
Condition of Outer Coastal Estuaries of Washington State, 1999

A Statistical Summary

March 2007

Publication No. 07-03-012

Publication Information

This report is available on the Department of Ecology's website at www.ecy.wa.gov/biblio/0703012.html

For more information contact:

Environmental Assessment Program P.O. Box 47600 Olympia, WA 98504-7600

E-mail: <u>csme461@ecy.wa.gov</u> Phone: 360-407-6677

Any use of product or firm names in this publication is for descriptive purposes only and does not imply endorsement by the author or the Department of Ecology.

If you need this publication in an alternate format, call Joan LeTourneau at 360-407-6764. Persons with hearing loss can call 711 for Washington Relay Service. Persons with a speech disability can call 877-833-6341.

Cover photo: Mouth of the Ozette River (Department of Ecology photo)

Condition of Outer Coastal Estuaries of Washington State, 1999

A Statistical Summary

by Sarah Wilson and Valerie Partridge

Environmental Monitoring & Trends Section Environmental Assessment Program Washington State Department of Ecology PO Box 47600 Olympia, WA 98504-7710

Publication No. 07-03-012

Waterbody Numbers: WA-17-0040, WA-18-0010, WA-19-0010, WA-19-2010, WA-20-0010, WA-20-6000, WA-21-2010, WA-21-3000, WA-21-5000, WA-21-7100, WA-22-0020, WA-22-0030, WA-24-0020, WA-25-1010, WA-26-1040, WA-CR-1010

This page is purposely left blank for duplex printing.

Table of Contents

List of Figures	3
List of Tables	4
Abstract	5
Preface	6
Acknowledgements	6
Executive Summary	7
General Habitat Condition Indicators	
Water Characteristics	
Sediment Characteristics	
Abiotic/Pollutant Exposure Condition Indicators	
Sediment and Fish-Tissue Contaminants	
Sediment Toxicity Tests	
Biotic Condition Indicators	
Benthic Infauna	
Demersal Fish	
Program Background	
West Coast Pilot EMAP Project	
Objectives	
The Washington Context	
1999-2000 Overall West Coast Design	
Washington Design	
Indicators	
Methods	
Sample Design	17
Background	17
1999 Washington Sampling Design	18
Quality Assurance and Quality Control	20
Field Sampling and Laboratory Analyses	20
General Habitat Condition Indicators	21
Exposure Condition Indicators	25
Biotic Condition Indicators	30
Statistical Data Analysis	33
Data Preparation	33
Cumulative Distribution Function Analyses	33
Comparisons to Sediment Quality Standards and Guidelines for	
Contaminants	35
Data Management	

Results	
Site Visits	
General Habitat Condition Indicators	
Hydrographic Profile	
Water Laboratory Analyses	
Sediment Characteristics	46
Exposure Condition Indicators	49
Sediment Contaminants	49
Sediment Toxicity	58
Fish-Tissue Contaminants	62
Marine Debris	63
Biotic Condition Indicators	64
Infaunal Species Richness and Diversity	64
Infaunal Abundance and Taxonomic Composition	65
Demersal Fish Species Richness and Abundance	68
Demersal Fish Species Gross Pathology	69
Epibenthic Invertebrate Occurrence	70
References	71
List of Acronyms, Abbreviations, and Units of Measure	75
Appendices	77

- A. Descriptions of Indicators
- B. Sampling Success
- C. General Habitat Condition Indicators
- D. Abiotic/Pollutant Exposure Condition Indicators
- E. Biotic Condition Indicators

List of Figures

Page

Figure 1.	North American coastal biogeographic provinces	14
Figure 2.	Washington Coastal EMAP 1999 target and actual survey sites	19
Figure 3.	Sample cumulative distribution function (CDF) graph	34
Figure 4.	Cumulative percent of study area by water column density stratification index	41
Figure 5.	Cumulative percent of study area by transmissivity at 1 m depth	42
Figure 6.	Cumulative percent of study area by water-column mean light-extinction coefficient	43
Figure 7.	Distribution of sediment types in Washington's coastal estuaries	47
Figure 8.	Cumulative percent of study area by sediment TOC	48
Figure 9.	Cumulative percent of study area by control-corrected survival of <i>Ampelisca abdita</i>	59
Figure 10	Cumulative percent of study area by control-corrected fertilization success of <i>Arbacia punctulata</i>	60
Figure 11	. Cumulative percent of study area by control-corrected normal morphological development of <i>Arbacia punctulata</i>	61
Figure 12	. Cumulative percent of study area by benthic macrofauna total abundance	66
Figure 14	. MDS map of benthic macrofaunal community similarity (taxa and abundance)	67
Figure 15	. Number of stations at which target species of fish were caught	68

List of Tables

Page

Table 1. Core environmental indicators for Coastal EMAP West	16
Table 2. Supplemental environmental indicators	16
Table 3. Hydrographic profile measurements	21
Table 4. Target analytes and analytical methods for sediment and fish-tissue chemistry analyses	26
Table 5. Primary and QA/QC taxonomists by taxonomic group and region	31
Table 6. Summary statistics for water vertical-profile physical parameters	38
Table 7. Summary statistics for water vertical-profile chemical parameters	39
Table 8. Summary statistics for sediment lithology	46
Table 9. Summary statistics for sediment metal concentrations	49
Table 10. Comparisons of sediment metals concentrations to sediment quality standards and guidelines	50
Table 11. Summary of sediment individual PAH concentrations	54
Table 12. Summary of sediment EMAP Total PAH concentrations	55
Table 13. Comparisons of sediment Total PAH concentrations to sediment quality standards and guidelines	56
Table 14. Summary of sediment individual PCB congener concentrations	56
Table 15. Summary statistics for sediment Total PCB and Total DDT concentrations	57
Table 16. Summary of sediment individual DDT concentrations	57
Table 17. Summary of control-corrected sediment toxicity test results	58
Table 18. Summary of fish-tissue metal concentrations	62
Table 19. Summary of fish-tissue PCB, DDT, and other pesticide residues	63
Table 20. Summary statistics for benthic macrofauna bioindices of community richness and diversity	64
Table 21. Summary statistics for total benthic macrofauna abundance	65
Table 22. Summary statistics for fish taxa richness, abundance, and catch per area swept	69
Table 23. Gross pathological anomalies observed in fish specimens	69

Abstract

The Coastal Environmental Monitoring and Assessment Program (EMAP) was developed by the U.S. Environmental Protection Agency to measure the condition of the nation's coastal waters. The purpose of EMAP is to assess how well pollution-control programs and policies are working to protect the environment. Numerous water, sediment, and biological measurements provide information on the physical environment, resident invertebrates and fish, and exposure of those animals to pollutants.

In 1999, estuaries along the outer coast of Washington were sampled as part of Coastal EMAP. The areas sampled included estuaries of the Strait of Juan de Fuca, Pacific Coast, and Columbia River, but not Puget Sound. This report provides a statistical summary of the results.

Fifty sample sites were selected randomly from four sizes of estuaries. Of those, 44 stations were sampled successfully, with all EMAP indicators measured at 37 stations and a partial set measured at 7 additional stations.

Overall, the estuaries had mostly well-mixed, clear waters with healthy levels of dissolved oxygen. Sediments were generally sandy, with relatively low organic content.

Sediments and whole-fish tissues were tested for pollutants. Of the metals examined, most were found in both sediments and fish. The sediment metals were all below Washington State sediment quality standards. Sediment polycyclic aromatic hydrocarbon (PAH) levels were generally below Washington State sediment quality standards, with a few unusually high exceptions. PCBs and DDTs were detected in all fish tissues analyzed, but rarely in sediment. Toxicity tests indicated that 5-16% of the area had toxic sediments.

The number of invertebrates living in the sediment ranged from 3 to over 3000 per sample, representing from 1 to 147 species. Of 431 invertebrate species found, 33 were non-native. Thirty-four bottom-living fish species were found. The trawl fish catches ranged from 1 to 336 fish, representing approximately 500-175,000 fish per square kilometer.

Preface

This document is a statistical summary of the data from the first annual Washington State estuaries component of the nationwide Environmental Monitoring and Assessment Program (EMAP). EMAP-West began as a partnership of: the States of California, Oregon, Washington, Alaska and Hawaii; the National Oceanic and Atmospheric Administration (NOAA); and the U.S. Environmental Protection Agency (EPA). The program is administered through the EPA and implemented through partnerships with a combination of federal and state agencies, universities, and the private sector.

Acknowledgements

The success of the Washington Coastal EMAP program is due to the dedication, hard work, and resources of many people and agencies. The EPA-Office of Research and Development (ORD) provided funds, direction, sample design, statistical-analysis programs, training, and other assistance. EPA Region 10 provided field and logistical support, from coordinating with native tribes, to obtaining access permits for various protected state and federal lands, to supplying personnel and vessel (*R/V Monitor*) for sampling operations. The NOAA National Marine Fisheries Service (NMFS) performed the fishing effort, providing equipment, supplies, and personnel, as well as performing the histopathological analyses. The Southern California Water Resources Research Program and the EPA-ORD designed, developed, and maintain the west coast database. All of the EMAP partners have provided technical assistance and support to each other.

Within the Washington State Department of Ecology, Dustin Bilhimer, Casey Clishe (project lead), and Christina Ricci planned and prepared for the sampling effort, wrote the field protocols, performed the field work, processed samples, and entered and QA'd data. Sandra Aasen and Ken Dzinbal assisted in the field on occasion. Kathy Welch coordinated the taxonomic work and standardized the taxonomy across all three west coast states. Managers were Ken Dzinbal and Maggie Dutch. Gary Koshi handled the fiscal aspects of the contract. Bernie Strong manufactured equipment, transported staff, and provided other support. Chemists at the Manchester Environmental Laboratory performed the chemistry lab analyses. Database management and quality assurance were done by Sandra Aasen, Karin Feddersen, and Christina Ricci.

The authors wish to thank Julia Bos, Margaret Dutch, Brian Grantham, Ed Long, Jan Newton, Dale Norton, and Kathy Welch, all of the Washington State Department of Ecology, as well as Mark Myers, of NOAA NMFS, for their review and suggestions for improvement of this report.

Executive Summary

The Environmental Monitoring and Assessment Program (EMAP) is a nationwide program developed by the U.S. Environmental Protection Agency (EPA) Office of Research and Development (ORD) to provide information about the degree to which existing pollution-control programs and policies protect the nation's ecological resources. Data from this program are the basis for individual reports of condition for each state, as well as the National Coastal Assessment (NCA). In particular, the data can be used to meet reporting requirements of the federal Clean Water Act.

The NCA is a five-year effort by EPA-ORD to evaluate the assessment methods it developed to advance the science of ecosystem-condition monitoring. This program's goal is to create an integrated, comprehensive coastal monitoring program among the coastal states to assess the condition of the nation's coastal resources (estuaries and offshore waters). The NCA is made possible by strategic partnerships with all 24 U.S. coastal states. Using a compatible, probabilistic design and a common set of survey indicators, each state conducts the survey and assesses the condition of its coastal resources independently. Because of the compatible design, these estimates can be aggregated to assess conditions at the EPA regional, biogeographical, and national levels.

The Coastal Component of EMAP-West is a partnership of EPA with the National Oceanic and Atmospheric Administration (NOAA), the U.S. Geological Survey (USGS), and the states of California, Oregon, and Washington, to measure the condition of the estuaries of these three states. Sampling began during the summer of 1999, with small estuaries, and was completed in the summer of 2000, with large estuaries (such as Puget Sound). In subsequent years, sampling was designed to fulfill the objectives of the Coastal EMAP Western Pilot project, with sampling in intertidal zones (2002) and the continental shelf (2003).

This report provides a statistical summary of the data from the first year of Coastal EMAP sampling (1999) for Washington. The 1999 sampling efforts were focused on the estuaries along the outer coast. The sample area included the northern coast of the Olympic Peninsula/Strait of Juan de Fuca, the Pacific Coast and its estuaries (including Grays Harbor and Willapa Bay), and the tributary estuaries along the lower Columbia River.

Fifty sample sites were selected using a stratified, probability-based design with four strata representing differing sizes (area) of estuaries. To ensure that sampling would occur across the entire range of estuarine sizes, the samples were drawn to yield 10 stations in the smallest estuaries, 25 stations in the medium-size estuaries, and 15 stations in the largest estuaries. No alternate sites were included in the design as replacements for unsamplable target sites.

Field crews sampled 44 of the 50 planned sites during 29 sampling days between August 1 and October 14, 1999. Two stations were abandoned prior to sampling, based on geographical factors, and four stations were abandoned in the field, three due to inadequate water depths and one due to unsafe field conditions. Of the 44 sites sampled, all EMAP parameters were measured at 37; the other 7 sites were partially sampled. Sediment samples for chemical,

physical, and toxicological analyses were taken at 41 sites; and sediment samples for sedimentdwelling (infaunal) invertebrate analyses were collected at 37 sites. Trawling was successful at 37 stations. Sufficient target-species fish were caught to enable chemical analyses of fish tissue from 24 stations. Water-column measurements were made on site at 40 sites, and water samples for laboratory analyses were collected at 44 sites.

The field and laboratory measurements acquired for each station represent three categories of ecological indicators, used to assess the physical environment, resident invertebrates and fish, and exposure of those animals to pollutants:

- *General Habitat Condition Indicators*: dissolved oxygen concentration, depth, salinity, temperature, pH, sediment lithology characteristics, water-quality indicators (chlorophyll-a, nutrients, total suspended solids)
- *Abiotic/Pollutant Exposure Condition Indicators*: sediment and fish-tissue contaminants, sediment toxicity, marine debris
- *Biotic Condition Indicators*: diversity and abundance of benthic infaunal and demersal fish species, fish pathological anomalies, epibenthic infauna

General Habitat Condition Indicators

Water Characteristics

The depths of the 44 stations sampled ranged from intertidal to 21.3 meters (m). Salinities ranged from < 0.1 practical salinity units (psu) in Grays Bay and other estuaries further upstream along the Columbia River, to 32-33 psu in Makah Bay, which is open to the Pacific Ocean. Water temperatures ranged from 8.5° C to 21.6° C and were higher in Columbia River estuaries than in most of the other estuaries. Surface and bottom salinities were similar almost everywhere; and surface and bottom temperatures were generally similar, except in areas with direct influence by the Pacific Ocean, in which case bottom temperatures were lower than surface temperatures. The similarity of surface and bottom salinities and temperatures indicates well-mixed waters.

The degree of water-column stratification, as measured by the difference in density between the surface and bottom, indicated that approximately 59% of the study area had well-mixed waters, and about 18% of the study area had strongly stratified waters. Washington's estuaries are, overall, well-mixed, a fact consistent with the large tidal range across the area, which generally leads to a high level of water-column mixing.

The overwhelming majority of Washington's estuarine waters are well-oxygenated: with the exception of a few bottom dissolved oxygen (DO) concentrations between 4 and 5 mg/L, all DO concentrations were above 5 mg/L.

Makah Bay was the most alkaline location, with pH above 8; elsewhere pH averaged 7.2-7.5. Surface waters were often slightly more alkaline than bottom waters.

The majority of the study area had high water clarity, with low light attenuation and high transmissivity. Less than 2% of the study area had low water clarity, and the remainder had moderate clarity.

Surface chlorophyll-a concentrations ranged from 1 to 35 μ g/L. Mean chlorophyll-a concentrations were similar everywhere, except at one station in Discovery Bay, where concentrations were very high.

Total dissolved nutrient concentrations were generally higher in the northern Olympic Peninsula than elsewhere. The ratio of nitrogen to phosphorus in nutrients (N:P ratio) was considerably higher in the Columbia River estuaries than in the estuaries of the outer coast, increasing upstream along the Columbia, and tended to be lower in Willapa Bay than in other coastal embayments. Approximately 93% of the study area was estimated to have N:P ratios of less than 16, suggesting nitrogen limitation. The remaining 7% had N:P ratios suggesting phosphorus limitation.

Sediment Characteristics

The silt-clay content of sediments ranged from 0% to 86%, with an average of about 15%. Approximately 76% of the study area had sediments composed of sands (< 20% silt-clay), approximately 23% had intermediate muddy sands (20-80% silt-clay), and < 1% was composed entirely of muds (> 80% silt-clay).

The organic content of the sediment ranged from zero to 3.2%, averaging approximately 0.6%. Approximately 68% of the area studied was estimated to have total organic carbon (TOC) content less than 0.5% by weight; approximately 50% of the area had TOC < 0.2%.

Abiotic/Pollutant Exposure Condition Indicators

Sediment and Fish-Tissue Contaminants

Chemical analyses were performed on sediments and ground *whole* fish to gauge ecological exposure only. *The results cannot be used to draw conclusions about fish for human consumption*.

Metals

Aluminum, antimony, arsenic, cadmium, chromium, copper, iron, lead, manganese, nickel, silver, tin, and zinc were detected in sediments at all 41 stations for which sediments were analyzed for contaminants. Mercury was detected at 40 stations, and selenium was detected at only four stations.

Sediment metals concentrations varied widely in Columbia River estuaries and, to a lesser extent, Strait of Juan de Fuca estuaries and Grays Harbor. The highest concentrations occurred

in Grays Bay, Discovery Bay, Baker Bay, Martin Slough, and parts of Grays Harbor. Metals concentrations were generally lower in Willapa Bay, Makah Bay, and the very small, shallow estuaries on the central Pacific Coast than elsewhere.

The concentrations of all of the metals tested were considerably lower than the respective NOAA Effects Range-Median (ERM) sediment quality guidelines, the Washington State Sediment Quality Standards (SQS), and the Washington State Cleanup Screening Levels (CSL). However, concentrations of arsenic, cadmium, chromium, and copper were higher than (exceeded) the NOAA Effects Range-Low (ERL) sediment guidelines at a few stations.

Aluminum, chromium, iron, mercury, and zinc were detected in fish tissues at all stations for which the analyses were performed (24); and lead was detected in fish tissue at all but one of those stations. Copper and selenium were detected in tissues at most of the stations. The other metals were detected at only a few stations.

Polynuclear Aromatic Hydrocarbons (PAHs) – Sediments Only

PAHs were detected in the sediments at 40 of the 41 stations sampled. Statistical analysis of the results was complicated by an *outlier*, an unusually high value, in the 4th laboratory replicate performed at one station. The anomaly is believed to have been caused by the presence of a tar ball, oil globule, or piece of creosoted wood. Although this represents inhomogeneity within the sample, it might still be considered representative of generalized conditions at that station. (The station is situated in Martin Slough, upstream from the mouth of the Columbia River and close to Interstate 5.)

With the exception of the Martin Slough station and one station in each Grays Harbor and Baker Bay, Total HPAH concentrations were generally similar everywhere. Total LPAH concentrations, however, were higher in Makah Bay than anywhere except the three previously-mentioned stations and Raft River (a small, shallow estuary on the Pacific Coast).

With the outlier included in the analysis, only the Martin Slough station, corresponding to about 0.15% of the study area, exceeded the Washington SQS and CSL sediment quality criteria, as well as the ERL and ERM, for Total LPAH. In addition, the Total HPAH level at that station exceeded the SQS, CSL, and ERL. The Total PAH (Total HPAH + LPAH) exceeded both the ERL and ERM. Even with the outlier excluded, the Martin Slough station exceeded the ERL for Total LPAH. All other stations, representing the other 99.85% of the study area, were below the state standards and the NOAA guidelines.

Polychlorinated Biphenyls (PCBs)

Fifteen PCB congeners were detected in sediments at only five stations. Of those, only two congeners were measurable at all five of the stations where PCBs were detected.

PCBs were detected in fish tissues at all stations sampled. The tissue Total PCB burden was one to two orders of magnitude higher in samples from the Columbia River estuaries than in all other samples.

DDTs

Only two DDT isomers were detected in sediments. Nine stations had measurable concentrations of 4,4'-DDE — all but one in the Columbia River — while only one (Martin Slough) had a detectable level of 4,4'-DDD.

One or more DDT isomers were detected in fish tissues at all stations. As with Total PCBs, the tissue Total DDT burden was one to two orders of magnitude higher in the samples from Columbia River than in samples from all of the other estuaries in Washington.

Other Chlorinated Pesticides

The only pesticide detected in sediments was hexachlorobenzene, which occurred at two stations.

Alpha-chlordane, trans-nonachlor, and hexachlorobenzene were the only pesticides detected in fish tissues; they were detected at only a subset of the stations.

Sediment Toxicity Tests

The toxicity tests indicated that the percent of the study area with toxic sediments was approximately 5% (sea urchin fertilization), 15% (sea urchin embryo development), and 16% (amphipod mortality).

Biotic Condition Indicators

Benthic Infauna

In all, 431 infauna species, 33 of which were introduced, were found in the 37 samples acquired. The number of species per sample (species richness) ranged from 1 to 157, with an average of 27. Species richness was greatest in the Strait of Juan de Fuca estuaries. The estuaries of the Columbia River had less community diversity than elsewhere, according to one commonly-used measure. The density of infaunal organisms ranged from 3 to 3106 individuals per sample, with an average of 483. Ten numerically-dominant species made up approximately 64% of all benthic infauna collected. Introduced species accounted for 5.6% of the total benthic infauna collected at all sites.

Demersal Fish

Thirty-four bottom-dwelling (demersal) species of fish were found. At any given station, 1 to 10 fish species were caught per trawl, with an average of 3 species per trawl. The number of fish caught in each trawl ranged from 1 to 336, equivalent to a catch per area swept of approximately 500 to 175,000 fish per square kilometer. Average catch per area swept was approximately 20,000 fish per square kilometer, though the median was less than 5,000 fish per square kilometer. Fish with tumors and parasites were found at only a few stations.

This page is purposely left blank for duplex printing.

Introduction

Program Background

The National Coastal Assessment (NCA) is a multi-year, comprehensive survey of the condition of the nation's coastal resources (estuaries and offshore waters) led by the U.S. Environmental Protection Agency (EPA) Office of Research and Development (ORD). The NCA is accomplished in partnership with the coastal states in an integrated, comprehensive monitoring program based on the ORD's Environmental Monitoring and Assessment Program (EMAP). Each state conducts the survey and assesses the condition of its coastal resources independently using a compatible, probabilistic design and a common set of survey indicators (Nelson *et al.*, 2004). Because of the compatible design, these estimates can be aggregated to assess conditions at the EPA regional, biogeographical, and national levels (Nelson *et al.*, 2004); these aggregated results are used in the National Coastal Condition Reports (U.S. EPA, 2001c, 2005).

EMAP is a nationwide program to assess how well pollution-control programs and policies protect ecological resources, and to assist EPA's regional offices and the states in meeting reporting requirements of the federal Clean Water Act (Nelson *et al.*, 2004). Results of EMAP surveys along the eastern, southeastern, and Gulf of Mexico U.S. coasts are published in Macauley *et al.* (1994, 1995), Strobel *et al.* (1994, 1995), and Hyland *et al.* (1996, 1998).

West Coast Pilot EMAP Project

The Coastal Component of EMAP-West began as a partnership of EPA with the National Oceanic and Atmospheric Administration (NOAA), the U.S. Geological Survey (USGS), and the states of California, Oregon, and Washington, to measure the condition of these three states' estuaries (Nelson *et al.*, 2004). The Washington State EMAP partner is the Department of Ecology (Ecology). Estuaries were sampled during the summers of 1999 and 2000. Nelson *et al.* (2004) and Hayslip *et al.* (2006) are reports on the 1999 surveys of the three states combined and on the 1999-2000 results for EPA Region 10 (Washington and Oregon), respectively.

Objectives

The Washington EMAP program is a component of the larger EMAP Western Coastal Program, which has the following objectives (Nelson *et al.*, 2004):

- Assess the condition of estuarine resources of Washington, Oregon, and California, based on a range of indicators of environmental quality, using an integrated survey design.
- Implement pilot studies of the conditions of estuarine resources of Alaska and Hawaii, based on a range of appropriate indicators of environmental quality for these systems.
- Establish a baseline for evaluating how the conditions of the estuarine resources of these states change with time.

- Develop and validate improved methods for use in future coastal monitoring and assessment efforts in the western coastal states.
- Transfer the technical approaches and methods for designing, conducting, and analyzing data from probability-based environmental assessments to the states and tribes.

The specific objectives of the Washington component of the EMAP Western Coastal Program are to achieve the above program objectives for Washington estuarine waters. This report presents a statistical summary of data from the first year of sampling (1999) for the estuarine systems of Washington State; future reports will be interpretive.

The Washington Context

Western Washington falls within the Columbian Biogeographical Province, which extends along the northern Pacific Coast from Cape Mendocino, CA, to Vancouver Island, BC (Figure 1). Mountainous shorelands with rocky foreshores are prevalent. The province is influenced by both the Aleutian and California Currents, and estuaries are strongly influenced by freshwater runoff. The biota are primarily temperate with some boreal components, and there are extensive algal communities. The tidal range is moderate to large.

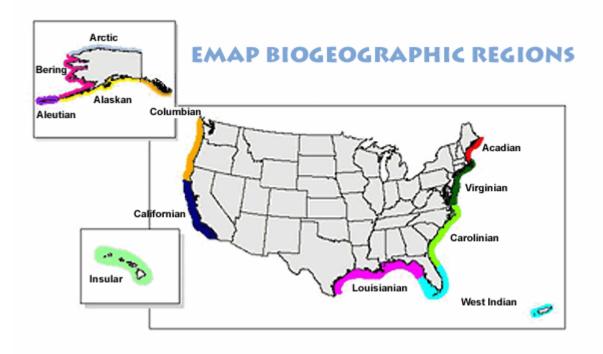


Figure 1. North American coastal biogeographic provinces

Washington State has more than 4000 kilometers (2500 miles) of marine coastline, including the outer coast, with its small estuaries bordering the Pacific Ocean, the Strait of Juan de Fuca, Puget Sound, the lower Columbia River, Grays Harbor, and Willapa Bay.

1999-2000 Overall West Coast Design

The Western Coastal EMAP program for 1999-2000 was designed as a two-year comprehensive assessment of all estuaries in the states of Washington, Oregon, and California, with smaller estuarine systems sampled in 1999 and larger estuarine systems sampled in 2000. Data from both years will be combined for analysis. Sample results in the combined analyses will be weighted by the proportion of the total estuarine area within a given design stratum (= estuarine size class) and the number of samples desired for that stratum (Nelson *et al.*, 2004).

The West Coast sampling frame comprised all of the estuaries from the Mexican border to the Canadian border, including San Francisco Bay, Puget Sound, and the lower Columbia River. Sampling areas were bounded inland by the shoreline, upstream by the head of salt water influence, and seaward by confluence with the Pacific Ocean. Emergent salt marsh areas were not included. Sample locations could fall in any water depth within the estuaries (Nelson *et al.*, 2004).

Washington Design

For Washington, the 1999 sample design included only estuaries along the coastline outside of the Puget Sound system. Tributary estuaries of the Columbia River located within Washington were included in the 1999 sampling effort, while the main channel of the Columbia River was sampled in 2000 as part of the Oregon design. Puget Sound was the focus of the sample design for Washington in 2000. Nelson *et al.* (2004) describes the 1999 sample designs for Oregon and California and the 2000 sample designs for all three states.

Indicators

The NCA uses a standard set of environmental parameters as indicators of environmental condition. There are three groups of indicators: General Habitat Condition Indicators, to represent general habitat condition; Abiotic/Pollutant Exposure Condition Indicators, to represent exposure to pollutants; and Biotic Condition Indicators, to represent the condition of benthic faunal and demersal fish resources (Table 1).

- *General Habitat Condition Indicators* describe physical and chemical conditions at the study site and provide information used to interpret the results of biotic condition indicators. Indicators include depth, salinity, temperature, dissolved oxygen concentration, chlorophyll-a concentration, dissolved nutrients concentrations, total suspended solids, and pH in the water, as well as grain size and total organic carbon in the sediment.
- Abiotic/Pollutant Exposure Condition Indicators characterize the amounts and types of pollutants present that may be harmful to the biota. Indicators include sediment and fishtissue contaminants, sediment toxicity, and marine debris.
- *Biotic Condition Indicators* measure the status (health, abundance) of the biota at each site. Indicators include diversity and abundance of benthic infaunal and demersal fish species, and fish pathological anomalies.

Habitat Indicators	Exposure Indicators	
Water depth	Sediment contaminants	
Salinity	Fish-tissue contaminants	
Water temperature	Sediment toxicity	
Dissolved oxygen concentration	(amphipod Ampelisca abdita survival)	
pH	Biotic Indicators	
Light transmittance	Infaunal species composition	
Secchi depth	Infaunal abundance	
Total suspended solids	Infaunal species richness and diversity	
Chlorophyll-a concentration	Fish species composition	
Dissolved nutrient concentrations	Fish abundance	
Percent silt-clay of sediments	Fish species richness and diversity	
Percent total organic carbon in sediments	External pathological anomalies in fish	

Table 1. Core environmental indicators for Coastal EMAP West

In Washington in 1999-2000, several supplemental indicators were measured by either Western Coastal EMAP participants or external collaborators, including additional chemical parameters, two sediment porewater toxicity tests, and a fish-tissue bioassay (Table 2).

Table 2. Supplemental environmental indicators measured or under development for the 1999Washington State component of the EMAP Western Coastal survey

Benthic Indicators	EMAP Partner(s)
West Coast benthic infaunal index (under development)	Coastal EMAP-West
Exposure Indicators	
Additional sediment chemistry analytes (Appendix Tables A-1, A-2)	Washington State Department of Ecology
Sediment porewater toxicity (sea urchin <i>Arbacia punctulata</i> fertilization)	USGS/BEST (USGS, 2000)
Sediment porewater toxicity (sea urchin <i>Arbacia punctulata</i> embryo development)	USGS/BEST (USGS, 2000)
H4IIE Test for exposure of fish to planar halogenated hydrocarbons	USGS/BEST (USGS, 2001)

Descriptions of the EMAP indicators, their applicability, and their importance are given in Appendix A.

Methods

Sample Design

Background

The EMAP sampling approach is described in reports such as Nelson *et al.* (2004) and is presented in summaries at: <u>www.epa.gov/wed/pages/EMAPDesign/</u>

The EMAP sample design for 1999-2000 was a random tessellation stratified survey design. A random tessellation stratified design involves placing a regular grid, beginning in a random location, over the resource area to be sampled, selecting a cell at random, and then selecting a point at random within the cell (Stevens and Olsen, 1999, 2003). Separate subpopulations of interest may be sampled at different intensities, and thus sample units may be chosen according to different grid densities and inclusion probabilities. The final estimates of resource condition are weighted based on the areas of the subpopulations (estuarine classes, in this case).

According to Nelson *et al.* (2004), the sampling frame for the EMAP Western Coastal Program was developed from U.S. Geological Survey (USGS) 1:100,000-scale digital line graphs of all estuaries of the West Coast and stored as a GIS data layer in ARC/INFO. Sites were selected by ArcView programs and scripts written by Bourgeois *et al.* (1998) using a random tessellation stratified design. First, a sampling grid of hexagons was overlaid on the spatial resource. The size (area) of the hexagons within each stratum (estuarine class) was determined by the number of sample stations to be generated for each sampling region. Then hexagons were randomly selected, and within each hexagon a sampling point was randomly located. Only one sampling site was selected from any hexagon selected. The random-sample generator program determined whether a sampling point fell in water or on land; sites on land were not included. The program iterated until a hexagon size was determined which generated the desired number of sampling sites (Nelson *et al.*, 2004).

1999 Washington Sampling Design

The 1999 sample design for Washington consisted of 50 sites selected from estuaries along the Pacific Ocean, Strait of Juan de Fuca, and lower Columbia River coastlines. No alternate sites were included in the design as replacements for unsamplable target sites.

Estuaries were classified into four strata based on estuary size. To ensure adequate representation of each of the estuary size classes, 10 sites were selected from each Stratum 1 and Stratum 2, and 15 sites were selected from each Stratum 3 and Stratum 4.

Stratum 1: small estuaries (< 1 km² area), total frame area 8.363 km²
Stratum 2: small-medium estuaries (1-10 km² area), total frame area 77.288 km²
Stratum 3: medium-large estuaries (10-100 km² area), total frame area 111.478 km²
Stratum 4: large estuaries (> 100 km² area), total frame area 562.230 km²

The hexagonal grid sizes from which sample sites were drawn varied by stratum: 0.86 km^2 in Stratum 1, 7.79 km² in Strata 2 and 3, and 36.58 km² in Stratum 4.

The target and actual sampling locations are shown in Figure 2. Details of the selected targets are given in Appendix Table B-1. The stations in the smallest estuaries along the Pacific Coast were all intertidal, and those in estuaries along the Columbia River were less than 10 m deep. Station depths in the embayments along the Strait of Juan de Fuca ranged from intertidal to over 20 m.

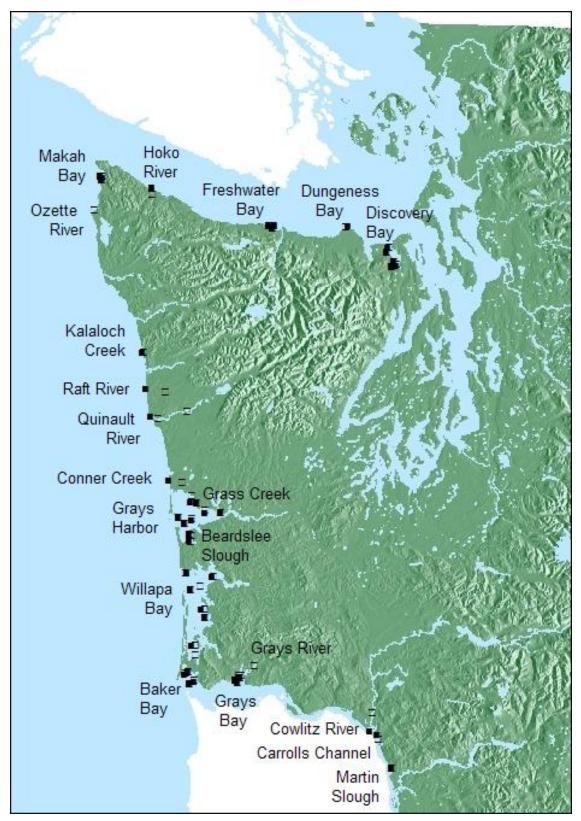


Figure 2. Washington Coastal EMAP 1999 target (open square) and actual (solid square) survey sites. Location details are given in Appendix Table B-1.

Quality Assurance and Quality Control

The Western Coastal EMAP program quality assurance/quality control (QA/QC) program is described in the "Environmental Monitoring and Assessment Program (EMAP): National Coastal Assessment Quality Assurance Project Plan 2001-2004" (U.S. EPA, 2001a), which was in draft for the 1999 sampling program. That document lays out the data quality objectives and measurement quality objectives for all NCA field and laboratory parameters in terms of representativeness, completeness, comparability, accuracy, and precision. The NCA Quality Assurance Project Plan (QAPP) addresses all aspects of an EMAP program, including not only field and laboratory procedures, but also training, documentation, data-handling and assessment, management reports, and quality audits.

Analytical laboratories are required to demonstrate their technical capabilities and are expected to perform in general accord with the QAPP for NCA analytes (U.S. EPA, 2001a). Prescribed laboratory quality control measures include the use of standard NCA protocols, routine instrument calibrations, measures of analytical accuracy and precision (*e.g.*, analysis of standard reference materials, spiked samples, and laboratory replicates), and achievement of target method detection limits; see the QAPP (U.S. EPA, 2001a) for details. [In a general assessment of data collection and analyses, Ecology's Environmental Monitoring and Trends Section and the Manchester Environmental Laboratory were found to have "met or exceeded the requirements of the QAPP" (Macauley, 2003).]

Measures of data validation include evaluation of content, completeness, and consistency; range checks for reasonableness; and cross-checks between original data sheets (field or lab) and electronic data for transcription errors (U.S. EPA, 2001a).

Quality control for identification of infauna for the Western Coastal EMAP program was provided by a network of secondary QA/QC taxonomic specialists to confirm identifications made by the primary taxonomists and to provide standardization among the state participants.

Field Sampling and Laboratory Analyses

Water quality, fish, and sediment sampling were conducted by personnel from Ecology, EPA, and NOAA National Marine Fisheries Service (NMFS) from August 5 through October 14, 1999. Work was conducted aboard EPA's *R/V Monitor*, operated by EPA Region 10 personnel, and Ecology's 22-foot Boston Whaler, operated by Ecology and NMFS personnel, with the two vessels working in tandem. The *Monitor* operator and the field coordinator navigated and established sampling locations, using a Furuno DGPS navigation system, keeping the Whaler and crew within visual and radio contact at all times.

Although most of the selected sites were subtidal, a few were intertidal. Several stations were sampled a short distance from the target coordinates, mostly due to inadequate water depth (Figure 2; Appendix Table B-1). Four intertidal stations were visited on foot, rather than by boat, and are hereafter referred-to as the "walk-in" stations.

Field procedures are specified in the NCA Field Operations Manual (U.S. EPA, 2001b, in draft for the 1999 sampling effort) and detailed in Ecology protocols for Coastal EMAP West 1999, which are stored as metadata in the NCA database. The standard sampling protocols were modified for the walk-in stations and are documented in an Ecology protocol in the database. The laboratory analytical methods are specified in the NCA QAPP (U.S. EPA, 2001a) and in the individual laboratories' Standard Operating Procedures, which are stored as metadata in the NCA database. Brief descriptions of field and laboratory procedures, including QA/QC, are given below.

General Habitat Condition Indicators

Hydrographic Profile

Continuous water column profiles of conductivity, temperature, transmissivity, dissolved oxygen (DO), and pH were acquired at each site with a Sea-Bird Electronics SBE19 Seacat conductivity-temperature-depth (CTD) profiler and attached sensors (Table 3). The CTD was lowered into the water until it was completely submerged and held just below the surface for 3 minutes, allowing the water pump to purge any air in the system. The unit was then returned to the sea surface to begin the profile, and lowered slowly to the bottom at approximately 0.3 meters per second (m/s). The CTD was held 0.5-1.0 m above the seabed for 1 minute, then recovered at approximately 0.5 m/s. Data were stored in the unit and downloaded after sampling. In the lab, data were averaged for every 0.5 m.

