | ared: 07/19/2 | 2 Analyzed: | 07/20/22 | 2      |     |       |          |
| Mercury, Total                           | ND                 | 0.010 | mg/kg wet          |               | •           |          |        |     |       |          |
| LCS (W2G1177-BS1)                        |                    |       | Prep               | ared: 07/19/2 | 2 Analyzed: | 07/20/22 | 2      |     |       |          |
| Mercury, Total                           | 0.0890             | 0.010 | mg/kg wet          | 0.0824        |             | 108      | 80-120 |     |       |          |
| Matrix Spike (W2G1177-MS1)               | Source: 2G12049-01 |       | Prep               | ared: 07/19/2 | 2 Analyzed: | 07/20/22 | 2      |     |       |          |
| Mercury, Total                           | 0.0919             | 0.010 | mg/kg wet          | 0.0846        | ND          | 109      | 47-138 |     |       |          |
| Matrix Spike Dup (W2G1177-MSD1)          | Source: 2G12049-01 |       | Prep               | ared: 07/19/2 | 2 Analyzed: | 07/20/22 | 2      |     |       |          |
| Mercury, Total                           | 0.0875             | 0.010 | mg/kg wet          | 0.0829        | ND          | 106      | 47-138 | 5   | 20    |          |



FINAL REPORT

U.S. Naval Information Warfare Center Pacific 53475 Strothe Rd., Bldg. 111 Code 71760 San Diego, CA 92152 Project Number: SME Sediment Monitoring

Project Manager: Cassandra Sosa

Reported:

01/05/2023 17:58

#### **Quality Control Results**

| Organic Carbon In Soil/Solid b | y EPA 9060A             |     |       |              |               |      |        |     |       |           |
|--------------------------------|-------------------------|-----|-------|--------------|---------------|------|--------|-----|-------|-----------|
|                                |                         |     |       | Spike        | Source        |      | %REC   |     | RPD   |           |
| Analyte                        | Result                  | MRL | Units | Level        | Result        | %REC | Limits | RPD | Limit | Qualifier |
| Batch: W2H0270 - EPA 9060A     |                         |     |       |              |               |      |        |     |       |           |
| Blank (W2H0270-BLK1)           |                         |     |       | Prepared & A | nalyzed: 08/0 | 3/22 |        |     |       |           |
| Total Organic Carbon (TOC)     | ND                      | 200 | mg/kg |              |               |      |        |     |       |           |
| LCS (W2H0270-BS1)              |                         |     |       | Prepared & A | nalyzed: 08/0 | 3/22 |        |     |       |           |
| Total Organic Carbon (TOC)     | 414000                  | 200 | mg/kg | 400000       |               | 103  | 80-120 |     |       |           |
| Matrix Spike (W2H0270-MS1)     | Source: 2G14040-01      | l   |       | Prepared & A | nalyzed: 08/0 | 3/22 |        |     |       |           |
| Total Organic Carbon (TOC)     | 41000                   | 200 | mg/kg | 42000        | 845           | 96   | 62-131 |     |       |           |
| Matrix Spike Dup (W2H0270-M    | SD1) Source: 2G14040-01 | I   |       | Prepared & A | nalyzed: 08/0 | 3/22 |        |     |       |           |
| Total Organic Carbon (TOC)     | 49300                   | 200 | mg/kg | 49600        | 845           | 98   | 62-131 | 18  | 20    |           |



FINAL REPORT

U.S. Naval Information Warfare Center Pacific 53475 Strothe Rd., Bldg. 111 Code 71760 San Diego, CA 92152 Project Number: SME Sediment Monitoring

Reported:

01/05/2023 17:58



#### **Quality Control Results**

Project Manager: Cassandra Sosa

| PCB Congener Screen by GCMS SIM |                            |     |           |                |                  |            |                |     |              |             |
|---------------------------------|----------------------------|-----|-----------|----------------|------------------|------------|----------------|-----|--------------|-------------|
| Analyte                         | Result                     | MRL | Units     | Spike<br>Level | Source<br>Result | %REC       | %REC<br>Limits | RPD | RPD<br>Limit | Qualifier   |
| Batch: W2G1437 - GC/MS/MS       |                            |     |           |                |                  |            |                |     |              | <b>4</b>    |
| Blank (W2G1437-BLK1)            |                            |     | Prep      | ared: 07/21/2  | 22 Analyzed      | : 08/03/22 |                |     |              |             |
| PCB-101                         | ND                         | 6.0 | ug/kg wet |                | ,                |            |                |     |              |             |
| PCB-105                         | ND                         | 6.0 | ug/kg wet |                |                  |            |                |     |              |             |
| PCB-110                         | ND                         | 6.0 | ug/kg wet |                |                  |            |                |     |              |             |
| PCB-114                         | ND                         | 6.0 | ug/kg wet |                |                  |            |                |     |              |             |
| PCB-118                         | ND                         | 6.0 | ug/kg wet |                |                  |            |                |     |              |             |
| PCB-119                         | ND                         | 6.0 | ug/kg wet |                |                  |            |                |     |              |             |
| PCB-123                         | ND                         | 6.0 | ug/kg wet |                |                  |            |                |     |              |             |
| PCB-126                         | ND                         | 6.0 | ug/kg wet |                |                  |            |                |     |              |             |
| PCB-128                         | ND                         | 6.0 | ug/kg wet |                |                  |            |                |     |              |             |
| PCB-132/153                     | ND                         | 6.0 | ug/kg wet |                |                  |            |                |     |              |             |
| PCB-138                         | ND                         | 6.0 | ug/kg wet |                |                  |            |                |     |              |             |
| PCB-141                         | ND                         | 6.0 | ug/kg wet |                |                  |            |                |     |              |             |
| PCB-149                         | ND                         | 6.0 | ug/kg wet |                |                  |            |                |     |              |             |
| PCB-151                         | ND                         | 6.0 | ug/kg wet |                |                  |            |                |     |              |             |
| PCB-156                         | ND                         | 6.0 | ug/kg wet |                |                  |            |                |     |              |             |
| PCB-157                         | ND                         | 6.0 | ug/kg wet |                |                  |            |                |     |              |             |
| PCB-158                         | ND                         | 6.0 | ug/kg wet |                |                  |            |                |     |              |             |
| PCB-167                         | ND                         | 6.0 | ug/kg wet |                |                  |            |                |     |              |             |
| PCB-168                         | ND                         | 6.0 | ug/kg wet |                |                  |            |                |     |              |             |
| PCB-169                         | ND                         | 6.0 | ug/kg wet |                |                  |            |                |     |              |             |
| PCB-170                         | ND                         | 6.0 | ug/kg wet |                |                  |            |                |     |              |             |
| PCB-174                         | ND                         | 6.0 | ug/kg wet |                |                  |            |                |     |              |             |
| PCB-177                         | ND                         | 6.0 | ug/kg wet |                |                  |            |                |     |              |             |
| PCB-18                          | ND                         | 6.0 | ug/kg wet |                |                  |            |                |     |              |             |
| PCB-180                         | ND                         | 6.0 | ug/kg wet |                |                  |            |                |     |              |             |
| PCB-183                         | ND                         | 6.0 | ug/kg wet |                |                  |            |                |     |              |             |
| PCB-187                         | ND                         | 6.0 | ug/kg wet |                |                  |            |                |     |              |             |
| PCB-189                         | ND                         | 6.0 | ug/kg wet |                |                  |            |                |     |              |             |
| PCB-194                         | ND                         | 6.0 | ug/kg wet |                |                  |            |                |     |              |             |
| PCB-195                         | ND                         | 6.0 | ug/kg wet |                |                  |            |                |     |              |             |
| PCB-199                         | ND                         | 6.0 | ug/kg wet |                |                  |            |                |     |              |             |
| PCB-201                         | ND                         | 6.0 | ug/kg wet |                |                  |            |                |     |              |             |
| PCB-203                         | ND                         | 6.0 | ug/kg wet |                |                  |            |                |     |              |             |
| PCB-206                         | · · · · · · · · · · · · ND | 6.0 | ug/kg wet |                |                  |            |                |     |              |             |
| PCB-209                         | · · · · · · · · · · · · ND | 6.0 | ug/kg wet |                |                  |            |                |     |              |             |
| PCB-28/31                       | ND                         | 6.0 | ug/kg wet |                |                  |            |                |     |              |             |
| PCB-3                           | ND                         | 6.0 | ug/kg wet |                |                  |            |                |     |              |             |
| PCB-33                          | · · · · · · · · · · · ND   | 6.0 | ug/kg wet |                |                  |            |                |     |              |             |
| PCB-37                          | · · · · · · · · · · · ND   | 6.0 | ug/kg wet |                |                  |            |                |     |              |             |
| 2G14040                         |                            |     |           |                |                  |            |                |     |              | Page 21 - f |
| 201 10 10                       |                            |     |           |                |                  |            |                |     |              | Page 21 of  |



FINAL REPORT

U.S. Naval Information Warfare Center Pacific 53475 Strothe Rd., Bldg. 111 Code 71760 San Diego, CA 92152 Project Number: SME Sediment Monitoring

Reported:

01/05/2023 17:58



2G14040

#### **Quality Control Results**

Project Manager: Cassandra Sosa

(Continued)

Page 22 of 31

| PCB Congener Screen by GCMS SIM (        | Continued)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       |            |                |                  |          |                |     |              |          |
|------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|------------|----------------|------------------|----------|----------------|-----|--------------|----------|
| Analyte                                  | Result                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | MRL   | Units      | Spike<br>Level | Source<br>Result | %REC     | %REC<br>Limits | RPD | RPD<br>Limit | Qualific |
| atch: W2G1437 - GC/MS/MS (Continue       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | IVIKL | Oilits     | Level          | Result           | 70INLC   | Lillits        | KFD | Lillit       | Qualifi  |
|                                          | eu)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       |            | 1 07/04/5      |                  | 00/02/0  | _              |     |              |          |
| Blank (W2G1437-BLK1) PCB-44              | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 6.0   | ug/kg wet  | ared: 07/21/2  | 22 Analyzed:     | 08/03/22 | 2              |     |              |          |
| PCB-49                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6.0   | ug/kg wet  |                |                  |          |                |     |              |          |
| PCB-52                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6.0   | ug/kg wet  |                |                  |          |                |     |              |          |
|                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6.0   | ug/kg wet  |                |                  |          |                |     |              |          |
| PCB-66                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6.0   | ug/kg wet  |                |                  |          |                |     |              |          |
| PCB-70                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6.0   | ug/kg wet  |                |                  |          |                |     |              |          |
| PCB-74                                   | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6.0   | ug/kg wet  |                |                  |          |                |     |              |          |
| PCB-77                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6.0   | ug/kg wet  |                |                  |          |                |     |              |          |
| PCB-8                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6.0   | ug/kg wet  |                |                  |          |                |     |              |          |
| PCB-81                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6.0   | ug/kg wet  |                |                  |          |                |     |              |          |
| PCB-87                                   | 115                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6.0   | ug/kg wet  |                |                  |          |                |     |              |          |
| PCB-95                                   | , in the second | 6.0   | ug/kg wet  |                |                  |          |                |     |              |          |
| PCB-97                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6.0   | ug/kg wet  |                |                  |          |                |     |              |          |
| PCB-99                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6.0   | ug/kg wet  |                |                  |          |                |     |              |          |
|                                          | ·····                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0   | ug/kg wei  |                |                  |          |                |     |              |          |
| Surrogate(s) 1,3-Dimethyl-2-nitrobenzene | 33.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       | ug/kg wet  | 50.0           |                  | 66       | 0.1-141        |     |              |          |
| Triphenyl phosphate                      | 58.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       | ug/kg wet  | 50.0           |                  | 116      | 15-179         |     |              |          |
| LCS (W2G1437-BS1)                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       | Dron       | ared: 07/21/2  | 2 Analyzadi      | 00/02/22 | ,              |     |              |          |
| PCB-101                                  | 4.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6.0   | ug/kg wet  | 5.00           | .z Allalyzeu.    | 87       | 61-182         |     |              |          |
| PCB-105                                  | 4.37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6.0   | ug/kg wet  | 5.00           |                  | 87       | 36-185         |     |              |          |
| PCB-110                                  | 4.38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6.0   | ug/kg wet  | 5.00           |                  | 88       | 50-150         |     |              |          |
| PCB-114                                  | 4.48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6.0   | ug/kg wet  | 5.00           |                  | 90       | 53-175         |     |              |          |
| PCB-118                                  | 4.44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6.0   | ug/kg wet  | 5.00           |                  | 89       | 41-178         |     |              |          |
| PCB-119                                  | 4.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6.0   | ug/kg wet  | 5.00           |                  | 85       | 50-150         |     |              |          |
| PCB-123                                  | 4.48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6.0   | ug/kg wet  | 5.00           |                  | 90       | 41-178         |     |              |          |
| PCB-126                                  | 4.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6.0   | ug/kg wet  | 5.00           |                  | 85       | 56-180         |     |              |          |
| PCB-128                                  | 3.96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6.0   | ug/kg wet  | 5.00           |                  | 79       | 63-173         |     |              |          |
| PCB-132/153                              | 8.86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6.0   | ug/kg wet  | 10.0           |                  | 89       | 50-150         |     |              |          |
| PCB-138                                  | 4.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6.0   | ug/kg wet  | 5.00           |                  | 80       | 60-175         |     |              |          |
| PCB-141                                  | 4.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6.0   | ug/kg wet  | 5.00           |                  | 80       | 50-150         |     |              |          |
| PCB-149                                  | 4.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6.0   | ug/kg wet  | 5.00           |                  | 90       | 50-150         |     |              |          |
| PCB-151                                  | 4.31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6.0   | ug/kg wet  | 5.00           |                  | 86       | 50-150         |     |              |          |
| PCB-156                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6.0   | ug/kg wet  | 5.00           |                  | 81       | 64-182         |     |              |          |
| PCB-157                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6.0   | ug/kg wet  | 5.00           |                  | 81       | 38-194         |     |              |          |
| PCB-158                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6.0   | ug/kg wet  | 5.00           |                  | 79       | 50-150         |     |              |          |
| PCB-167                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6.0   | ug/kg wet  | 5.00           |                  | 84       | 65-172         |     |              |          |
| PCB-168                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6.0   | ug/kg wet  | 5.00           |                  | 89       | 50-172         |     |              |          |
| PCB-169                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6.0   | ug/kg wet  | 5.00           |                  | 92       | 64-176         |     |              |          |
| 1 35-100                                 | T.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.0   | agring wet | 0.00           |                  | 52       | O-T-17 U       |     |              |          |



FINAL REPORT

U.S. Naval Information Warfare Center Pacific 53475 Strothe Rd., Bldg. 111 Code 71760 San Diego, CA 92152 Project Number: SME Sediment Monitoring

Reported:

01/05/2023 17:58



### **Quality Control Results**

Project Manager: Cassandra Sosa

| PCB Congener Screen by GCMS SIM (Cont |                 |       |           |                       | _                |            |                |     |              |            |
|---------------------------------------|-----------------|-------|-----------|-----------------------|------------------|------------|----------------|-----|--------------|------------|
| Analyte                               | Result          | MRL   | Units     | Spike<br>Level        | Source<br>Result | %REC       | %REC<br>Limits | RPD | RPD<br>Limit | Qualifi    |
| tch: W2G1437 - GC/MS/MS (Continued)   | Result          | IVIKL | Oilles    | Level                 | Result           | MEC        | Lilling        | KFD | Lilling      | Quaiii     |
|                                       |                 |       | _         |                       |                  | 00 (00 (00 | _              |     |              |            |
| <b>CS (W2G1437-BS1)</b> PCB-174       | 4.16            | 6.0   | ug/kg wet | ared: 07/21/2<br>5.00 | 22 Analyzed:     | 83 83      | 50-150         |     |              |            |
| PCB-177                               |                 | 6.0   | ug/kg wet | 5.00                  |                  | 84         | 50-150         |     |              |            |
| PCB-18                                | 3.86            | 6.0   | ug/kg wet | 5.00                  |                  | 77         | 29-182         |     |              |            |
| PCB-180                               |                 | 6.0   | ug/kg wet | 5.00                  |                  | 87         | 58-189         |     |              |            |
| PCB-183                               |                 | 6.0   | ug/kg wet | 5.00                  |                  | 80         | 50-150         |     |              |            |
| PCB-187                               |                 | 6.0   | ug/kg wet | 5.00                  |                  | 82         | 64-168         |     |              |            |
| PCB-189                               |                 | 6.0   | ug/kg wet | 5.00                  |                  | 87         | 55-182         |     |              |            |
| PCB-194                               |                 | 6.0   | ug/kg wet | 5.00                  |                  | 88         | 50-150         |     |              |            |
| PCB-195                               |                 | 6.0   | ug/kg wet | 5.00                  |                  | 86         | 56-179         |     |              |            |
| PCB-199                               |                 |       |           |                       |                  | 90         |                |     |              |            |
|                                       |                 | 6.0   | ug/kg wet | 5.00                  |                  |            | 50-150         |     |              |            |
|                                       |                 | 6.0   | ug/kg wet | 5.00                  |                  | 77         | 50-150         |     |              |            |
|                                       |                 | 6.0   | ug/kg wet | 5.00                  |                  | 90         | 50-150         |     |              |            |
| PCB-206                               |                 | 6.0   | ug/kg wet | 5.00                  |                  | 87         | 67-177         |     |              |            |
| PCB-209                               |                 | 6.0   | ug/kg wet | 5.00                  |                  | 81         | 45-200         |     |              |            |
| PCB-28/31                             |                 | 6.0   | ug/kg wet | 10.0                  |                  | 79         | 50-150         |     |              |            |
| PCB-3                                 |                 | 6.0   | ug/kg wet | 5.00                  |                  | 73         | 50-150         |     |              |            |
| PCB-33                                |                 | 6.0   | ug/kg wet | 5.00                  |                  | 80         | 50-150         |     |              |            |
| PCB-37                                | 20              | 6.0   | ug/kg wet | 5.00                  |                  | 85         | 50-150         |     |              |            |
| PCB-44                                |                 | 6.0   | ug/kg wet | 5.00                  |                  | 81         | 50-185         |     |              |            |
| PCB-49                                | 4.04            | 6.0   | ug/kg wet | 5.00                  |                  | 81         | 50-150         |     |              |            |
| PCB-52                                | 4.18            | 6.0   | ug/kg wet | 5.00                  |                  | 84         | 48-179         |     |              |            |
| PCB-56/60                             | 8.72            | 6.0   | ug/kg wet | 10.0                  |                  | 87         | 50-150         |     |              |            |
| PCB-66                                | 4.11            | 6.0   | ug/kg wet | 5.00                  |                  | 82         | 40-178         |     |              |            |
| PCB-70                                |                 | 6.0   | ug/kg wet | 5.00                  |                  | 86         | 50-150         |     |              |            |
| PCB-74                                | 4.23            | 6.0   | ug/kg wet | 5.00                  |                  | 85         | 50-150         |     |              |            |
| PCB-77                                | 4.42            | 6.0   | ug/kg wet | 5.00                  |                  | 88         | 42-155         |     |              |            |
| PCB-8                                 | 3.80            | 6.0   | ug/kg wet | 5.00                  |                  | 76         | 37-186         |     |              |            |
| PCB-81                                | 4.43            | 6.0   | ug/kg wet | 5.00                  |                  | 89         | 50-174         |     |              |            |
| PCB-87                                | 4.39            | 6.0   | ug/kg wet | 5.00                  |                  | 88         | 50-150         |     |              |            |
| PCB-95                                | 4.10            | 6.0   | ug/kg wet | 5.00                  |                  | 82         | 50-150         |     |              |            |
| PCB-97                                | 4.42            | 6.0   | ug/kg wet | 5.00                  |                  | 88         | 50-150         |     |              |            |
| PCB-99                                | 4.32            | 6.0   | ug/kg wet | 5.00                  |                  | 86         | 50-150         |     |              |            |
| ırrogate(s)                           |                 |       |           |                       |                  |            |                |     |              |            |
| .,,,                                  | 36.6            |       | ug/kg wet | 50.0                  |                  | 73         | 0.1-141        |     |              |            |
| Triphenyl phosphate                   | 72.3            |       | ug/kg wet | 50.0                  |                  | 145        | 15-179         |     |              |            |
| latrix Spike (W2G1437-MS1)            | Source: 2G14040 |       | -         | ared: 07/21/2         | -                |            |                |     |              |            |
| PCB-101                               | 23.4            | 41    | ug/kg dry | 33.8                  | ND               | 69         | 77-164         |     |              | M-0<br>MS- |
| PCB-105                               | 25.0            | 41    | ug/kg dry | 33.8                  | ND               | 74         | 52-184         |     |              | M-         |
| PCB-110                               | 24.1            | 41    | ug/kg dry | 33.8                  | ND               | 71         | 50-150         |     |              | M-         |
| 14040                                 |                 |       |           |                       |                  |            |                |     |              | Page 23 o  |



FINAL REPORT

U.S. Naval Information Warfare Center Pacific 53475 Strothe Rd., Bldg. 111 Code 71760 San Diego, CA 92152 Project Number: SME Sediment Monitoring

Project Manager: Cassandra Sosa

Reported:

01/05/2023 17:58



### **Quality Control Results**

|                                     |                  |     |           | Spike         | Source       |          | %REC   | RPD     |
|-------------------------------------|------------------|-----|-----------|---------------|--------------|----------|--------|---------|
| Analyte                             | Result           | MRL | Units     | Level         | Result       | %REC     | Limits | .imit Q |
| tch: W2G1437 - GC/MS/MS (Continued) |                  |     |           |               |              |          |        |         |
| Natrix Spike (W2G1437-MS1)          | Source: 2G14040- | 01  | Prepa     | ared: 07/21/2 | 22 Analyzed: | 08/03/22 | 2      |         |
| PCB-114                             | 25.3             | 41  | ug/kg dry | 33.8          | ND           | 75       | 56-174 |         |
| PCB-118                             | 24.3             | 41  | ug/kg dry | 33.8          | ND           | 72       | 44-179 |         |
| PCB-119                             | 23.7             | 41  | ug/kg dry | 33.8          | ND           | 70       | 50-150 |         |
| PCB-123                             | 25.0             | 41  | ug/kg dry | 33.8          | ND           | 74       | 44-179 |         |
| PCB-126                             | 24.9             | 41  | ug/kg dry | 33.8          | ND           | 74       | 49-181 |         |
| PCB-128                             | 22.2             | 41  | ug/kg dry | 33.8          | ND           | 66       | 60-182 |         |
| PCB-132/153                         | 49.8             | 41  | ug/kg dry | 67.6          | ND           | 74       | 50-150 |         |
| PCB-138                             | 22.0             | 41  | ug/kg dry | 33.8          | ND           | 65       | 58-183 |         |
| PCB-141                             | 22.8             | 41  | ug/kg dry | 33.8          | ND           | 67       | 50-150 |         |
| PCB-149                             | 24.2             | 41  | ug/kg dry | 33.8          | ND           | 72       | 50-150 |         |
| PCB-151                             | 23.1             | 41  | ug/kg dry | 33.8          | ND           | 68       | 50-150 |         |
| PCB-156                             | 24.0             | 41  | ug/kg dry | 33.8          | ND           | 71       | 48-200 |         |
| PCB-157                             | 23.3             | 41  | ug/kg dry | 33.8          | ND           | 69       | 54-194 |         |
| PCB-158                             | 23.1             | 41  | ug/kg dry | 33.8          | ND           | 68       | 50-150 |         |
| PCB-167                             | 23.6             | 41  | ug/kg dry | 33.8          | ND           | 70       | 58-187 |         |
| PCB-168                             | 25.0             | 41  | ug/kg dry | 33.8          | ND           | 74       | 50-150 |         |
| PCB-169                             | 26.1             | 41  | ug/kg dry | 33.8          | ND           | 77       | 69-188 |         |
| PCB-170                             | 26.6             | 41  | ug/kg dry | 33.8          | ND           | 79       | 59-198 |         |
| PCB-174                             | 23.3             | 41  | ug/kg dry | 33.8          | ND           | 69       | 50-150 |         |
| PCB-177                             | 23.8             | 41  | ug/kg dry | 33.8          | ND           | 71       | 50-150 |         |
| PCB-18                              | 19.6             | 41  | ug/kg dry | 33.8          | ND           | 58       | 57-161 |         |
| PCB-180                             | 24.7             | 41  | ug/kg dry | 33.8          | ND           | 73       | 54-195 |         |
| PCB-183                             |                  | 41  | ug/kg dry | 33.8          | ND           | 68       | 50-150 |         |
| PCB-187                             |                  | 41  | ug/kg dry | 33.8          | ND           | 70       | 56-177 |         |
| PCB-189                             |                  | 41  | ug/kg dry | 33.8          | ND           | 75       | 60-198 |         |
| PCB-194                             | 20.0             | 41  | ug/kg dry | 33.8          | ND           | 75       | 50-150 |         |
| PCB-195                             | 20               | 41  | ug/kg dry | 33.8          | ND           | 75       | 58-182 |         |
| PCB-199                             | 20.0             | 41  | ug/kg dry | 33.8          | ND           | 72       | 50-152 |         |
| PCB-201                             | 21.4             | 41  | ug/kg dry | 33.8          | ND           | 63       | 50-150 |         |
| PCB-203                             |                  | 41  | ug/kg dry | 33.8          | ND           | 72       | 50-150 |         |
| PCB-206                             |                  | 41  | ug/kg dry | 33.8          | ND           | 75       | 56-195 |         |
| . 02 200                            | 20.0             |     |           |               |              |          |        |         |
|                                     |                  | 41  | ug/kg dry | 33.8          | ND           | 70       | 53-201 |         |
|                                     |                  | 41  | ug/kg dry | 67.6          | ND           | 62       | 50-150 |         |
|                                     |                  | 41  | ug/kg dry | 33.8          | ND           | 55       | 50-150 |         |
| PCB-33                              |                  | 41  | ug/kg dry | 33.8          | ND           | 63       | 50-150 |         |
| PCB-37                              |                  | 41  | ug/kg dry | 33.8          | ND           | 68       | 50-150 |         |
| PCB-44                              |                  | 41  | ug/kg dry | 33.8          | ND           | 63       | 58-163 |         |
| PCB-49                              |                  | 41  | ug/kg dry | 33.8          | ND           | 65       | 50-150 |         |
| PCB-52                              | 21.9             | 41  | ug/kg dry | 33.8          | ND           | 65       | 56-163 |         |



FINAL REPORT

U.S. Naval Information Warfare Center Pacific 53475 Strothe Rd., Bldg. 111 Code 71760 San Diego, CA 92152 Project Number: SME Sediment Monitoring

Reported:

01/05/2023 17:58



#### **Quality Control Results**

Project Manager: Cassandra Sosa

| PCB Congener Screen by GCMS SIM (Continued) |                        |                   |                    |                       |                    |                  |                    |     |       |                |
|---------------------------------------------|------------------------|-------------------|--------------------|-----------------------|--------------------|------------------|--------------------|-----|-------|----------------|
| Aug. L. du                                  | D It                   | MADI              | 11-16-             | Spike                 | Source             | 9/ <b>DEC</b>    | %REC               | 222 | RPD   | 0              |
| Analyte cch: W2G1437 - GC/MS/MS (Continued) | Result                 | MRL               | Units              | Level                 | Result             | %REC             | Limits             | RPD | Limit | Qualifi        |
|                                             |                        |                   | _                  |                       |                    |                  | _                  |     |       |                |
| latrix Spike (W2G1437-MS1) PCB-56/60        | Source: 2G14040        | <b>)-01</b><br>41 | Prepa<br>ug/kg dry | ared: 07/21/2<br>67.6 | 22 Analyzed:<br>ND | <b>08/03/2</b> 3 | <b>2</b><br>50-150 |     |       | M-             |
| PCB-66                                      |                        | 41                | ug/kg dry          | 33.8                  | ND                 | 69               | 53-186             |     |       | M-             |
| PCB-70                                      |                        | 41                | ug/kg dry          | 33.8                  | ND                 | 70               | 50-150             |     |       | M-             |
| PCB-74                                      |                        | 41                | ug/kg dry          | 33.8                  | ND                 | 69               | 50-150             |     |       | M-             |
| PCB-77                                      |                        | 41                | ug/kg dry          | 33.8                  | ND                 | 74               | 57-144             |     |       | M              |
| PCB-8                                       |                        | 41                | ug/kg dry          | 33.8                  | ND                 | 57               | 51-163             |     |       | M              |
| PCB-81                                      |                        |                   |                    |                       | ND                 | 75               | 59-178             |     |       | M              |
| PCB-87                                      |                        | 41                | ug/kg dry          | 33.8                  |                    |                  |                    |     |       |                |
|                                             |                        | 41                | ug/kg dry          | 33.8                  | ND                 | 73               | 50-150             |     |       | M              |
|                                             |                        | 41                | ug/kg dry          | 33.8                  | ND                 | 65               | 50-150             |     |       | M-             |
| PCB-97                                      |                        | 41                | ug/kg dry          | 33.8                  | ND                 | 73               | 50-150             |     |       | M              |
| PCB-99                                      | 20.0                   | 41                | ug/kg dry          | 33.8                  | ND                 | 69               | 50-150             |     |       | M              |
| rrogate(s)                                  | 173                    |                   | ug/kg dry          | 338                   |                    | 51               | 0.1-141            |     |       |                |
| Triphenyl phosphate                         | 413                    |                   | ug/kg dry          | 338                   |                    | 122              | 15-179             |     |       |                |
|                                             |                        |                   |                    |                       |                    |                  |                    |     |       |                |
| atrix Spike Dup (W2G1437-MSD1) PCB-101      | <b>Source: 2G14040</b> | <b>)-01</b><br>38 | Prepa<br>ug/kg dry | ared: 07/21/2<br>31.6 | 22 Analyzed:<br>ND | <b>08/03/2</b> 3 | <b>2</b><br>77-164 | 200 | 30    | M-             |
| FGB-101                                     | 10.0                   | 00                | ug/ng ury          | 01.0                  | ND                 | 04               | 77-104             | 200 | 00    | MS-            |
| PCB-105                                     | 47.0                   | 20                | ua/ka dni          | 24.6                  | ND                 | EG               | EO 104             | 200 | 20    | R<br>M oo B    |
|                                             |                        | 38                | ug/kg dry          | 31.6                  | ND                 | 56               | 52-184             | 200 | 30    | M-02, R        |
| PCB-110                                     |                        | 38                | ug/kg dry          | 31.6                  | ND                 | 56               | 50-150             | 200 | 30    | M-02, F        |
| PCB-114                                     |                        | 38                | ug/kg dry          | 31.6                  | ND                 | 57               | 56-174             | 200 | 30    | M-02, F        |
| PCB-118                                     |                        | 38                | ug/kg dry          | 31.6                  | ND                 | 57               | 44-179             | 200 | 30    | M-02, F        |
| PCB-119                                     |                        | 38                | ug/kg dry          | 31.6                  | ND                 | 56               | 50-150             | 200 | 30    | M-02, F        |
| PCB-123                                     |                        | 38                | ug/kg dry          | 31.6                  | ND                 | 57               | 44-179             | 200 | 30    | M-02, F        |
| PCB-126                                     |                        | 38                | ug/kg dry          | 31.6                  | ND                 | 53               | 49-181             | 200 | 30    | M-02, F        |
| PCB-128                                     | 15.9                   | 38                | ug/kg dry          | 31.6                  | ND                 | 50               | 60-182             | 200 | 30    | M-<br>MS-<br>F |
| PCB-132/153                                 | 35.1                   | 38                | ug/kg dry          | 63.2                  | ND                 | 56               | 50-150             | 35  | 30    | M-02, F        |
| PCB-138                                     | 15.7                   | 38                | ug/kg dry          | 31.6                  | ND                 | 50               | 58-183             | 200 | 30    | M-<br>MS-      |
| PCB-141                                     | 16.0                   | 38                | ug/kg dry          | 31.6                  | ND                 | 50               | 50-150             | 200 | 30    | M-02, R        |
| PCB-149                                     |                        | 38                | ug/kg dry          | 31.6                  | ND                 | 54               | 50-150             | 200 | 30    | M-02, R        |
| PCB-151                                     |                        | 38                | ug/kg dry          | 31.6                  | ND                 | 53               | 50-150             | 200 | 30    | M-02, R        |
| PCB-156                                     |                        |                   |                    |                       |                    |                  |                    |     |       | M-02, R        |
|                                             |                        | 38                | ug/kg dry          | 31.6                  | ND                 | 52               | 48-200             | 200 | 30    |                |
| PCB-157                                     | 15.9                   | 38                | ug/kg dry          | 31.6                  | ND                 | 50               | 54-194             | 200 | 30    | M-<br>MS-<br>F |
| PCB-158                                     | 15.9                   | 38                | ug/kg dry          | 31.6                  | ND                 | 50               | 50-150             | 200 | 30    | M-02, R        |
| PCB-167                                     | 16.4                   | 38                | ug/kg dry          | 31.6                  | ND                 | 52               | 58-187             | 200 | 30    | M-<br>MS-      |
| PCB-168                                     | 18.1                   | 38                | ug/kg dry          | 31.6                  | ND                 | 57               | 50-150             | 200 | 30    | M-02, R        |
| 4040                                        |                        |                   |                    |                       |                    |                  |                    |     |       |                |



FINAL REPORT

U.S. Naval Information Warfare Center Pacific 53475 Strothe Rd., Bldg. 111 Code 71760 San Diego, CA 92152 Project Number: SME Sediment Monitoring

Reported:

01/05/2023 17:58



## **Quality Control Results**

Project Manager: Cassandra Sosa

| PCB Congener Screen by GCMS SIM (Continued | )                 |     |           |              |              |         |        |     |       |                         |
|--------------------------------------------|-------------------|-----|-----------|--------------|--------------|---------|--------|-----|-------|-------------------------|
|                                            |                   |     |           | Spike        | Source       |         | %REC   |     | RPD   |                         |
| Analyte                                    | Result            | MRL | Units     | Level        | Result       | %REC    | Limits | RPD | Limit | Qualifier               |
| Batch: W2G1437 - GC/MS/MS (Continued)      |                   |     |           |              |              |         |        |     |       |                         |
| Matrix Spike Dup (W2G1437-MSD1)            | Source: 2G14040-0 | )1  | Prep      | ared: 07/21/ | 22 Analyzed: | 08/03/2 |        |     |       |                         |
| PCB-169                                    | 18.0              | 38  | ug/kg dry | 31.6         | ND           | 57      | 69-188 | 200 | 30    | M-02,<br>MS-01,<br>R-03 |
| PCB-170                                    | 18.5              | 38  | ug/kg dry | 31.6         | ND           | 59      | 59-198 | 200 | 30    | M-02, R-03              |
| PCB-174                                    | 16.7              | 38  | ug/kg dry | 31.6         | ND           | 53      | 50-150 | 200 | 30    | M-02, R-03              |
| PCB-177                                    | 16.3              | 38  | ug/kg dry | 31.6         | ND           | 51      | 50-150 | 200 | 30    | M-02, R-03              |
| PCB-18                                     | 14.3              | 38  | ug/kg dry | 31.6         | ND           | 45      | 57-161 | 200 | 30    | M-02,<br>MS-01,<br>R-03 |
| PCB-180                                    | 17.0              | 38  | ug/kg dry | 31.6         | ND           | 54      | 54-195 | 200 | 30    | M-02, R-03              |
| PCB-183                                    | 15.3              | 38  | ug/kg dry | 31.6         | ND           | 48      | 50-150 | 200 | 30    | M-02,<br>MS-01,<br>R-03 |
| PCB-187                                    | 16.5              | 38  | ug/kg dry | 31.6         | ND           | 52      | 56-177 | 200 | 30    | M-02,<br>MS-01,<br>R-03 |
| PCB-189                                    | 18.2              | 38  | ug/kg dry | 31.6         | ND           | 58      | 60-198 | 200 | 30    | M-02,<br>MS-01,<br>R-03 |
| PCB-194                                    | 17.7              | 38  | ug/kg dry | 31.6         | ND           | 56      | 50-150 | 200 | 30    | M-02, R-03              |
| PCB-195                                    | 17.7              | 38  | ug/kg dry | 31.6         | ND           | 56      | 58-182 | 200 | 30    | M-02,<br>MS-01,<br>R-03 |
| PCB-199                                    | 17.2              | 38  | ug/kg dry | 31.6         | ND           | 54      | 50-150 | 200 | 30    | M-02, R-03              |
| PCB-201                                    | 15.0              | 38  | ug/kg dry | 31.6         | ND           | 47      | 50-150 | 200 | 30    | M-02,<br>MS-01,<br>R-03 |
| PCB-203                                    | 16.6              | 38  | ug/kg dry | 31.6         | ND           | 53      | 50-150 | 200 | 30    | M-02, R-03              |
| PCB-206                                    | 17.8              | 38  | ug/kg dry | 31.6         | ND           | 56      | 56-195 | 200 | 30    | M-02, R-03              |
| PCB-209                                    | 16.8              | 38  | ug/kg dry | 31.6         | ND           | 53      | 53-201 | 200 | 30    | M-02, R-03              |
| PCB-28/31                                  | 30.5              | 38  | ug/kg dry | 63.2         | ND           | 48      | 50-150 | 31  | 30    | M-02,<br>MS-01,<br>R-02 |
| PCB-3                                      | 13.4              | 38  | ug/kg dry | 31.6         | ND           | 42      | 50-150 | 200 | 30    | M-02,<br>MS-01,<br>R-03 |
| PCB-33                                     |                   | 38  | ug/kg dry | 31.6         | ND           | 49      | 50-150 | 200 | 30    | MS-01,<br>R-03, M-02    |
| PCB-37                                     |                   | 38  | ug/kg dry | 31.6         | ND           | 53      | 50-150 | 200 | 30    | M-02, R-03              |
| PCB-44                                     | 15.7              | 38  | ug/kg dry | 31.6         | ND           | 50      | 58-163 | 200 | 30    | M-02,<br>MS-01,<br>R-03 |
| PCB-49                                     | 16.1              | 38  | ug/kg dry | 31.6         | ND           | 51      | 50-150 | 200 | 30    | M-02, R-03              |
| PCB-52                                     |                   | 38  | ug/kg dry | 31.6         | ND           | 50      | 56-163 | 200 | 30    | M-02,<br>MS-01,<br>R-03 |
| PCB-56/60                                  | 34.8              | 38  | ug/kg dry | 63.2         | ND           | 55      | 50-150 | 32  | 30    | M-02, R-02              |
| PCB-66                                     | 16.8              | 38  | ug/kg dry | 31.6         | ND           | 53      | 53-186 | 200 | 30    | M-02, R-03              |
| PCB-70                                     | 17.2              | 38  | ug/kg dry | 31.6         | ND           | 54      | 50-150 | 200 | 30    | M-02, R-03              |
| PCB-74                                     | 16.8              | 38  | ug/kg dry | 31.6         | ND           | 53      | 50-150 | 200 | 30    | M-02, R-03              |
| 2G14040                                    |                   |     |           |              |              |         |        |     |       | Page 26 of 3            |



FINAL REPORT

U.S. Naval Information Warfare Center Pacific 53475 Strothe Rd., Bldg. 111 Code 71760 San Diego, CA 92152 Project Number: SME Sediment Monitoring

Project Manager: Cassandra Sosa

Reported:

01/05/2023 17:58



## **Quality Control Results**

| PCB Congener Screen by GCMS SIM (Contin  | ueu)             |     |           |               |              |         |         |     |       |                         |
|------------------------------------------|------------------|-----|-----------|---------------|--------------|---------|---------|-----|-------|-------------------------|
|                                          |                  |     |           | Spike         | Source       |         | %REC    |     | RPD   |                         |
| Analyte                                  | Result           | MRL | Units     | Level         | Result       | %REC    | Limits  | RPD | Limit | Qualifier               |
| Batch: W2G1437 - GC/MS/MS (Continued)    |                  |     |           |               |              |         |         |     |       |                         |
| Matrix Spike Dup (W2G1437-MSD1)          | Source: 2G14040- | -01 | Prepa     | ared: 07/21/2 | 22 Analyzed: | 08/03/2 | 2       |     |       |                         |
| PCB-77                                   | 17.8             | 38  | ug/kg dry | 31.6          | ND           | 56      | 57-144  | 200 | 30    | M-02,<br>MS-01,<br>R-03 |
| PCB-8                                    | 14.0             | 38  | ug/kg dry | 31.6          | ND           | 44      | 51-163  | 200 | 30    | M-02,<br>MS-01,<br>R-03 |
| PCB-81                                   | 18.3             | 38  | ug/kg dry | 31.6          | ND           | 58      | 59-178  | 200 | 30    | M-02,<br>MS-01,<br>R-03 |
| PCB-87                                   | 18.0             | 38  | ug/kg dry | 31.6          | ND           | 57      | 50-150  | 200 | 30    | M-02, R-03              |
| PCB-95                                   | 15.7             | 38  | ug/kg dry | 31.6          | ND           | 50      | 50-150  | 200 | 30    | M-02, R-03              |
| PCB-97                                   | 18.0             | 38  | ug/kg dry | 31.6          | ND           | 57      | 50-150  | 200 | 30    | M-02, R-03              |
| PCB-99                                   | 17.0             | 38  | ug/kg dry | 31.6          | ND           | 54      | 50-150  | 200 | 30    | M-02, R-03              |
| Surrogate(s) 1,3-Dimethyl-2-nitrobenzene |                  |     | ug/kg dry | 316           |              | 41      | 0.1-141 |     |       |                         |
| Triphenyl phosphate                      | 308              |     | ug/kg dry | 316           |              | 97      | 15-179  |     |       |                         |



FINAL REPORT

U.S. Naval Information Warfare Center Pacific 53475 Strothe Rd., Bldg. 111 Code 71760 San Diego, CA 92152 Project Number: SME Sediment Monitoring

Project Manager: Cassandra Sosa

Reported:

01/05/2023 17:58



### **Quality Control Results**

|                                     |        |     |           | Spike         | Source      |          | %REC     |     | RPD   |          |
|-------------------------------------|--------|-----|-----------|---------------|-------------|----------|----------|-----|-------|----------|
| Analyte                             | Result | MRL | Units     | Level         | Result      | %REC     | Limits   | RPD | Limit | Qualifie |
| tch: W2G1434 - EPA 8270C SIM        |        |     |           |               |             |          |          |     |       |          |
| Blank (W2G1434-BLK1)                |        |     | Prepa     | ared: 07/21/2 | 2 Analyzed: | 07/28/22 | <u> </u> |     |       |          |
| 1-Methylnaphthalene                 | ND     | 20  | ug/kg wet |               | -           |          |          |     |       |          |
| 1-Methylphenanthrene                | ND     | 20  | ug/kg wet |               |             |          |          |     |       |          |
| 2,6-Dimethylnaphthalene             | ND     | 20  | ug/kg wet |               |             |          |          |     |       |          |
| 2-Methylnaphthalene                 | ND     | 20  | ug/kg wet |               |             |          |          |     |       |          |
| Acenaphthene                        | ND     | 20  | ug/kg wet |               |             |          |          |     |       |          |
| Acenaphthylene                      | · ND   | 20  | ug/kg wet |               |             |          |          |     |       |          |
| Anthracene                          | ND     | 20  | ug/kg wet |               |             |          |          |     |       |          |
| Benzo (a) anthracene                | ND     | 20  | ug/kg wet |               |             |          |          |     |       |          |
| Benzo (a) pyrene                    | ND     | 20  | ug/kg wet |               |             |          |          |     |       |          |
| Benzo (b) fluoranthene              | ND     | 20  | ug/kg wet |               |             |          |          |     |       |          |
| Benzo (e) pyrene                    | ND     | 20  | ug/kg wet |               |             |          |          |     |       |          |
| Benzo (g,h,i) perylene              | ND     | 20  | ug/kg wet |               |             |          |          |     |       |          |
| Benzo (k) fluoranthene              | ND     | 20  | ug/kg wet |               |             |          |          |     |       |          |
| Biphenyl                            | ND     | 20  | ug/kg wet |               |             |          |          |     |       |          |
| Chrysene                            | ND     | 20  | ug/kg wet |               |             |          |          |     |       |          |
| Dibenzo (a,h) anthracene            | ND     | 20  | ug/kg wet |               |             |          |          |     |       |          |
| Fluoranthene                        | ND     | 20  | ug/kg wet |               |             |          |          |     |       |          |
| Fluorene                            | ND     | 20  | ug/kg wet |               |             |          |          |     |       |          |
| Indeno (1,2,3-cd) pyrene            | ND     | 20  | ug/kg wet |               |             |          |          |     |       |          |
| Naphthalene                         | ND     | 20  | ug/kg wet |               |             |          |          |     |       |          |
| Perylene                            | ND     | 20  | ug/kg wet |               |             |          |          |     |       |          |
| Phenanthrene                        | ND     | 20  | ug/kg wet |               |             |          |          |     |       |          |
| Pyrene                              | ND     | 20  | ug/kg wet |               |             |          |          |     |       |          |
| urrogate(s) <b>2-Fluorobiphenvl</b> |        |     |           | 1000          |             | 72       | 0.4.400  |     |       |          |
|                                     |        |     | ug/kg wet | 1000          |             | 73       | 0.1-109  |     |       |          |
|                                     |        |     | ug/kg wet | 1000          |             | 71       | 0.1-107  |     |       |          |
| Terphenyl-d14                       | 1000   |     | ug/kg wet | 1000          |             | 100      | 28-128   |     |       |          |
| .CS (W2G1434-BS1)                   | 4500   | 20  |           | ared: 07/21/2 | 2 Analyzed: |          |          |     |       |          |
| Acenaphthene                        |        | 20  | ug/kg wet | 2000          |             | 75<br>75 | 27-103   |     |       |          |
| Acenaphthylene                      |        | 20  | ug/kg wet | 2000          |             | 75<br>72 | 29-112   |     |       |          |
| Anthracene                          |        | 20  | ug/kg wet | 2000          |             | 73       | 31-119   |     |       |          |
| ( )                                 | 1940   | 20  | ug/kg wet | 2000          |             | 73       | 26-132   |     |       |          |
| Benzo (a) pyrene                    |        | 20  | ug/kg wet | 2000          |             | 67       | 19-146   |     |       | 441.1    |
| ( )                                 | 1430   | 20  | ug/kg wet | 2000          |             | 65<br>57 | 40-120   |     |       | AN-I     |
| (6, 7, 1 )                          | 1130   | 20  | ug/kg wet | 2000          |             | 57       | 18-135   |     |       | ***      |
| ( )                                 | 1400   | 20  | ug/kg wet | 2000          |             | 68       | 40-120   |     |       | AN-I     |
| Chrysene                            |        | 20  | ug/kg wet | 2000          |             | 74       | 40-120   |     |       |          |
| Dibenzo (a,h) anthracene            |        | 20  | ug/kg wet | 2000          |             | 60       | 20-137   |     |       |          |
| Fluoranthene                        | 1480   | 20  | ug/kg wet | 2000          |             | 74       | 33-123   |     |       |          |



**FINAL REPORT** 

U.S. Naval Information Warfare Center Pacific 53475 Strothe Rd., Bldg. 111 Code 71760 San Diego, CA 92152 Project Number: SME Sediment Monitoring

Project Manager: Cassandra Sosa

Reported:

01/05/2023 17:58



### Quality Control Results

(Continued)

Page 29 of 31

| Semivolatile Organics - Low Level by GC/MS    | S SIM Mode (Continued) |     |                   |                               |                          |                        |                    |     |       |              |
|-----------------------------------------------|------------------------|-----|-------------------|-------------------------------|--------------------------|------------------------|--------------------|-----|-------|--------------|
|                                               |                        |     |                   | Spike                         | Source                   |                        | %REC               |     | RPD   |              |
| Analyte                                       | Result                 | MRL | Units             | Level                         | Result                   | %REC                   | Limits             | RPD | Limit | Qualifie     |
| atch: W2G1434 - EPA 8270C SIM (Continued)     | )                      |     |                   |                               |                          |                        |                    |     |       |              |
| LCS (W2G1434-BS1) Fluorene                    | 1520                   | 20  | Prep<br>ug/kg wet | ared: <b>07/21/2</b><br>2000  | 22 Analyzed              | : <b>07/28/2</b><br>76 | <b>2</b><br>33-106 |     |       |              |
|                                               |                        |     |                   |                               |                          |                        |                    |     |       |              |
| Indeno (1,2,3-cd) pyrene                      |                        | 20  | ug/kg wet         | 2000                          |                          | 55                     | 16-136             |     |       |              |
| Naphthalene                                   |                        | 20  | ug/kg wet         | 2000                          |                          | 71                     | 22-98              |     |       |              |
| Phenanthrene                                  |                        | 20  | ug/kg wet         | 2000                          |                          | 71                     | 32-110             |     |       |              |
| Pyrene                                        |                        | 20  | ug/kg wet         | 2000                          |                          | 76                     | 34-122             |     |       |              |
| Surrogate(s) <b>2-Fluorobiphenyl</b>          |                        |     | ug/kg wet         | 1000                          |                          | 79                     | 0.1-109            |     |       |              |
| Nitrobenzene-d5                               |                        |     | ug/kg wet         | 1000                          |                          | 79                     | 0.1-107            |     |       |              |
| Terphenyl-d14                                 |                        |     | ug/kg wet         | 1000                          |                          | 89                     | 28-128             |     |       |              |
| ,                                             |                        |     |                   |                               |                          |                        |                    |     |       |              |
| Matrix Spike (W2G1434-MS1)  Acenaphthene      | <b>Source: 2G14040</b> | 120 | Prep<br>ug/kg dry | ared: <b>07/21/2</b><br>11900 | <b>22 Analyzed</b><br>ND | : <b>07/28/2</b><br>76 | <b>2</b><br>5-115  |     |       | M-0:         |
| Acenaphthylene                                |                        | 120 | ug/kg dry         | 11900                         | ND                       | 75                     | 8-111              |     |       | M-0          |
| Anthracene                                    |                        | 120 | ug/kg dry         | 11900                         | ND                       | 74                     | 3-132              |     |       | M-0          |
| Benzo (a) anthracene                          |                        | 120 | ug/kg dry         | 11900                         | ND                       | 67                     | 14-125             |     |       | M-0          |
| Benzo (a) pyrene                              |                        | 120 |                   | 11900                         | ND                       | 67                     | 2-138              |     |       | M-0          |
| Benzo (b) fluoranthene                        |                        |     | ug/kg dry         |                               |                          | 65                     |                    |     |       | M-02         |
| berizo (b) iluorantrierie                     |                        | 120 | ug/kg dry         | 11900                         | ND                       | 00                     | 20-150             |     |       | AN-I         |
| Benzo (g,h,i) perylene                        | 7000                   | 120 | ug/kg dry         | 11900                         | ND                       | 59                     | 9-129              |     |       | M-0          |
| Benzo (k) fluoranthene                        | 8150                   | 120 | ug/kg dry         | 11900                         | ND                       | 69                     | 20-150             |     |       | M-02<br>AN-I |
| Chrysene                                      | 9000                   | 120 | ug/kg dry         | 11900                         | ND                       | 76                     | 20-150             |     |       | M-0          |
| Dibenzo (a,h) anthracene                      | 7510                   | 120 | ug/kg dry         | 11900                         | ND                       | 63                     | 10-144             |     |       | M-0          |
| Fluoranthene                                  | 8940                   | 120 | ug/kg dry         | 11900                         | ND                       | 75                     | 11-127             |     |       | M-0          |
| Fluorene                                      | 9160                   | 120 | ug/kg dry         | 11900                         | ND                       | 77                     | 4-125              |     |       | M-0          |
| Indeno (1,2,3-cd) pyrene                      | 6790                   | 120 | ug/kg dry         | 11900                         | ND                       | 57                     | 3-137              |     |       | M-0          |
| Naphthalene                                   | 8550                   | 120 | ug/kg dry         | 11900                         | ND                       | 72                     | 0.1-117            |     |       | M-0          |
| Phenanthrene                                  | 8610                   | 120 | ug/kg dry         | 11900                         | ND                       | 72                     | 10-122             |     |       | M-0          |
| Pyrene                                        | 8950                   | 120 | ug/kg dry         | 11900                         | ND                       | 75                     | 10-128             |     |       | M-0          |
| Surrogate(s) <b>2-Fluorobiphenyl</b>          |                        |     | ug/kg dry         | 5940                          |                          | 77                     | 0.1-109            |     |       |              |
| Nitrobenzene-d5                               |                        |     | ug/kg dry         | 5940                          |                          | 78                     | 0.1-107            |     |       |              |
| Terphenyl-d14                                 |                        |     | ug/kg dry         | 5940                          |                          | 86                     | 28-128             |     |       |              |
|                                               |                        |     |                   |                               |                          |                        |                    |     |       |              |
| Matrix Spike Dup (W2G1434-MSD1)  Acenaphthene | <b>Source: 2G14040</b> | 120 | Prep<br>ug/kg dry | ared: <b>07/21/2</b><br>11700 | <b>22 Analyzed</b><br>ND | : <b>07/28/2</b><br>78 | <b>2</b><br>5-115  | 1   | 30    | M-0          |
| Acenaphthylene                                |                        | 120 | ug/kg dry         | 11700                         | ND                       | 76                     | 8-111              | 0.3 | 30    | M-0          |
| Anthracene                                    |                        | 120 | ug/kg dry         | 11700                         | ND                       | 75                     | 3-132              | 0.9 | 30    | M-0          |
| Benzo (a) anthracene                          |                        | 120 | ug/kg dry         | 11700                         | ND                       | 63                     | 14-125             | 9   | 30    | M-0          |
| (-)                                           |                        |     |                   | 11700                         | ND<br>ND                 |                        |                    |     |       | M-0          |
| ( ) ( )                                       |                        | 120 | ug/kg dry         |                               |                          | 63                     | 2-138              | 8   | 30    |              |
| Benzo (b) fluoranthene                        | 7350                   | 120 | ug/kg dry         | 11700                         | ND                       | 63                     | 20-150             | 5   | 30    | M-02<br>AN-I |
| Benzo (g,h,i) perylene                        | 6640                   | 120 | ug/kg dry         | 11700                         | ND                       | 57                     | 9-129              | 5   | 30    | M-0          |

14859 Clark Avenue, City of Industry CA, 91745 | Phone: (626) 336-2139 | Fax: (626) 336-2634



FINAL REPORT

U.S. Naval Information Warfare Center Pacific 53475 Strothe Rd., Bldg. 111 Code 71760 San Diego, CA 92152 Project Number: SME Sediment Monitoring

Project Manager: Cassandra Sosa

Reported:

01/05/2023 17:58



## **Quality Control Results**

|                                            |                   |       |           | Spike         | Source       |         | %REC           |     | RPD   |                |
|--------------------------------------------|-------------------|-------|-----------|---------------|--------------|---------|----------------|-----|-------|----------------|
| Auglista                                   | Result            | MRL   | Units     | •             | Result       | %REC    | %REC<br>Limits | RPD | Limit | Qualifier      |
| Analyte                                    |                   | IVIKL | Units     | Level         | Kesuit       | 76REC   | Limits         | KPD | Limit | Qualifie       |
| Batch: W2G1434 - EPA 8270C SIM (Continued) |                   |       |           |               |              |         |                |     |       |                |
| Matrix Spike Dup (W2G1434-MSD1)            | Source: 2G14040-0 | 1     | Prep      | ared: 07/21/2 | 22 Analyzed: | 07/28/2 | 2              |     |       |                |
| Benzo (k) fluoranthene                     | 7680              | 120   | ug/kg dry | 11700         | ND           | 66      | 20-150         | 6   | 30    | M-02,<br>AN-IF |
| Chrysene                                   |                   | 120   | ug/kg dry | 11700         | ND           | 77      | 20-150         | 0.2 | 30    | M-02           |
| Dibenzo (a,h) anthracene                   | 7080              | 120   | ug/kg dry | 11700         | ND           | 61      | 10-144         | 6   | 30    | M-02           |
| Fluoranthene                               | 8630              | 120   | ug/kg dry | 11700         | ND           | 74      | 11-127         | 4   | 30    | M-02           |
| Fluorene                                   | 9200              | 120   | ug/kg dry | 11700         | ND           | 79      | 4-125          | 0.4 | 30    | M-02           |
| Indeno (1,2,3-cd) pyrene                   | 6470              | 120   | ug/kg dry | 11700         | ND           | 55      | 3-137          | 5   | 30    | M-02           |
| Naphthalene                                | 8660              | 120   | ug/kg dry | 11700         | ND           | 74      | 0.1-117        | 1   | 30    | M-02           |
| Phenanthrene                               | 8670              | 120   | ug/kg dry | 11700         | ND           | 74      | 10-122         | 0.6 | 30    | M-02           |
| Pyrene                                     | 8570              | 120   | ug/kg dry | 11700         | ND           | 73      | 10-128         | 4   | 30    | M-02           |
| Surrogate(s)                               |                   |       |           |               |              |         |                |     |       |                |
| 2-Fluorobiphenyl                           | 4670              |       | ug/kg dry | 5840          |              | 80      | 0.1-109        |     |       |                |
| Nitrobenzene-d5                            | 4770              |       | ug/kg dry | 5840          |              | 82      | 0.1-107        |     |       |                |
| Terphenyl-d14                              | 4880              |       | ug/kg dry | 5840          |              | 84      | 28-128         |     |       |                |



FINAL REPORT

U.S. Naval Information Warfare Center Pacific 53475 Strothe Rd., Bldg. 111 Code 71760 San Diego, CA 92152 Project Number: SME Sediment Monitoring

Project Manager: Cassandra Sosa

Reported:

01/05/2023 17:58



Item

#### Notes and Definitions

| AN-IP  | Sample results for structural isomers may have contribution from their isomeric pair.                                                                                                                           |
|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| M-02   | Due to the nature of matrix interferences, sample was diluted prior to preparation. The MDL and MRL were raised due to the dilution.                                                                            |
| M-04   | Due to the nature of matrix interferences, sample extract was diluted prior to analysis. The MDL and MRL were raised due to the dilution.                                                                       |
| MS-01  | The spike recovery for this QC sample is outside of established control limits possibly due to sample matrix interference.                                                                                      |
| R-02   | The RPD was outside of QC acceptance limits due to possible matrix interference.                                                                                                                                |
| R-03   | The RPD is not applicable for result below the reporting limit (either ND or J value).                                                                                                                          |
| %REC   | Percent Recovery                                                                                                                                                                                                |
| Dil    | Dilution                                                                                                                                                                                                        |
| dry    | Sample results reported on a dry weight basis                                                                                                                                                                   |
| MRL    | The minimum levels, concentrations, or quantities of a target variable (e.g., target analyte) that can be reported with a specified degree of confidence.  The MRL is also known as Limit of Quantitation (LOQ) |
| ND     | NOT DETECTED at or above the Method Reporting Limit (MRL). If Method Detection Limit (MDL) is reported, then ND means not detected at or above the MDL.                                                         |
| RPD    | Relative Percent Difference                                                                                                                                                                                     |
| Source | Sample that was matrix spiked or duplicated.                                                                                                                                                                    |

Any remaining sample(s) will be disposed of one month from the final report date unless other arrangements are made in advance.

All results are expressed on wet weight basis unless otherwise specified.

All samples collected by Weck Laboratories have been sampled in accordance to laboratory SOP Number MIS002.

| 5                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | WECK LABORATORIES, INC.                                                             | ABO        | RATOF              | RIES, IN     | J                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | 0,   | Stan           | dard CH            | HAIN OF          | CUST                     | Standard CHAIN OF CUSTODY RECORD                                     | <u> </u>           |
|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|------------|--------------------|--------------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|------|----------------|--------------------|------------------|--------------------------|----------------------------------------------------------------------|--------------------|
| 14859 Clar            | rterithment<br>k Avenue : In                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 14859 Clark Avenue: Industry : CA 91745                                             | 3174       | ory Servic         | ce - Since 1 | 969                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |      |                |                    | WECK             | WECK WKO# 3G14640        | 04040                                                                |                    |
| CLIENT NAM            | JU-2 1 33 4 1 81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 020-020 V                                                                           | 5          |                    | PRO          | VECT:              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |      | T <sub>A</sub> | ANALYSES REQUESTED | UESTED           | S                        | SPECIAL HANDLING                                                     |                    |
|                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                     |            |                    |              |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •           |      |                |                    |                  |                          | Same Day Rush 150%                                                   |                    |
| NIWC Pacific          | ပ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                     |            |                    | SME          | ediment Monitoring |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | 1    |                |                    |                  |                          | 24 Hour Rush 100%                                                    |                    |
| ADDRESS:              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                     | •          |                    | PHONE        | : <u>i</u>         | 619-221-5296                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -           |      |                |                    | -                |                          | 48-72 Hour Rush 75%                                                  |                    |
| 53560 Hull St.        | 3t.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                     |            |                    | FAX:         |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |      |                |                    |                  | L                        | 4 - 5 Day Rush 30%                                                   |                    |
| San Diego, CA 92152   | CA 92152                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                     |            |                    | EMAIL:       |                    | cassandra.sosa1@spawar.navy,mil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ll l        |      |                | •                  | -                | <u> </u>                 | Rush Extractions 50%                                                 |                    |
| PRO IFCT MANAGER      | MAGER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                     |            |                    | SAM          | SAMPLER            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -           | ə    |                |                    |                  |                          | 10 - 15 Business Days<br>OA/OC Data Packada                          |                    |
| Kara Sorens           | Kara Sorenson, Cass Sosa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                     |            |                    | N id         | Nicholas Hayman    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | iont |                |                    |                  | Charges                  | Charges will apply for weekends/holidays                             | ys                 |
| ID#<br>(Lab Use Only) | DATE<br>SAMPLED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TIME                                                                                | SMPL       | PL Cl <sub>2</sub> | <i>.</i> ∉ ₹ | SAMPLE IC          | SAMPLE IDENTIFICATION/SITE LOCATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | # OF        | 99S  |                |                    |                  | Method of Sh<br>COMMENTS | Method of Shipment:<br>COMMENTS                                      |                    |
|                       | L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9:25 AM                                                                             | XĮ.        | ı                  | N MA1        |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | ×    |                |                    |                  |                          |                                                                      |                    |
|                       | 07/12/22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10:35 AM                                                                            | Grab       | <b>∠</b> 유         | MA2          | 2                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | ×    |                |                    | ,                |                          |                                                                      |                    |
|                       | 07/12/22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2:40 PM                                                                             | <b>%</b> 5 |                    |              | 1.                 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             | ×    |                | -                  | -                |                          |                                                                      |                    |
|                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                                                                   | _          | 1                  |              |                    | man and man man man man man and man an |             |      |                |                    |                  |                          |                                                                      |                    |
|                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                     |            | ļ                  |              |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |      |                |                    |                  |                          |                                                                      |                    |
|                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                     |            | <u> </u>           | 1            |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |      |                |                    |                  |                          |                                                                      |                    |
|                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                     |            |                    | <u> </u>     |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |      |                |                    |                  |                          |                                                                      |                    |
|                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                     | -          |                    | -            |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |      |                |                    |                  |                          |                                                                      |                    |
|                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                     |            |                    |              |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |      | ļ              |                    |                  |                          |                                                                      |                    |
|                       | The state of the s |                                                                                     | <u> </u>   | -                  | _            |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |      |                |                    |                  |                          |                                                                      |                    |
|                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                                                                   |            |                    | $\vdash$     |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |      |                |                    |                  |                          |                                                                      |                    |
|                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                     | ļ          | <u> </u>           | 1            |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |      |                |                    |                  |                          |                                                                      |                    |
| RELINQUISHED BY       | SHED BY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                     |            |                    | DA           |                    | RECEIVED BY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             |      | DAT            | DATE / TIME        | SAMPLE           | SAMPLE CONDITION:        | SAMPLE TYPE CODE:                                                    | CODE:              |
| ////                  | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1                                                                                   |            |                    | 1            | 00/12/s/L          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |      |                |                    |                  | اد: وراي الم             | NA= Non Aqueous                                                      |                    |
| RELINGUISHED          | SHED BY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                     |            | ŀ                  | DA           | DATE / TIME        | RECEIVED BY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             |      | DAT            | DATE / TIME        | Received On Ice  |                          | DW = Drinking Water                                                  | _                  |
| 1498                  | FOD EX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                     |            |                    |              |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |      | られ             | OHIUP2             |                  | resent<br>ad             | Y / N   RW = Rain Water Y / N   GW = Ground Water                    |                    |
| RELINQUÌSHED BY       | SHED BY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                                                                                   |            |                    | DA           | DATE / TIME        | RECEIVED BY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             |      | DAT            | E/TIME             | Preserved at Lab |                          | Y (N) SO = Soil<br>SW = Solid Weste<br>OL = OII<br>OT = Other Matrix |                    |
| PRESCHEDI             | PRESCHEDULED RUSH ANALYSES WILL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PRESCHEDULED RUSH ANALYSES WILL TAKE PRIORITY<br>OVER INSCHEDIII ED RIISH REGIIESTS | KE PI      | RIORIT             | ≿            |                    | SPECIAL REQUIREMENTS / BILLING INFORMATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | INFORMATION |      |                |                    |                  | :                        |                                                                      |                    |
| Client agrees         | Client agrees to Terms & Conditions at:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ilions at:                                                                          |            |                    | WWW.V        | www.wecklabs.com   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |      |                | :                  |                  |                          | COC vers                                                             | CDC version 042707 |



# **Analytical Service Quotation**

Contact: Cassandra Sosa Printed: 7/1/2022

Client Name: U.S. Naval Information Warfare Center Pacific Effective: 07/01/22

Address: 53475 Strothe Rd., Bldg, 111 Code 71760 Expires: 12/31/22

San Diego, CA 92152

Phone: (619) 553-2788

Fax:

Project: Blanket

| Code                                                                           | :<br>:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Qty | TAT *<br>(workdays) | Unit Price | Extended Price |
|--------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|---------------------|------------|----------------|
| Solid                                                                          | The second secon |     |                     |            |                |
| 8270C Soil PAH Low SIM                                                         | EPA 8270C SIM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3   | 10                  | \$180.00   | \$540.00       |
| Cadmium - EPA 6020                                                             | EPA 6020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3   | 10                  | \$16.00    | \$48.00        |
| Copper - EPA 6020                                                              | EPA 6020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3   | 10                  | \$16.00    | \$48.00        |
| EPA 8081A - Organochlorine Pesticides                                          | EPA 8081A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3   | 10                  | \$175.00   | \$525.00       |
| Lead - EPA 6020                                                                | EPA 6020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | . 3 | 10                  | \$16.00    | \$48.00        |
| Mercury - EPA 7471                                                             | EPA 7471A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | . 3 | 10                  | \$35.00    | \$105.00       |
| Moisture, Percent                                                              | EPA 160.3M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3   | 10                  | \$30.00    | \$90.00        |
| Organic Carbon in Soil/Solid - EPA 9060M                                       | EPA 9060A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3   | 10                  | \$95.00    | \$285.00       |
| Particle size distribution - Laser                                             | ASTM D422/4464                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3   | 10                  | \$250.00   | \$750.00       |
| PCB Congeners by GCMSMS                                                        | GC/MS/MS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3   | 10                  | \$325.00   | \$975.00       |
| Zinc - EPA 6020                                                                | EPA 6020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3   | 10                  | \$16.00    | \$48.00        |
| Additional Items (if requested or applicable, will be charged at listed rates) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |                     |            | i              |
| Digestion for total metals                                                     | :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3   | 2                   | \$20.00    | \$60.00        |

Bid Total: \$3.522.00

Comments:

Dry-Weight report.

Leo Raab

**National Sales Manager** 

teo CRaob

Payment terms are NET 30 days from invoice date. New accounts require payment prior to the release of test results until a credit application has been approved. Weck Laboratories accepts credit card payments (VISA/Master Card, American Express). Credit application/credit card approval form and Weck Laboratories' terms & conditions can be found at www.wecklabs.com under Resources. Paperless reports (PDF) are included while mailed paper reports are available at additional cost.

Method Reporting Limits (MRL) and Method Detection Limits (MDL) are based upon specified sample volume or weight. When matrix interferences are apparent, sample amounts may be reduced during the preparation step and/or may be diluted prior to analysis. This is done to reduce analytical interference and instrumental contamination and will result in elevated MRL/MDL on the test report.

Afterhours fees apply to analytical processing that includes but is not limited to test set-up, extractions, digestions, transfers, analyses or readings. Special Courier Services afterhours, weekends, holidays, rush or large item transport are available on a per project quote basis. Field Services (courier or sampling) that are not cancelled 48 hours in advance are subject to charges covering travel and restocking expenses. Changes in analytical project requirements after work is underway in the lab or has been reported that necessitates re-analysis or re-processing of deliverables may incure additional fees.

Bid Project: U.S. Naval Information Warfare Center Pacific - Blanket

Page 2 of 2

Fax: (626) 336 - 2634

Phone: (626) 336-2139

<sup>\*</sup> Subject to Capacity



# Sample Receipt Checklist

|                          | Weck WKO:             | 2G14040                                                        |             | Date/                   | Time Received:                 | 07/14/22 @ 10:00          |
|--------------------------|-----------------------|----------------------------------------------------------------|-------------|-------------------------|--------------------------------|---------------------------|
| ١                        | WKO Logged by:        | Jerico Bolotano                                                |             |                         | # of Samples:                  |                           |
| Samp                     | les Checked by:       | JB                                                             |             |                         | Delivered by:                  | _Fedex                    |
|                          | Task                  |                                                                | Yes         | No                      | N/A                            | Comments                  |
|                          | COC present at r      | ecaint?                                                        | × ×         |                         |                                |                           |
|                          | COC properly co       |                                                                | $\boxtimes$ |                         | _                              |                           |
| ω                        | COC matches sai       | •                                                              | $\boxtimes$ |                         | _                              |                           |
| 202                      | Coe materies sai      | imple labels.                                                  | <u> </u>    |                         |                                | •                         |
|                          |                       |                                                                |             |                         | _                              |                           |
|                          | <br>  Project Manager | notified?                                                      |             |                         | ⊠ —                            | 0 <del>-1</del> 0         |
|                          | , ,                   |                                                                |             |                         | _                              |                           |
|                          | Sample Tempera        | ature                                                          | 5.6         | 5°C                     |                                |                           |
| _                        | Samples receive       | d on ice?                                                      | $\boxtimes$ |                         | _                              |                           |
| tior                     | Ice Type (Blue/W      | Vet)                                                           | We          | et                      | _                              |                           |
| За                       | All samples intac     | ct?                                                            | $\boxtimes$ |                         | _                              |                           |
| for                      | Samples in prop       | er containers?                                                 | $\boxtimes$ |                         | _                              |                           |
| t In                     | Sufficient sample     | e volume?                                                      | $\boxtimes$ |                         | _                              |                           |
| eib                      | Samples intact?       |                                                                | $\boxtimes$ |                         |                                |                           |
| Receipt Information      | Received within       | holding time?                                                  | $\boxtimes$ |                         |                                |                           |
| _                        |                       |                                                                |             |                         |                                |                           |
|                          | Project Manage        | r notified?                                                    |             |                         | <b>×</b>                       | <del></del>               |
|                          | 1                     |                                                                | 5=-3        | _                       |                                |                           |
|                          | Sample labels ch      | necked for correct preservation?                               | $\boxtimes$ |                         |                                |                           |
|                          |                       | 5 (n : 2                                                       |             |                         | _                              |                           |
| 'n                       |                       | : none, <6mm/ <pea size?<br="">4.1, 8260, 1666 P/T, LUFT</pea> |             |                         | $\bowtie$                      |                           |
| atic                     | 324.2, 324.3, 62      | 4.1, 8200, 1000 F/T, LOFT                                      |             |                         | _                              |                           |
| ij                       | pH verified upor      | receint?                                                       |             |                         |                                | pH paper Lot# 1071586     |
| Ş.                       |                       | 04 pres tests <2; 522<4; TOC <2; 525.2<2;                      |             |                         | ⊠ -                            |                           |
| lon                      | 6710B<2; 608.3        |                                                                |             |                         |                                |                           |
| eservation Verification? |                       |                                                                |             |                         | _                              |                           |
| ser                      | Free Chlorine Te      | ested <0.1                                                     |             |                         |                                | Cl Test Strip Lot# 020821 |
| Pre                      |                       | VALUE SER EN               |             | entero <u>llu</u> e est |                                |                           |
| Sample Pr                | O&G pH <2 verif       | fied?                                                          |             | Ш                       |                                | pH paper Lot#             |
| E E                      | 40.650666             |                                                                |             | de bijek                | _                              | pH Reading:               |
| Ϋ́                       | pH adjusted for       | 0&G                                                            |             |                         |                                | Acid Lot#                 |
|                          |                       |                                                                |             |                         | Parkaranga sinda ibar <u>a</u> | Amt added:                |
|                          | Project Manage        | r notified?                                                    |             | Ш                       | _                              | <u> </u>                  |
|                          |                       |                                                                |             |                         |                                |                           |
| PM Co                    | mments                |                                                                |             |                         |                                |                           |
|                          |                       |                                                                |             |                         |                                |                           |
|                          |                       |                                                                |             |                         |                                |                           |
|                          |                       |                                                                |             |                         |                                |                           |
| -                        | ·                     | dist Prepared by:                                              |             |                         |                                |                           |
| Signa                    | ture: JB              |                                                                |             |                         | Date:                          | 07/14/22                  |
|                          |                       |                                                                |             |                         |                                |                           |



# **Environment Testing America**

# **ANALYTICAL REPORT**

Eurofins Calscience 2841 Dow Avenue, Suite 100 Tustin, CA 92780 Tel: (714)895-5494

Laboratory Job ID: 570-108193-1 Client Project/Site: 2G14040

#### For:

Weck Laboratories, Inc. 14859 E. Clark Avenue City of Industry, California 91745

Attn: Chris Samatmanakit

Joh Bridge

Authorized for release by: 9/15/2022 6:49:19 AM

Don Burley, Senior Project Manager (657)212-3033

Donald.Burley@et.eurofinsus.com

Review your project results through

FOL.

----- LINKS -----

**Have a Question?** 



Visit us at: www.eurofinsus.com/Env The test results in this report meet all 2003 NELAC, 2009 TNI, and 2016 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

2

3

4

5

6

Q

9

10

10

13

Client: Weck Laboratories, Inc. Project/Site: 2G14040

Laboratory Job ID: 570-108193-1

# **Table of Contents**

| Cover Page             | 1  |
|------------------------|----|
| Table of Contents      | 2  |
| Definitions/Glossary   | 3  |
| Case Narrative         | 4  |
| Detection Summary      | 5  |
| Client Sample Results  | 6  |
| QC Sample Results      | 15 |
| QC Association Summary | 16 |
| Lab Chronicle          | 17 |
| Certification Summary  | 18 |
| Method Summary         | 19 |
| Sample Summary         | 20 |
| Chain of Custody       | 21 |
| Receipt Checklists     | 22 |

#### **Definitions/Glossary**

Client: Weck Laboratories, Inc.

Job ID: 570-108193-1

Project/Site: 2G14040

#### **Qualifiers**

#### Geotechnical

Qualifier Qualifier Description

F3 Duplicate RPD exceeds the control limit

#### Glossary

| Abbreviation | These c | ommon | y used | abbrev | /iatior | ıs ma | y or ma | y not be | e present i | in this | report. |   |
|--------------|---------|-------|--------|--------|---------|-------|---------|----------|-------------|---------|---------|---|
|              |         |       |        |        |         |       |         |          |             |         |         | _ |

Listed under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery
CFL Contains Free Liquid
CFU Colony Forming Unit
CNF Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac Dilution Factor

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin)

LOD Limit of Detection (DoD/DOE)

LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level"

MDA Minimum Detectable Activity (Radiochemistry)

MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit
ML Minimum Level (Dioxin)
MPN Most Probable Number
MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent
POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive
QC Quality Control

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

**Eurofins Calscience** 

Page 3 of 22 9/15/2022

#### **Case Narrative**

Client: Weck Laboratories, Inc.

Project/Site: 2G14040

Job ID: 570-108193-1

**Laboratory: Eurofins Calscience** 

**Narrative** 

Job Narrative 570-108193-1

#### Comments

No additional comments.

#### Receipt

The samples were received on 8/31/2022 9:50 AM. Unless otherwise noted below, the samples arrived in good condition, and where required, properly preserved and on ice. The temperature of the cooler at receipt was 1.0° C.

#### **Organic Prep**

Method D4464: The sample duplicate precision associated with analytical batch 570-264193 was flagged as being outside control limits due to a LIMS. limitation. The mean grain size for the sample and sample duplicate were within RPD acceptance criteria.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Job ID: 570-108193-1

3

4

6

7

8

9

1 0

12

13

## **Detection Summary**

Client: Weck Laboratories, Inc.

Job ID: 570-108193-1

Project/Site: 2G14040

#### Client Sample ID: 2G14040-01/MA1

#### Lab Sample ID: 570-108193-1

| Analyte                             | Result Qualifier | RL   | Unit      | Dil Fac | D Method | Prep Type |
|-------------------------------------|------------------|------|-----------|---------|----------|-----------|
| Clay (less than 0.00391 mm)         | 0.34             | 0.01 | <u></u> % | 1       | D4464    | Total/NA  |
| Coarse Sand (0.5mm to 1mm)          | 10.00            | 0.01 | %         | 1       | D4464    | Total/NA  |
| Fine Sand (0.125 to 0.25mm)         | 26.41            | 0.01 | %         | 1       | D4464    | Total/NA  |
| Medium Sand (0.25 to 0.5 mm)        | 61.91            | 0.01 | %         | 1       | D4464    | Total/NA  |
| Silt (0.00391 to 0.0625mm)          | 0.22             | 0.01 | %         | 1       | D4464    | Total/NA  |
| Total Silt and Clay (0 to 0.0626mm) | 0.56             | 0.01 | %         | 1       | D4464    | Total/NA  |
| Very Coarse Sand (1 to 2mm)         | 0.18             | 0.01 | %         | 1       | D4464    | Total/NA  |
| Very Fine Sand (0.0625 to 0.125 mm) | 0.94             | 0.01 | %         | 1       | D4464    | Total/NA  |

#### Client Sample ID: 2G14040-02/MA2

#### Lab Sample ID: 570-108193-2

| Analyte                             | Result Qualifier | RL   | Unit | Dil Fac [ | Method | Prep Type |
|-------------------------------------|------------------|------|------|-----------|--------|-----------|
| Clay (less than 0.00391 mm)         | 0.21             | 0.01 | %    |           | D4464  | Total/NA  |
| Coarse Sand (0.5mm to 1mm)          | 13.56            | 0.01 | %    | 1         | D4464  | Total/NA  |
| Fine Sand (0.125 to 0.25mm)         | 26.85            | 0.01 | %    | 1         | D4464  | Total/NA  |
| Medium Sand (0.25 to 0.5 mm)        | 56.42            | 0.01 | %    | 1         | D4464  | Total/NA  |
| Silt (0.00391 to 0.0625mm)          | 0.33             | 0.01 | %    | 1         | D4464  | Total/NA  |
| Total Silt and Clay (0 to 0.0626mm) | 0.55             | 0.01 | %    | 1         | D4464  | Total/NA  |
| Very Coarse Sand (1 to 2mm)         | 1.32             | 0.01 | %    | 1         | D4464  | Total/NA  |
| Very Fine Sand (0.0625 to 0.125 mm) | 1.30             | 0.01 | %    | 1         | D4464  | Total/NA  |

#### Client Sample ID: 2G14040-03/E3

# Lab Sample ID: 570-108193-3

| Analyte                             | Result Qualifier | RL   | Unit | Dil Fac | D Method | Prep Type |
|-------------------------------------|------------------|------|------|---------|----------|-----------|
| Clay (less than 0.00391 mm)         | 0.62             | 0.01 | %    | 1       | D4464    | Total/NA  |
| Coarse Sand (0.5mm to 1mm)          | 3.67             | 0.01 | %    | 1       | D4464    | Total/NA  |
| Fine Sand (0.125 to 0.25mm)         | 44.42            | 0.01 | %    | 1       | D4464    | Total/NA  |
| Medium Sand (0.25 to 0.5 mm)        | 28.76            | 0.01 | %    | 1       | D4464    | Total/NA  |
| Silt (0.00391 to 0.0625mm)          | 4.35             | 0.01 | %    | 1       | D4464    | Total/NA  |
| Total Silt and Clay (0 to 0.0626mm) | 4.97             | 0.01 | %    | 1       | D4464    | Total/NA  |
| Very Coarse Sand (1 to 2mm)         | 0.01             | 0.01 | %    | 1       | D4464    | Total/NA  |
| Very Fine Sand (0.0625 to 0.125 mm) | 18.16            | 0.01 | %    | 1       | D4464    | Total/NA  |

This Detection Summary does not include radiochemical test results.

9/15/2022

3

\_

10

10

13

### **Client Sample Results**

Client: Weck Laboratories, Inc. Job ID: 570-108193-1

Project/Site: 2G14040

## Method: D4464 - Particle Size Distribution of Catalytic Material (Laser light scattering)

Client Sample ID: 2G14040-01/MA1 Lab Sample ID: 570-108193-1 Date Collected: 07/12/22 09:25 **Matrix: Solid** 

Date Received: 08/31/22 09:50

| Date Neceived. 00/31/22 03.30       |            |           |      |   |          |                |         |
|-------------------------------------|------------|-----------|------|---|----------|----------------|---------|
| Analyte                             | Result Qua | lifier RL | Unit | D | Prepared | Analyzed       | Dil Fac |
| Clay (less than 0.00391 mm)         | 0.34       | 0.01      | %    |   |          | 09/14/22 15:14 | 1       |
| Coarse Sand (0.5mm to 1mm)          | 10.00      | 0.01      | %    |   |          | 09/14/22 15:14 | 1       |
| Fine Sand (0.125 to 0.25mm)         | 26.41      | 0.01      | %    |   |          | 09/14/22 15:14 | 1       |
| Gravel (greater than 2 mm)          | ND         | 0.01      | %    |   |          | 09/14/22 15:14 | 1       |
| Medium Sand (0.25 to 0.5 mm)        | 61.91      | 0.01      | %    |   |          | 09/14/22 15:14 | 1       |
| Silt (0.00391 to 0.0625mm)          | 0.22       | 0.01      | %    |   |          | 09/14/22 15:14 | 1       |
| Total Silt and Clay (0 to 0.0626mm) | 0.56       | 0.01      | %    |   |          | 09/14/22 15:14 | 1       |
| Very Coarse Sand (1 to 2mm)         | 0.18       | 0.01      | %    |   |          | 09/14/22 15:14 | 1       |
| Very Fine Sand (0.0625 to 0.125 mm) | 0.94       | 0.01      | %    |   |          | 09/14/22 15:14 | 1       |

Client Sample ID: 2G14040-02/MA2

Date Collected: 07/12/22 10:35

| Date Received: 08/31/22 09:50       |                  |      |           |   |          |                |         |
|-------------------------------------|------------------|------|-----------|---|----------|----------------|---------|
| Analyte                             | Result Qualifier | RL   | Unit      | D | Prepared | Analyzed       | Dil Fac |
| Clay (less than 0.00391 mm)         | 0.21             | 0.01 | <u></u> % |   |          | 09/14/22 15:25 | 1       |
| Coarse Sand (0.5mm to 1mm)          | 13.56            | 0.01 | %         |   |          | 09/14/22 15:25 | 1       |
| Fine Sand (0.125 to 0.25mm)         | 26.85            | 0.01 | %         |   |          | 09/14/22 15:25 | 1       |
| Gravel (greater than 2 mm)          | ND               | 0.01 | %         |   |          | 09/14/22 15:25 | 1       |
| Medium Sand (0.25 to 0.5 mm)        | 56.42            | 0.01 | %         |   |          | 09/14/22 15:25 | 1       |
| Silt (0.00391 to 0.0625mm)          | 0.33             | 0.01 | %         |   |          | 09/14/22 15:25 | 1       |
| Total Silt and Clay (0 to 0.0626mm) | 0.55             | 0.01 | %         |   |          | 09/14/22 15:25 | 1       |
| Very Coarse Sand (1 to 2mm)         | 1.32             | 0.01 | %         |   |          | 09/14/22 15:25 | 1       |
| Very Fine Sand (0.0625 to 0.125 mm) | 1.30             | 0.01 | %         |   |          | 09/14/22 15:25 | 1       |

**Client Sample ID: 2G14040-03/E3** Date Collected: 07/12/22 14:40

| Analyte                             | Result | Qualifier | RL   | Unit | D | Prepared | Analyzed       | Dil Fac |
|-------------------------------------|--------|-----------|------|------|---|----------|----------------|---------|
| Clay (less than 0.00391 mm)         | 0.62   |           | 0.01 | %    |   |          | 09/14/22 15:35 | 1       |
| Coarse Sand (0.5mm to 1mm)          | 3.67   |           | 0.01 | %    |   |          | 09/14/22 15:35 | 1       |
| Fine Sand (0.125 to 0.25mm)         | 44.42  |           | 0.01 | %    |   |          | 09/14/22 15:35 | 1       |
| Gravel (greater than 2 mm)          | ND     |           | 0.01 | %    |   |          | 09/14/22 15:35 | 1       |
| Medium Sand (0.25 to 0.5 mm)        | 28.76  |           | 0.01 | %    |   |          | 09/14/22 15:35 | 1       |
| Silt (0.00391 to 0.0625mm)          | 4.35   |           | 0.01 | %    |   |          | 09/14/22 15:35 | 1       |
| Total Silt and Clay (0 to 0.0626mm) | 4.97   |           | 0.01 | %    |   |          | 09/14/22 15:35 | 1       |
| Very Coarse Sand (1 to 2mm)         | 0.01   |           | 0.01 | %    |   |          | 09/14/22 15:35 | 1       |
| Very Fine Sand (0.0625 to 0.125     | 18.16  |           | 0.01 | %    |   |          | 09/14/22 15:35 | 1       |
| _mm)                                |        |           |      |      |   |          |                |         |

**Eurofins Calscience** 

Page 6 of 22

Lab Sample ID: 570-108193-2

Lab Sample ID: 570-108193-3

**Matrix: Solid** 

**Matrix: Solid** 

(ASTM D422 / D4464M)

| Weck Laboratories, Inc. | Date Sampled:  | 07/12/22    |
|-------------------------|----------------|-------------|
|                         | Date Received: | 08/31/22    |
|                         | Work Order No: | 570-108193  |
|                         | Date Analyzed: | 09/14/22    |
|                         | Method:        | ASTM D4464M |
|                         |                |             |

Project: Sediment SME Sediment Monitoring

| Sample ID      | Depth<br>ft | Description | Mean<br>Grain Size<br>mm |
|----------------|-------------|-------------|--------------------------|
| 2G14040-01/MA1 |             | Medium Sand | 0.363                    |

| Particle Size Distribution, wt by percent |                                      |      |       |       |      |      |      |       |
|-------------------------------------------|--------------------------------------|------|-------|-------|------|------|------|-------|
|                                           | Very                                 |      |       |       | Very |      |      | Total |
| Total                                     | Total Coarse Coarse Medium Fine Fine |      |       |       |      |      |      |       |
| Gravel                                    | Sand                                 | Sand | Sand  | Sand  | Sand | Silt | Clay | Clay  |
| 0.00                                      | 7.79                                 | 3.93 | 50.32 | 36.58 | 1.38 | 0.00 | 0.00 | 0.00  |



V 3.0

(ASTM D422 / D4464M)

| Weck Laboratories, Inc. | Date Sampled:  | 07/12/22    |
|-------------------------|----------------|-------------|
|                         | Date Received: | 08/31/22    |
|                         | Work Order No: | 570-108193  |
|                         | Date Analyzed: | 09/14/22    |
|                         | Method:        | ASTM D4464M |
|                         |                |             |

Project: Sediment SME Sediment Monitoring

| Sample ID      | Depth<br>ft | Description | Mean<br>Grain Size<br>mm |
|----------------|-------------|-------------|--------------------------|
| 2G14040-01/MA1 | _           | Medium Sand | 0.333                    |

| Particle Size Distribution, wt by percent |        |        |        |       |      |      |      |        |
|-------------------------------------------|--------|--------|--------|-------|------|------|------|--------|
|                                           | Very   |        |        |       | Very |      |      | Total  |
| Total                                     | Coarse | Coarse | Medium | Fine  | Fine |      |      | Silt & |
| Gravel                                    | Sand   | Sand   | Sand   | Sand  | Sand | Silt | Clay | Clay   |
| 0.00                                      | 0.18   | 10.00  | 61.91  | 26.41 | 0.94 | 0.22 | 0.34 | 0.56   |



(ASTM D422 / D4464M)

| Weck Laboratories, Inc. | Date Sampled:  | 07/12/22    |
|-------------------------|----------------|-------------|
|                         | Date Received: | 08/31/22    |
|                         | Work Order No: | 570-108193  |
|                         | Date Analyzed: | 09/14/22    |
|                         | Method:        | ASTM D4464M |
|                         |                |             |

Project: Sediment SME Sediment Monitoring

| Sample ID      | Depth<br>ft | Description | Mean<br>Grain Size<br>mm |
|----------------|-------------|-------------|--------------------------|
| 2G14040-02/MA2 | -           | Medium Sand | 0.355                    |

| Particle Size Distribution, wt by percent |        |        |        |       |      |      |      |        |  |
|-------------------------------------------|--------|--------|--------|-------|------|------|------|--------|--|
|                                           | Very   |        |        |       | Very |      |      | Total  |  |
| Total                                     | Coarse | Coarse | Medium | Fine  | Fine |      |      | Silt & |  |
| Gravel                                    | Sand   | Sand   | Sand   | Sand  | Sand | Silt | Clay | Clay   |  |
| 0.00                                      | 1.32   | 13.56  | 56.42  | 26.85 | 1.30 | 0.33 | 0.21 | 0.55   |  |



V 3.0

(ASTM D422 / D4464M)

| Weck Laboratories, Inc. | Date Sampled:  | 07/12/22    |
|-------------------------|----------------|-------------|
|                         | Date Received: | 08/31/22    |
|                         | Work Order No: | 570-108193  |
|                         | Date Analyzed: | 09/14/22    |
|                         | Method:        | ASTM D4464M |
|                         |                |             |

Project: Sediment SME Sediment Monitoring

| Sample ID     | Depth<br>ft | Description | Mean<br>Grain Size<br>mm |
|---------------|-------------|-------------|--------------------------|
| 2G14040-03/E3 |             | Fine Sand   | 0.220                    |

| Particle Size Distribution, wt by percent |        |        |        |       |       |      |      |        |  |
|-------------------------------------------|--------|--------|--------|-------|-------|------|------|--------|--|
|                                           | Very   |        |        |       | Very  |      |      | Total  |  |
| Total                                     | Coarse | Coarse | Medium | Fine  | Fine  |      |      | Silt & |  |
| Gravel                                    | Sand   | Sand   | Sand   | Sand  | Sand  | Silt | Clay | Clay   |  |
| 0.00                                      | 0.01   | 3.67   | 28.76  | 44.42 | 18.16 | 4.35 | 0.62 | 4.97   |  |





File name: C:\LS13320\STD SAND\_14 Sep 2022\_15.45.21.\$ls

STD SAND\_14 Sep 2022\_15.45.21.\$ls

File ID: STD SAND Sample ID: STD SAND Operator: SP9M Run number: 5

Control Sample

Comment 1: ASTM D4464M, LPSA1

Comment 2: 1986954

Optical model: Fraunhofer.rf780d

Residual: 2.82%

LS 13 320 Aqueous Liquid Module

15:44 14 Sep 2022 Start time: Run length: 60 seconds

Pump speed: 49 Obscuration: 11% Fluid: Water Software:

4.00 6.01 Firmware:



Volume Statistics (Arithmetic) STD SAND 14 Sep 2022 15.45.21.\$ls

Calculations from 0.375 µm to 2000 µm

Volume: 100%

Mean: 228.6 µm S.D.: 62.62 µm 3922 µm<sup>2</sup> Median: 221.6 µm Variance: Mean/Median ratio: 1.032 Skewness:

0.551 Right skewed Mode: 223.4 µm Kurtosis: 0.139 Leptokurtic d<sub>10</sub>: 153.6 µm d<sub>50</sub>: 221.6 µm d<sub>90</sub>: 315.1 µm

Folk and Ward Statistics (Phi)

Mean: Median: 2.17 Deviation: 0.40 2.18

Skewness: 0.02 Kurtosis: 0.96

<5% <16% <25% <40% <50% <75% <84% <95% 139.2 µm 166.5 µm 182.3 µm 205.9 µm 221.6 µm 268.5 µm 293.0 µm 343.7 µm

| Particle | Volume |
|----------|--------|
| Diameter | %      |
| μm       |        |
| 0.04     | 0      |
| 0.4      | 0      |
| 1.95     | 0      |
| 3.91     | 0      |
| 62.5     | 2.03   |
| 125      | 64.3   |
| 250      | 33.7   |
| 500      | 0.0035 |
| 1000     | 0      |
| 2000     |        |

|          | Sep 2022_15.4 |          |        |          |        |  |  |
|----------|---------------|----------|--------|----------|--------|--|--|
| Channel  | Diff.         | Channel  | Diff.  | Channel  | Diff.  |  |  |
| Diameter | Volume        | Diameter | Volume | Diameter | Volume |  |  |
| (Lower)  | %             | (Lower)  | %      | (Lower)  | %      |  |  |
| μm       |               | μm       |        | μm       |        |  |  |
| 0.375    | 0             | 24.95    | 0      | 1660     | 0      |  |  |
| 0.412    | 0             | 27.39    | 0      | 1822     | 0      |  |  |
| 0.452    | 0             | 30.07    | 0      | 2000     |        |  |  |
| 0.496    | 0             | 33.01    | 0      |          |        |  |  |
| 0.545    | 0             | 36.24    | 0      |          |        |  |  |
| 0.598    | 0             | 39.78    | 0      |          |        |  |  |
| 0.657    | 0             | 43.67    | 0      |          |        |  |  |
| 0.721    | 0             | 47.94    | 0      |          |        |  |  |
| 0.791    | 0             | 52.63    | 0      |          |        |  |  |
| 0.869    | 0             | 57.77    | 0      |          |        |  |  |
| 0.954    | Ö             | 63.42    | 0.013  |          |        |  |  |
| 1.047    | Ö             | 69.62    | 0.12   |          |        |  |  |
| 1.149    | Ö             | 76.43    | 0.16   |          |        |  |  |
| 1.261    | 0             | 83.90    | 0.085  |          |        |  |  |
| 1.385    | Ö             | 92.10    | 0.085  |          |        |  |  |
| 1.520    | Ö             | 101.1    | 0.25   |          |        |  |  |
| 1.669    | 0             | 111.0    | 0.80   |          |        |  |  |
| 1.832    | Ö             | 121.8    | 1.95   |          |        |  |  |
| 2.011    | Ö             | 133.7    | 3.71   |          |        |  |  |
| 2.208    | Ö             | 146.8    | 5.98   |          |        |  |  |
| 2.423    | Ö             | 161.2    | 8.48   |          |        |  |  |
| 2.660    | Ö             | 176.9    | 10.8   |          |        |  |  |
| 2.920    | Ö             | 194.2    | 12.4   |          |        |  |  |
| 3.206    | Ö             | 213.2    | 13.0   |          |        |  |  |
| 3.519    | Ö             | 234.1    | 12.3   |          |        |  |  |
| 3.863    | Ö             | 256.9    | 10.6   |          |        |  |  |
| 4.241    | Ö             | 282.1    | 8.25   |          |        |  |  |
| 4.656    | Ö             | 309.6    | 5.64   |          |        |  |  |
| 5.111    | 0             | 339.9    | 3.31   |          |        |  |  |
| 5.611    | 0             | 373.1    | 1.52   |          |        |  |  |
| 6.159    | Ő             | 409.6    | 0.47   |          |        |  |  |
| 6.761    | 0             | 449.7    | 0.079  |          |        |  |  |
| 7.422    | Ő             | 493.6    | 0.0040 |          |        |  |  |
| 8.148    | 0             | 541.9    | 0.0040 |          |        |  |  |
| 8.944    | 0             | 594.9    | 0      |          |        |  |  |
| 9.819    | 0             | 653.0    | 0      |          |        |  |  |
| 10.78    | 0             | 716.9    | 0      |          |        |  |  |
| 11.83    | 0             | 786.9    | 0      |          |        |  |  |
| 12.99    | 0             | 863.9    | 0      |          |        |  |  |
| 14.26    | 0             | 948.3    | 0      |          |        |  |  |
| 15.65    | 0             | 1041     | 0      |          |        |  |  |
| 17.18    | 0             | 1143     | 0      |          |        |  |  |
| 18.86    | 0             | 1255     | 0      |          |        |  |  |
| 20.71    | 0             | 1377     | 0      |          |        |  |  |
| 20.71    |               |          |        |          |        |  |  |
| 22.73    | 0             | 1512     | 0      |          |        |  |  |



File name: C:\LS13320\STD SAND\_14 Sep 2022\_16.32.46.\$ls

STD SAND\_14 Sep 2022\_16.32.46.\$ls

File ID: STD SAND
Sample ID: STD SAND
Operator: SP9M
Run number: 7

Control Sample

Comment 1: ASTM D4464M, LPSA1

Comment 2: 1986954

Optical model: Fraunhofer.rf780d

Residual: 4.42%

LS 13 320 Aqueous Liquid Module

Start time: 16:31 14 Sep 2022 Run length: 61 seconds

Pump speed: 49
Obscuration: 10%
Fluid: Water

Software: 6.01 Firmware: 4.00



Volume Statistics (Arithmetic) STD SAND\_14 Sep 2022\_16.32.46.\$ls

Calculations from 0.375 µm to 2000 µm

Volume: 100%

Mean: 229.7  $\mu m$  S.D.: 70.46  $\mu m$  Median: 219.4  $\mu m$  Variance: 4965  $\mu m^2$ 

Mean/Median ratio: 1.047 Skewness: 1.644 Right skewed Mode: 223.4 μm Kurtosis: 5.884 Leptokurtic  $d_{10}$ : 153.3 μm  $d_{50}$ : 219.4 μm  $d_{90}$ : 315.0 μm

Folk and Ward Statistics (Phi)

Mean: 2.19 Median: 2.19 Deviation: 0.40

Skewness: -0.01 Kurtosis: 0.97

<5% <16% <25% <40% <50% <75% <84% <95% 139.9 µm 165.6 µm 180.9 µm 203.9 µm 219.4 µm 266.4 µm 291.6 µm 348.2 µm



| Particle | Volume |
|----------|--------|
| Diameter | %      |
| μm       |        |
| 0.04     | 0      |
| 0.4      | 0      |
| 1.95     | 0      |
| 3.91     | 0      |
| 62.5     | 1.56   |
| 125      | 65.9   |
| 250      | 31.6   |
| 500      | 0.92   |
| 1000     | 0      |
| 2000     |        |

| STD SAND_14    | Sep 2022_16.3 | 2.46.\$ls      |              |          |        |  |  |
|----------------|---------------|----------------|--------------|----------|--------|--|--|
| Channel        | Diff.         | Channel        | Diff.        | Channel  | Diff.  |  |  |
| Diameter       | Volume        | Diameter       | Volume       | Diameter | Volume |  |  |
| (Lower)        | %             | (Lower)        | %            | (Lower)  | %      |  |  |
| μm             |               | μm             |              | μm       |        |  |  |
| 0.375          | 0             | 24.95          | 0            | 1660     | 0      |  |  |
| 0.412          | 0             | 27.39          | 0            | 1822     | 0      |  |  |
| 0.452          | 0             | 30.07          | 0            | 2000     |        |  |  |
| 0.496          | 0             | 33.01          | 0            |          |        |  |  |
| 0.545          | 0             | 36.24          | 0            |          |        |  |  |
| 0.598          | 0             | 39.78          | 0            |          |        |  |  |
| 0.657          | 0             | 43.67          | 0            |          |        |  |  |
| 0.721          | 0             | 47.94          | 0            |          |        |  |  |
| 0.791          | 0             | 52.63          | 0            |          |        |  |  |
| 0.869          | 0             | 57.77          | 0            |          |        |  |  |
| 0.954          | 0             | 63.42          | 0            |          |        |  |  |
| 1.047          | 0             | 69.62          | 0            |          |        |  |  |
| 1.149          | 0             | 76.43          | 0            |          |        |  |  |
| 1.261          | 0             | 83.90          | 0            |          |        |  |  |
| 1.385          | 0             | 92.10          | 0.0088       |          |        |  |  |
| 1.520          | 0             | 101.1          | 0.17         |          |        |  |  |
| 1.669          | 0             | 111.0          | 0.83         |          |        |  |  |
| 1.832          | 0             | 121.8          | 2.10         |          |        |  |  |
| 2.011          | 0             | 133.7          | 4.00         |          |        |  |  |
| 2.208          | 0             | 146.8          | 6.38         |          |        |  |  |
| 2.423          | 0             | 161.2          | 8.92         |          |        |  |  |
| 2.660          | 0             | 176.9          | 11.2         |          |        |  |  |
| 2.920<br>3.206 | 0             | 194.2<br>213.2 | 12.6<br>12.9 |          |        |  |  |
| 3.519          | 0<br>0        |                |              |          |        |  |  |
| 3.863          | 0             | 234.1<br>256.9 | 12.1<br>10.2 |          |        |  |  |
| 4.241          | 0             | 282.1          | 7.74         |          |        |  |  |
| 4.656          | 0             | 309.6          | 5.18         |          |        |  |  |
| 5.111          | 0             | 339.9          | 2.98         |          |        |  |  |
| 5.611          | 0             | 373.1          | 1.31         |          |        |  |  |
| 6.159          | Ö             | 409.6          | 0.41         |          |        |  |  |
| 6.761          | Ö             | 449.7          | 0.11         |          |        |  |  |
| 7.422          | Ö             | 493.6          | 0.10         |          |        |  |  |
| 8.148          | 0             | 541.9          | 0.37         |          |        |  |  |
| 8.944          | 0             | 594.9          | 0.41         |          |        |  |  |
| 9.819          | 0             | 653.0          | 0.053        |          |        |  |  |
| 10.78          | 0             | 716.9          | 0            |          |        |  |  |
| 11.83          | 0             | 786.9          | 0            |          |        |  |  |
| 12.99          | 0             | 863.9          | 0            |          |        |  |  |
| 14.26          | 0             | 948.3          | 0            |          |        |  |  |
| 15.65          | 0             | 1041           | 0            |          |        |  |  |
| 17.18          | 0             | 1143           | 0            |          |        |  |  |
| 18.86          | 0             | 1255           | 0            |          |        |  |  |
| 20.71          | 0             | 1377           | 0            |          |        |  |  |
| 22.73          | 0             | 1512           | 0            |          |        |  |  |

### **QC Sample Results**

Client: Weck Laboratories, Inc.

Job ID: 570-108193-1

Project/Site: 2G14040

# Method: D4464 - Particle Size Distribution of Catalytic Material ( Laser light scattering)

Lab Sample ID: 570-108193-1 DU Client Sample ID: 2G14040-01/MA1

Matrix: Solid

| Anal | ysis | Batch: | 264193 |
|------|------|--------|--------|
|------|------|--------|--------|

| -                                       | Sample | Sample    | DU     | DU        |      |   |     | RPD   |
|-----------------------------------------|--------|-----------|--------|-----------|------|---|-----|-------|
| Analyte                                 | Result | Qualifier | Result | Qualifier | Unit | D | RPD | Limit |
| Clay (less than 0.00391 mm)             | 0.34   |           | ND     |           | %    |   |     | 20    |
| Coarse Sand (0.5mm to 1mm)              | 10.00  |           | 3.93   | F3        | %    |   | 87  | 20    |
| Fine Sand (0.125 to 0.25mm)             | 26.41  |           | 36.58  | F3        | %    |   | 32  | 20    |
| Gravel (greater than 2 mm)              | ND     |           | ND     |           | %    |   | NC  | 20    |
| Medium Sand (0.25 to 0.5 mm)            | 61.91  |           | 50.32  | F3        | %    |   | 21  | 20    |
| Silt (0.00391 to 0.0625mm)              | 0.22   |           | ND     |           | %    |   | NC  | 20    |
| Total Silt and Clay (0 to 0.0626mm)     | 0.56   |           | ND     |           | %    |   | NC  | 20    |
| Very Coarse Sand (1 to 2mm)             | 0.18   |           | 7.79   | F3        | %    |   | 191 | 20    |
| Very Fine Sand (0.0625 to 0.125<br>_mm) | 0.94   |           | 1.38   | F3        | %    |   | 38  | 20    |

4

**Prep Type: Total/NA** 

5

\_

0

46

# **QC Association Summary**

Client: Weck Laboratories, Inc.

Job ID: 570-108193-1

Project/Site: 2G14040

#### Geotechnical

#### **Analysis Batch: 264193**

| Lab Sample ID     | Client Sample ID       | Prep Type | Matrix | Method | Prep Batch |
|-------------------|------------------------|-----------|--------|--------|------------|
| 570-108193-1      | 2G14040-01/MA1         | Total/NA  | Solid  | D4464  |            |
| 570-108193-2      | 2G14040-02/MA2         | Total/NA  | Solid  | D4464  |            |
| 570-108193-3      | 2G14040-03/E3          | Total/NA  | Solid  | D4464  |            |
| LCS 570-264193/5  | Lab Control Sample     | Total/NA  | Solid  | D4464  |            |
| LCSD 570-264193/7 | Lab Control Sample Dup | Total/NA  | Solid  | D4464  |            |
| 570-108193-1 DU   | 2G14040-01/MA1         | Total/NA  | Solid  | D4464  |            |

6

- 0

4

\_

7

8

11

12

#### **Lab Chronicle**

Client: Weck Laboratories, Inc. Job ID: 570-108193-1

Project/Site: 2G14040

Client Sample ID: 2G14040-01/MA1

Lab Sample ID: 570-108193-1 Date Collected: 07/12/22 09:25 **Matrix: Solid** 

Date Received: 08/31/22 09:50

Batch Batch Dil Initial Final Batch Prepared Method or Analyzed **Prep Type** Type Run **Factor Amount Amount** Number Analyst Total/NA Analysis D4464 264193 09/14/22 15:14 SP9M EET CAL 4 Instrument ID: NOEQUIP

Client Sample ID: 2G14040-02/MA2

Date Collected: 07/12/22 10:35

Date Received: 08/31/22 09:50

| Prep Type<br>Total/NA | Batch<br>Type<br>Analysis | Batch<br>Method<br>D4464 | Run | Dil<br>Factor | Initial<br>Amount | Final<br>Amount | Batch<br>Number<br>264193 | Prepared or Analyzed 09/14/22 15:25 | Analyst<br>SP9M | Lab<br>EET CAL 4 |
|-----------------------|---------------------------|--------------------------|-----|---------------|-------------------|-----------------|---------------------------|-------------------------------------|-----------------|------------------|
|                       | Instrument                | ID: NOEQUIP              |     |               |                   |                 |                           |                                     |                 |                  |

**Client Sample ID: 2G14040-03/E3** 

Date Collected: 07/12/22 14:40

Date Received: 08/31/22 09:50

|           | Batch     | Batch         |     | Dil    | Initial | Final  | Batch  | Prepared       |         |           |
|-----------|-----------|---------------|-----|--------|---------|--------|--------|----------------|---------|-----------|
| Prep Type | Type      | Method        | Run | Factor | Amount  | Amount | Number | or Analyzed    | Analyst | Lab       |
| Total/NA  | Analysis  | D4464         |     | 1      |         |        | 264193 | 09/14/22 15:35 | SP9M    | EET CAL 4 |
|           | Instrumer | t ID: NOEQUIP |     |        |         |        |        |                |         |           |

**Laboratory References:** 

EET CAL 4 = Eurofins Calscience Tustin, 2841 Dow Avenue, Tustin, CA 92780, TEL (714)895-5494

**Matrix: Solid** 

**Matrix: Solid** 

Lab Sample ID: 570-108193-2

Lab Sample ID: 570-108193-3

**Eurofins Calscience** 

## **Accreditation/Certification Summary**

Client: Weck Laboratories, Inc.

Job ID: 570-108193-1

Project/Site: 2G14040

#### **Laboratory: Eurofins Calscience**

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

| Authority                                     |             | Program                       | Identification Number                     | Expiration Date                          |
|-----------------------------------------------|-------------|-------------------------------|-------------------------------------------|------------------------------------------|
| Dregon                                        |             | NELAP                         | 4175                                      | 02-02-23                                 |
| The following analytes the agency does not do |             | port, but the laboratory is r | not certified by the governing authority. | This list may include analytes for which |
| Analysis Method                               | Prep Method | Matrix                        | Analyte                                   |                                          |
| D4464                                         |             | Solid                         | Clay (less than 0.00391 mm                | )                                        |
| D4464                                         |             | Solid                         | Coarse Sand (0.5mm to 1mr                 | m)                                       |
| D4464                                         |             | Solid                         | Fine Sand (0.125 to 0.25mm                | 1)                                       |
| D4464                                         |             | Solid                         | Gravel (greater than 2 mm)                |                                          |
| D4464                                         |             | Solid                         | Medium Sand (0.25 to 0.5 m                | nm)                                      |
| D4464                                         |             | Solid                         | Silt (0.00391 to 0.0625mm)                |                                          |
| D4464                                         |             | Solid                         | Total Silt and Clay (0 to 0.06            | 26mm)                                    |
| D4464                                         |             | Solid                         | Very Coarse Sand (1 to 2mn                | n)                                       |
| D4464                                         |             | Solid                         | Very Fine Sand (0.0625 to 0               | .125 mm)                                 |

## **Method Summary**

Client: Weck Laboratories, Inc.

Project/Site: 2G14040

Job ID: 570-108193-1

| Method | Method Description                                                         | Protocol | Laboratory |
|--------|----------------------------------------------------------------------------|----------|------------|
| D4464  | Particle Size Distribution of Catalytic Material ( Laser light scattering) | ASTM     | EET CAL 4  |

\_ |

#### **Protocol References:**

ASTM = ASTM International

#### **Laboratory References:**

EET CAL 4 = Eurofins Calscience Tustin, 2841 Dow Avenue, Tustin, CA 92780, TEL (714)895-5494

6

8

10

11

40

## **Sample Summary**

Client: Weck Laboratories, Inc.

Project/Site: 2G14040

Lab Sample ID Client Sample ID Matrix Collected Received 570-108193-1 2G14040-01/MA1 Solid 07/12/22 09:25 08/31/22 09:50 Solid 570-108193-2 2G14040-02/MA2 07/12/22 10:35 08/31/22 09:50 570-108193-3 2G14040-03/E3 Solid 07/12/22 14:40 08/31/22 09:50 1

Job ID: 570-108193-1

3

1

5

b

8

9

\_\_\_\_

13

#### Subcontracted Laboratory:

Eurofins Calscience, Inc 2841 Dow Avenue, Suite 100 Tustin, CA 92780 Phone (714) 895-5494 Fax (714) 894-7501

**Turn Around Time:** 

Normal unless noted in comments

**Project Manager:** 

Chris Samatmanakit

**Project Name:** 

Sediment

**Project Number:** 

SME Sediment Monitoring

Sampler Employed by:

**Drinking Water:** 

(No)

Need Transfer File (xls):

**Tracking Number:** 

Yes) / No

Work Order: 2G14040

**Analysis** 

**Sample ID:** 2G14040-01/MA1

Sample comment:

Particle size distribution - Laser ASTM D4464

Containers Supplied.

**Expires** 

Comments

Sampled: 07/12/2022 09:25

Matrix: SolidSampled By: Nicholas Hayman

07/12/2023 09 25 Report on Dry Weight Basis

**Sample ID:** 2G14040-02/MA2

Sample comment:

Particle size distribution - Laser ASTM D4464

Containers Supplied

Sampled: 07/12/2022 10:35

Matrix: SolidSampled By: Nicholas Hayman

Report on Dry Weight Basis 07/12/2023 10 35

Sample ID: 2G14040-03/E3

Sample comment:

Particle size distribution - Laser ASTM D4464

Containers Supplied

Sampled: 07/12/2022 14:40

Matrix: SolidSampled By: Nicholas Hayman

Report on Dry Weight Basis 07/12/2023 14 40



FELLEY

**Sample Condition** 

Temperature: Preserved:

Yes / No

**Evidence Seal Intact:** 

Yes / No

**Container Attacked:** 

Yes / No

Yes / No Preserved at Lab:

Relingished By

Date / Time Received By

JC

Date / Time

Relingished By

Date / Time Received By

Date / Time

Page 1 of 1

### **Login Sample Receipt Checklist**

Client: Weck Laboratories, Inc.

Job Number: 570-108193-1

Login Number: 108193 List Source: Eurofins Calscience

List Number: 1

Creator: Patel, Jayesh

| oreator. Fater, Jayesii                                                                                   |        |         |
|-----------------------------------------------------------------------------------------------------------|--------|---------|
| Question                                                                                                  | Answer | Comment |
| Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td> | N/A    |         |
| The cooler's custody seal, if present, is intact.                                                         | True   |         |
| Sample custody seals, if present, are intact.                                                             | True   |         |
| The cooler or samples do not appear to have been compromised or tampered with.                            | True   |         |
| Samples were received on ice.                                                                             | True   |         |
| Cooler Temperature is acceptable.                                                                         | True   |         |
| Cooler Temperature is recorded.                                                                           | True   |         |
| COC is present.                                                                                           | True   |         |
| COC is filled out in ink and legible.                                                                     | True   |         |
| COC is filled out with all pertinent information.                                                         | True   |         |
| Is the Field Sampler's name present on COC?                                                               | True   |         |
| There are no discrepancies between the containers received and the COC.                                   | True   |         |
| Samples are received within Holding Time (excluding tests with immediate HTs)                             | True   |         |
| Sample containers have legible labels.                                                                    | True   |         |
| Containers are not broken or leaking.                                                                     | True   |         |
| Sample collection date/times are provided.                                                                | True   |         |
| Appropriate sample containers are used.                                                                   | True   |         |
| Sample bottles are completely filled.                                                                     | True   |         |
| Sample Preservation Verified.                                                                             | True   |         |
| There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs                          | True   |         |
| Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").                           | True   |         |
| Multiphasic samples are not present.                                                                      | True   |         |
| Samples do not require splitting or compositing.                                                          | True   |         |
| Residual Chlorine Checked.                                                                                | N/A    |         |

2

4

6

8

10

12

13

| PROJECTNUM                 | SAMPLE | SA<br>MATRIX DA | SAMP PREP<br>DATE DATE |                               | ANA DATE METHOD NAME PREP NAME |                    | ANALYTE         | CAS NUMBER            | SURROGATE Result | Result DL | 굾          | STINU             | BASIS DILL     | SPIKE UPPER DILUTION LEVEL RECOVERY CL | LOWER<br>CL ANALYST |      | PSOLIDS LNOTE ANOTE |
|----------------------------|--------|-----------------|------------------------|-------------------------------|--------------------------------|--------------------|-----------------|-----------------------|------------------|-----------|------------|-------------------|----------------|----------------------------------------|---------------------|------|---------------------|
| SME Sediment<br>Monitoring | MA1    | Solid 7/        | 7/12/2022 7/18         | 7/18/2022 7/19/2022 E         | 7/19/2022 EPA 160.3M           | NONE (METALS)      | % Solids        | ₹<br>Z                | FALSE            | 72.5      | 0.100      | 0 % by Weight Wet |                | -                                      | chc                 | 72.5 |                     |
| SME Sediment<br>Monitoring | MA1    | Solid 7/        | 7/12/2022 7/15         | 7/15/2022 7/19/2022 EPA 6020  |                                |                    | Cadmium, Total  | 7440-43-9             | FALSE            | ND O.0    | 0.083 0.28 |                   | Dry            | -                                      | ALN                 | 72.5 |                     |
| SME Sediment<br>Monitoring |        | Solid 7/        | 7/12/2022 7/15         | 7/15/2022 7/22/2022 E         | EPA 6020                       | EPA 3050B          | Copper, Total   | 7440-50-8             | FALSE            | 3.1 0.40  | 40 0.69    |                   | Dry            | 1                                      | ALN                 | 72.5 |                     |
| SME Sediment<br>Monitoring | MA1    | Solid 7/        | 7/12/2022 7/15         | 7/15/2022 FPA 6020            |                                | EPA 3050B          | Lead. Total     | 7439-92-1             | FALSE            | 1.2 0.29  | 62         |                   | Š              | -                                      | ALN                 | 72.5 |                     |
| SME Sediment<br>Monitoring |        |                 |                        |                               |                                |                    | Zinc, Total     | 7440-66-6             | FALSE            |           |            |                   | è              | -                                      | ALN                 | 72.5 |                     |
| SME Sediment<br>Monitoring |        |                 |                        |                               |                                |                    | Mercury, Total  | 7439-97-6             | FALSE            |           | 970        |                   | - À            | -                                      | KVM                 | 72.5 |                     |
| SME Sediment<br>Monitoring | MA1    | Solid 7/        | 7/12/2022 7/19/2022    | 3/2022 7/29/2022 EPA 8081A    |                                | Aicrowave          |                 | 53-19-0               | FALSE            | 8<br>1    | 61         | ug/kg dry         | Dry            | 2                                      | RJG                 | 72.5 | M-02, M-04          |
| SME Sediment<br>Monitoring |        |                 | 7/12/2022 7/19/2022    |                               |                                |                    |                 | 3424-82-6             | FALSE            |           |            | ug/kg dry         | è              | CO                                     | RJG                 | 72.5 | M-02, M-04          |
| SME Sediment<br>Monitoring | MA1    | Solid 7/        | 7/12/2022 7/19         | 7/19/2022 FPA 8081A           |                                | EPA 3546/Microwave | 2,4'-DDT        | 789-02-6              | FALSE            | ND 13     | - 19       | ug/kg dry         | D <sub>Z</sub> | - 22                                   | RJG                 | 72.5 | M-02, M-04          |
| SME Sediment<br>Monitoring |        | Solid 7/        | 7/12/2022 7/19         | 7/19/2022 7/29/2022 EPA 8081A |                                |                    |                 | 72-54-8               | FALSE            |           |            | ug/kg dry         | Dry            | 5                                      | RJG                 | 72.5 | M-02, M-04          |
| SME Sediment<br>Monitoring | MA1    | Solid 7/        | 7/12/2022 7/19         | 7/19/2022 EPA 8081A           |                                | EPA 3546/Microwave | 4,4 '-DDE       | 72-55-9               | FALSE            | ND 14     | . 6        | ug/kg dry         | Dıy            | O.                                     | RJG                 | 72.5 | M-02, M-04          |
| SME Sediment<br>Monitoring | MA1    |                 |                        |                               |                                |                    |                 | 50-29-3               | FALSE            | ND 13     |            | ug/kg dry         | D <sub>y</sub> | - 22                                   | RJG                 | 72.5 | M-02, M-04          |
| SME Sediment<br>Monitoring |        |                 | 7/12/2022 7/19         | 7/19/2022 7/29/2022 EPA 8081A |                                |                    |                 | 309-00-2              | FALSE            |           |            | ug/kg dry         | Dry            | 5                                      | RJG                 | 72.5 | M-02, M-04          |
| SME Sediment<br>Monitoring |        |                 | 7/12/2022 7/19         | 7/19/2022 FPA 8081A           |                                |                    | alpha-BHC       | 319-84-6              | FALSE            | 8<br>1    |            | ug/kg dry         | Dry            | ω.                                     | RJG                 | 72.5 | M-02, M-04          |
| SME Sediment<br>Monitoring | MA1    | Solid 7/        | 112/2022 7/19          | 7/19/2022 7/29/2022 EPA 8081A |                                |                    | alpha-Chlordane | 5103-71-9             | FALSE            | ND 15     |            | ug/kg dry         | ργ             | 2                                      | RJG                 | 72.5 | M-02, M-04          |
| SME Sediment<br>Monitoring | MA1    | Solid 7/        | 2/12/2022              | 7/19/2022 7/29/2022 E         | EPA 8081A                      | EPA 3546/Microwave | beta-BHC        | 319-85-7              | FALSE            | DN<br>71  | . 6        | ua/ka drv         | Š              | ıc                                     | S.S.                | 72.5 | M-02: M-04          |
| SME Sediment<br>Monitorina |        |                 |                        | 7/29/2022                     |                                |                    | (tech)          | 57-74-9               | FALSE            |           |            |                   | è              | ıo                                     | S S                 | 72.5 | M-02. M-04          |
| SME Sediment<br>Monitoring |        |                 |                        |                               |                                |                    | , Mu            | 2051-24-3             | TRUE             | (0        |            |                   | , è            | 5 97.1 75 125                          | 21 RJG              | 72.5 |                     |
| SME Sediment<br>Monitoring |        | Solid 7/        |                        |                               |                                |                    | PCB-33          | 38444-86-9            | FALSE            | ND 32     | 32         | ug/kg dry         | Ā.             |                                        | EFC                 | 72.5 | M-02                |
| SME Sediment<br>Monitoring | MA1    | Solid 7/        | 1712/2022 7/21/        | 7/21/2022 8/3/2022 GC/MS/MS   |                                | EPA 3546/Microwave | PCB-37          | 38444-90-5            | FALSE            | ND 32     | 8          | ug/kg dry         | ργ             | -                                      | EFC                 | 72.5 | M-02                |
| SME Sediment<br>Monitoring |        |                 |                        |                               |                                |                    |                 | 41464-39-5            | FALSE            |           |            | ug/kg dry         | Ę.             | -                                      | EFC                 | 72.5 | M-02                |
| SME Sediment<br>Monitoring | MA1    | Solid 7/        | 112/2022 7/21/         | 7/21/2022 8/3/2022 0          | 8/3/2022 GC/MS/MS              | EPA 3546/Microwave | PCB-49          | 41464-40-8            | FALSE            | ND 32     | 32         | ug/kg dry         | Ā.             | -                                      | EFC                 | 72.5 | M-02                |
| SME Sediment<br>Monitoring |        | Solid 7/        |                        | 7/21/2022 8/3/2022 0          |                                |                    | PCB-52          | 35693-99-3            | FALSE            | ND 32     |            | ug/kg dry         | Dry            | 1                                      | EFC                 | 72.5 | M-02                |
| SME Sediment<br>Monitoring | MA1    | Solid 7/        | 112/2022 1/21/         | 7/21/2022 8/3/2022 0          | 8/3/2022 GC/MS/MS              | EPA 3546/Microwave | PCB-56/60       | 41464-40-8/33025-41-1 | FALSE            | ND 32     | 8          | ug/kg dry         | Dıy            | -                                      | EFC                 | 72.5 | M-02                |
| SME Sediment<br>Monitoring |        |                 |                        |                               |                                |                    |                 | 32598-10-0            | FALSE            | ND 32     |            | ug/kg dry         | Đ.             | -                                      | EFC                 | 72.5 | M-02                |
| SME Sediment<br>Monitoring |        |                 | 112/2022 7/21/         |                               |                                |                    | PCB-70          | 32598-11-1            | FALSE            |           |            | ug/kg dry         | P.             | -                                      | EFC                 | 72.5 | M-02                |
| SME Sediment<br>Monitoring |        | Solid 7/        | 112/2022 7/21/         | 7/21/2022 8/3/2022 0          | 8/3/2022 GC/MS/MS              |                    | PCB-74          | 32690-93-0            | FALSE            | ND 32     |            | ug/kg dry         | Dry            | -                                      | EFC                 | 72.5 | M-02                |
| SME Sediment<br>Monitoring | MA1    | Solid 7/        | 1/12/2022 7/21/        |                               |                                |                    | PCB-77          | 32598-13-3            | FALSE            | ND 32     |            | ua/ka dry         | ρζ             | -                                      | EFC                 | 72.5 | M-02                |
| SME Sediment<br>Monitoring |        | Solid 7/        | 112/2022 7/21/         | 8/3/2022                      |                                |                    | PCB-8           | 34883-43-7            | FALSE            | ND 32     |            | ug/kg dry         | P.             | -                                      | EFC                 | 72.5 | M-02                |
| SME Sediment<br>Monitoring | MA1    | Solid 7/        | 112/2022 7/21/         | 7/21/2022 8/3/2022 0          | 8/3/2022 GC/MS/MS              | EPA 3546/Microwave | PCB-81          | 70362-50-4            | FALSE            | ND 32     | 8          | ug/kg dry         | Dry            | -                                      | EFC                 | 72.5 | M-02                |
| SME Sediment<br>Monitoring |        |                 |                        |                               |                                |                    | PCB-87          | 38380-02-8            | FALSE            |           |            | ug/kg dry         | Di.            | -                                      | EFC                 | 72.5 | M-02                |
| SME Sediment<br>Monitoring |        |                 |                        |                               |                                |                    | PCB-95          | 38379-99-6            | FALSE            | ND 32     |            | ug/kg dry         | Dry            | 1                                      | EFC                 | 72.5 | M-02                |
| SME Sediment<br>Monitoring | MA1    | Solid 7/        | 1/2/2022 7/21/         | 7/21/2022 8/3/2022 GC/MS/MS   |                                | EPA 3546/Microwave | PCB-97          | 41464-51-1            | FALSE            | ND 32     | 32         | ua/ka dry         | Dry            | 1                                      | EFC                 | 72.5 | M-02                |

| PROJECTNUM                 | SAMPLE | SAMP<br>MATRIX DATE | PREP                |                                         | DATE MET             | ANA DATE METHOD NAME PREP NAME      |                    | ANALYTE                 | CAS NUMBER | SURROGATE Result |          | פר         | STINU     | BASIS   | IS DILUTIC | SPIKE<br>ON LEVEL | SPIKE UPPER DILUTION LEVEL RECOVERY CL | UPPER LOWER<br>CL CL | ER ANALYST |      | PSOLIDS LNOTE ANOTE |
|----------------------------|--------|---------------------|---------------------|-----------------------------------------|----------------------|-------------------------------------|--------------------|-------------------------|------------|------------------|----------|------------|-----------|---------|------------|-------------------|----------------------------------------|----------------------|------------|------|---------------------|
| SME Sediment<br>Monitoring | MA1    | Solid 7/12/         | 7/12/2022 7/21/2022 |                                         | 8/3/2022 GC/MS/MS    |                                     | EPA 3546/Microwave | PCB-99                  | 38380-01-7 | FALSE            | ND<br>S  | 32 32      | ug/kg dry | dry Dry |            | -                 |                                        |                      | EFC        | 72.5 | M-02                |
| SME Sediment<br>Monitoring |        |                     | 112/2022 7/21/      |                                         | 8/3/2022 GC/MS/MS    |                                     |                    | phosphate               | 115-86-6   | TRUE             |          |            | ug/kg dry |         |            | 1 263             | 149                                    | 179 15               | EFC        | 72.5 |                     |
| SME Sediment<br>Monitoring | MA2    |                     | 7/12/2022 7/18/2022 |                                         | 7/19/2022 EPA 160.3M |                                     |                    |                         | NA         | FALSE            | 2.89     | 0.100      |           |         |            | -                 |                                        |                      | chc        | 68.7 |                     |
| SME Sediment<br>Monitoring | MA2    | Solid 7/12/;        | 7/12/2022 7/15/2022 |                                         | 7/19/2022 EPA 6020   |                                     |                    | Cadmium, Total          | 7440-43-9  | FALSE            |          | 0.087 0.29 |           | dry Dry |            | -                 |                                        |                      | ALN        | 68.7 |                     |
| SME Sediment<br>Monitoring | MA2    | Solid 7/12/;        | 7/12/2022 7/15/     | 7/15/2022 7/22                          | 7/22/2022 EPA        | EPA 6020                            | EPA 3050B          | Copper, Total           | 7440-50-8  | FALSE            | 3.5      | 0.42 0.73  |           | dry     |            | -                 |                                        |                      | ALN        | 68.7 |                     |
| SME Sediment<br>Monitoring | MA2    | Solid 7/12/2        | 7/12/2022 7/15/     | 7/15/2022 7/19                          | 7/19/2022 EPA 6020   |                                     |                    | Lead, Total             | 7439-92-1  | FALSE            | _        | 0.31 0.73  |           |         |            | -                 |                                        |                      | ALN        | 68.7 |                     |
| SME Sediment<br>Monitoring |        |                     |                     |                                         | 7/22/2022 EPA 6020   |                                     |                    | Zinc, Total             | 7440-66-6  | FALSE            |          |            |           |         |            | -                 |                                        |                      | AL N       | 68.7 |                     |
| SME Sediment<br>Monitoring |        |                     |                     |                                         | 7/20/2022 EPA 7471A  |                                     |                    | Mercury, Total          | 7439-97-6  | FALSE            |          | 28         | 2         |         |            | -                 |                                        |                      | KVM        | 68.7 |                     |
| SME Sediment<br>Monitoring |        |                     | 2022 7/19           |                                         | 3/2022 EPA           |                                     | Aicrowave          |                         | 53-19-0    | FALSE            |          |            | ua/ka dh  |         |            | ın                |                                        |                      | S,S        | 68.7 | M-02. M-04          |
| SME Sediment<br>Monitoring |        |                     | 2022 7/19           | 7/12/2022 7/19/2022 7/29/2022 EPA 8081A | 3/2022 EPA           |                                     |                    |                         | 3424-82-6  | FALSE            |          |            | ua/ka dry |         |            | ın                |                                        |                      | R<br>D     | 68.7 | M-02. M-04          |
| SME Sediment<br>Monitoring |        |                     | 7/12/2022 7/19/2022 | 2022 7/29                               | 7/29/2022 EPA 8081A  |                                     |                    |                         | 789-02-6   | FALSE            |          |            | ug/kg dry |         |            | 2                 |                                        |                      | RJG        | 68.7 | M-02, M-04          |
| SME Sediment<br>Monitoring |        |                     | 2022 7/19           | 7/12/2022 7/19/2022 7/29/2022 EPA 8081A | 3/2022 EPA           |                                     |                    | 0                       | 319-86-8   | FALSE            |          |            | ua/ka dry |         |            | ιo                |                                        |                      | RJG        | 72.5 | M-02, M-04          |
| SME Sediment<br>Monitoring |        |                     | 2022 7/19           | 7/12/2022 7/19/2022 7/29/2022 EPA 8081A | 3/2022 EPA           |                                     |                    |                         | 60-57-1    | FALSE            |          |            | ug/kg dry |         |            | co.               |                                        |                      | RJG        | 72.5 | M-02, M-04          |
| SME Sediment<br>Monitoring |        |                     | 7/12/2022 7/19/2022 | 2022 7/29                               | 7/29/2022 EPA 8081A  |                                     | -                  | Endosulfan l            | 959-98-8   | FALSE            |          | 9.7 61     | ug/kg dry |         |            | 25                |                                        |                      | RJG        | 72.5 | M-02, M-04          |
| SME Sediment<br>Monitoring | MA1    | Solid 7/12/         | 7/12/2022 7/19/2022 |                                         | 7/29/2022 EPA 8081A  |                                     | EPA 3546/Microwave | Endosulfan II           | 33213-65-9 | FALSE            | 5        | 12 61      | ug/kg dry |         |            | 22                |                                        |                      | RJG        | 72.5 | M-02, M-04          |
| SME Sediment<br>Monitoring | MA1    | Solid 7/12/2        | 102/2022 7/19/      | 7/19/2022 7/29                          | 7/29/2022 EPA 8081A  |                                     | EPA 3546/Microwave | Endosulfan sulfate      | 1031-07-8  | FALSE            | 9        | 15 61      | ug/kg dry | dry     |            | 22                |                                        |                      | RJG        | 72.5 | M-02, M-04          |
| SME Sediment<br>Monitoring |        |                     |                     |                                         | 7/29/2022 EPA 8081A  |                                     |                    | Endrin                  | 72-20-8    | FALSE            |          |            | ug/kg dry |         |            | ю                 |                                        |                      | RJG        | 72.5 | M-02, M-04          |
| SME Sediment<br>Monitoring | MA1    | Solid 7/12/2        | 7/12/2022 7/19/     | 7/19/2022 7/29                          | 7/29/2022 EPA 8081A  |                                     | EPA 3546/Microwave | Endrin aldehyde         | 7421-93-4  | FALSE            | 9        | 13 61      | ug/kg dry | dry     |            | 2                 |                                        |                      | RJG        | 72.5 | M-02, M-04          |
| SME Sediment<br>Monitoring | MA1    | Solid 7/12/2        | 7/12/2022 7/19/2022 |                                         | 7/29/2022 EPA 8081A  |                                     | EPA 3546/Microwave | gamma-BHC (Lindane)     | 58-89-9    | FALSE            | 9        | 12 61      | ug/kg dry | dry     |            | 2                 |                                        |                      | RJG        | 72.5 | M-02, M-04          |
| SME Sediment<br>Monitoring |        |                     | 7/12/2022 7/19/2022 | 2022 7/29                               | 7/29/2022 EPA 8081A  |                                     |                    |                         | 5566-34-7  | FALSE            |          |            | ug/kg dn  |         |            | 2                 |                                        |                      | RJG        | 72.5 | M-02, M-04          |
| SME Sediment<br>Monitoring | MA1    | Solid 7/12/         | 7/12/2022 7/19/2022 |                                         | 7/29/2022 EPA 8081A  |                                     | EPA 3546/Microwave | Heptachlor              | 76-44-8    | FALSE            | N<br>2   | 24 61      | ug/kg dry | dry     |            | 20                |                                        |                      | RJG        | 72.5 | M-02, M-04          |
| SME Sediment<br>Monitoring | MA1    | Solid 7/12/         | 7/12/2022 7/19/     | 7/19/2022 7/29                          | 7/29/2022 EPA 8081A  |                                     | EPA 3546/Microwave | Heptachlor epoxide      | 1024-57-3  | FALSE            | 9        | 13 61      | ug/kg dry |         |            | 22                |                                        |                      | RJG        | 72.5 | M-02, M-04          |
| SME Sediment<br>Monitoring |        |                     | 2022 7/19/          | 7/12/2022 7/19/2022 7/29/2022 EPA 8081A | 3/2022 EPA           |                                     |                    |                         | 72-43-5    | FALSE            |          |            | ug/kg dry |         |            | 22                |                                        |                      | RJG        | 72.5 | M-02, M-04          |
| SME Sediment<br>Monitoring | MA1    | Solid 7/12/         | 2022 7/19/          | 7/12/2022 7/19/2022 7/29/2022 EPA 8081A | 3/2022 EPA           |                                     | EPA 3546/Microwave | Tetrachloro-meta-xylene | 877-09-8   | TRUE             | 53.5     |            | ug/kg dry | dry Dry |            | 5 97.1            | . 22                                   | 138 23               | RJG        | 72.5 |                     |
| SME Sediment<br>Monitoring | MA1    | Solid 7/12/         | 2022 7/19           | 7/12/2022 7/19/2022 7/29/2022 EPA 8081A | 3/2022 EPA           |                                     | EPA 3546/Microwave | Toxaphene               | 8001-35-2  | FALSE            | 9        | 510 1800   |           |         |            | ъ                 |                                        |                      | RJG        | 72.5 | M-02, M-04          |
| SME Sediment<br>Monitoring |        |                     | 7/12/2022 7/19/2022 | 2022 7/29                               | 7/29/2022 EPA 8081A  |                                     |                    | chlor                   | 39765-80-5 | FALSE            | N<br>O   | 7.3 61     |           |         |            | 22                |                                        |                      | RJG        | 72.5 | M-02, M-04          |
| SME Sediment<br>Monitoring | MA1    | Solid 7/12/         | 112/2022 1/21/      | 7/21/2022 7/28                          | 3/2022 EPA           | 7/28/2022 EPA 8270C SIM E           | EPA 3546/Microwave | 1-Methylnaphthalene     | 90-12-0    | FALSE            | 9        | 6.1 97     | ug/kg dry | dry Dry |            | -                 |                                        |                      | Ē          | 72.5 | M-02                |
| SME Sediment<br>Monitoring | MA1    | Solid 7/12/2        | 112/2022 7/21/      | 7/21/2022 7/28                          | 3/2022 EPA           | 7/28/2022 EPA 8270C SIM E           | EPA 3546/Microwave | 9                       | 832-69-9   | FALSE            | 9        | 12 97      | ug/kg dn  |         |            | -                 |                                        |                      | ī          | 72.5 | M-02                |
| SME Sediment<br>Monitoring |        |                     |                     |                                         | 3/2022 EPA           |                                     | -                  | eu.                     | 581-42-0   | FALSE            |          |            | ug/kg dry |         |            | -                 |                                        |                      | Ē          | 72.5 | M-02                |
| SME Sediment<br>Monitoring | MA1    | Solid 7/12/         | 112/2022 7/21/      | 7/21/2022 7/28                          | 3/2022 EPA           | 7/28/2022 EPA 8270C SIM E           | EPA 3546/Microwave |                         | 321-60-8   | TRUE             | 3420     |            | ug/kg dry | dry Dry |            | 1 4850            | 02                                     | 109 0.1              | Ē          | 72.5 |                     |
| SME Sediment<br>Monitoring | MA1    | Solid 7/12/         | 112/2022 7/21/      | 2022 7/28                               | 3/2022 EPA           | 7/21/2022 7/28/2022 EPA 8270C SIM E | EPA 3546/Microwave | ene                     | 91-57-6    | FALSE            | 9        | 6.6        | ug/kg dry |         |            | -                 |                                        |                      | ımı        | 72.5 | M-02                |
| SME Sediment<br>Monitoring |        |                     | 2022 7/21/          | 2022 7/28                               | 3/2022 EPA           | , 8270C SIM E                       |                    |                         | 83-32-9    | FALSE            |          |            | ug/kg dry |         |            | -                 |                                        |                      | rmr        | 72.5 | M-02                |
| SME Sediment<br>Monitoring | MA1    | Solid 7/12/         | 112/2022 7/21/      | 2022 7/28                               | 3/2022 EPA           | 7/21/2022 7/28/2022 EPA 8270C SIM E | EPA 3546/Microwave | ЭС                      | 208-96-8   | FALSE            | 5        | 11 97      | ug/kg dry | dry     |            | -                 |                                        |                      | Ē          | 72.5 | M-02                |
| SME Sediment<br>Monitoring | MA1    | Solid 7/12/;        | 1/2/2022 1/2//      | 7/21/2022 7/28                          | 3/2022 EPA           | 7/28/2022 EPA 8270C SIM E           | EPA 3546/Microwave | Anthracene              | 120-12-7   | FALSE            | ON<br>ON | 9.0        | ug/kg dr  | dry Dry | $\dashv$   | -                 |                                        | $\dashv$             | rmr        | 72.5 | M-02                |