Parameter	Measurement	Source	
Water depth	single measurement	Depth sounder; corrected for tidal height	
Salinity	S,B*	Derived from conductivity (CTD)	
Temperature	S,B* CTD		
Density	S,B	Derived from temperature and salinity	
Density stratification	single measurement	Derived from surface and bottom densities	
Dissolved oxygen	S,B*	Beckman sensor	
pH	S,B* Beckman sens		
Submerged PAR	S,M,B Li-Cor PAR LI-93SA sensor		
Terrestrial PAR	S,M,B Li-Cor PAR LI-190SA sensor		
Percent of Terrestrial PAR	S	Derived	
Mean light-extinction coefficient	single measurement	Derived from PAR measurements	
Secchi depth	single measurement Secchi disk		
Transmissivity	S,1,B*	Sea Tech transmissometer	

Table 3. Hydrographic profile measurements

* = Continuous depth profiles, 0.5-m bins; only surface, 1.0 m depth (transmissivity only), and bottom presented S = Surface (0.5 m depth)

M = Mid-Water (mid-depth of water column)

B = Bottom (0.5 m above seabed)

1 = 1 m depth

As a check on the accuracy of the Beckman dissolved oxygen sensor deployed on the CTD, Winkler titrations were performed on water samples taken each day at randomly-chosen depths at randomly-chosen stations.

Although continuous profiles were captured, in this report only results for surface (0.5 m depth), 1 m depth (transmissivity only), and bottom (0.5 m above seabed) are presented and discussed.

Light Attenuation - PAR

Two sensors connected to a Li-Cor LI-1400 datalogger were deployed simultaneously to measure Photosynthetically Active Radiation (PAR) in the 400-700 nanometer (nm) waveband: a Li-Cor[®] LI-190SA Quantum Sensor to measure terrestrial PAR and a Li-Cor LI-193SA Spherical Quantum Sensor to measure PAR underwater. The terrestrial PAR sensor was secured to the cabin roof of the vessel, providing a 360° clear view of the sky. The marine sensor was attached to a weighted frame and deployed on the sunniest side of the vessel. The unit was lowered to and held at depths corresponding to depths at which surface, mid-water, and bottom discrete water samples were taken. Instantaneous Terrestrial PAR (TerPAR) and concurrent Submerged PAR (SubPAR) readings for surface, mid-water, and bottom depths were transcribed by hand from the datalogger's display to the field logs. (The continuous recordings were not kept.)

Simultaneous measurements of SubPAR and TerPAR at the surface were obtained at 38 stations; at the bottom at 32 stations; and at mid-water at 22 stations (Appendix Table B-3).

Secchi Depth

Secchi depth was measured with a standard 20-cm diameter black-and-white disc. The disc was lowered to the depth at which it could no longer be discerned, then slowly retrieved. The depth of its reappearance (rounded to the nearest 0.5 m) was recorded as Secchi depth.

Secchi depths were set to a default value of 0.7 m, rather than measured, for three of the four walk-in stations; no Secchi depth was recorded for the fourth.

Water Samples for Laboratory Analyses

Samples for analyses of dissolved nutrients (ammonium, nitrite, nitrate, ortho-phosphate, and silicic acid), chlorophyll-*a* concentration, and total suspended solids were taken at each site using a hand-deployed General Oceanics 1.7-liter Niskin bottle. Samples were taken near the surface (0.5 m depth), mid-way through the water column, and near the bottom (0.5 m above seabed). At sites 1-2 m in depth, only near-surface and near-bottom samples were taken; and at sites < 1 m in depth, only near-surface measurements were taken (Appendix Table B-2).

Total Suspended Solids (TSS)

One sample for TSS analysis was taken from the Niskin bottle for each tested depth. TSS samples were collected in pre-cleaned, 1-liter polyethylene bottles, then chilled at 4°C until delivery to the laboratory (within 7 days of acquisition).

The Manchester Environmental Laboratory analyzed the TSS samples using the *EPA 160.2 Total Suspended Solids* analysis method, which consists of filtering well-mixed samples through standard 1.5-µm glass fiber filters, then evaporating the filtrates and drying them at 180°C to constant weight. One set of laboratory duplicate samples was analyzed for each batch of 20 samples to evaluate precision (acceptable relative percent difference $\leq 20\%$), and accuracy was checked with a laboratory-prepared standard (acceptable recovery within 20% of the true value). The recovery was within 5% of the true value for all batches.

Chlorophyll-a

Two samples were collected from each Niskin bottle into pre-cleaned 66-ml sample bottles. Each sample was filtered through a 0.7-µm GFF filter by hand pump into a receiving flask. The GFF filter was then folded in half and placed in a glass centrifuge tube containing 10 ml of 90% acetone, and placed on ice until the tubes could be frozen at the end of the day. The frozen samples were stored in the dark until delivery to the laboratory (as soon as possible after acquisition).

In the lab, Ecology EMAP personnel analyzed the chlorophyll-*a* samples by the fluorometric analysis method for chlorophyll-*a* and phaeopigment (Lorenzen, 1966). Test tubes containing the GFF filters in 10 ml of 90% acetone were sonicated to rupture the chloroplasts and release the photosynthetic pigments into the acetone solution. The pigments were then centrifuged to obtain a pure extract of pigments in 90% acetone. A fluorometer was used to measure the level of fluorescence (F_0) of the suspended pigments. Next, 2 drops of HCl were added to the extract. Finally, the post-acidification fluorescence (F_a) was measured. The concentrations of chlorophyll and phaeopigments were calculated from the F_0 and F_a values.

The lab fluorometer is calibrated every 6-8 months against a chlorophyll-*a* dilution series of known concentrations, as determined by spectrophotometric analysis. Before analyzing samples, the fluorometer was checked for calibration by analyzing a 90% acetone blank (acceptable value ≤ 0.5 FU). Batches consisted of one initial calibration check and < 20 field samples.

Dissolved Nutrients

For each sample, approximately 40 ml of water from each Niskin bottle was filtered using a 60-ml plastic syringe with a 0.45-µm filter. Filtered samples were collected in pre-cleaned, 60-ml polyethylene sample bottles, placed on ice, then frozen until delivery to the laboratory (within three months of acquisition).

Laboratory analysis of dissolved nutrients was performed by the University of Washington Marine Chemistry Laboratory using a Technicon AutoAnalyzer II to quantify the concentrations of the dissolved reactive forms of ammonium (Slawyk and MacIsaac, 1972) and nitrite, nitrate, phosphate, and silicic acid in the water samples (UNESCO, 1994). Total dissolved nitrogen and total dissolved phosphorus concentrations were then calculated.

Each batch was preceded by a standard curve consisting of a matrix blank and two concentrations at lower and mid-high points in the analytical range, each in duplicate, followed

by a laboratory control treatment sample. Two check standards, of concentrations different from those used in the standard curve (also at lower and mid-high points in the analytical range), were prepared using the same matrix water as that of the standards and run with each batch.

Sediment Lithology

Sediment for lithological characterization, chemical analyses, and toxicity testing was collected with a 0.1-m² stainless steel van Veen sampler. Sediment from multiple grabs was composited to collect around 6 liters of sediment. The number of grabs required depended on the sediment lithology and seabed density. Field replicates were taken at approximately 10% of the sample stations.

Upon recovery of each grab, overlying seawater was siphoned off, with great care taken to avoid the siphon tube touching – and contaminating – the sediment surface. The surface 2-3 cm of sediment was then scooped into a high-density polyethylene bucket, using a stainless steel spoon. At the four walk-in stations, a bottomless 25-cm-diameter bucket was pushed into the sediment where the water was quite shallow, then overlying water was siphoned off, and the sediment was scooped as described above.

Once adequate sediment was collected, it was homogenized in the bucket by thorough stirring. Certified pre-cleaned sample containers for chemical and toxicity analyses were filled, then held at 4°C until delivery to the labs.

All equipment used for sampling sediment was decontaminated prior to sampling each station. The decontamination procedure was to clean the equipment with Liquinox[®] detergent and rinse with *in-situ* water.

Total Organic Content (TOC)

Sediment TOC analyses were performed by the Manchester Environmental Laboratory. TOC was analyzed at both 70°C (PSEP, 1986) and 104°C (a modification of PSEP (1986) for EMAP, referred-to as PSEP-TOCM); the 104°C results are presented in this report.

Samples for TOC analyses were frozen upon receipt by the lab, and all analyses were performed within the holding times specified by the QAPP (U.S. EPA, 2001a).

The Manchester Laboratory performed QA checks as specified by the QAPP (U.S. EPA, 2001a), including initial and continuing calibration checks and, for every batch of 20 or fewer test samples, analyses of certified reference material and/or laboratory control material samples, laboratory spiked sample matrices, laboratory reagent blanks, and laboratory replicates.

Grain Size

The Rosa Environmental and Geotechnical Laboratory determined the sediment particle size (grain size) distribution for each sample using the sieve-pipette method specified in PSEP (1986). Sediment samples were stored at 4°C until processed, then warmed to room temperature and homogenized prior to analysis.

PSEP (1986) is a combined sieve-pipette procedure, with the coarser fractions (retained on a 62.5-µm sieve wet) dried and then sieved through a stack of progressively finer sieves, and the silt-clay fraction separated according to the Wentworth scale by pipette withdrawals from a settling column (PSEP, 1986).

As specified by the QAPP (U.S. EPA, 2001a), 10% of samples were analyzed in triplicate, with a limit of no more than 10% deviation amongst the replicates. In addition, Rosa Laboratory internal QA checks required a limit of no more than 5% deviation from 100% in summed grain size percentages.

Exposure Condition Indicators

The procedures for sediment collection for chemical analyses and toxicity testing are described above for sediment lithological analyses.

Sediment Chemistry Analyses

Sediment chemistry analyses were performed by the Manchester Environmental Laboratory. Table 4 lists the target analytes and the analytical methods used. The analytical methods are those specified in the QAPP (U.S. EPA, 2001a) or, for the additional analytes not required by EMAP, used in the NOAA National Status and Trends Program (Lauenstein *et al.*, 1993). Only the results for the EMAP-required analytes are presented in this report.

Samples for organics analyses were frozen upon receipt by the lab, and all analyses were performed within the holding times specified by the QAPP (U.S. EPA, 2001a). All mercury analyses were performed on non-frozen sediment within the 28-day holding time specified by PSEP (1996) (*vs.* 1 year frozen, as in the NCA QAPP); then the remaining sediment in the samples was frozen prior to analyses of other metals. All metals analyses were performed within the holding times specified by the QAPP.

The Manchester Laboratory performed QA checks as specified by the QAPP (U.S. EPA, 2001a), including initial and continuing calibration checks and, for every batch of 20 or fewer test samples, analyses of certified reference material and/or laboratory control material samples, laboratory spiked sample matrices, laboratory reagent blanks, and laboratory replicates. The case narratives for the laboratory analyses are included as metadata in the EMAP database.

Total PCB concentration is calculated as the sum of the concentrations of the 21 congeners on the target list in Appendix Table A-1. Total DDT concentration is calculated as the summed concentrations of six DDT isomers: 2,4'-DDT; 4,4'-DDT; 2,4'-DDE; 4,4'-DDE; 2,4'-DDD; and 4,4'-DDD. Total PAH concentration is the sum of the concentrations of individual PAH compounds; the constituent compounds of the LPAH, HPAH, and PAH totals for EMAP are listed in Appendix Table A-1.

Table 4. Target analytes and analytical methods for sediment and fish-tissue chemistry analyses. Complete lists of chlorinated pesticides, PCBs, PAHs, and other classes of compounds are given in Appendix Tables A-1 and A-2. The methods are the same for all compounds within a class.

Deremeter	Analytical Method		
Parameter	Sediment	Fish Tissue	
EMAP Analytes			
Percent Fines – sediment only	PSEP (1986) (sieve-pipette)		
Total Organic Carbon – sediment only	PSEP-TOCM (104°C)		
Metals*			
Aluminum**	SW6010 (ICPAES)	EPA200.7 (ICPAES)	
Antimony - sediment only	EPA200.8 (ICPMS)		
Arsenic	EPA206.2 (GFAA)	SW7060 (GFAA)	
Cadmium	EPA200.8 (ICPMS)	EPA200.8 (ICPMS)	
Chromium	SW6010 (ICPAES)	EPA200.8 (ICPMS)	
Copper	SW6010 (ICPAES)	EPA200.8 (ICPMS)	
Iron	SW6010 (ICPAES)	EPA200.7 (ICPAES)	
Lead	EPA200.8 (ICPMS)	EPA200.8 (ICPMS)	
Manganese - sediment only	SW6010 (ICPAES)		
Mercury	EPA245.5 (CVAA)	EPA245.5 (CVAA)	
Nickel	SW6010 (ICPAES)	EPA200.8 (ICPMS)	
Selenium	EPA270.2 (GFAA)	SW7740 (GFAA)	
Silver	EPA200.8 (ICPMS)	EPA200.8 (ICPMS)	
Tin	EPA200.8 (ICPMS)	EPA200.8 (ICPMS)	
Zinc	SW6010 (ICPAES)	EPA200.8 (ICPMS)	
Chlorinated Pesticides, including DDTs (20)	SW8081 (GCECD)	SW8081/8082 (GCECD)	
PCB Congeners (21)	SW8081 (GCECD)	SW8081/8082 (GCECD)	
PAHs (22) – sediment only	SW8270 (GCMS)		
Additional Non-EMAP Analytes***			
Percent Grain Size by phi – sediment only	PSEP (1986) (sieve-pipette)		
Total Organic Carbon – sediment only	PSEP (1986) (70°C)		
Lipids – tissue only		MEL SOP #730009	
Additional PAHs (12) – sediment only	SW8270 (GCMS)		
Carbaryl – sediment only	EPA8318 (GCMS)		
Organotins (3) - sediment only	NOAA-TBT (GCAED)		
Semi-volatile Organics (20) - sediment only	SW8270 (GCMS)		

*Total digestion (hydrofluoric acid) method used for extraction of metals from sediment.

- **Aluminum values are qualified as estimated, because fish were wrapped and frozen in aluminum foil prior to processing.
- ***Results of non-EMAP analyses not included in this report

Analytical Methods:

CVAA = Cold Vapor Atomic Absorption spectroscopy

GCAED = Gas Chromatography with Atomic Emission Detection

GCECD = Gas Chromatography with Electron Capture Detection

GCMS = Gas Chromatography-Mass Spectroscopy

GFAA = Graphite Furnace Atomic Absorption spectroscopy

HPLC = High Precision Liquid Chromatography (fluorometric quantification)

ICPAES = Inductively Coupled Plasma-Atomic Emission Spectrophotometry

ICPMS = Inductively Coupled Plasma-Mass Spectroscopy

MEL SOP #730009 = Manchester Environmental Laboratory standard operating procedure #730009

NOAA-TBT = NOAA tributyltin procedure (Lauenstein et al., 1993)

PSEP (1986) = Puget Sound Estuary Program protocols 1986

PSEP-TOCM = modification of PSEP (1986) for EMAP

Sediment Toxicity

Amphipod Survival Test

Amphipod survival tests using *Ampelisca abdita* were conducted by the Marine Pollution Studies Laboratory of the University of California - Davis, following procedures detailed in U.S. EPA (1994) and U.S. EPA (1995). Samples were shipped on ice within 7 days to the laboratory. Upon arrival, samples were either refrigerated at 4°C or processed immediately. Each sample was inspected to ensure it was within acceptable temperature limits upon arrival and stored at 4°C until testing was initiated within 14 days of the collection date.

Amphipods were collected by John Brezina and Associates from San Francisco Bay. Animals were held in the laboratory in pre-sieved uncontaminated native habitat ("home") sediment under static conditions. Because static conditions result in elevated ammonia concentrations, toxic to the animals, 50% of the water in the holding containers was replaced every second day when the amphipods were fed, per U.S. EPA (1994). During holding, *A. abdita* were fed laboratory-cultured diatoms (*Phaeodactylum tricornutum*).

Five laboratory replicates of the home sediment were used as negative controls. Sub-samples of the negative control sediments were tested along with each series of samples from northern Puget Sound.

Sea Urchin Fertilization and Embryo-Development Tests

Sea urchin fertilization and embryo-development tests were performed by the USGS Corpus Christi laboratory. The tests were conducted with sediment porewater using gametes of the sea urchin *Arbacia punctulata*, following the methods of Carr and Chapman (1995), Carr *et al.* (1996a,b), Carr (1998), and USGS SOP F10.6. The methods and results of the urchin fertilization and embryo-development tests are described in a separate report (USGS, 2000).

Sediment from each sampling location was collected in pre-cleaned, 4-liter polyethylene jars, stored at 4°C, and shipped within 7 days to the laboratory by overnight courier in insulated coolers with blue ice. Upon arrival, samples were either refrigerated at 4°C or processed immediately. Porewater was extracted within 24 hours, using a pressurized squeeze extraction device (Carr and Chapman, 1995).

Sea urchins (*Arbacia punctulata*) were obtained from the Gulf Specimen Company in Panacea, Florida, and kept at $16\pm1^{\circ}$ C in tanks at salinity 30 ± 3 ppt. Tanks were segregated by sex. Temperature was gradually increased to $19\pm1^{\circ}$ C at least one week prior to gamete collection. Spawning was induced by touching the tests of *Arbacia punctulata* adults with electrodes from a 12V transformer. Gametes were checked for a high degree of viability before being used.

Samples were tested in a dilution series of 100%, 50%, and 25% of the salinity-adjusted sample, with 5 replicates per treatment. Dilutions were made with clean, filtered (0.45 μ m) seawater.

The endpoint in the fertilization test is percent fertilization of the urchin eggs, determined by counting fertilization membranes under a compound microscope; fertilization percentages were calculated for each replicate test. The endpoint in the embryo-development test is proportion of embryos which have developed to a normal pluteus larva, determined by observing embryos under a compound microscope; percentages of normal morphological development were calculated for each replicate test.

Porewater from sediments collected in Redfish Bay, Texas, an area located near the testing facility, was used as a negative control. Sediment porewaters from this location have been determined repeatedly to be non-toxic in this test in many trials (Long *et al.*, 1996). As a positive control, a dilution series test with sodium dodecyl sulfate (SDS) was included.

Fish-Tissue Contaminants

Fish sampling was attempted at 39 sample sites, and sampling was at least partially successful at all but one station. At five stations, trawling was hindered by rocks, kelp, or other obstructions; of those, partial success was achieved at 4 stations (Appendix Table B-1).

Fish trawls were conducted by NOAA NMFS personnel. A 16-foot otter trawl was used at all stations sampled by boat (termed 'Standard Trawls' in the results). The otter trawl had a 16-foot footrope, with 1.50-inch mesh in the body of the net and 1.25-inch mesh in the cod end. Trawling was conducted at 1.0-1.5 knots along a straight line centered on the site location. Trawl duration was usually 10 minutes per tow, but ranged from 2 to 15 minutes, depending on seabed conditions.

Up to four trawls were conducted at each station in order to acquire adequate specimens for fishtissue contaminant analyses. Multiple trawls were conducted consecutively on the same day, except at one station where one trawl was taken in the late afternoon and two more trawls were taken early the next morning.

Of necessity, due to water depths < 0.25 m, three of the four walk-in stations were sampled using a 30-foot beach seine ('Non-standard Trawls'). The fourth walk-in station was not sampled for fish. The beach seine had 1-inch mesh in the wings and 0.375-inch mesh in the bag.

Four species of demersal fish which are ubiquitous along the U.S. Pacific Coast were targeted samples for analysis of chemical contaminants in whole-body tissue: English sole (*Pleuronectes vetulus*), sand sole (*Psettichthys melanostictus*), speckled sanddab (*Citharichthys stigmaeus*), and starry flounder (*Platichthys stellatus*). The number of individuals of a target species needed was determined by the size of the fish, the amount of tissue required by the lab for analysis, and the goal of having at least 5 fish for statistical variability; in this study, 3 to 50 fish were combined into a composite sample. The fish were measured (fork length or total length, as above), rinsed with site water, individually wrapped with heavy-duty aluminum foil, and placed together in a plastic zipper-type bag. The fish for chemistry samples were held on wet ice in the field until they were transferred to shore and frozen to await laboratory analysis.

Frozen or slightly thawed fish were ground whole three times in a decontaminated food grinder, composited, and stirred to homogeneity each time. Aliquots of the composited ground wholebody tissues of target fish species were placed into certified pre-cleaned jars and frozen. The decontamination procedure consisted of scrubbing all implements with detergent, and then rinsing them with tap water, 10% nitric acid, and deionized water, in succession. After that, they were rinsed with pesticide-grade acetone, dried in a fume hood, rinsed with hexane, and dried again.

Tissue samples from 24 stations were sent to the Manchester Environmental Laboratory for analysis of organic and metal contaminant concentrations. Additional samples from 19 of those 24 stations were sent to the USGS Columbia Environmental Research Center for H4IIE analysis.

Tissue Chemistry

Wet/dry weight ratio (% moisture), lipid content, and contaminant concentrations were determined for each of the composited samples by the Manchester Laboratory. The target analytes and analytical methods are listed in Table 4, above. Aluminum values were qualified as estimated because fish were wrapped and frozen in aluminum foil prior to processing. PAHs were not measured in fish tissues due to their rapid metabolism in vertebrates.

The lipid analysis procedure (Manchester Environmental Laboratory, 1997) is to pipette sample extract into a 30-mL pre-weighed beaker, allow the solvent of the sample extract to evaporate overnight, and then dry the sample extracts in a drying oven for four hours. The residue is weighed, and the percent lipids is calculated.

Quality control procedures for the tissue chemical analyses were similar to those described above for sediments and followed the procedures detailed in U.S. EPA (2001a), including the use of certified reference materials, spikes, duplicates, and blanks. The case narratives for the laboratory analyses are included as metadata in the EMAP database.

H4IIE bioassay

H4IIE bioassays were conducted on ground whole-body tissues of the four composited target fish species (sand sole, English sole, speckled sanddab, and starry flounder) from 19 sample stations by the USGS Columbia Environmental Research Center. The H4IIE test is a semi-quantitative procedure which examines the overall toxic potency of planar halogenated hydrocarbons (PHHs) in fish tissue extracts. PHHs consist largely of polychlorinated biphenyls (PCBs), polychlorinated dibenzo-*p*-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs). When present in fish tissue, these chemicals are able to increase 7-ethoxyresorufin-O-deethylase (EROD) activity in the H4IIE rat hepatoma cell line. The results of the induction of EROD are evaluated relative to 2,3,7,8-tetrachlorodibenzo-*p*-dioxin (TCDD). TCDD equivalents (TCDD-EQs) are a measure of the exposure that fish have received to this class of compounds (USGS, 2001).

Samples were shipped overnight on ice to the laboratory, at which time they were refrozen at -80°C until processed for extraction. The methods and results of the H4IIE test are described in a separate report (USGS, 2001). Quoting from that report on QA/QC performed:

"QC samples (matrix and procedural blanks and positive control materials) were prepared concurrently with the test samples. Positive control was provided by common carp tissue collected from Saginaw Bay, Michigan, in 1988. Matrix blank material was derived from clean bluegill raised in CERC's holding pond. ... A TCDD dose-response curve was generated from the average of four independent determinations for each sample. Ten percent of samples were assayed in triplicate, as were all positive controls and blanks. Eight-point resorufin and seven-point BSA standard curves were prepared at six replicates for each concentration, and analyzed concurrently with the samples and TCDD standards. Positive controls were analyzed on each assay date along with the samples to assure that both the EROD enzyme assay and the reagents were behaving according to specifications. The concentrations of the resorufin, ethoxyresorufin, and NADPH reagents were checked on each assay date with a spectrophotometer and compared to known concentrations; measured concentrations were to be within 10% of the known concentrations for the reagents to be acceptable for use." (USGS, 2001)

Marine Debris

Marine debris, whether of natural or anthropogenic (human-caused) origin, encountered in sediment or fish collection was recorded as to type and relative amount.

Biotic Condition Indicators

Benthic Infauna

Single sediment samples for analysis of benthic infauna were collected using a 0.1-m^2 van Veen grab sampler. At the four walk-in stations, a bottomless, 25-cm-diameter bucket was pushed into the sediment where the water was quite shallow, and used as a sampler. The contents of the grab or sampler were sieved through nested 1.0-mm and 0.5-mm sieves using *in-situ* seawater. The material retained on each sieve was placed into Ziploc[®] freezer bags and preserved with a 10% aqueous solution of borax-buffered formalin.

Preserved samples were rescreened in the lab and transferred to 70% ethanol within 2 weeks of field collection. The 1.0-mm-sieve samples were shipped for sorting and taxonomic identification. The 0.5-mm-sieve samples were archived for future reference; results are not reported for those samples.

All macroinfaunal invertebrates and fragments were removed from the formalin-preserved samples and sorted into the following taxonomic groups: Annelida, Arthropoda, Mollusca, Echinodermata, and miscellaneous taxa. Meiofaunal organisms such as nematodes and foraminiferans were not removed from samples, though their presence and relative abundance were recorded. Representative samples of colonial organisms such as hydrozoans, sponges, and bryozoans were collected, and their relative abundance noted.

Sorting QA/QC procedures consisted of resorting 20% of each sample by a second sorter to determine whether a sorting efficiency of 95% removal was met. If not, the entire sample was resorted.

The majority of the post-sorting taxonomic work was contracted to recognized, regional specialists (Table 5) who identified the organisms to the lowest practical taxonomic level (usually species) and counted them. The primary taxonomists also generated a collection of voucher specimens and voucher sheets for each provisional species identified. The voucher sheet listed the major taxon (*e.g.*, Annelida), family, provisional identification, sample from which the specimen was taken, references used in the identification, and a detailed description of the specimen, including characteristics that distinguished it from similar species.

Table 5. Primary and QA/QC taxonomists by taxonomic group and region for the 1999 Western	
Coastal EMAP study	

Organisms	QA/QC Taxonomist	Primary Taxonomists	Region
Annelida	Gene Ruff	John Oliver	Northern California
		Larry Lovell	Southern California
		Gene Ruff	Washington & Oregon
		Kathy Welch	Washington & Oregon
	Don Cadien	Peter Slattery	Northern California
Arthropoda		Tony Phillips	Southern California
		Jeff Cordell	Washington & Oregon
	Don Cadien	Peter Slattery	Northern California
Mollusca		Kelvin Barwick	Northern California
Ivionusca		John Ljubenkov	Southern California
		Susan Weeks	Washington & Oregon
Echinodermata	Gordon Hendler	Peter Slattery	Northern California
		Nancy Carder	Southern California
		Scott McEuen	Washington & Oregon
Miscellaneous taxa	John Ljubenkov	Peter Slattery	Northern California
		John Ljubenkov	Southern California
		Scott McEuen	Washington & Oregon
	Rob Plotnikoff / Chad Wiseman	Not Applicable	Northern California
Freshwater fauna		Not Applicable	Southern California
		Jeff Cordell	Washington & Oregon

Quality control for taxonomy included re-identification of 10% of all samples and verification of voucher specimens by another qualified taxonomist (Table 5). To assure uniform taxonomy and nomenclature across the entire Coastal EMAP West region among the primary taxonomists for each group, and to avoid problems with data standardization at the end of the project, progressive QA/QC and standardization were implemented. At frequent, regular intervals (usually monthly), as primary taxonomy was completed, vouchers, voucher sheets, and a portion of the QA samples were sent to the secondary, QA taxonomists. Immediate feedback from the QA taxonomists to the primary taxonomists. As voucher specimens and bulk samples were processed by the QA taxonomist, any differences in identifications or counts were discussed and resolved with the primary taxonomist. The original data set remained with the primary taxonomist, and changes agreed upon between the primary and QA taxonomists were made by the primary taxonomist on

a copy of the original data set. Changes to the data based on QA/QC analysis were tracked in writing by both the primary and QA taxonomists.

The data from benthic infauna acquired with the van Veen grab, only, were used to compute total numbers of individuals (abundance) and total number of species (species richness) per grab; the samples acquired with a 25-cm bucket at the walk-in stations were excluded from the analyses. Several indices of community were calculated: Shannon-Weaver information diversity index H' (log base 2), Pielou's evenness index J', Swartz' dominance index (number of taxa comprising the most abundant 75% of individuals), and Swartz' dominance standardized by taxa richness. Colonial species were included with a count of 1 in the estimates of abundance, taxa richness, and other bioindices.

Fish

Methods for fish collection are described above for fish-tissue contaminants.

Fish Species and Abundance

All fish from a tow were identified, separated by species, and counted. Up to 30 fish per species were measured to the nearest centimeter (fork length when tail is forked, otherwise total length - snout to tip of caudal fin). If more than 30 specimens of a given species were caught, the remaining fish were enumerated but not measured. Fish not required for histopathology or chemistry were returned to the estuary.

Only the first successful trawl (standard trawls only) was used for fish community characterization, *i.e.*, for the fish species and abundances presented in this report. Catch per area swept was calculated as (total abundance)/[(distance trawled) x (width of net)].

Fish Gross Pathology

Any externally visible pathologies (*e.g.*, tumors) observed on fish were photographed, then excised and placed into labeled pathology containers with Dietrich's solution. Excised tissue included the entire gross lesion and some adjacent healthy tissue. Upon completion of sampling, all samples were sent to Dr. Mark Myers (NOAA Fisheries, Seattle) for analysis. A separate fish pathology report is to be prepared by NOAA.

Epibenthic Invertebrates

Any invertebrates collected in the trawls were sorted by taxonomic group, counted, and then returned to the water.

Fish

Methods for fish collection are described above for fish-tissue contaminants.

Statistical Data Analysis

Data Preparation

Where samples were analyzed in replicate in the laboratory, the results of the lab replicates were averaged before statistical analyses were performed. Measured sediment and fish-tissue analyte concentrations which were below the method detection limit or the reporting limit (*i.e.*, non-detects) were set to zero and included in calculations. The values used in the statistical analyses and graphical summaries of the data are given in Appendices C, D, and E.

Cumulative Distribution Function Analyses

Cumulative distribution functions (CDFs) with 95% confidence limits are presented for each indicator. Fiftieth and 90th percentiles are used to describe the spatial extent of each indicator's results across the study area. Analysis of indicator data by CDFs is an approach that has been used extensively in other EMAP coastal studies (Summers and Macauley, 1993; Strobel *et al.*, 1994; Hyland *et al.*, 1996). The statistical theory is described in Diaz-Ramos *et al.* (1996); formulae used for calculation of the CDFs and their variance estimations are contained in Nelson *et al.* (2004).

A CDF shows the distribution of values of an indicator in relation to the areal extent across the sampling region of interest. To calculate the CDF, the measured values are arranged in increasing order and weighted according to the proportion of the total area, *i.e.*, according to their inclusion probabilities. (Samples have different inclusion probabilities because they represent differing areas.) The sums of the inclusion probabilities for successive indicator values are the estimated cumulative probabilities. Variance estimates are used to compute a 95% confidence interval around the probability estimate at each value.

A CDF, with 95% confidence band, is depicted in Figure 3. The measured values of the indicator are on the horizontal axis, and the cumulative probabilities (or estimates of percent area) are on the vertical axis. Because the sample values are weighted according to the amount of area that they represent, the estimated percent area for a given value of the indicator represents the percent of the sampling region of interest for which the indicator has that value or smaller. The confidence limits depict the range of cumulative percent area which is expected to have a 95% chance of containing the true, but unknown, underlying population cumulative percent area.

The 50th and 90th percentiles are found by locating the 50% and 90% cumulative probabilities on the CDF curve from the vertical axis and projecting down to the horizontal axis. *These percentiles are used solely as benchmarks and do not represent ecologically important values.* However, the CDF can also be used to find the cumulative percent area for which the indicator is less than a specified ecologically relevant value, by locating the value of interest on the horizontal axis and projecting across to the vertical axis.

Sediment XYZ Concentration

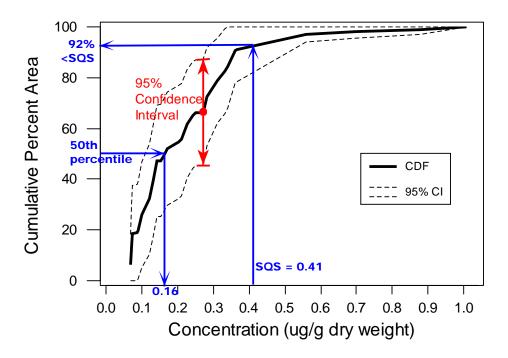


Figure 3. Sample cumulative distribution function (CDF) graph. The CDF indicates the percent area with a given indicator value or less. Dashed lines indicate the 95% confidence band (confidence interval, or CI) for the cumulative distribution function. For this example, it is estimated that $67\% \pm 21\%$ of the sample area has sediment XYZ contaminant concentrations of 0.27 µg/g or less. The 50th percentile in this example would be described by stating that it is estimated that 50% of the study area has sediment XYZ contaminant concentrations of 0.16 µg/g or less. Any percentile of interest may be estimated in this way. The CDF can also be used to compare survey results to an ecologically important value. In this example, it is estimated that 92% of the study area has sediment XYZ contaminant concentrations less than the Washington State Sediment Quality Standard (SQS) of 0.41 µg/g, and 8% of the study area exceeds the standard.

Comparisons to Sediment Quality Standards and Guidelines for Contaminants

Sediment metals and PAH contaminant levels were compared to Washington State regulatory sediment quality standards (Washington State Department of Ecology, 1995) and to NOAA sediment quality guidelines (Long *et al.*, 1995). Non-detects were excluded, except as noted for PAH totals. The LPAH and HPAH compounds composing the PAH totals for the sediment quality standards and guidelines, given in Appendix Table A-3, differ from those composing the EMAP Total LPAH and Total HPAH.

The NOAA Effects Range Low (ERL) and Effects Range Median (ERM) sediment quality guidelines represent the 10th and 50th percentiles, respectively, of chemical concentrations associated with toxicity or other adverse biological effects in North American saltwater studies (Long *et al.*, 1995). The ERM for nickel was not employed due to the relative unreliability of this value in accurately predicting toxicity (Long *et al.*, 1995; Long and MacDonald, 1998).

Washington State sediment quality standards were enacted into law in 1991 as part of sediment management rules for the purpose of reducing or eliminating harmful effects of sediment contamination on biota, including humans (Washington State Department of Ecology, 1995). The Sediment Quality Standards (SQS) are sediment chemical concentration levels below which adverse biological effects are not expected, while the Cleanup Screening Limits (CSL) are concentration levels above which at least moderate adverse biological effects are expected to occur (Washington State Department of Ecology, 1995). The SQS and CSL are based on data from Puget Sound.

The degree to which organic pollutants are bioavailable is in part determined by the degree to which they are bound by organic matter in the sediments (DiToro *et al.*, 1991). For that reason, concentrations of organic pollutants are normalized by the TOC content of the sediments before comparison to the SQS and CSL (Washington State Department of Ecology, 1995). Total LPAH and HPAH values for comparison with the SQS and CSL were calculated for each station by summing detected values of the TOC-normalized constituent compounds (Appendix Table A-3). If all results were qualified as undetected, the largest reporting limit was used as the total, and the total was qualified as undetected (Washington State Department of Ecology, 1995).

Data Management

Responsibility for the EMAP Western Coastal Information Management Program was initially given to the Southern California Water Resources Research Program (SCCWRP), but now resides within the U.S. EPA Office of Research and Development in Newport, Oregon. Data from the individual states are submitted to EMAP Information Management in a multi-stage process:

- 1. Field crew leaders and laboratory supervisors compile data generated by their organizations and enter data into Microsoft Excel® spreadsheets. The State Information Management (IM) Coordinator compiles all data generated within a state into a unified state database. An independent person performs a quality assurance check on the data at each step, 100% for all hand-typed transcribed data and 10% or more, up to 100%, for electronic data.
- 2. The State IM Coordinators submit data to the centralized West Coast EMAP database, created and managed by the Western EMAP IM Coordinator for the centralized West Coast EMAP database. The Western EMAP IM Coordinator works with State IM Coordinators to develop standardized data transfer protocols for data submission.
- 3. Integrated multi-state data tables in the regional database are certified by the Western EMAP IM Coordinator and provided to the Western EMAP Quality Assurance Coordinator for scientific-content QA review. Discrepancies revealed by this review are communicated to the Western EMAP IM Coordinator, who works with the State IM Coordinators to make necessary changes. Ozretich (2004) contains the QA review of the chemistry data for all three states.
- 4. Following certification of all data by the Western EMAP Quality Assurance Coordinator, the Western EMAP IM Coordinator submits the integrated multi-state data set to the national EMAP IM Coordinator, located at the Atlantic Ecology Division of EPA at Narragansett, Rhode Island for storage in the national EMAP database and for data-transfers to other EPA databases, such as STORET. The national EMAP IM Coordinator is the point of contact for data requests.

Results

The results reported herein were analyzed in 2003 with data taken from Version 6.2 of the 1999 West Coast EMAP database, with corrections approved by the Washington EMAP Information Management Coordinator. The corrections were incorporated into subsequent versions of the West Coast EMAP database. Fish catch data were re-analyzed in 2005 with data from Version 6.05.03 of the database.

Site Visits

Sampling was attempted at 48 of the 50 proposed 1999 Washington stations (Appendix Table B-1). The other two stations (WA99-0018 and WA99-0032) were determined prior to sampling to be inaccessible. Of the 48 stations visited, five were abandoned in the field due to insufficient water depth or unsafe marine conditions, four prior to sampling. The fifth abandoned station and six others were partially sampled. Details are given in Appendix Table B-1.

A full set of EMAP parameters was measured at 37 of 44 stations; the remainder of the stations were partially sampled (Appendix Table B-1, Figure B-1). CTD-cast data and discrete water samples were acquired at Station WA99-0030 prior to station abandonment. Due to hard seabed (rock, boulders, and gravel), inadequate sediment for chemistry analyses was obtained at Stations WA99-0006 and WA99-0008. Kelp obstructed trawling at WA99-0008. Station WA99-0001 was too deep, and Station WA99-0017 too close to a river mouth, to trawl safely. Rough water and fog prevented trawling at Stations WA99-0033 and WA99-0035, respectively.

Four intertidal stations (WA99-0015, -0016, -0017, and -0019) were visited on foot, rather than by boat. Several stations were sampled short distances away from the target coordinates, mostly due to inadequate water depth (Appendix Table B-1).

General Habitat Condition Indicators

Hydrographic Profile

Surface (0.5 m depth) and bottom results (0.5 m above seafloor) are summarized here for continuously-measured parameters (salinity, temperature, dissolved oxygen, pH, and transmissivity) for the stations sampled by boat. The walk-in stations were too shallow for the water column to be profiled with the CTD. Surface, mid-water, and bottom results are presented for discrete water parameters (PAR, TSS, photosynthetic pigments, and dissolved nutrients) for all stations sampled. Appendix Tables B-2 and B-3 indicate which parameters were measured at each water level for each station; the measured values and graphical summaries are given in Appendix C. Tables 6 and 7 present summary statistics for the physical and chemical parameters, respectively.