| PROJECTNUM                 | SAMPLE | SAMP<br>MATRIX DATE | PREP<br>DATE        |                | DATE MET                | ANA DATE METHOD NAME PREP NAME |                                                                | ANALYTE                    | CAS NUMBER | SURROGATE Result |          | ר<br>ה  | L UNITS    |               | BASIS DILUTIO | SPIKE<br>ON LEVEL | SPIKE UPPER LI<br>DILUTION LEVEL RECOVERY CL | LOWER<br>CL ANA | ANALYST PSOLIC | PSOLIDS LNOTE ANOTE | ЮТЕ |
|----------------------------|--------|---------------------|---------------------|----------------|-------------------------|--------------------------------|----------------------------------------------------------------|----------------------------|------------|------------------|----------|---------|------------|---------------|---------------|-------------------|----------------------------------------------|-----------------|----------------|---------------------|-----|
| SME Sediment<br>Monitoring | MA1    | Solid 7/12/         | 2022 7/21/          | 2022 7/28      | V2022 EPA               | 8270C SIM E                    | 7/12/2022 7/21/2022 7/28/2022 EPA 8270C SIM EPA 3546/Microwave | Benzo (a) anthracene       | 56-55-3    | FALSE            | N<br>O   | 35 97   |            | ug/kg dry Dry |               | -                 |                                              | Ē               | 72.5           | M-02                | 02  |
| SME Sediment<br>Monitoring |        |                     | 2022 7/21/          | 2022 7/28      | V2022 EPA               | 8270C SIM E                    |                                                                |                            | 50-32-8    | FALSE            |          |         |            |               |               | -                 |                                              | rmr             | 72.5           | M-02                | 02  |
| SME Sediment<br>Monitoring | MA1    | Solid 7/12/         | 7/12/2022 7/21/2022 |                | V2022 EPA               | 8270C SIM E                    | 7/28/2022 EPA 8270C SIM EPA 3546/Microwave                     | Benzo (b) fluoranthene     | 205-99-2   | FALSE            | Q<br>Q   | 50 97   | , ug/kg dn | g dry Dry     |               | -                 |                                              | Ē               | 72.5           | M-02                | 02  |
| SME Sediment<br>Monitoring | MA1    | Solid 7/12/         | 7/12/2022 7/21/2022 |                | V2022 EPA               | 8270C SIM E                    |                                                                |                            | 191-24-2   | FALSE            | ω<br>Θ   | 38 97   |            | _             |               | -                 |                                              | Ē               | 72.5           | M-02                | 02  |
| SME Sediment<br>Monitoring | MA1    | Solid 7/12/         | 112/2022 1/21/      | 7/21/2022 7/28 | V2022 EPA               | 7/28/2022 EPA 8270C SIM E      | EPA 3546/Microwave                                             | 0                          | 207-08-9   | FALSE            | 5        | 42 97   |            | ug/kg dry Dry |               | -                 |                                              | Ē               | 72.5           | M-02                | 02  |
| SME Sediment<br>Monitoring | MA1    | Solid 7/12/         | 112/2022 7/21/      |                | 7/28/2022 EPA 8270C SIM |                                | EPA 3546/Microwave                                             |                            | 218-01-9   | FALSE            | 9        |         |            |               |               | -                 |                                              | Ē               | 72.5           | M-02                | 02  |
| SME Sediment<br>Monitoring |        |                     |                     |                | 7/28/2022 EPA 8270C SIM |                                | -                                                              | a.h) anthracene            | 53-70-3    | FALSE            |          |         |            |               | _             | -                 |                                              | Ē               | 72.5           | M-02                | 02  |
| SME Sediment<br>Monitoring |        |                     |                     |                | 7/28/2022 EPA 8270C SIM |                                |                                                                |                            | 206-44-0   | FALSE            |          |         |            |               |               | -                 |                                              | Ē               | 72.5           | M-02                | 02  |
| SME Sediment<br>Monitoring |        |                     | 2022 7/21/          | 2022 7/28      | V2022 EPA               | 8270C SIM E                    |                                                                |                            | 86-73-7    | FALSE            |          |         |            |               |               | -                 |                                              | Ē               | 72.5           | M-02                | 02  |
| SME Sediment<br>Monitoring |        |                     | 2022 7/21/          | 2022 7/28      | V2022 EPA               | 8270C SIM E                    |                                                                | 1,2,3-cd) pyrene           | 193-39-5   | FALSE            |          |         |            |               |               | -                 |                                              | Ē               | 72.5           | M-02                | 02  |
| SME Sediment<br>Monitoring |        |                     | 2022 7/21/          | 2022 7/28      | V2022 EPA               | 8270C SIM E                    | _                                                              |                            | 91-20-3    | FALSE            |          | _       |            |               |               | -                 |                                              | rmr             | 72.5           | M-02                | 02  |
| SME Sediment<br>Monitoring |        |                     | 2022 7/21/          | 2022 7/28      | V2022 EPA               | 8270C SIM E                    |                                                                | e-d5                       | 4165-60-0  | TRUE             |          |         |            |               |               | 1 4850            | 69 107 0.                                    | _               | 72.5           |                     |     |
| SME Sediment<br>Monitoring |        |                     | 2022 7/21/          | 2022 7/28      | V2022 EPA               | 8270C SIM E                    |                                                                |                            | 85-01-8    | FALSE            |          | 6.5 97  |            |               |               | -                 |                                              |                 | 72.5           | M-02                | 02  |
| SME Sediment<br>Monitoring | MA1    | Solid 7/12/         | 7/12/2022 7/21/2022 | 2022 7/28      | ¥2022 EPA               | 8270C SIM E                    | 7/28/2022 EPA 8270C SIM EPA 3546/Microwave                     | Pyrene                     | 129-00-0   | FALSE            | <u>ε</u> | 39 97   |            | ug/kg dry Dry |               | -                 |                                              | ī               | 72.5           | M-02                | 02  |
| SME Sediment<br>Monitoring | MA1    | Solid 7/12/         | 7/12/2022 7/21/2022 |                | ¥2022 EPA               | 7/28/2022 EPA 8270C SIM E      | EPA 3546/Microwave                                             | Terphenyl-d14              | 1718-51-0  | TRUE             | 4020     |         | ug/k       | ug/kg dry Dry |               | 1 4850            | 83 128 28                                    |                 | 72.5           |                     |     |
| SME Sediment<br>Monitoring | MA1    | Solid 7/12/         | 112/2022 7/21/      | 7/21/2022 7/28 | V2022 EPA               | 7/28/2022 EPA 8270C SIM E      | EPA 3546/Microwave                                             | Benzo (e) pyrene           | 192-97-2   | FALSE            | 5        | 14 97   |            | ug/kg dry Dry |               | -                 |                                              | Ē               | 72.5           | M-02                | 02  |
| SME Sediment<br>Monitoring |        | Solid 7/12/         |                     |                | ¥2022 EPA               |                                | EPA 3546/Microwave                                             | Biphenyl                   | 92-52-4    | FALSE            | N<br>N   | 7.8 97  |            |               |               | -                 |                                              | Ē               | 72.5           | M-02                | 02  |
| SME Sediment<br>Monitoring | MA1    | Solid 7/12/         | 112/2022 7/21/      | 7/21/2022 7/28 | ¥2022 EPA               | 7/28/2022 EPA 8270C SIM E      | EPA 3546/Microwave                                             | Perylene                   | 198-55-0   | FALSE            | 9        | 12 97   |            | ug/kg dry Dry |               | -                 |                                              | Ē               | 72.5           | M-02                | 02  |
| SME Sediment<br>Monitoring | MA1    | Solid 7/12/         | 7/12/2022 8/3/      | 8/3/2022 8/3   | 8/3/2022 EPA 9060A      |                                | EPA 9060M                                                      | Total Organic Carbon (TOC) | ΨZ         | FALSE            | 845      | 42.0 20 | 200 mg/kg  | kg Wet        |               | -                 |                                              | aic             | 72.5           |                     |     |
| SME Sediment<br>Monitoring |        |                     |                     |                | 8/3/2022 GC/MS/MS       |                                | licrowave                                                      |                            | 81-20-9    | TRUE             |          |         |            | dry           |               | 1 263             | 60 141 0                                     | 0.1 EFC         |                |                     |     |
| SME Sediment<br>Monitoring | MA1    | Solid 7/12/         | 7/12/2022 7/21/2022 |                | 8/3/2022 GC/MS/MS       |                                | EPA 3546/Microwave                                             | PCB-101                    | 37680-73-2 | FALSE            | 9        | 32 32   |            | ug/kg dry Dry |               | -                 |                                              | EFC             | 72.5           | M-02                | 02  |
| SME Sediment<br>Monitoring | MA1    | Solid 7/12/         | 112/2022 7/21/      | 7/21/2022 8/3  | 8/3/2022 GC/MS/MS       |                                | EPA 3546/Microwave                                             | PCB-105                    | 32598-14-4 | FALSE            | 9        | 32 32   |            | ug/kg dry Dry |               | -                 |                                              | EFC             | 72.5           | M-02                | 02  |
| SME Sediment<br>Monitoring | MA1    | Solid 7/12/         | 7/12/2022 7/21/2022 |                | 8/3/2022 GC/MS/MS       |                                | EPA 3546/Microwave                                             | PCB-110                    | 38380-03-9 | FALSE            | <u>ε</u> | 32 32   |            | ug/kg dry Dry |               | -                 |                                              | EFC             | 72.5           | M-02                | 02  |
| SME Sediment<br>Monitoring | MA1    | Solid 7/12/         | 7/12/2022 7/21/2022 |                | 8/3/2022 GC/MS/MS       |                                | EPA 3546/Microwave                                             | PCB-114                    | 74472-37-0 | FALSE            | 9        | 32 32   |            | ug/kg dry Dry |               | -                 |                                              | FFC             | 72.5           | M-02                | 02  |
| SME Sediment<br>Monitoring | MA1    | Solid 7/12/         | 7/12/2022 7/21/2022 |                | 8/3/2022 GC/MS/MS       |                                | EPA 3546/Microwave                                             | PCB-118                    | 31508-00-6 | FALSE            | S<br>S   | 32 32   |            | ug/kg dry Dry |               | -                 |                                              | EFC             | 72.5           | M-02                | 02  |
| SME Sediment<br>Monitoring | MA1    | Solid 7/12/         | 7/12/2022 7/21/2022 |                | 8/3/2022 GC/MS/MS       |                                | EPA 3546/Microwave                                             | PCB-119                    | 56558-17-9 | FALSE            | 2        | 32 32   |            | ug/kg dry Dry |               | -                 |                                              | EFC             | 72.5           | M-02                | 02  |
| SME Sediment<br>Monitoring | MA1    | Solid 7/12/         | 112/2022 7/21/      | 7/21/2022 8/3  | 8/3/2022 GC/MS/MS       |                                | EPA 3546/Microwave                                             | PCB-123                    | 65510-44-3 | FALSE            | 9        | 32 32   |            | ug/kg dry Dry |               | -                 |                                              | FC              | 72.5           | M-02                | 02  |
| SME Sediment<br>Monitoring | MA1    | Solid 7/12/         | 112/2022 7/21/      | 7/21/2022 8/3  | 8/3/2022 GC/MS/MS       |                                | EPA 3546/Microwave                                             | PCB-126                    | 57465-28-8 | FALSE            | 9        | 32 32   |            | ug/kg dry Dry |               | -                 |                                              | EFC             | 72.5           | M-02                | 02  |
| SME Sediment<br>Monitoring |        |                     |                     |                | 8/3/2022 GC/MS/MS       |                                |                                                                | PCB-128                    | 38380-07-3 | FALSE            |          |         |            |               |               | -                 |                                              | EFC             |                | M-02                | 02  |
| SME Sediment<br>Monitoring | MA1    | Solid 7/12/         | 7/12/2022 7/21/2022 |                | 8/3/2022 GC/MS/MS       |                                | EPA 3546/Microwave                                             | PCB-151                    | 52663-63-5 | FALSE            | 9        | 32 32   |            | ug/kg dry Dry |               | -                 |                                              | EFC             | 72.5           | M-02                | 02  |
| SME Sediment<br>Monitoring | MA1    | Solid 7/12/         | 7/12/2022 7/21/2022 |                | 8/3/2022 GC/MS/MS       |                                | •                                                              | PCB-156                    | 38380-08-4 | FALSE            | 9        | 32 32   |            |               |               | -                 |                                              | EFC             |                | M-02                | 02  |
| SME Sediment<br>Monitoring |        |                     | 7/12/2022 7/21/2022 |                | 8/3/2022 GC/MS/MS       |                                |                                                                | PCB-157                    | 69782-90-7 | FALSE            |          |         |            |               |               | -                 |                                              | EFC             |                | M-02                | 02  |
| SME Sediment<br>Monitoring | MA1    | Solid 7/12/         | 112/2022 7/21/      | 7/21/2022 8/3  | 8/3/2022 GC/MS/MS       |                                | EPA 3546/Microwave                                             | PCB-158                    | 74472-42-7 | FALSE            | <u>ε</u> | 32 32   |            | g dry Dry     |               | -                 |                                              | FFC             | 72.5           | M-02                | 02  |
| SME Sediment<br>Monitoring | MA1    | Solid 7/12/         | 112/2022 1/21/      | 7/21/2022 8/3  | 8/3/2022 GC/MS/MS       |                                | EPA 3546/Microwave                                             | PCB-174                    | 38411-25-5 | FALSE            | ND 3     | 32 32   | 2 ug/kg dr | g dry Dry     |               | -                 |                                              | EFC             | 72.5           | M-02                | 02  |

| PROJECTINUM                | SAMPLE | SAMP<br>MATRIX DATE | MP PREP<br>TE DATE  | ANA DATE METHOD NAME PREP NAME          |                    | ANALYTE             | CAS NUMBER            | SURROGATE | Result DL | 귐       | UNITS     | BASIS DII      | SPIKE UPF    | UPPER LOWER<br>CL CL AN | ANALYST PSC | PSOLIDS LNOTE ANOTE | ANOTE      |
|----------------------------|--------|---------------------|---------------------|-----------------------------------------|--------------------|---------------------|-----------------------|-----------|-----------|---------|-----------|----------------|--------------|-------------------------|-------------|---------------------|------------|
| SME Sediment<br>Monitoring | MA1    | Solid 7/            | 022                 | 022 8/3/2022 GC/MS/MS                   | EPA 3546/Microwave | PCB-177             | 52663-70-4            | FALSE     | ND 32     | 32      | ug/kg dry | D.             | -            | Ш                       | EFC 72.5    | 2                   | M-02       |
| SME Sediment<br>Monitoring |        |                     | 7/12/2022 7/21/2022 |                                         | e                  | PCB-18              | 37680-65-2            | FALSE     |           | 32      | ug/kg dry | Dry            | 1            | Ш                       |             |                     | M-02       |
| SME Sediment<br>Monitoring | MA1    | Solid 7/            | 7/12/2022 7/21/2022 |                                         |                    | PCB-180             | 35065-29-3            | FALSE     | ND 32     |         | ug/kg dry | Ď.             | -            | Ш                       |             |                     | M-02       |
| SME Sediment<br>Monitoring |        |                     |                     |                                         | EPA 3546/Microwave | PCB-195             | 52663-78-2            | FALSE     |           |         | ug/kg dry | - A            | -            | <u></u>                 |             |                     | M-02       |
| SME Sediment<br>Monitoring | MA1    | Solid 7/            | 7/12/2022 7/21/2022 | 022 8/3/2022 GC/MS/MS                   | EPA 3546/Microwave | PCB-199             | 52663-75-9            | FALSE     | ND 32     | 32      | ug/kg dry | D.             | -            | Ш                       | EFC 72.5    |                     | M-02       |
| SME Sediment<br>Monitoring | MA1    | Solid 7/            | 7/12/2022 7/21/2022 | 022 8/3/2022 GC/MS/MS                   | EPA 3546/Microwave | PCB-201             | 40186-71-8            | FALSE     | ND 32     |         | ug/kg dry | Ď.             | -            | Ш                       | EFC 72.5    |                     | M-02       |
| SME Sediment<br>Monitoring |        |                     |                     | 8/3/2022                                |                    | PCB-203             | 52663-76-0            | FALSE     |           |         | ug/kg dry | ģ              | -            | ш                       |             |                     | M-02       |
| SME Sediment<br>Monitoring |        |                     |                     | ,                                       |                    | 4,4 -DDD            | 72-54-8               | FALSE     |           |         | ug/kg dry | , è            | 22           | ı ıż                    |             |                     | M-02, M-04 |
| SME Sediment<br>Monitoring |        |                     |                     |                                         |                    | 4.4'-DDE            | 72-55-9               | FALSE     | ON<br>71  |         | ua/ka dry | Š              | O.           | ı eż                    |             |                     | M-02, M-04 |
| SME Sediment<br>Monitoring |        |                     | 12/2022 7/19/24     | 7/12/2022 7/19/2022 T/29/2022 EPA 8081A |                    | 4,4'-DDT            | 50-29-3               | FALSE     |           |         | ua/ka drv | Š              | ıo           | ı «č                    |             |                     | M-02. M-04 |
| SME Sediment<br>Monitoring |        |                     | 7/12/2022 7/19/2022 | 022 7/29/2022 EPA 8081A                 |                    | Aldrin              | 309-00-2              | FALSE     |           |         | ug/kg dry | Dry            | 2            | ď                       |             |                     | M-02, M-04 |
| SME Sediment<br>Monitoring | MA2    | Solid 7/            | 7/12/2022 7/19/2022 | 022 7/29/2022 EPA 8081A                 | EPA 3546/Microwave | alpha-BHC           | 319-84-6              | FALSE     | 8<br>4    | 92      | ua/ka dry | Δ              | 22           | œ²                      | RJG 68.7    |                     | M-02, M-04 |
| SME Sediment<br>Monitoring |        |                     | 7/12/2022 7/19/2022 |                                         |                    | alpha-Chlordane     | 5103-71-9             | FALSE     |           |         | ua/ka drv | Š              | ıo           | ı «č                    |             |                     | M-02. M-04 |
| SME Sediment<br>Monitoring |        |                     | 7/12/2022 7/19/2022 |                                         |                    | beta-BHC            | 319-85-7              | FALSE     |           |         | ug/kg dry | Dry            | 2            | ď                       |             |                     | M-02, M-04 |
| SME Sediment<br>Monitoring | MA2    | Solid 7/-           | 7/12/2022 7/19/2022 | 022 7/29/2022 EPA 8081A                 | EPA 3546/Microwave | Chlordane (tech)    | 57-74-9               | FALSE     | ND 1500   | 00 1500 |           | ργ             | 2            | ď                       | RJG 68.7    |                     | M-02, M-04 |
| SME Sediment<br>Monitoring | MA2    | Solid 7/            | 7/12/2022 7/19/2022 | 022 7/29/2022 EPA 8081A                 | EPA 3546/Microwave | Decachlorobiphenvl  | 2051-24-3             | TRUE      | 85.9      |         | ua/ka drv | Ď              | 5 122 70 125 | 21                      | RJG 68.7    |                     |            |
| SME Sediment<br>Monitoring |        |                     |                     |                                         | EPA 3546/Microwave | delta-BHC           | 319-86-8              | FALSE     | ND 24     | 92      | ug/kg dry | , <sub>V</sub> |              |                         |             |                     | M-02, M-04 |
| SME Sediment<br>Monitoring | MA2    | Solid 7/            | 7/12/2022 7/19/2022 | 022 7/29/2022 EPA 8081A                 | EPA 3546/Microwave | Dieldrin            | 60-57-1               | FALSE     | ND 16     | 92      | ug/kg dry | Dry            | 5            | œ́                      | RJG 68.7    |                     | M-02, M-04 |
| SME Sediment<br>Monitoring | MA2    | Solid 7/            | 7/12/2022 7/19/2022 | 022 7/29/2022 EPA 8081A                 | EPA 3546/Microwave | Endosulfan I        | 8-86-68-8             | FALSE     | ND 12     | 9/      | ug/kg dry | Δ              | 2            | - e²                    | RJG 68.7    |                     | M-02, M-04 |
| SME Sediment<br>Monitoring |        |                     | 7/12/2022 7/19/2022 |                                         |                    | Endosulfan II       | 33213-65-9            | FALSE     |           |         | ug/kg dry | Dny            | 29           | ď                       |             |                     | M-02, M-04 |
| SME Sediment<br>Monitoring | MA2    | Solid 7/            | 7/12/2022 7/19/2022 | 022 7/29/2022 EPA 8081A                 | EPA 3546/Microwave | Endosulfan sulfate  | 1031-07-8             | FALSE     | ND 19     | 9/      | ug/kg dry | ρί             | S            | œ́                      | RJG 68.7    |                     | M-02, M-04 |
| SME Sediment<br>Monitoring | MA2    | Solid 7/            | 7/12/2022 7/19/2022 | 022 7/29/2022 EPA 8081A                 | EPA 3546/Microwave | Endrin              | 72-20-8               | FALSE     | ND 34     | 92      | ug/kg dry | Dry            | 5            | ď                       | RJG 68.7    |                     | M-02, M-04 |
| SME Sediment<br>Monitoring |        | Solid 7/            | 7/12/2022 7/19/2022 | 022 7/29/2022 EPA 8081A                 | EPA 3546/Microwave | Endrin aldehyde     | 7421-93-4             | FALSE     | ND 17     |         | ug/kg dry | Dry            | 5            | œ́                      |             |                     | M-02, M-04 |
| SME Sediment<br>Monitoring | MA2    | Solid 7/            | 7/12/2022 7/19/2022 | 022 7/29/2022 EPA 8081A                 | EPA 3546/Microwave | gamma-BHC (Lindane) | 58-89-9               | FALSE     | ND 15     | 9/      | ug/kg dry | Dry            | 5            | ď                       | RJG 68.7    |                     | M-02, M-04 |
| SME Sediment<br>Monitoring | MA1    | Solid 7/            | 7/12/2022 7/21/2022 | 022 8/3/2022 GC/MS/MS                   | EPA 3546/Microwave | PCB-132/153         | 38380-05-1/35065-27-1 | FALSE     | ND 32     | 32      | ug/kg dry | ργ             | -            | Ш                       | EFC 72.5    |                     | M-02       |
| SME Sediment<br>Monitoring | MA1    | Solid 7/            | 7/12/2022 7/21/2022 |                                         | EPA 3546/Microwave | PCB-138             | 35065-28-2            | FALSE     | ND 32     | 32      | ug/kg dry | Dry            | 1            | Ш                       |             |                     | M-02       |
| SME Sediment<br>Monitoring | MA1    | Solid 7/            | 7/12/2022 7/21/2022 | 022 8/3/2022 GC/MS/MS                   | EPA 3546/Microwave | PCB-141             | 52712-04-6            | FALSE     | ND 32     | 32      | ug/kg dry | Dry            |              | 100                     | EFC 72.5    |                     | M-02       |
| SME Sediment<br>Monitoring | MA1    | Solid 7/            | 7/12/2022 7/21/2022 | 022 8/3/2022 GC/MS/MS                   | EPA 3546/Microwave | PCB-149             | 38380-04-0            | FALSE     | ND 32     | 32      | ug/kg dry | Duy            | -            | Ш                       | EFC 72.5    |                     | M-02       |
| SME Sediment<br>Monitoring |        |                     |                     | 8/3/2022                                |                    | PCB-167             | 52663-72-6            | FALSE     |           |         | ug/kg dry | Ď.             | -            | Ш                       |             |                     | M-02       |
| SME Sediment<br>Monitoring | MA1    | Solid 7/            | 7/12/2022 7/21/2022 | 022 8/3/2022 GC/MS/MS                   | EPA 3546/Microwave | PCB-168             | 59291-65-5            | FALSE     | ND 32     |         | ug/kg dry | D.             | -            | Ш                       | EFC 72.5    |                     | M-02       |
| SME Sediment<br>Monitoring |        | Solid 7/            |                     |                                         |                    | PCB-169             | 32774-16-6            | FALSE     | ND 32     |         | ug/kg dry | Ď.             | -            | Ш                       | EFC 72.5    |                     | M-02       |
| SME Sediment<br>Monitoring |        |                     | 7/12/2022 7/21/2022 |                                         |                    | PCB-170             | 35065-30-6            | FALSE     |           | 32      | ug/kg dry | - A            | -            | <u></u>                 |             |                     | M-02       |
| SME Sediment<br>Monitoring | MA1    | Solid 7/            | 7/12/2022 7/21/2022 | 022 8/3/2022 GC/MS/MS                   | EPA 3546/Microwave | PCB-183             | 52663-69-1            | FALSE     | ND 32     | 32      | ug/kg dry | Dry            | -            | ш                       | EFC 72.5    |                     | M-02       |
| SME Sediment<br>Monitoring | MA1    | Solid 7/            | 7/12/2022 7/21/2022 | 022 8/3/2022 GC/MS/MS                   | EPA 3546/Microwave | PCB-187             | 52663-68-0            | FALSE     | ND 32     | 32      | ug/kg dry | Dny            | -            | Ü                       |             |                     | M-02       |

|                               | SAMPLE | Ś           | SAMP PREP           |                |                                             |                                                                 |                          |                      |           |           |           |              |         |             | SPIKE UPPER LO                | LOWER     |                   |            |
|-------------------------------|--------|-------------|---------------------|----------------|---------------------------------------------|-----------------------------------------------------------------|--------------------------|----------------------|-----------|-----------|-----------|--------------|---------|-------------|-------------------------------|-----------|-------------------|------------|
| PROJECTNUM<br>SME Sedimont    | NAME   | MATRIX DA   |                     |                | ANA DATE METHOD NAME PREP NAME              | WE PREP NAME                                                    | ANALYTE                  | CAS NUMBER           | SURROGATE | Result DI | ר<br>"ת   | UNITS        | S BASIS | IS DILUTION | DILUTION LEVEL RECOVERY CL CL | . ANALYST | 'ST PSOLIDS LNOTE | TE ANOTE   |
| Sivile Sediment<br>Monitoring | MA1 S  | Solid 7/    | 7/12/2022 7/21/2022 |                | 8/3/2022 GC/MS/MS                           | EPA 3546/Microwave                                              | PCB-189                  | 39635-31-9           | FALSE     | ND 32     | 2 32      | ug/kg dry    | dry Dry | -           |                               | EFC       | 72.5              | M-02       |
| SME Sediment<br>Monitoring    | MA1    | Solid 7/    | 7/12/2022 7/21/2022 |                | 8/3/2022 GC/MS/MS                           | EPA 3546/Microwave                                              | PCB-194                  | 35694-08-7           | FALSE     | ND 32     | 2 32      | ug/kg dry    | dry     |             |                               | EFC       | 72.5              | M-02       |
| SME Sediment<br>Monitoring    | MA1 S  | Solid 7/    | 7/12/2022 7/21/2022 |                | 8/3/2022 GC/MS/MS                           | EPA 3546/Microwave                                              | PCB-206                  | 40186-72-9           | FALSE     | ND 32     | 2 32      | ug/kg dry    | dry     |             |                               | EFC       | 72.5              | M-02       |
| SME Sediment<br>Monitoring    | MA1 S  | 7/ pilos    | 7/12/2022 7/21/2022 | 2022 8/3/2022  | 2022 GC/MS/MS                               | EPA 3546/Microwave                                              | PCB-209                  | 2051-24-3            | FALSE     | ND 32     | 2 32      | ug/kg dry    | dry Dry | -           |                               | EFC       | 72.5              | M-02       |
| nent                          |        |             |                     |                | 8/3/2022 GC/MS/MS                           | EPA 3546/Microwave                                              | PCB-28/31                | 7012-37-5/16606-02-3 | FALSE     |           |           | ug/kg dry    |         |             |                               | EFC       | 72.5              | M-02       |
| SME Sediment<br>Monitoring    |        |             |                     |                | 8/3/2022 GC/MS/MS                           | EPA 3546/Microwave                                              | PCB-3                    | 2051-62-9            | FALSE     | ND 32     |           | ug/kg dry    |         | _           |                               | EFC       | 72.5              | M-02       |
| SME Sediment<br>Monitoring    | E3     | 7/ Solid 7/ | 12/2022 7/19/2      | 2022 7/29/2    | 7/12/2022 7/19/2022 7/29/2022 EPA 8081A     | EPA 3546/Microwave                                              | gamma-Chlordane          | 5566-34-7            | FALSE     | N<br>18   | 8         | ug/kg dry    |         | G           |                               | RJG       | 97.9              | M-02, M-04 |
| SME Sediment<br>Monitoring    |        |             | 12/2022 7/19/2      | 2022 7/29/2    | 7/12/2022 7/19/2022 7/29/2022 EPA 8081A     | EPA 3546/Microwave                                              | Heptachlor               | 76-44-8              | FALSE     |           |           | ug/kg dry    |         | 9           |                               | RJG       | 64.6              | M-02, M-04 |
| SME Sediment<br>Monitoring    |        | 7/ pilos    | 12/2022 7/19/2      | 2022 7/29/2    | 7/12/2022 7/19/2022 7/29/2022 EPA 8081A     | EPA 3546/Microwave                                              | Heptachlor epoxide       | 1024-57-3            | FALSE     | N<br>81   | 8         | ug/kg dry    |         | G           |                               | RJG       | 97.6              | M-02, M-04 |
| SME Sediment<br>Monitoring    |        |             | 12/2022 7/19/2      | 3022 7/29/2    | 7/12/2022 7/19/2022 7/29/2022 EPA 8081A     | EPA 3546/Microwave                                              | Wene                     | 877-09-8             | TRUE      |           |           | ua/ka drv    |         | r)          | 128 63 138 23                 |           | 97.9              |            |
| SME Sediment<br>Monitoring    |        |             | 12/2022 7/19/2      | 2022 7/29/2    | 7/12/2022 7/19/2022 7/29/2022 EPA 8081A     | EPA 3546/Microwave                                              |                          | 8001-35-2            | FALSE     |           | 670 2400  |              |         | co<br>C     |                               |           | 64.6              | M-02, M-04 |
| SME Sediment<br>Monitoring    |        |             | 12/2022 7/19/2      | 2022 7/29/2    | 7/12/2022 7/19/2022 7/29/2022 EPA 8081A     | EPA 3546/Microwave                                              | trans-Nonachlor          | 39765-80-5           | FALSE     |           | 9.6       |              |         | ıo          |                               | RJG       | 97.9              | M-02, M-04 |
| SME Sediment<br>Monitoring    |        |             | 12/2022 7/21/2      | 3022 7/28/2    | .022 EPA 8270C SI                           | 7/12/2022 7/21/2022 7/28/2022 EPA 8270C SIM EPA 3546/Microwave  | alene                    | 90-12-0              | FALSE     |           | .7 110    |              |         | _           |                               | Ĕ         | 97.9              | M-02       |
| SME Sediment<br>Monitoring    |        |             | 7/12/2022 7/21/2022 | 2022 7/28/2    | .022 EPA 8270C SI                           | 7/28/2022 EPA 8270C SIM EPA 3546/Microwave                      |                          | 83-32-9              | FALSE     |           |           |              |         |             |                               | Ē         | 64.6              | M-02       |
| SME Sediment<br>Monitoring    |        | Nolid 7/    | 7/12/2022 7/21/2022 |                | 7/28/2022 EPA 8270C SIM                     | IM EPA 3546/Microwave                                           | Acenaphthylene           | 208-96-8             | FALSE     | ND 12     | 2 110     |              |         |             |                               | Ē         | 97.9              | M-02       |
| SME Sediment<br>Monitoring    |        |             |                     |                | .022 EPA 8270C SI                           |                                                                 | Anthracene               | 120-12-7             | FALSE     |           |           |              |         | _           |                               | ŭ         | 64.6              | M-02       |
| SME Sediment<br>Monitoring    |        |             | 12/2022 7/21/2      | 2022 7/28/2    | .022 EPA 8270C SI                           | 7/12/2022 7/21/2022 7/28/2022 EPA 8270C SIM EPA 3546/Microwave  | Benzo (a) anthracene     | 56-55-3              | FALSE     |           |           |              |         |             |                               | rmr       | 64.6              | M-02       |
| SME Sediment<br>Monitoring    |        | 7/ Solid 7/ | 12/2022 7/21/2      | 2022 7/28/2    | .022 EPA 8270C SI                           | 7/12/2022 7/21/2022 7/28/2022 EPA 8270C SIM EPA 3546/Microwave  | Chrysene                 | 218-01-9             | FALSE     | ND<br>6   | 6.9 110   |              |         |             |                               | īmī       | 64.6              | M-02       |
| SME Sediment<br>Monitoring    |        | Solid 7/    | 12/2022 7/21/2      | 3022 7/28/2    | 022 EPA 8270C SI                            | 7/12/2022 7/2/1/2022 7/28/2022 EPA 8270C SIM EPA 3546/Microwave | Dibenzo (a,h) anthracene | 53-70-3              | FALSE     | N<br>49   | 9 110     |              |         |             |                               | Ē         | 9.4.6             | M-02       |
| SME Sediment<br>Monitoring    |        |             | 12/2022 7/21/2      | 2022 7/28/2    | 022 EPA 8270C SI                            | 7/12/2022 7/21/2022 7/28/2022 EPA 8270C SIM EPA 3546/Microwave  | Fluoranthene             | 206-44-0             | FALSE     |           |           |              |         |             |                               | Ē         | 64.6              | M-02       |
| SME Sediment<br>Monitoring    | E3     | Solid 7/    | 12/2022 7/21/2      | 2022 7/28/2    | 7/12/2022 7/21/2022 7/28/2022 EPA 8270C SIM | IM EPA3546/Microwave                                            | Fluorene                 | 86-73-7              | FALSE     | ND<br>6   | 6.8 110   | ) ug/kg dry  | dry     | -           |                               | ımı       | 64.6              | M-02       |
| SME Sediment<br>Monitoring    | 2      |             | 12/2022 7/19/2      | 3022 7/29/2    | 7/12/2022 7/19/2022 7/29/2022 EPA 8081A     |                                                                 | gamma-Chlordane          | 5566-34-7            | FALSE     | ND 17     | 7 76      |              |         | co.         |                               | RJG       | 2.89              | M-02, M-04 |
| SME Sediment<br>Monitoring    | MA2    | Solid 7/    | 7/12/2022 7/19/2022 | 3022 7/29/2    | 7/29/2022 EPA 8081A                         | EPA 3546/Microwave                                              | Heptachlor               | 76-44-8              | FALSE     | ND<br>31  | 1 76      | ug/kg dry    | dry     | Ω.          |                               | RJG       | 68.7              | M-02, M-04 |
| SME Sediment<br>Monitoring    |        |             | 7/12/2022 7/19/2022 | 3022 7/29/2    | 7/29/2022 EPA 8081A                         | EPA 3546/Microwave                                              | Heptachlor epoxide       | 1024-57-3            | FALSE     | ND 17     | 7 76      |              |         | Ω.          |                               | RJG       | 2.89              | M-02, M-04 |
| SME Sediment<br>Monitoring    | MA2 S  | Solid 7/    | 7/12/2022 7/19/2022 | 2022 7/29/2022 | 2022 EPA 8081A                              | EPA 3546/Microwave                                              | Methoxychlor             | 72-43-5              | FALSE     | ND 18     | 8 76      | ug/kg dry    |         | 9           |                               | RJG       | 68.7              | M-02, M-04 |
| SME Sediment<br>Monitoring    | MA2    | Solid 7/    | 7/12/2022 7/19/2022 |                | 7/29/2022 EPA 8081A                         | EPA 3546/Microwave                                              | Tetrachloro-meta-xylene  | 877-09-8             | TRUE      | 64.8      |           | ug/kg dr)    |         | co.         | 122 53 138 23                 | RJG       | 68.7              |            |
| SME Sediment<br>Monitoring    | MA2 S  | Solid 7/    | 7/12/2022 7/19/2022 |                | 7/29/2022 EPA 8081A                         | EPA 3546/Microwave                                              | Toxaphene                | 8001-35-2            | FALSE     | ND 23     | 2300 2300 | 30 ug/kg dry | dry     | φ.          |                               | RJG       | 68.7              | M-02, M-04 |
| SME Sediment<br>Monitoring    | MA2 8  | Solid 7/    | 12/2022 7/19/2      | 3022 7/29/2    | 7/12/2022 7/19/2022 7/29/2022 EPA 8081A     | EPA 3546/Microwave                                              | trans-Nonachlor          | 39765-80-5           | FALSE     | ON<br>ON  | 9.2 76    | ug/kg dry    | dry     | co.         |                               | RJG       | 68.7              | M-02, M-04 |
| SME Sediment<br>Monitoring    |        |             | 12/2022 7/21/2      | 3022 7/28/2    | .022 EPA 8270C SI                           | 7/12/2022 7/21/2022 7/28/2022 EPA 8270C SIM EPA 3546/Microwave  | alene                    | 90-12-0              | FALSE     | N<br>Z    |           |              |         |             |                               | Ē         | 68.7              | M-02       |
| SME Sediment<br>Monitoring    |        |             | 12/2022 7/21/2      | 3022 7/28/2    | .022 EPA 8270C SI                           | 7/12/2022 7/21/2022 7/28/2022 EPA 8270C SIM EPA 3546/Microwave  | 9                        | 832-69-9             | FALSE     | ND 15     |           |              |         |             |                               | Ē         | 68.7              | M-02       |
| SME Sediment<br>Monitoring    |        |             | 12/2022 7/21/2      | 3022 7/28/2    | .022 EPA 8270C SI                           | 7/12/2022 7/21/2022 7/28/2022 EPA 8270C SIM EPA 3546/Microwave  | e.                       | 581-42-0             | FALSE     |           |           |              |         |             |                               | rmr       | 68.7              | M-02       |
| SME Sediment<br>Monitoring    | MA2    | 7/ Solid 7/ | 12/2022 7/21/2      | 3022 7/28/2    | 022 EPA 8270C SI                            | 7/12/2022 7/21/2022 7/28/2022 EPA 8270C SIM EPA 3546/Microwave  | 2-Fluorobiphenyl         | 321-60-8             | TRUE      | 4110      |           | ug/kg dry    | dry     |             | 5970 69 109 0.1               | - III     | 2.89              |            |
| SME Sediment<br>Monitoring    | MA2    | Solid 7/    | 12/2022 7/21/2      | 3022 7/28/2    | 022 EPA 8270C SI                            | 7/12/2022 7/21/2022 7/28/2022 EPA 8270C SIM EPA 3546/Microwave  | 2-Methylnaphthalene      | 91-57-6              | FALSE     | ND 8.1    | .1 120    |              | dry     |             |                               | ī         | 2.89              | M-02       |
| SME Sediment<br>Monitoring    | MA2 S  | Solid 7/    | 12/2022 7/21/2      | 2022 7/28/2    | .022 EPA 8270C Si                           | 7/12/2022 7/21/2022 7/28/2022 EPA 8270C SIM EPA 3546/Microwave  | Acenaphthene             | 83-32-9              | FALSE     | ND 6.5    | .5 120    | ) ug/kg dry  | dry Dry |             |                               | Ē         | 68.7              | M-02       |