Parameter (units)	Water Level	Number of Stations	Minimum	Maximum	CDF 50th Percentile	CDF 90th Percentile
Depth (m)		44	21.3	intertidal	2.7	0.27
Salinity (psu)*	Surface	40	0.04	32.85	28.3	32.2
Samily (psu)	Bottom	40	ionsMinimumMaximum4 21.3 intertidal0 0.04 32.85 0 0.04 32.85 0 0.04 33.23 0 9.79 21.59 0 8.53 21.59 0 -0.003 8.02 0 -0.003 8.02 0 6.48 11.44 0 4.28 11.47 0 6.65 8.43 0 6.58 8.17 0 8.4 81.9 0 5.1 82.8 0 <1 87.6 6 4.9 93.6 6 0.13 6.03 8 0.19 3.4	29.3	33	
Water Temperature (°C)*	Surface	40	9.79	21.59	16.23	18.68
water reinperature (C)*	Bottom	40	8.53	21.59	15.23	18.31
Density Stratification $(\Delta \sigma_t)^*$ [Density _{Bottom} - Density _{Surface}]		40	-0.003	8.02	0.6	3.56
Dissolved Oxygen (mg/L)*	Surface	40	6.48	11.44	7.46	9.47
Dissolved Oxygen (mg/L)*	Bottom	40	4.28	11.47	7.16	8.98
pH*	Surface	40	6.65	8.43	7.51	7.63
pm	Bottom	40	6.58	8.17	7.46	7.61
Transmissivity*	Surface	40	8.4	81.9	50.32	68.13
(% of Light Transmitted)	1 m Depth	40	5.1	82.8	51.36	67.64
(voor Eight Hunshitted)	Bottom	40	< 1	87.6	49.59	67.12
Submerged PAR Percent of Terrestrial PAR (%)	Surface	36	4.9	93.6	41.6	70.8
Light-Extinction	Surface	36	0.13	6.03	1.47	3.72
Coefficient $K_d (m^{-1})$	Mean**	38	0.19	3.4	1	1.83
Secchi Depth (m)*		39	0.75	10.2	1.95	4.06

Table (C	atatiatian	for		mafile .	herei a al	parameters
	Summary	Statistics	IOI water	vertical-		physical	parameters

*Excluding walk-in stations

**Water-column mean light-extinction coefficient may be skewed because not all stations had bottom or mid-water PAR measurements.

Table 7. Summary statistics for water vertical-profile chemical parameters. The proportions of area stated for the water levels are based on different sort orders of the stations. Only the water-column mean represents simultaneous conditions at surface, mid-water, and bottom.

Parameter	Water	Number of	Minimum	Maximum	CDF 50th	CDF 90th
(units)	Level	Stations	Iviiiiiiiiiiiiiiiii		Percentile	Percentile
	Surface	44	2	40	5.8	8.7
TSS	Mid-water	28	2	14	7.17	11.51
(mg/L)	Bottom	38	2	40	6.75	17.17
	Mean	44	2	40	7.08	12.98
	Surface	44	0	34.73	4.49	11.61
Chlorophyll-a	Mid-water	28	0	14.38	4.58	11.58
$(\mu g/L)$	Bottom	38	0.84	27.49	4.47	12.4
	Mean	44	0.55	31.11	4.28	13.5
	Surface	44	0	10.61	1.79	4.03
Phaeopigment	Mid-water	28	0	8.89	2.35	4.79
$(\mu g/L)$	Bottom	38	0.54	14.14	2.93	6.19
	Mean	44	0.48	10.61	2.46	4.36
D' 1 1	Surface	44	0	55.06	11.75	48.94
Dissolved	Mid-water	28	1.45	59.96	12.38	36.34
Ammonium	Bottom	38	0	84.19	13.59	51.4
(µg/L)	Mean	44	0.65	57.35	13.68	44.36
D : 1 1	Surface	44	0	5.54	1.91	4.43
Dissolved	Mid-water	28	0	5.53	2.84	4.68
Nitrite	Bottom	38	0	5.65	2.96	4.37
(µg/L)	Mean	44	0	5.45	2.44	4.25
	Surface	44	0	349.35	37.79	101.37
Dissolved	Mid-water	28	0	371.74	80.52	201.62
Nitrate	Bottom	38	0	427.25	83.47	241.13
(µg/L)	Mean	44	0	355.06	67.25	155.98
Total	Surface	44	0.07	26.11	3.9	11.29
Inorganic	Mid-water	28	0.24	26.95	8.26	16.73
Nitrogen	Bottom	38	0.19	30.73	9.06	18.95
(μM)	Mean	44	0.23	25.95	8.04	12.68
Dissolved	Surface	44	0.14	63.11	27.53	43.81
Inorganic	Mid-water	28	0.73	67.09	34.45	53.71
Phosphate	Bottom	38	0.43	76.6	36.27	55.34
$(\mu g/L)$	Mean	44	0.53	64.87	33.27	47.04
Total	Surface	44	0.0045	2.04	0.89	1.41
Inorganic	Mid-water	28	0.02	2.16	1.11	1.73
Phosphorus	Bottom	38	0.01	2.47	1.17	1.79
(µM)	Mean	44	0.02	2.09	1.07	1.52
× /	Surface	44	0.17	652.27	4.88	14.79
	Mid-water	28	0.17	132.16	7.19	12.44
N:P Ratio	Bottom	38	0.15	133.63	7.82	13.83
	Mean	44	0.16	178.62	7.63	14.85
D' 1 1	Surface	44	372.04	5193.64	1329.4	1922.05
Dissolved	Mid-water	28	912.36	6358.45	1320.87	1934.92
Silicic Acid	Bottom	38	860.43	6424.74	1319.61	1987.44
(µg/L)	Mean	44	372.04	5992.28	1351.13	1897.4

Depth

The tidally-corrected depths of the 44 stations sampled ranged from intertidal to 21.3 m below MLLW. About half of the study area was less than 3 m deep. Ten stations, accounting for only about 2% of the study area, were intertidal according to the predicted tide heights for the specific dates and times sampled; of those, all were less than 2 m above MLLW, and all but three were less than 1 m above MLLW. Three additional sites were not sampled due to inadequate water depth.

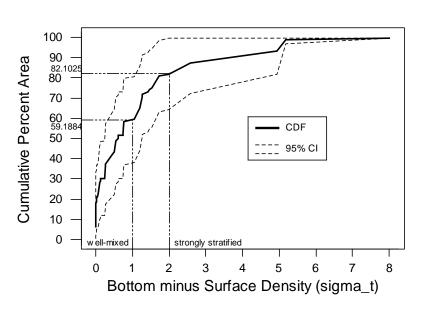
The stations in the smallest estuaries along the Pacific Coast were all intertidal, and those in estuaries along the Columbia River were less than 10 m deep. Station depths in the embayments along the Strait of Juan de Fuca ranged from intertidal to over 20 m.

Salinity

Salinities ranged from 32-33 psu in Makah Bay, which is open to the Pacific Ocean, to < 0.1 psu in Grays Bay and other estuaries further upstream along the Columbia River. Estuaries off the Strait of Juan de Fuca had salinities of 27-33 psu. The salinities in Grays Harbor and Willapa Bay ranged from 26 to 33 psu, though stations up the Elk River and at the mouth of the Chehalis River had salinities of about 13 and 20, respectively. Salinities in Baker Bay, near the mouth of the Columbia River, varied considerably, from 3 to 13 psu. Surface and bottom salinities were similar, except at two stations in Grays Harbor and one station in Baker Bay, at the mouth of the Columbia River. Approximately 9% of the study area was oligohaline (salinity < 5 psu), 11% mesohaline (5-18 psu), and 80% polyhaline (> 18 psu).

Temperature

Water temperatures ranged from 8.5°C to 16.5°C in the estuaries of the northern Olympic Peninsula, 10.3-18.8°C in Grays Harbor and Willapa Bay, and 15.1-21.6°C along the Columbia River. Surface and bottom temperatures were similar for the majority of stations. Bottom temperatures were several degrees cooler than surface temperatures at a few stations at the mouths of estuaries opening onto the Pacific Ocean and at three stations in Discovery Bay.


Density and Water Column Stratification

Water density is a function of salinity and temperature, and the difference between surface and bottom densities indicates the degree of water-column stratification. The *Stratification Index* is calculated as the bottom density minus the surface density. A stratification index less than $1 \sigma_t$ indicates well-mixed waters, whereas strongly stratified waters are indicated by a stratification index greater than $2 \sigma_t$. Between $1 \sigma_t$ and $2 \sigma_t$ is intermediate stratification.

A few stations had stratification indices of zero (*i.e.*, surface and bottom densities equal) or slightly negative (*i.e.*, density higher at surface than bottom): one in Willapa Bay and two in Grays Bay. The greatest stratification occurred at one station in Baker Bay, where density was considerably lower at the surface $(0.55 \sigma_t)$ than at the bottom $(8.57 \sigma_t)$. Aside from that one

station, stratification index values were generally less than 1.5 σ_t , except in Grays Harbor, where stratification indices ranged from 0.04 to 5.2 σ_t .

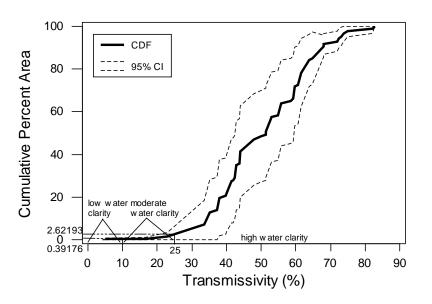
Fifty-nine percent of the study area had stratification index values less than 1 σ_t , indicating well-mixed waters (Figure 4). About 18% of the area had stratification indices greater than 2 σ_t , indicating strongly stratified waters. The remaining 13% had intermediate stratification.

Density Stratification

Figure 4. Cumulative percent of study area by water column density stratification index, indicating well-mixed and strongly stratified water.

Dissolved Oxygen (DO)

With the exception of a few bottom DO concentrations between 4 and 5 mg/L in Discovery, Freshwater, and Makah Bays, all DO concentrations were above 5 mg/L. All surface DO concentrations were above 6.4 mg/L. Bottom DO concentrations were generally above 7.3 mg/L in Willapa Bay and the Columbia River estuaries, and below 7.3 mg/L in Grays Harbor and Makah Bay. DO concentrations in Grays Harbor occupied a narrower range than in the other estuaries — ± 0.5 mg/L or less — compared to ± 1 mg/L to about ± 3 mg/L elsewhere. Surface and bottom DO concentrations were quite similar, except in Makah Bay and the estuaries off the Strait of Juan de Fuca, where the bottom DO was often much lower than the surface DO.


None of the study area was severely hypoxic (DO < 2 mg/L), and none of the area had moderately hypoxic (DO < 5 mg/L) surface waters. Three stations, one in each Discovery Bay, Freshwater Bay, and Makah Bay, together accounting for 3.78% of the study area, had moderately hypoxic (DO < 5 mg/L) bottom waters.

Makah Bay was the most alkaline location, with pH above 8. The pH ranged from 7.0 to 7.9 in the estuaries off the Strait of Juan de Fuca, 6.7-7.6 in Grays Harbor, 7.3-7.6 in Willapa Bay, and 6.6-8.0 in Columbia River estuaries. Surface and bottom pH were quite similar at most stations. Bottom waters were more acidic than surface waters at Martin Slough, the mouth of Makah Bay, and at three stations in Discovery Bay.

Light Transmissivity and Water Clarity

Transmissivities, both surface and bottom, were largely in the range of 35-70% light transmission. Only a single station, Grass Creek in Grays Harbor, had transmissivity less than 10%. Transmissivity was generally above 50%, and frequently 70-85%, in the northern Olympic Peninsula estuaries. Transmissivity was far lower at the bottom than at the surface along the northern shore of Grays Harbor, at the mouths of Makah and Willapa Bays, and at one very muddy station in Discovery Bay. Elsewhere, surface and bottom transmissivities tended to be similar.

More than 97% of the study area had high water clarity, as indicated by transmissivities > 25% at 1 meter depth (Figure 5). Only about 0.4% of the study area (Grass Creek) had low water clarity, as indicated by transmissivities < 10%. The remaining 2% had moderate water clarity, with transmissivities at 1 m in the 10-25% range.

Transmissivity at 1 Meter Depth

Figure 5. Cumulative percent of study area by transmissivity at 1 m depth, indicating ranges of high, moderate, and low water clarity.

pН

Photosynthetically Active Radiation (PAR) and Water Clarity

<u>Percent of TerPAR</u> — The surface SubPAR/TerPAR ratio was generally above 40% in Columbia River estuaries, Grays Harbor, and Willapa Bay, and generally below 40% in the estuaries of the northern Olympic Peninsula. Surface SubPAR/TerPAR ratios were < 10% at six stations (two in each Makah, Freshwater, and Discovery Bays). At two stations (one in each Baker Bay and Grays Bay) the ratio was over 100%, *i.e.*, the terrestrial PAR reading was lower than the submerged PAR measurement.

<u>Surface Light-Extinction Coefficient</u> — The surface light-extinction coefficients were generally below 2.0 m⁻¹ along the Columbia River, in Grays Harbor, and in Willapa Bay, and above 2.0 m^{-1} in the estuaries of the northern Olympic Peninsula.

<u>Mean Light-Extinction Coefficient</u> — Approximately 64% of the study area had mean lightextinction coefficients less than 1.387 m⁻¹, indicative of high water clarity (Figure 6). About 1.5% of the area (the walk-in stations) had mean light-extinction coefficients greater than 2.303 m⁻¹, indicative of low water clarity. The remaining 34.5% had moderate water clarity, with mean light-extinction coefficients between 1.387 and 2.303 m⁻¹.

Mean Light Extinction Coefficient k

Figure 6. Cumulative percent of study area by water-column mean light-extinction coefficient k, indicating areas of high, moderate, and low water clarity. Water-column mean light-extinction coefficient may be skewed because not all stations had bottom or mid-water PAR measurements.

Note that the mean light-extinction coefficients (average of surface, mid-water, bottom) may be skewed because not all stations had bottom or mid-water PAR measurements due to insufficient depth. In particular, SubPAR could be measured only at the surface at the walk-in stations

(< 1 m deep). No mid-water PAR measurements were taken at the one station in Dungeness Bay, many of the stations in Grays Harbor, one station in Willapa Bay, and about half the stations in both Grays and Baker Bays. Furthermore, the middle and/or bottom of the water column may not be in the photic zone at some stations.

Secchi Depth

Secchi depths were generally 2.5 m or less in Grays Harbor, Willapa Bay, and the estuaries of the Columbia River. Secchi depths at stations situated around the northern Olympic Peninsula ranged from 2.3 to 10.2 m. At the Hoko River station, the Secchi disk was visible on the seabed, 5 m deep.

Water Laboratory Analyses

Summary statistics for the results of water laboratory analyses are given in Table 7. The measured values and graphical summaries of the data are given in Appendix C.

Total Suspended Solids (TSS)

TSS concentrations at both surface and bottom depths ranged from 2 to 40 mg/L, and were between 2 and 16 mg/L at all but four stations: one of the shallow walk-in stations and three stations in Grays Harbor. Mean TSS concentrations were generally above 6 mg/L (not an ecologically important value, merely an observation) in Willapa Bay and Grays Harbor, and below 6 mg/L in Makah Bay and the Strait of Juan de Fuca estuaries.

Photosynthetic Pigments

Chlorophyll-a

Surface chlorophyll-*a* concentrations varied considerably: for example, 0-28.9 μ g/L in Makah Bay, 0.9-34.7 μ g/L in Discovery Bay, 0-15.6 μ g/L in Willapa Bay. All but a few surface and bottom chlorophyll-*a* concentrations were between 1 and 10 μ g/L, the exceptions being Martin Slough (the station farthest upstream in the Columbia River), the deepest stations in Makah and Willapa Bays, and the shallowest station in Discovery Bay. Except at that one station in Discovery Bay (31.1 μ g/L), mean chlorophyll-*a* concentrations were less than 16 μ g/L (not an ecologically important value, merely an observation); most were < 10 μ g/L.

Phaeopigment

Surface phaeopigment concentrations were less than 5 μ g/L (not an ecologically important value, merely an observation), except at two of the walk-in stations. Bottom phaeopigment concentrations were less than 7 μ g/L (also just an observation, not an ecologically important value), except at Makah Bay and the deepest Willapa Bay station. Bottom phaeopigment concentrations were higher than surface concentrations in Makah Bay. Mean phaeopigment concentrations were generally lower in the Strait of Juan de Fuca estuaries than elsewhere.

Dissolved Nutrients

Ammonium (NH₄)

Mean dissolved ammonium concentrations were considerably higher in Baker Bay than in the rest of the Columbia River estuaries, and were generally lower in Freshwater Bay and Willapa Bay than in most of the other estuaries. Mean dissolved ammonium concentrations were quite variable in Grays Harbor. About 80% of the study area had mean NH₄ concentrations in the lower half of the range (Appendix Figure C-2).

Nitrite (NO₂)

Mean dissolved nitrite concentrations were generally higher in Makah Bay and the Strait of Juan de Fuca estuaries than in the other estuaries. The mean dissolved nitrite concentration at the shallowest Discovery Bay station was considerably lower than in the rest of the bay. Over 90% of the study area had mean NO_2 concentrations in the lower half of the range (Appendix Figure C-2).

Nitrate (NO₃)

With the exception of the shallowest station in Discovery Bay, the mean dissolved nitrate concentrations in the estuaries of the northern Olympic Peninsula were generally 2 to 4 times higher than in the other estuaries. Several stations in Willapa Bay and one in Grays Harbor had zero or near-zero mean dissolved nitrate concentrations. The mean NO₃ concentrations were fairly evenly distributed through the study area (Appendix Figure C-2).

Total Nitrogen

The surface total dissolved inorganic nitrogen concentrations (Total N) were lower, overall, than those for the middle and bottom of the water column (Appendix Figure C-2). The mean Total N in Hoko River and Freshwater Bay was considerably higher than in all the other estuaries. Mean Total N was below 4 μ M at the walk-in stations and several Willapa Bay and Grays Harbor stations, and the mean Total N was higher in Baker Bay than in the Columbia River estuaries further upstream.

Phosphate (PO₄) and Total Phosphorus

The only component of total dissolved inorganic phosphorus in this analysis was dissolved phosphate (expressed in units of μ M instead of μ g/L). Mean dissolved phosphate concentrations (Total P) were generally higher in the northern Olympic Peninsula estuaries, and lower in Grays Bay and estuaries further upstream in the Columbia River, than in the other estuaries. The mean Total P was one to two orders of magnitude lower at the Cowlitz River station in the Columbia River than at all other stations. Surface Total P was lower, overall, than that for the middle and bottom of the water column (Appendix Figure C-2).

Nitrogen-to-Phosphorus Ratio (N:P Ratio)

N:P ratios were higher in the Columbia River estuaries, increasing upstream along the Columbia, than in other estuaries. N:P ratios tended to be lower in Willapa Bay than in Makah Bay and embayments along the Strait of Juan de Fuca. The mean N:P ratio at the Cowlitz River station was one to three orders of magnitude higher than at all other stations, due to a very low total dissolved inorganic phosphorus concentration. Overall, the mid-water and bottom N:P ratios were about the same, while the surface N:P ratio was generally lower.

Approximately 93% of the study area had an N:P ratio less than 16, which in freshwater systems may indicate nitrogen-limitation; approximately 7% of the study area had an N:P ratio greater than 16, which in freshwater systems may indicate phosphorus-limitation.

Silicic Acid (Si(OH)₄)

Mean dissolved silicic acid concentrations had a wide range of variation in the Columbia River estuaries and among the walk-in stations. Mean dissolved silicic acid concentrations in the Columbia River estuaries were generally higher those than in Grays Harbor, which were in turn higher than those in Grays Harbor, Makah Bay, and the estuaries of the Strait of Juan de Fuca.

Sediment Characteristics

Where samples were analyzed in replicate in the laboratory, the results of the lab replicates were averaged before statistical analyses were performed. The averaged measurements and graphical summaries of the data are given in Appendix C. Summary statistics are given in Table 8.

	Percent Fines (% silt-clay)	TOC (%)
Number	41	41
Minimum	0	0
Maximum	86.1	3.24
CDF 50th Percentile	5.8	0.21
CDF 90th Percentile	41.7	0.98

Table 8. Summary statistics for sediment	lithology
--	-----------

Silt-Clay Content (Grain Size Analysis)

Approximately 76% of the area has sandy sediment (< 20% silt-clay), less than one percent of the area is composed of muds (> 80% silt-clay), and the remainder is intermediate (Figure 7). Half of the area has < 6% silt-clay (not an ecologically important value, merely an observation; Table 8).

Silt-clay content in Makah Bay sediments was less than 7%. Silt-clay content in Willapa Bay and at the walk-in stations was in the range 0-35%, and in Grays Harbor, 0-60%. Sediments in the other Strait of Juan de Fuca estuaries ranged from $\sim 10\%$ to 86% silt-clay. At all but one of the Columbia River stations, silt-clay content ranged from 0% to 35%; the one exception had 50% silt-clay. There were seven stations with no measurable silt or clay, being composed entirely of sand and gravel fractions, in Pacific Coast estuaries (including Grays Harbor and Willapa Bay) and near the mouth of the Columbia River.

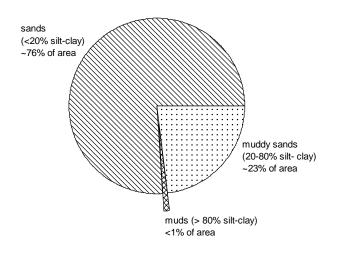


Figure 7. Distribution of sediment types in Washington's coastal estuaries

Total Organic Carbon (TOC) Content

Organic carbon was detected at 40 of the 41 stations analyzed (Table 8); TOC was not detected at one station in Grays Harbor. Approximately 68% of the area had TOC content less than 0.5% (Figure 8). TOC was < 0.5% except in Discovery Bay, much of Grays Harbor, and a few other locations. TOC was < 0.2% at the remaining stations in Grays Harbor, three stations in Willapa Bay, and several other locations.

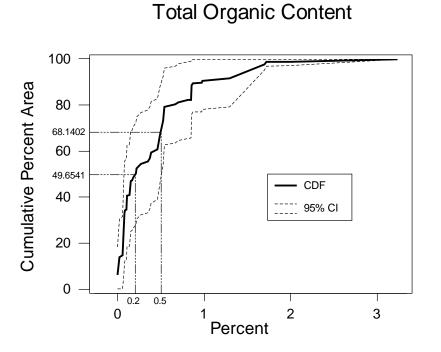


Figure 8. Cumulative percent of study area by sediment TOC

Exposure Condition Indicators

Sediment Contaminants

Where samples were analyzed in replicate in the laboratory, the results of the lab replicates were averaged before statistical analyses were performed. The averaged measurements and graphical summaries of the data are given in Appendix D.

Metals

The following 13 metal contaminants were detected in sediment from all 41 stations analyzed: aluminum, antimony, arsenic, cadmium, chromium, copper, iron, lead, manganese, nickel, silver, tin, and zinc. Mercury was detected at 40 of the 41 stations; selenium was detected at 4 of the 41 stations (Table 9). Across the study area, Discovery Bay, Grays Harbor, and the Columbia River estuaries had the highest concentrations of metal contaminants. Metals concentrations were generally higher in estuaries along the Columbia River and the Strait of Juan de Fuca than in Makah Bay, Willapa Bay, and the walk-in stations.

Analyte	Number of Detects (N=41 stations)	Minimum	Maximum	CDF 50th Percentile	CDF 90th Percentile
Aluminum	41	8750	47900	21832	34866
Antimony	41	0.14	0.98	0.3	0.42
Arsenic	41	0.69	18.6	5.1	6.8
Cadmium	41	0.075	2.31	0.13	0.39
Chromium	41	21.3	94.3	42.95	82.09
Copper	41	6.6	59	14.53	54.07
Iron	41	16300	75200	27374.2	44573.6
Lead	41	3.89	25.9	7.57	11.28
Manganese	41	239	1390	405.49	687.02
Mercury	40	0	0.101	0.016	0.0358
Nickel	41	7.9	49.2	16.42	33.68
Selenium	4	0	0.22	0	0
Silver	41	0.12	0.98	0.248	0.557
Tin	41	0.7	2.67	0.987	2.07
Zinc	41	29.2	147	48.01	80.65

Table 9. Summary statistics for sediment metal concentrations (μ g/g dry weight). Non-detects were set to zero and included in the statistical analyses.

Comparisons to Sediment Quality Standards and Guidelines for Metal Contaminants

The ERL was exceeded for only four metals (arsenic, cadmium, chromium, and copper) at only a few stations. In no samples analyzed were the ERM, SQS, or CRL exceeded for any metal (Table 10, Appendix Table D-1).

Analyte	ERL (µg/g)	% of area > ERL	ERM (µg/g)	% of area > ERM	SQS (µg/g)	% of area > SQS	CSL (µg/g)	% of area > CSL
Arsenic	8.2	2.90%	70	0	57	0	93	0
Cadmium	1.2	1%	9.6	0	5.1	0	6.7	0
Chromium	81	12.80%	370	0	260	0	270	0
Copper	34	15.70%	270	0	390	0	390	0
Lead	46.7	0	218	0	450	0	530	0
Mercury	0.15	0	0.71	0	0.41	0	0.59	0
Silver	1	0	3.7	0	6.1	0	6.1	0
Zinc	150	0	410	0	410	0	960	0

Table 10. Comparisons of sediment metals concentrations to Washington State sediment quality standards and NOAA sediment quality guidelines

Aluminum

Aluminum was detected at all 41 stations. Concentrations varied widely in Columbia River estuaries, Willapa Bay, and Grays Harbor. Aluminum concentrations occupied narrow ranges in the other estuaries, greater in Strait of Juan de Fuca estuaries than in Makah Bay, and greater in Makah Bay than at the walk-in stations.

Antimony

Antimony was detected at all 41 stations. Concentrations varied widely in the estuaries of the Columbia River and Strait of Juan de Fuca. Antimony concentrations tended to be lower in all of the embayments on the Pacific Coast than along the Columbia River or the Strait of Juan de Fuca.

Arsenic

Arsenic was detected at all 41 stations. Within each estuary except Grays Bay, arsenic concentrations tended to be fairly consistent; those in Grays Bay were quite variable. Arsenic concentrations in Grays Bay were generally higher than in other Columbia River estuaries, and concentrations in Makah Bay were generally higher than in other estuaries outside the Columbia River. The ERL for arsenic (8.2 μ g/g) was exceeded at one station in Discovery Bay and two stations in Grays Bay, together representing 2.9% of the study area.

Cadmium

Cadmium was detected at all 41 stations. Concentrations varied widely in the estuaries of the Columbia River and the Strait of Juan de Fuca, and were generally higher than in the other estuaries. The largest concentration occurred in Discovery Bay and was approximately an order of magnitude higher than in almost all of the estuaries outside the Columbia River. The ERL for cadmium $(1.2 \ \mu g/g)$ was exceeded at only that one station in Discovery Bay, representing approximately 1% of the study area.

Chromium

Chromium was detected at all 41 stations. Concentrations in Grays Harbor, Columbia River estuaries, and Strait of Juan de Fuca estuaries tended to be higher than in Willapa Bay and the other Pacific Coast estuaries. The ERL for chromium ($81 \mu g/g$) was exceeded at two stations in Grays Harbor and three stations in Grays Bay, together representing 12.8% of the study area.

Copper

Copper was detected at all 41 stations. Concentrations varied widely in Grays Harbor, Discovery Bay, and along the Columbia River. Copper concentrations in Willapa Bay and the northern Olympic Peninsula estuaries outside Discovery Bay varied little and were generally lower than in Discovery Bay or the Columbia River estuaries. The ERL for copper $(34 \ \mu g/g)$ was exceeded at eight stations (one in each Discovery Bay and Baker Bay, two in Grays Harbor, and four in Grays Bay), together representing 15.7% of the study area.

Iron

Iron was detected at all 41 stations. Concentrations in Grays Bay were generally about twice as high as elsewhere. Iron concentrations in Grays Harbor and the rest of the Columbia River estuaries were similar and generally higher than in the rest of the Pacific Coast estuaries.

Lead

Lead was detected at all 41 stations. Concentrations varied widely along the Columbia River and, to a lesser extent, in Discovery Bay. Lead concentrations were generally higher in Willapa Bay and the Columbia River estuaries than in the other Pacific Coast estuaries.

Manganese

Manganese was detected at all 41 stations analyzed. Concentrations varied widely in Grays Bay, and were generally higher along the Columbia River than elsewhere.

Mercury

Mercury was detected at 40 of the 41 stations; mercury was not detected at the station in the Cowlitz River. Concentrations varied widely in Discovery Bay and along the Columbia River. Martin Slough, Baker Bay, and Discovery Bay had particularly high values.

Nickel

Nickel was detected at all 41 stations. Concentrations varied widely in Grays Harbor and along the Columbia River and the Strait of Juan de Fuca, and were higher in those estuaries, especially in Grays Bay, than elsewhere.

Selenium

Selenium was detected at only 4 of the 41 stations; more than 90% of the study area had nondetected selenium concentrations. The largest concentration occurred at one station in Discovery Bay. The smallest measurable selenium concentration occurred at one station in Grays Bay. The other two stations at which selenium was detected were in Discovery Bay and Raft River.

Silver

Silver was detected at all 41 stations. Concentrations varied more widely, and were generally higher, along the Columbia River than elsewhere.

Tin

Tin was detected at all 41 stations. Concentrations along the Columbia River were higher than at the walk-in stations and in the northern Olympic Peninsula estuaries outside Discovery Bay. Tin concentrations varied more widely in Grays Harbor than elsewhere.

Zinc

Zinc was detected at all 41 stations. Concentrations varied widely along the Columbia River and were generally higher there than elsewhere.

Polynuclear Aromatic Hydrocarbons (PAHs)

Station WA99-0050 Laboratory Replicate #4 Outlier

An outlier exists within the PAH data: Laboratory replicate #4 at Station WA99-0050 (Martin Slough) yielded unusually high concentrations of most PAH compounds. The reason for more than two lab replicates for that particular sample was multiple dilutions (Manchester Environmental Laboratory, 2000).

Within the LPAH group, lab replicate #4 results were, on average, 40 times higher than the largest values without the outlier (in lab replicates #1-3 at that station), the multiplicative factor ranging from less than 2 to almost 175, depending on the particular LPAH compound. Within the HPAH group, lab replicate #4 results were, on average, more than 3 times higher than the largest values without the outlier, the multiplicative factor ranging from less than 2 to 5.5, depending on the particular HPAH compound.

The replicate #4 anomaly is believed to have been caused by the presence of a tar ball, oil globule, or piece of creosoted wood (Manchester Environmental Laboratory, 2000). Although this represents inhomogeneity within the sample, it might still be considered representative of generalized conditions in Martin Slough.

PAH results are presented with and without the outlier.

Individual PAHs

PAHs were detected at 40 of the 41 stations analyzed, though not all PAH compounds were measured at all stations. One station in Grays Harbor had non-detects for all PAHs.

Including the outlier (Station WA99-0050 lab replicate #4) in the analysis — The concentrations of individual LPAHs were highest at Station WA99-0050 for all except acenaphthylene, acenaphthene, 1-methylnaphthalene, and 2,3,5-trimethylnaphthalene (Table 11). Acenaphthene and acenaphthylene were highest at one station in Grays Harbor, and the other two were highest at one of the Makah Bay stations. The concentration of retene was higher in lab replicate #3 than in lab replicate #4 at Station WA99-0050. The concentrations of individual HPAHs were highest at Station WA99-0050 for all except perylene (Table 10), where the highest concentration occurred at one station in Grays Harbor.

Excluding the outlier (Station WA99-0050 lab replicate #4) from the analysis — The concentrations of individual LPAHs were highest at Station WA99-0050 for only anthracene, fluorene, phenanthrene, and retene; whereas HPAH concentrations were highest at Station WA99-0050 for all but benz(a)anthracene, benzo(g,h,i)perylene, dibenz(a,h)anthracene, indeno(1,2,3-c,d)pyrene, and perylene (Table 11). Concentrations of individual LPAHs without outlier were highest at Makah Bay, Raft River, or Grays Harbor, depending on the compound (Appendix Table D-2). Concentrations of individual HPAHs without outlier were highest in Discovery Bay, Grays Harbor, or Baker Bay, depending on the compound (Appendix Table D-3).

PAH Compound	Number of Detects (N=41 stations)	Minimum	Maximum with Outlier	Maximum without Outlier
LPAHs				
1-Methylnaphthalene	6	0.13	158*	158*
1-Methylphenanthrene	39	0.21	810.25	65*
2,3,5-Trimethylnaphthalene	34	0.34	75*	75*
2,6-Dimethylnaphthalene	37	0.1	165.1	98*
2-Methylnaphthalene	34	1	1177.7	191*
Acenaphthene	28	0.29	43*	43*
Acenaphthylene	22	0.32	19*	19*
Anthracene	33	0.4	25110.8	214.3
Biphenyl	18	0.98	136.13	46*
Dibenzothiophene	30	0.05	606.3	14*
Fluorene	36	0.36	7633	44
Naphthalene	30	3.3	407	74*
Phenanthrene	40	0.97	65200	669
Retene	39	1.3	3130	3130
HPAHs				
Benz(a)anthracene	12	0.72	401.5	112*
Benzo(a)pyrene	15	1	199.75	76.7
Benzo(b)fluoranthene	24	0.55	142.25	84
Benzo(e)pyrene	19	0.74	356	67
Benzo(g,h,i)perylene	12	1.6	72.75	47*
Benzo(k)fluoranthene	17	0.61	207.5	80.7
Chrysene	36	1.2	2465.25	450.3
Dibenz(a,h)anthracene	7	0.24	20.98	11*
Fluoranthene	39	0.41	2163.35	407.7
Indeno(1,2,3-c,d)pyrene	11	1.5	99.25	50*
Perylene	37	6.8	756*	756*
Pyrene	40	0.32	1291.5	338.7

Table 11. Summary of sediment individual PAH Concentrations (ng/g dry weight), with and without outlier at Station WA99-0050 Lab Replicate #4

* Station WA99-0050 did not have the highest concentration of this compound.

Total PAHs

Because none of the individual PAHs composing the EMAP PAH totals was detected at Station WA99-0029 in Grays Harbor, the PAH totals for that station were zero.

<u>Including the outlier (Station WA99-0050 lab replicate #4) in the analysis</u> — The largest Total LPAH, Total HPAH, and Total PAH concentrations were from the outlier (Table 12).

r							
	Total LPAH	Total HPAH	Total PAH				
Number of Detects (N=41 stations)	40	40	40				
Minimum	0	0	0				
Maximum with Outlier	36184.5	7064	43248.4				
Maximum without Outlier	746.7	1602	1987.3				
CDF 50th Percentile	14.88	23.47	41.53				
CDF 90th Percentile	312.34	140.98	608.16				

Table 12. Summary of sediment EMAP Total PAH concentrations (ng/g dry weight), with and without outlier at Station WA99-0050 Lab Replicate #4

Excluding the outlier (Station WA99-0050 lab replicate #4) from the analysis — The largest Total HPAH and Total PAH concentrations still occurred at Station WA99-0050 (Martin Slough), but the largest Total LPAH concentration occurred at one station in Makah Bay. The smallest detected concentrations occurred at two stations in Willapa Bay, one in Grays Bay, and the station at Cowlitz River.

Total LPAH concentrations were quite variable in the northern Olympic Peninsula, though Total HPAH concentrations were not. Total LPAH concentrations were higher in Makah Bay than anywhere else except Raft River, and were generally higher in Strait of Juan de Fuca estuaries than in Willapa Bay and most of the stations in Grays Harbor and along the Columbia River. That pattern did not hold for Total HPAH or Total PAH.

PAH totals (LPAH, HPAH, and/or Total) at a few stations were exceptionally high, about 5 to 10 times those in nearby areas.

Comparisons with sediment quality standards and guidelines

Only the outlier (Station WA99-0050 lab replicate #4) exceeded any sediment quality standards or guidelines for PAH totals (Table 13, Appendix Table D-6). Station 50 (Martin Slough) represents 0.11% of the total study area.

Table 13. Comparisons of sediment Total PAH concentrations (including outlier at Station WA99-0050 Lab Replicate #4) to Washington State sediment quality standards and NOAA sediment quality guidelines

	ERL (ng/g)	% of area > ERL	ERM (ng/g)	% of area > ERM	SQS (ppm org. carbon)	% of area > SQS	CSL (ppm org. carbon)	% of area > CSL
Total LPAH	552	0.11%	3160	0.11%	370	0.11%	780	0.11%
Total HPAH	1700	0.11%	9600	0	960	0	5300	0
Total PAH	4022	0.11%	44792	0	NA	NA	NA	NA

Polychlorinated Biphenyls (PCBs)

Of the 21 PCB congeners on the target list, 15 were detected: PCB Congeners 8, 18, 28, 44, 52, 66, 101, 105, 110, 118, 138, 153, 170, 180 and 187. PCBs were detected at only five of the 41 stations analyzed: one station in each Makah Bay, Discovery Bay, Raft River, Grays Harbor, and Martin Slough.

Only two PCB congeners (Congeners 138 and 153) were measured at all five of the stations which had measurable concentrations of PCBs (Table 14, Appendix Table D-7). Two other congeners were measured at three of the five stations, six congeners were detected at two of the five stations, and five congeners were measured at one of the five stations. PCB Congeners 77, 126, 128, 195, 206, and 209 were not detected at any station.

Table 14. Summary of sediment individual PCB congener concentrations (ng/g; detects only). PCB congeners were detected at only five stations.

Measu at all 5 S		Measured at 3 of 5 Stations		Measured at 2 of 5 Stations		Measured at 1 of 5 Stations	
Congener	Range	Congener	Range	Congener	Range	Congener	Value
138	0.23-0.49	101	0.17-0.47	52	0.33-0.61	8	0.22
153	0.14-1.10	118	0.18-0.41	105	0.16-0.22	18	0.33
				110	0.27-0.40	28	0.66
				170	0.30-0.32	44	0.43
				180	0.77-1.00	66	0.59
				187	0.32-1.50		

Twelve of the 15 PCB congeners detected, and the highest Total PCB concentration, were measured in Martin Slough. The other four stations had measurable concentrations of five or six congeners each. The lowest detected Total PCB concentration occurred at the walk-in station at Raft River. Ninety percent (and therefore also 50%) of the study area had immeasurable concentrations of Total PCB (Table 15).

Table 15. Summary statistics for sediment Total PCB and Total DDT concentrations (ng/g dry weight)

	Total PCB	Total DDT
Number of Detects (41 Stations)	5	9
Minimum	0	0
Maximum	4.9	2.09
CDF 50th Percentile	0	0
CDF 90th Percentile	0	0

Total DDT

Only 4,4'-DDE and 4,4'-DDD were measurable in the sediment at any station sampled; the other isomers were all non-detect at all stations (Table 16). Nine stations had measurable concentrations of 4,4'-DDE (three in each Baker Bay and Grays Bay, two in Discovery Bay, and the one in Martin Slough), while only one had a detectable level of 4,4'-DDD (Martin Slough). The concentration of 4,4'-DDE (1.5 ng/g), and thus Total DDT (2.09 ng/g), was considerably higher at Station WA99-0050 (Martin Slough) than the other eight stations (range: 0.21 – 0.66 ng/g).

Table 16. Summary of sediment individual DDT concentrations (ng/g: detects only). DDT isomers were detected at only nine stations.

Measured at all 9 Stations		Measured at 1 of 9 Stations		
Isomer	Isomer Range		Result	
4,4'-DDE	0.21 - 1.5	4,4'-DDD	0.59	

Ninety percent (and therefore also 50%) of the study area had immeasurable concentrations of Total DDT (Table 15).

Other Chlorinated Pesticides

With the exception of Hexachlorobenzene, all non-DDT chlorinated pesticides were not quantifiable (*i.e.*, non-detect) at all stations.

Hexachlorobenzene

Hexachlorobenzene was analyzed by two methods, SW8081 (GC-ECD) and SW8270 (GC-MS). The former method detected hexachlorobenzene in sediment samples from two of 41 stations: one station in Discovery Bay (0.34 ng/g) and the walk-in station at Quinault River (23.1 ng/g). The latter method detected hexachlorobenzene in only one of 40 sediment samples analyzed, that from the Quinault River station (43 ng/g). The detected results are not adequate to allow calculation and presentation of CDFs.

Sediment Toxicity

There was no overlap between the toxicity indications of the amphipod and urchin tests, and consistent results between the two urchin tests at only two stations (Appendix Table D-10). All of the Discovery Bay samples and one sample each from almost all other northern Olympic Peninsula estuaries had less than 80% normal morphological development rate in sea urchin embryos (Appendix Table D-13). Of those, sediment samples from Raft River and one Discovery Bay station also had less than 80% success in fertilization of sea urchin eggs (Appendix Table D-12). Only one Willapa Bay station and three Columbia River stations had less than 80% survival in the amphipod test (Appendix Table D-11).

Amphipod Survival Test

Control conditions for a successful toxicity test with this species require a mean of 90% survival in the five replicates in control sediments, with no replicate less than 80%. These requirements were not met in 7 of the 41 samples; accordingly, those results were excluded from the CDF analysis, leaving 34 samples included in the analysis (Table 17, Appendix Table D-11). The 7 stations excluded were four in Grays Harbor, two in Willapa Bay, and the one in Martin Slough.

Number of Samples	Amphipod Survival	Sea Urchin Fertilization	Sea Urchin Normal Morphological Development	
Meeting Control Conditions (N=41 Stations)	34	41	41	
< 80% of Control	4 (15.9% of area)	2 (4.7% of area)	9 (15.0% of area)	
< 100% of Control	31 (87.4% of area)	9 (12.8% of area)	31 (71.9% of area)	

Table 17	Summary of control-corrected sediment toxicity test results	
1 4010 17.	Summary of control corrected seament toxicity test results	

Test Results	% Amphipod Survival	% Sea Urchin Fertilization	% Sea Urchin Normal Morphological Development	
Minimum	56.5	1.3	0	
Maximum	102.2	104.3	103.2	
CDF 50th Percentile	89.8	102.4	99.1	
CDF 90th Percentile	101.3	103.9	101.3	

Approximately 16% of the study area had control-corrected percent survival of *Ampelisca abdita* < 80% (Figure 9). Approximately 87% of the study area had < 100% survival; the remaining 13% of area had > 100% survival, indicating better survival of amphipods in test sediments than in controls.

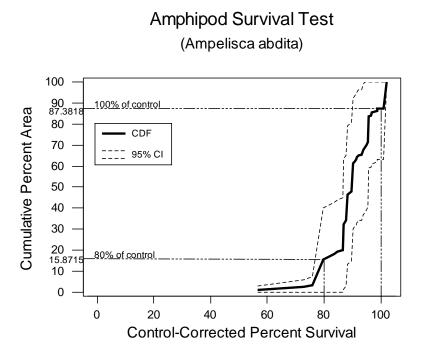


Figure 9. Cumulative percent of study area by control-corrected survival of *Ampelisca abdita*, indicating comparison to control

Sea Urchin Fertilization and Embryo Development Tests

Sea Urchin Fertilization Test

Percent control-corrected fertilization of *Arbacia punctulata* eggs in porewater toxicity tests ranged from 1% to 104% at 100% salinity-adjusted porewater (Table 17).

At 100% salinity-adjusted porewater, 32 of the 41 stations had control-corrected fertilization > 100%. The station with the lowest fertilization rate (1.3%) was in Discovery Bay; the next-lowest was 61.4% at Raft River. The fertilization rates for all other stations sampled were > 90%.

Approximately 4.7% of the study area had sediments in which control-corrected fertilization was < 80% (Figure 10). Approximately 12.8% of area had < 100% fertilization, and the remaining 87% of area had > 100% fertilization, indicating better fertilization of sea urchin eggs in test sediments than in controls.

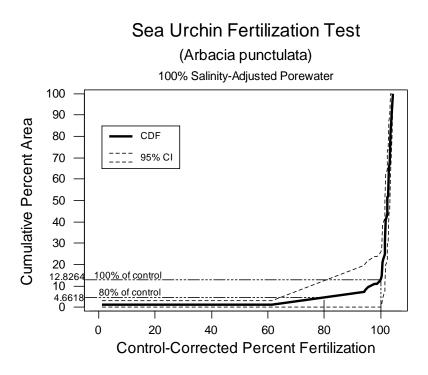


Figure 10. Cumulative percent of study area by control-corrected fertilization success of *Arbacia punctulata* at 100% salinity-adjusted porewater, indicating comparison to control

Sea Urchin Embryo Development Test

Percent control-corrected normal morphological development of *Arbacia punctulata* embryos in porewater toxicity tests ranged from 0% to 103% at 100% salinity-adjusted porewater (Table 17).

At 100% salinity-adjusted porewater, 10 of the 41 stations had control-corrected normal morphological development > 100%; all but 10 stations had > 80% normal development. Five stations had 0% normal development: one in Makah Bay, three in Discovery Bay, and the walk-in station at Raft River.

Approximately 15% of the study area had sediments in which control-corrected percent normal morphological development was < 80% (Figure 11). Approximately 72% of area had < 100% normal development; the remaining 18% of area had > 100% normal development, indicating more normal development of sea urchin embryos in test sediments than in controls.

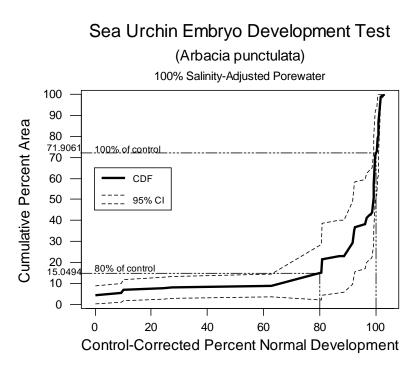


Figure 11. Cumulative percent of study area by control-corrected normal morphological development of *Arbacia punctulata* at 100% salinity-adjusted porewater, indicating comparison to control

Fish-Tissue Contaminants

Chemical analyses were performed on ground *whole* fish to gauge ecological exposure only. *The results cannot be extrapolated to fish for human consumption.*

Since only 24 stations had fish-tissue analyses, no CDFs were generated for fish-tissue contaminants. (A minimum of 30 samples is required for CDFs and associated confidence intervals.) Where samples were analyzed in replicate in the laboratory, the results of the lab replicates were averaged before statistical analyses were performed. The averaged measurements and graphical summaries of the data are given in Appendix D.

Metal Residues

Aluminum, iron, mercury, and zinc were found in all 24 composited fish-tissue samples; lead was found in all but one sample; and nickel was measurable in only one sample (Table 18).

Analyte	Number of Detects (N=24 Samples)	Minimum	Maximum	
Aluminum	24	8.9	186	
Arsenic	15	0	3.77	
Cadmium	4	0	0.2	
Chromium	24	0.38	2.2	
Copper	19	0	3.99	
Iron	24	13	233	
Lead	Lead 23		0.84	
Mercury	24	0.0042	0.0314	
Nickel	1	0	1.2	
Selenium	20	0	0.63	
Silver	6	0	0.27	
Tin	10	0	0.16	
Zinc	24	14.7	32.1	

Table 18. Summary of fish-tissue metal concentrations (μ g/g wet weight). Non-detects were set to zero and included in the statistical analyses.

Organics Residues — PCBs, DDT, and other Pesticides

PCB Congeners 138 and 153 were measured in all 24 fish-tissue samples, while Congeners 8, 170, and 209 were not measured in any. The Total PCB burden was an order of magnitude higher in the tissue samples from the stations in the Cowlitz River and Carrolls Channel than in samples from the other Columbia River stations, and two orders of magnitude higher than in samples from all of the other estuaries.

All DDT isomers were detected in fish-tissue samples from the Columbia River stations. 4,4'-DDE was detected in fish-tissue samples at all stations, and 4,4'-DDD was detected in samples from a handful of locations outside the Columbia River system. The 4,4'-DDE and Total DDT burdens were one to two orders of magnitude higher in samples from the Columbia River stations than from all of the other estuaries.

Only three other pesticides (alpha-Chlordane, Hexachlorobenzene, and trans-Nonachlor) were detected, at only a subset of the stations (Table 19). Those pesticides were detected in all of the fish-tissue samples from Columbia River stations and the majority of samples from Strait of Juan de Fuca stations, plus the walk-in station at Raft River. No pesticides were detected in fish-tissue samples from Makah Bay, Grays Harbor, or Willapa Bay.

Table 19. Summary of fish-tissue PCB, DDT, and other pesticide residues (ng/g wet weight). Non-detects were set to zero and included in the statistical analyses, except when the compound was not detected in any sample. Target PCBs and pesticides not included in this table were not detected in fish tissues from any station for which tissue samples were taken.

	Number of Detects (N=24 Samples)	Minimum	Maximum
Total PCB	24	0.202	116.88
Total DDT	24	0.34	168.3
Alpha-Chlordane	8	0	1.4
Hexachlorobenzene	16	0	1.9
Trans-Nonachlor	14	0	4.1

Marine Debris

The only debris of anthropogenic source in the trawls was a steel cable in Carrolls Channel. Other items brought up in trawls at other stations included rocks, algae, eelgrass, and terrestrial vegetation. Shell hash and wood debris were in the sediment grabs at several stations, and ash from Mount St. Helens was found in the sediment at one station (Appendix Table D-18).

Biotic Condition Indicators

The infaunal, fish, and epifaunal data and graphical summaries are given in Appendix E.

Infaunal Species Richness and Diversity

Benthic invertebrate samples were collected at 37 stations, excluding the four walk-in stations. In all, 431 benthic taxa were found. The taxa included 23 colonial species growing on hard substrates (*e.g.*, bryozoans on shell hash) and 33 exotic species, two of which are colonial (Appendix Table E-1).

Taxa richness ranged from 1 to 157 taxa per sample (Table 20), averaging 27 taxa. One sample from the Cowlitz River contained only a single species, an amphipod. There were generally more infaunal taxa in the Strait of Juan de Fuca estuaries than in Makah Bay or the Columbia River estuaries. Up to 157 taxa were found in Discovery Bay, up to 40 in Grays Harbor, up to 35 in Willapa Bay, up to 18 in Baker Bay in the Columbia River estuary system, and up to 13 in Makah Bay. Three stations – one in Freshwater Bay and two in Discovery Bay – had > 100 taxa per sample (Appendix Table E-2). These three stations, in bays on the Strait of Juan de Fuca, represented 4% of the entire study area. All of the other stations (representing 96% of the area) had 65 or fewer taxa per sample.

	Taxa Richness (Number of Taxa)	Shannon- Wiener Diversity H'	Pielou's Evenness J'	Swartz' Dominance (Number of Taxa)	Dominance Standardized by Taxa Richness (%)
Minimum	1	0	0	1	4.6
Maximum	157	5.99	0.37	34	100
CDF 50th Percentile	13.4	3	0.17	4.1	32.9
CDF 90th Percentile	33.5	3.7	0.27	7.5	51.5

Table 20. Summary statistics for benthic macrofauna bioindices of community richness and diversity

The *Shannon-Wiener Diversity Index* (H') ranged from 0, at the one station with only a single species, to 5.99, in the Discovery Bay sample which contained 147 non-colonial and 10 colonial taxa. Shannon-Wiener diversity was generally lower in the Columbia River estuaries than elsewhere.

Pielou's Evenness Index (J') ranged from 0 to 0.37, averaging 0.16. The largest value of J' occurred in one Makah Bay sample which contained 7 taxa.

Swartz' Dominance Index (SDI), the number of taxa accounting for at least 75% of the total abundance, ranged from 1 to 34, averaging 5.87. At eight stations – in Grays Bay, Cowlitz River, and, Carrolls Channel – a single taxon accounted for at least 75% of the abundance. (The Cowlitz River station had only one species.) Eight or fewer taxa accounted for at least 75% of the abundance (*i.e.*, SDI \leq 8) for 96% of the area.

When standardized by taxa richness (the total number of taxa in the sample), the *standardized Swartz' Dominance Index (SDISTD)* ranged from less than 5% to 100%, averaging about 29%.

Infaunal Abundance and Taxonomic Composition

Infaunal abundance ranged from 3 individuals per 0.1 m^2 at the Cowlitz River station to 3106 individuals per 0.1 m^2 in Discovery Bay, averaging 483.3 individuals per 0.1 m^2 (Table 21, Figure 12). Colonial species were included with an abundance of 1.

	All Taxa	Annelida	Arthropoda	Echinodermata	Mollusca	Misc. Taxa
Minimum	3	0	0	0	0	0
Maximum	3106	2589	976	115	414	47
CDF 50th Percentile	67.7	28.7	8.9	0	8.6	0.9
CDF 90th Percentile	896.7	533.4	116.9	1.8	57.8	13.6

Table 21. Summary statistics for total benthic macrofauna abundance (# individuals/0.1 m²)

The Strait of Juan de Fuca estuaries had the most abundant and diverse infaunal communities, dominated by annelids, while Makah Bay had sparse infaunal communities (Figure 13, Appendix Table E-2). Annelids dominated the infauna at Willapa Bay and Grays Harbor. Arthropods and, to a lesser extent, annelids dominated the infauna in the Columbia River estuaries.

The abundance and proportion of all of the taxa found, including the 10 most abundant, are given in Appendix Tables E-1 and E-2. Exotic and colonial species are indicated. The ten numerically-dominant taxa made up 63.7% of the total benthic macrofauna (Appendix Table E-1). Exotic species accounted for 5.6% of the total benthic infauna collected.

Benthic Macrofauna Total Abundance

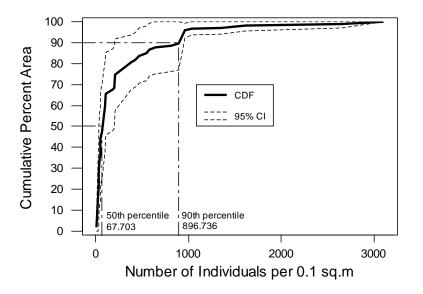


Figure 12. Cumulative percent of study area by benthic macrofauna total abundance (number of individuals per sampled 0.1-m² area). Colonial species were included with an abundance of 1.

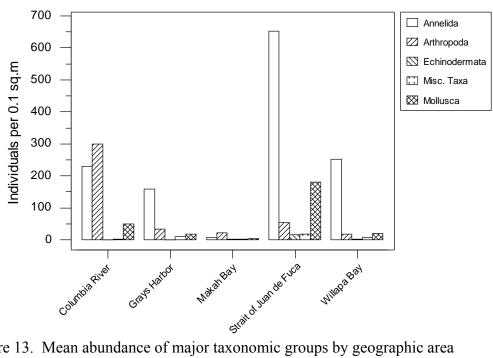


Figure 13. Mean abundance of major taxonomic groups by geographic area

The infaunal communities within the various geographic areas tended to be similar to each other and different between geographic areas, with the exception of Grays Harbor and Willapa Bay, which were similar to each other, as indicated in the multidimensional scaling (MDS) diagram in Figure 14. The three infaunal communities sampled in Makah Bay were fairly divergent from each other. The infauna sampled in the Hoko River estuary (Station WA99-0004) bore more resemblance to those in Makah Bay than to those in the other estuaries opening off the Strait of Juan de Fuca. Station WA99-0013, in Discovery Bay, was quite different in infauna than elsewhere in Discovery Bay or nearby embayments, possibly due to its very different sediment grain size distribution.

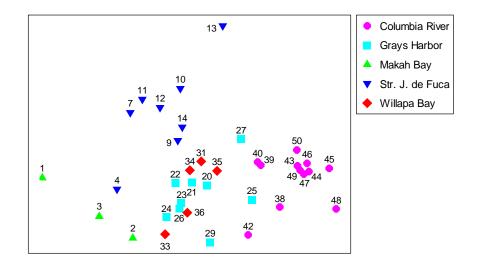


Figure 14. Multidimensional scaling (MDS) map of benthic macrofaunal community similarity (taxa and abundance), based on Bray-Curtis similarity of 4th-root-transformed abundance data (stress = 0.13). The numbers in the figure are the station IDs. The closer the stations are in this map, the more similar their infaunal communities are to each other; the farther the stations are from each other, the more dissimilar their infaunal communities are.

Demersal Fish Species Richness and Abundance

Thirty-two fish species were found over the 31 stations at which fish were acquired from complete standard trawls. Three of those stations had only a single individual of a single species each, and two more stations had <10 individuals of a single species (Appendix Table E-6).

English sole were caught in all areas except those opening directly onto the Pacific Ocean, whereas sand sole were found only in Makah Bay (Figure 15). Starry flounder were caught in the Columbia River estuaries and at the walk-in stations. Speckled sanddab were caught only in estuaries off the Strait of Juan de Fuca.

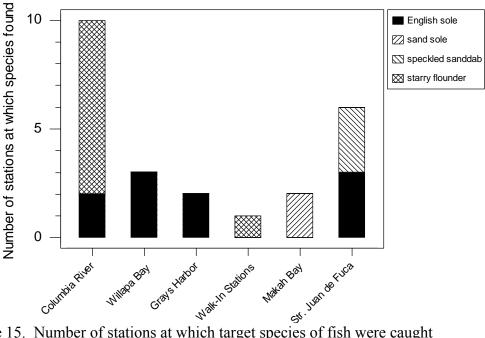


Figure 15. Number of stations at which target species of fish were caught

Catch per Area Swept

The number of fish caught in each trawl ranged from 1 in Carrolls Channel to 336 in Discovery Bay, equivalent to a catch per area swept of just over 500 fish per km² to almost 175,000 fish per km² (Table 22). The catch per area swept in Discovery Bay spanned almost the entire range observed for the study area, from the second-lowest to the highest. The second-highest catch per area swept, almost 115,000 fish per km², occurred in the Hoko River estuary; all others were less than half that (Appendix Table E-7, Figure E-5). Average catch per area swept was approximately 20,000 fish per km^2 , though the median was less than 5,000 fish per km^2 .

Table 22. Summary statistics for fish taxa richness, abundance, and catch per area swept, complete standard trawls (1st trawl only)

	Taxa Richness (# of taxa/trawl)	Abundance (# individuals/trawl)	Catch per Area Swept (# fish / km ²)
Minimum	1	1	508
Maximum	10	336	174,374
CDF 50th Percentile	1.7	6.2	3,649
CDF 90th Percentile	3.7	54.5	36,173

Demersal Fish Species Gross Pathology

Fish with pathological anomalies (X-cell pseudotumors, trematode metacercariae, or the nematode *Philometra*) were caught at four stations (Table 23). No grossly visible anomalies were observed on fish caught at the other 33 stations fished, though either sea lice or copepods were present on some fish at two stations. Except for one fish with an X-cell pseudotumor caught in Grays Harbor, all of the fish with anomalies or parasites were caught in estuaries off the Strait of Juan de Fuca.

EMAP Station ID	Occurrence in Species; in Total Fish Caught	Species	Fish Size Class (cm)	Anomaly	Severity Index	Distribution Index	Location
WA99-0006	,		32	No Anomalies. Sea lice present.	N/A	N/A	N/A
(Freshwater Bay)	2 of 9 total fish	bilineatus	38	No Anomalies. Sea lice present.	N/A	N/A	N/A
WA99-0009 (Dungeness Bay)	1 of 7 in species; 1 of 11 total fish	Pleuronectes vetulus	12	X-cell pseudotumor	6	3	skin
WA99-0012 (Discovery Bay)	1 of 5 in species; 1 of 17 total fish	Pleuronectes vetulus	16	Philometra, no histo taken	N/A	N/A	skin/fins
			13	X-cell pseudotumor	6	3	fin
WA99-0013	4 of 65 in species;	Pleuronectes	12	Trematode metacercariae	5	3	fin
(Discovery Bay)	4 of 110 total fish	vetulus	11	Trematode metacercariae	5	1	skin
			11	Trematode metacercariae	5	1	muscle
WA99-0014 (Discovery Bay)	1 of 2 in species; 1 of 308 total fish	Microgadus proximus	7	No Anomalies. Copepod on gills, no histo taken	N/A	N/A	gills
WA99-0021 (Grass Creek)	1 of 10 in species; 1 of 26 total fish	Pleuronectes vetulus	14	X-cell pseudotumor	5	1	skin

Table 23. Gross pathological anomalies observed in fish specimens

Epibenthic Invertebrate Occurrence

The occurrence of epibenthic invertebrates in the trawls is summarized in Appendix Table E-8 by station and by species. No epibenthic invertebrates were recorded from the seines at the walk-in stations.

Dungeness crabs (*Cancer magister*) were caught in all geographic regions, and were the only species caught in Makah Bay and one of only two species caught in Willapa Bay. Shrimp (*Natantia* sp.) were caught in all areas except Makah Bay. The Strait of Juan de Fuca estuaries had more taxa and greater abundance than the other areas.

References

Bourgeois, P.E., V.J. Sclafani, J.K. Summers, S.C. Robb, and B.A. Vairin. 1998. Think before you sample. GEOWorld 11(12).

Carr, R.S., and D.C. Chapman. 1995. Comparison of methods for conducting marine and estuarine sediment porewater toxicity tests – Extraction, storage, and handling techniques. Arch. Environ. Contam. Toxicol. 28:69-77.

Carr, R.S., D.C. Chapman, C.L. Howard, and J. Biedenbach. 1996a. Sediment Quality Triad assessment survey in the Galveston Bay Texas system. Ecotoxicology 5:341-361.

Carr, R.S., E.R. Long, D.C. Chapman, G. Thursby, J.M. Biedenbach, H. Windom, G. Sloane, and D.A. Wolfe. 1996b. Toxicity assessment studies of contaminated sediments in Tampa Bay, Florida. Environmental Toxicology and Chemistry 15:1218-1231.

Carr, R.S. 1998. Sediment porewater testing. In: Standard methods for the examination of water and wastewater, section 8080, 20th edition, Clesceri, L.S., A.E. Greenberg, and A.D. Eaton (eds.), American Public Health Association, Washington, DC.

Diaz-Ramos, S., D.L. Stevens, Jr., and A.R. Olsen. 1996. EMAP Statistics Methods Manual. EPA/620/R 96/002. U.S. EPA Office of Research and Development, National Health and Environmental Effects Research Laboratory, Corvallis, OR.

DiToro, D.M., C J. Zarba, D.J. Hansen, W.J. Berry, R.C. Swartz, C.E. Cowan, S.P. Pavlou, H.E. Allen, N.A. Thomas, and P.R. Paquin. 1991. Technical bases for establishing sediment quality criteria for nonionic organic chemicals using equilibrium partitioning. Environmental Toxicology and Chemistry 10:1541-1583.

Hayslip, G., L. Edmond, V. Partridge, W. Nelson, H. Lee, F. Cole, J. Lamberson, and L. Caton. 2006. Ecological Condition of the Estuaries of Oregon and Washington. EPA 910/R-06/001. U.S. Environmental Protection Agency Region 10, Office of Puget Sound, Seattle, WA.

Hyland, J.L., T.J. Herrlinger, T.R. Snoots, A.H. Ring-wood, R.F. Van Dolah, C.T. Hackney,
G.A. Nelson, J.S. Rosen, and S.A. Kokkinakis. 1996. Environmental Quality of Estuaries of the
Carolinian Province: 1994. Annual Statistical Summary for the 1994 EMAP- Estuaries
Demonstration Project in the Carolinian Province. NOAA Technical Memorandum NOS ORCA
97. NOAA/NOS Office of Ocean Resources Conservation and Assessment, Silver Spring, MD.

Hyland, J.L., L. Balthis, C.T. Hackney, G. McRae, A.H. Ringwood, T.R. Snoots, R.F. Van Dolah, and T.L. Wade. 1998. Environmental quality of estuaries of the Carolinian Province: 1995. Annual statistical summary for the 1995 EMAP- Estuaries Demonstration Project in the Carolinian Province. NOAA Technical Memorandum NOS ORCA 123. NOAA/NOS Office of Ocean Resources Conservation and Assessment, Silver Spring, MD. Lauenstein, G.G. and A.Y. Cantillo, eds. 1993. Sampling and analytical methods of the NS&T Program National Benthic Surveillance and Mussel Watch projects. Comprehensive descriptions of elemental analytical methods. NOAA Technical Memorandum 71.

Long, E.R., D.D. MacDonald, S.L. Smith, and F.D. Calder. 1995. Incidence of adverse biological effects within ranges of chemical concentrations in marine and estuarine sediments. Environmental Management 19(1):81-97.

Long, E.R., A. Robertson, D.A. Wolfe, J. Hameedi, and G.M. Sloane. 1996. Estimates of the spatial extent of sediment toxicity in major USA estuaries. Environmental Science and Technology 30:3585-3592.

Long, E.R., and D.D. MacDonald. 1998. Recommended uses of empirically-derived sediment quality guidelines for marine and estuarine ecosystems. Journal of Human and Ecological Risk Assessment 4(5): 1019-1039.

Lorenzen, C.J. 1966. A method for the continuous measurement of in vivo chlorophyll concentration. Deep-Sea Research 13:223-227.

Macauley, J.M., J.K. Summers, P.T. Heitmuller, V.D. Engle, G.T. Brooks, M. Babikow, and A.M. Adams. 1994. Annual Statistical Summary: EMAP - Estuaries Louisiana Province - 1992. EPA/620/R-94/002. U.S. EPA Office of Research and Development, Environmental Research Laboratory, Gulf Breeze, FL.

Macauley, J.M., J.K. Summers, V.D. Engle, P.T. Heitmuller, and A.M. Adams. 1995. Annual Statistical Summary: EMAP - Estuaries Louisiana Province -1993. EPA/620/R-96/003. U.S. EPA Office of Research and Development, Environmental Research Laboratory, Gulf Breeze, FL.

Macauley, J.M., National Coastal Assessment Quality Assurance Coordinator. 2003. Final Report: NCA review of Washington State Department of Ecology. Memorandum to Ken Dzinbal, Manager of Environmental Monitoring and Trends Section, Washington State Department of Ecology, Olympia, WA.

Manchester Environmental Laboratory. 1997. Standard Operating Procedure 730009: Determination of Percent Lipids in Tissue. Washington State Department of Ecology, Port Orchard, WA.

Manchester Environmental Laboratory. 2000. Case Narrative: Polynuclear Aromatic Hydrocarbons, EMAP 1999. Washington State Department of Ecology, Port Orchard, WA.

Nelson, W.G., H. Lee II, J.O. Lamberson, V. Engle, L. Harwell, and L.M. Smith. 2004. Condition of Estuaries of Western United States for 1999: A Statistical Summary. EPA 620/R-04/200. U.S. Environmental Protection Agency, Office of Research and Development, National Health and Environmental Effects Research Laboratory. Ozretich, R.J., Quality Assurance Manager, Western Ecology Division, National Health and Environmental Effects Research Laboratory of EPA. 2004. Review of the QAPP Chemical Data Quality Objective attained by 1999 WEMAP. Letter to Walt Nelson, Branch Chief, Pacific Coastal Ecology Branch of EPA.

PSEP (Puget Sound Estuary Program). 1986. Recommended Protocols for Measuring Conventional Sediment Variables in Puget Sound. Prepared by Tetra Tech, Inc. for U.S. Environmental Protection Agency Region 10, Office of Puget Sound, Seattle, WA, and Puget Sound Water Quality Authority, Olympia, WA.

PSEP (Puget Sound Estuary Program). 1996. Recommended Guidelines For Measuring Metals in Puget Sound Marine Water, Sediment and Tissue Samples. Prepared by King County Environmental Laboratory for U.S. Environmental Protection Agency Region 10, Office of Puget Sound, Seattle, WA, and Puget Sound Water Quality Authority, Olympia, WA.

Slawyk, G. and J.J. MacIsaac. 1972. Comparison of two automated ammonium methods in a region of coastal upwelling. Deep-Sea Research 19:521-524.

Stevens, D.L., Jr. and A.R. Olsen. 1999. Spatially restricted surveys over time for aquatic resources. Journal of Agricultural, Biological and Environmental Statistics 4:415-428.

Stevens, D.L., Jr., and A.R. Olsen. 2003. Variance estimation for spatially balanced samples of environmental resources. Environmetrics 14:593-610.

Strobel, C.J., S.J. Benyi, D.J. Keith, H.W. Buffum, and E.A. Petrocelli. 1994. Statistical Summary: EMAP - Estuaries Virginian Province - 1992. EPA/620/R-94/019. U.S. EPA Office of Research and Development, Environmental Research Laboratory, Narragansett, RI.

Strobel, C.J., H.W. Buffum, S.J. Benyi, E.A. Petrocelli, D.R. Reifsteck, and D.J. Keith. 1995. Statistical Summary: EMAP - Estuaries Virginian Province - 1990 to 1993. EPA/620/R-94/026. U.S. EPA National Health and Environmental Effects Research Laboratory, Atlantic Ecology Division, Narragansett, RI.

Summers, J.K. and J.M. Macauley. 1993. Statistical Summary: EMAP - Estuaries Louisianian Province - 1991. EPA/600/R-93-001. U.S. EPA Office of Research and Development, Washington, DC.

Sverdrup, H.U., M.W. Johnson, and R.H. Fleming. 1942. The Oceans: Their Physics, Chemistry, and General Biology. Prentice-Hall, New York.

UNESCO (United Nations Educational, Scientific and Cultural Organization). 1994. Protocols for the Joint Global Ocean Flux Study (JGOFS) core measurements. IOC Manuals and Guides No. 29. U.S. EPA (U.S. Environmental Protection Agency). 1994. Methods for Assessing the Toxicity of Sediment Associated Contaminants with Estuarine and Marine Amphipods. EPA/600/R-94/025. Office of Research and Development, Environmental Monitoring and Systems Laboratory, Cincinnati, OH.

U.S. EPA (U.S. Environmental Protection Agency). 1995. Laboratory Methods Manual -Volume 1: Biological and Physical Analyses, EMAP Estuaries. EPA/620/R-95/008. Office of Research and Development, Environmental Monitoring and Systems Laboratory, Cincinnati, OH.

U.S. EPA (U.S. Environmental Protection Agency). 2001a. Environmental Monitoring and Assessment Program (EMAP): National Coastal Assessment Quality Assurance Project Plan 2001-2004. EPA/620/R-01/002. Office of Research and Development, National Health and Environmental Effects Research Laboratory, Gulf Ecology Division, Gulf Breeze, FL.

U.S. EPA (U.S. Environmental Protection Agency). 2001b. National Coastal Assessment: Field Operations Manual. EPA/620/R-01/003. Office of Research and Development, National Health and Environmental Effects Research Laboratory, Gulf Ecology Division, Gulf Breeze, FL.

U.S. EPA (U.S. Environmental Protection Agency). 2001c. National Coastal Condition Report. EPA/620/R-01/005. Office of Research and Development and Office of Water, Washington, DC. <u>www.epa.gov/owow/oceans/nccr/</u>

U.S. EPA (U.S. Environmental Protection Agency). 2005. National Coastal Condition Report II. EPA/620/R-03/002. Office of Research and Development and Office of Water, Washington, DC. <u>www.epa.gov/owow/oceans/nccr/</u>

USGS (U.S. Geological Survey). 2000. Toxicity testing of sediments from the BEST/EMAP Western Estuary Group monitoring study. Report Submitted by the USGS Columbia Environmental Research Center, Marine Ecotoxicology Research Station to the USGS Biomonitoring and Environmental Status and Trends Program.

USGS (U.S. Geological Survey). 2001. H4IIE Bioassay-Derived 2,3,7,8 - Tetrachlorodibenzo*p*-dioxin Equivalents (TCDD-EQ) in Fish Collected in 1999 from Small Estuaries along the Western Coast of the United States. Report Submitted by the USGS Columbia Environmental Research Center to the USGS Biomonitoring and Environmental Status and Trends Program.

Washington State Department of Ecology. 1995. Sediment Management Standards, Chapter 173-204 WAC. Washington State Department of Ecology Publication 96-252. Revised December 1995.

List of Acronyms, Abbreviations, and Units of Measure

°C	degrees Celsius
BSA	bovine serum albumin
CDF	cumulative distribution function
CERC	USGS Columbia Analytical Research Center
CI	confidence interval
cm	centimeter
CSL	Washington State sediment Cleanup Screening Level
CTD	Conductivity-Temperature-Depth
DO	Dissolved Oxygen
Ecology	Washington State Department of Ecology
EMAP	Environmental Monitoring and Assessment Program
EPA-ORD	Environmental Protection Agency – Office of Research and Development
ERL	Effects Range-Low
ERM	Effects Range-Median
EROD	7-ethoxyresorufin-O-deethylase
F ₀	level of fluorescence of the suspended pigments
F _a	post-acidification fluorescence measured
g	gram
GFF	glass fiber filter
H'	Shannon-Wiener Diversity Index
H4IIE	rat hepatoma cells (one particular cultured line of cells)
HPAH	High molecular weight PAH
IM	Information Management
J'	Pielou's Evenness Index
kg	kilogram
km	kilometer
L	liter
LPAH	Low molecular weight PAH
m	meter
mg	milligram
mm	millimeter
N:P ratio	Nitrogen-to-phosphorus ratio
NADPH	Nicotinamide adenine dinucleotide phosphate, reduced form
NCA	National Coastal Assessment
ng	nanogram
NH ₄	Ammonium (dissolved inorganic ammonium)
nm	nanometer
nmi	nautical mile
NMFS	NOAA National Marine Fisheries Service
NO_2	Nitrite (dissolved inorganic nitrite)
NO ₃	Nitrate (dissolved inorganic nitrate)
	· · · · · · · · · · · · · · · · · · ·

NOAA	National Oceanic and Atmospheric Administration
PAH	Polycyclic aromatic hydrocarbon
PAR	Photosynthetically Active Radiation
PCB	Polychlorinated biphenyls
PCDD	Polychlorinated dibenzo-p-dioxin
PCDF	Polychlorinated dibenzofuran
pН	measure of acidity or alkalinity
PHH	Planar halogenated hydrocarbons
PO_4	Phosphate (dissolved inorganic phosphate)
ppt	parts per thousand
PSEP	Puget Sound Estuary Program
psu	practical salinity unit
QA	quality assurance
QA/QC	quality assurance/quality control
QAPP	Quality Assurance Project Plan
QC	quality control
SAV	submerged aquatic vegetation
SCCWRP	Southern California Water Resources Research Program
SDI	Swartz' Dominance Index
Si(OH) ₄	Silicic Acid (dissolved inorganic silicic acid)
SOP	standard operating procedure
SQS	Washington State Sediment Quality Standard
STORET	EPA's STOrage and RETrieval database
SubPAR	Submerged PAR (PAR measured underwater)
TBT	Tributyltin
TCDD	8-tetrachlorodibenzo-p-dioxin
TCDD-EQ	TCDD equivalent
TerPAR	Terrestrial PAR (PAR measured in air)
TOC	Total Organic Carbon
Total N	Total Nitrogen (total dissolved inorganic nitrogen)
Total P	Total Phosphorus (total dissolved inorganic phosphorus)
TSS	Total Suspended Solids
U.S. EPA	U.S. Environmental Protection Agency
USGS	U.S. Geological Survey
$\Delta \sigma_t$ or delta sigma-t	difference between two seawater densities each expressed as σ_t
μg or ug	microgram
	micrometer
µm or um µM or µM	micromolar
μ M or uM	
σ_t or sigma-t	shorthand for the remainder of subtracting 1000 kg/m^3 from the density of
	seawater at atmospheric pressure, measured in kg/m3 units

Appendices

This page is purposely left blank for duplex printing.

Appendix A

Descriptions of Indicators

Text: Descriptions of Indicators

- Table A-1: PCBs, Pesticides, and PAHs for Coastal EMAP
- Table A-2: Non-EMAP PAHs and other organic compounds
- Table A-3: Total PAH constituent compounds and treatment of non-detects for EMAP, ERL/ERM, and SQS/CSL

This page is purposely left blank for duplex printing.

General Habitat Condition Indicators

Hydrographic Profile

Water Depth

Water-column depth influences physical, chemical, and biological aspects of the estuarine environment. The landward boundary of the EMAP sample frame is defined by the head of salt, *i.e.*, measurable salinity, and thus includes intertidal areas, which are susceptible to terrestrial as well as marine influences.

Salinity

Salinity is a measure of the salt content of water, measured in parts per thousand (or more precisely, Practical Salinity Units, PSU). Salinity is a conservative tracer — it is not created or consumed by chemical or biological processes. Salinity in the estuary represents a balance between the influx of high-salinity ocean water and freshwater inputs from rivers and streams, and is increased by a short oceanic exchange time and a long fresh water replacement time. Salinity is a major determinant of density, which influences stratification and circulation, which in turn affect dissolved oxygen concentrations, phytoplankton productivity, and the residence time of dissolved nutrients and contaminants.

Water Temperature

Water temperature also affects density, as well as the biota and other attributes of estuarine habitat (water quality, sediment characteristics, sediment contamination).

Density Stratification

<u>Differences in water-column density</u> are a function of salinity, water temperature, and mixing. Strong, persistent stratification can lead to anoxic bottom conditions. Stratification can develop in summer months due to strong surface warming and reduced mixing. During winter months, mixing is greater, due to cooler air temperatures and more intense wind-wave regime, and stratification is reduced. Proximity to rivers and tidal mixing also influence stratification.

Stratification is measured by the difference in density ($\Delta \sigma_t$) between the surface and bottom densities:

Stratification Index = D_{bottom} - $D_{surface}$

Density is derived from temperature and salinity.

Dissolved Oxygen (DO)

The concentration of dissolved oxygen in the water column is determined by a series of complex interactions between the biological processes of photosynthesis and respiration and physical factors such as inputs of fresh and oceanic waters, stratification, circulation, mixing, and the exchange of oxygen across the air-water interface. A common cause of low DO is decomposition of organic material, such as dead phytoplankton, in waters that are not well mixed with the atmosphere or more oxygenated waters. The greatest potential for severe oxygen

depletion occurs when high phytoplankton growth rates are fueled by abundant nutrients and strong, persistent water-column stratification inhibits mixing.