| PROJECTIVUM                | SAMPLE | SAMP<br>MATRIX DATE | PREP                |                | ANA DATE METHOD NAME PREP NAME | NAME PR    |                                                                  | ANALYTE                     | CAS NUMBER            | SURROGATE | Result DI | ر<br>12  | UNITS     | S BASIS | IS DILUTIC | SPIKE UPPER LOWER DILUTION LEVEL RECOVERY CL CL | JPPER LOWER | ANALYST | PSOLIDS LNOTE | LNOTE ANOTE |
|----------------------------|--------|---------------------|---------------------|----------------|--------------------------------|------------|------------------------------------------------------------------|-----------------------------|-----------------------|-----------|-----------|----------|-----------|---------|------------|-------------------------------------------------|-------------|---------|---------------|-------------|
| SME Sediment<br>Monitoring | MA2    | Solid               | 2022 7/21/2         | 022 7/28/2     | 2022 EPA 8270                  | OC SIM EP, | crowave                                                          | ylene                       |                       | FALSE     | 9         |          |           |         |            | -                                               |             | ımı     | 68.7          | M-02        |
| SME Sediment<br>Monitoring |        |                     | 2022 7/21/2         | 3022 7/28/2    | 2022 EPA 8270                  | DC SIM EP. |                                                                  |                             | 120-12-7              | FALSE     |           |          |           |         |            | -                                               |             |         | 68.7          | M-02        |
| SME Sediment<br>Monitoring | MA2    | Solid 7/12/         | 2022 7/21/2         | 3022 7/28/2    | 2022 EPA 8270                  | OC SIM EP. | 7/12/2022 7/21/2022 7/28/2022 EPA 8270C SIM EPA 3546/Microwave   | Benzo (a) anthracene        | 56-55-3               | FALSE     | ND 43     | 3 120    | ug/kg dn  | dry Dry |            | -                                               |             | rmr     | 68.7          | M-02        |
| SME Sediment<br>Monitoring | MA2    | Solid 7/12/         | 7/12/2022 7/21/2022 | 1022 7/28/2    | 2022 EPA 8270                  | OC SIM EP. |                                                                  |                             | 50-32-8               | FALSE     | ND 60     | 0 120    |           | _       |            | -                                               |             | TMT.    | 68.7          | M-02        |
| SME Sediment<br>Monitoring | MA2    | Solid 7/12/         | 7/12/2022 7/21/2022 | 2022 7/28/2022 | 2022 EPA 8270                  | OC SIM EP. | EPA 8270C SIM EPA 3546/Microwave                                 | Benzo (b) fluoranthene      | 205-99-2              | FALSE     | ND 62     | 2 120    | ug/kg dry | dry Dry |            | -                                               |             | īmī     | 68.7          | M-02        |
| SME Sediment<br>Monitoring | MA2    | Solid 7/12/         | 7/12/2022 7/21/2022 |                | 7/28/2022 EPA 8270C SIM        |            | EPA 3546/Microwave                                               | Benzo (g,h,i) perylene      | 191-24-2              | FALSE     | ND 46     | 3 120    |           |         |            | -                                               |             | ım.     | 68.7          | M-02        |
| SME Sediment<br>Monitoring | MA2    |                     |                     |                | 7/28/2022 EPA 8270C SIM        |            |                                                                  | 0                           | 207-08-9              | FALSE     |           |          |           |         |            | -                                               |             | Į.      | 68.7          | M-02        |
| SME Sediment<br>Monitoring | MA2    |                     | 2022 7/21/2         | 3022 7/28/2    | 2022 EPA 8270                  | DC SIM EP. |                                                                  |                             | 218-01-9              | FALSE     |           |          |           |         |            | -                                               |             | ım.     | 68.7          | M-02        |
| SME Sediment<br>Monitoring | MA2    | Solid 7/12/         | 2022 7/21/2         | 3022 7/28/2    | 2022 EPA 8270                  | OC SIM EP, | 7/12/2022 7/21/2022 7/28/2022 EPA 8270C SIM EPA 3546/Microwave   | Dibenzo (a,h) anthracene    | 53-70-3               | FALSE     | ND 55     | 120      | ug/kg dry | dry     |            | -                                               |             | Ē       | 68.7          | M-02        |
| SME Sediment<br>Monitoring | MA2    |                     | 2022 7121/2         | 022 7/28/2     | 3022 EPA 8270                  | OC SIM EP, |                                                                  |                             | 206-44-0              | FALSE     |           |          |           |         |            | -                                               |             | Ē       | 68.7          | M-02        |
| SME Sediment<br>Monitoring | MA2    |                     | 2022 7/21/2         | 3022 7/28/2    | 2022 EPA 8270                  | DC SIM EP. |                                                                  | rene                        | 192-97-2              | FALSE     |           |          |           |         |            | -                                               |             | mr      | 68.7          | M-02        |
| SME Sediment<br>Monitoring | MA2    | Solid 7/12          | 2022 7121/2         | 3022 7/28/2    | 2022 EPA 8270                  | OC SIM EP, | 7/12/2022 7/21/2022 7/28/2022 EPA 8270C SIM   EPA 3546/Microwave | Biphenyl                    | 92-52-4               | FALSE     | ND 9.5    | 5 120    | ug/kg dry | dry     |            | -                                               |             | ı.      | 68.7          | M-02        |
| SME Sediment<br>Monitoring |        |                     | 2022 7/21/2         | 1022 7/28/2    | 2022 EPA 8270                  | OC SIM EP, |                                                                  |                             | 86-73-7               | FALSE     |           |          |           |         |            | -                                               |             | rmr     | 68.7          | M-02        |
| SME Sediment<br>Monitoring |        |                     | 2022 7/21/2         | 1022 7/28/2    | 2022 EPA 8270                  | OC SIM EP, |                                                                  | ,2,3-cd) pyrene             | 193-39-5              | FALSE     | 99<br>QN  |          |           |         |            | 1                                               |             | rmr     | 68.7          | M-02        |
| SME Sediment<br>Monitoring | MA2    | Solid 7/12/         | 2022 772172         | 3022 7/28/2    | 2022 EPA 8270                  | OC SIM EP, | 7/12/2022 7/21/2022 7/28/2022 EPA 82/20C SIM EPA 3546/Microwave  |                             | 91-20-3               | FALSE     | 0N<br>8.9 | 9 120    |           |         |            | -                                               |             | rmr     | 68.7          | M-02        |
| SME Sediment<br>Monitoring | MA2    | Solid 7/12/         | 7/12/2022 7/21/2022 | 3022 7/28/2    | 2022 EPA 8270                  | OC SIM EP, |                                                                  | Nitrobenzene-d5             | 4165-60-0             | TRUE      | 3980      |          | ua/ka dry | dry     |            | 1 5970 67 10                                    | 107 0.1     | Ē       | 2.89          |             |
| SME Sediment<br>Monitoring | MA2    |                     | 7/12/2022 7/21/2022 |                | 7/28/2022 EPA 8270C SIM        | DC SIM EP. |                                                                  |                             | 85-01-8               | FALSE     | ND 8:0    | 0 120    |           |         |            |                                                 |             | mr      | 68.7          | M-02        |
| SME Sediment<br>Monitoring | MA2    | Solid 7/12/         | 7/12/2022 7/21/2022 |                | 2022 EPA 8270                  | OC SIM EP. | 7/28/2022 EPA 8270C SIM EPA 3546/Microwave                       | Pyrene                      | 129-00-0              | FALSE     | ND 48     | 3 120    | ug/kg dry | dry     |            | -                                               |             | rmr     | 68.7          | M-02        |
| SME Sediment<br>Monitoring | MA2    | Solid 7/12          | 2022 712112         | 022 7/28/2     | 2022 EPA 8270                  | OC SIM EP. | 7/12/2022 7/21/2022 7/28/2022 EPA 8270C SIM EPA 3546/Microwave   | Terphenyl-d14               | 1718-51-0             | TRUE      | 4830      |          | ug/kg dry | dry     |            | 1 5970 81 1:                                    | 128 28      | Ē       | 68.7          |             |
| SME Sediment<br>Monitoring | MA2    |                     | 2022 7/21/2         | 3022 7/28/2    | 2022 EPA 8270                  | DC SIM EP. |                                                                  |                             | 198-55-0              | FALSE     | ND 15     | 5 120    |           |         |            |                                                 |             | mr      | 68.7          | M-02        |
| SME Sediment<br>Monitoring | MA2    | Solid 7/12/         | 7/12/2022 8/3/2022  |                | 8/3/2022 EPA 9060A             |            | EPA 9060M                                                        | Total Organic Carbon (TOC)  | ĄZ                    | FALSE     | 4660 42   | 42.0 200 | mg/kg     | g Wet   |            | -                                               |             | aic     | 68.7          |             |
| SME Sediment<br>Monitoring | MA2    | Solid 7/12/         | 7/12/2022 7/21/2022 |                | 8/3/2022 GC/MS/MS              |            | EPA 3546/Microwave                                               | 1,3-Dimethyl-2-nitrobenzene | 81-20-9               | TRUE      | 188       |          | ug/kg dry | dry     |            | 2 337 56 14                                     | 141 0.1     | EFC     | 68.7          |             |
| SME Sediment<br>Monitoring |        |                     | 7/12/2022 7/21/2022 |                | 8/3/2022 GC/MS/MS              |            |                                                                  |                             | 37680-73-2            | FALSE     | ND 81     | 1 81     | ug/kg dry |         |            | 2                                               |             | EFC     | 68.7          | M-02, M-04  |
| SME Sediment<br>Monitoring | MA2    | Solid 7/12/         | 7/12/2022 7/21/2022 |                | 8/3/2022 GC/MS/MS              |            | EPA 3546/Microwave                                               | PCB-105                     | 32598-14-4            | FALSE     | N<br>8    | 1 81     | ug/kg dry | dry     |            | 2                                               |             | FC      | 68.7          | M-02, M-04  |
| SME Sediment<br>Monitoring | MA2    | Solid 7/12/         | 7/12/2022 7/21/2022 |                | 8/3/2022 GC/MS/MS              |            | EPA 3546/Microwave                                               | PCB-110                     | 38380-03-9            | FALSE     | ND 81     | 18       | ug/kg dry | dry Dry |            | 2                                               |             | EFC     | 68.7          | M-02, M-04  |
| SME Sediment<br>Monitoring | MA2    | Solid 7/12/         | 7/12/2022 7/21/2022 |                | 8/3/2022 GC/MS/MS              |            |                                                                  | PCB-114                     | 74472-37-0            | FALSE     | ND 81     | 1 81     | ug/kg dry | dry Dry |            | 2                                               |             | EFC     | 68.7          | M-02, M-04  |
| SME Sediment<br>Monitoring | MA2    | Solid 7/12/         | 7/12/2022 7/21/2022 |                | 8/3/2022 GC/MS/MS              |            | EPA 3546/Microwave                                               | PCB-118                     | 31508-00-6            | FALSE     | N<br>8    | 1 81     | ug/kg dry | dry     |            | 2                                               |             | FC      | 68.7          | M-02, M-04  |
| SME Sediment<br>Monitoring | MA2    | Solid 7/12/         | 7/12/2022 7/21/2022 |                | 8/3/2022 GC/MS/MS              |            | EPA 3546/Microwave                                               | PCB-119                     | 56558-17-9            | FALSE     | ND 81     | 1 81     | ug/kg dry | dry Dry |            | 2                                               |             | EFC     | 68.7          | M-02, M-04  |
| SME Sediment<br>Monitoring | MA2    | Solid 7/12/         | 7/12/2022 7/21/2022 |                | 8/3/2022 GC/MS/MS              |            | EPA 3546/Microwave                                               |                             | 65510-44-3            | FALSE     | ND 81     | 1 81     | ug/kg dry |         |            | 2                                               |             | EFC     | 68.7          | M-02, M-04  |
| SME Sediment<br>Monitoring | MA2    | Solid 7/12/         | 7/12/2022 7/21/2022 |                | 8/3/2022 GC/MS/MS              |            | EPA 3546/Microwave                                               | PCB-126                     | 57465-28-8            | FALSE     | ND<br>8   | - 8      | ug/kg dry | dry     |            | 2                                               |             | EFC     | 68.7          | M-02, M-04  |
| SME Sediment<br>Monitoring | MA2    |                     | 7/12/2022 7/21/2022 |                | 8/3/2022 GC/MS/MS              |            |                                                                  | PCB-128                     | 38380-07-3            | FALSE     | ND<br>8   |          | ug/kg dry |         |            | 2                                               |             | EFC     | 68.7          | M-02, M-04  |
| SME Sediment<br>Monitoring | MA2    | Solid 7/12/         | 7/12/2022 7/21/2022 |                | 8/3/2022 GC/MS/MS              |            | EPA 3546/Microwave                                               | PCB-132/153                 | 38380-05-1/35065-27-1 | FALSE     | ND 81     | 1 81     | ug/kg dry | dry     |            | 2                                               |             | EFC     | 68.7          | M-02, M-04  |
| SME Sediment<br>Monitoring | MA2    | Solid 7/12/         | 7/12/2022 7/21/2022 |                | 8/3/2022 GC/MS/MS              |            | EPA 3546/Microwave                                               | PCB-138                     | 35065-28-2            | FALSE     | N<br>81   | 1 81     | ug/kg dry | dry     |            | 2                                               |             | EFC     | 68.7          | M-02, M-04  |
| SME Sediment<br>Monitoring | MA2    | Solid 7/12/         | 7/12/2022 7/21/2022 |                | 8/3/2022 GC/MS/MS              |            | EPA 3546/Microwave                                               | PCB-141                     | 52712-04-6            | FALSE     | ND 81     | 1 81     | ug/kg dn  | dry Dry |            | 2                                               |             | EFC     | 68.7          | M-02, M-04  |

|                            |       |             |                     |                        |                                |           |                       |           |           |      |           |                | SPIKE UPPER                | LOWER |                |                     |
|----------------------------|-------|-------------|---------------------|------------------------|--------------------------------|-----------|-----------------------|-----------|-----------|------|-----------|----------------|----------------------------|-------|----------------|---------------------|
| PROJECTNUM                 | NAME  | MATRIX DA   | DATE DATE           |                        | ANA DATE METHOD NAME PREP NAME | ANALYTE   | CAS NUMBER            | SURROGATE | Result DL | 귙    | UNITS     | BASIS          | DILUTION LEVEL RECOVERY CL | 귱     | ANALYST PSOLID | PSOLIDS LNOTE ANOTE |
| SME Sediment<br>Monitoring | MA2 8 | Solid 7/    | 7/12/2022 7/21/2022 | 022 8/3/2022 GC/MS/MS  | EPA 3546/Microwave             | PCB-149   | 38380-04-0            | FALSE     | ₩<br>81   | 81   | ug/kg dry | ρί             | 2                          | EFC   | 68.7           | M-02, M-04          |
| SME Sediment<br>Monitoring | MA2 8 | Solid 7/    | 7/12/2022 7/21/2022 | 022 8/3/2022 GC/MS/MS  | IS EPA 3546/Microwave          | PCB-151   | 52663-63-5            | FALSE     | ND 81     | 8    | ug/kg dry | Dry            | 2                          | EFC   | 68.7           | M-02, M-04          |
| SME Sediment<br>Monitoring | MA2 8 | Solid 7/    | 7/12/2022 7/21/2022 | :022 8/3/2022 GC/MS/MS | EPA 3546/Microwave             | PCB-156   | 38380-08-4            | FALSE     | ND 81     | 18   | ug/kg dry | Dry            | 2                          | EFC   | 68.7           | M-02, M-04          |
| SME Sediment<br>Monitoring | MA2   | Nolid 7/    | 7/12/2022 7/21/2022 | 2022 8/3/2022 GC/MS/MS | EPA 3546/Microwave             | PCB-157   | 69782-90-7            | FALSE     | 8<br>8    | 18   | ug/kg dry | È              | 2                          | EFC   | 68.7           | M-02, M-04          |
| ment                       |       |             |                     | 8/3/2022               | EPA 3546/Microwave             | PCB-158   | 74472-42-7            | FALSE     |           | 28   | ug/kg dry | À              | 2                          | EFC   |                | M-02, M-04          |
| nent                       |       |             |                     |                        | EPA 3546/Microwave             | PCB-167   | 52663-72-6            | FALSE     |           | 18   | ug/kg dry | À              | 2                          | EFC   |                | M-02, M-04          |
| SME Sediment<br>Monitorina |       |             |                     |                        | EPA 3546/Microwave             | PCB-168   | 59291-65-5            | FALSE     |           | 26   | ua/ka dry | Š              | 2                          | EFC   |                | M-02. M-04          |
|                            |       |             | 7/12/2022 7/21/2022 |                        | EPA 3546/Microwave             | PCB-169   | 32774-16-6            | FALSE     |           | 18   | ug/kg dry | , jo           | 2                          | EFC   |                | M-02, M-04          |
| SME Sediment<br>Monitoring | MA2 8 | 7/ Solid 7/ | 7/12/2022 7/21/2022 | 022 8/3/2022 GC/MS/MS  | EPA 3546/Microwave             | PCB-170   | 35065-30-6            | FALSE     | ND<br>81  | 18   | ug/kg dry | Δ              | 2                          | EFC   | 68.7           | M-02, M-04          |
|                            |       |             |                     |                        | EPA 3546/Microwave             | PCB-174   | 38411-25-5            | FALSE     | 5<br>18   | 26   | ua/ka dry | Š              | 2                          | EFC   |                | M-02. M-04          |
| nent                       |       |             | 7/12/2022 7/21/2022 |                        | EPA 3546/Microwave             | PCB-177   | 52663-70-4            | FALSE     |           | 18   | ug/kg dry | - A            | 2                          | EFC   |                | M-02, M-04          |
| SME Sediment<br>Monitoring | MA2   | Nolid 7/    | 7/12/2022 7/21/2022 | 022 8/3/2022 GC/MS/MS  | EPA 3546/Microwave             | PCB-18    | 37680-65-2            | FALSE     | 8<br>8    | 18   | ug/kg dry | à              | 2                          | EFC   |                | M-02, M-04          |
| nent                       |       |             | 7/12/2022 7/21/2022 |                        | EPA 3546/Microwave             | PCB-180   | 35065-29-3            | FALSE     |           | 18   | ug/kg dry | À              | 2                          | EFC   |                | M-02, M-04          |
| nent                       |       |             |                     |                        | EPA 3546/Microwave             | PCB-183   | 52663-69-1            | FALSE     |           | 28   | ug/kg dry | À              | 2                          | EFC   |                | M-02, M-04          |
| SME Sediment<br>Monitoring | MA2   | Nolid 7/    | 7/12/2022 7/21/2022 | 022 8/3/2022 GC/MS/MS  | EPA 3546/Microwave             | PCB-187   | 52663-68-0            | FALSE     | 8<br>8    | 18   | ug/kg dry | à              | 5                          | EFC   | 68.7           | M-02, M-04          |
| SME Sediment<br>Monitoring |       | No Solid    |                     |                        | EPA 3546/Microwave             | PCB-189   | 39635-31-9            | FALSE     | B 8       | 26   | ua/ka drv | Š              | 2                          | EFC   |                | M-02. M-04          |
| SME Sediment<br>Monitoring |       |             |                     |                        | EPA 3546/Microwave             | PCB-194   | 35694-08-7            | FALSE     |           | 28   | ug/kg dry | è              | 2                          | FF    |                | M-02, M-04          |
| SME Sediment<br>Monitoring |       |             |                     |                        | EPA 3546/Microwave             | PCB-195   | 52663-78-2            | FALSE     |           | 26   | ua/ka dry | Š              | 2                          | EFC   |                | M-02. M-04          |
| SME Sediment<br>Monitoring |       |             | 2/12/2022 7/2/2022  |                        | EPA 3546/Microwave             | PCB-199   | 52663-75-9            | FALSE     |           | 26   | ua/ka drv | è              | 2                          | EFC   |                | M-02. M-04          |
| SME Sediment<br>Monitoring |       |             | 7/12/2022 7/21/2022 |                        | EPA 3546/Microwave             | PCB-201   | 40186-71-8            | FALSE     |           | . 28 | ug/kg dry | Š              | 2                          | F     |                | M-02, M-04          |
| ment                       |       |             |                     |                        | EPA 3546/Microwave             | PCB-203   | 52663-76-0            | FALSE     |           | 20   | ua/ka drv | Š              | 2                          | EFC   |                | M-02. M-04          |
| neut                       |       |             |                     |                        | EPA 3546/Microwave             | PCB-206   | 40186-72-9            | FALSE     |           | . 18 | ug/kg dry | Ď.             | 2                          | FF    |                | M-02, M-04          |
| ment                       |       |             | 7/12/2022 7/21/2022 |                        | EPA 3546/Microwave             | PCB-209   | 2051-24-3             | FALSE     |           | 18   | ug/kg dry | D <sub>y</sub> | 2                          | EFC   |                | M-02, M-04          |
| nent                       |       |             |                     |                        | EPA 3546/Microwave             | PCB-28/31 | 7012-37-5/16606-02-3  | FALSE     |           | 81   | ug/kg dry | Ď.             | 2                          | EFC   |                | M-02, M-04          |
| nent                       |       |             |                     |                        | EPA 3546/Microwave             | PCB-3     | 2051-62-9             | FALSE     |           | 128  | ug/kg dry | À              | 2                          | EFC   |                | M-02, M-04          |
| ment                       |       |             | 7/12/2022 7/21/2022 | 8/3/2022               | EPA 3546/Microwave             | PCB-33    | 38444-86-9            | FALSE     | ND<br>81  | 81   | ug/kg dry | D.             | 2                          | EFC   |                | M-02, M-04          |
| nent                       |       | 7/ Solid 7/ |                     | 8/3/2022               | EPA 3546/Microwave             | PCB-37    | 38444-90-5            | FALSE     | ND<br>81  | 81   | ug/kg dry | Ď.             | 2                          | EFC   |                | M-02, M-04          |
| SME Sediment<br>Monitoring | MA2   | 7/ Solid 7/ | 7/12/2022 7/21/2022 | 022 8/3/2022 GC/MS/MS  | IS EPA 3546/Microwave          | PCB-44    | 41464-39-5            | FALSE     | 8<br>8    | 18   | ug/kg dry | À              | 2                          | EFC   | 68.7           | M-02, M-04          |
| SME Sediment<br>Monitoring |       |             |                     |                        | EPA 3546/Microwave             | PCB-49    | 41464-40-8            | FALSE     |           | 18   | ug/kg dry | À              | 2                          | EFC   |                | M-04, M-02          |
| nent                       |       |             | 7/12/2022 7/21/2022 |                        | EPA 3546/Microwave             | PCB-52    | 35693-99-3            | FALSE     |           | 28   | ug/kg dry | À              | 2                          | EFC   |                | M-02, M-04          |
| ment                       |       |             | 7/12/2022 7/21/2022 |                        | EPA 3546/Microwave             | PCB-56/60 | 41464-40-8/33025-41-1 | FALSE     |           | 26   | ug/kg dry | - À            | 2                          | EFC   |                | M-02, M-04          |
| nent                       |       | 7/ Solid 7/ | 7/12/2022 7/21/2022 | 1022 8/3/2022 GC/MS/MS | EPA 3546/Microwave             | PCB-66    | 32598-10-0            | FALSE     | ND<br>81  | 81   | ug/kg dry | ρί             | 2                          | EFC   |                | M-02, M-04          |
| SME Sediment<br>Monitoring | MA2 8 | Solid 7/    | 7/12/2022 7/21/2022 | 022 8/3/2022 GC/MS/MS  | EPA 3546/Microwave             | PCB-70    | 32598-11-1            | FALSE     | ND 81     | 81   | ug/kg dry | Dry            | 2                          | EFC   | 68.7           | M-02, M-04          |
| SME Sediment<br>Monitoring | MA2 8 | Solid 7/    | 7/12/2022 7/21/2022 | :022 8/3/2022 GC/MS/MS | EPA 3546/Microwave             | PCB-74    | 32690-93-0            | FALSE     | ND 81     | 81   | ug/kg dry | Dry            | 2                          | EFC   |                | M-02, M-04          |

| PROJECTNUM                 | SAMPLE | SAMP<br>MATRIX DATE | PREP                |                                         | DATE MET             | ANA DATE METHOD NAME PREP NAME |                    | ANALYTE             | CAS NUMBER | SURROGATE | Result   | PL R       | STINU           | S BASIS | SPIKE<br>3N LEVEL | SPIKE UPPER LO | LOWER<br>CL ANAL | ANALYST PSOLIDS | PSOLIDS LNOTE ANOTE | OTE        |
|----------------------------|--------|---------------------|---------------------|-----------------------------------------|----------------------|--------------------------------|--------------------|---------------------|------------|-----------|----------|------------|-----------------|---------|-------------------|----------------|------------------|-----------------|---------------------|------------|
| SME Sediment<br>Monitoring | MA2    | Solid 7/12/2        | 7/12/2022 7/21/2022 |                                         | 8/3/2022 GC/MS/MS    |                                | EPA 3546/Microwave | PCB-77              | 32598-13-3 | FALSE     | ®<br>Q   | 81 81      | ug/kg dry       | dry Dry | 2                 |                | EFC              | 68.7            | ,0-W                | M-02, M-04 |
| SME Sediment<br>Monitoring |        |                     | 112/2022 7/21/      |                                         | 8/3/2022 GC/MS/MS    |                                |                    | PCB-8               | 34883-43-7 | FALSE     |          |            |                 |         | 2                 |                | EFC              |                 | :0-W                | M-02, M-04 |
| SME Sediment<br>Monitoring | MA2    | Solid 7/12/2        | 7/12/2022 7/21/2022 |                                         | 8/3/2022 GC/MS/MS    |                                | EPA 3546/Microwave | PCB-81              | 70362-50-4 | FALSE     | ®<br>₽   | 81 81      | ug/kg dn        | dry Dry | 2                 |                | EFC              | 68.7            | О-W                 | M-04, M-02 |
| SME Sediment<br>Monitoring | MA2    | Solid 7/12/2        | 7/12/2022 7/21/2022 |                                         | 8/3/2022 GC/MS/MS    |                                | EPA 3546/Microwave | PCB-87              | 38380-02-8 | FALSE     | ON<br>ON | 81 81      |                 |         | 2                 |                | EFC              |                 | :0-W                | M-02, M-04 |
| SME Sediment<br>Monitoring |        | Solid 7/12/2        | 112/2022 7/21/      |                                         | 8/3/2022 GC/MS/MS    |                                |                    | PCB-95              | 38379-99-6 | FALSE     |          |            |                 |         | 2                 |                | EFC              |                 | :0-W                | M-02, M-04 |
| SME Sediment<br>Monitoring | MA2    | Solid 7/12/2        | 7/12/2022 7/21/     |                                         | 8/3/2022 GC/MS/MS    |                                |                    | PCB-97              | 41464-51-1 | FALSE     | 9        | 81         |                 |         | 2                 |                | FFC              |                 | M-0;                | M-02, M-04 |
| SME Sediment<br>Monitoring |        |                     |                     |                                         | 8/3/2022 GC/MS/MS    |                                |                    | PCB-99              | 38380-01-7 | FALSE     |          |            |                 |         | 2                 |                | EFC              |                 | Ž,                  | M-02. M-04 |
| SME Sediment<br>Monitoring |        |                     |                     |                                         | 8/3/2022 GC/MS/MS    |                                |                    | Triphenyl phosphate | 115-86-6   | TRUE      |          |            |                 |         | 2 337             | 108 179 15     |                  |                 |                     |            |
| SME Sediment<br>Monitorina |        |                     | 7/12/2022 7/18/2022 | 2022 7/19                               | 7/19/2022 EPA 160.3M |                                |                    | % Solids            | V          | FALSE     | 9,       | .0         | 0.100 % bv      | apt     | _                 |                | o <del>l</del> o |                 |                     |            |
| SME Sediment<br>Monitoring |        |                     | 2022 7/15           | 7/12/2022 7/15/2022 7/19/2022 EPA 6020  | 72022 EPA            |                                |                    | Cadmium, Total      | 7440-43-9  | FALSE     |          | 0.093 0.31 |                 | d dry   | -                 |                | Z A              |                 |                     |            |
| SME Sediment<br>Monitoring |        |                     | 7/12/2022 7/15/2022 | 2022 7/22/                              | 7/22/2022 EPA 6020   |                                |                    | Copper, Total       | 7440-50-8  | FALSE     |          |            |                 |         | -                 |                | ALN              |                 |                     |            |
| SME Sediment<br>Monitoring |        |                     | 7/12/2022 7/15/2022 | 2022 7/19                               | 7/19/2022 EPA 6020   |                                |                    | Lead, Total         | 7439-92-1  | FALSE     |          |            |                 |         | _                 |                | ALN              |                 |                     |            |
| SME Sediment<br>Monitoring |        |                     | 2022 7/15           | 7/12/2022 7/15/2022 7/22/2022 EPA 6020  | /2022 EPA            |                                |                    | Zinc, Total         | 7440-66-6  | FALSE     |          |            |                 |         | -                 |                | ALN              |                 |                     |            |
| SME Sediment<br>Monitoring |        |                     | 7/12/2022 7/19/2022 | 2022 7/20/                              | 7/20/2022 EPA 7471A  | ⋖                              |                    | Mercury, Total      | 7439-97-6  | FALSE     |          | 88         | 0.015 mg/kg dry |         | -                 |                | Υ<br>W           |                 |                     |            |
| SME Sediment<br>Monitoring | E3     | Solid 7/12/2        | 7/12/2022 7/19/2022 |                                         | 7/29/2022 EPA 8081A  |                                | ficrowave          | 2,4'-DDD            | 53-19-0    | FALSE     | 8        | 15 80      |                 |         | 2                 |                | RJG              | 64.6            | M-0;                | M-02, M-04 |
| SME Sediment<br>Monitoring | E3     | Solid 7/12/2        | 7/12/2022 7/19      | 7/19/2022 7/29/                         | 7/29/2022 EPA 8081A  |                                | EPA 3546/Microwave | 2,4'-DDE            | 3424-82-6  | FALSE     | 9        | 13 80      | ug/kg dry       | dry     | ı,                |                | RJG              | 64.6            | M-0;                | M-02, M-04 |
| SME Sediment<br>Monitoring |        |                     | 7/12/2022 7/19      | 7/19/2022 7/29/                         | 7/29/2022 EPA 8081A  |                                |                    | 2,4'-DDT            | 789-02-6   | FALSE     | 8        |            |                 |         | 9                 |                | RJG              |                 | M-0;                | M-02, M-04 |
| SME Sediment<br>Monitoring | E3     | Solid 7/12/2        | 7/12/2022 7/19/     | 7/19/2022 7/29/                         | 7/29/2022 EPA 8081A  |                                | EPA 3546/Microwave | 4,4'-DDD            | 72-54-8    | FALSE     | 9        | 17 80      | ug/kg dry       | dry Dry | 2                 |                | RJG              | 64.6            | Ŷ<br>W              | M-04, M-02 |
| SME Sediment<br>Monitoring | E3     | Solid 7/12/2        | 7/12/2022 7/19/2022 |                                         | 7/29/2022 EPA 8081A  |                                | EPA 3546/Microwave | 4,4 '-DDE           | 72-55-9    | FALSE     | 9        | 18 80      |                 | dry     | ro.               |                | RJG              | 64.6            | M-0;                | M-02, M-04 |
| SME Sediment<br>Monitoring |        |                     | 7/12/2022 7/19/2022 | 2022 7/29/                              | 7/29/2022 EPA 8081A  |                                |                    | 4,4'-DDT            | 50-29-3    | FALSE     |          | 18 80      |                 |         | 2                 |                | RJG              |                 | :0-W                | M-02, M-04 |
| SME Sediment<br>Monitoring | E3     | Solid 7/12/2        | 7/12/2022 7/19/2022 |                                         | 7/29/2022 EPA 8081A  |                                | EPA 3546/Microwave | Aldrin              | 309-00-2   | FALSE     | 9        | 17 80      | ug/kg dry       | dry     | 2                 |                | RJG              | 64.6            | M-0;                | M-02, M-04 |
| SME Sediment<br>Monitoring | E3     | Solid 7/12/2        | 91/1 2/2022 1/19    | 7/19/2022 7/29/                         | 7/29/2022 EPA 8081A  |                                | EPA 3546/Microwave | alpha-BHC           | 319-84-6   | FALSE     | 9        | 15 80      | ug/kg dry       | dry     | 2                 |                | RJG              | 64.6            | .O-M                | M-02, M-04 |
| SME Sediment<br>Monitoring |        | Solid 7/12/2        | 2022 7/19           | 7/12/2022 7/19/2022 7/29/2022 EPA 8081A | V2022 EPA            |                                | EPA 3546/Microwave | alpha-Chlordane     | 5103-71-9  | FALSE     | δ<br>2   | 20 80      | ug/kg dry       | dry     | 2                 |                | RJG              | 64.6            | M-0:                | M-02, M-04 |
| SME Sediment<br>Monitoring | E3     | Solid 7/12/2        | 2022 7/19           | 7/12/2022 7/19/2022 7/29/2022 EPA 8081A | /2022 EPA            |                                | EPA 3546/Microwave | beta-BHC            | 319-85-7   | FALSE     | <br>₽    | 23 80      | ug/kg dry       | dry     | 20                |                | RJG              | 64.6            | .O-M                | M-02, M-04 |
| SME Sediment<br>Monitoring |        |                     | 2022 7/19,          | 7/12/2022 7/19/2022 7/29/2022 EPA 8081A | /2022 EPA            |                                |                    | (tech)              | 57-74-9    | FALSE     | 9        | 350 16     | 1600 ug/kg dn   |         | 20                |                | RJG              |                 | :0-W                | M-02, M-04 |
| SME Sediment<br>Monitoring |        |                     | 7/12/2022 7/19/2022 | 2022 7/29/                              | 7/29/2022 EPA 8081A  |                                |                    | lyn                 | 2051-24-3  | TRUE      | "0       |            |                 |         | 5 128             | 69 125 21      |                  |                 |                     |            |
| SME Sediment<br>Monitoring | E3     | Solid 7/12/2        | 7/12/2022 7/19      | 7/19/2022 7/29/                         | 7/29/2022 EPA 8081A  |                                | EPA 3546/Microwave | delta-BHC           | 319-86-8   | FALSE     | 2<br>2   | 25 80      | ug/kg dry       | dry     | 20                |                | RJG              | 64.6            | :0-W                | M-02, M-04 |
| SME Sediment<br>Monitoring |        | Solid 7/12/2        | 7/12/2022 7/19/     | 7/19/2022 7/29/                         | 7/29/2022 EPA 8081A  |                                |                    | Dieldrin            | 60-57-1    | FALSE     | 9        |            |                 |         | 20                |                | RJG              |                 | W-0,                | M-02, M-04 |
| SME Sediment<br>Monitoring |        |                     |                     |                                         | 7/29/2022 EPA 8081A  |                                |                    | Endosulfan I        | 959-98-8   | FALSE     |          |            |                 |         | ro.               |                | RJG              |                 | :0-W                | M-02, M-04 |
| SME Sediment<br>Monitoring | E3     | Solid 7/12/2        | 7/12/2022 7/19/2022 |                                         | 7/29/2022 EPA 8081A  |                                | EPA 3546/Microwave | Endosulfan II       | 33213-65-9 | FALSE     | 9        | 16 80      |                 | dry     | 25                |                | RJG              | 64.6            | :0-W                | M-02, M-04 |
| SME Sediment<br>Monitoring |        |                     | 2022 7/19,          |                                         | /2022 EPA            |                                |                    | Endosulfan sulfate  | 1031-07-8  | FALSE     |          | 20 80      |                 |         | 2                 |                | RJG              |                 | M-0;                | M-02, M-04 |
| SME Sediment<br>Monitoring |        |                     | 2022 7/19           | 7/12/2022 7/19/2022 7/29/2022 EPA 8081A | 42022 EPA            |                                | -                  | Endrin              | 72-20-8    | FALSE     |          |            |                 |         | 22                |                | RJG              |                 | :0-W                | M-02, M-04 |
| SME Sediment<br>Monitoring | E3     | Solid 7/12/2        | 7/12/2022 7/19/2022 | 2022 7/29/                              | 7/29/2022 EPA 8081A  |                                | EPA 3546/Microwave | Endrin aldehyde     | 7421-93-4  | FALSE     | 5        | 18 80      |                 | dry     | 2                 |                | RJG              | 64.6            | Ŷ<br>W              | M-04, M-02 |
| SME Sediment<br>Monitoring | E3     | Solid 7/12/2        | 7/12/2022 7/19/     | 7/19/2022 7/29/                         | 7/29/2022 EPA 8081A  |                                | EPA 3546/Microwave | gamma-BHC (Lindane) | 58-89-9    | FALSE     | ON<br>L  | 15 80      | ug/kg dr        | dry Dry | 22                |                | RJG              | 64.6            | М-0;                | M-02, M-04 |

| PROJECTNUM                 | SAMPLE<br>NAME MATE | SAMP<br>MATRIX DATE | PREP                | ANA DATE    | ANA DATE METHOD NAME PREP NAME              | E PREP NAME                                                     | ANALYTE                    | CAS NUMBER | SURROGATE Result |         | PL 70    | STINU         |               | BASIS DILUTI | SPIK<br>ION LEVE | SPIKE UPPER DILUTION LEVEL RECOVERY CL | UPPER LOWER<br>CL CL |     | ANALYST PSOLIDS | PSOLIDS LNOTE ANOTE |
|----------------------------|---------------------|---------------------|---------------------|-------------|---------------------------------------------|-----------------------------------------------------------------|----------------------------|------------|------------------|---------|----------|---------------|---------------|--------------|------------------|----------------------------------------|----------------------|-----|-----------------|---------------------|
| SME Sediment<br>Monitoring | E3 Solid            | 7/12/202            | 22 7/19/202:        | 2 7/29/202: | 7/12/2022 7/19/2022 7/29/2022 EPA 8081A     | EPA 3546/Microwave                                              | Methoxychlor               | 72-43-5    | FALSE            | N<br>D  | 19 80    |               |               |              | 20               |                                        |                      | RJG | 64.6            | M-02, M-04          |
| SME Sediment<br>Monitoring |                     |                     | 22 7/21/202:        | 2 7/28/202; | 7/21/2022 7/28/2022 EPA 8270C SIM           |                                                                 | 1-Methylphenanthrene       | 832-69-9   | FALSE            |         |          |               |               |              | -                |                                        |                      | ımı | 64.6            | M-02                |
| SME Sediment<br>Monitoring | E3 Solid            |                     | 7/12/2022 7/21/2022 |             | 2 EPA 8270C SIN                             | 7/28/2022 EPA 8270C SIM EPA 3546/Microwave                      | 2,6-Dimethylnaphthalene    | 581-42-0   | FALSE            | δ.      | 10 11    | 110 ug/kg dn  | g dry Dry     |              | -                |                                        |                      | Ē   | 64.6            | M-02                |
| SME Sediment<br>Monitoring | E3 Solid            |                     | 7/12/2022 7/21/2022 |             | 2 EPA 8270C SIN                             | 7/28/2022 EPA 8270C SIM EPA 3546/Microwave                      |                            | 321-60-8   | TRUE             | 3380    |          | ug/kg dr      |               |              | 1 5370           | 63                                     | 109 0.1              | ımı | 64.6            |                     |
| SME Sediment<br>Monitoring | E3 Solid            |                     | 22 7/21/2022        |             | 7/28/2022 EPA 8270C SIM                     | M EPA3546/Microwave                                             | lene                       | 91-57-6    | FALSE            |         | 7.3 11   | 110 ug/kg dry |               |              | -                |                                        |                      | ımı | 64.6            | M-02                |
| SME Sediment<br>Monitoring | E3 Solid            | 7/12/2022           |                     |             | 7/28/2022 EPA 8270C SIM                     | M EPA3546/Microwave                                             | Benzo (a) pyrene           | 50-32-8    | FALSE            | 2       |          |               |               |              | -                |                                        |                      | Ē   | 64.6            | M-02                |
| SME Sediment<br>Monitoring |                     |                     |                     |             | 7/28/2022 EPA 8270C SIM                     |                                                                 | thene                      | 205-99-2   | FALSE            |         |          |               |               |              | -                |                                        |                      | Ē   | 64.6            | M-02                |
| SME Sediment<br>Monitoring |                     |                     |                     |             | 7/28/2022 EPA 8270C SIM                     |                                                                 |                            | 191-24-2   | FALSE            |         |          |               |               | _            | -                |                                        |                      | Ē   | 64.6            | M-02                |
| SME Sediment<br>Monitorina |                     |                     | 22 7/21/202;        | 2 7/28/202; | 2 EPA 8270C SIN                             |                                                                 |                            | 207-08-9   | FALSE            |         |          |               |               |              | -                |                                        |                      | Ē   | 64.6            | M-02                |
| SME Sediment<br>Monitorina |                     |                     | 22 7/21/202;        | 2 7/28/202; | 2 EPA 8270C SIN                             | 7/12/2022 7/21/2022 7/28/2022 EPA 8270C SIM EPA 3546/Microwave  | e                          | 193-39-5   | FALSE            |         |          |               |               |              | -                |                                        |                      | Ē   | 64.6            | M-02                |
| SME Sediment<br>Monitoring |                     |                     | 22 7/21/202:        | 2 7/28/202; | 7/12/2022 7/21/2022 T/28/2022 EPA 8270C SIM | M EPA3546/Microwave                                             | Naphthalene                | 91-20-3    | FALSE            |         |          |               |               |              | -                |                                        |                      | rmr | 64.6            | M-02                |
| SME Sediment<br>Monitoring |                     |                     | 22 7/21/202:        | 2 7/28/202; | 2 EPA 8270C SIN                             | 7/12/2022 7/2/1/2022 7/28/2022 EPA 8270C SIM EPA 3546/Microwave | Benzo (e) pyrene           | 192-97-2   | FALSE            |         |          |               |               |              | -                |                                        |                      | Ē   | 64.6            | M-02                |
| SME Sediment<br>Monitoring |                     |                     | 22 7/21/202:        | 2 7/28/202; | 2 EPA 8270C SIN                             | 7/12/2022 7/21/2022 7/28/2022 EPA 8270C SIM EPA 3546/Microwave  |                            | 92-52-4    | FALSE            |         |          |               |               |              | -                |                                        |                      | Ē   | 64.6            | M-02                |
| SME Sediment<br>Monitoring |                     |                     | 7/12/2022 7/21/2022 | 2 7/28/202; | 2 EPA 8270C SIN                             | 7/28/2022 EPA 8270C SIM EPA 3546/Microwave                      |                            | 198-55-0   | FALSE            |         |          |               |               |              | -                |                                        |                      | ı   | 64.6            | M-02                |
| SME Sediment<br>Monitoring |                     | 7/12/2022           | 22 8/3/2022         |             | 8/3/2022 EPA 9060A                          | EPA 9060M                                                       | Total Organic Carbon (TOC) | NA         | FALSE            | 893 4   | 42.0 200 |               |               |              | -                |                                        |                      | ajc | 64.6            |                     |
| SME Sediment<br>Monitoring | E3 Solid            | 7/12/2022           | 22 7/21/2022        |             | 8/3/2022 GC/MS/MS                           | EPA 3546/Microwave                                              | _                          | 81-20-9    | TRUE             | 211     |          | ua/ka dry     | ≩             |              | 1 345            | 61                                     | 141 0.1              | EFC | 64.6            |                     |
| SME Sediment<br>Monitoring |                     |                     |                     |             | 8/3/2022 GC/MS/MS                           | EPA 3546/Microwave                                              |                            | 37680-73-2 | FALSE            |         | 41 41    |               |               |              | -                |                                        |                      | EFC | 64.6            | M-02                |
| SME Sediment<br>Monitoring | E3 Solid            | 7/12/2022           | 22 7/21/2022        |             | 8/3/2022 GC/MS/MS                           | EPA 3546/Microwave                                              | PCB-119                    | 56558-17-9 | FALSE            | ON<br>4 | 41 41    |               |               |              | -                |                                        |                      | EFC | 64.6            | M-02                |
| SME Sediment<br>Monitoring | E3 Solid            |                     | 7/12/2022 7/21/2022 |             | 8/3/2022 GC/MS/MS                           | EPA 3546/Microwave                                              | PCB-123                    | 65510-44-3 | FALSE            | 5       | 41 41    |               | a dry         |              |                  |                                        |                      | EFC | 64.6            | M-02                |
| SME Sediment<br>Monitoring |                     |                     | 7/12/2022 7/21/2022 |             | 8/3/2022 GC/MS/MS                           | EPA 3546/Microwave                                              | PCB-126                    | 57465-28-8 | FALSE            |         |          |               |               |              | -                |                                        |                      | EFC | 64.6            | M-02                |
| SME Sediment<br>Monitoring | E3 Solid            |                     | 7/12/2022 7/21/2022 |             | 8/3/2022 GC/MS/MS                           | EPA 3546/Microwave                                              | PCB-128                    | 38380-07-3 | FALSE            | Ö<br>4  | 41 41    | l ug/kg dry   | g dry Dry     |              | -                |                                        |                      | EFC | 64.6            | M-02                |
| SME Sediment<br>Monitoring | E3 Solid            | 7/12/2022           | 22 7/21/2022        |             | 8/3/2022 GC/MS/MS                           | EPA 3546/Microwave                                              | PCB-151                    | 52663-63-5 | FALSE            | ON<br>4 | 41 41    |               |               |              | -                |                                        |                      | EFC | 64.6            | M-02                |
| SME Sediment<br>Monitoring |                     |                     | 7/12/2022 7/21/2022 |             | 8/3/2022 GC/MS/MS                           | EPA 3546/Microwave                                              | PCB-156                    | 38380-08-4 | FALSE            |         | 14       |               |               |              | -                |                                        |                      | EFC | 64.6            | M-02                |
| SME Sediment<br>Monitoring | E3 Solid            |                     | 7/12/2022 7/21/2022 |             | 8/3/2022 GC/MS/MS                           | EPA 3546/Microwave                                              | PCB-157                    | 69782-90-7 | FALSE            | δ<br>4  | 41 41    | l ug/kg dry   | g dry Dry     |              | -                |                                        |                      | EFC | 64.6            | M-02                |
| SME Sediment<br>Monitoring |                     |                     | 7/12/2022 7/21/2022 |             | 8/3/2022 GC/MS/MS                           | EPA 3546/Microwave                                              | PCB-158                    | 74472-42-7 | FALSE            | 5       | 41 41    |               |               |              | -                |                                        |                      | EFC | 64.6            | M-02                |
| SME Sediment<br>Monitoring |                     |                     | 22 7/21/2022        |             | 8/3/2022 GC/MS/MS                           | EPA 3546/Microwave                                              | PCB-174                    | 38411-25-5 | FALSE            | ON<br>4 | 41 41    |               |               |              | -                |                                        |                      | EFC | 64.6            | M-02                |
| SME Sediment<br>Monitoring | E3 Solid            | 7/12/2022           | 22 7/21/2022        |             | 8/3/2022 GC/MS/MS                           | EPA 3546/Microwave                                              | PCB-177                    | 52663-70-4 | FALSE            | ON<br>4 | 41 41    |               | ug/kg dry Dry |              | -                |                                        |                      | EFC | 64.6            | M-02                |
| SME Sediment<br>Monitoring | E3 Solid            | 7/12/2022           |                     |             | 8/3/2022 GC/MS/MS                           | EPA 3546/Microwave                                              | PCB-18                     | 37680-65-2 | FALSE            | 5       | 41 41    |               |               |              | -                |                                        |                      | EFC | 64.6            | M-02                |
| SME Sediment<br>Monitoring |                     |                     |                     |             | 8/3/2022 GC/MS/MS                           | EPA 3546/Microwave                                              | PCB-180                    | 35065-29-3 | FALSE            |         |          |               |               |              | -                |                                        |                      | EFC | 64.6            | M-02                |
| SME Sediment<br>Monitoring | E3 Solid            |                     | 7/12/2022 7/21/2022 |             | 7/28/2022 EPA 8270C SIM                     | M EPA3546/Microwave                                             | Nitrobenzene-d5            | 4165-60-0  | TRUE             | 3300    |          | ng/k          | ug/kg dry Dry |              | 1 5370           | 61                                     | 107 0.1              | Ē   | 64.6            |                     |
| SME Sediment<br>Monitoring |                     |                     | 22 7/21/202;        | 2 7/28/202; | 2 EPA 8270C SIN                             |                                                                 | Phenanthrene               | 85-01-8    | FALSE            |         | 7.2 11   | 110 ua/ka dry |               |              | -                |                                        |                      | Ē   | 64.6            | M-02                |
| SME Sediment<br>Monitoring |                     |                     | 22 7/21/202;        | 2 7/28/202; | 2 EPA 8270C SIN                             | 7/12/2022 7/21/2022 7/28/2022 EPA 82/70C SIM EPA 3546/Microwave | Pyrene                     | 129-00-0   | FALSE            |         |          |               |               |              | -                |                                        |                      | Ē   | 64.6            | M-02                |
| SME Sediment<br>Monitoring | E3 Solid            | 7/12/2022           | 22 7/21/2022        |             | 7/28/2022 EPA 8270C SIM                     | M EPA 3546/Microwave                                            | Terphenyl-d14              | 1718-51-0  | TRUE             | 3970    |          | ug/kg dry     | g dny Dry     |              | 1 5370           | 74                                     | 128 28               | ī   | 64.6            |                     |
| SME Sediment<br>Monitoring | E3 Solid            | 7/12/2022           | 22 7/21/2022        |             | 8/3/2022 GC/MS/MS                           | EPA 3546/Microwave                                              | PCB-105                    | 32598-14-4 | FALSE            | ON<br>4 | 41 41    | l ug/kg dn    | g dry Dry     |              | -                |                                        |                      | EFC | 64.6            | M-02                |

| SME Sediment Monitoring SME Sediment Monitoring Monitoring SME Sediment SME Sediment SME Sediment Monitoring SME Sediment Monitoring SME Sediment Monitoring Monitoring Monitoring | ũ    |          |                     |                             |                        |                     |                       |       | _       |              |          | _ |         | _      |       | 64 6<br>M 03 |      |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|----------|---------------------|-----------------------------|------------------------|---------------------|-----------------------|-------|---------|--------------|----------|---|---------|--------|-------|--------------|------|
| SME Sediment Monttoring Monttoring                                                 |      | Solid 7, | 7/12/2022 7/21/2022 | /2022 8/3/2022 GC/MS/MS     | /MS EPA 3546/Microwave | PCB-110             | 38380-03-9            | FALSE | ND 41   | 41 ug/kg dry | y<br>Dry | - |         |        | EFC   | 0.4.0        | M-02 |
| SME Sediment<br>Monitoring<br>SME Sediment<br>Monitoring<br>SME Sediment<br>Monitoring<br>SME Sediment<br>Monitoring                                                               | E3   | Solid 7  | 7/12/2022 7/21/2022 | /2022 8/3/2022 GC/MS/MS     | /MS EPA 3546/Microwave | PCB-114             | 74472-37-0            | FALSE | ND 41   | 41 ug/kg dry |          |   |         |        | EFC   | 64.6         | M-02 |
| SME Sediment Monitoring SME Sediment Monitoring SME Sediment Monitoring                                                                                                            |      |          | 17/12/2022 7/21/    |                             |                        |                     | 31508-00-6            | FALSE | ND 41   |              |          |   |         |        | EFC   | 64.6         | M-02 |
| SME Sediment<br>Monitoring<br>SME Sediment<br>Monitoring                                                                                                                           | E3   | Solid 7  | 112/2022 7/21/      | 7/21/2022 8/3/2022 GC/MS/MS | /MS EPA 3546/Microwave | PCB-132/153         | 38380-05-1/35065-27-1 | FALSE | ND 41   | 41 ug/kg dry | y<br>Dry | - |         |        | EFC   | 64.6         | M-02 |
| SME Sediment<br>Monitoring                                                                                                                                                         |      | Solid 7, | 112/2022 7/21/      | 7/21/2022 8/3/2022 GC/MS/MS | /MS EPA3546/Microwave  | PCB-138             | 35065-28-2            | FALSE | ND 41   | 41 ug/kg dry | y        | - |         |        | EFC   | 64.6         | M-02 |
|                                                                                                                                                                                    |      |          |                     | 8/3/2022                    |                        | PCB-141             | 52712-04-6            | FALSE |         |              |          |   |         |        | EFC   | 64.6         | M-02 |
| SME Sediment<br>Monitoring                                                                                                                                                         |      |          |                     | 8/3/2022                    |                        | PCB-149             | 38380-04-0            | FALSE |         |              |          |   |         |        | EFC   | 64.6         | M-02 |
| SME Sediment<br>Monitoring                                                                                                                                                         |      |          |                     |                             |                        | PCB-167             | 52663-72-6            | FALSE | ND 41   |              |          | - |         |        | EFC   | 64.6         | M-02 |
| SME Sediment<br>Monitoring                                                                                                                                                         |      |          |                     |                             |                        |                     | 59291-65-5            | FAISF |         |              |          |   |         |        | C     | 94.6         | W-02 |
| SME Sediment<br>Monitoring                                                                                                                                                         |      |          | 112/2022 7/21/      |                             |                        |                     | 32774-16-6            | FALSE |         |              |          |   |         |        | EFC 0 | 64.6         | M-02 |
| SME Sediment<br>Monitoring                                                                                                                                                         |      |          |                     | 8/3/2022                    |                        | PCB-170             | 35065-30-6            | FALSE |         |              |          |   |         |        | SE    | 97.0         | M-02 |
| SME Sediment<br>Monitoring                                                                                                                                                         |      |          |                     |                             |                        | PCB-183             | 52663-69-1            | FALSE |         |              |          |   |         |        | EFC . | 94.6         | M-02 |
| SME Sediment<br>Monitoring                                                                                                                                                         |      |          | 7/12/2022 7/21/2022 |                             |                        |                     | 52663-68-0            | FALSE |         |              |          |   |         |        | EFC   | 64.6         | M-02 |
| SME Sediment<br>Monitoring                                                                                                                                                         |      |          | 112/2022 7/21/      |                             |                        |                     | 39635-31-9            | FALSE |         |              |          |   |         |        | EFC   | 64.6         | M-02 |
| SME Sediment<br>Monitoring                                                                                                                                                         |      |          |                     | 8/3/2022                    |                        |                     | 35694-08-7            | FALSE |         |              |          |   |         |        | EFC   | 64.6         | M-02 |
| SME Sediment<br>Monitorina                                                                                                                                                         |      |          |                     | 8/3/2022                    |                        | PCB-206             | 40186-72-9            | FALSE |         |              |          |   |         |        | EFC.  | 64.6         | M-02 |
| SME Sediment<br>Monitorina                                                                                                                                                         |      |          |                     |                             |                        | PCB-209             | 2051-24-3             | FALSE |         |              |          |   |         |        | C     | 6 29         | M-02 |
| SME Sediment<br>Monitoring                                                                                                                                                         |      |          |                     |                             |                        |                     | 7012-37-5/16606-02-3  | FALSE |         |              |          |   |         |        | EFC o | 64.6         | M-02 |
| SME Sediment<br>Monitoring                                                                                                                                                         |      |          | 172/2 22022         |                             |                        |                     | 2051-62-9             | FALSE |         |              |          |   |         |        | EFC   | 64.6         | M-02 |
| SME Sediment<br>Monitoring                                                                                                                                                         |      |          |                     |                             |                        | PCB-52              | 35693-99-3            | FALSE |         |              |          |   |         |        | EFC   | 64.6         | M-02 |
| SME Sediment<br>Monitoring                                                                                                                                                         |      |          | 112/2022 7/21/      |                             |                        | PCB-56/60           | 41464-40-8/33025-41-1 | FALSE | ND 41   |              |          |   |         |        | EFC   | 64.6         | M-02 |
| SME Sediment<br>Monitoring                                                                                                                                                         | 83   | Solid 7, | 1712/2022 7/21/     | 7/21/2022 8/3/2022 GC/MS/MS | /MS EPA 3546/Microwave | PCB-66              | 32598-10-0            | FALSE | ND 41   | 41 ug/kg dry | ٧        |   |         |        | EFC   | 64.6         | M-02 |
| SME Sediment<br>Monitoring                                                                                                                                                         | E3   | Solid 7  | 112/2022 7/21/      | 7/21/2022 8/3/2022 GC/MS/MS |                        | PCB-70              | 32598-11-1            | FALSE | ND 41   | 41 ug/kg dry | y<br>Dry | - |         |        | EFC   | 64.6         | M-02 |
| SME Sediment<br>Monitoring                                                                                                                                                         |      | Solid 7, | 1712/2022 7/21/     | 7/21/2022 8/3/2022 GC/MS/MS |                        | PCB-87              | 38380-02-8            | FALSE | ND 41   | 41 ug/kg dry |          |   |         |        | EFC   | 64.6         | M-02 |
| SME Sediment<br>Monitoring                                                                                                                                                         | 83   | Solid 7, | 112/2022 7/21/      | 7/21/2022 8/3/2022 GC/MS/MS | /MS EPA 3546/Microwave | PCB-95              | 38379-99-6            | FALSE | ND 41   | 41 ug/kg dry | y Dry    | - |         |        | EFC   | 64.6         | M-02 |
| SME Sediment<br>Monitoring                                                                                                                                                         | E3   | Solid 7. | 112/2022 7/21/      | 7/21/2022 8/3/2022 GC/MS/MS | /MS EPA 3546/Microwave | PCB-97              | 41464-51-1            | FALSE | ND 41   | 41 ug/kg dry | y Dry    |   |         |        | EFC   | 64.6         | M-02 |
| SME Sediment<br>Monitoring                                                                                                                                                         | E3   | Solid 7, | 7/12/2022 7/21/2022 | /2022 8/3/2022 GC/MS/MS     | /MS EPA 3546/Microwave | PCB-99              | 38380-01-7            | FALSE | ND 41   | 41 ug/kg dry | y Dry    | - |         |        | EFC   | 64.6         | M-02 |
| SME Sediment<br>Monitoring                                                                                                                                                         | E3   | Solid 7, | 1/2/2022 7/21/      | 7/21/2022 8/3/2022 GC/MS/MS | /MS EPA 3546/Microwave | PCB-195             | 52663-78-2            | FALSE | ND 41   | 41 ug/kg dry | y Dry    |   |         |        | EFC   | 64.6         | M-02 |
| SME Sediment<br>Monitoring                                                                                                                                                         | E3   | Solid 7  | 172/2022 7/21/      | 7/21/2022 8/3/2022 GC/MS/MS | /MS EPA 3546/Microwave | PCB-199             | 52663-75-9            | FALSE | ND 41   | 41 ug/kg dry | y Dry    | - |         |        | EFC   | 64.6         | M-02 |
| SME Sediment<br>Monitoring                                                                                                                                                         | E3   | Solid 7, | 112/2022 7/21/      | 7/21/2022 8/3/2022 GC/MS/MS | /MS EPA 3546/Microwave | PCB-201             | 40186-71-8            | FALSE | ND 41   | 41 ug/kg dry | y Dry    | - |         |        | EFC   | 64.6         | M-02 |
| SME Sediment<br>Monitoring                                                                                                                                                         | 83   | Solid 7, | 1712/2022 7/21/     | 7/21/2022 8/3/2022 GC/MS/MS | /MS EPA 3546/Microwave | PCB-203             | 52663-76-0            | FALSE | ND 41   | 41 ug/kg dry | y Dry    | - |         |        | EFC   | 64.6         | M-02 |
| SME Sediment<br>Monitoring                                                                                                                                                         | E3   | Solid 7. | 7/12/2022 7/21/2022 | /2022 8/3/2022 GC/MS/MS     | /MS EPA 3546/Microwave | PCB-33              | 38444-86-9            | FALSE | ND 41   | 41 ug/kg dry | y<br>Dny | 1 |         |        | EFC   | 64.6         | M-02 |
| SME Sediment<br>Monitoring                                                                                                                                                         |      | Solid 7  | 112/2022 7/21/      | 7/21/2022 8/3/2022 GC/MS/MS | /MS EPA 3546/Microwave | PCB-37              | 38444-90-5            | FALSE | UD<br>4 | 41 ug/kg dry |          | - |         |        | EFC   | 64.6         | M-02 |
| SME Sediment<br>Monitoring                                                                                                                                                         |      | Solid 7  |                     | 7/21/2022 8/3/2022 GC/MS/MS |                        | PCB-44              | 41464-39-5            | FALSE | ND 41   |              |          | - |         |        | EFC   | 64.6         | M-02 |
| SME Sediment<br>Monitoring                                                                                                                                                         | E3   | Solid 7. | 112/2022 7/21/      | 7/21/2022 8/3/2022 GC/MS/MS | /MS EPA 3546/Microwave | PCB-49              | 41464-40-8            | FALSE | ND 41   | 41 ug/kg dry | y Dry    |   |         |        | EFC   | 64.6         | M-02 |
| SME Sediment<br>Monitoring                                                                                                                                                         | E3   | Solid 7, | 112/2022 7/21/      | 7/21/2022 8/3/2022 GC/MS/MS | /MS EPA 3546/Microwave | PCB-74              | 32690-93-0            | FALSE | ND 41   | 41 ug/kg dry | y Dry    |   |         |        | EFC   | 64.6         | M-02 |
| SME Sediment<br>Monitoring                                                                                                                                                         | E3 ( | Solid 7, | 112/2022 7/21/      | 7/21/2022 8/3/2022 GC/MS/MS | /MS EPA 3546/Microwave | PCB-77              | 32598-13-3            | FALSE | ND 41   | 41 ug/kg dry | y Dry    | - |         |        | EFC   | 64.6         | M-02 |
| SME Sediment<br>Monitoring                                                                                                                                                         |      | Solid 7  | 1712/2022 7/21/     | 7/21/2022 8/3/2022 GC/MS/MS | /MS EPA 3546/Microwave | PCB-8               | 34883-43-7            | FALSE | ND 41   | 41 ug/kg dry |          |   |         |        | EFC   | 64.6         | M-02 |
| SME Sediment<br>Monitoring                                                                                                                                                         |      | Solid 7  | 7/12/2022 7/21/2022 | /2022 8/3/2022 GC/MS/MS     | /MS EPA 3546/Microwave |                     | 70362-50-4            | FALSE | ND 41   | 41 ug/kg dry |          |   |         |        | EFC   | 64.6         | M-02 |
| SME Sediment<br>Monitoring                                                                                                                                                         | E3   | Solid 7  | 112/2022 7/21,      | /2022 8/3/2022 GC/MS/MS     | /MS EPA3546/Microwave  | Triphenyl phosphate | 115-86-6              | TRUE  | 410     | ua/ka di     | v Drv    |   | 345 119 | 179 15 | EFC   | 64.6         |      |

#### APPENDIX C – SEDIMENT TOXICITY TEST DATA AND STATISTICAL SUMMARIES

#### Marine Amphipod

Eohaustorius estuarius

#### **Marine Sediment Bioassay**

#### **Organism Survival**

Project: Camp Pendleton - Santa Margarita Estuary

Test Species: E. estuarius

Sample ID: Site Sediments

Start Date/Time: 7/15/2022 1720

Test No.: NIWC-2022-150 -- 153

End Date/Time: 7/25/2022 1070

| Sample ID   | Replicate we | Initial No. | No.<br>Recovered | Technician<br>Initials |
|-------------|--------------|-------------|------------------|------------------------|
| 100         | Α            | 20          | 20               | Me                     |
| Yaquina Bay | B 2          | 20          | 10<br>10         | Ml                     |
| Sediment    | C 3          | 20          | 10               | me                     |
|             | D 4          | 20          | 10               | me                     |
|             | E 5          | 20          | 20               | me                     |
|             | Αų           | 20          | 20               | me                     |
| MAI         | в 7          | 20          | 10               | me                     |
| "Outlet"    | C &          | 20          | 20               | me                     |
|             | D 9          | 20          | 20               | me                     |
|             | E [0         | 20          | 20               | me                     |
|             | A            | 20          | 20               | Me                     |
| MA2         | BIL          | 20          | 18               | We                     |
| "Midpoint"  | C 13         | 20          | 10               | me                     |
| I Maponit   | D 14         | 20          | 20               | me                     |
|             | \ E 15       | 20          | 20               | me                     |
|             | A 16         | 20          | 10               | me                     |
| E3 -        | B 17         | 20          | 20               | Me                     |
| "Inlet"     | 8 18         | 20          | 20               | me                     |
|             | DIA          | 20          | 10               | nie                    |
|             | E XD         | 20          | 10               | me                     |

QC Check:

Final Review: M 8/15/12

#### Camp Pendleton - Santa Margarita Estuary Amphipod Sediment Tests Test Initiation Date: 7/15/2022

| Sample ID            | Replicate        | Random #                 |
|----------------------|------------------|--------------------------|
| Yaquina Bay Sediment | A<br>B<br>C<br>D | 19<br>13<br>2<br>5<br>16 |
| MA1<br>"Outlet"      | A<br>B<br>C<br>D | 1<br>6<br>14<br>17<br>11 |
| MA2<br>"Midpoint"    | A<br>B<br>C<br>D | 7<br>10<br>3<br>12<br>4  |
| E3<br>"Inlet"        | A<br>B<br>C<br>D | 15<br>18<br>20<br>8<br>9 |

## 10-Day Marine Sediment Bioassay Static Conditions

Project ID: Camp Pendleton - Santa Margarita Estuary

Sample ID: YB Control

Test No.: NIWC-2022-150

Test Species: E. estuarius

Start Date/Time: 7/15/2022

1020 End Date/Time: 7/25/2022

|                          | 1         |       | ,     | Ť    |       |      | T     | T    | Τ.    | 7    | T -    |
|--------------------------|-----------|-------|-------|------|-------|------|-------|------|-------|------|--------|
| ıts                      |           |       |       |      |       |      |       |      |       |      |        |
| Comments                 |           |       |       |      |       |      |       | 4    |       |      |        |
|                          |           |       |       |      |       |      |       | · ·  | -     |      |        |
| Technician<br>Initials   | 72/       | 士名    | MC    | \$2  | N.    | 3    | tha   | 之    | 12    | 3    | M      |
| pH<br>(units)            | 7.98      | 8.01  | 80.00 | 7.98 | 7.99  | 7.98 | 7.95  | 7.96 | 8-01  | 8.04 | 8.0 le |
| Dissolved (Oxygen (mg/L) | 10.2 m3/2 | 10.1  | 9.90  | 9.8  | 4.101 | 9.7  | 9.7   |      | 6.101 | 9.7  | 4.8    |
| Temperature<br>(°C)      | 8. H      | 14.9  | 14.5  | 14.7 | 9.7   | 14.5 | 14.6° | 0,7  | 74.6  | M1   | 14.5   |
| Salinity<br>(ppt)        | 33.0      | 33. 1 | 33.2  | 33.7 | 23.7  | 33.1 | 33. ( | 33.L | 78.1  | 33.6 | 23.4   |
| Test Day                 | 0         | -     | 2     | က    | 4     | ıc   | ဖ     | 7    | 8     | 6    | 10     |

QC Check:

Final Review: LLC 8/15/22

## 10-Day Marine Sediment Bioassay Static Conditions

Project ID: Camp Pendleton - Santa Margarita Estuary

Sample ID: MA1 - "Outlet"

Test No.: NIWC-2022-151

Test Species: E. estuarius

Start Date/Time: 7/15/2022

1220

End Date/Time: 7/25/2022

|                            | T         |      |       |      |        | T    | T     |       | T    | T -  |      |
|----------------------------|-----------|------|-------|------|--------|------|-------|-------|------|------|------|
|                            |           |      |       |      |        |      |       |       |      |      | × ,  |
| Comments                   |           |      |       |      |        |      |       |       | 4    |      |      |
|                            |           |      |       |      |        |      |       |       |      |      |      |
| Technician<br>Initials     | 7         | #2   | ンガ    | * N  | J<br>Z | 3    | 72    | 3     | 2    | 亨    | M    |
| pH<br>(units)              | 8.02      | 8.00 | 71.8  | 8.11 | 8.13   | 80.8 | 8.10  | 8.11  | 8.11 | 8.23 | 8.13 |
| Dissolved<br>Oxygen (mg/L) | 10.3 mg/L | 10.1 | 10.20 | 6.3  | 10.4   | 1.01 | 1.00. | 0.001 | 9.00 | 10.0 | 9.8  |
| Temperature<br>(°C)        | 14.5      | 14.9 | 9.41  | 64.3 | 7.61   | 14.5 | भि    | 14. Y | 一    | 140  | ナ・ト  |
| Salinity<br>(ppt)          | 33,2      | 23.1 | 33.4  | 73.3 | 33.2   | 25.3 | 33.2  | 33, L | 33.1 | 33.4 | 33.7 |
| Test Day                   | 0         | 7    | 2     | က    | 4      | 3    | ဖ     | 7     | 80   | တ    | 10   |

Final Review: MR 8/15/22

QC Check:

10-Day Marine Sediment Bioassay Static Conditions

Project ID: Camp Pendleton - Santa Margarita Estuary

Sample ID: MA2 - "Midpoint"

Test No.: NIWC-2022-152

Test Species: E. estuarius

End Date/Time: 7/25/2022

| Start Date/Time: 7/1 | ate/Time: | 7/15/2022 |
|----------------------|-----------|-----------|
|                      |           |           |

| Comments                   |           |      |      |                |      |      |      |      |                                         |          |       |    |
|----------------------------|-----------|------|------|----------------|------|------|------|------|-----------------------------------------|----------|-------|----|
| Technician<br>Initials     | Z         | The  | 77   | <del>*</del> 2 | W C  | 1 3  | き    | M    | ======================================= | TAZ      | 3     |    |
| pH<br>(units)              | 8.03      | 9.01 | 8.09 | 806            | 8.08 | 8.61 | 8.00 | 801  | 8.06                                    | 8.26     | 21.80 |    |
| Dissolved<br>Oxygen (mg/L) | 1/6" 1.01 | 0 0  | 10.1 | 0.00           | 1.01 | 9.6  | 9.7  | 800  | 20                                      | 9.10     | 8.6   |    |
| Temperature<br>(°C)        | 14.7      | 6.61 | 14.3 | 14.5           | t.41 | 14:5 | (45  | 14.5 | 17.5                                    | 250      | 14.5  |    |
| Salinity<br>(ppt)          | 33.2      | 33.2 | 88.3 | 33.1           | 28.7 | 7.22 | 32.1 | 33.2 | 38.6                                    | 33.3     | 23.7  | T. |
| Test Day                   | 0         | 1    | 2    | က              | 4    | 2    | 9    | 7    | œ                                       | <b>o</b> | 10    |    |

QC Check:

K: \

Final Review:

110 9/1/1/2

10-Day Marine Sediment Bioassay Static Conditions

Project ID: Camp Pendleton - Santa Margarita Estuary

Test Species: E. estuarius

1220 Start Date/Time: 7/15/2022

**End Date/Time:** 7/25/2022

DZ01

Test No.: NIWC-2022-153 Sample ID: E3 - "Inlet"

|   | Comments                   |           |       |        |       |       |       |      |      |      |      |          |
|---|----------------------------|-----------|-------|--------|-------|-------|-------|------|------|------|------|----------|
|   | Com                        |           |       |        |       |       |       |      |      |      |      |          |
|   | Technician<br>Initials     | Z         | 12    | ر<br>ک | 13    | ) 1   | 737   | ±2   | 24   | \$   | とする  | M        |
|   | pH<br>(units)              | 8.05      | 90.8  | 21.8   | 6.10  | 80.8  | 8.06  | 8.04 | 8.04 | 8.10 | 918  | 8,17     |
|   | Dissolved<br>Oxygen (mg/L) | 1/8m 2.01 | 10.1  | 10.1   | 5-101 | 1.201 | 8.101 | 0.91 | 99   | 9.8  | 16.0 | 1        |
|   | Temperature<br>(°C)        | 14.7      | 14, 8 | 14.3   | 14.4  | p. pl | 9.11  | 14.5 | 14.4 | 14,5 | W.5  | 7.<br>E. |
|   | Salinity<br>(ppt)          | 33,0      | 33,1  | 33.0   | 33,0  | 1.22  | 85.3  | 33 ( | 33,0 | 23.1 | 33.1 | 33.2     |
| 9 | Test Day                   | 0         | -     | 2      | က     | 4     | 2     | 9    | 7    | 80   | 6    | 10       |

QC Check:

Final Review:

**Mediterranean Mussel** 

Mytilus galloprovincialis

Project: Camp Pendleton - Santa Margarita Estuary

Test Species: M. galloprovincialis

Sample ID: Sediment Samples

Start Date: 7/15/2022

**Test No.:** NIWC-2022-146 -- 149

**End Date:** 7/17/2022

| Random # | Number Normal | Number Abnormal | Technician Initials |
|----------|---------------|-----------------|---------------------|
| 1        | 96            | 5               | NC                  |
| 2        | 99            | 4               | MC                  |
| 3        | 108           | 5               | MC                  |
| 4        | 96            | 3               | mc                  |
| 5        | 112           | Le              | me                  |
| 6        | 97            | 7               | wic                 |
| 7        | 108           | 3               | ne.                 |
| 8        | 10.3          | 4               | me                  |
| 9        | 89<br>95      | 3               | me                  |
| 10       | 95            | 3               | me                  |
| 11       | 88            | 4               | me                  |
| 12       | 89            | 3               | me                  |
| 13       | 108           | 2               | me                  |
| 14       | 91            | 2               | me                  |
| 15       | 83            | 4               | me                  |
| 16       | 97            | 4               | ne                  |
| 17       | 102           | 3               | me                  |
| 18       | 96            | 6               | me                  |
| 19       | 97            | 3               | me                  |
| 20       | 92            | .3              | me                  |

| QC Check: | A | Final Review: | M | 8/15/2028 |
|-----------|---|---------------|---|-----------|
|-----------|---|---------------|---|-----------|

#### Camp Pendleton - Santa Margarita Estuary Bivalve Development Test Test Initiation Date: 7/15/2022

Mr.

| Sample ID           | Replicate             | Random #                 |
|---------------------|-----------------------|--------------------------|
| Screen Tube Control | A<br>B<br>C<br>D      | 19<br>13<br>2<br>5<br>16 |
| MA1<br>"Outlet"     | A<br>B<br>C<br>D      | 1<br>6<br>14<br>17<br>11 |
| MA2<br>"Midpoint"   | A<br>B<br>C<br>D<br>E | 7<br>10<br>3<br>12<br>4  |
| E3<br>"Inlet"       | A<br>B<br>C<br>D      | 15<br>18<br>20<br>8<br>9 |

# Marine Chronic Bioassay

Project: Camp Pendleton - Santa Margarita Estuary

Sample ID: Site Sediments

Test No.: NIWC-2022-146 -- 149

Test Species: M.galloprovincialis

Water Quality Measurements

Start Date/Time: 7/15/2022

= 3

End Date/Time: 7/17/2022

| Sample ID                    |          | Salinity<br>(ppt) |          | Ţ        | Temperature (°C)                             | Ţ.       | Diss<br>(m | Dissolved Oxygen (mg/L / % sat.) | ygen<br>at.) |                      | pH<br>(pH units) |      |        |
|------------------------------|----------|-------------------|----------|----------|----------------------------------------------|----------|------------|----------------------------------|--------------|----------------------|------------------|------|--------|
|                              | 0        | 24                | 48       | 0        | 24                                           | 48       | 0          | 24                               | 48           | 0                    | 24               | 48   | 223000 |
| Water Only Control 31 8 31 9 | 218      | 319               | 23.4     | ر<br>ا   |                                              |          | 8.9        | 9                                | 5.01         | [                    | 0                |      |        |
|                              | 020      |                   | <b>)</b> | 7.5      | 15.2 0.51                                    | <b>サ</b> | 776        | 1.86 276                         | 1029         | 1,029 1.10 0.01 8.05 | 10.0             | 8.05 |        |
| MA1                          | 7.0 33.1 | 33.1              | 7 22     | <i>5</i> | 7                                            | 7        | 9.9        | 9.9 9.8 10.4                     |              | 2                    | (                |      | _      |
|                              | 2.76     |                   |          | 15.7     | <u>,                                    </u> | <u>.</u> | 102.0      | 102.0 101.8 103.2                |              | 01.8 10.8 00.8       | 8,0              | 0) % | -      |
| MA2                          | 22 1 22  | 77                | 77       | 77.      | , J.                                         | Į.       | 101        | 10.1                             | フ 2          | 10,1 10,1 10,4       | 6                |      |        |
|                              | 7        | - /               | 5        | 0.01     | 0.51                                         | 6-1      | 102.1      | 102.3                            | 8.601        | 0.06                 | 5,5              | 81.8 |        |
| E3                           | 22 1 33. | 33.1              | 4<br>0   | 6 71     | 14.9 150                                     | 7        | 10,1       | 10.1                             | 10.4         | 10.4 6 11 801        | 200              | 0    |        |
|                              | 10.1     |                   | Ś        | 7        | 2                                            |          | 101.9      | 101.9 102.1 103.3                | 6.601        | 11.0                 | ),<br>),         | 0:0  |        |

| 0         |  |
|-----------|--|
|           |  |
|           |  |
| 5         |  |
| itia      |  |
| 드         |  |
| <u>ia</u> |  |
| nici      |  |
| 당         |  |
| Tec       |  |
|           |  |

48

24 2 WQ Readings:

Z Z Dilutions made by:

Meter # (DO, pH): いつ

field collected

13

|     | •  |   |
|-----|----|---|
| - ( | u  | מ |
| j   | Ľ  | ž |
| 7   | 7  | = |
| -   | ١. | - |
| -   | ۵  | 3 |
| -   | ř  |   |
| - 7 | ×  | - |
|     | =  | = |
| - 5 |    | = |
| 1   | -  | - |
| -   | ^  | • |
| `   | ٠, | • |
| c   |    | ) |

0 hrs: 24 hrs: 48 hrs:

A A

QC Check:

Final Review:

NIWC Pacific Bioassay Lab, 53475 Strothe Rd, Bldg 111 Rm 116, San Diego, CA 92152

#### Embryo-Larval Development Test – SPAWNING CHECKLIST & CALCULATIONS

Batch ID: OSIC7211G

Analyst: GR

Animal Source: field collected

Spawn/Test Date: 7/15/2022

Date Received: 5/16/22

| Task                                | Time                          |
|-------------------------------------|-------------------------------|
| Spawning Inducement Initiated       | 0930 1 Temp from 15°C to 24°C |
| Spawning Begins                     | 1030 307 19                   |
| Females/Males Isolated in Incubator | 1100                          |
| Fertilization Initiated             | 1110                          |
| Fertilzation Terminated/eggs rinsed | 1120                          |
| Embryo Counts                       | 1220                          |
| Embryo addition to vials            | 1245                          |

| Embryo addition to vials                                                           |
|------------------------------------------------------------------------------------|
|                                                                                    |
| Embryo Counts:                                                                     |
| Embryo Stock #1: 17 , 17 Mean = 17 / 20 uL * 1000 uL/mL = 850 cells/mL             |
| Embryo Stock #2: 13, 17, 19 Mean = 19.7 / 20 uL * 1000 uL/mL = 983 cells/mL        |
| Embryo Stock #3: 25, 52, 24 Mean = 27 / 10 uL * 1000 uL/mL = 1350 cells/mL         |
|                                                                                    |
| Adjust selected embryo stock to 2000 embryos/ml. Confirm density:                  |
| Selected Stock: Moon - / ** 1000 1/ 1                                              |
| Selected Stock :, Mean =/ uL * 1000 uL/mL = cells/mL                               |
| Add 100 μl of 2000 embryo/ml stock to obtain 20 embryos/ml in test vials.          |
| 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 -                                            |
| Time Zero Counts (if applicable):                                                  |
| Rep A $14$ , Rep B $120$ , Rep C $13$ , Rep D( $04$ , Rep E $101$ ; Mean = $111.6$ |
| Noton                                                                              |
| Notes:                                                                             |
| * back down to 1500 @ 1030.                                                        |
| Made 3 hatches of the 14 eggs combined w/ solution of                              |
| all 3 29                                                                           |
|                                                                                    |
| 1240 - All batches @ 2-cell stage                                                  |
|                                                                                    |
| Add 200 yel of #1 for 170 oull/me                                                  |
|                                                                                    |
| QC Check: Final Review:                                                            |
|                                                                                    |



#### **Total Ammonia Analysis**

| Project ID: _<br>Test Type: _    | Camp Pendleton<br>Mg. SWI / Ech | Santa Margarita Es              | tuang                              |
|----------------------------------|---------------------------------|---------------------------------|------------------------------------|
| DI Blank: _<br>Seawater Blank: _ | 0.0/0.0                         | Analyst name:<br>Analysis Date: | <u>Pebecca</u> L.<br>D7/15/22 1000 |
|                                  | Samula                          |                                 | N x 1.22                           |

Mg. Dev

| Hereard Control is not a support of the support of |             |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | 4. 1 1 1 1 1    | N x 1.22          | _         |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-----------------|-------------------|-----------|
| Sample ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Sample Date | Test Day | pH<br>(units)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Salinity (ppt) | Nitrogen (mg/L) | Ammonia<br>(mg/L) |           |
| Blank Spike (10 mg/L NH <sub>3</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | NA          | NA       | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                | 9.5             | 1159              |           |
| m A I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7/15/2022   | Ø.       | A STATE OF THE STA |                | 0.4             | 0,488             |           |
| MA2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |             | B        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | 0.3             | 0.366             |           |
| £3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             | 8        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | 0.0             | 0.00              |           |
| control tube                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 7/15/2022   | - \$     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | 0.0             | 0.00              |           |
| Ma-dev                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7 17 2022   | 2        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                 |                   |           |
| · WC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1           |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | 0.5             | 0.61              | 1.0       |
| MAI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3 2 2       |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | 1.0             | 1.22              |           |
| MA2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |             |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                 | 1-098             | 0.732     |
| €3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | 0.9             | 1.098             |           |
| MAZ<br>E3<br>Spille                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1           |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | 9.1             | 11.10             |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                 |                   |           |
| 43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7/15/2022   | . 6      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | 0.1             | 0:122             |           |
| MAI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1           | Ø        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | 0-2             | 0.244             |           |
| MAZ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |             | 6        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | 0.1             | 0.11-7            | . 2       |
| もろ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             | 0        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | 0.1             | 0.122             |           |
| Spille                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <b>   </b>  | 8        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | 9.1             | 11.10             | <u>~</u>  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | et Men          | ×11.1.            |           |
| yB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7/25/22     | iO       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | 0.8             | 0.488             | uc        |
| MAI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1 1         |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | 0.8             | 0.732             | 0.976     |
| MAZ<br>E3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -           |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | 0.6             | 0.732             | 04<br>(1) |
| 65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | 0.8             | 0976              |           |
| Spille                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | 9.2             | 11.274            |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1           |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                 |                   |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                 |                   |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                 |                   |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                 |                   |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                 |                   |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                 |                   |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                 |                   |           |

QC Check: 1985

Final Review: Ul 8/15/22



### Marine Amphipod Eohaustorius estuarius

**Report Date:** 05 Jan-23 08:10 (p 1 of 1)

Test Code/ID: NIWC-2022-145 / 18-4272-3584

**NIWC Pacific Bioassay Laboratory** 

Age:

#### Eohaustorius 10-d Survival and Reburial Sediment Test

| Batch ID:    | 14-7167-8100    | Test Type: | Survival (96h)          | Analyst: | Molly Colvin        |
|--------------|-----------------|------------|-------------------------|----------|---------------------|
| Start Date:  | 15 Jul-22 12:30 | Protocol:  | EPA/600/R-94/025 (1994) | Diluent: | Laboratory Seawater |
| Ending Date: | 19 Jul-22 10:30 | Species:   | Eohaustorius estuarius  | Brine:   | Not Applicable      |
| Test Length: | 94h             | Taxon:     | Malacostraca            | Source:  | Northwest Amphipod  |

Sample ID: 00-1327-5570 Code: CA91B2 Project: Santa Margarita River Estuary

Sample Date: 15 Jul-22Material:Cadmium chlorideSource:Reference ToxicantReceipt Date: 15 Jul-22CAS (PC):Station:Reference Toxicant

Sample Age: 13h Client: NRSW

| Analysis ID  | Endpoint          | Comparison Method            | √ NOEL | LOEL | TOEL  | PMSD  | s |
|--------------|-------------------|------------------------------|--------|------|-------|-------|---|
| 07-9653-1602 | 96h Survival Rate | Steel Many-One Rank Sum Test | 5      | 10   | 7 071 | 12.6% | 1 |

#### Point Estimate Summary

| Analysis ID  | Endpoint          | Point Estimate Method   | √ Level | mg/L  | 95% LCL | 95% UCL | s |
|--------------|-------------------|-------------------------|---------|-------|---------|---------|---|
| 18-3669-1320 | 96h Survival Rate | Trimmed Spearman-Kärber | LC50    | 11.34 | 9.72    | 13.24   | 1 |

#### 96h Survival Rate Summary

| Conc-mg/L | Code | Count | Mean   | 95% LCL | 95% UCL | Min    | Max    | Std Err | Std Dev | CV%     | %Effect |
|-----------|------|-------|--------|---------|---------|--------|--------|---------|---------|---------|---------|
| 0         | LC   | 4     | 1.0000 | 1.0000  | 1.0000  | 1.0000 | 1.0000 | 0.0000  | 0.0000  |         | 0.00%   |
| 1.25      |      | 4     | 1.0000 | 1.0000  | 1.0000  | 1.0000 | 1.0000 | 0.0000  | 0.0000  |         | 0.00%   |
| 2.5       |      | 4     | 0.9500 | 0.8581  | 1.0420  | 0.9000 | 1.0000 | 0.0289  | 0.0577  | 6.08%   | 5.00%   |
| 5         |      | 4     | 0.9000 | 0.7701  | 1.0300  | 0.8000 | 1.0000 | 0.0408  | 0.0817  | 9.07%   | 10.00%  |
| 10        |      | 4     | 0.6250 | 0.3532  | 0.8968  | 0.4000 | 0.8000 | 0.0854  | 0.1708  | 27.33%  | 37.50%  |
| 20        |      | 4     | 0.1250 | -0.0752 | 0.3252  | 0.0000 | 0.3000 | 0.0629  | 0.1258  | 100.66% | 87.50%  |

#### 96h Survival Rate Detail MD5: 7D5D1416DC4679606CBC187E4E07CDEC

| Conc-mg/L | Code | Rep 1  | Rep 2  | Rep 3  | Rep 4  |
|-----------|------|--------|--------|--------|--------|
| 0         | LC   | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
| 1.25      |      | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
| 2.5       |      | 1.0000 | 0.9000 | 0.9000 | 1.0000 |
| 5         |      | 0.9000 | 1.0000 | 0.9000 | 0.8000 |
| 10        |      | 0.8000 | 0.7000 | 0.6000 | 0.4000 |
| 20        |      | 0.3000 | 0.1000 | 0.1000 | 0.0000 |

#### 96h Survival Rate Binomials

| Conc-mg/L | Code | Rep 1 | Rep 2 | Rep 3 | Rep 4 |  |
|-----------|------|-------|-------|-------|-------|--|
| 0         | LC   | 10/10 | 10/10 | 10/10 | 10/10 |  |
| 1.25      |      | 10/10 | 10/10 | 10/10 | 10/10 |  |
| 2.5       |      | 10/10 | 9/10  | 9/10  | 10/10 |  |
| 5         |      | 9/10  | 10/10 | 9/10  | 8/10  |  |
| 10        |      | 8/10  | 7/10  | 6/10  | 4/10  |  |
| 20        |      | 3/10  | 1/10  | 1/10  | 0/10  |  |