Low oxygen concentrations (anoxia, or lack of oxygen, and hypoxia, or low oxygen) can have significant impacts on aquatic life. Even relatively short-duration hypoxic or anoxic events can change water chemistry (*e.g.*, release of dissolved inorganic phosphorus) and cause mass mortality of fish and invertebrates. Coastal EMAP defines a system as *moderately hypoxic* if dissolved oxygen is < 5 mg/L, and as *severely hypoxic* if DO < 2 mg/L.

pН

The pH of the water plays an important role in determining the solubility (how much can be dissolved in water) of many chemicals. The pH of water can also determine the bioavailability (how much can be used by organisms) of many chemicals. The chemicals can be nutrients necessary for life or pollutants that can poison living organisms. For example, many metals are more toxic at a lower pH because they are more soluble.

Low pH can result during hypoxic and anoxic conditions. In addition to the stress to organisms from low oxygen, low pH will also damage living organisms. Many species have trouble surviving if the pH drops below 5.0. Typical pH ranges for seawater are 8.1-8.3 at the surface, and 7.5 - 8.4 overall (Sverdrup *et al.*, 1942). Estuarine pH can range from 7.5 to 9.0 (U.S. EPA, 2000), though may be 7.0 or less (Sverdrup *et al.*, 1942).

Lower pH values present a problem for most organisms, with the exception of bacteria, which can survive pHs as low as 2.0. Low pH is especially harmful to immature fish. Acidic water also speeds the leaching of heavy metals harmful to fish.

Water Clarity

The *rate of light attenuation through the water column* can have a strong impact on benthic communities. The depth of the photic zone, defined with respect to the amount of *photosynthetically-active radiation* (PAR), affects the growth of phytoplankton and submerged aquatic vegetation (such as eelgrass), which in turn affect higher trophic levels.

The attenuation, or light-extinction, coefficient quantifies the rate at which light levels decline with depth due to absorption and backscatter by suspended solids, phytoplankton, and dissolved organic matter. To calculate the attenuation coefficient (K_d), we rely on the Beer-Lambert Law, which expresses the light level at a depth of z meters (I_z) as a function of the surface light level (I_0), depth, and extinction coefficient. I_z and I_0 can be measured directly by PAR sensors deployed in the water and above the surface, respectively. Rearranging the Beer-Lambert equation, we can calculate the extinction coefficient at each depth (z) from the PAR measurements by:

$$\mathbf{K}_{\mathrm{d}} = \ln(\mathbf{I}_0/\mathbf{I}_{\mathrm{z}}) / \mathbf{z}.$$

To estimate the mean light-extinction coefficient, the individual light-extinction coefficients are calculated for each depth at which simultaneous air and submerged PAR readings are taken, then averaged.

Secchi depth, the depth at which a plate-sized black-and-white disk disappears from view as it is lowered through the water column, is a simple measure of light attenuation. The light-attenuation coefficient and Secchi depth are inversely proportional to each other, and thus the extinction coefficient can also be estimated from the Secchi depth. However, Secchi-depth measurements are susceptible to weather and sea conditions and operator differences.

The Coastal EMAP program defines low water clarity as < 10% of the incident light reaching a depth of 1 m ($K_d \ge 2.303$), moderate clarity as 10-25% of incident sunlight reaching 1 m depth ($K_d \ge 1.387$ and < 2.303), and high clarity as > 25% of incident light reaching 1 m depth ($K_d < 1.387$).

Light transmissivity is another indicator of water clarity. In contrast to the light-extinction coefficient, which characterizes light attenuation between the surface and a given depth, light transmissivity characterizes the amount of light transmitted through water between a light source and a detector located a short distance away, typically 10-25 cm. Transmissivity is measured throughout the water column using a transmissometer. High water clarity is defined as transmissivity > 25%, moderate water clarity as transmissivity in the 10-25% range, and low water clarity as transmissivity < 10%.

Water Laboratory Analyses

Total Suspended Solids

Total suspended solids (TSS) within the water column are often composed of small mineral particles. TSS concentration has several important ecological impacts. Particulate matter suspended in the water column attenuates light, decreasing the level of light reaching deeper waters. Suspended particles absorb heat in sunlight, and thus raise water temperature. High TSS concentrations effectively remove dissolved inorganic phosphorus, an important nutrient for plants and algae, from the water column by adsorption onto the particle surfaces. Because suspended solids can also adsorb toxic substances, they are often the primary carrier of pollutants to coastal zones. Fine particles are a food source for filter-feeders, so high TSS levels can lead to biomagnification of chemical pollutants within the food chain.

TSS concentrations are dependent on loading and settling rates, and on freshwater dilution and resuspension of surficial sediment. When clay minerals suspended in river water reach the estuarine environment, higher salinity leads to flocculation and deposition, potentially blanketing the estuary floor and affecting bottom habitats.

Photosynthetic Pigments

Chlorophyll-a is a plant pigment that can be used to estimate the biomass of planktonic plants or algae forming the base of the aquatic food chain. Chlorophyll concentration is a commonly-used measure of overall water quality: high levels of chlorophyll can indicate algal blooms that may result from high nutrient loading. Algal blooms can reduce water clarity and deplete oxygen levels in deeper water. Phytoplankton productivity is a function of available light, nutrients, and the stability of the water column (stratification, mixing processes).

Phaeopigments result from the degradation of chlorophyll-*a*, caused by the senescence of phytoplankton or by the digestion of phytoplankton by grazers. As chlorophyll-*a* concentration is a proxy for phytoplankton biomass, so phaeopigment concentration is a proxy for non-photosynthesizing cells.

Dissolved Nutrients

Nitrogen and phosphorus (in their different forms) are major plant nutrients. In estuaries nitrogen is typically the most important nutrient controlling plant growth. (In freshwater phosphorus is typically the most important nutrient). Nitrogen and phosphorus concentrations in the estuary represent a balance between inputs (diffuse catchment loads, point source loads, import from the ocean) and losses (export to the ocean and exchange with sediments). The nutrients are present in large and small phytoplankton and zooplankton, suspended microphytobenthos, dissolved organic and inorganic nitrogen compounds, and detritus. Large changes in nutrient levels, whether natural or anthropogenic, can adversely affect the ecosystem.

Total nitrogen and total phosphorus are the sums of the nitrogen or phosphorus present in all nitrogen- or phosphorus-containing components, respectively, in the water column. Measurements of phosphorus are complicated by the adsorption of phosphate onto particles, which renders the phosphorus temporarily unavailable for plant growth. For Coastal EMAP, only the *dissolved reactive forms of inorganic nitrogen-containing compounds, phosphate, and silicic acid* are quantified.

The ratio of nitrogen to phosphorus is used as an indicator of which nutrient might be controlling primary production in estuaries. A ratio above 16 generally indicates of phosphorus limitation, while a ratio below 16 indicates nitrogen limitation.

Sediment Characteristics

Silt-Clay Content

The percent fines (silt and clay, $< 63 \mu m$ particle diameter) in bottom sediments is an important determinant of the composition of benthic community composition (Gray, 1974; Rhoads, 1974). Sediment particle size and mineralogy are also important factors in the adsorption of contaminants to sediment particles (Lefkovitz *et al.*, 1997) and therefore exposure of organisms to contaminants.

Total Organic Carbon

The percent total organic carbon (TOC) present in sediment influences the health and composition of benthic communities. Sediments with high TOC are usually a rich food source for benthic invertebrates. However, organic carbon can sequester water-column toxicants in the sediment and can also mediate their bioavailability (DiToro *et al.*, 1991). TOC content is often < 0.5% in sandy or gravelly areas, but in finer sediments may be > 3% in nearshore areas (Michelsen and Bragdon-Cook, 1993).

Abiotic/Pollutant Exposure Condition Indicators

Abiotic condition indicators provide insight into potential stresses acting upon a system and its resident organisms.

Sediment and Fish-Tissue Contaminants

Metals

Heavy metals can be toxic to organisms. The extent to which pollution affects concentrations, and bioavailability, of metals in sediments is complicated by natural geochemical variation.

Polycyclic Aromatic Hydrocarbons (PAHs) - Sediment Only

PAHs are formed by the incomplete/inefficient combustion of organic material, physical changes to sediments, and biological processes. PAHs are ubiquitous in the environment, with natural background levels resulting from forest fires, volcanoes, and possibly production by some plants. However, a significant fraction of PAHs in the environment is due to anthropogenic sources (*e.g.*, burning of fuel, internal-combustion engines, etc.). PAHs reach the marine environment via sewage discharges, surface run-off, industrial discharges, oil spillages and deposition from the atmosphere (CCME, 1992).

Low molecular weight PAHs (LPAHs) are more soluble and volatile and have less affinity for surfaces than high molecular weight PAHs, but high molecular weight PAHs (HPAHs) are thought to be more carcinogenic (Irwin *et al.*, 1997).

PAH compounds tend to co-occur, so analyses are concentrated on the summed concentrations of LPAHs, HPAHs, and total PAHs.

Because PAHs are broken down metabolically, tissue PAH concentrations are not measured for EMAP.

Polychlorinated Biphenyls (PCBs)

PCBs are man-made chemicals, many of which are used as coolants and lubricants in electrical equipment such as transformers and insulators (Bernhard and Petron, 2001). There are 209 different PCB compounds, differentiated by the number and placement of chlorine atoms. The number and placement of chlorine atoms also determines the persistence of PCBs in the environment, their toxicity, and their bioaccumulation properties (Bernhard and Petron, 2001). PCBs generally occur as mixtures.

DDTs and Other Chlorinated Pesticides

Despite the banning of the use of DDT some three decades ago, DDT and its metabolites, DDE and DDD, persist in the environment. DDTs and other chlorinated pesticides are bioaccumulative.

Toxicity

Sediment Toxicity

Toxicity tests are performed on sediment to characterize the aggregate effects of contaminants on biota. Amphipod survival tests are used to indicate acute toxicity, and urchin gamete-development and fertilization tests are used to indicate chronic toxicity. Sediments are classified as toxic if amphipod survival rates are less than 80% of a control group, or if urchin fertilization or embryo development rates are less than 80% of a control group.

Amphipod Survival Test

Amphipod survival tests are the most commonly performed sediment tests in North America, using test crustaceans exposed to relatively unaltered bulk sediment samples. In surveys performed by the NOAA National Status and Trends Program (Long *et al.*, 1996), tests with *Ampelisca abdita* provided wide ranges in responses among samples, strong statistical associations with elevated toxicant levels, and small within-sample variability. *Ampelisca abdita* has shown relatively little sensitivity to factors such as grain size, ammonia, and organic carbon (Long *et al.*, 1996).

Ampelisca abdita is a euryhaline benthic amphipod that ranges from Newfoundland to southcentral Florida, and along the eastern Gulf of Mexico. It is also abundant in San Francisco Bay and along the Pacific coast. The amphipod test with *A. abdita* has been routinely used for sediment toxicity tests in support of numerous EPA programs, including the Environmental Monitoring and Assessment Program (EMAP) in the Virginian (Schimmel *et al.*, 1994; Strobel *et al.*, 1994, 1995), Louisianian (Summers and Macauley, 1993; Macauley *et al.*, 1995), Californian (Bay, 1996), and Carolinian provinces (Hyland *et al.*, 1996, 1998).

Sea Urchin Fertilization and Embryo-Development Tests

Toxicants exist in a dissolved state in sediment pore water, making them highly bioavailable. The sea urchin fertilization test assesses the effects of exposure to sediment pore water on early life stages of invertebrates. (Sperm cells are more sensitive than adult forms.)

Fish-Tissue Toxicity

The H4IIE test is a semi-quantitative method for examining the combined potential impacts of polychlorinated biphenyls (PCBs), polychlorinated dibenzo-*p*-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs) in fish tissue extracts (USGS, 2001). Results of the H4IIE bioassay can be ranked based on concerns due to dioxin-like effects. The amounts of individual chemicals present in the environmental samples are not measured with this assay.

Marine Debris

Marine debris may have multiple degrading effects on estuarine biota, mainly due to ingestion and entanglement, but potentially due to local poisoning events. Public perception of the overall environmental condition of an area is also linked very clearly to debris levels, and this can affect tourism. Some debris is anthropogenic, while some is naturally-occurring, such as wood.

Biotic Condition Indicators

Biotic condition indicators provide quantitative information on the status of ecological resources (Messer, 1990). Healthy estuarine ecosystems have near-undisturbed environments with balanced populations of benthic infauna and demersal fish species. Biotic condition is investigated by several means in EMAP – benthic infaunal diversity and abundance, demersal fish diversity and abundance, and fish gross pathology.

Benthic Community Structure

Organisms which inhabit the sediments are continually exposed to contaminants in both water and sediments, so the structure of benthic communities may directly reflect the overall impacts of pollution. Benthic infaunal taxonomic identification and abundance data are used to compute total numbers of individuals (total abundance) and total number of species (taxa richness) per grab. Several indices of community are calculated: Shannon-Weaver diversity index H' (log base 2), Pielou's evenness index J', Swartz' dominance index (number of taxa comprising the most abundant 75% of individuals), and Swartz' dominance standardized by taxa richness. The Shannon-Weaver diversity (H') is used as a measure of community heterogeneity, whereas Pielou's evenness (J') is a measure of equitability of distribution. Swartz' dominance (SDI) indicates the degree to which few taxa compose the bulk of the community, and the standardized dominance (SDISTD) translates SDI from number of taxa to percent of taxa.

Demersal Fish Species Richness and Abundance

Demersal fish, including flatfish and species such as sculpins and some types of perch, are in near-constant contact with the seabed and therefore, presumably, with any contaminants in the sediment. (Pelagic fish species are not investigated in Coastal EMAP.) In addition, because the fish are predators, they bioaccumulate toxins over time as they eat smaller organisms which have taken up toxins from the environment. Fish taxonomic identification and abundance data are used to compute total numbers of individuals (total abundance) and total number of species (taxa richness) per tow; total abundance, in turn, is used to calculate catch per unit effort. Many factors influence fish abundance, and a low catch per unit effort may reflect only the natural abundance of fish in that habitat.

Fish Gross Pathology

The occurrence of gross external pathologies (lumps, ulcers, growths, and fin erosion) and parasites may represent direct effects of environmental stressors, such as tumors or true neoplasms, or indirect effects, such as weakened immune systems.

DDT Isomers	PAHs	Total	Total	Total				
DD1 isoliters	174115	LPAH	HPAH	PAH				
2,4'-DDD	1-Methylnaphthalene	Х		Х				
2,4'-DDE	2-Methylnaphthalene	Х		Х				
2,4'-DDT	2,6-Dimethylnaphthalene	Х		Х				
4,4'-DDD	2,3,5-Trimethylnaphthalene	Х		Х				
4,4'-DDE	1-Methylphenanthrene	Х		Х				
4,4'-DDT	Acenaphthene	Х		Х				
Chlarinated Destinidas	Acenaphthylene	Х		Х				
Chiofinated Pesticides	Anthracene	Х		Х				
Aldrin	Benz(a)anthracene		Х	Х				
Alpha-Chlordane	Benzo(a)pyrene		Х	Х				
Dieldrin	Benzo(b)fluoranthene		Х	Х				
Endosulfan I	Benzo(k)fluoranthene		Х	Х				
Endosulfan II	Benzo(g,h,i)perylene		Х	Х				
Endosulfan Sulfate	Biphenyl	Х		Х				
Endrin	Chrysene		Х	Х				
Heptachlor	Dibenz(a,h)anthracene		Х	Х				
Heptachlor Epoxide	Dibenzothiophene	X**	**	Х				
Hexachlorobenzene*	Fluoranthene		Х	Х				
Lindane (gamma-BHC)	Fluorene	Х		Х				
Mirex	Indeno(1,2,3-c,d)pyrene		Х	Х				
Toxaphene	Naphthalene	Х		Х				
Trans-Nonachlor	Pyrene		Х	Х				
*Hexachlorobenzene was	1							
	2,4'-DDE 2,4'-DDT 4,4'-DDD 4,4'-DDE 4,4'-DDT Chlorinated Pesticides Aldrin Alpha-Chlordane Dieldrin Endosulfan I Endosulfan II Endosulfan Sulfate Endrin Heptachlor Heptachlor Epoxide Hexachlorobenzene* Lindane (gamma-BHC) Mirex Toxaphene Trans-Nonachlor	2,4'-DDD1-Methylnaphthalene2,4'-DDE2-Methylnaphthalene2,4'-DDT2,6-Dimethylnaphthalene4,4'-DDD2,3,5-Trimethylnaphthalene4,4'-DDT1-Methylphenanthrene4,4'-DDTAcenaphtheneAldrinAcenaphthyleneAldrinBenz(a)anthraceneAldrinBenzo(a)pyreneDieldrinBenzo(b)fluorantheneEndosulfan IBenzo(g,h,i)peryleneEndosulfan SulfateBiphenylEndrinChryseneHeptachlorDibenz(a,h)anthraceneHeptachlor EpoxideDibenzothiopheneHexachlorobenzene*FluorantheneLindane (gamma-BHC)FluoreneMirexIndeno(1,2,3-c,d)pyrene** Dibenzothiophene can be consi carcinogenicity suggests that it weight suggests it is a LPAH (F	DDT isomersPAHsLPAH2,4'-DDD1-MethylnaphthaleneX2,4'-DDE2-MethylnaphthaleneX2,4'-DDT2,6-DimethylnaphthaleneX2,4'-DDD2,3,5-TrimethylnaphthaleneX4,4'-DDE1-MethylphenanthreneX4,4'-DDTAcenaphtheneXA,4'-DDTAcenaphthyleneXAldrinBenz(a)anthraceneXAldrinBenz(a)anthraceneXAlpha-ChlordaneBenzo(b)fluorantheneEndosulfan IBenzo(a)pyreneBenzo(b)fluorantheneEndosulfan IBenzo(b)fluorantheneBenzo(g,h,i)peryleneEndosulfan IIBenzo(g,h,i)peryleneEndrinChryseneHeptachlorDibenz(a,h)anthraceneHeptachlor EpoxideDibenzothiopheneHexachlorobenzene*FluorantheneLindane (gamma-BHC)FluoreneMirexIndeno(1,2,3-c,d)pyreneToxapheneNaphthalene** Dibenzothiophene can be considered a LP carcinogenicity suggests that it is a HPAH weight suggests it is a LPAH (Feddersen, p	DDT isomersPARsLPAHHPAH2,4'-DDD1-MethylnaphthaleneX2,4'-DDE2-MethylnaphthaleneX2,4'-DDT2,6-DimethylnaphthaleneX4,4'-DDD2,3,5-TrimethylnaphthaleneX4,4'-DDE1-MethylphenanthreneX4,4'-DDTAcenaphtheneXAderaphtheneXAcenaphtheneXAcenaphtheneXAldrinBenz(a)anthraceneXAldrinBenzo(a)pyreneXAlpha-ChlordaneBenzo(a)pyreneXDieldrinBenzo(b)fluorantheneXEndosulfan IBenzo(g,h,i)peryleneXEndosulfan IIBenzo(g,h,i)peryleneXEndosulfan SulfateBiphenylXEndrinChryseneXHeptachlorDibenz(a,h)anthraceneXHeptachlor EpoxideDibenzothiopheneX**MirexIndeno(1,2,3-c,d)pyreneXTrans-NonachlorPyreneX** Dibenzothiophene can be considered a LPAH or a HP carcinogenicity suggests that it is a HPAH, while its n weight suggests it is a LPAH (Feddersen, pers. comm.				

Table A-1. PCBs, Pesticides, and PAHs for Coastal EMAP. Constituents of Total PCB, Total DDT, and PAH totals are indicated.

PAHs	Semi-Volatiles
2-Methylfluoranthene	1,2,4-Trichlorobenzene
2-Methylphenanthrene	1,2-Dichlorobenzene
4,6-Dimethyldibenzothiophene	1,3-Dichlorobenzene
9-H-Fluorene, 1-methyl	1,4-Dichlorobenzene
Benzo[e]pyrene	2,4-Dimethylphenol
Carbazole	2-Methylphenol
Chrysene, 5-methyl-	4-Methylphenol
Dibenzofuran	Benzoic Acid
Perylene	Benzyl Alcohol
Phenanthrene	Bis(2-Ethylhexyl) Phthalate
Phenanthrene, 3,6-dimethyl-	Butylbenzylphthalate
Retene	Diethylphthalate
	Dimethylphthalate
Organotins	Di-N-Butylphthalate
Dibutyltin Dichloride	Di-N-Octyl Phthalate
Monobutyltin Trichloride	Hexachlorobutadiene
Tributyltin Chloride	N-Nitrosodiphenylamine
	Pentachlorophenol
	Phenol
	Phenol, 4-Nonyl-

Table A-2. Non-EMAP PAHs and other organic compounds

		EMAP			SQS & CSL		E	ERL & ERM	1
	Total LPAH	Total HPAH	Total PAH	Total LPAH	Total Benzo- fluoranthenes	Total HPAH	Total LPAH	Total HPAH	Total PAH
Use and Handling of Non-Detects		ts, detects & r on-detects set			s only, non-detects note below for deta		se detects on -detects exclu		
Units	ppb dry	v wt (ng/g equi	valent)	ppm orga	nic carbon (TOC-no	rmalized)	ppb dry	/ wt (ng/g equ	ivalent)
1-Methylnaphthalene	Х		Х						
2-Methylnaphthalene	Х		Х				Х		Х
2,6-Dimethylnaphthalene	Х		Х						
2,3,5-Trimethylnaphthalene	Х		Х						
1-Methylphenanthrene	Х		Х						
Acenaphthene	Х		Х	Х			Х		Х
Acenaphthylene	Х		Х	Х			Х		Х
Anthracene	Х		Х	Х			Х		Х
Benz(a)anthracene		Х	Х			Х		Х	Х
Benzo(a)pyrene		Х	Х			Х		Х	Х
Benzo(b)fluoranthene		Х	Х		Х				
Benzo(j)fluoranthene					Х				
Benzo(k)fluoranthene		Х	Х		Х				
Total Benzofluoranthenes						Х			
Benzo(g,h,i)perylene		Х	Х			Х			
Biphenyl	Х		Х						
Chrysene		Х	Х			Х		Х	Х
Dibenz(a,h)anthracene		Х	Х			Х		Х	Х
Dibenzothiophene	X**	**	Х						
Fluoranthene		Х	Х			Х		Х	Х
Fluorene	Х		Х	Х			Х		Х
Indeno(1,2,3-c,d)pyrene		Х	Х			Х			
Naphthalene	Х		Х	Х			Х		Х
Phenanthrene				Х			Х		Х
Pyrene		Х	Х			Х		Х	Х

Table A-3. Total PAH constituent compounds and treatment of non-detects for EMAP, ERL/ERM, and SQS/CSL

*For the SQS/CSL PAH totals, sum detected values only unless all values are non-detects, in which case set the total to the largest reporting limit (RL). For individual PAHs, average detected replicates only, unless all values are non-detects, in which case use the largest RL (Washington State Department of Ecology, 1995).

**If based on molecular weight, dibenzothiophene is an LPAH. If based on carcinogenicity, dibenzothiophene is an HPAH. It has been included as an LPAH in the analysis

Appendix B

Sampling Success

- Table B-1: Locations sampled and sampling success
- Table B-2:
 Water parameter sample levels
- Table B-3: Submerged and Terrestrial PAR measured at each level of the water column
- Table B-4: Whole-fish composites for tissue analyses
- Figure B-1: Sampling success
- Figure B-2: Stations sampled, by geographical area

This page is purposely left blank for duplex printing.

Table B-1. Locations sampled and sampling success

* - signifies station was abandoned prior to sampling

EMAP Station Number	Estuary	Sampl Latitud DD.do	de	Sample Longitu DDD.do	de	Water	Sed.	Fish	Conditions Hindering Sampling
WA99-0001	Makah Bay	48.320	Ν	124.680	W	Y	Y	Ν	Too deep to trawl.
WA99-0002	Makah Bay	48.314	N	124.670	W	Y	Y	Y	Sediment grabs taken 0.27 nautical miles (nmi) from station where WQ samples acquired due to rocky bottom at other coordinates. Boulders obstructed trawling.
WA99-0003	Makah Bay	48.305	Ν	124.671	W	Y	Y	Y	
WA99-0004	Hoko River	48.288	N	124.365	W	Y	Y	Y	Target coordinates up river – station moved 0.23 nmi to nearest samplable water.
WA99-0005	Ozette River	48.181	Ν	124.708	W	N	N	N	River mouth – cannot sample safely.
WA99-0006	Freshwater Bay	48.149	Ν	123.633	W	Y	Ν	Y	No sediment due to rocky substrate.
WA99-0007	Freshwater Bay	48.148	Ν	123.601	W	Y	Y	Y	
WA99-0008	Freshwater Bay	48.143	N	123.616	W	Y	N	N	Target coordinates on land – station moved 0.13 nmi. No sediment due to gravel substrate. Kelp obstructed trawling.
WA99-0009	Dungeness Bay	48.160	N	123.148	W	Y	Y	Y	Too shallow at target coordinates – station moved 0.61 nmi to nearest samplable water.
WA99-0010	Discovery Bay	48.079	N	122.900	W	Y	Y	Y	Too deep at target coordinates – station moved to nearest samplable location.
WA99-0011	Discovery Bay	48.058	Ν	122.905	W	Y	Y	Y	
WA99-0012	Discovery Bay	48.021	Ν	122.859	W	Y	Y	Y	
WA99-0013	Discovery Bay	48.003	N	122.843	W	Y	Y	Y	Too deep at target coordinates – station moved 0.42 nmi to nearest samplable location.
WA99-0014	Discovery Bay	47.997	Ν	122.874	W	Y	Y	Y	
WA99-0015	Kalaloch Creek	47.606	Ν	124.373	W	Y	Y	Y	Too shallow to sample by boat – sampled on foot.
WA99-0016	Raft River	47.463	Ν	124.339	W	Y	Y	Y	Too shallow to sample by boat – sampled on foot.
WA99-0017	Quinault River	47.347	N	124.298	W	Y	Y	N	Too shallow to sample by boat – sampled on foot. River mouth – too dangerous to fish.
WA99-0018	Quinault River	*		*		Ν	Ν	Ν	Location inaccessible.

EMAP Station Number	Estuary	Sampl Latitud DD.dd	de	Sample Longitud DDD.dd	de	Water	Sed.	Fish	Conditions Hindering Sampling
WA99-0019	Conner Creek	47.089	N	124.176	W	Y	Y	Y	Too shallow to sample by boat – sampled on foot. Target coordinates in creek mouth – moved station 0.75 nmi.
WA99-0020	Grays Harbor	47.004	Ν	124.040	W	Y	Y	Y	Target coordinates in creek channel – moved station 0.75 nmi.
WA99-0021	Grass Creek	47.005	N	124.000	W	Y	Y	Y	Too shallow at target coordinates – station moved 1 nmi to nearest samplable water.
WA99-0022	Grays Harbor	46.966	Ν	123.951	W	Y	Y	Y	
WA99-0023	Grays Harbor	46.940	N	124.104	W	Y	Y	Y	
WA99-0024	Grays Harbor	46.935	Ν	124.028	W	Y	Y	Y	
WA99-0025	Grays Harbor	46.967	N	123.858	W	Y	Y	Y	
WA99-0026	Grays Harbor	46.921	Ν	124.067	W	Y	Y	Y	
WA99-0027	Beardslee Slough	46.873	N	124.034	W	Y	Y	Y	
WA99-0028	Beardslee Slough	46.870	N	124.022	W	N	N	Ν	Too shallow to sample.
WA99-0029	Grays Harbor	46.848	N	124.032	W	Y	Y	Y	Too shallow at target coordinates – station moved to nearest samplable water.
WA99-0030	Willapa Bay	46.715	N	124.045	W	Y	N	Ν	Too rough to sample safely.
WA99-0031	Willapa Bay	46.704	Ν	123.887	W	Y	Y	Y	
WA99-0032	Willapa Bay	*		*	W	Ν	N	Ν	Location inaccessible.
WA99-0033	Willapa Bay	46.650	Ν	124.012	W	Y	Y	Ν	Too rough to sample safely.
WA99-0034	Willapa Bay	46.567	Ν	123.942	W	Y	Y	Y	
WA99-0035	Willapa Bay	46.539	Ν	123.924	W	Y	Y	Ν	Fog – cannot sample safely.
WA99-0036	Willapa Bay	46.418	N	123.418	W	Y	Y	Y	Too shallow at target coordinates – station moved 1 nmi to nearest samplable water.
WA99-0037	Willapa Bay	46.380	N	123.970	W	Ν	N	Ν	Too shallow to sample.
WA99-0038	Baker Bay	46.310	N	124.009	W	Y	Y	Y	Too shallow at target coordinates – station moved 0.2 nmi to nearest samplable water.
WA99-0039	Baker Bay	46.301	N	124.026	W	Y	Y	Y	Too shallow at target coordinates – station moved 0.13 nmi to nearest samplable water.
WA99-0040	Baker Bay	46.273	N	123.973	W	Y	Y	Y	Too shallow at target coordinates – station moved 0.15 nmi to nearest samplable water.

EMAP Station Number	Estuary	Sample Latitud DD.dd	de	Sampled Longitude DDD.ddd		Water	Sed.	Fish	Conditions Hindering Sampling
WA99-0041	Grays River	46.346	Ν	123.618	W	Ν	Ν	N	Too shallow to sample.
WA99-0042	Baker Bay	46.263	Ν	123.998	W	Y	Y	Y	
WA99-0043	Grays Bay	46.302	Ν	123.711	W	Y	Y	Y	
WA99-0044	Grays Bay	46.300	N	123.698	w	Y	Y	Y	Target coordinates located in marsh/grassland area – station established at nearest samplable water.
WA99-0045	Grays Bay	46.295	Ν	123.703	W	Y	Y	Y	
WA99-0046	Grays Bay	46.287	Ν	123.727	W	Y	Y	Y	
WA99-0047	Grays Bay	46.275	Ν	123.717	W	Y	Y	Y	
WA99-0048	Cowlitz River	46.095	Ν	122.922	W	Y	Y	Y	
WA99-0049	Carrolls Channel	46.085	N	122.880	W	Y	Y	Y	
WA99-0050	Martin Slough	45.947	Ν	122.786	W	Y	Y	Y	

S - S	S - Surface (0.5 m depth); M - Mid-Water (mid-depth of water column); B - Bottom (0.5 m above seabed); 1 - 1 m depth										
EMAP Station ID	Salinity	Temperature	Dissolved Oxygen	рH	Transmissivity	Submerged PAR	Terrestrial PAR	TSS	Photo- synthetic Pigments	Dissolved Nutrients	
WA99-0001	SB	SB	SB	SB	S1B	SMB	SMB	SMB	SMB	SMB	
WA99-0002	SB	SB	SB	SB	S1B	SMB	SMB	SMB	SMB	SMB	
WA99-0003	SB	SB	SB	SB	S1B	SMB	SMB	SMB	SMB	SMB	
WA99-0004	SB	SB	SB	SB	S1B	SMB	SMB	SMB	SMB	SMB	
WA99-0005	station not sampled										
WA99-0006	SB	SB	B	SB	S1B	SMB	SMB	SMB	SMB	SMB	
WA99-0007	SB	SB		SB	S1B	SMB	SMB	SMB	SMB	SMB	
WA99-0008	SB	SB	SB	SB	S1B	SMB	SMB	SMB	SMB	SMB	
WA99-0009	SB	SB	SB	SB	S1B	SB	SB	SB	SB	SB	
WA99-0010	SB	SB	S	SB	S1B	SMB	SMB	SMB	SMB	SMB	
WA99-0011	SB	SB	S	SB	S1B	SMB	SMB	SMB	SMB	SMB	
WA99-0012	SB	SB	B	SB	S1B	SMB	SMB	SMB	SMB	SMB	
WA99-0013	SB	SB	B	SB	S1B	SMB	SMB	SMB	SMB	SMB	
WA99-0014	SB	SB	SB	SB	S1B	SB	SB	SB	SB	SB	
WA99-0015						S	S	S	S	S	
WA99-0016						S	S	S	S	S	
WA99-0017						S	S	S	S	S	
WA99-0018					station not sa						
WA99-0019						S	S	S	S	S	
WA99-0020	SB	SB	SB	SB	S1B	SMB	SMB	SMB	SMB	SMB	
WA99-0021	SB	SB	SB	SB	S1B	SB	SB	SB	SB	SB	
WA99-0022	SB	SB	SB	SB	S1B			SMB	SMB	SMB	
WA99-0023	SB	SB	SB	SB	S1B		SB	SMB	SMB	SMB	
WA99-0024	SB	SB	SB	SB	S1B	SMB	SMB	SMB	SMB	SMB	
WA99-0025	SB	SB	SB	SB	S1B		SMB	SMB	SMB	SMB	
WA99-0026	SB	SB	SB	SB	S1B		SMB	SMB	SMB	SMB	
WA99-0027	SB	SB	SB	SB	S1B	SB	SB	SB	SB	SB	
WA99-0028		•=			station not sa				- -		
WA99-0029	SB	SB	SB	SB	S1B	SB	S	S_B	S_B	S_B	
WA99-0030	SB	SB	S	SB	S1B	SMB	SMB	SMB	SMB	SMB	
WA99-0031	SB	SB	SB	SB	S1B		SMB	SMB	SMB	SMB	

Table B-2. Water parameter sample levels

EMAP			Dissolved			Submerged	Terrestrial		Photo- synthetic	Dissolved
Station ID	Salinity	Temperature	Oxygen	pН	Transmissivity	PAR	PAR	TSS	Pigments	Nutrients
WA99-0032					station not sa	mpled				
WA99-0033	SB	SB	SB	SB	S1B	SMB	SMB	SMB	SMB	SMB
WA99-0034	SB	SB	SB	SB	S1B		SMB	SMB	SMB	SMB
WA99-0035	SB	SB	SB	SB	S1B	SB	SB	SB	SB	SB
WA99-0036	SB	SB	SB	SB	S1B	SMB	SMB	SMB	SMB	SMB
WA99-0037					station not sa	mpled				
WA99-0038	SB	SB	SB	SB	S1B	SB	S	SB	SB	SB
WA99-0039	SB	SB	SB	SB	S1B	SB	SB	SB	SB	SB
WA99-0040	SB	SB	SB	SB	S1B	SB	SB	SB	SB	SB
WA99-0041					station not sa	mpled				
WA99-0042	SB	SB	SB	SB	S1B	SMB	SMB	SMB	SMB	SMB
WA99-0043	SB	SB	SB	SB	S1B	SMB	SMB	SMB	SMB	SMB
WA99-0044	SB	SB	SB	SB	S1B	SB	SB	SB	SB	SB
WA99-0045	SB	SB	S	SB	S1B	S	S	S	S	S
WA99-0046	SB	SB	SB	SB	S1B	SMB	SMB	SMB	SMB	SMB
WA99-0047	SS*	SS*	SS*	SS*	SS*	S	S	S	S	S
WA99-0048	SB	SB	SB	SB	S1B	SMB	SMB	SMB	SMB	SMB
WA99-0049	SB	SB	SB	SB	S1B	SMB	SMB	SMB	SMB	SMB
WA99-0050	SB	SB	SB	SB	S1B	SMB	SMB	SMB	SMB	SMB
* In absence	of bottom	n measuremen	it, surfac <mark>e n</mark>	neasuren	nent was used for bot	tom.				