Report Date: 05 Jan-23 08:10 (p 1 of 2)
Test Code/ID: NIWC-2022-145 / 18-4272-3584

|                |                     |                    |                 |              |          |        |            |      | 1001   | Code/ID    |                                | 022-143 / 10 |            |
|----------------|---------------------|--------------------|-----------------|--------------|----------|--------|------------|------|--------|------------|--------------------------------|--------------|------------|
| Eohaustorius   | s 10-d Survival a   | nd Reburial Sed    | iment T         | est          |          |        |            |      |        |            | NIWC Pacific                   | Bioassay I   | Laboratory |
| Analysis ID:   | 07-9653-1602        | Endpoint           | : 96h           | Survival Ra  | ite      |        |            |      | CETIS  | S Versio   | on: CETISv1                    | .9.7         |            |
| Analyzed:      | 05 Jan-23 8:06      | Analysis:          |                 | oarametric-  |          |        |            |      |        | s Level:   | : 1                            |              |            |
| Edit Date:     | 05 Jan-23 8:06      | MD5 Has            | <b>h</b> : 7D5[ | D1416DC46    | 379606   | CBC    | 187E4E070  | CDEC | Edito  | r ID:      | 008-623                        | -435-5       |            |
| Batch ID:      | 14-7167-8100        | Test Type          | : Surv          | ival (96h)   |          |        |            |      | Analy  | /st: N     | Nolly Colvin                   |              |            |
| Start Date:    | 15 Jul-22 12:30     | Protocol:          |                 | /600/R-94/0  | 025 (19  | 94)    |            |      | Dilue  |            | aboratory Sea                  | water        |            |
| Ending Date:   | 19 Jul-22 10:30     | Species:           | Eoha            | austorius es | stuarius | ;      |            |      | Brine  | : N        | lot Applicable                 |              |            |
| Test Length:   |                     | Taxon:             | Mala            | costraca     |          |        |            |      | Sourc  | ce: N      | Northwest Amp                  | hipod        | Age:       |
| Sample ID:     | 00-1327-5570        | Code:              | CA9             | 1B2          |          |        |            |      | Proje  | ct: S      | Santa Margarita                | a River Estu | arv        |
| Sample Date:   |                     | Material:          | Cadr            | mium chlori  | de       |        |            |      | Source |            | Reference Toxi                 |              | ,          |
| Receipt Date:  |                     | CAS (PC)           |                 |              |          |        |            |      | Statio |            | Reference Toxi                 | cant         |            |
| Sample Age:    |                     | Client:            | NRS             | W            |          |        |            |      |        |            |                                |              |            |
| Data Transfo   | rm                  | Alt Hyp            |                 |              |          |        | NOEL       | LOE  | 1      | TOEL       | TU                             | MSDu         | PMSD       |
| Angular (Corre |                     | C > T              |                 |              |          |        | 5          | 10   |        | 7.071      |                                | 0.1264       | 12.64%     |
|                | ,                   |                    |                 |              |          |        |            |      |        |            |                                |              |            |
| 1              | ne Rank Sum Te      |                    |                 |              | _        |        |            |      |        |            |                                |              |            |
| Control        | vs Conc-mg          |                    | t Stat          | Critical     | Ties     |        | P-Type     | P-Va |        |            | on(α:5%)                       |              |            |
| Lab Control    | 1.25<br>2.5         | 18<br>14           |                 | 10           | 1        | 6      | CDF<br>CDF | 0.83 |        |            | gnificant Effec                |              |            |
|                | 2.5<br>5            | 14                 |                 | 10<br>10     | 1        | 6      | CDF        | 0.34 |        |            | gnificant Effec                |              |            |
|                | 5<br>10*            | 10                 |                 | 10           | 1<br>0   | 6<br>6 | CDF        | 0.14 |        |            | gnificant Effec<br>cant Effect | L            |            |
|                | 20*                 | 10                 |                 | 10           | 0        | 6      | CDF        | 0.04 |        | _          | cant Effect                    |              |            |
|                |                     |                    |                 |              |          |        |            | 0.01 |        | Olgillille |                                |              |            |
| ANOVA Table    |                     |                    | _               |              |          |        |            |      |        |            | . =0()                         |              |            |
| Source         | Sum Squa            |                    | n Squa          | are          | DF       |        | F Stat     | P-Va |        |            | on(α:5%)                       |              |            |
| Between        | 3.49399             |                    | 98799           |              | 5        |        | 48.28      | <1.0 | E-05   | Signific   | ant Effect                     |              |            |
| Error<br>Total | 0.260522<br>3.75452 | 0.0                | 144735          |              | 18<br>23 |        | _          |      |        |            |                                |              |            |
|                |                     |                    |                 |              | 20       |        |            |      |        |            |                                |              |            |
|                | mptions Tests       |                    |                 |              | _        | _      |            |      |        |            |                                |              |            |
| Attribute      | Test                |                    |                 |              | Test S   | Stat   | Critical   | P-Va | lue    |            | on(α:1%)                       |              |            |
| Variance       |                     | uality of Variance |                 |              |          |        |            |      |        |            | minate                         |              |            |
| Distribution   | Shapiro-W           | ilk W Normality    | est             |              | 0.924    | 4      | 0.884      | 0.07 | 30     | Norma      | l Distribution                 |              |            |
| 96h Survival   | Rate Summary        |                    |                 |              |          |        |            |      |        |            |                                |              |            |
| Conc-mg/L      | Code                | Count Mea          | ın              | 95% LCL      | 95% l    | JCL    | Median     | Min  |        | Max        | Std Err                        | CV%          | %Effect    |
| 0              | LC                  | 4 1.00             | 000             | 1.0000       | 1.000    | 0      | 1.0000     | 1.00 | 00     | 1.0000     | 0.0000                         | 0.00%        | 0.00%      |
| 1.25           |                     | 4 1.00             |                 | 1.0000       | 1.000    |        | 1.0000     | 1.00 |        | 1.0000     |                                | 0.00%        | 0.00%      |
| 2.5            |                     | 4 0.95             |                 | 0.8581       | 1.000    |        | 0.9500     | 0.90 |        | 1.0000     |                                | 6.08%        | 5.00%      |
| 5              |                     | 4 0.90             |                 | 0.7701       | 1.000    |        | 0.9000     | 0.80 |        | 1.0000     |                                | 9.07%        | 10.00%     |
| 10             |                     | 4 0.62             |                 | 0.3532       | 0.896    |        | 0.6500     | 0.40 |        | 0.8000     |                                | 27.33%       | 37.50%     |
| 20             |                     | 4 0.12             | 200             | 0.0000       | 0.325    |        | 0.1000     | 0.00 | UU     | 0.3000     | 0.0629                         | 100.66%      | 87.50%     |
| Angular (Cor   | rected) Transfori   | med Summary        |                 |              |          |        |            |      |        |            |                                |              |            |
| Conc-mg/L      | Code                | Count Mea          | ın              | 95% LCL      | 95% l    | JCL    | Median     | Min  |        | Max        | Std Err                        | CV%          | %Effect    |
| 0              | LC                  | 4 1.4              |                 | 1.4120       | 1.412    |        | 1.4120     | 1.41 |        | 1.4120     |                                | 0.00%        | 0.00%      |
| 1.25           |                     | 4 1.4              |                 | 1.4120       | 1.412    |        | 1.4120     | 1.41 |        | 1.4120     |                                | 0.00%        | 0.00%      |
| 2.5            |                     | 4 1.33             |                 | 1.1810       | 1.480    |        | 1.3310     | 1.24 |        | 1.4120     |                                | 7.07%        | 5.77%      |
| 5              |                     | 4 1.25             |                 | 1.0560       | 1.453    |        | 1.2490     | 1.10 |        | 1.4120     |                                | 9.93%        | 11.17%     |
| 10             |                     | 4 0.9              |                 | 0.6318       | 1.203    |        | 0.9386     | 0.68 |        | 1.1070     |                                | 19.56%       | 35.04%     |
| 20             |                     | 4 0.34             | 155             | 0.0686       | 0.622    | 3      | 0.3218     | 0.15 | 88     | 0.5796     | 0.0870                         | 50.36%       | 75.53%     |

10

8/10

7/10

6/10

**Report Date:** 05 Jan-23 08:10 (p 2 of 2) **Test Code/ID:** NIWC-2022-145 / 18-4272-3584

| Endaustorius 10-d Survival and Reburial Sediment Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              | arytiour respe    | ,,,        |             |             |                         | Test Code/ID: | NIWC-2022-145 / 18-4272-3584   |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-------------------|------------|-------------|-------------|-------------------------|---------------|--------------------------------|
| Analyzed: Edit Date:         05 Jan-23 8:06 Edit Date:         Analysis: Nonparametric-Control vs Treatments         Status Level: 1 008-623-435-5           96h Survival Rate Detail           Conc-mg/L         Code         Rep 1 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,00000 1,00000 1,0000 1,0000 1,0000 1,0000 1,0000 1,00000 1,0000 1,0000 1,0000 1,0000 1,0000 1 | Eohaustorius | s 10-d Survival a | nd Reburia | al Sediment | t Test      |                         | NIV           | NC Pacific Bioassay Laboratory |
| Conc-mg/L         Code         Rep 1         Rep 2         Rep 3         Rep 4           0         LC         1.0000         1.0000         1.0000           1.25         1.0000         1.0000         1.0000           2.5         1.0000         0.9000         0.9000         1.0000           5         0.9000         1.0000         0.8000         0.4000           20         0.3000         0.1000         0.0000         0.0000           Angular (Corrected) Transformed Detail           Conc-mg/L         Code         Rep 1         Rep 2         Rep 3         Rep 4           0         LC         1.4120         1.4120         1.4120         1.4120         1.4120           1.25         1.4120         1.4120         1.4120         1.4120         1.4120           2.5         1.2490         1.2490         1.1070         1.010           10         1.1070         0.9912         0.8861         0.6847           20         0.5796         0.3218         0.3218         0.1588           96h Survival Rate Binomials           Conc-mg/L         Code         Rep 1         Rep 2         Rep 3         Rep 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Analyzed:    | 05 Jan-23 8:06    | Ana        | alysis: No  | onparametri | c-Control vs Treatments | Status Level: | 1                              |
| 0         LC         1.0000         1.0000         1.0000         1.0000           1.25         1.0000         1.0000         1.0000         1.0000           2.5         1.0000         0.9000         0.9000         1.0000           5         0.9000         1.0000         0.8000           10         0.8000         0.7000         0.6000         0.4000           20         0.3000         0.1000         0.0000    Angular (Corrected) Transformed Detail  Conc-mg/L  Code  Rep 1  Rep 2  Rep 3  Rep 4  0  1.4120 1.4120 1.4120 1.4120 1.4120 1.4120 1.4120 1.4120 1.4120 1.4120 1.4120 1.4120 1.4120 1.4120 1.4120 1.4120 1.4120 1.4120 1.4120 1.4120 1.4120 1.4120 1.4120 1.4120 1.4120 1.4120 1.4120 1.4120 1.4120 1.4120 1.4120 1.4120 1.4120 1.4120 1.4120 1.4120 1.4120 1.4120 1.4120 1.4120 1.4120 1.4120 1.4120 1.4120 1.4120 1.4120 1.4120 1.4120 1.4120 1.4120 1.4120 1.4120 1.4120 1.4120 1.4120 1.4120 1.4120 1.4120 1.4120 1.4120 1.4120 1.4120 1.4120 1.4120 1.4120 1.4120 1.4120 1.4120 1.4120 1.4120 1.4120 1.4120 1.4120 1.4120 1.4120 1.4120 1.4120 1.4120 1.4120 1.4120 1.4120 1.4120 1.4120 1.4120 1.4120 1.4120 1.4120 1.4120 1.4120 1.4120 1.4120 1.4120 1.4120 1.4120 1.4120 1.4120 1.4120 1.4120 1.4120 1.4120 1.4120 1.4120 1.4120 1.4120 1.4120 1.4120 1.4120 1.4120 1.4120 1.4120 1.4120 1.4120 1.4120 1.4120 1.4120 1.4120 1.4120 1.4120 1.4120 1.4120 1.4120 1.4120 1.4120 1.4120 1.4120 1.4120 1.4120 1.4120 1.4120 1.4120 1.4120 1.4120 1.4120 1.4120 1.4120 1.4120 1.4120 1.4120 1.4120 1.4120 1.4120 1.4120 1.4120 1.4120 1.4120 1.4120 1.4120 1.4120 1.4120 1.4120 1.4120 1.4120 1.4120 1.4120 1.4120 1.4120 1.4120 1.4120 1.4120 1.4120 1.4120 1.4120 1.4120 1.4120 1.4120 1.4120                                                                                                                                                                                                                                                            | 96h Survival | Rate Detail       |            |             |             |                         |               |                                |
| 1.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Conc-mg/L    | Code              | Rep 1      | Rep 2       | Rep 3       | Rep 4                   |               |                                |
| 2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0            | LC                | 1.0000     | 1.0000      | 1.0000      | 1.0000                  |               |                                |
| 5       0.9000       1.0000       0.9000       0.8000         10       0.8000       0.7000       0.6000       0.4000         20       0.3000       0.1000       0.0000    Angular (Corrected) Transformed Detail         Conc-mg/L       Code       Rep 1       Rep 2       Rep 3       Rep 4         0       LC       1.4120       1.4120       1.4120       1.4120         1.25       1.4120       1.4120       1.4120       1.4120         2.5       1.4120       1.2490       1.2490       1.4120         5       1.2490       1.4120       1.2490       1.1070         10       1.1070       0.9912       0.8861       0.6847         20       0.5796       0.3218       0.3218       0.1588         Survival Rate Binomials         Conc-mg/L       Code       Rep 1       Rep 2       Rep 3       Rep 4         0       LC       10/10       10/10       10/10         1.25       10/10       10/10       10/10         1.25       10/10       10/10       10/10         1.25       10/10       10/10       10/10         1.25       10/10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.25         |                   | 1.0000     | 1.0000      | 1.0000      | 1.0000                  |               |                                |
| 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.5          |                   | 1.0000     | 0.9000      | 0.9000      | 1.0000                  |               |                                |
| 20       0.3000       0.1000       0.0000         Angular (Corrected) Transformed Detail         Conc-mg/L       Code       Rep 1       Rep 2       Rep 3       Rep 4         0       LC       1.4120       1.4120       1.4120         1.25       1.4120       1.4120       1.4120       1.4120         2.5       1.4120       1.2490       1.2490       1.1070         10       1.2490       1.4120       1.2490       1.1070         10       1.1070       0.9912       0.8861       0.6847         20       0.5796       0.3218       0.3218       0.1588         96h Survival Rate Binomials         Conc-mg/L       Code       Rep 1       Rep 2       Rep 3       Rep 4         0       LC       10/10       10/10       10/10       10/10         1.25       10/10       10/10       10/10       10/10         2.5       10/10       9/10       9/10       10/10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5            |                   | 0.9000     | 1.0000      | 0.9000      | 0.8000                  |               |                                |
| Angular (Corrected) Transformed Detail     Conc-mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10           |                   | 0.8000     | 0.7000      | 0.6000      | 0.4000                  |               |                                |
| Conc-mg/L         Code         Rep 1         Rep 2         Rep 3         Rep 4           0         LC         1.4120         1.4120         1.4120           1.25         1.4120         1.4120         1.4120           2.5         1.4120         1.2490         1.2490         1.1070           5         1.2490         1.4120         1.2490         1.1070           10         1.1070         0.9912         0.8861         0.6847           20         0.5796         0.3218         0.3218         0.1588           96h Survival Rate Binomials           Conc-mg/L         Code         Rep 1         Rep 2         Rep 3         Rep 4           0         LC         10/10         10/10         10/10         10/10           1.25         10/10         10/10         10/10         10/10           2.5         10/10         9/10         9/10         10/10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 20           |                   | 0.3000     | 0.1000      | 0.1000      | 0.0000                  |               |                                |
| 0       LC       1.4120       1.4120       1.4120         1.25       1.4120       1.4120       1.4120         2.5       1.4120       1.2490       1.4120         5       1.2490       1.4120       1.1070         10       1.1070       0.9912       0.8861       0.6847         20       0.5796       0.3218       0.3218       0.1588             96h Survival Rate Binomials         Conc-mg/L       Code       Rep 1       Rep 2       Rep 3       Rep 4         0       LC       10/10       10/10       10/10         1.25       10/10       10/10       10/10       10/10         2.5       10/10       9/10       9/10       10/10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Angular (Cor | rected) Transfor  | med Detai  |             |             |                         |               |                                |
| 1.25       1.4120       1.4120       1.4120       1.4120         2.5       1.4120       1.2490       1.2490       1.4120         5       1.2490       1.4120       1.2490       1.1070         10       1.1070       0.9912       0.8861       0.6847         20       0.5796       0.3218       0.3218       0.1588             96h Survival Rate Binomials         Conc-mg/L       Code       Rep 1       Rep 2       Rep 3       Rep 4         0       LC       10/10       10/10       10/10         1.25       10/10       10/10       10/10       10/10         2.5       10/10       9/10       9/10       10/10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Conc-mg/L    | Code              | Rep 1      | Rep 2       | Rep 3       | Rep 4                   |               |                                |
| 2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0            | LC                | 1.4120     | 1.4120      | 1.4120      | 1.4120                  |               |                                |
| 5       1.2490       1.4120       1.2490       1.1070         10       1.1070       0.9912       0.8861       0.6847         20       0.5796       0.3218       0.3218       0.1588         96h Survival Rate Binomials         Conc-mg/L       Code       Rep 1       Rep 2       Rep 3       Rep 4         0       LC       10/10       10/10       10/10         1.25       10/10       10/10       10/10         2.5       10/10       9/10       9/10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.25         |                   | 1.4120     | 1.4120      | 1.4120      | 1.4120                  |               |                                |
| 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.5          |                   | 1.4120     | 1.2490      | 1.2490      | 1.4120                  |               |                                |
| 20 0.5796 0.3218 0.3218 0.1588  96h Survival Rate Binomials  Conc-mg/L Code Rep 1 Rep 2 Rep 3 Rep 4  0 LC 10/10 10/10 10/10 10/10  1.25 10/10 10/10 10/10 10/10  2.5 10/10 9/10 9/10 10/10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5            |                   | 1.2490     | 1.4120      | 1.2490      | 1.1070                  |               |                                |
| 96h Survival Rate Binomials       Conc-mg/L     Code     Rep 1     Rep 2     Rep 3     Rep 4       0     LC     10/10     10/10     10/10       1.25     10/10     10/10     10/10       2.5     10/10     9/10     9/10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 10           |                   | 1.1070     | 0.9912      | 0.8861      | 0.6847                  |               |                                |
| Conc-mg/L         Code         Rep 1         Rep 2         Rep 3         Rep 4           0         LC         10/10         10/10         10/10           1.25         10/10         10/10         10/10           2.5         10/10         9/10         9/10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 20           |                   | 0.5796     | 0.3218      | 0.3218      | 0.1588                  |               |                                |
| 0 LC 10/10 10/10 10/10 10/10<br>1.25 10/10 10/10 10/10<br>2.5 10/10 9/10 9/10 10/10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 96h Survival | Rate Binomials    |            |             |             |                         |               |                                |
| 1.25     10/10     10/10     10/10       2.5     10/10     9/10     10/10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Conc-mg/L    | Code              | Rep 1      | Rep 2       | Rep 3       | Rep 4                   |               |                                |
| 2.5 10/10 9/10 9/10 10/10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0            | LC                | 10/10      | 10/10       | 10/10       | 10/10                   |               |                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.25         |                   | 10/10      | 10/10       | 10/10       | 10/10                   |               |                                |
| 5 9/10 10/10 9/10 8/10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.5          |                   | 10/10      | 9/10        | 9/10        | 10/10                   |               |                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5            |                   | 9/10       | 10/10       | 9/10        | 8/10                    |               |                                |



4/10

**Report Date:** 05 Jan-23 08:10 (p 1 of 2) **Test Code/ID:** NIWC-2022-145 / 18-4272-3584

|                |                |               |                    |                |            |            |         | Test  | Code/ID:   | NIWC-       | 2022-145 / 1  | 8-4272-3584 |
|----------------|----------------|---------------|--------------------|----------------|------------|------------|---------|-------|------------|-------------|---------------|-------------|
| Eohaustorius   | 10-d Survival  | and Reburia   | l Sedimen          | t Test         |            |            |         |       | N          | WC Pacifi   | ic Bioassay   | Laboratory  |
| Analysis ID:   | 18-3669-1320   | Enc           | lpoint: 96         | Sh Survival Ra | ite        |            |         | CETI  | S Version: | CETISV      | 1.9.7         |             |
| Analyzed:      | 05 Jan-23 8:0  |               | -                  | immed Spear    |            |            |         | Statu | ıs Level:  | 1           |               |             |
| Edit Date:     | 05 Jan-23 8:0  | 6 <b>MD</b>   | <b>5 Hash:</b> 7[  | D5D1416DC46    | 679606CBC  | 187E4E07   | CDEC    | Edito | or ID:     | 008-623     | 3-435-5       |             |
| Batch ID:      | 14-7167-8100   | Tes           | <b>t Type</b> : Տւ | urvival (96h)  |            |            |         | Anal  | yst: Mol   | y Colvin    |               |             |
| Start Date:    | 15 Jul-22 12:3 | 30 <b>Pro</b> | tocol: El          | PA/600/R-94/0  | 025 (1994) |            |         | Dilue | ent: Lab   | oratory Se  | awater        |             |
| Ending Date:   | 19 Jul-22 10:3 | 30 <b>Spe</b> | cies: Ed           | ohaustorius es | stuarius   |            |         | Brine | e: Not     | Applicable  | ;             |             |
| Test Length:   | 94h            | Tax           | on: M              | alacostraca    |            |            |         | Sour  | ce: Nor    | hwest Am    | phipod        | Age:        |
| Sample ID:     | 00-1327-5570   | Coc           | le: C              | A91B2          |            |            |         | Proje | ect: San   | ta Margarit | ta River Estu | ary         |
| Sample Date:   | 15 Jul-22      | Mat           | erial: Ca          | admium chlori  | de         |            |         | Sour  | ce: Ref    | erence Tox  | cicant        |             |
| Receipt Date:  | 15 Jul-22      | CAS           | S (PC):            |                |            |            |         | Stati | on: Ref    | erence Tox  | cicant        |             |
| Sample Age:    | 13h            | Clie          | ent: NI            | RSW            |            |            |         |       |            |             |               |             |
| Trimmed Spea   | arman-Kärber   | Estimates     |                    |                |            |            |         |       |            |             |               |             |
| Threshold Op   |                | Threshold     | Trim               | Mu             | Sigma      | LC50       |         |       | 95% UCL    |             |               |             |
| Control Thresh | old            | 0             | 12.50%             | 1.054733       | 0.0335229  | 11.34      | 9.72    |       | 13.24      |             |               |             |
| 96h Survival F | Rate Summary   | y             |                    |                | Calcul     | lated Vari | ate(A/E | 3)    |            |             | Isoton        | ic Variate  |
| Conc-mg/L      | Code           | Count         | Mean               | Median         | Min        | Max        | CV%     | 6     | %Effect    | A/B         | Mean          | %Effect     |
| 0              | LC             | 4             | 1.0000             | 1.0000         | 1.0000     | 1.0000     | 0.00    | %     | 0.00%      | 40/40       | 1.0000        | 0.00%       |
| 1.25           |                | 4             | 1.0000             | 1.0000         | 1.0000     | 1.0000     | 0.00    |       | 0.00%      | 40/40       | 1.0000        | 0.00%       |
| 2.5            |                | 4             | 0.9500             | 0.9500         | 0.9000     | 1.0000     | 6.08    |       | 5.00%      | 38/40       | 0.9500        | 5.00%       |
| 5              |                | 4             | 0.9000             | 0.9000         | 0.8000     | 1.0000     | 9.07    |       | 10.00%     | 36/40       | 0.9000        | 10.00%      |
| 10             |                | 4             | 0.6250             | 0.6500         | 0.4000     | 0.8000     | 27.3    |       | 37.50%     | 25/40       | 0.6250        | 37.50%      |
| 20             |                | 4             | 0.1250             | 0.1000         | 0.0000     | 0.3000     | 100.    | 66%   | 87.50%     | 5/40        | 0.1250        | 87.50%      |
| 96h Survival F | Rate Detail    |               |                    |                |            |            |         |       |            |             |               |             |
| Conc-mg/L      | Code           | Rep 1         | Rep 2              | Rep 3          | Rep 4      |            |         |       |            |             |               |             |
| 0              | LC             | 1.0000        | 1.0000             | 1.0000         | 1.0000     |            |         |       |            |             |               |             |
| 1.25           |                | 1.0000        | 1.0000             | 1.0000         | 1.0000     |            |         |       |            |             |               |             |
| 2.5            |                | 1.0000        | 0.9000             | 0.9000         | 1.0000     |            |         |       |            |             |               |             |
| 5              |                | 0.9000        | 1.0000             | 0.9000         | 0.8000     |            |         |       |            |             |               |             |
| 10             |                | 0.8000        | 0.7000             | 0.6000         | 0.4000     |            |         |       |            |             |               |             |
| 20             |                | 0.3000        | 0.1000             | 0.1000         | 0.0000     |            |         |       |            |             |               |             |
| 96h Survival F | Rate Binomial  | s             |                    |                |            |            |         |       |            |             |               |             |
| Conc-mg/L      | Code           | Rep 1         | Rep 2              | Rep 3          | Rep 4      |            |         |       |            |             |               |             |
| 0              | LC             | 10/10         | 10/10              | 10/10          | 10/10      |            |         |       |            |             |               |             |
| 1.25           |                | 10/10         | 10/10              | 10/10          | 10/10      |            |         |       |            |             |               |             |
| 2.5            |                | 10/10         | 9/10               | 9/10           | 10/10      |            |         |       |            |             |               |             |
| 5              |                | 9/10          | 10/10              | 9/10           | 8/10       |            |         |       |            |             |               |             |
| 10             |                | 8/10          | 7/10               | 6/10           | 4/10       |            |         |       |            |             |               |             |
| 20             |                | 3/10          | 1/10               | 1/10           | 0/10       |            |         |       |            |             |               |             |
|                |                |               |                    |                |            |            |         |       |            |             |               |             |

**Report Date:** 05 Jan-23 08:10 (p 2 of 2) **Test Code/ID:** NIWC-2022-145 / 18-4272-3584

|                                                   |                                                  |                |                                                                                  | rest code/ib.                                 | 14147 0-2022-143 / 10-427 2-3304  |
|---------------------------------------------------|--------------------------------------------------|----------------|----------------------------------------------------------------------------------|-----------------------------------------------|-----------------------------------|
| Eohaustorius                                      | s 10-d Survival and R                            | leburial Sedim | ent Test                                                                         | NIV                                           | NC Pacific Bioassay Laboratory    |
| Analysis ID:<br>Analyzed:<br>Edit Date:           | 18-3669-1320<br>05 Jan-23 8:07<br>05 Jan-23 8:06 | Analysis:      | 96h Survival Rate<br>Trimmed Spearman-Kärber<br>7D5D1416DC4679606CBC187E4E07CDEC | CETIS Version:<br>Status Level:<br>Editor ID: | CETISv1.9.7<br>1<br>008-623-435-5 |
| Graphics  1.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |                                                  |                |                                                                                  |                                               |                                   |
| ٥٥ -                                              | 5 Conc-m                                         | 10<br>g/L      | 15 20                                                                            |                                               |                                   |

#### Marine Acute Bioassay Static Conditions

#### Water Quality Measurements & Test Organism Survival

| Project                  | : Camp              | Pendleton - Santa Margar           | ta Estuary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Test Species       | : E. estuari  | us                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |           |           |         | Ted    | h Initials |         |
|--------------------------|---------------------|------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|---------------|---------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-----------|-----------|---------|--------|------------|---------|
| Sample ID                | : CdCl <sub>2</sub> | Reference Toxicant                 | Sta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | art Date/Time:     | 7/15/2022     | 12                        | 130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | )      |           |           | 0       | 24     | 48 7       | 2 96    |
| Test No.                 | : NIWC              | 2022-145                           | Er                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | nd Date/Time:      | 7/19/2022     |                           | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |        |           | Counts    | NH/PL   | NH     | MCN        | HINC    |
|                          |                     |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |               |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |           | Readings  | Ph      | NI     | MUN        | HMC     |
|                          |                     |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |               |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |           | made by   | I A ALL |        |            |         |
|                          |                     |                                    | T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                    |               |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |           | neter     | : 1,3   | 1,31   | ,3         |         |
| Concentration            | Rep                 | Number of Live Organisms           | Salinity<br>(ppt)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                    | Tempera       | ture                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | lved Oxy  |           |         |        | рН         |         |
| CdCl <sub>2</sub> (mg/L) | Kep                 |                                    | (PP+)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                    | (°C)          | Interference in the basis | GO STATE OF THE ST | (mg/   | /L / % sa | t.)       |         | (      | units)     |         |
|                          | A                   | 0 24 48 72 96                      | 0 24 48 72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 96 0               | 24 48         | 72 96                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 24     | 48 7      | 72 96     | 0       | 24     | 48 7       | 2 96    |
|                          | В                   | La                                 | 33.133.033.5 33.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1 53.3 15.1        | 1148143       | 14.5 H.6                  | 10.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10.0   | 9.8 9.    | 99.8      | 7.9     | 8.01   | 3.02 8.0   | 18.02   |
| 0                        | C                   | 112 2                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |               |                           | 105.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1016   | 284 18    | 4 987     |         |        |            |         |
|                          | D                   | 1.0                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |               |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |           |           |         |        |            |         |
|                          | A                   | 1010                               | 70 11 22 (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                    | 1/16          |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |           |           |         |        |            |         |
|                          | В                   | 10 10 10 10 10                     | 33.433.133.633.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3 33 3 15.0        | 14.814.2      | 14.7 14.7                 | 10.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10.1   | 9.8 9.9   | 8 9.7     | 8.01    | 8018   | 1.0280     | 28.03   |
| 1.25                     | C                   | 10 10                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |               |                           | 106                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1016   | 98.398    | 198.4     |         |        |            |         |
|                          | D                   | 10 10                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |               |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |           |           |         |        |            |         |
|                          | _                   | 10 10 10 10                        | 30.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                    |               |                           | 10.758                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |        |           |           |         |        |            |         |
|                          | A                   | 10 10 10 10                        | <b>33.4 33.6</b> 33.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 534 15.0           | 14.8142       | 14.7 14.7                 | 10.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10.0   | 9.6 A.    | 7 9.7     | 8.03    | 8100   | :01 8.0    | 28.05   |
| 2.5                      | В                   | 10 10 10 9 9                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |               |                           | 106                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 101.8  | 96.798    | 298.4     | 1992    |        |            |         |
|                          | C                   | 10 10 10 9 9                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |               |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |           |           |         |        |            |         |
|                          | D                   | 10 10 10 10                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |               |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |           |           |         |        |            |         |
|                          | A                   | 10 10 10 10 9                      | 33.1 33.1 33.5 33.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 333 15.0           | 14.8 14.3     | 14.4 14.5                 | 10.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10.1   | 28 9.     | 7 9.8     | 8.04    | 808    | .01 8.0    | 12 8.03 |
| 5                        | В                   | 10 10 10 10                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |               |                           | 106                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1016   | 18.298    | 2983      |         |        |            |         |
|                          | C                   | 10 10 10 10 9                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |               |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |           |           |         |        |            |         |
|                          | D                   | 10 10 10 8                         | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                    | W. 2          |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |           |           |         |        |            |         |
|                          | Α                   | 10 10 10 9 8                       | 33.0 33.0 33.2 33.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 335 15.0           | 14.8 14.4     | 4.5 14.6                  | 10.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10.2 = | 7.79.     | 7 9.7     | 8.05    | 80     | 99 8.0     | U8:03   |
| 10                       | В                   | 10 10 7 7                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |               |                           | 105                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1023   | 78198     | 398.3     |         |        |            |         |
|                          | С                   | 0 801010                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |               |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |           |           |         |        |            |         |
|                          | D                   | 10 10 10 8 4                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |               |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |           |           |         |        |            |         |
|                          | A                   | 10 10 10 6 3                       | 12.6976 33.0 33.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 33.0 15.0          | 14.8 14.2     | 145 14.6                  | [0. D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10.10  | 1.7 9:    | 7 9.8     | 8.05    | 8.018  | 00 8.0     | 18:03   |
| 20                       | В                   | (0) (0) (0) 2                      | The state of the s |                    |               |                           | 105                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 101.00 | 17.598.   | 1983      |         |        |            |         |
|                          |                     | 10 10 10 4 1                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |               |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |           |           |         |        |            |         |
| Initial Counts QC'd      |                     | 10 10 8 5 8                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |               |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |           |           |         |        |            |         |
| by:                      | NH D                |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |               |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |           |           |         |        |            |         |
| nimal Source/Date Re     | ceived:             | Northwest Amphin                   | od 7/12/2022                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Size at Initia     | tion: 2 Emm   |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |           | Г         |         | Enadia | . Times    | · ·     |
|                          |                     |                                    | IIIW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | oize at millia     | mon: 3-5mm    |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -      |           | -         | 0       |        | g Times    | 100     |
| omments:                 |                     | = initial reading in fresh test so | olution f = final reading in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | test chamber       | prior to      | uu ol                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |           |           |         | 44     | 48 72      | 96      |
|                          |                     | Organisms fed prior to initiation  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | r rear or railiber | PITOL TO FEME | wai                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -      |           | AM:       |         |        |            |         |
|                          |                     | Tests aerated? Circle one ( y /    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | Duration      |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |           | PM:       | TOTAL N |        |            |         |
|                          |                     | Aeration source:                   | y a yee, cample (b(s).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                  | Duration      |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |           |           |         |        |            |         |
| C Check:                 | N                   | 474                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |               |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -      |           |           |         | ,      | 2.1        | _/      |
| -                        | , ,                 | - 10                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |               |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | Final F   | Review: _ | u       | l_     | 8/1        | 5/23    |

#### Cadmium Reference Toxicant Test for Eohaustorius estuarius

| Date of Test Initiations: | 7/15/22       |  |
|---------------------------|---------------|--|
| Date of Cu Stock:         | _ 17 June 203 |  |
| Dilutions Prepared By:    | <u> </u>      |  |

**Amphipod Survival** 

| Ampinpou Survivai                                                     |                                                                                                      |                                                                     |                      |
|-----------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|----------------------|
| Substock concentration (mg/L):                                        | C <sub>1</sub>                                                                                       | 1040                                                                | 1                    |
| Target test volume (mL):                                              | $V_2$                                                                                                | 2000                                                                | $V_1 = C_2 V_2 / C1$ |
| Target test concentrations (mg/L):  C <sub>2</sub> 0 1.25 2.5 5 10 20 | Volume of parent stock to add (mL):  V <sub>1</sub> 0.00  2:40 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | Volume of FSW to add (mL):  2000.00 1997/60 1995/19 1990.38 1980.77 | 00                   |

QC Check:

Final Review: Me 8/15/2~

**Mediterranean Mussel** 

Mytilus galloprovincialis

17.2

0/112

0/131

0/112

Report Date: 05 Jan-23 08:25 (p 1 of 1)
Test Code/ID: NIWC-2022-144 / 14-3741-3724

#### Bivalve Larval Survival and Development Test NIWC

#### **NIWC Pacific Bioassay Laboratory**

| Bivalve Larva                                            | al Survival and D                                           | evelopmeı        | nt Test                                                          |                                                                 |                      |                  |   |      |                                |                      | NI          | WC Pacific                                            | Bioassay L | aboratory       |
|----------------------------------------------------------|-------------------------------------------------------------|------------------|------------------------------------------------------------------|-----------------------------------------------------------------|----------------------|------------------|---|------|--------------------------------|----------------------|-------------|-------------------------------------------------------|------------|-----------------|
| Batch ID:<br>Start Date:<br>Ending Date:<br>Test Length: | 18-3353-6267<br>15 Jul-22 12:45<br>: 17 Jul-22 11:30<br>47h | Pro<br>Spe       | t Type:<br>tocol:<br>ecies:<br>on:                               | Development-S<br>EPA/600/R-95/<br>Mytilis galloprov<br>Bivalvia | 136 (1995)           |                  |   |      | Anal<br>Dilue<br>Brine<br>Sour | ent:<br>e:           | Labo<br>Not | y Colvin<br>oratory Seav<br>Applicable<br>d Collected | vater      | <b>Age</b> : NA |
| Sample ID:<br>Sample Date<br>Receipt Date<br>Sample Age: | : 15 Jul-22                                                 | Mat<br>CA        | Code: 2AFB136  Material: Copper sulfate  CAS (PC):  Client: NRSW |                                                                 |                      |                  |   |      | Proje<br>Sour<br>Stati         | rce: Reference Toxio |             |                                                       | ant        | ıry             |
| Multiple Com                                             | nparison Summa                                              | ry               |                                                                  |                                                                 |                      |                  |   |      |                                |                      |             |                                                       |            |                 |
| Analysis ID                                              | Endpoint                                                    |                  | Comp                                                             | arison Method                                                   |                      |                  | ✓ | NOE  | ΞL                             | LOE                  | L           | TOEL                                                  | PMSD       | s               |
| 02-9244-0978                                             | 3 Combined Propo                                            | ortion Norm      | al Steel I                                                       | Many-One Rank                                                   | Sum Test             |                  | ✓ | 4.1  |                                | 5.8                  |             | 4.876                                                 | 11.7%      | 1               |
| Point Estima                                             | te Summary                                                  |                  |                                                                  |                                                                 |                      |                  |   |      |                                |                      |             |                                                       |            |                 |
| Analysis ID                                              | Endpoint                                                    |                  | Point                                                            | Estimate Metho                                                  | od                   |                  | ✓ | Lev  | el                             | μg/L                 |             | 95% LCL                                               | 95% UCL    | s               |
| 02-3886-8571                                             | Combined Propo                                              | ortion Norm      | al Trimm                                                         | ed Spearman-K                                                   | ärber                |                  | √ | EC5  | 50                             | 6.12                 |             | 6.028                                                 | 6.214      | 1               |
| Combined P                                               | roportion Normal                                            | Summary          | 1                                                                |                                                                 |                      |                  |   |      |                                |                      |             |                                                       |            |                 |
| Conc-µg/L                                                | Code                                                        | Count            | Mean                                                             | 95% LCL                                                         | 95% UCL              | Min              |   | Мах  | •                              | Std                  | Err         | Std Dev                                               | CV%        | %Effect         |
| 0                                                        | LC                                                          | 5                | 0.9720                                                           | 0.9571                                                          | 0.9868               | 0.9540           |   | 0.98 | 325                            | 0.00                 | 53          | 0.0119                                                | 1.23%      | 0.00%           |
| 2.9                                                      |                                                             | 5                | 0.9656                                                           | 0.9530                                                          | 0.9783               | 0.9551           |   | 0.98 | 806                            | 0.00                 | 46          | 0.0102                                                | 1.05%      | 0.65%           |
| 4.1                                                      |                                                             | 5                | 0.9446                                                           | 0.9119                                                          | 0.9773               | 0.9068           |   | 0.97 | <b>'</b> 59                    | 0.01                 | 18          | 0.0263                                                | 2.79%      | 2.81%           |
| 5.8                                                      |                                                             | 5                | 0.5612                                                           | 2 0.1917                                                        | 0.9306               | 0.2301           |   | 0.82 | 235                            | 0.13                 | 31          | 0.2976                                                | 53.02%     | 42.27%          |
| 8.4                                                      |                                                             | 5                | 0.0484                                                           | 4 0.0118                                                        | 0.0850               | 0.0000           |   | 0.07 | '50                            | 0.01                 | 32          | 0.0295                                                | 60.95%     | 95.02%          |
| 12                                                       |                                                             | 5                | 0.0000                                                           | 0.0000                                                          | 0.0000               | 0.0000           |   | 0.00 | 000                            | 0.00                 | 00          | 0.0000                                                |            | 100.00%         |
| 17.2                                                     |                                                             | 5                | 0.0000                                                           | 0.0000                                                          | 0.0000               | 0.0000           |   | 0.00 | 000                            | 0.00                 | 00          | 0.0000                                                |            | 100.00%         |
| Combined Pr                                              | roportion Normal                                            | l Detail         |                                                                  |                                                                 |                      |                  |   |      | MD5                            | 5: 5C4               | 0FE9        | 00B69A19D                                             | 498CA8D3   | B09CD103        |
| Conc-µg/L                                                | Code                                                        | Rep 1            | Rep 2                                                            | Rep 3                                                           | Rep 4                | Rep 5            |   |      |                                |                      |             |                                                       |            |                 |
| 0                                                        | LC                                                          | 0.9825           | 0.9817                                                           | 7 0.9540                                                        | 0.9663               | 0.9753           |   |      |                                |                      |             |                                                       |            |                 |
| 2.9                                                      |                                                             | 0.9625           | 0.9806                                                           | 0.9551                                                          | 0.9591               | 0.9708           |   |      |                                |                      |             |                                                       |            |                 |
| 4.1                                                      |                                                             | 0.9759           | 0.9379                                                           | 0.9620                                                          | 0.9068               | 0.9404           |   |      |                                |                      |             |                                                       |            |                 |
| 5.8                                                      |                                                             | 0.8235           | 0.7908                                                           |                                                                 | 0.7152               | 0.2462           |   |      |                                |                      |             |                                                       |            |                 |
| 8.4                                                      |                                                             | 0.0255           | 0.7500                                                           |                                                                 | 0.0000               | 0.2402           |   |      |                                |                      |             |                                                       |            |                 |
|                                                          |                                                             |                  |                                                                  |                                                                 |                      |                  |   |      |                                |                      |             |                                                       |            |                 |
| 12<br>17.2                                               |                                                             | 0.0000           | 0.0000                                                           |                                                                 | 0.0000               | 0.0000           |   |      |                                |                      |             |                                                       |            |                 |
|                                                          |                                                             |                  |                                                                  |                                                                 |                      |                  |   |      |                                |                      |             |                                                       |            |                 |
|                                                          | roportion Normal                                            |                  |                                                                  | Don 2                                                           | Bon 4                | Don 5            |   |      |                                |                      |             |                                                       |            |                 |
| Conc-μg/L                                                | Code<br>LC                                                  | Rep 1<br>168/171 | Rep 2                                                            | _                                                               | <b>Rep 4</b> 172/178 | Rep 5<br>158/162 | 2 |      |                                |                      |             |                                                       |            |                 |
| 2.9                                                      | LO                                                          | 154/160          | 152/1                                                            |                                                                 | 164/171              | 166/17           |   |      |                                |                      |             |                                                       |            |                 |
| 4.1                                                      |                                                             | 162/166          | 152/16                                                           |                                                                 | 146/161              | 142/15           |   |      |                                |                      |             |                                                       |            |                 |
|                                                          |                                                             |                  |                                                                  |                                                                 |                      |                  | 1 |      |                                |                      |             |                                                       |            |                 |
| 5.8                                                      |                                                             | 126/153          | 121/15                                                           |                                                                 | 118/165              | 32/130           |   |      |                                |                      |             |                                                       |            |                 |
| 8.4                                                      |                                                             | 12/160           | 8/137                                                            | 9/137                                                           | 0/127                | 6/140            |   |      |                                |                      |             |                                                       |            |                 |
| 12                                                       |                                                             | 0/112            | 0/112                                                            | 0/112                                                           | 0/112                | 0/112            |   |      |                                |                      |             |                                                       |            |                 |