EMAP Station ID	Surface	Mid-Water	Bottom			
WA99-0001	S&T	S&T	S&T			
WA99-0002	S&T	S&T	S&T			
WA99-0003	S&T	S&T	S&T			
WA99-0004	S&T	S&T	S&T			
WA99-0005	Out	station not sampled				
WA99-0006	S&T	S&T S&T				
WA99-0007	S&T	S&T	S&T S&T			
WA99-0008	S&T	S&I S&I S&T S&T				
WA99-0009	S&T	Odi	S&T			
WA99-0010	S&T	S&T	S&T			
WA99-0011	S&T	S&T	S&T			
WA99-0012	S&T	S&T	S&T			
WA99-0012	S&T	S&T	S&T			
WA99-0014	S&T	Odi	S&T			
WA99-0015	S&T		301			
WA99-0015 WA99-0016	S&T					
WA99-0017	S&T					
WA99-0017 WA99-0018	001	station not sampled				
WA99-0019	S&T					
WA99-0020	S&T	S&T	S&T			
WA99-0020	S&T	301	S&T			
WA99-0021 WA99-0022	301		301			
WA99-0022 WA99-0023	T		Т			
WA99-0023 WA99-0024	S&T	S&T				
WA99-0024 WA99-0025	<u>- 3α1</u> Τ		S&T			
WA99-0025 WA99-0026	<u> </u>	T	Т			
WA99-0020 WA99-0027	S&T	1	S&T			
WA99-0027 WA99-0028	301	station not sampled	301			
WA99-0028	S&T		S			
WA99-0029 WA99-0030	S&T	C & T	-			
WA99-0030	<u>- 3α1</u> Τ	S&T S&T				
WA99-0031 WA99-0032	I					
WA99-0032 WA99-0033	S&T	station not sampled S&T S&T				
WA99-0033 WA99-0034	<u> </u>					
WA99-0034 WA99-0035	S&T	T T S&T				
WA99-0035 WA99-0036	S&T S&T	C S T				
WA99-0038 WA99-0037	501	S&T S&T S&T station not sampled				
WA99-0037 WA99-0038	S&T		S			
WA99-0039	S&T	+	S&T			
WA99-0039	S&T	+	S&T			
WA99-0040 WA99-0041	001	station not sampled				
WA99-0041 WA99-0042	S&T	S&T	S&T			
WA99-0042 WA99-0043	S&T	S&T	S&T			
WA99-0043	S&T					
WA99-0044 WA99-0045	S&T	S&T				
WA99-0045 WA99-0046	S&T	S&T S&T				
WA99-0046 WA99-0047	S&T S&T	301	301			
WA99-0047 WA99-0048	S&T S&T	S&T	S&T			
WA99-0048 WA99-0049						
	S&T	S&T	S&T			
WA99-0050	S&T	S&T	S&T			

Table B-3. Submerged PAR (S) and Terrestrial PAR (T) measurements at each level of the water column

Table B-4.	Whole-fish composites for tissue analyses	

EMAP			Size Range	Weight	Chemistry	H4IIE
Station ID	Species	of Fish	(cm)	Range (g)	Analyses	Bioassay
WA99-0001	no fish sampled					
WA99-0002		6	10 - 17	11 - 43	Х	Х
	sand sole	11	6 - 13	2 - 22	Х	Х
	speckled sanddab	21	7 - 13	4 - 33	Х	Х
WA99-0005		tation not		-		
	speckled sanddab	6	9 - 15	10 - 54	Х	Х
WA99-0007	speckled sanddab	7	11 - 12, 16*	16 - 23, 59*	Х	Х
WA99-0008		no fish sa				
WA99-0009			ecies fish obta			
WA99-0010			ecies fish obta	ained		
WA99-0011			ies obtained			
WA99-0012	English sole	5	11 - 15	12 - 35	Х	Х
	English sole	10	9 - 16, 19*	7 - 42, 70*	Х	Х
WA99-0014	English sole	30	7 - 13	4 - 22	Х	Х
WA99-0015	insufficient		ecies fish obta			
WA99-0016	starry flounder	8	7 - 12	5 - 23	Х	
WA99-0017		no fish sa				
WA99-0018		tation not				
WA99-0019	no target species obtained					
WA99-0020		target sp	ecies fish obta	ained		
WA99-0021	English sole	34	4 - 10	1 - 9	Х	
WA99-0022	insufficient target species fish obtained					
WA99-0023	insufficient target species fish obtained					
WA99-0024	insufficient	target sp	ecies fish obta	ained		
WA99-0025	insufficient	target sp	ecies fish obta	ained		
WA99-0026	insufficient	target sp	ecies fish obta	ained		
WA99-0027	English sole 23 4 - 12 1 - 16 X X					Х
WA99-0028	st	tation not	sampled			
WA99-0029	insufficient		ecies fish obta	ained		
WA99-0030	no fish sampled					
WA99-0031	English sole	40	4 - 8	1 - 5	Х	
WA99-0032	station not sampled					
WA99-0033	no fish sampled					
WA99-0034	English sole	9	6 - 12	2 - 20	Х	
WA99-0035		no fish sa	ampled			
WA99-0036	English sole	47	5 - 10	1 - 11	Х	Х
WA99-0037	si	tation not	sampled			
WA99-0038	starry flounder	12	6 - 9, 22*	2 - 9, 154*	Х	Х
WA99-0039	insufficient	target sp	ecies fish obt	ained		
WA99-0040	English sole	47	5 - 9	1 - 8	Х	Х
WA99-0041	s	tation not	sampled			
WA99-0042	English sole	39	6 - 10	2 - 9	Х	Х
WA99-0043	starry flounder	22	4 - 10	1 - 11	Х	
WA99-0044	starry flounder	45	5 - 8	2 - 6	Х	Х
WA99-0045		kept for t	issue analyse	S		
WA99-0046	starry flounder	50	5 - 10, 16*	1 - 13, 50*	Х	Х
WA99-0047	starry flounder	37	6 - 11, 16*	3 - 18, 51*	Х	Х
	starry flounder	3	13, 16, 18	29, 47, 73	Х	Х
	starry flounder	7	13 - 15, 17*	30 - 47, 77*	Х	Х
	starry flounder	9	15 - 20	49 - 99	Х	Х
	* one unusually large fish, in relation to others in sample					

Figure B-1. Sampling success

Geographical Area	Stations	Geographical Area	Stations
Makah Bay	WA99-0001 through WA99-0003	Grays Harbor	WA99-0020 through WA99-0029
Strait of Juan de Fuca	WA99-0004 through WA99-0014	Willapa Bay	WA99-0030 through WA99-0037
Walk-In Stations	WA99-0015 through WA99-0019	Columbia River	WA99-0038 through WA99-0050

This page is purposely left blank for duplex printing.

Appendix C

General Habitat Condition Indicators

The data tables in this appendix contain the values used in the statistical analyses. For sediment lithology, the values are the averaged results of lab and/or field replicates, if any. For CTD data, the values are the 0.5-m bin average values from near-surface (0.5 m), near-bottom (0.5 m above bottom), and mid-water depths. The raw data are available in the national EMAP database or upon request.

- Table C-1: Hydrographic profile data
- Table C-2: Mean water clarity data
- Table C-3:
 Surface water clarity data
- Table C-4: Mid-water water clarity data
- Table C-5:
 Bottom water clarity data
- Table C-6: Mean water chemistry data
- Table C-7: Surface water chemistry data
- Table C-8: Mid-water water chemistry data
- Table C-9: Bottom water chemistry data
- Table C-10: Sediment lithology data
- Figure C-1: Hydrographic profile CDFs and graphical summaries
- Figure C-2: Water chemistry CDFs and graphical summaries
- Figure C-3: Sediment lithology CDFs and graphical summaries

The boxplots in Figures C-1 through C-3 group the data for estuaries geographically as shown in Figure B-2 in Appendix B.

Box-and-whisker plots, or boxplots, display median $(50^{\text{th}}\text{-percentile})$, $25^{\text{th}}\text{-percentile}$, $75^{\text{th}}\text{-percentile}$, and extreme values of the results, with a 95% confidence interval for the median. Outliers are unusually high or unusually low values. The width of the boxplot is proportional to the number of samples.

		Tidally-Corrected							
		Depth							
		(m below MLLW;	Surface	Bottom	Surface	Bottom	Surface	Bottom	Density
EMAP		if intertidal,	Salinity	Salinity	Temperature	Temperature	Density	Density	Stratification
Station ID	Station Location	m above MLLW)	(psu)	(psu)	(°C)	(°C)	(σ)	(σ)	(Δσ)
WA99-0001	МАКАН ВАҮ	17.5	32.3	33.1	13.6	9.0	24.19	25.65	1.46
WA99-0002	МАКАН ВАҮ	7.2	32.8	32.9	11.3	10.3	24.99	25.25	0.27
WA99-0003	MAKAH BAY	8.1	32.8	32.9	10.8	10.6	25.13	25.19	0.06
WA99-0004	HOKO RIVER	2.8	31.5	32.1	9.8	9.5	24.27	24.77	0.50
WA99-0005	OZETTE RIVER				station not sa	ampled			
WA99-0006	FRESHWATER BAY	17.9	31.5	32.8	10.8	8.5	24.06	25.47	1.41
	FRESHWATER BAY	21.3	31.6	32.2	10.1	9.3	24.27	24.89	0.61
WA99-0008	FRESHWATER BAY	11.7	31.6	32.1	10.3	9.3	24.23	24.83	0.60
	DUNGENESS BAY	1.4	27.1	29.7	13.5	13.3	20.22	22.20	1.98
	DISCOVERY BAY	4.5	30.7	30.7	12.4	11.9	23.15	23.27	0.12
	DISCOVERY BAY	20.4	30.7	31.5	13.6	10.0	22.94	24.20	1.26
	DISCOVERY BAY	15.1	30.6	30.8	15.4	12.2	22.54	23.28	0.74
WA99-0013	DISCOVERY BAY	18.9	30.1	28.6	16.5	10.3	21.87	21.89	0.02
WA99-0014	DISCOVERY BAY	intertidal, +0.48	30.4	30.5	16.4	16.4	22.08	22.21	0.13
WA99-0015	KALALOCH CREEK	intertidal, +1.64			not	sampled with C	CTD		
WA99-0016	RAFT RIVER	intertidal, +0.78			not	sampled with C	CTD		
WA99-0017	QUINAULT RIVER	intertidal, +0.08				sampled with C	CTD		
	QUINAULT RIVER				station not sa				
	CONNER CREEK	intertidal, +1.25				sampled with C		-	-
	GRAYS HARBOR	1.5	28.2	29.5	16.4	15.2	20.42	21.67	1.26
WA99-0021	GRASS CREEK	1.3	27.4	27.5	17.6	17.6	19.56	19.60	0.04
	GRAYS HARBOR	3.4	28.3	29.1	15.9	15.3	20.64	21.40	0.75
WA99-0023	GRAYS HARBOR	10.7	29.5	31.2	16.0	13.8	21.54	23.28	1.73
	GRAYS HARBOR	2.6	28.1	33.1	17.1	10.3	20.22	25.40	5.19
	GRAYS HARBOR	1.8	20.7	26.8	17.6	16.5	14.41	19.35	4.94
	GRAYS HARBOR	11.5	29.8	32.3	15.0	11.3	22.00	24.59	2.59
	BEARDSLEE SLOUGH	intertidal, +0.95	26.8	27.7	16.7	16.3	19.34	20.07	0.73
	BEARDSLEE SLOUGH				station not sa				
	GRAYS HARBOR	1.3	13.0	13.6	16.1	16.1	8.88	9.37	0.48
WA99-0030	WILLAPA BAY	14.6	32.6	32.9	10.9	10.4	24.95	25.21	0.26

Table C-1. Depth, salinity, temperature, density, stratification, dissolved oxygen (DO), pH, transmissivity

		Tidally-Corrected							
		Depth							
		(m below MLLW;	Surface	Bottom			Surface	Transmissivity	Bottom
EMAP		if intertidal,	DO	DO	Surface	Bottom	Transmissivity	at 1m depth	Transmissivity
	Station Location	m above MLLW)	(mg/L)	(mg/L)	рН	рН	(%)	(%)	(%)
	MAKAH BAY	17.51	10.46	4.87	8.4	8.1	41.9	42.3	21.7
WA99-0002		7.16	7.47	6.66	8.1	8.1	75.1	75.0	70.6
	MAKAH BAY	8.11	7.35	7.18	8.2	8.2	73.4	73.7	66.7
	HOKO RIVER	2.79	6.48	5.80	7.2	7.2	79.0	82.0	86.7
	OZETTE RIVER				station r	not sampled			
	FRESHWATER BAY	17.85	6.81	4.32	7.2	7.0	72.5	72.5	78.1
WA99-0007	FRESHWATER BAY	21.30	6.88	5.62	7.1	7.0	71.9	71.9	71.6
WA99-0008	FRESHWATER BAY	11.74	7.45	5.85	7.1	7.1	50.3	49.9	49.5
WA99-0009	DUNGENESS BAY	1.37	8.30	7.96	7.5	7.5	56.3	60.6	63.4
WA99-0010	DISCOVERY BAY	4.55	8.72	8.67	7.4	7.3	72.1	73.2	75.7
WA99-0011	DISCOVERY BAY	20.41	9.71	5.37	7.7	7.3	78.9	82.8	85.5
WA99-0012	DISCOVERY BAY	15.12	10.82	8.64	7.7	7.4	81.9	81.9	87.6
WA99-0013	DISCOVERY BAY	18.91	10.47	4.28	7.8	7.3	68.1	68.1	12.4
WA99-0014	DISCOVERY BAY	intertidal, +0.48	10.73	11.10	7.9	7.9	43.6	43.8	54.9
WA99-0015	KALALOCH CREEK	intertidal, +1.64				not sample	ed with CTD		
WA99-0016	RAFT RIVER	intertidal, +0.78				not sample	ed with CTD		
WA99-0017	QUINAULT RIVER	intertidal, +0.08				not sample	ed with CTD		
WA99-0018	QUINAULT RIVER				station r	not sampled			
WA99-0019	CONNER CREEK	intertidal, +1.25				not sample	ed with CTD		
WA99-0020	GRAYS HARBOR	1.48	7.20	6.97	7.6	7.6	34.3	35.3	11.3
WA99-0021	GRASS CREEK	1.26	6.88	6.97	7.5	7.5	8.4	5.1	1.5
WA99-0022	GRAYS HARBOR	3.37	6.92	7.07	7.5	7.5	38.7	33.5	1.0
WA99-0023	GRAYS HARBOR	10.67	7.70	6.90	7.6	7.5	62.3	61.5	49.8
WA99-0024	GRAYS HARBOR	2.58	6.78	7.09	7.6	7.4	48.1	48.0	56.4
WA99-0025	GRAYS HARBOR	1.76	7.34	6.91	7.2	7.3	38.4	37.9	5.9
WA99-0026	GRAYS HARBOR	11.50	7.42	6.99	7.5	7.5	63.9	63.9	67.6
WA99-0027	BEARDSLEE SLOUGH	intertidal, +0.95	7.06	7.01	7.4	7.4	42.4	41.8	41.3
WA99-0028	BEARDSLEE SLOUGH				station r	not sampled			
WA99-0029	GRAYS HARBOR	1.28	7.09	7.02	6.8	6.7	44.5	44.0	43.2
WA99-0030	WILLAPA BAY	14.58	8.84	8.88	7.3	7.3	59.6	59.8	40.8

Depth, salinity, temperature, density, stratification, dissolved oxygen (DO), pH, transmissivity (continued)

		Tidally-Corrected Depth							
		(m below MLLW;	Surface	Bottom	Surface	Bottom	Surface	Bottom	Density
EMAP		if intertidal,	Salinity	Salinity	Temperature	Temperature	Density	Density	Stratification
Station ID	Station Location	m above MLLW)	(psu)	(psu)	(°C)	(°C)	(σ)	(σ)	(Δσ)
WA99-0031	WILLAPA BAY	2.6	27.0	27.6	18.4	18.2	19.04	19.58	0.53
WA99-0032	WILLAPA BAY				station not sa	ampled			
WA99-0033	WILLAPA BAY	13.8	32.3	33.2	11.9	9.4	24.48	25.67	1.19
WA99-0034	WILLAPA BAY	0.5	28.3	28.3	17.0	17.0	20.39	20.39	0.00
WA99-0035	WILLAPA BAY	0.1	29.7	29.7	16.6	16.6	21.55	21.55	0.00
WA99-0036	WILLAPA BAY	7.8	28.6	28.6	18.8	18.4	20.19	20.29	0.10
WA99-0037	WILLAPA BAY				station not sa	ampled			
WA99-0038	BAKER BAY	intertidal, +1.22	8.4	9.7	18.0	18.0	4.98	6.04	1.06
WA99-0039	BAKER BAY	intertidal, +0.11	8.1	10.0	17.7	17.4	4.82	6.34	1.52
WA99-0040	BAKER BAY	intertidal, +0.07	5.8	5.8	18.8	18.8	2.88	2.88	0.00
WA99-0041	GRAYS RIVER				station not sa	ampled			
WA99-0042	BAKER BAY	8.7	2.9	12.6	19.4	16.1	0.55	8.57	8.02
WA99-0043	GRAYS BAY	3.0	0.1	0.1	20.8	20.8	-1.92	-1.92	0.00
WA99-0044	GRAYS BAY	0.5	0.1	0.1	21.6	21.6	-2.09	-2.09	0.00
WA99-0045	GRAYS BAY	intertidal, +0.54	0.1	0.1	20.2	20.2	-1.78	-1.78	0.00
WA99-0046	GRAYS BAY	9.4	0.1	0.1	20.3	20.2	-1.80	-1.78	0.02
WA99-0047	GRAYS BAY	0.1	0.1	0.1	20.4	20.4	-1.82	-1.82	0.00
WA99-0048	COWLITZ RIVER	2.7	0.0	0.0	15.2	15.1	-0.90	-0.88	0.02
WA99-0049	CARROLLS CHANNEL	3.6	0.1	0.1	20.5	20.4	-1.84	-1.84	0.00
WA99-0050	MARTIN SLOUGH	7.0	0.1	0.1	21.5	20.3	-2.06	-1.81	0.25

		Tidally-Corrected Depth		5					5.4
		(m below MLLW;	Surface	Bottom	.	.	Surface	Transmissivity	
EMAP		if intertidal,	DO	DO	Surface	Bottom	Transmissivity	at 1m depth	Transmissivity
Station ID	Station Location	m above MLLW)	(mg/L)	(mg/L)	рН	рН	(%)	(%)	(%)
WA99-0031	WILLAPA BAY	2.57	7.46	7.42	7.4	7.5	41.9	41.5	39.9
WA99-0032	WILLAPA BAY				station r	ot sampled			
WA99-0033	WILLAPA BAY	13.81	9.55	8.79	7.4	7.3	68.2	68.0	61.7
WA99-0034	WILLAPA BAY	0.47	9.19	9.38	7.6	7.6	56.0	55.9	53.5
WA99-0035	WILLAPA BAY	0.13	7.38	7.32	7.6	7.6	44.7	42.8	39.6
WA99-0036	WILLAPA BAY	7.76	8.08	8.02	7.6	7.6	50.4	52.7	51.6
WA99-0037	WILLAPA BAY				station r	ot sampled			
WA99-0038	BAKER BAY	intertidal, +1.22	8.10	8.05	7.5	7.5	40.4	39.9	33.4
WA99-0039	BAKER BAY	intertidal, +0.11	7.77	7.68	7.5	7.4	22.6	23.0	36.4
WA99-0040	BAKER BAY	intertidal, +0.07	8.36	8.34	7.6	7.6	52.3	52.9	52.9
WA99-0041	GRAYS RIVER				station r	ot sampled			
WA99-0042	BAKER BAY	8.70	8.58	7.98	7.6	7.4	38.2	37.3	35.7
WA99-0043	GRAYS BAY	2.96	8.44	8.44	6.7	6.6	51.9	51.4	50.5
WA99-0044	GRAYS BAY	0.50	11.44	11.47	8.0	8.0	57.7	58.4	57.3
WA99-0045	GRAYS BAY	intertidal, +0.54	9.06	8.96	7.4	7.5	59.4	59.3	59.3
WA99-0046	GRAYS BAY	9.35	8.16	8.12	6.8	6.7	54.8	54.8	58.4
WA99-0047	GRAYS BAY	0.12	8.97	8.97	7.4	7.4	64.9	64.9	64.9
WA99-0048	COWLITZ RIVER	2.68	10.88	10.83	7.0	6.9	42.2	51.4	51.3
WA99-0049	CARROLLS CHANNEL	3.64	9.81	9.72	7.0	6.9	40.7	40.0	39.4
WA99-0050	MARTIN SLOUGH	6.97	9.18	8.93	7.3	7.0	16.5	16.7	11.9

		Mean		Surface		Mid-Water		Bottom	
		Light-Extinct.	Surface	Light-Extinct.	Mid-Water	Light-Extinct.	Bottom	Light-Extinct.	
EMAP		Coeff. K	Depth	Coeff. k	Depth	Coeff. k	Depth*	Coeff. k	Secchi Depth
Station ID	Station Location	(1/m)	(m)	(1/m)	(m)	(1/m)	(m)	(1/m)	(m)
WA99-0001	МАКАН ВАҮ	2.28	0.5	6.03	10.0	0.43	18.5	0.37	3.5
WA99-0002	MAKAH BAY	1.99	0.5	5.15	4.5	0.46	7.5	0.36	5.3
WA99-0003	MAKAH BAY	1.45	0.5	3.55	5.0	0.40	9.5	0.39	4.8
WA99-0004	HOKO RIVER	1.69	0.5	4.11	2.5	0.66	4.5	0.31	5.0 (on seabed)
WA99-0005	OZETTE RIVER				station	-			
WA99-0006	FRESHWATER BAY	1.52	0.5	4.03	10.0	0.28	19.5	0.24	8.5
WA99-0007	FRESHWATER BAY	1.83	0.5	5.04	11.0	0.25	22.0	0.20	8.0
WA99-0008	FRESHWATER BAY	2.08	0.5	5.70	7.0	0.26	12.5	0.27	10.2
WA99-0009	DUNGENESS BAY	0.96	0.5	1.24	no mid-\	water PAR	2.0	0.69	2.3
WA99-0010	DISCOVERY BAY	1.46	0.5	3.76	3.5	0.33	6.0	0.30	6.0
WA99-0011	DISCOVERY BAY	0.75	0.5	1.74	11.0	0.28	23.0	0.23	9.0
WA99-0012	DISCOVERY BAY	2.11	0.5	5.79	9.0	0.31	17.0	0.25	7.2
WA99-0013	DISCOVERY BAY	2.08	0.5	5.64	10.0	0.34	19.0	0.24	5.0
WA99-0014	DISCOVERY BAY	1.64	0.5	2.09	no mid-\	water PAR	1.5	1.20	2.0
WA99-0015	KALALOCH CREEK	2.34	0.5	2.34	no mid-\	water PAR	no bo	ottom PAR	0.7 (default)
WA99-0016	RAFT RIVER	3.40	0.5	3.40	no mid-\	water PAR	no bo	ottom PAR	0.7 (default)
WA99-0017	QUINAULT RIVER	3.40	0.5	3.40	no mid-\	water PAR	no bo	ottom PAR	not measured
WA99-0018	QUINAULT RIVER				station	not sampled			
WA99-0019	CONNER CREEK	2.93	0.5	2.93		water PAR	no bo	ottom PAR	0.7 (default)
	GRAYS HARBOR	0.94	0.5	0.92	2.0	0.86	3.5	1.03	1.7
WA99-0021	GRASS CREEK	1.96	0.5	1.48		water PAR	1.0	2.44	0.75
WA99-0022	GRAYS HARBOR			no PA	R measurer	nents			1.9
WA99-0023	GRAYS HARBOR				Submerged F				2.5
WA99-0024	GRAYS HARBOR	0.82	0.5	1.48	2.5	0.52	5.0	0.47	2.0
WA99-0025	GRAYS HARBOR			no S	Submerged F	PAR			1.3
	GRAYS HARBOR			no S	Submerged F	PAR			2.4
WA99-0027	BEARDSLEE SLOUGH	- · · · · · · · · · · · · · · · · · · ·							1.6
WA99-0028	BEARDSLEE SLOUGH		station not sampled						
	GRAYS HARBOR	1.83	0.5	1.83	no mid-\	1.5			
WA99-0030	WILLAPA BAY	0.55	0.5	0.54	9.0	0.55	canno	ot calculate	not measured
WA99-0031	WILLAPA BAY			no S	Submerged F	PAR			1.5
WA99-0032	WILLAPA BAY				station	not sampled			
WA99-0033	WILLAPA BAY	0.98	0.5	2.03	8.0	0.52	16.0	0.40	3.5

Table C-2. Mean light-extinction coefficient, Secchi depth

		Mean		Surface		Mid-Water		Bottom				
		Light-Extinct.	Surface	Light-Extinct.	Mid-Water	Light-Extinct.	Bottom	Light-Extinct.				
EMAP		Coeff. K	Depth	Coeff. k	Depth	Coeff. k	Depth*	Coeff. k	Secchi Depth			
Station ID	Station Location	(1/m)	(m)	(1/m)	(m)	(1/m)	(m)	(1/m)	(m)			
WA99-0034	WILLAPA BAY			no S	Submerged F	PAR			2.3			
WA99-0035	WILLAPA BAY	1.16	1.17	1.8								
WA99-0036	WILLAPA BAY	1.74	0.5	3.71	4.5	0.80	8.5	0.69	2.1			
WA99-0037	WILLAPA BAY				station	not sampled						
WA99-0038	BAKER BAY	1.39	0.5	1.39	no mid-v	water PAR	no Ter	restrial PAR	1.5			
WA99-0039	BAKER BAY	1.72	0.5	1.81	no mid-v	water PAR	1.0	1.62	1.1			
WA99-0040	BAKER BAY	0.19	0.5	0.13	no mid-v	0.24	1.0 (on seabed)					
WA99-0041	GRAYS RIVER				station	not sampled						
WA99-0042	BAKER BAY	0.87	0.5	-0.38	4.5	0.83	8.5	0.91	1.7			
WA99-0043	GRAYS BAY	1.16	0.5	1.77	2.0	1.11	3.0	0.61	2.0			
WA99-0044	GRAYS BAY	0.34	0.5	-0.39	no mid-v	water PAR	1.0	0.34	2.1 (on seabed)			
WA99-0045	GRAYS BAY	0.95	0.5	0.95	no mid-v	water PAR	no bo	ottom PAR	1.0			
WA99-0046	GRAYS BAY	0.74	0.5	0.74	5.5	0.68	10.0	0.79	2.5			
WA99-0047	GRAYS BAY	0.72	0.5	0.72	no mid-v	water PAR	no bo	ottom PAR	0.8 (on seabed)			
WA99-0048	COWLITZ RIVER	2.23	0.5	4.33	1.5	1.45	3.0	0.92	2.0			
WA99-0049	CARROLLS CHANNEL	1.31	0.5	1.78	2.0	1.10	3.5	1.06	1.7			
WA99-0050 MARTIN SLOUGH 2.27 0.5 3.76 3.5 1.65 6.0 1.40												
* Approximate	* Approximately 0.5 m above seabed											
	Note: Mean light-extinction coefficient is average of surface, middle, and bottom light-extinction coefficients calculated from simultaneous measurements of Submerged PAR (SubPAR) and Terrestrial PAR (TerPAR) at surface, middle, and bottom depths.											

			Surface	Surface	Surface	Surface Light	Depth of				
		Surface	Submerged	Terrestrial	SubPAR as	Extinct.	Surface	Surface	Transmissivity		
		Depth	PAR	PAR	% of TerPAR	Coeff. k	Transmiss.	Transmissivity	at 1m depth		
EMAP Station ID	Station Location	(m)	(µmol/m²/s)	(µmol/m²/s)	(%)	(1/m)	Meas. (m)	(%)	(%)		
WA99-0001	MAKAH BAY	0.5	τρητοι/π 73) 70	1426	4.9	6.03	0.5	41.9	42.3		
WA99-0002	МАКАН ВАҮ	0.5	114	1490	7.6	5.15	0.5	75.1	75.0		
WA99-0003	МАКАН ВАҮ	0.5	158	932	17.0	3.55	0.5	73.4	73.7		
WA99-0004	HOKO RIVER	0.5	135	1048	12.8	4.11	0.5	79.0	82.0		
WA99-0005	OZETTE RIVER	0.0	100	1010		not sampled	0.0	10.0	02.0		
WA99-0006	FRESHWATER BAY	0.5	168	1257	13.3	4.03	1.0	72.5 72.5			
WA99-0007	FRESHWATER BAY	0.5	126	1572	8.0	5.04	1.0	71.9	71.9		
WA99-0008	FRESHWATER BAY	0.5	94	1620	5.8	5.70	0.5	50.3	49.9		
WA99-0009	DUNGENESS BAY	0.5	107	200	53.7	1.24	0.5	56.3	60.6		
WA99-0010	DISCOVERY BAY	0.5	237	1555	15.3	3.76	0.5	72.1	73.2		
WA99-0011	DISCOVERY BAY	0.5	113	270	42.0	1.74	0.5	78.9	82.8		
WA99-0012	DISCOVERY BAY	0.5	84	1513	5.5	5.79	1.0	81.9	81.9		
WA99-0013	DISCOVERY BAY	0.5	101	1695	5.9	5.64	1.0	68.1	68.1		
WA99-0014	DISCOVERY BAY	0.5	101	287	35.2	2.09	0.5	43.6	43.8		
WA99-0015	KALALOCH CREEK	0.5	55	177	31.0	2.34	no	ot sampled with	CTD		
WA99-0016	RAFT RIVER	0.5	232	1266	18.3	3.40	no	ot sampled with	CTD		
WA99-0017	QUINAULT RIVER	0.5	129	706	18.3	3.40	no	ot sampled with	CTD		
WA99-0018	QUINAULT RIVER				station	not sampled					
WA99-0019	CONNER CREEK	0.5	93	403	23.1	2.93	no	ot sampled with	CTD		
WA99-0020	GRAYS HARBOR	0.5	408	644	63.2	0.92	0.5	34.3	35.3		
WA99-0021	GRASS CREEK	0.5	96	200	47.7	1.48	0.5	8.4	5.1		
WA99-0022	GRAYS HARBOR	0.5		no PAR m	easurements		0.5	38.7	33.5		
WA99-0023	GRAYS HARBOR	0.5	no SubPAR	492			0.5	62.3	61.5		
WA99-0024	GRAYS HARBOR	0.5	540	1130	47.8	1.48	0.5	48.1	48.0		
WA99-0025	GRAYS HARBOR	0.5	no SubPAR	690			0.5	38.4	37.9		
WA99-0026	GRAYS HARBOR	0.5	no SubPAR	185			0.5	63.9	63.9		
WA99-0027	BEARDSLEE SLOUGH	0.5	202	400	50.6	1.36	0.5	42.4	41.8		
WA99-0028	BEARDSLEE SLOUGH					not sampled					
WA99-0029	GRAYS HARBOR	0.5	201	503	40.0	1.83	0.5	44.5	44.0		
WA99-0030	WILLAPA BAY	0.5	1009	1324	76.2	0.54	0.5	59.6	59.8		
WA99-0031	WILLAPA BAY	0.5	no SubPAR	687			0.5	41.9	41.5		
WA99-0032	WILLAPA BAY					not sampled					
WA99-0033	WILLAPA BAY	0.5	484	1334	36.3	2.03	0.5	68.2	68.0		
WA99-0034	WILLAPA BAY	0.5	no SubPAR	674			0.5	56.0	55.9		

Table C-3. Surface photosynthetically-active radiation (PAR), light-extinction coefficient, transmissivity

		Surface	Surface	Surface	Surface SubPAR as	Surface Light Extinct.	Depth of Surface	Surface	Tranamiaaivity
			Submerged						Transmissivity
		Depth	PAR	PAR	% of TerPAR		Transmiss.	Transmissivity	•
EMAP Station ID	Station Location	(m)	(µmol/m²/s)	(µmol/m²/s)	(%)	(1/m)	Meas. (m)	(%)	(%)
WA99-0035	WILLAPA BAY	0.5	178	317	56.0	1.16	0.5	44.7	42.8
WA99-0036	WILLAPA BAY	0.5	163	1043	15.6	3.71	0.5	50.4	52.7
WA99-0037	WILLAPA BAY				station	not sampled			
WA99-0038	BAKER BAY	0.5	329	657	50.0	1.39	0.5	40.4	39.9
WA99-0039	BAKER BAY	0.5	130	322	40.5	1.81	0.5	22.6	23.0
WA99-0040	BAKER BAY	0.5	1606	1716	93.6	0.13	0.5	52.3	52.9
WA99-0041	GRAYS RIVER				station	not sampled			
WA99-0042	BAKER BAY	0.5	1422	1174	121.1	-0.38	0.5	38.2	37.3
WA99-0043	GRAYS BAY	0.5	678	1644	41.2	1.77	0.5	51.9	51.4
WA99-0044	GRAYS BAY	0.5	1002	827	121.2	-0.39	0.5	57.7	58.4
WA99-0045	GRAYS BAY	0.5	192	308	62.3	0.95	0.5	59.4	59.3
WA99-0046	GRAYS BAY	0.5	175	253	69.1	0.74	0.5	54.8	54.8
WA99-0047	GRAYS BAY	0.5	194	278	69.7	0.72	0.5	64.9	64.9
WA99-0048	COWLITZ RIVER	0.5	181	1572	11.5	4.33	0.5	42.2	51.4
WA99-0049	CARROLLS CHANNEL	0.5	464	1131	41.0	1.78	0.5	40.7	40.0
WA99-0050	MARTIN SLOUGH	0.5	160	1051	15.3	3.76	0.5	16.5	16.7

		Mid-Water	Mid-Water	Mid-Water	Mid-Water			
		Depth	Submerged PAR	Terrestrial PAR	Light-Extinction			
EMAP Station ID	Station Location	(m)	(µmol/m²/s)	(µmol/m²/s)	Coefficient k (1/m)			
WA99-0001	MAKAH BAY	10.0	18	1355	0.43			
WA99-0002	MAKAH BAY	4.5	186	1457	0.46			
WA99-0003	MAKAH BAY	5.0	135	998	0.40			
WA99-0004	HOKO RIVER	2.5	182	940	0.66			
WA99-0005	OZETTE RIVER		statior	not sampled				
WA99-0006	FRESHWATER BAY	10.0	82	1333	0.28			
WA99-0007	FRESHWATER BAY	11.0	106	1570	0.25			
WA99-0008	FRESHWATER BAY	7.0	257	1620	0.26			
WA99-0009	DUNGENESS BAY		no mi	d-water PAR				
WA99-0010	DISCOVERY BAY	3.5	463	1472	0.33			
WA99-0011	DISCOVERY BAY	11.0	12	260	0.28			
WA99-0012	DISCOVERY BAY	9.0	94	1558	0.31			
WA99-0013	DISCOVERY BAY	10.0	55	1744	0.34			
WA99-0014	DISCOVERY BAY		no mi	d-water PAR				
WA99-0015	KALALOCH CREEK		no mi	d-water PAR				
WA99-0016	RAFT RIVER			d-water PAR				
WA99-0017	QUINAULT RIVER			d-water PAR				
WA99-0018	QUINAULT RIVER			not sampled				
WA99-0019	CONNER CREEK							
WA99-0020	GRAYS HARBOR	2.0 115 646 0.						
WA99-0021	GRASS CREEK	-		d-water PAR				
WA99-0022	GRAYS HARBOR			measurements				
WA99-0023	GRAYS HARBOR			d-water PAR				
WA99-0024	GRAYS HARBOR	2.5	320	1169	0.52			
WA99-0025	GRAYS HARBOR	3.5	no SubPAR	690				
WA99-0026	GRAYS HARBOR	6.0	no SubPAR	188				
WA99-0027	BEARDSLEE SLOUGH			d-water PAR				
WA99-0028	BEARDSLEE SLOUGH			not sampled				
WA99-0029	GRAYS HARBOR			d-water PAR				
WA99-0030	WILLAPA BAY	9.0	9	1314	0.55			
WA99-0031	WILLAPA BAY	2.0	no SubPAR	725				
WA99-0032	WILLAPA BAY			not sampled				
WA99-0033	WILLAPA BAY	8.0	23	1533	0.52			
WA99-0034	WILLAPA BAY	1.0	no SubPAR	656				
WA99-0035	WILLAPA BAY	-		d-water PAR				
WA99-0036	WILLAPA BAY	4.5	28	1044	0.80			
WA99-0037	WILLAPA BAY			not sampled				
WA99-0038	BAKER BAY	h		d-water PAR				
WA99-0039	BAKER BAY	h		d-water PAR				
WA99-0040	BAKER BAY			d-water PAR				
WA99-0041	GRAYS RIVER			not sampled				
WA99-0042	BAKER BAY	4.5	43	1760	0.83			
WA99-0043	GRAYS BAY	2.0	1.11					
WA99-0044	GRAYS BAY		178 no mi	1642 d-water PAR				
WA99-0045	GRAYS BAY			d-water PAR				
WA99-0046	GRAYS BAY	5.5	6	255	0.68			
WA99-0047	GRAYS BAY		-	d-water PAR				
WA99-0048	COWLITZ RIVER	1.5	179	1569	1.45			
WA99-0049	CARROLLS CHANNEL	2.0	101	910	1.10			
WA99-0050	MARTIN SLOUGH	3.5	5	1590	1.65			
		0.0	5	1000	1.00			

Table C-4. Mid-water photosynthetically-active radiation (PAR), light-extinction coefficient

		Bottom	Bottom	Bottom	Bottom	Depth of	Bottom
		Depth*	Submerged PAR	Terrestrial PAR	Light-Extinct.	Bottom Transmiss.	Transmissivity
EMAP Station ID	Station Location	(m)	(µmol/m²/s)	(µmol/m²/s)	Coeff. k (1/m)	Meas. (m)	(%)
WA99-0001	MAKAH BAY	18.5	2	1367	0.37	19.5	21.7
WA99-0002	MAKAH BAY	7.5	99	1511	0.36	8.5	70.6
WA99-0003	MAKAH BAY	9.5	21	912	0.39	9.5	66.7
WA99-0004	HOKO RIVER	4.5	257	1054	0.31	4.5	86.7
WA99-0005	OZETTE RIVER	station not sampled					
WA99-0006	FRESHWATER BAY	19.5	11	1228	0.24	20.5	78.1
WA99-0007	FRESHWATER BAY	22.0	19	1579	0.20	21.5	71.6
WA99-0008	FRESHWATER BAY	12.5	54	1631	0.27	14.0	49.5
WA99-0009	DUNGENESS BAY	2.0	51	200	0.69	3.0	63.4
WA99-0010	DISCOVERY BAY	6.0	251	1472	0.30	5.0	75.7
WA99-0011	DISCOVERY BAY	23.0	1	263	0.23	22.0	85.5
WA99-0012	DISCOVERY BAY	17.0	24	1534	0.25	18.0	87.6
WA99-0013	DISCOVERY BAY	19.0	18	1787	0.24	20.0	12.4
WA99-0014	DISCOVERY BAY	1.5	47	285	1.20	2.5	54.9
WA99-0015	KALALOCH CREEK		no b	ottom PAR		not sampled	with CTD
WA99-0016	RAFT RIVER		no b	ottom PAR		not sampled	with CTD
WA99-0017	QUINAULT RIVER		no b	ottom PAR		not sampled	with CTD
WA99-0018	QUINAULT RIVER				n not sampled		
WA99-0019	CONNER CREEK		no b	ottom PAR		not sampled	with CTD
WA99-0020	GRAYS HARBOR	3.5	18	648	1.03	4.0	11.3
WA99-0021	GRASS CREEK	1.0	18	201	2.44	2.0	1.5
WA99-0022	GRAYS HARBOR			measurements		5.5	1.0
WA99-0023	GRAYS HARBOR	13.0	no SubPAR	682		14.0	49.8
WA99-0024	GRAYS HARBOR	5.0	94	1002	0.47	5.0	56.4
WA99-0025	GRAYS HARBOR	6.5	no SubPAR	690		8.0	5.9
WA99-0026	GRAYS HARBOR	12.5	no SubPAR	190		13.0	67.6
WA99-0027	BEARDSLEE SLOUGH	1.0	101	399	1.37	2.5	41.3
WA99-0028	BEARDSLEE SLOUGH			statior	n not sampled		
WA99-0029	GRAYS HARBOR	1.0	80	no TerPAR		2.5	43.2
WA99-0030	WILLAPA BAY	17.5	0	1222	cannot calculate	17.0	40.8
WA99-0031	WILLAPA BAY	3.0	no SubPAR	776		4.0	39.9
WA99-0032	WILLAPA BAY				n not sampled		
WA99-0033	WILLAPA BAY	16.0	2	1459	0.40	16.0	61.7
WA99-0034	WILLAPA BAY	2.5	no SubPAR	622		3.5	53.5
WA99-0035	WILLAPA BAY	1.5	59	341	1.17	2.5	39.6

Table C-5. Bottom photosynthetically-active radiation (PAR), light-extinction coefficient, transmissivity

EMAP Station ID	Station Location	Bottom Depth* (m)	Bottom Submerged PAR (µmol/m²/s)	Bottom Terrestrial PAR (µmol/m²/s)	Bottom Light-Extinct. Coeff. k (1/m)	Depth of Bottom Transmiss. Meas. (m)	Bottom Transmissivity (%)	
	WILLAPA BAY	8.5	3	1013	0.69	9.0	51.6	
WA99-0037	WILLAPA BAY	station not sampled						
WA99-0038	BAKER BAY	1.0 231 no TerPAR 2.0 33.						
WA99-0039	BAKER BAY	1.0	67	339	1.62	2.5	36.4	
WA99-0040	BAKER BAY	1.0	1363	1730	0.24	1.0	52.9	
WA99-0041	GRAYS RIVER			station	not sampled			
WA99-0042	BAKER BAY	8.5	1	1185	0.91	8.5	35.7	
WA99-0043	GRAYS BAY	3.0	270	1675	0.61	4.0	50.5	
WA99-0044	GRAYS BAY	1.0	574	808	0.34	2.5	57.3	
WA99-0045	GRAYS BAY		no bo	ottom PAR		1.0	59.3	
WA99-0046	GRAYS BAY	10.0	0	276	0.79	10.5	58.4	
WA99-0047	GRAYS BAY		no bo	ottom PAR		0.5	64.9	
WA99-0048	COWLITZ RIVER	3.0	97	1525	0.92	3.5	51.3	
WA99-0049	CARROLLS CHANNEL	3.5	32	1298	1.06	4.0	39.4	
WA99-0050	MARTIN SLOUGH	6.0	0	954	1.40	6.5	11.9	
* Approximately 0.	5 m above seabed							

										Total	Total	
EMAP		TSS	Chl-a	Phaeo	Ammonium	Nitrite	Nitrate	Phosphate	Silicic Acid			
Station ID	Station Location	(mg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(μg/L)	(µg/L)	(µM)	(µM)	N:P Ratio
WA99-0001	MAKAH BAY	5.3	12.9	3.8	6.42	2.96	144.17	43.32	1275.35	10.97	1.40	7.85
WA99-0002	МАКАН ВАҮ	3.7	3.0	6.0	18.42	4.89	206.01	49.03	1053.86	16.38	1.58	10.36
WA99-0003	МАКАН ВАҮ	5.0	2.3	8.2	24.52	5.45	234.70	53.14	1119.81	18.90	1.71	11.03
WA99-0004	HOKO RIVER	3.0	1.1	1.3	11.12	4.33	347.85	64.52	1408.29	25.95	2.08	12.47
WA99-0005	OZETTE RIVER					S	tation not					
WA99-0006	FRESHWATER BAY	4.0	3.8	1.6	2.41	3.58	355.06	64.87	1395.82	25.79	2.09	12.32
	FRESHWATER BAY	4.0	5.6	1.7	2.18	4.11	330.74	60.72	1340.88	24.07	1.96	12.29
	FRESHWATER BAY	4.3	6.0	1.3	2.62	4.19	318.08	58.99	1296.25	23.21	1.90	12.19
	DUNGENESS BAY	4.0	4.0	2.5	30.37	3.74	94.06	44.99	1172.49	9.15	1.45	6.31
	DISCOVERY BAY	6.7	3.6	1.3	10.12	4.77	192.43	48.39	1227.65	14.81	1.56	9.49
	DISCOVERY BAY	2.7	6.3	1.0	7.76	4.26	164.45	44.30	1165.52	12.60	1.43	8.82
	DISCOVERY BAY	3.7	3.9	0.5	14.52	3.35	104.93	39.45	1136.96	8.77	1.27	6.89
	DISCOVERY BAY	3.5	3.3	1.0	44.83	3.58	142.44	51.40	1394.06	13.63	1.66	8.22
	DISCOVERY BAY	8.0	31.1	3.5	0.65	1.14	2.22	29.44	1267.09	0.29	0.95	0.30
	KALALOCH CREEK	4.0	0.9	1.3	9.77	0.00	12.58	4.21	876.43	1.60	0.14	11.76
	RAFT RIVER	7.5	4.7	8.3	20.69	0.62	3.53	9.65	372.04	1.77	0.31	5.70
WA99-0017	QUINAULT RIVER	40.0	9.2	10.6	12.05	0.16	1.94	3.73	865.95	1.01	0.12	8.40
	QUINAULT RIVER						tation not					
	CONNER CREEK	3.0	3.2	4.5	48.01	1.65	0.00	43.71	4233.71	3.55	1.41	2.52
WA99-0020	GRAYS HARBOR	11.3	4.5	2.3	16.53	2.33	66.92	33.34	1714.33	6.13	1.08	5.70
WA99-0021	GRASS CREEK	35.5	4.1	4.6	9.53	0.91	5.88	22.15	1791.86	1.17	0.71	1.63
WA99-0022	GRAYS HARBOR	16.3	3.8	3.2	44.51	3.83	67.39	32.31	1841.11	8.27	1.04	7.93
WA99-0023	GRAYS HARBOR	6.0	4.9	2.2	25.17	2.71	65.01	33.24	1520.61	6.63	1.07	6.19
WA99-0024	GRAYS HARBOR	7.0	3.5	1.8	14.29	3.22	163.59	42.94	1518.45	12.94	1.39	9.34
WA99-0025	GRAYS HARBOR	13.7	2.9	2.2	57.35	4.76	84.62	29.42	1908.15	10.48	0.95	11.04
	GRAYS HARBOR	5.3	7.6	2.7	19.43	3.13	101.29	33.76	1372.01	8.85	1.09	8.12
	BEARDSLEE SLOUGH	7.5	4.0	2.1	12.82	1.54	16.53	26.48	1868.69	2.21	0.85	2.58
	BEARDSLEE SLOUGH						tation not					
	GRAYS HARBOR	6.0	8.1	1.6	24.45	0.84	35.03	13.48	1462.09	4.31	0.43	9.91
	WILLAPA BAY	9.0	14.3	9.3	5.04	2.86	110.61	46.30	1155.84	8.47	1.49	5.67
	WILLAPA BAY	8.7	4.3	2.7	7.52	0.70	0.70	19.82	1273.51	0.64	0.64	1.00
	WILLAPA BAY						tation not					
	WILLAPA BAY	6.0	15.6	4.3	2.08	2.69	130.68	47.25	1104.52	9.68	1.52	6.35
	WILLAPA BAY	7.3	6.4	3.6	2.24	0.19	1.21	19.10	968.35	0.26	0.62	0.42
WA99-0035	WILLAPA BAY	11.0	1.4	2.7	11.78	1.05	0.00	37.78	935.20	0.92	1.22	0.75

Table C-6. Water-column mean TSS, chlorophyll-a, phaeopigments, dissolved nutrients, N:P ratio

EMAP		TSS	Chl-a	Phaeo	Ammonium	Nitrite	Nitrate	Phosphate	Silicic Acid	Total Inorganic N	Total Inorganic P	
	Station Location	(mg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	μM)	•	N:P Ratio
WA99-0036	WILLAPA BAY	9.3	0.6	0.7	2.77	0.46	0.00	43.57	1153.37	0.23	1.41	0.16
WA99-0037	WILLAPA BAY					S	tation not	sampled				
WA99-0038	BAKER BAY	6.0	2.2	2.2	51.07	2.24	111.66	24.63	1391.16	11.78	0.79	14.83
WA99-0039	BAKER BAY	15.0	3.2	4.2	43.81	2.11	117.57	24.30	1002.67	11.68	0.78	14.90
WA99-0040	BAKER BAY	5.5	2.1	2.4	51.34	1.52	102.48	22.71	3130.84	11.10	0.73	15.15
WA99-0041	GRAYS RIVER					S	tation not s	sampled				
WA99-0042	BAKER BAY	8.7	3.8	4.4	39.03	1.67	102.42	20.32	1339.09	10.22	0.66	15.59
WA99-0043	GRAYS BAY	4.0	3.5	2.9	15.19	0.82	54.91	8.43	4094.41	5.07	0.27	18.63
WA99-0044	GRAYS BAY	4.0	3.9	1.7	12.17	0.69	55.68	8.66	3954.65	4.90	0.28	17.53
WA99-0045	GRAYS BAY	3.0	4.8	2.2	12.88	0.35	85.96	9.58	4208.84	7.09	0.31	22.93
WA99-0046	GRAYS BAY	3.0	3.4	3.1	13.23	0.78	79.07	8.91	4091.12	6.65	0.29	23.14
WA99-0047	GRAYS BAY	2.0	4.0	2.3	11.92	0.42	96.52	10.93	3183.20	7.78	0.35	22.05
WA99-0048	COWLITZ RIVER	6.0	1.2	0.6	7.72	0.00	35.03	0.53	5992.28	3.05	0.02	178.62
WA99-0049	CARROLLS CHANNEL	8.0	7.0	2.1	15.78	0.91	96.13	10.01	3915.87	8.06	0.32	24.96
WA99-0050	MARTIN SLOUGH	11.8	12.7	2.9	11.19	0.55	49.08	3.88	3763.87	4.34	0.13	34.68

		Depth								Silicic	Total	Total	
EMAP		Sampled	TSS	Chl-a	Phaeo	Ammonium	Nitrite	Nitrate	Phosphate	Acid	Inorganic N	Inorganic P	N:P
Station ID	Station Location	(m)	(mg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µM)	(µM)	Ratio
WA99-0001	MAKAH BAY	0.5	5	28.9	0.0	0.00	0.95	0.00	11.80	1124.78	0.07	0.38	0.18
WA99-0002	МАКАН ВАҮ	0.5	3	2.4	3.7	18.97	5.20	182.90	46.21	999.74	14.79	1.49	9.92
WA99-0003	MAKAH BAY	0.5	5	0.0	6.2	24.67	5.54	230.00	52.61	1121.08	18.59	1.70	10.95
WA99-0004	HOKO RIVER	0.5	5	1.0	1.2	11.80	4.38	349.35	63.11	1459.73	26.11	2.04	12.83
WA99-0005	OZETTE RIVER						statio	n not san	npled				
WA99-0006	FRESHWATER BAY	0.5	3	4.2	0.8	5.22	4.28	266.19	53.80	1224.32	19.69	1.74	11.35
WA99-0007	FRESHWATER BAY	0.5	3	6.1	1.1	2.98	4.44	300.94	56.69	1290.92	22.03	1.83	12.04
WA99-0008	FRESHWATER BAY	0.5	2	6.7	0.9	2.98	4.43	301.19	55.97	1260.35	22.04	1.81	12.21
	DUNGENESS BAY	0.5	4	1.7	1.8	28.14	3.55	81.05	43.42	1258.03	8.05	1.40	5.75
	DISCOVERY BAY	0.5	6	3.0	1.2	10.80	4.71	187.21	47.87	1222.62	14.48	1.54	9.38
WA99-0011	DISCOVERY BAY	0.5	3	7.5	1.4	4.29	3.59	103.41	37.02	1139.70	7.95	1.19	6.66
WA99-0012	DISCOVERY BAY	0.5	3	7.2	0.9	4.82	1.66	17.42	26.85	1122.34	1.71	0.87	1.97
	DISCOVERY BAY	0.5	3.5	7.5	1.4	2.92	0.51	0.00	24.43	1346.75	0.25	0.79	0.31
WA99-0014	DISCOVERY BAY	0.5	7	34.7	4.0	0.82	1.17	2.83	31.79	1273.39	0.34	1.03	0.34
	KALALOCH CREEK	0.5	4	0.9	1.3	9.77	0.00	12.58	4.21	876.43	1.60	0.14	11.76
WA99-0016	RAFT RIVER	0.5	7.5	4.7	8.3	20.69	0.62	3.53	9.65	372.04	1.77	0.31	5.70
WA99-0017	QUINAULT RIVER	0.5	40	9.2	10.6	12.05	0.16	1.94	3.73	865.95	1.01	0.12	8.40
	QUINAULT RIVER				-			n not san			-		
	CONNER CREEK	0.5	3	3.2	4.5	48.01	1.65	0.00	43.71	4233.71	3.55	1.41	2.52
WA99-0020	GRAYS HARBOR	0.5	8	4.5	1.8	13.03	1.68	34.88	27.87	1760.40	3.54	0.90	3.94
WA99-0021	GRASS CREEK	0.5	31	4.5	4.1	9.53	0.98	6.86	22.30	1763.49	1.24	0.72	1.73
WA99-0022	GRAYS HARBOR	0.5	7	3.0	1.7	49.60	3.92	62.06	31.59	1948.04	8.26	1.02	8.10
WA99-0023	GRAYS HARBOR	0.5	6	5.4	1.8	11.35	2.24	35.03	27.56	1627.82	3.47	0.89	3.91
WA99-0024	GRAYS HARBOR	0.5	6	0.0	0.0	16.25	3.22	39.37	26.63	1747.48	4.20	0.86	4.89
WA99-0025	GRAYS HARBOR	0.5	7	3.3	1.8	55.06	5.04	98.49	26.01	1583.43	11.33	0.84	13.50
WA99-0026	GRAYS HARBOR	0.5	5	7.5	2.4	19.75	3.36	47.91	28.80	1841.86	5.07	0.93	5.46
WA99-0027	BEARDSLEE SLOUGH	0.5	7	4.2	2.3	11.63	1.40	13.45	25.09	1969.11	1.89	0.81	2.34
	BEARDSLEE SLOUGH							n not san					
WA99-0029	GRAYS HARBOR	0.5	6	6.3	1.4	25.50	0.84	36.01	13.32	1441.30	4.45	0.43	10.37
WA99-0030	WILLAPA BAY	0.5	6	13.0	4.9	2.40	2.54	88.57	41.16	1031.20	6.68	1.33	5.03
WA99-0031	WILLAPA BAY	0.5	9	4.5	2.7	7.85	0.70	1.12	19.82	1276.69	0.69	0.64	1.08
WA99-0032	WILLAPA BAY							n not san			-	-	
WA99-0033	WILLAPA BAY	0.5	5	15.6	2.5	0.00	2.20	44.54	31.75	845.35	3.34	1.02	3.26
WA99-0034	WILLAPA BAY	0.5	7	6.6	3.3	2.24	0.28	2.24	19.82	1068.26	0.34	0.64	0.53
WA99-0035	WILLAPA BAY	0.5	10.5	1.4	2.8	11.77	1.05	0.00	37.78	933.04	0.92	1.22	0.75

Table C-7. Surface TSS, chlorophyll-a, phaeopigments, dissolved nutrients, N:P ratio

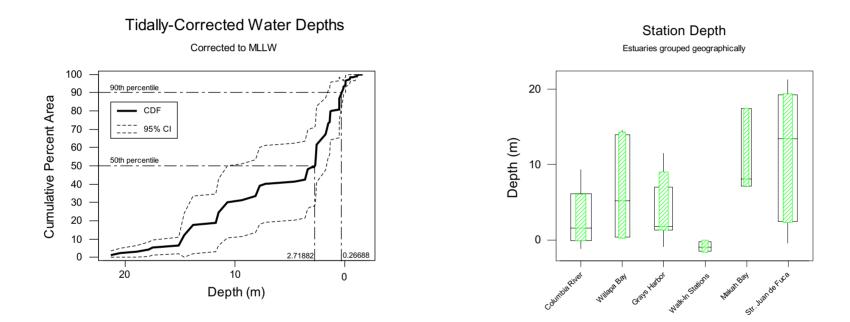
		Depth								Silicic	Total	Total	
EMAP		Sampled		Chl-a	Phaeo	Ammonium	Nitrite	Nitrate	Phosphate	Acid	U U	Inorganic P	N:P
Station ID	Station Location	(m)	(mg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µM)	(µM)	Ratio
WA99-0036	WILLAPA BAY	0.5	8	0.0	0.0	2.99	0.42	0.00	43.93	1188.65	0.24	1.42	0.17
WA99-0037	WILLAPA BAY						statio	n not san	npled				
WA99-0038	BAKER BAY	0.5	6	2.2	2.3	50.02	2.24	110.82	24.47	1023.60	11.65	0.79	14.76
WA99-0039	BAKER BAY	0.5	14	3.3	4.1	42.08	2.08	117.99	24.12	1144.90	11.58	0.78	14.89
WA99-0040	BAKER BAY	0.5	5	2.1	2.4	51.45	1.52	102.49	22.83	2686.37	11.10	0.74	15.08
WA99-0041	GRAYS RIVER						statio	n not san	npled				
WA99-0042	BAKER BAY	0.5	7	4.3	4.4	23.43	1.10	96.20	15.60	1341.42	8.62	0.50	17.14
WA99-0043	GRAYS BAY	0.5	4	3.3	2.9	14.25	1.51	56.26	8.60	4103.76	5.14	0.28	18.54
WA99-0044	GRAYS BAY	0.5	4	3.7	1.7	12.80	0.72	56.03	8.60	3951.70	4.97	0.28	17.91
WA99-0045	GRAYS BAY	0.5	3	4.8	2.2	12.88	0.35	85.96	9.58	4208.84	7.09	0.31	22.93
WA99-0046	GRAYS BAY	0.5	3	3.5	3.1	14.82	0.83	79.55	8.92	4172.49	6.80	0.29	23.63
WA99-0047	GRAYS BAY	0.5	2	4.0	2.3	11.92	0.42	96.52	10.93	3183.20	7.78	0.35	22.05
WA99-0048	COWLITZ RIVER	0.5	6	1.1	0.6	6.46	0.00	34.78	0.14	5193.64	2.95	0.00	652.27
WA99-0049	CARROLLS CHANNEL	0.5	6	6.5	1.8	15.40	1.21	96.35	9.78	3941.96	8.07	0.32	25.58
WA99-0050	MARTIN SLOUGH	0.5	11	19.1	3.2	15.16	0.83	93.50	8.59	3845.80	7.82	0.28	28.22

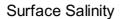
		Depth								Silicic	Total	Total	
EMAP		Sampled	TSS	Chl-a	Phaeo	Ammonium	Nitrite	Nitrate	Phosphate	Acid		Inorganic P	N:P
Station ID	Station Location	(m)	(mg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µM)	(µM)	Ratio
WA99-0001	MAKAH BAY	10	4	7.1	3.8	8.92	4.33	177.32	52.62	1242.27	13.61	1.70	8.02
WA99-0002	MAKAH BAY	4.5	3	3.6	5.7	19.05	4.93	212.63	49.84	1087.08	16.90	1.61	10.51
WA99-0003	MAKAH BAY	5	4	3.3	8.3	26.58	5.53	237.95	53.58	1119.81	19.29	1.73	11.16
WA99-0004	HOKO RIVER	2.5	2	1.2	1.5	11.05	4.38	344.22	64.92	1383.27	25.69	2.09	12.27
WA99-0005	OZETTE RIVER						statio	n not san	npled		-		
WA99-0006	FRESHWATER BAY	10	5	4.2	1.7	2.00	3.56	371.74	67.09	1412.60	26.95	2.16	12.45
WA99-0007	FRESHWATER BAY	11	6	5.8	1.7	1.45	3.98	344.71	62.37	1367.95	25.01	2.01	12.43
WA99-0008	FRESHWATER BAY	7	6	5.8	1.4	2.71	4.10	311.76	58.27	1278.57	22.76	1.88	12.11
WA99-0009	DUNGENESS BAY						no mio	d-water sa	ample				
	DISCOVERY BAY	3.5	8	3.8	1.5	11.07	4.83	197.66	49.44	1217.83	15.25	1.59	9.57
WA99-0011	DISCOVERY BAY	11	3	6.1	0.8	11.22	4.93	225.48	51.57	1191.34	17.26	1.66	10.38
WA99-0012	DISCOVERY BAY	9	6	0.0	0.0	18.20	4.06	138.31	44.73	1137.90	11.47	1.44	7.95
	DISCOVERY BAY	10	3	1.3	0.3	47.39	4.60	191.37	58.61	1314.46	17.38	1.89	9.19
	DISCOVERY BAY						no mio	d-water sa	ample				
	KALALOCH CREEK						no mio	d-water sa	ample				
	RAFT RIVER						no mio	d-water sa	ample				
WA99-0017	QUINAULT RIVER						no mio	d-water sa	ample				
	QUINAULT RIVER						statio	n not san	npled				
WA99-0019	CONNER CREEK							d-water sa					
	GRAYS HARBOR	2	12	4.3	2.1	19.05	2.80	80.00	36.54	1671.64	7.28	1.18	6.17
WA99-0021	GRASS CREEK							d-water sa		-			
WA99-0022	GRAYS HARBOR	3	12	4.7	2.7	37.55	3.78	66.41	31.59	1828.38	7.70	1.02	7.55
WA99-0023	GRAYS HARBOR	6	5	4.7	2.0	30.40	2.80	65.43	34.38	1510.40	7.05	1.11	6.35
WA99-0024	GRAYS HARBOR	2.5	9	5.8	2.4	12.61	3.08	202.30	48.00	1384.28	15.57	1.55	10.06
WA99-0025	GRAYS HARBOR	3.5	14	2.7	2.1	59.96	4.76	80.98	30.66	2006.75	10.41	0.99	10.52
	GRAYS HARBOR	6	5	7.1	2.3	21.30	2.94	95.97	32.21	1196.91	8.59	1.04	8.26
	BEARDSLEE SLOUGH							d-water sa					
	BEARDSLEE SLOUGH							n not san	•				
WA99-0029	GRAYS HARBOR		no mid-water sample										
	WILLAPA BAY	9	8	14.4	8.9	5.09	2.86	117.72	46.36	1170.04	8.98	1.50	6.00
	WILLAPA BAY	2	9	4.2	2.7	7.15	0.70	0.70	19.82	1329.50	0.61	0.64	0.96
	WILLAPA BAY		station not sampled										
	WILLAPA BAY	8	6	14.4	4.2	2.83	2.84	162.57	53.85	1214.21	12.02	1.74	6.92
	WILLAPA BAY	1	8	6.4	3.8	2.38	0.14	0.98	19.20	912.36	0.25	0.62	0.40
WA99-0035	WILLAPA BAY						no mio	d-water sa	ample				

Table C-8. Mid-water TSS, chlorophyll-a, phaeopigments, dissolved nutrients, N:P ratio

		Depth								Silicic	Total	Total	
EMAP		Sampled	TSS	Chl-a	Phaeo	Ammonium	Nitrite	Nitrate	Phosphate	Acid	Inorganic N	Inorganic P	N:P
Station ID	Station Location	(m)	(mg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µM)	(µM)	Ratio
WA99-0036	WILLAPA BAY	4.5	10	0.8	1.0	2.86	0.48	0.00	43.81	1165.30	0.24	1.41	0.17
WA99-0037	WILLAPA BAY						statio	n not sarr	npled				
WA99-0038	BAKER BAY						no mic	l-water sa	ample				
WA99-0039	BAKER BAY						no mic	l-water sa	ample				
WA99-0040	BAKER BAY						no mic	l-water sa	ample				
WA99-0041	GRAYS RIVER						statio	n not sarr	npled				
WA99-0042	BAKER BAY	4.5	9	3.9	5.1	30.58	1.42	101.16	18.26	1456.85	9.51	0.59	16.15
WA99-0043	GRAYS BAY	2	4	3.3	3.0	16.39	0.41	55.06	9.20	4066.03	5.13	0.30	17.30
WA99-0044	GRAYS BAY						no mic	l-water sa	ample				
WA99-0045	GRAYS BAY						no mic	l-water sa	ample				
WA99-0046	GRAYS BAY	5.5	3	3.2	2.9	12.24	0.76	78.08	8.66	4057.04	6.51	0.28	23.29
WA99-0047	GRAYS BAY		no mid-water sample										
WA99-0048	COWLITZ RIVER	1.5	6	1.1	0.6	8.81	0.00	34.76	0.73	6358.45	3.11	0.02	132.16
WA99-0049	CARROLLS CHANNEL	2	8	7.1	2.3	16.43	0.76	96.03	10.25	3908.16	8.09	0.33	24.46
WA99-0050	MARTIN SLOUGH	3.5	10	10.6	2.8	10.21	0.63	49.00	2.63	3770.24	4.27	0.08	50.38

		Depth								Silicic	Total	Total	
EMAP		Sampled	TSS	Chl-a	Phaeo	Ammonium	Nitrite	Nitrate	Phosphate	Acid	Inorganic N	Inorganic P	N:P
Station ID	Station Location	(m)	(µg/L)	(µg/L)	(mg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µM)	(µM)	Ratio
WA99-0001	MAKAH BAY	18.5	7	2.8	7.5	10.34	3.61	255.19	65.55	1459.00	19.22	2.11	9.09
WA99-0002	MAKAH BAY	7.5	5	3.0	8.5	17.24	4.54	222.51	51.05	1074.77	17.45	1.65	10.60
WA99-0003	MAKAH BAY	9.5	6	3.8	10.1	22.31	5.27	236.15	53.22	1118.55	18.84	1.72	10.97
WA99-0004	HOKO RIVER	4.5	2	1.0	1.2	10.50	4.24	349.99	65.53	1381.88	26.05	2.11	12.32
WA99-0005	OZETTE RIVER							n not sam					
	FRESHWATER BAY	19.5	4	2.9	2.5	0.00	2.91	427.25	73.73	1550.53	30.73	2.38	12.92
	FRESHWATER BAY	22	3	5.0	2.3	2.10	3.91	346.57	63.09	1363.76	25.18	2.04	12.38
	FRESHWATER BAY	12.5	5	5.4	1.5	2.16	4.03	341.30	62.74	1349.83	24.82	2.02	12.26
	DUNGENESS BAY	2	4	6.2	3.2	32.59	3.93	107.06	46.56	1086.95	10.26	1.50	6.83
	DISCOVERY BAY	6	6	4.0	1.4	8.48	4.76	192.41	47.85	1242.49	14.69	1.54	9.52
	DISCOVERY BAY	23	2	5.4	0.9	11.22	4.93	225.48	51.57	1191.34	17.26	1.66	10.38
	DISCOVERY BAY	17	2	4.5	0.5	20.53	4.32	159.06	46.78	1150.64	13.14	1.51	8.71
	DISCOVERY BAY	19	4	1.1	1.3	84.19	5.63	235.95	71.17	1520.97	23.27	2.30	10.14
WA99-0014	DISCOVERY BAY	1.5	9	27.5	2.9	0.48	1.10	1.61	27.08	1260.78	0.23	0.87	0.26
	KALALOCH CREEK						no bo	ottom san	nple				
	RAFT RIVER						no bo	ottom san	nple				
	QUINAULT RIVER							ottom san					
	QUINAULT RIVER							n not sam	•				
	CONNER CREEK				-			ottom san			-		
WA99-0020	GRAYS HARBOR	3.5	14	4.7	3.1	17.51	2.52	85.88	35.62	1710.96	7.57	1.15	6.58
WA99-0021	GRASS CREEK	1	40	3.8	5.1	9.53	0.84	4.90	21.99	1820.23	1.09	0.71	1.54
WA99-0022	GRAYS HARBOR	5	30	3.9	5.3	46.37	3.78	73.69	33.76	1746.92	8.85	1.09	8.12
WA99-0023	GRAYS HARBOR	13	7	4.5	3.0	33.76	3.08	94.57	37.78	1423.60	9.39	1.22	7.70
WA99-0024	GRAYS HARBOR	5	6	4.8	3.0	14.01	3.36	249.10	54.20	1423.60	19.03	1.75	10.89
WA99-0025	GRAYS HARBOR	6.5	20	2.8	2.8	57.02	4.48	74.39	31.59	2134.28	9.71	1.02	9.53
WA99-0026	GRAYS HARBOR	12.5	6	8.3	3.4	17.23	3.08	159.99	40.26	1077.25	12.88	1.30	9.92
WA99-0027	BEARDSLEE SLOUGH	1	8	3.9	1.9	14.01	1.68	19.61	27.87	1768.27	2.52	0.90	2.81
	BEARDSLEE SLOUGH							n not sam					
WA99-0029	GRAYS HARBOR	1	6	9.9	1.7	23.40	0.84	34.04	13.63	1482.87	4.16	0.44	9.47
WA99-0030	WILLAPA BAY	17.5	13	15.6	14.1	7.64	3.17	125.54	51.39	1266.27	9.74	1.66	5.88
	WILLAPA BAY	3	8	4.2	2.7	7.57	0.70	0.28	19.82	1214.33	0.61	0.64	0.96
	WILLAPA BAY							n not sam					
WA99-0033	WILLAPA BAY	16	7	16.7	6.3	3.41	3.03	184.93	56.15	1253.99	13.67	1.81	7.55
	WILLAPA BAY	2.5	7	6.1	3.8	2.10	0.14	0.42	18.27	924.44	0.19	0.59	0.32
WA99-0035	WILLAPA BAY	1.5	12	1.3	2.7	11.79	1.05	0.00	37.78	937.37	0.92	1.22	0.75


Table C-9. Bottom TSS, chlorophyll-a, phaeopigments, dissolved nutrients, N:P ratio


		Depth								Silicic	Total	Total	
EMAP		Sampled	TSS	Chl-a	Phaeo	Ammonium	Nitrite	Nitrate	Phosphate	Acid	Inorganic N	Inorganic P	N:P
Station ID	Station Location	(m)	(µg/L)	(µg/L)	(mg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µM)	(µM)	Ratio
WA99-0036	WILLAPA BAY	8.5	10	0.8	1.2	2.46	0.48	0.00	42.97	1106.17	0.21	1.39	0.15
WA99-0037	WILLAPA BAY						statior	n not sam	npled				
WA99-0038	BAKER BAY	1	6	2.3	2.1	52.12	2.24	112.50	24.78	1758.71	11.92	0.80	14.91
WA99-0039	BAKER BAY	1	16	3.1	4.4	45.54	2.13	117.15	24.47	860.43	11.77	0.79	14.92
WA99-0040	BAKER BAY	1	6	2.1	2.4	51.23	1.51	102.47	22.58	3575.30	11.09	0.73	15.22
WA99-0041	GRAYS RIVER						statior	n not sam	npled				
WA99-0042	BAKER BAY	8.5	10	3.1	3.7	63.08	2.50	109.90	27.11	1219.00	12.53	0.87	14.33
WA99-0043	GRAYS BAY	3	4	3.9	2.8	14.92	0.53	53.40	7.49	4113.45	4.92	0.24	20.35
WA99-0044	GRAYS BAY	1	4	4.1	1.6	11.54	0.65	55.32	8.71	3957.60	4.82	0.28	17.16
WA99-0045	GRAYS BAY						no bo	ottom san	nple				
WA99-0046	GRAYS BAY	10	3	3.5	3.2	12.64	0.76	79.58	9.14	4043.84	6.64	0.29	22.53
WA99-0047	GRAYS BAY						no bo	ottom san	nple				
WA99-0048	COWLITZ RIVER	3	6	1.4	0.7	7.89	0.00	35.56	0.72	6424.74	3.10	0.02	133.63
WA99-0049	CARROLLS CHANNEL	3.5	10	7.3	2.3	15.52	0.75	96.01	10.00	3897.49	8.02	0.32	24.86
WA99-0050	MARTIN SLOUGH	6	15	8.3	2.6	8.19	0.18	4.75	0.43	3675.58	0.94	0.01	67.56

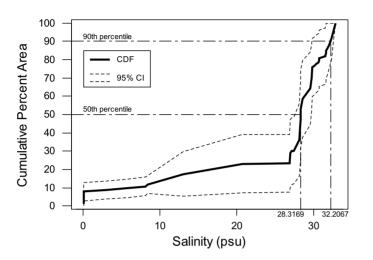
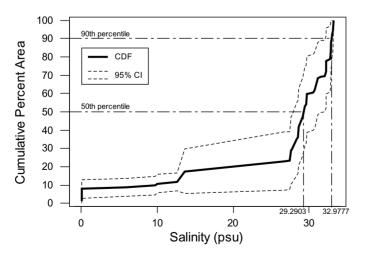
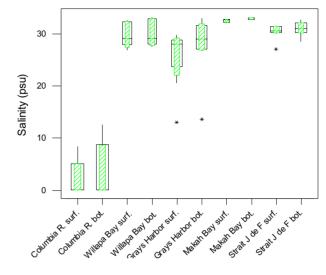
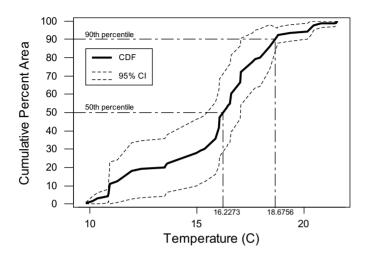

EMAP Station ID	Station Location	Silt-Clay Content (%)	TOC (%)
WA99-0001	MAKAH BAY	6.83	0.46
WA99-0002	MAKAH BAY	0.91	0.22
WA99-0003	MAKAH BAY	1.00	0.18
WA99-0004	HOKO RIVER	1.21	0.10
WA99-0005	OZETTE RIVER	station not	sampled
WA99-0006	FRESHWATER BAY	no sediment	
WA99-0007	FRESHWATER BAY	9.89	0.39
WA99-0008	FRESHWATER BAY	no sediment	
WA99-0009	DUNGENESS BAY	10.10	0.70
WA99-0010	DISCOVERY BAY	57.15	1.72
WA99-0011	DISCOVERY BAY	22.90	0.87
WA99-0012	DISCOVERY BAY	49.82	0.67
WA99-0013	DISCOVERY BAY	86.13	3.24
WA99-0014	DISCOVERY BAY	16.11	0.98
WA99-0015	KALALOCH CREEK	0.00	0.14
WA99-0016	RAFT RIVER	32.60	2.00
WA99-0017	QUINAULT RIVER	5.73	0.37
WA99-0017 WA99-0018	QUINAULT RIVER	station not	
WA99-0018 WA99-0019	CONNER CREEK	0.00	0.14
WA99-0019 WA99-0020	GRAYS HARBOR	14.65	0.14
WA99-0021	GRASS CREEK	4.86	0.17
WA99-0022	GRAYS HARBOR	40.93	0.53
WA99-0023	GRAYS HARBOR	3.10	0.07
WA99-0024	GRAYS HARBOR	1.34	0.07
WA99-0025	GRAYS HARBOR	56.36	1.70
WA99-0026	GRAYS HARBOR	0.00	non-detect
WA99-0027	BEARDSLEE SLOUGH	13.87	0.98
WA99-0028	BEARDSLEE SLOUGH	station not	
WA99-0029	GRAYS HARBOR	1.38	0.15
WA99-0030	WILLAPA BAY	no sediment	
WA99-0031	WILLAPA BAY	14.71	0.86
WA99-0032	WILLAPA BAY	station not	
WA99-0033	WILLAPA BAY	0.00	0.02
WA99-0034	WILLAPA BAY	10.41	0.49
WA99-0035	WILLAPA BAY	34.92	0.11
WA99-0036	WILLAPA BAY	0.00	0.08
WA99-0037	WILLAPA BAY	station not	sampled
WA99-0038	BAKER BAY	7.89	0.35
WA99-0039	BAKER BAY	50.46	1.30
WA99-0040	BAKER BAY	13.90	0.39
WA99-0041	GRAYS RIVER	station not	sampled
WA99-0042	BAKER BAY	0.00	0.09
WA99-0043	GRAYS BAY	19.63	0.81
WA99-0044	GRAYS BAY	0.00	0.22
WA99-0045	GRAYS BAY	1.27	0.27
WA99-0046	GRAYS BAY	1.83	0.27
WA99-0047	GRAYS BAY	0.51	0.06
WA99-0048	COWLITZ RIVER	0.09	0.02
WA99-0040	CARROLLS CHANNEL	2.38	0.02
	MARTIN SLOUGH	17.27	0.85
WA99-0050			