0/112

0/112

**Report Date:** 05 Jan-23 08:24 (p 1 of 2) **Test Code/ID:** NIWC-2022-144 / 14-3741-3724

| Disable Laure         |        | decal and D       |           |                               |                    |                       |                  |      |                      |                   |                | Code/i                                    |        |                       |                  | 4-3/41-3/24       |
|-----------------------|--------|-------------------|-----------|-------------------------------|--------------------|-----------------------|------------------|------|----------------------|-------------------|----------------|-------------------------------------------|--------|-----------------------|------------------|-------------------|
| Bivalve Larva         | Sur    | vival and D       | evelop    | ment Test                     |                    |                       |                  |      |                      |                   |                |                                           | NIV    | WC Pacific            | Bioassay         | Laboratory        |
| Analysis ID:          |        | 244-0978          |           | Endpoint:                     |                    | nbined Prop           |                  |      |                      |                   |                | S Vers                                    |        | CETISv1               | .9.7             |                   |
| Analyzed:             |        | an-23 8:19        |           | Analysis:                     |                    | nparametric-          |                  |      |                      | D.400             |                | IS Leve                                   | el:    | 1                     | 405.5            |                   |
| Edit Date:            | 05 Ja  | an-23 8:15        |           | MD5 Hash:                     | 5C4                | 10FE900B69            | 9A19D4           | 98C/ | 48D3B09C             | D103              | Edito          | or ID:                                    |        | 008-623-              | 435-5            |                   |
| Batch ID:             | 18-3   | 353-6267          |           | Test Type:                    | Dev                | elopment-S            | urvival          |      |                      |                   | Anal           | yst:                                      | Molly  | y Colvin              |                  |                   |
| Start Date:           |        | ıl-22 12:45       |           | Protocol:                     |                    | 4/600/R-95/           |                  | 95)  |                      |                   | Dilue          | nt:                                       |        | oratory Sea           | water            |                   |
| Ending Date:          |        | ul-22 11:30       |           | Species:                      | -                  | ilis galloprov        | /incialis        |      |                      |                   | Brine          |                                           |        | Applicable            |                  |                   |
| Test Length:          | 47h    |                   |           | Taxon:                        | Biva               | alvia                 |                  |      |                      |                   | Sour           | ce:                                       | Field  | I Collected           |                  | Age: NA           |
| Sample ID:            | 00-4   | 506-8598          |           | Code:                         | 2AF                | B136                  |                  |      |                      |                   | Proje          | ect:                                      | Sant   | a Margarita           | River Estu       | ary               |
| Sample Date:          | 15 Ju  | ul-22             |           | Material:                     | Cop                | per sulfate           |                  |      |                      |                   | Sour           | ce:                                       | Refe   | rence Toxic           | ant              |                   |
| Receipt Date:         | 15 Ju  | ıl-22             |           | CAS (PC):                     |                    |                       |                  |      |                      |                   | Stati          | on:                                       | Refe   | rence Toxic           | ant              |                   |
| Sample Age:           | 13h    |                   |           | Client:                       | NR                 | SW                    |                  |      |                      |                   |                |                                           |        |                       |                  |                   |
| Data Transfor         | m      |                   | Alt F     | lyp                           |                    |                       |                  |      | NOEL                 | LO                | ĒL.            | TOEL                                      | _      | TU                    | MSDu             | PMSD              |
| Angular (Corre        | ected) |                   | C > T     |                               |                    |                       |                  |      | 4.1                  | 5.8               |                | 4.876                                     | i      |                       | 0.1136           | 11.68%            |
| Steel Many-O          | ne Ra  | ınk Sum Te        | st        |                               |                    |                       |                  |      |                      |                   |                |                                           |        |                       |                  |                   |
| Control               | vs     | Conc-µg/          |           | Test S                        | Stat               | Critical              | Ties             | DF   | P-Type               | P-V               | alue           | Decis                                     | sion(  | α:5%)                 |                  |                   |
| Lab Control           |        | 2.9               |           | 23                            |                    | 17                    | 0                | 8    | CDF                  | 0.39              | 998            | Non-S                                     | Signif | icant Effect          |                  |                   |
|                       |        | 4.1               |           | 19                            |                    | 17                    | 0                | 8    | CDF                  | 0.1               | 130            | Non-S                                     | Signif | icant Effect          |                  |                   |
|                       |        | 5.8*              |           | 15                            |                    | 17                    | 0                | 8    | CDF                  | 0.0               |                | _                                         |        | Effect                |                  |                   |
|                       |        | 8.4*              |           | 15                            |                    | 17                    | 0                | 8    | CDF                  | 0.0               | 158            | Signi                                     | ficant | Effect                |                  |                   |
| ANOVA Table           | 1      |                   |           |                               |                    |                       |                  |      |                      |                   |                |                                           |        |                       |                  |                   |
| Source                |        | Sum Squa          | ires      | Mean                          | Squ                | iare                  | DF               |      | F Stat               | P-V               | alue           | Decis                                     | sion(  | α:5%)                 |                  |                   |
| Between               |        | 5.36076           |           | 1.340                         | 19                 |                       | 4                |      | 58.61                | <1.0              | DE-05          | Signit                                    | ficant | Effect                |                  |                   |
| Error                 |        | 0.457331          |           | 0.022                         | 8666               | <b>i</b>              | 20               |      | _                    |                   |                |                                           |        |                       |                  |                   |
| Total                 |        | 5.81809           |           |                               |                    |                       | 24               |      |                      |                   |                |                                           |        |                       |                  |                   |
| ANOVA Assu            | mptio  |                   |           |                               |                    |                       |                  |      |                      |                   |                |                                           |        |                       |                  |                   |
| Attribute             |        | Test              |           | -f\/i T                       | Test Stat Critical |                       |                  |      |                      | alue              | Decision(a:1%) |                                           |        |                       |                  |                   |
| Variance Distribution |        |                   |           | of Variance T<br>Normality Te |                    |                       |                  |      | 13.28<br>0.8877      | 0.00              | E-05<br>158    | Unequal Variances Non-Normal Distribution |        | nn .                  |                  |                   |
|                       |        |                   |           |                               | -                  |                       | 0.0702           | -    | 0.0011               | 0.00              | 750            | 14011-1                                   | 101111 | ai Distributi         |                  |                   |
| Combined Pr           | oport  |                   |           | -                             |                    | 050/ 1.01             | 050/ 1           | 101  | Madian               | N#:               |                | Man                                       |        | C4-1 F                | C) /0/           | 0/ <b>F</b> #5 a4 |
| Conc-µg/L             |        | <b>Code</b><br>LC | Cour<br>5 | nt <b>Mean</b><br>0.972       | <u> </u>           | <b>95% LCL</b> 0.9571 | <b>95% L</b>     |      | <b>Median</b> 0.9753 | <b>Min</b><br>0.9 |                | <b>Max</b><br>0.982                       | 5      | <b>Std Err</b> 0.0053 | <b>CV%</b>       | %Effect<br>0.00%  |
| 2.9                   |        | LO                | 5<br>5    | 0.972                         |                    | 0.9571                | 0.988            |      | 0.9753               | 0.9               |                | 0.980                                     |        | 0.0053                | 1.23%            | 0.65%             |
| 4.1                   |        |                   | 5         | 0.944                         |                    | 0.9119                | 0.9773           |      | 0.9404               | 0.90              |                | 0.975                                     |        | 0.0040                | 2.79%            | 2.81%             |
| 5.8                   |        |                   | 5         | 0.561                         |                    | 0.1917                | 0.9306           |      | 0.7152               | 0.23              |                | 0.823                                     |        | 0.1331                | 53.02%           | 42.27%            |
| 8.4                   |        |                   | 5         | 0.048                         |                    | 0.0118                | 0.0850           |      | 0.0584               | 0.00              |                | 0.075                                     | 0      | 0.0132                | 60.95%           | 95.02%            |
| 12                    |        |                   | 5         | 0.000                         |                    | 0.0000                | 0.0000           |      | 0.0000               | 0.00              |                | 0.000                                     |        | 0.0000                |                  | 100.00%           |
| 17.2                  |        |                   | 5         | 0.000                         | 0                  | 0.0000                | 0.0000           | )    | 0.0000               | 0.00              | 000            | 0.000                                     | 0      | 0.0000                |                  | 100.00%           |
| Angular (Cor          | ectec  | l) Transforn      | ned S     | ummary                        |                    |                       |                  |      |                      |                   |                |                                           |        |                       |                  |                   |
| Conc-µg/L             |        | Code              | Cour      |                               |                    | 95% LCL               | 95% L            |      | Median               | Min               |                | Max                                       |        | Std Err               | CV%              | %Effect           |
| 0                     |        | LC                | 5         | 1.405                         |                    | 1.3620                | 1.4490           |      | 1.4130               | 1.35              |                | 1.438                                     |        | 0.0157                | 2.50%            | 0.00%             |
| 2.9                   |        |                   | 5         | 1.386                         |                    | 1.3490                | 1.4230           |      | 1.3760               | 1.35              |                | 1.431                                     |        | 0.0132                | 2.13%            | 1.37%             |
| 4.1                   |        |                   | 5         | 1.339                         |                    | 1.2660                | 1.4120           |      | 1.3240               | 1.26              |                | 1.415                                     |        | 0.0263                | 4.39%            | 4.75%             |
| 5.8<br>8.4            |        |                   | 5<br>5    | 0.852<br>0.206                |                    | 0.4596<br>0.0897      | 1.2450<br>0.3237 |      | 1.0080<br>0.2441     | 0.50              |                | 1.137<br>0.277                            |        | 0.1413<br>0.0421      | 37.09%<br>45.57% | 39.37%<br>85.29%  |
| 12                    |        |                   | 5         | 0.200                         |                    | 0.0473                | 0.0473           |      | 0.2441               | 0.04              |                | 0.277                                     |        | 0.0421                | 0.00%            | 96.64%            |
| 17.2                  |        |                   | 5         | 0.046                         |                    | 0.0446                | 0.0485           |      | 0.0473               | 0.04              |                | 0.047                                     |        | 0.0007                | 3.42%            | 96.69%            |
|                       |        |                   | -         |                               |                    | •                     |                  |      | •                    |                   | - '            |                                           | -      |                       |                  |                   |

12

0/112

0/112

0/112

**Report Date:** 05 Jan-23 08:24 (p 2 of 2) **Test Code/ID:** NIWC-2022-144 / 14-3741-3724

|                                         | <b>,</b>                                         |            |                                                                                                                               |         |                                               |                                   | Test Code/ID: | NIWC-2022-144 / 14-3741-3724   |
|-----------------------------------------|--------------------------------------------------|------------|-------------------------------------------------------------------------------------------------------------------------------|---------|-----------------------------------------------|-----------------------------------|---------------|--------------------------------|
| Bivalve Larva                           | al Survival and D                                | evelopme   | nt Test                                                                                                                       |         |                                               |                                   | NIV           | NC Pacific Bioassay Laboratory |
| Analysis ID:<br>Analyzed:<br>Edit Date: | 02-9244-0978<br>05 Jan-23 8:19<br>05 Jan-23 8:15 | Ana        | indpoint: Combined Proportion Normal unalysis: Nonparametric-Control vs Treatments 1D5 Hash: 5C40FE900B69A19D498CA8D3B09CD103 |         | CETIS Version:<br>Status Level:<br>Editor ID: | CETISv1.9.7<br>1<br>008-623-435-5 |               |                                |
| Combined P                              | roportion Norma                                  | l Detail   |                                                                                                                               |         |                                               |                                   |               |                                |
| Conc-µg/L                               | Code                                             | Rep 1      | Rep 2                                                                                                                         | Rep 3   | Rep 4                                         | Rep 5                             |               |                                |
| 0                                       | LC                                               | 0.9825     | 0.9817                                                                                                                        | 0.9540  | 0.9663                                        | 0.9753                            |               |                                |
| 2.9                                     |                                                  | 0.9625     | 0.9806                                                                                                                        | 0.9551  | 0.9591                                        | 0.9708                            |               |                                |
| 4.1                                     |                                                  | 0.9759     | 0.9379                                                                                                                        | 0.9620  | 0.9068                                        | 0.9404                            |               |                                |
| 5.8                                     |                                                  | 0.8235     | 0.7908                                                                                                                        | 0.2301  | 0.7152                                        | 0.2462                            |               |                                |
| 8.4                                     |                                                  | 0.0750     | 0.0584                                                                                                                        | 0.0657  | 0.0000                                        | 0.0429                            |               |                                |
| 12                                      |                                                  | 0.0000     | 0.0000                                                                                                                        | 0.0000  | 0.0000                                        | 0.0000                            |               |                                |
| 17.2                                    |                                                  | 0.0000     | 0.0000                                                                                                                        | 0.0000  | 0.0000                                        | 0.0000                            |               |                                |
| Angular (Cor                            | rected) Transfor                                 | med Detail |                                                                                                                               |         |                                               |                                   |               |                                |
| Conc-µg/L                               | Code                                             | Rep 1      | Rep 2                                                                                                                         | Rep 3   | Rep 4                                         | Rep 5                             |               |                                |
| 0                                       | LC                                               | 1.4380     | 1.4350                                                                                                                        | 1.3550  | 1.3860                                        | 1.4130                            |               |                                |
| 2.9                                     |                                                  | 1.3760     | 1.4310                                                                                                                        | 1.3570  | 1.3670                                        | 1.3990                            |               |                                |
| 4.1                                     |                                                  | 1.4150     | 1.3190                                                                                                                        | 1.3750  | 1.2610                                        | 1.3240                            |               |                                |
| 5.8                                     |                                                  | 1.1370     | 1.0960                                                                                                                        | 0.5003  | 1.0080                                        | 0.5191                            |               |                                |
| 8.4                                     |                                                  | 0.2774     | 0.2441                                                                                                                        | 0.2592  | 0.0444                                        | 0.2085                            |               |                                |
| 12                                      |                                                  | 0.0473     | 0.0473                                                                                                                        | 0.0473  | 0.0473                                        | 0.0473                            |               |                                |
| 17.2                                    |                                                  | 0.0473     | 0.0437                                                                                                                        | 0.0473  | 0.0473                                        | 0.0473                            |               |                                |
| Combined P                              | roportion Norma                                  | I Binomial | s                                                                                                                             |         | •                                             |                                   |               |                                |
| Conc-µg/L                               | Code                                             | Rep 1      | Rep 2                                                                                                                         | Rep 3   | Rep 4                                         | Rep 5                             |               |                                |
| 0                                       | LC                                               | 168/171    | 161/164                                                                                                                       | 166/174 | 172/178                                       | 158/162                           |               |                                |
| 2.9                                     |                                                  | 154/160    | 152/155                                                                                                                       | 149/156 | 164/171                                       | 166/171                           |               |                                |
| 4.1                                     |                                                  | 162/166    | 151/161                                                                                                                       | 152/158 | 146/161                                       | 142/151                           |               |                                |
| 5.8                                     |                                                  | 126/153    | 121/153                                                                                                                       | 26/113  | 118/165                                       | 32/130                            |               |                                |
| 8.4                                     |                                                  | 12/160     | 8/137                                                                                                                         | 9/137   | 0/127                                         | 6/140                             |               |                                |
|                                         |                                                  |            |                                                                                                                               |         |                                               |                                   |               |                                |



0/112

0/112

**Report Date**: 05 Jan-23 08:24 (p 1 of 2) **Test Code/ID**: NIWC-2022-144 / 14-3741-3724

|                                      |                 |               |                    |                 |             |              |        | Test  | Code/ID  | ):    | NIWC-20     | 022-144 / 1 | 4-3741-3724 |
|--------------------------------------|-----------------|---------------|--------------------|-----------------|-------------|--------------|--------|-------|----------|-------|-------------|-------------|-------------|
| Bivalve Larva                        | al Survival and | Developmer    | nt Test            |                 |             |              |        |       |          | NIV   | VC Pacific  | Bioassay    | Laboratory  |
| Analysis ID:                         | 02-3886-8571    | End           | lpoint: Co         | mbined Prop     | ortion Norm | al           |        | CET   | IS Versi | on:   | CETISv1     | .9.7        |             |
| Analyzed:                            | 05 Jan-23 8:19  |               | -                  | immed Spear     |             |              |        |       | ıs Level | :     | 1           |             |             |
| Edit Date:                           | 05 Jan-23 8:1   | 5 <b>MD</b> : | <b>5 Hash</b> : 50 | :40FE900B69     | A19D498C    | A8D3B09CE    | 0103   | Edito | or ID:   |       | 008-623-    | 435-5       |             |
| Batch ID:                            | 18-3353-6267    | Tes           | t Type: De         | evelopment-Si   | urvival     |              |        | Anal  | yst: 1   | Molly | Colvin      |             |             |
| Start Date:                          | 15 Jul-22 12:4  |               | tocol: EF          | PA/600/R-95/1   | 36 (1995)   |              |        | Dilue | ent: l   | Labo  | ratory Sea  | water       |             |
| Ending Date:                         | 17 Jul-22 11:3  | Spe           | cies: My           | tilis galloprov | incialis    |              |        | Brin  |          |       | applicable  |             |             |
| Test Length:                         | 47h             | Тах           | on: Biv            | valvia          |             |              |        | Sour  | rce: F   | Field | Collected   |             | Age: NA     |
| Sample ID:                           | 00-4506-8598    | Cod           | le: 2A             | FB136           |             |              |        | Proje | ect: S   | Santa | a Margarita | River Estu  | ary         |
| Sample Date:                         | : 15 Jul-22     | Mat           | erial: Co          | opper sulfate   |             |              |        | Sour  | rce: [   | Refer | rence Toxic | cant        |             |
| Receipt Date:                        | : 15 Jul-22     | CAS           | S (PC):            |                 |             |              |        | Stati | on:      | Refer | rence Toxic | cant        |             |
| Sample Age:                          | 13h             | Clie          | nt: NF             | RSW             |             |              |        |       |          |       |             |             |             |
| Trimmed Spe                          | earman-Kärber   | Estimates     |                    |                 |             |              |        |       |          |       |             |             |             |
| Threshold Op                         | otion           | Threshold     | Trim               | Mu              | Sigma       | EC50         | 95%    | 6 LCL | 95% U    | ICL   |             |             |             |
| Control Thresh                       | hold            | 0.02827       | 0.64%              | 0.7867866       | 0.003298    | 6.12         | 6.02   | 28    | 6.214    |       |             |             |             |
| Combined Pr                          | oportion Norm   | nal Summary   |                    |                 | Calcu       | lated Variat | te(A/E | 3)    |          |       |             | Isotor      | nic Variate |
| Conc-µg/L                            | Code            | Count         | Mean               | Median          | Min         | Max          | CV     | %     | %Effe    | ct    | A/B         | Mean        | %Effect     |
| 0                                    | LC              | 5             | 0.9720             | 0.9753          | 0.9540      | 0.9825       | 1.23   | 3%    | 0.00%    |       | 825/849     | 0.9720      | 0.00%       |
| 2.9                                  |                 | 5             | 0.9656             | 0.9625          | 0.9551      | 0.9806       | 1.05   | 5%    | 0.65%    |       | 785/813     | 0.9656      | 0.65%       |
| 4.1                                  |                 | 5             | 0.9446             | 0.9404          | 0.9068      | 0.9759       | 2.79   |       | 2.81%    |       | 753/797     | 0.9446      | 2.81%       |
| 5.8                                  |                 | 5             | 0.5612             | 0.7152          | 0.2301      | 0.8235       | 53.0   |       | 42.279   |       | 423/714     | 0.5612      | 42.27%      |
| 8.4                                  |                 | 5             | 0.0484             | 0.0584          | 0.0000      | 0.0750       | 60.9   | 95%   | 95.029   |       | 35/701      | 0.0484      | 95.02%      |
| 12                                   |                 | 5             | 0.0000             | 0.0000          | 0.0000      | 0.0000       |        |       | 100.00   |       | 0/560       | 0.0000      | 100.00%     |
| 17.2                                 |                 | 5             | 0.0000             | 0.0000          | 0.0000      | 0.0000       |        |       | 100.00   | J%    | 0/579       | 0.0000      | 100.00%     |
| Combined Pr                          | oportion Norm   | nal Detail    |                    |                 |             |              |        |       |          |       |             |             |             |
| Conc-µg/L                            | Code            | Rep 1         | Rep 2              | Rep 3           | Rep 4       | Rep 5        |        |       |          |       |             |             |             |
| 0                                    | LC              | 0.9825        | 0.9817             | 0.9540          | 0.9663      | 0.9753       |        |       |          |       |             |             |             |
| 2.9                                  |                 | 0.9625        | 0.9806             | 0.9551          | 0.9591      | 0.9708       |        |       |          |       |             |             |             |
| 4.1                                  |                 | 0.9759        | 0.9379             | 0.9620          | 0.9068      | 0.9404       |        |       |          |       |             |             |             |
| 5.8                                  |                 | 0.8235        | 0.7908             | 0.2301          | 0.7152      | 0.2462       |        |       |          |       |             |             |             |
| 8.4                                  |                 | 0.0750        | 0.0584             | 0.0657          | 0.0000      | 0.0429       |        |       |          |       |             |             |             |
| 12                                   |                 | 0.0000        | 0.0000             | 0.0000          | 0.0000      | 0.0000       |        |       |          |       |             |             |             |
| 17.2                                 |                 | 0.0000        | 0.0000             | 0.0000          | 0.0000      | 0.0000       |        |       |          |       |             |             |             |
| Combined Proportion Normal Binomials |                 |               |                    |                 |             |              |        |       |          |       |             |             |             |
| Conc-µg/L                            | Code            | Rep 1         | Rep 2              | Rep 3           | Rep 4       | Rep 5        |        |       |          |       |             |             |             |
| 0                                    | LC              | 168/171       | 161/164            | 166/174         | 172/178     | 158/162      |        |       |          |       |             |             |             |
| 2.9                                  |                 | 154/160       | 152/155            | 149/156         | 164/171     | 166/171      |        |       |          |       |             |             |             |
| 4.1                                  |                 | 162/166       | 151/161            | 152/158         | 146/161     | 142/151      |        |       |          |       |             |             |             |
| 5.8                                  |                 | 126/153       | 121/153            | 26/113          | 118/165     | 32/130       |        |       |          |       |             |             |             |
| 8.4                                  |                 | 12/160        | 8/137              | 9/137           | 0/127       | 6/140        |        |       |          |       |             |             |             |
| 12                                   |                 | 0/112         | 0/112              | 0/112           | 0/112       | 0/112        |        |       |          |       |             |             |             |
| 17.2                                 |                 | 0/112         | 0/131              | 0/112           | 0/112       | 0/112        |        |       |          |       |             |             |             |

Report Date: Test Code/ID: 05 Jan-23 08:24 (p 2 of 2) NIWC-2022-144 / 14-3741-3724



#### **Embryo Larval Bioassay**

#### **48-Hour Development**

Project: Camp Pendleton - Santa Margarita Estuary Test Sp

Test Species: M. galloprovincialis

Sample ID: Reference Toxicant CuSO4

**Start Date:** 7/15/2022

Test No.: NIWC-2022-144

**End Date:** 7/17/2022

| Random # | Number Normal | Number Abnormal | Technician Initials |  |  |
|----------|---------------|-----------------|---------------------|--|--|
| 21       | 32            | 98              | MC.                 |  |  |
| 22       | Ø             | 127             | MC                  |  |  |
| 23       | P             | 131             | MC                  |  |  |
| 24       | 166           | 8               | nc                  |  |  |
| 25       | 154           | Q               | nc                  |  |  |
| 26       | metal 26      | M 8 87          | uc                  |  |  |
| 27       | 161           | 3               | mc                  |  |  |
| 28       | 146           | 15              | MC                  |  |  |
| 29       | 162           | 4               | MC                  |  |  |
| 30       | Ø             |                 | ILC                 |  |  |
| 31       | 8             | 129             | MC                  |  |  |
| 32       | 12            | WX              | MC                  |  |  |
| 33       | 126           | 28              | MC                  |  |  |
| 34       | Ø             |                 | MC                  |  |  |
| 35       | 172           | (0              | MC                  |  |  |
| 36       | Ø             | -               | MC                  |  |  |
| 37       | 168           | 3               | MC                  |  |  |
| 38       | Ø             |                 | NC                  |  |  |
| 39       | 9             | 128             | MC                  |  |  |
| 40       | Ø             | agenta.         | MC                  |  |  |
| 41       | 151           | 10              | MC                  |  |  |
| 42       | Ø             | -               | nc                  |  |  |
| 43       | 6             | 134             | MC                  |  |  |
| 44       | Ø             | _               | MC                  |  |  |
| 45       | 149           | 7               | ine                 |  |  |
| 46       | 152           | 3               | MC                  |  |  |
| 47       | 164           | 7               | MC                  |  |  |
| 48       | 158           | 4               | MC                  |  |  |
| 49       | Ø             |                 | nc                  |  |  |
| 50       | 152           | 6               | MC                  |  |  |
| 51       | 166           | 5               | Me                  |  |  |
| 52       | 121           | 32              | me                  |  |  |
| 53       | 142           | 9               | W                   |  |  |
| 54       | Ф             |                 | ne                  |  |  |
| 55       | 118           | 47              | ML                  |  |  |

| QC Check: | M | Final Review: | Ill. | 8/15/2022 |
|-----------|---|---------------|------|-----------|

# Camp Pendleton - Santa Margarita Estuary Bivalve Development Test Test Initiation Date: 7/15/2022 Copper Reference Toxicant

| Copper Concentration (μg/L)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Replicate | Random #                   |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|----------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | A         | 37, -                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | В         | 27 -                       |
| 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | С         | 24 -                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | D         | 35 <b>~</b><br>48 <b>~</b> |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Ε /       |                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | A         | 25 <b>–</b><br>46 <b>–</b> |
| 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | В         | 46 -                       |
| 2.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | C         | 47 -                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | D         | 51 -                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | E         | 29 -                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | A         | 41 -                       |
| 4.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | В         | 50 -                       |
| 4.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | C         | 28 -                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | D<br>E    | 53 -                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | A         | 33 -                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           | 52 -                       |
| 5.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | B<br>C    | 26 -                       |
| 5.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | D         | 55 -                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | E         | 21 -                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | A         | 32 -                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           | 31, -                      |
| 8.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | B<br>C    | 39 🏎                       |
| <b></b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | D         | 22 -                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | E         | 43 -                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | A         | 42 -                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | В         | 36 -                       |
| 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | B<br>C    | 49 -                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | D         | 30 -                       |
| a contract of the contract of | E         | 44 -                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Α         | 40 🕳                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | В         | 23 —                       |
| 17.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | C         | 38 -                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | D         | 34 <b>—</b>                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | E         | 54 🕳                       |

QC Check - Bivalve:

# Marine Chronic Bioassay

Water Quality Measurements

Project: Camp Pendleton - Santa Margarita Estuary

Sample ID: Copper Sulfate Reference Toxicant

Test No.: NIWC-2022-144

Start Date/Time: 7/15/2022 12 45
End Date/Time: 7/17/2022 13-0-50

|                                  |    | î              |                         |                             |                                       | Т                               | _                | г –             |                                   | T -                   | _     |                  |                    | т—                          |                                |
|----------------------------------|----|----------------|-------------------------|-----------------------------|---------------------------------------|---------------------------------|------------------|-----------------|-----------------------------------|-----------------------|-------|------------------|--------------------|-----------------------------|--------------------------------|
| _                                | 48 |                | 90%                     |                             | 8.00                                  | 1                               | 900              |                 | 900                               |                       | 8.06  |                  | 8.06               |                             | 80.8                           |
| Hd<br>Stinn Ha                   | 24 | - 0            | 9.01 8:06               | , , , -<br>(                | 8,0                                   | 2                               | 90.8 109 40.8    | 3               | 2,0,0                             | 8 16                  |       | 700              | 2,0                | 200                         | -<br>0,<br>0                   |
|                                  | 0  | 6              | 0.0                     | 3                           | 90.8 10'8 40.8 8.101 9.201 5.001      | 6                               |                  | 1100            | 00.8 102.9 102.2 0.20 1 5.01 8.00 | 10.18 [O-1 1.03 81.01 | 40.0  | 000              | 90.8 10,0 LU.8     | 0 15                        | 106.1 101.5 102.2 0 0.0 1 8.08 |
| ygen<br>at.)                     | 48 | 10.1           | 5.101                   | 7.01                        | 8.101                                 | 10.3                            | 102.2            | 6.01            | 102.2                             | 10.3                  | 102,0 | 6.01             | 102.0              | 4.01                        | 102.2                          |
| Dissolved Oxygen (mg/L / % sat.) | 24 | 1.01 (0.1 10.1 | 5.101/9791 8.50)        | 6.0                         | 162.6                                 | 10.1                            | 105.3 1026 102.2 | 1:91            | 102.4                             | 1.03                  | 5.70  | 10.14 102.6 10.3 | (0. ( ~            | 10.01                       | 101.5                          |
| Diss<br>(m                       | 0  |                |                         | 150 151 142 10.26 10.3 10.2 | 6.90                                  | 10.11                           | 105.3            | 10.13           | 105.5                             | 81'01                 | 106.0 | HO.14            | 105.7 10.1 4 102.0 | 10.23                       | 106,1                          |
| ıre                              | 48 | 4              | 3.1 33.5 15.6 15.1 14.3 |                             | 1.5                                   | 1. 171                          | 7.4              |                 |                                   |                       |       | 7 7              |                    | 150 161 142 10.63 10.1 10.4 |                                |
| Temperature (°C)                 | 24 | 16             | 1.2.1                   | 151                         | 1.71                                  | 1 11                            | 1>.(             | 15.1            | 1.61                              | 7                     | 1.51  | 10 10 10 4       | 17.1               | 15.1                        | 17.1                           |
| Y                                | 0  | 15. R          | · ·                     | 7                           | )                                     | ر<br>ر                          | プ<br>プ<br>う      | <u></u>         | (2.0                              | 120 121               | 0.0 1 | 7                | 120                | 0 7                         | i                              |
|                                  | 48 | ;              | 25.S                    | 33.4 225                    | 0.00                                  | 33.0 226 160 161 10.1 10.1 10.1 | 0.00             | 331 228 150 151 | 9                                 | 22                    |       | 22 1 22.6        | 5                  | 23.0                        |                                |
| Salinity<br>(ppt)                | 24 | 72             | 7.70                    | 33.4                        | , , , , , , , , , , , , , , , , , , , | 33.0                            | ,                | 22,1            |                                   | 33.1                  |       | 22 1             | 1./                | 23   239                    | 1                              |
|                                  | 0  | 22 8           | 26.0                    | 22 1                        | 1.00                                  | 22.3                            |                  | 22 2            | 17.2                              | 223                   | 02.00 | ,                | 25H                | 22 2                        | 23.3                           |
| Concentration                    |    |                |                         | 5.8                         |                                       | 8.4                             |                  | 12              |                                   | 17.2                  |       |                  |                    |                             |                                |

0 hrs: 24 hrs: 48 hrs:

Comments:

QC Check: All March Pacific Bioassay Lab, 53475 Strothe Rd, Bldg 111 Rm 116, San Diego, CA 92152

# CuSO<sub>4</sub> Reference Toxicant Concentration Calculations

Date of Test Initiations:

7/15/22

Date of Cu Stock:

3/5/22

Dilutions Prepared By:

Me

1 ppm Substock Preparation:

 $C_1V_1 = C_2V_2$ 

| · ppin oubotock i reparation.         |                  | $C_1V_1 = C_2V_2$ |
|---------------------------------------|------------------|-------------------|
| Parent stock concentration (µg/L):    | C <sub>1</sub> . | 1000000           |
| Target substock volume (mL):          | $V_2$            | 100               |
| Target substock concentration (µg/L): | $C_2$            | 1000              |
| Volume of parent stock to add (mL):   | $V_1$            | 0.1               |
|                                       |                  |                   |

 $V_1 = C_2 V_2 / C1$ 

Add 0.1mL (100µL) of parent stock to 100mL of FSW

# Bivalve Embryo-Development: Test Concentrations Preparation:

|                           | eparation. |                       |                                       |
|---------------------------|------------|-----------------------|---------------------------------------|
| Substock concentration (  | μg/L):     | C <sub>1</sub> , 7, 7 | 1000                                  |
| Target test volume (mL):  |            | $V_2$                 | 250                                   |
| Target test concentration | s (µg/L):  | Volume of parent      | stock to add (mL):                    |
|                           | $C_2$      | $V_1$                 | · · · · · · · · · · · · · · · · · · · |
|                           | 2.9        | 0.73                  |                                       |
|                           | 4.1        | 1.03                  |                                       |
|                           | 5.8        | 1.45                  |                                       |
|                           | 8.4        | 2.10                  |                                       |
|                           | 12         | 3.00                  |                                       |
| *                         | 17.2       | 4.30                  |                                       |

QC Check:

Final Review: Ul 8/15/22



QC Check: Final Review: Target ppt: Target ppt: Target ppt: Art SW SWI Art SW Art SW Brine Brine Test Performed: Koh Whole San SALSVY Crystal Sea other Crystal Sea Crystal Sea (Tab FSW) Cab FSW Z Lab FSW green heavy Salinity Adjustment? Source: Control/Dilution Water: Test Performed: Control/Dilution Water: Source: Control/Dilution Water: Salinity Adjustment? Source: Test Performed: Salinity Adjustment? moderate moderate Sample Description (circle): dditional Comments: 1 - Temperature of sample should be 0-6°C if received >24hrs past collection time. yellow light light other Color: no color pone Debris: none Odor/ (none) Project: CPEN - Santa Margarita Estuary Turbidity: Amount HCI: Duration/Rate: Vaguina Bour Sed 210-2201 Subsamples for Additional Chemistry Required? Organisms or Debris Test ID No(s): NIWC - 2022-Z bago 72 Final DO: J. Final pH: tot 0 Collection Date & Time: | 7 | Salinity (ppt) | Meter #: pH (units) | Meter #: Conductivity (µS/cm) | Meter #: Sample ID: Receipt Date & Time: Temperature OK?<sup>1</sup>: Meter # Check-in No.: of Containers & Container Type: oproximate Volume Received (L): Check-in Temperature (°C): DO (mg/L) | (% Sat.) Collection Temperature (°C): Sample Aeration? COC Complete? pH Adjustment? Filtration? Initial pH: Initial DO: Pore size: al Information Infare Center PACIFIC

4

| Sample Check-In Information                                         | SEDIMENT SIHT  From green orange other  noderate heavy  derate heavy other                                                                                       | itment? Y / (A) Target ppt: 25 Source: Crystal Sea Brine Water: Lab FSW Art SW  formed: May-law Sws                                                       | Crystal Sea Brine Art SW  Y / N Target ppt: Crystal Sea Brine Lab FSW Art SW | QC Check: MM Final Review: 141 8 115027                                                                                                                |
|---------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
| point"                                                              | Sample Description (circle): SEDIM Color: no color yellow (Frown Turbidity: none light moderate Odor: none other Sulfidia Definis: none light moderate           | Test Performed: Salinity Adjustment? Source: Control/Dilution Water: Test Performed: Salinity Adjustment?                                                 | Col<br>nount HCI:                                                            | Subsamples for Additional Chemistry Required?  Additional Comments: 1 - Temperature of sample should be 0-6°C if received >24hrs past collection time. |
| CPEN SME<br>MBZ - " Mid<br>NIMC- 2012-                              | 7022-644<br>-112/2012 1035<br>12-7<br>-12/2012 1000<br>1628                                                                                                      |                                                                                                                                                           | N N Organisms or Debris Final pH:                                            | I Chemistry Required?                                                                                                                                  |
| Naval Information Project: Warfare Center Sample ID: Test ID No(s): | Check-in No.: 2022  Collection Date & Time: 112 2022  Collection Temperature (°C): 22.7  Receipt Date & Time: 12 12.7  No. of Containers & Container Type: 152.2 | Check-in Temperature (°C): Temperature OK?¹: DO (mg/L)   (% Sat.) Meter # pH (units)   Meter #: Conductivity (µS/cm)   Meter #: Salinity (ppt)   Meter #: | COC Complete?  Filtration?  Pore size:   MM  pH Adjustment?    Initial pH:   | Sample Aeration?  Initial DO:  Subsamples for Additional Chemistry Required?  Additional Comments: 1 - Temperature of sample should be                 |

CPEN SME

Project:

Naval Information

يبير:Final Review Gon whole se Mez-der Sh QC Check: Target ppt: Target ppt: **Art SW Art SW** Brine **Art SW** Larras 1 Brine other Crystal Sea Crystal Sea Cab FSW **Crystal Sea** Lab FSW Lab FSVA SEDIMENT grown green moderate heavy Control/Dilution Water: Test Performed: Source: Test Performed: Salinity Adjustment? Salinity Adjustment? Source: Salinity Adjustment? Source: Control/Dilution Water: Control/Dilution Water: Test Performed: moderate Sample Description (circle): yellow Additional Comments: <sup>1</sup> - Temperature of sample should be 0-6°C if received >24hrs past collection time. light other Color: no color Tyrbidity: none none Odor: Cone Debris: Amount HCI: Duration/Rate: Test ID No(s): N.W.C. 1622 - 148 134 000/ Subsamples for Additional Chemistry Required? 2022-645 Arganisms or Debris Collection Date & Time: ロールー Receipt Date & Time: 711312011 **©** Final DO: , 5 しない e S Z Check-in No.: Sample ID: Collection Temperature (°C): No. of Containers & Container Type: Approximate Volume Received (L): Temperature OK?<sup>1</sup>: Meter # Salinity (ppt) | Meter #: Check-in Temperature (°C): pH (units) | Meter #: Conductivity (µS/cm) | Meter #: DO (mg/L) | (% Sat.) mw/ COC Complete? Pore size: Filtration? pH Adjustment? Sample Aeration? Initial pH: Initial DO: Warfare Center **PACIFIC** 

Naval Information Warfare Center ENERGY,

ENERGY AND ENVIRONMENTAL SUSTAINABILITY, Code 71760

Chain of Custody Record

53475 Strothe Road, Building 111 San Diego, CA 92152-5000

PACIFIC

arrival at Lab (°C) <del>2</del> 1. C 2 Lemperature upon οę Page\_ Requested Analyses 206 Slo1 Time: Sampler(s): NICA TOP-GW Contact Tel: 7/13/2022 28.9 Collection (o.) dwa\_ Email: Jo<del>hn:Trew@spawar.navy.mill</del> Date: LDPE bag Container Type Sample Type SVEN Received by: (Signature/Agency) Received by: (Signature/Agency) Matrix 28 Sed Collection -0975 Time 1030 SMF 50k 1050V Collection Project Title/Project Number: ENLINESSANTB 32 Calla Relinquished by: (Signature/Agency) Relinquished by: (Signature/Agency) MAZ 1 己 Sample Identification Special Instructions/Comments: dnd Project Leader: John Fren DE019 A WHY WEEK asa P\$106 TO SERVICE SER 會 TS4145 Tel:



# **Glossary of Qualifier Codes:**

- Q1 pH out of recommended range; refer to CAR
- Q2 Temperatures out of recommended range; corrective action taken and recorded in Test Temperature Correction Log
- Q3 Temperatures out of recommended range; no action taken, test terminated same day
- Q4 Sample aerated prior to initiation or renewal
- Q5 Salinity out of recommended range; refer to QA section of report
- Q6 Spilled test chamber/ Lost test animal
- Q7— Instrumentation Error/Failure; refer to CAR
- Q8 Inadequate sample volume, 50% renewal performed
- Q9 Inadequate sample volume, no renewal performed
- Q10 Sample out of holding time; refer to QA section of report
- Q11 Refer to QA section of report for explanation
- Q12 Supplemental information is footnoted
- Q13 Test initiated with an incorrect number of test organisms
- Q14 Replicate(s) not initiated
- Q15 Survival counts not recorded due to poor visibility or heavy debris
- Q16 Test aerated due to dissolved oxygen levels dropping below 4.0 mg/L
- Q17 Test initiated with aeration due to an anticipated drop in dissolved oxygen
- Q18 Airline obstructed or fell out of replicate and replaced, drop in dissolved oxygen occurred
- Q19 Animals out of appropriate age range at test initiation
- Q20 Readings not taken, tech error
- Q21 Organisms in replicate not counted, tech error
- Q22 Dissolved oxygen above recommended range, but remained within the 100% ±10% saturation requirement



# **INITIAL DISTRIBUTION**

| 84310 | Technical Library/Archives | (1) |
|-------|----------------------------|-----|
| 71760 | M. Colvin                  | (1) |
| 71750 | K. Sorensen                | (1) |
| 71760 | N. Hayman                  | (1) |
| 71750 | C. Sosa                    | (1) |
| 71750 | I. Rivera-Duarte           | (1) |

| Defense    | Technical    | Information | Center |
|------------|--------------|-------------|--------|
| Fort Belvo | ir, VA 22060 | –6218       | (1)    |



### REPORT DOCUMENTATION PAGE

Form Approved OMB No. 0704-01-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing the burden to Department of Defense, Washington Headquarters Services Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information information.

information if it does not display a currently valid OMB control number.

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

| NETONIN TOOKIN                                        |                                                                     |                                           |  |  |
|-------------------------------------------------------|---------------------------------------------------------------------|-------------------------------------------|--|--|
| 1. REPORT DATE (DD-MM-YYYY)                           | 2. REPORT TYPE                                                      | 3. DATES COVERED (From - To)              |  |  |
| September 2023                                        | Final                                                               |                                           |  |  |
| 4. TITLE AND SUBTITLE                                 |                                                                     | 5a. CONTRACT NUMBER                       |  |  |
| Conto Morgarita Catua                                 | y, 2022 Cadiment Manitaring Depart (Project                         |                                           |  |  |
|                                                       | ry 2022 Sediment Monitoring Report (Project C2743)-FINAL (MAY 2023) | 5b. GRANT NUMBER                          |  |  |
| PEIVIE                                                | (02/43)-FINAL (WAT 2023)                                            |                                           |  |  |
|                                                       |                                                                     | 5c. PROGRAM ELEMENT NUMBER                |  |  |
|                                                       |                                                                     |                                           |  |  |
| 6. AUTHORS                                            |                                                                     | 5d. PROJECT NUMBER                        |  |  |
| Molly Colvin Cas                                      | sandra Sosa                                                         |                                           |  |  |
| •                                                     | acio Rivera-Duarte                                                  | 5e. TASK NUMBER                           |  |  |
| Nicholas Hayman NIV                                   |                                                                     |                                           |  |  |
| NIWC Pacific                                          | 5f. WORK UNIT NUMBER                                                |                                           |  |  |
|                                                       |                                                                     |                                           |  |  |
| 7. PERFORMING ORGANIZATION NA                         | ME(S) AND ADDRESS(ES)                                               | a REDECRIMAN ORGANIZATION                 |  |  |
| NIWC Pacific                                          |                                                                     | 8. PERFORMING ORGANIZATION REPORT NUMBER  |  |  |
| 53560 Hull Street                                     |                                                                     | KEI OKT NOMBEK                            |  |  |
| San Diego, CA 92152–5001                              |                                                                     | TR-3320                                   |  |  |
| 191, 1 1 1 1 1 1                                      |                                                                     |                                           |  |  |
| 9. SPONSORING/MONITORING AGEN                         | ICY NAME(S) AND ADDRESS(ES)                                         | 10. SPONSOR/MONITOR'S ACRONYM(S)          |  |  |
| Marine Corps Base Camp Pe                             | ndleton Environmental Security                                      | MCBCP                                     |  |  |
| BLDG 23171 2ND Deck, Unnamed Road Oceanside, CA 92058 |                                                                     | 11. SPONSOR/MONITOR'S REPORT<br>NUMBER(S) |  |  |
| 12. DISTRIBUTION/AVAILABILITY ST                      | ATEMENT                                                             |                                           |  |  |
|                                                       |                                                                     | •                                         |  |  |

DISTRIBUTION STATEMENT A: Approved for public release. Distribution is unlimited.

## 13. SUPPLEMENTARY NOTES

### 14. ABSTRACT

This report describes results of sediment monitoring conducted in the Santa Margarita River Estuary (SMRE) located on Marine Corps Base Camp Pendleton (MCBCP) in 2022, performed on behalf of MCBCP Environmental Security (ES) Staff, in support of their Municipal Watershed Monitoring Program (MCBCP, 2020). Sediment monitoring was conducted at three (3) locations on 12 July 2022, during the summer index period, following the analytical techniques and quality controls/assurances as required under the Sediment Quality Assessment Technical Support Manual and as specified under the SMRE IO Workplan and Quality Assurance Project Plan. Samples were analyzed for standard sediment quality characteristics and benthic community composition, and were tested for toxicity with marine amphipods (*Eohaustorius estuarius*) and Mediterranean mussel (*Mytilus galloprovincialis*) embryos using standardized protocols. This report describes the methods, results and data evaluation used to meet the monitoring goals following the California Sediment Quality Objectives line of evidence framework to assess sediment quality using these various metrics.

### 15. SUBJECT TERMS

California Sediment Quality Objectives (CASQO), Sediment Monitoring, Marine Corps Base Camp Pendleton (MCBCP)

| 16. SECURITY CLASSIFICATION OF: |             | 17. LIMITATION OF |             | 19a. NAME OF RESPONSIBLE PERSON |                                           |
|---------------------------------|-------------|-------------------|-------------|---------------------------------|-------------------------------------------|
| a. REPORT                       | b. ABSTRACT | c. THIS PAGE      | ABSTRACT OF |                                 | Molly Colvin                              |
| U                               | 11          | 11                | CAD         |                                 | 19B. TELEPHONE NUMBER (Include area code) |
|                                 | U           | U                 | SAR         | 198                             | 619-553-2788                              |





DISTRIBUTION STATEMENT A: Approved for public release. Distribution is unlimited.