Table C-10. Sediment lithology

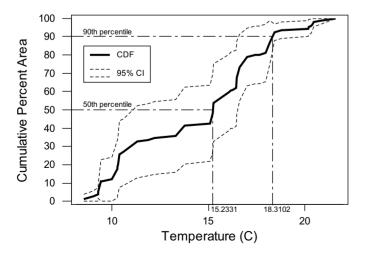

Figure C-1. Hydrographic Profile

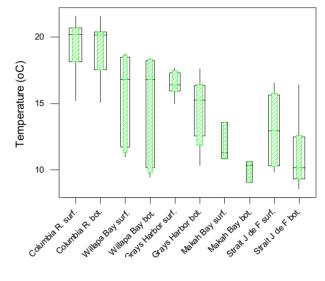


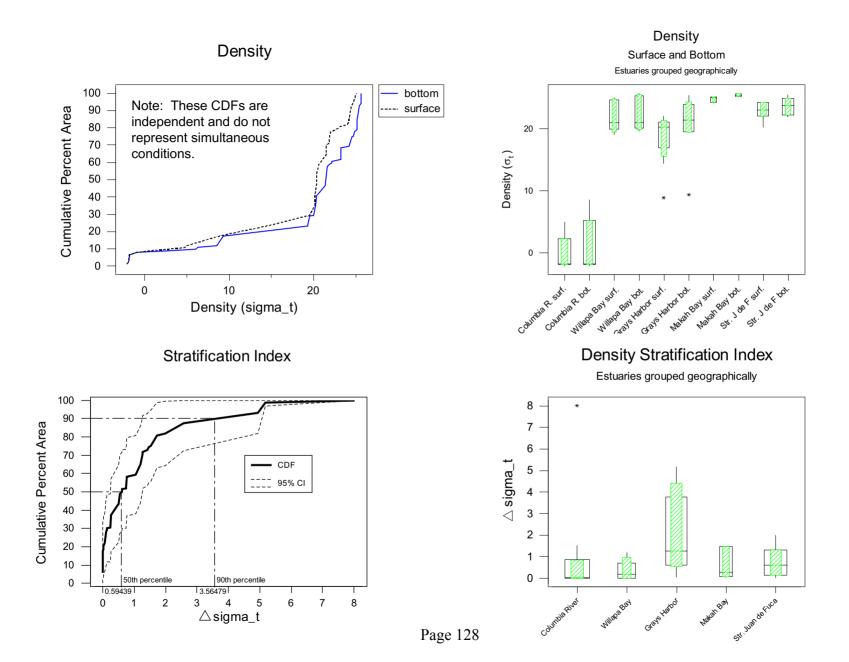
Bottom Salinity



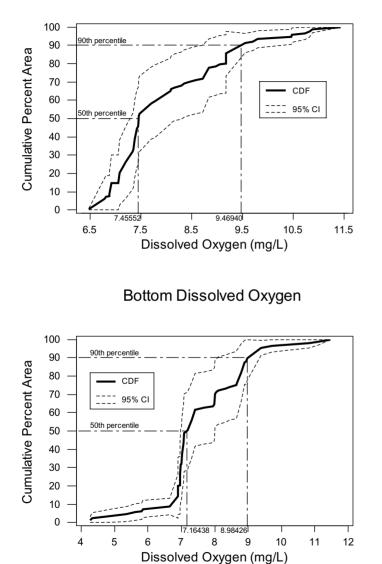
Salinity


Surface and Bottom

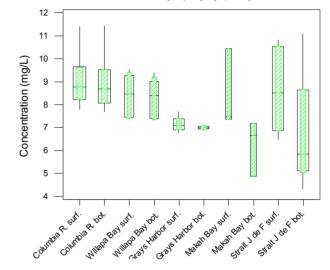

Surface Temperature

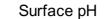


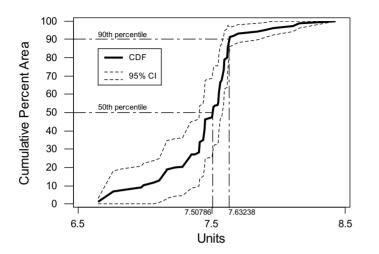
Bottom Temperature

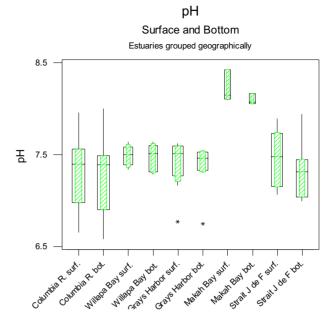


Temperature Surface and Bottom Estuaries grouped geographically

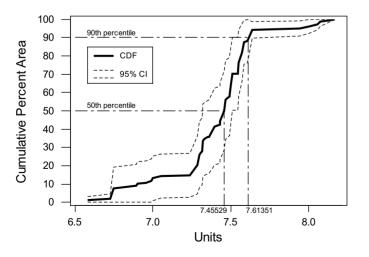


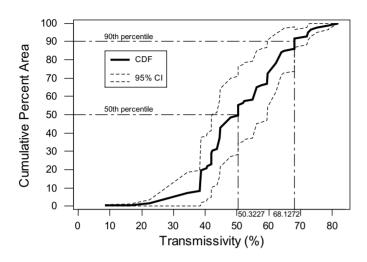


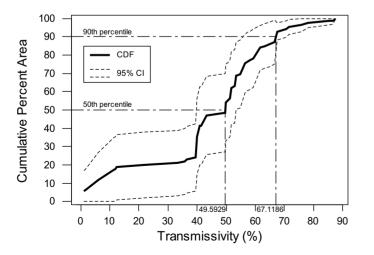

Surface Dissolved Oxygen

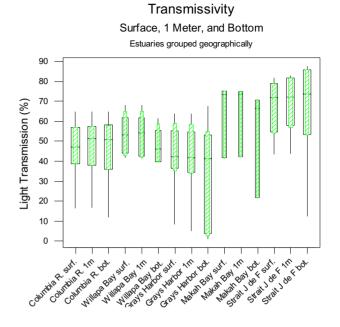


Dissolved Oxygen Surface and Bottom

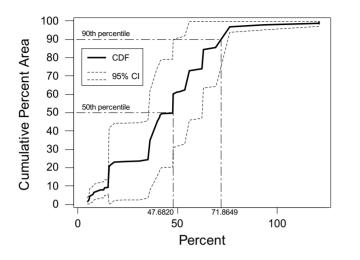


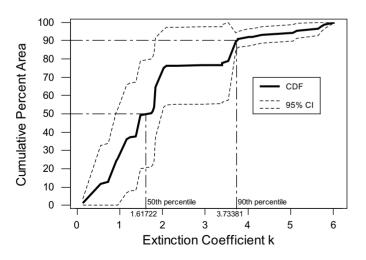





Page 130

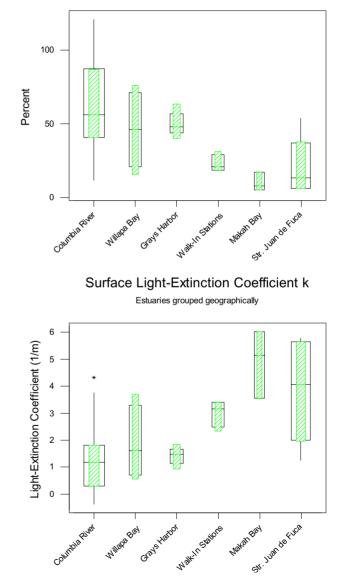
Surface Transmissivity


Bottom Transmissivity

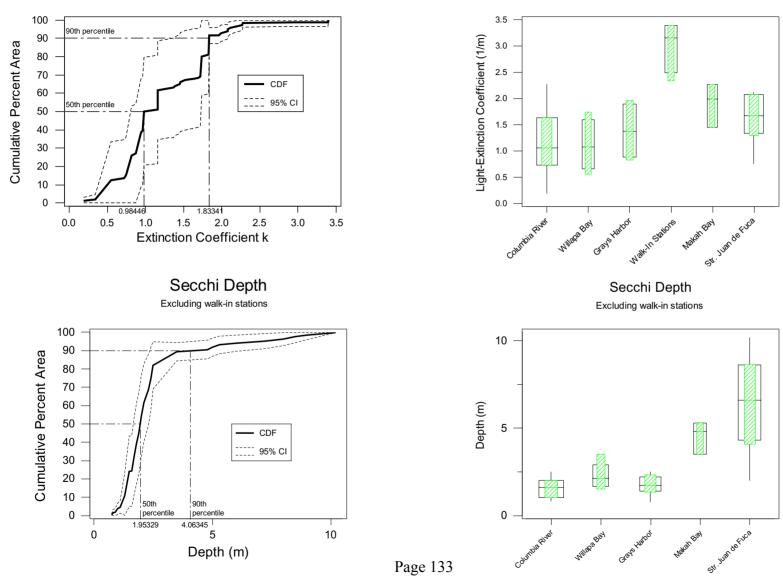


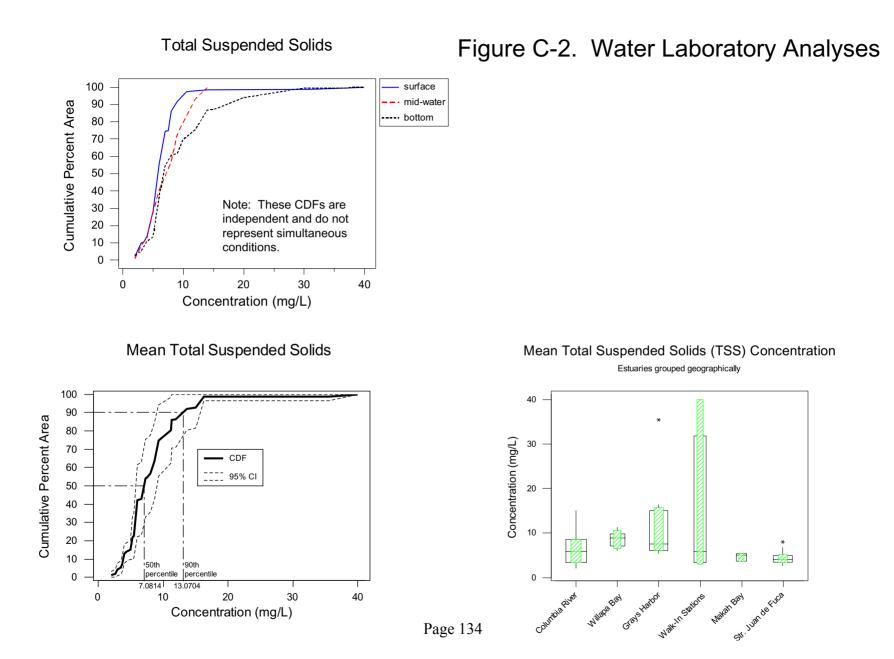
Page 131

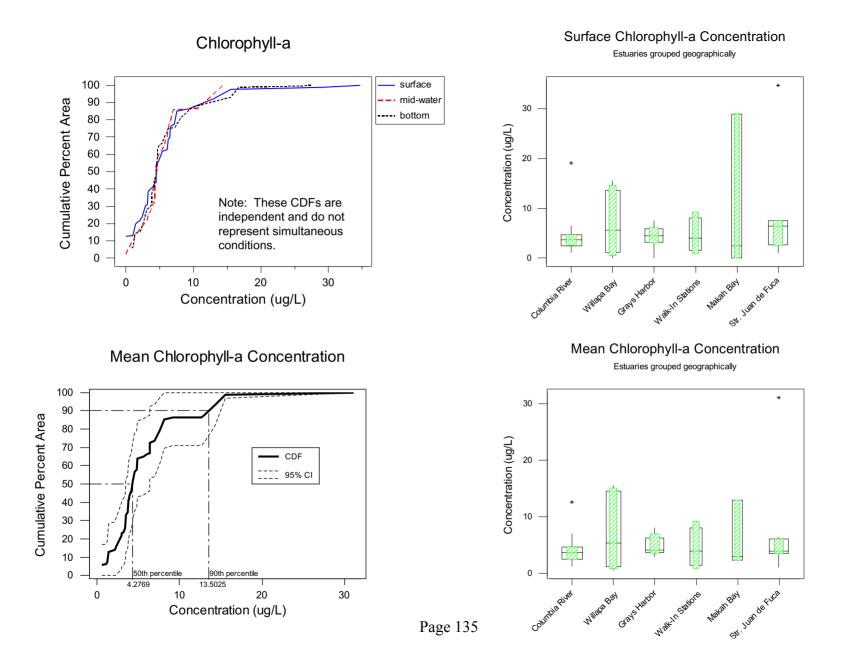
Surface SubPAR as Percent of TerPAR

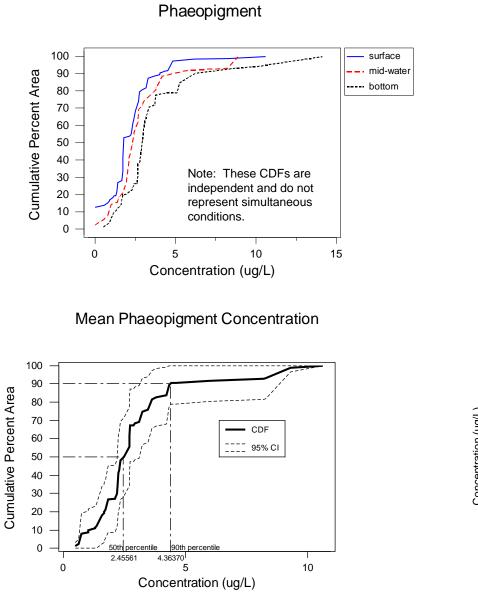


Light Extinction Coefficient k at the Surface

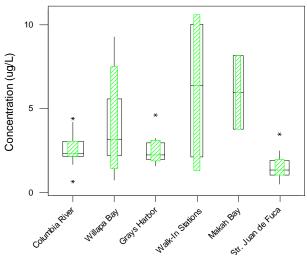

Page 132

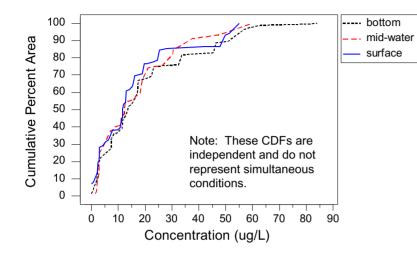

Surface SubPAR as % of TerPAR

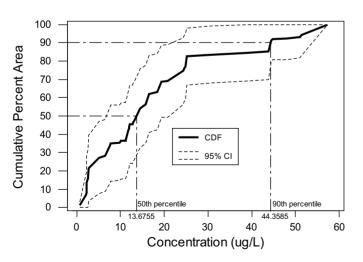


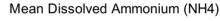

Average Light Extinction Coefficient k

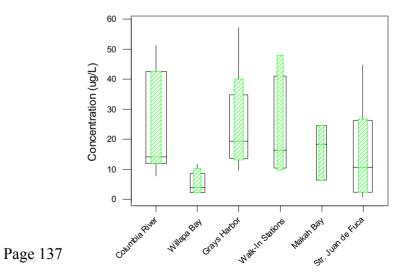
Mean Light-Extinction Coefficient k

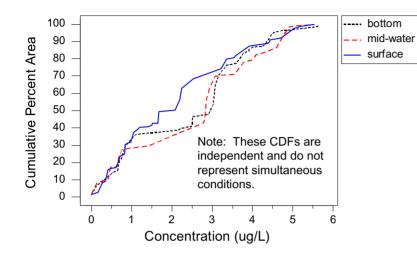


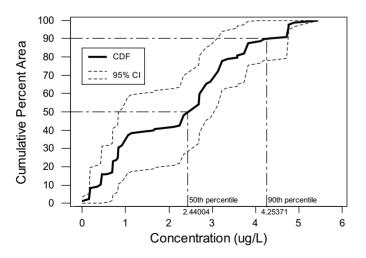


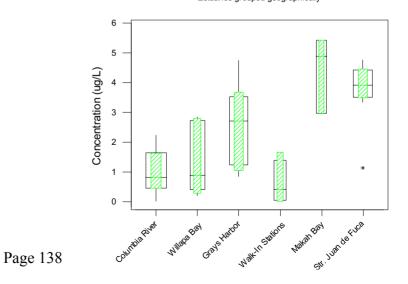


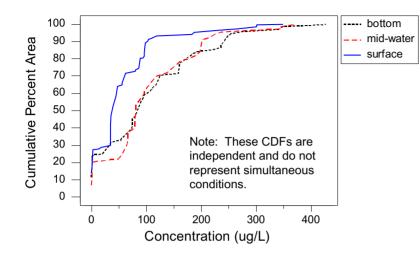



Dissolved Ammonium

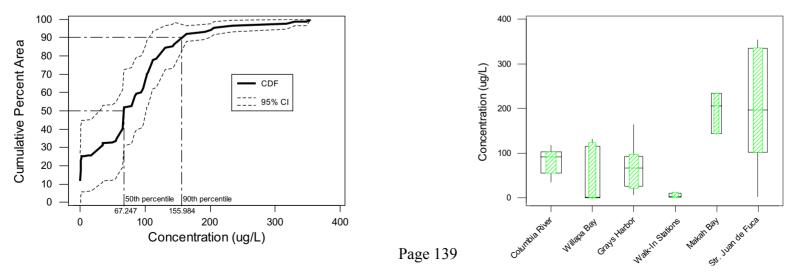


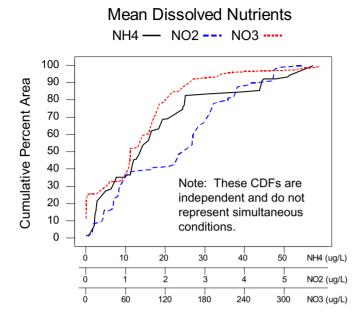


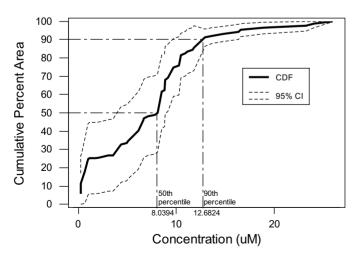

Dissolved Nitrite

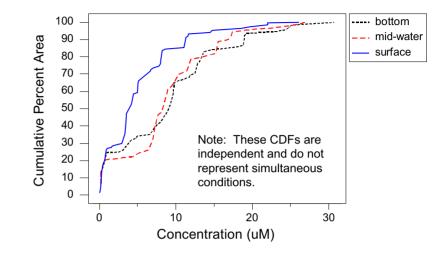

Mean Dissolved Nitrite Concentration

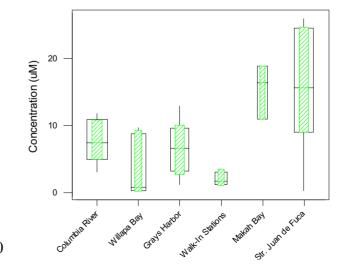
Mean Dissolved Nitrite (NO2) Estuaries grouped geographically



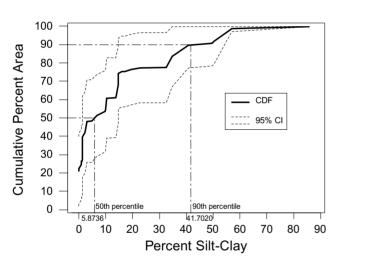

Dissolved Nitrate






Mean Total Dissolved Inorganic Nitrogen

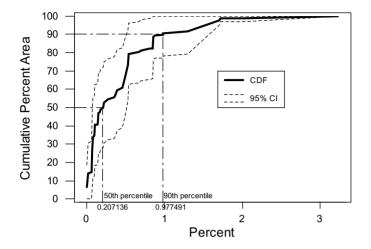
Total Dissolved Inorganic Nitrogen


Mean Total Dissolved Inorganic Nitrogen Estuaries grouped geographically

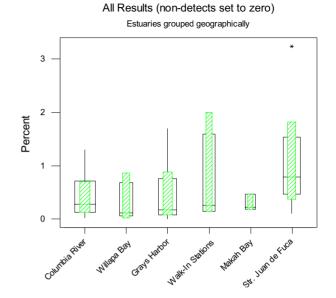
Page 140

Figure C-3. Sediment Lithology

Sediment Percent Silt-Clay



Estuaries grouped geographically 90 80 70 60 Percent 50 40 30 20 10 0 St. Just de Furs Watch Stations Countria River Willage Bay Gast Habor Nakah Bay

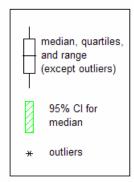

Silt-Clay Content

Page 141

Sediment Total Organic Carbon (TOC)

Sediment Total Organic Carbon (TOC) Content

Appendix D


Abiotic/Pollutant Exposure Condition Indicators

The data tables in this appendix contain the values used in the statistical analyses. The values are the averaged results of lab and/or field replicates, if any. The raw data are available in the national EMAP database or upon request.

- Table D-1: Sediment metals concentrations data
- Table D-2: Sediment individual LPAH concentrations data
- Table D-3: Sediment individual HPAH concentrations data
- Table D-4: Sediment individual LPAH concentrations TOC-normalized data
- Table D-5: Sediment individual HPAH concentrations TOC-normalized data
- Table D-6: Sediment Total PAH concentrations data
- Table D-7: Sediment total and individual PCB concentrations data
- Table D-8: Sediment total and individual DDT concentrations data
- Table D-9: Sediment chlorinated pesticide concentrations data
- Table D-10: Sediment toxicity results data
- Table D-11: Sediment toxicity results amphipod survival test data
- Table D-12: Sediment toxicity results sea urchin fertilization test data
- Table D-13: Sediment toxicity results sea urchin embryo development test data
- Table D-14: Fish-tissue metals concentrations data
- Table D-15: Fish-tissue PCB concentrations data
- Table D-16: Fish-tissue individual and total DDT concentrations data
- Table D-17: Fish-tissue pesticide, Total DDT, and Total PCB concentrations data
- Table D-18: Marine debris and submerged aquatic vegetation data
- Figure D-1: Sediment metals CDFs and graphical summaries
- Figure D-2: Sediment Total PAH CDFs and graphical summaries
- Figure D-3: Sediment Total PCB and Total DDT CDFs and graphical summaries
- Figure D-4: Fish-tissue metals graphical summaries
- Figure D-5: Fish-tissue pesticide, Total DDT, and Total PCB graphical summaries

The boxplots in Figures D-1 through D-5 group the data for estuaries geographically as shown in Figure B-2 in Appendix B.

Box-and-whisker plots, or boxplots, display median (50th-percentile), 25th-percentile, 75th-percentile, and extreme values of the results, with a 95% confidence interval for the median. Outliers are unusually high or unusually low values. The width of the boxplot is proportional to the number of samples.

EMAP Station ID	Station Location	Aluminum	Antimony	Arsenic	Cadmium	Chromium	Copper	Iron	Lead	Manganese	Mercury	Nickel	Selenium	Silver	Tin	Zinc
WA99-0001	MAKAH BAY	24200	0.25	7.59	0.13	43.1	13.7	28400	8	332	0.024	15.4	ND	0.3	0.95	49.1
WA99-0002	MAKAH BAY	27400	0.21	6.58	0.079	29.8	8	20800	5.6	309	0.014	11.2	ND	0.21	0.7	34.6
WA99-0003	MAKAH BAY	23700	0.24	7.52	0.083	32	9	23500	6.85	327	0.016	12.4	ND	0.22	0.71	38.5
WA99-0004	HOKO RIVER	35100	0.4	3.53	0.12	64.4	20.3	30300	4.42	543	0.027	22.3	ND	0.19	0.78	46.6
WA99-0005	OZETTE RIVER							statio	n not sar	npled						
WA99-0006	FRESHWATER BAY								liment sa	1						
WA99-0007	FRESHWATER BAY	31900	0.46	5.64	0.19	53.5	11.4	25300	7.01	368	0.02	22.7	ND	0.23	0.91	43.9
WA99-0008	FRESHWATER BAY								liment sa							
WA99-0009	DUNGENESS BAY	34500	0.32	4.17	0.24	73.4	21.8	27600	6.52	341	0.032	33.3	ND	0.23	1.09	52.5
WA99-0010	DISCOVERY BAY	31400	0.58	6.27	0.5	71.6	27.9	32700	14.4	365	0.07	31.9	0.17	0.48	1.82	76.9
WA99-0011	DISCOVERY BAY	36500	0.61	3.73	0.27	69.8	15.2	27800	10.4	371	0.034	25.5	ND	0.28	1.08	52.3
WA99-0012	DISCOVERY BAY	29900	0.51	3.18	0.27	44.9	7.6	16300	7.88	316	0.021	16.7	ND	0.21	0.84	32
WA99-0013	DISCOVERY BAY	47900	0.59	9.15*	2.31*	76	44.3*	36900	15	337	0.101	37.7	0.22	0.6	2.01	94.2
WA99-0014	DISCOVERY BAY	34500	0.31	4.1	0.49	61.7	13.1	19900	5.18	288	0.033	19	ND	0.22	0.81	35.9
WA99-0015	KALALOCH CREEK	14000	0.24	3.48	0.075	22	6.6	16300	3.89	287	0.0084	7.9	ND	0.12	0.81	29.2
WA99-0016	RAFT RIVER	15300	0.27	5.01	0.24	35.1	16.5	26200	6.24	280	0.017	14.6	0.15	0.29	1.1	56.8
WA99-0017	QUINAULT RIVER	17800	0.31	3.27	0.11	40.2	15.6	22300	7.74	298	0.017	12.9	ND	0.2	1.2	42.3
WA99-0018	QUINAULT RIVER							statio	n not sar	npled						
WA99-0019	CONNER CREEK	21800	0.24	4.495	0.089	47.25	8.05	26450	5.35	518	0.007	15.85	ND	0.185	0.89	45.35
WA99-0020	GRAYS HARBOR	34900	0.27	4.95	0.18	94.3*	57.1*	46300	6.81	703	0.036	35.5	ND	0.44	2.67	74
WA99-0021	GRASS CREEK	18200	0.27	5.04	0.12	46.9	14.3	26900	6.02	402	0.015	15.2	ND	0.25	1.12	45.5
WA99-0022	GRAYS HARBOR	18400	0.34	5.53	0.22	64.4	28.3	35200	7.56	510	0.028	21.7	ND	0.37	1.33	61.1
WA99-0023	GRAYS HARBOR	22100	0.26	4.51	0.082	41.5	10.8	26700	5.16	501	0.012	16.5	ND	0.21	0.85	46.2
WA99-0024	GRAYS HARBOR	22200	0.27	4.3	0.094	48.7	10.7	27800	5.72	536	0.013	15.5	ND	0.22	0.96	46
WA99-0025	GRAYS HARBOR	34900	0.42	6.4	0.45	82.3*	55.5*	44000	11.4	530	0.056	27	ND	0.59	2.08	80.7
WA99-0026	GRAYS HARBOR	18700	0.26	4.25	0.082	44.8	9.8	27400	5.4	492	0.0097	17	ND	0.21	0.84	45
WA99-0027	BEARDSLEE SLOUGH	11700	0.37	8.02	0.24	59.6	25.5	30800	8.53	307	0.0365	22.7	ND	0.37	1.2	55.1
WA99-0028	BEARDSLEE SLOUGH							statio	n not sar							
WA99-0029	GRAYS HARBOR	8750	0.3	6.69	0.098	39.1	16.3	27300	5.86	239	0.014	19	ND	0.25	0.99	48.5
WA99-0030	WILLAPA BAY							no sed	liment sa	mpled						
WA99-0031	WILLAPA BAY	21400	0.35	6.26	0.16	40.4	16.4	28200	10.4	330	0.031	14.7	ND	0.36	1.5	57.9

Table D-1. Sediment metals concentrations ($\mu g/g dry weight$)

EMAP Station ID	Station Location	Aluminum	Antimony	Arsenic	Cadmium	Chromium	Copper	Iron	Lead	Manganese	Mercury	Nickel	Selenium	Silver	Tin	Zinc
WA99-0032	WILLAPA BAY							statior	n not san	npled						
WA99-0033	WILLAPA BAY	15200	0.31	3.84	0.084	22.2	6.9	18700	7.58	289	0.0067	10.7	ND	0.18	0.83	33.9
WA99-0034	WILLAPA BAY	17000	0.305	5.06	0.22	37.25	14.6	25650	9.945	355.5	0.0225	13.95	ND	0.36	1.145	49.55
WA99-0035	WILLAPA BAY	30400	0.29	5.65	0.13	45	9.4	26300	8.04	406	0.0071	15.6	ND	0.25	0.99	45.4
WA99-0036	WILLAPA BAY	11000	0.27	6.8	0.11	21.3	6.9	20500	9.74	393	0.0069	10.6	ND	0.24	0.85	37
WA99-0037	WILLAPA BAY	station not sampled														
WA99-0038	BAKER BAY	17700	0.44	3.9	0.22	37	18.2	28200	15.9	553	0.034	15.1	ND	0.47	1.42	75.7
WA99-0039	BAKER BAY	35400	0.98	7.63	0.854	50.6	37*	38000	25.9	491	0.088	19.2	ND	0.65	2.13	125
WA99-0040	BAKER BAY	18800	0.4	4.32	0.22	37.1	18.6	32100	14	532	0.032	15.7	ND	0.44	1.36	74.3
WA99-0041	GRAYS RIVER							statior	n not san	npled						
WA99-0042	BAKER BAY	13000	0.3	2.4	0.1	32.9	14.4	31200	9.82	580	0.0088	16.3	ND	0.32	1.19	58.4
WA99-0043	GRAYS BAY	23100	0.67	18.6*	0.653	68.1	43.8*	65600	21.6	1120	0.033	36.7	0.13	0.81	1.99	147
WA99-0044	GRAYS BAY	39800	0.3	8	0.45	81.6*	52.4*	74000	6.8	706	0.017	49.2	ND	0.92	2.25	129
WA99-0045	GRAYS BAY	38100	0.38	8.13	0.677	83.1*	59*	75200	8.15	1180	0.025	45.5	ND	0.98	2.2	145
WA99-0046	GRAYS BAY	45600	0.45	15.2*	0.651	89.8*	34.2*	61900	11.1	1390	0.02	37.6	ND	0.67	1.71	133
WA99-0047	GRAYS BAY	20600	0.27	2.7	0.23	36.2	22	41500	9.94	723	0.013	18.5	ND	0.44	1.41	82.2
WA99-0048	COWLITZ RIVER	40600	0.14	0.69	0.16	26.7	31.7	49800	6.08	840	ND	21.4	ND	0.49	1.47	84.6
WA99-0049	CARROLLS CHANNEL	38000	0.335	2.75	0.31	37.1	21.55	33950	11.7	662	0.024	18	ND	0.435	1.345	85.95
WA99-0050	MARTIN SLOUGH	24300	0.71	5.15	0.798	40.3	30.5	35200	18	676	0.101	17.7	ND	0.54	1.61	121
	veraged over lab replica ines. (*) Exceeds Effec		• • •		• •			/IAP anal	yses. (3) Non-de	etects (N	D) exclu	ded for c	comparis	on to sec	liment

EMAP Station ID	Station Location	1-Methyl naphthalene	1-Methyl phenanthrene	2,3,5-Trimethyl naphthalene	2,6-Dimethyl naphthalene	2-Methyl naphthalene	Acenaphthene	Acenaph- thylene	Anthracene	Biphenyl	Dibenzo- thiophene	-Iuorene	Naphthalene	^{>} henanthrene	Retene
WA99-0001	MAKAH BAY	158	65	75	89	182	6.2	ND	2.6	46	8.9	40	74	178	118
	MAKAH BAY	95	43	46	49	82	2.8	ND	1.2	21	5.9	20	29	105	82
	MAKAH BAY	100	52	55	3.9	98	4.4	3.3	ND	25	7.6	28	34	139	86
WA99-0004	HOKO RIVER	16.5	12.5	7.3	14.5	24	1.2	ND	0.6	11.5	1.2	5.6	9.4	48	9.35
WA99-0005	OZETTE RIVER		•	•		•	sta	tion not s	ampled					•	
WA99-0006	FRESHWATER BAY						no s	ediment s	sampled						
WA99-0007	FRESHWATER BAY	13.5	5.35	6.45	12.5	15	1.25	0.355	2	3.4	0.935	4.1	7.85	18.5	38
WA99-0008	FRESHWATER BAY						no s	ediment s	sampled						
WA99-0009	DUNGENESS BAY	6.6	4.2	3.9	8	8.9	2.5	ND	7.6	2.7	1.6	5.8	6.9	22	31
WA99-0010	DISCOVERY BAY	47	20	23	66	59	4.1	4.8	10	17	4.1	18	36	85	68
WA99-0011	DISCOVERY BAY	17	8.3	10	26	23	1.6	1.9	3.8	6.4	2.3	7.1	14	34	27
	DISCOVERY BAY	6.1	3.8	3.8	17	8.8	ND	ND	2.3	2.8	0.93	3.2	7.3	15	23
WA99-0013	DISCOVERY BAY	47	22	26	78	54	5.8	6.6	15	20	6.5	20	38	93	69
	DISCOVERY BAY	10	2.9	4.8	7	12	1.5	ND	2.7	5	0.83	2.5	10	16	15
WA99-0015	KALALOCH CREEK	4.4	3.7	2.1	5.2	11	0.64	1.1	69	4.7	1.1	8.4	4.3	37	10
WA99-0016	RAFT RIVER	94	25	31	98	191	ND	ND	4.3	1.8	0.7	23	62	110	57
WA99-0017	QUINAULT RIVER	6.8	3.2	3.4	6.6	16	0.8	ND	1	7.1	ND	3.4	7.6	17	27
	QUINAULT RIVER		-					tion not s							
	CONNER CREEK	1.1	1.1	0.88	2	2.6	ND	ND	ND	0.98	0.24	1.2	ND	4.6	3.4
	GRAYS HARBOR	6.3	4.7	5.6	5.3	8.9	1.1	1.1	1.3	3.2	1.2	2.8	7.6	17	27
	GRASS CREEK	2.3	1.9	1.7	2.6	3.9	0.65	0.91	0.9	1	0.12	1.7	4.5	6.7	12
	GRAYS HARBOR	6.25	3.25	3.05	5.95	9.35	1.35	2.75	2.7	3.25	0.86	4.3	12.5	13.5	21
	GRAYS HARBOR	1.3	1.15	1.2	1.85	2.6	ND	ND	0.7	ND	0.049	1.02	ND	4.1	5
WA99-0024	GRAYS HARBOR	1.195	1.1	0.95	1.25	2.2	0.39	ND	0.9	ND	0.125	1.14	1.5	4.3	3.8
WA99-0025	GRAYS HARBOR	20	10	7.3	17	37	43	19	27	18	14	43	65	155	150
WA99-0026	GRAYS HARBOR	0.47	0.99	0.76	0.58	ND	ND	ND	ND	ND	ND	0.53	ND	2.3	2
WA99-0027	BEARDSLEE SLOUGH	4.1	1.8	1.8	7.1	6.2	ND	ND	0.9	1.2	ND	1.8	5.4	6.6	79
	BEARDSLEE SLOUGH					-		tion not s		•			•	•	
WA99-0029	GRAYS HARBOR	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1.6

Table D-2. Sediment individual LPAH concentrations - with and without outlier at Station WA99-0050, Lab Rep 4

EMAP Station ID	Station Location	1-Methyl naphthalene	1-Methyl phenanthrene	2,3,5-Trimethyl naphthalene	2,6-Dimethyl naphthalene	2-Methyl naphthalene	Acenaphthene	Acenaph- thylene	Anthracene	Biphenyl	Dibenzo- thiophene	Fluorene	Naphthalene	Phenanthrene	Retene
WA99-0030	WILLAPA BAY						no s	ediment	sampled						
WA99-0031	WILLAPA BAY	6.2	3.8	3.7	6.5	9.1	1.3	1.9	3.3	3.8	0.93	3.5	11	20	74
WA99-0032	WILLAPA BAY						sta	tion not s	ampled						
WA99-0033	WILLAPA BAY	ND	0.31	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1	ND
WA99-0034	WILLAPA BAY	3.1	1.7	1.6	4.4	5.3	0.9	2.1	1.6	ND	0.15	1.8	8.5	7.6	17
WA99-0035	WILLAPA BAY	ND	0.81	ND	0.62	ND	ND	ND	0.4	ND	ND	0.58	ND	1.6	1.9
WA99-0036	WILLAPA BAY	ND	0.31	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1.4	2
WA99-0037	WILLAPA BAY						sta	tion not s	ampled						
WA99-0038	BAKER BAY	1.4	3.1	1	2.6	2.8	1.3	2.7	4.5	ND	1.2	3.4	7.2	24	8
WA99-0039	BAKER BAY	9.9	8.5	4.6	12	14	11	13	26	9.4	1.2	17	57	79	87
WA99-0040	BAKER BAY	0.95	1.1	1.2	3.5	2.3	1.8	1.6	2.5	ND	1.2	1.7	5.1	7.3	8.4
WA99-0041	GRAYS RIVER						sta	tion not s	ampled						
WA99-0042	BAKER BAY	ND	0.49	ND	0.34	ND	ND	ND	ND	ND	2.4	ND	ND	1.8	4.6
WA99-0043	GRAYS BAY	2.1	1.5	1.8	2	3.6	1	0.75	1.1	ND	0.6	1.9	5.1	9.9	99
WA99-0044	GRAYS BAY	1.6	0.79	0.82	0.94	3.2	0.53	0.51	0.5	ND	0.095	1	4.1	4.1	6.1
WA99-0045	GRAYS BAY	1.9	1.2	1.2	1.5	3.7	0.7	0.59	0.6	ND	0.11	1.1	4.8	5.8	13
WA99-0046	GRAYS BAY	1.2	0.78	0.8	0.79	2.8	0.62	1.6	0.7	ND	ND	1.3	3.3	3.5	12
WA99-0047	GRAYS BAY	ND	ND	ND	ND	ND	ND	0.76	0.5	ND	ND	ND	ND	1.2	ND
WA99-0048	COWLITZ RIVER	0.13	0.21	ND	0.1	1	0.29	0.32	ND	ND	ND	0.36	ND	1	1.3
WA99-0049	CARROLLS CHANNEL	1.4	0.73	0.34	0.56	3.1	0.76	1.1	0.8	ND	ND	1.1	5.1	3.3	12
WA99-0050															
with outlier	MARTIN SLOUGH	27.45	810.25	64.2	165.1	1177.7	29.05	17.63	25111	136.13	606.23	7633	407	16630	1277.3
WA99-0050															
w/o outlier	MARTIN SLOUGH	3.93	30.33	1.93	5.47	10.27	4.07	11.83	214.33	11.5	11.63	44	36	439.67	1420.3
. ,	veraged over lab replica nt quality guidelines.	ates, if an	y. (2) No	n-detects	(ND) set	to zero fo	r EMAP a	analyses.	(3) Non	-detects	(ND) exc	luded for	compari	ison to El	RL and

				Benzo(b)		Benzo	Benzo(k)		Dibenz		Indeno		
EMAP		Benz(a)	Benzo(a)	fluor-	Benzo[e]	(g,h,i)	fluor-		(a,h)	Fluor-	(1,2,3-c,d)		
Station ID	Station Location	anthracene	pyrene	anthene	pyrene	perylene		Chrysene	anthracene	anthene		Perylene	Pyrene
WA99-0001	МАКАН ВАҮ	11	ND	25	ND	ND	20	38	ND	28	ND	49	32
WA99-0002	MAKAH BAY	6	ND	15	ND	ND	ND	24	ND	17	ND	19	17
WA99-0003	MAKAH BAY	6.6	ND	18	9	ND	ND	29	ND	20	ND	26	22
WA99-0004	HOKO RIVER	ND	ND	ND	ND	ND	ND	14.5	ND	3.9	ND	12.5	5.05
WA99-0005	OZETTE RIVER						station no	t sampled					
WA99-0006	FRESHWATER BAY					r	no sedime	nt sampled					
WA99-0007	FRESHWATER BAY	3.75	3.75	6.35	3.95	4.3	3.4	6.95	0.24	9.7	4	49.5	8.6
WA99-0008	FRESHWATER BAY					r	no sedime	nt sampled					
WA99-0009	DUNGENESS BAY	7	ND	11	ND	ND	ND	12	ND	43	ND	17	22
WA99-0010	DISCOVERY BAY	21	22	32	20	24	22	38	7.2	65	24	110	56
WA99-0011	DISCOVERY BAY	8.1	9.1	15	9.5	12	10	15	1.1	25	12	53	21
WA99-0012	DISCOVERY BAY	4.6	ND	ND	ND	ND	ND	7.6	ND	14	ND	18	11
WA99-0013	DISCOVERY BAY	34	41	59	36	47	44	56	2.9	117	49	190	105
WA99-0014	DISCOVERY BAY	5.4	ND	ND	ND	ND	ND	7	ND	15	ND	46	13
WA99-0015	KALALOCH CREEK	4.5	6.4	7.4	5.2	ND	7.4	48	ND	4.5	8	9.1	4.2
WA99-0016	RAFT RIVER	9.7	ND	19	11	ND	ND	36	ND	15	ND	66	21
WA99-0017	QUINAULT RIVER	1.7	1	5.5	2.2	1.7	ND	8.1	ND	6.1	ND	23	5.9
WA99-0018	QUINAULT RIVER						station no	t sampled					
WA99-0019	CONNER CREEK	ND	ND	ND	ND	ND	ND	3.2	ND	2.9	ND	20	2.6
WA99-0020	GRAYS HARBOR	3.2	ND	ND	ND	ND	ND	8.6	ND	8.2	ND	115	8.9
WA99-0021	GRASS CREEK	1.4	1.2	2.2	1.8	1.6	1.6	3.6	ND	5.9	1.5	33	5.7
WA99-0022	GRAYS HARBOR	3.2	ND	ND	ND	ND	ND	5.3	ND	12	ND	560.5	11
WA99-0023	GRAYS HARBOR	ND	ND	ND	ND	ND	ND	2.3	ND	2.45	ND	17.5	2.6
WA99-0024	GRAYS HARBOR	ND	ND	ND	ND	ND	ND	2.8	ND	2.6	ND	28.5	3.1
WA99-0025	GRAYS HARBOR	112	55	63	37	23	58	76	11	276	31	756	245
WA99-0026	GRAYS HARBOR	ND	ND	ND	ND	ND	ND	1.7	ND	1	ND	9.1	1.3
WA99-0027	BEARDSLEE SLOUGH	1.6	ND	ND	ND	ND	ND	3	ND	4.8	ND	56	4.3
WA99-0028	BEARDSLEE SLOUGH						station no	t sampled					
WA99-0029	GRAYS HARBOR	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	9.6	ND
WA99-0030	WILLAPA BAY					r	no sedime	nt sampled					
WA99-0031	WILLAPA BAY	9	10	11	7.3	8.6	8.7	12	0.95	23	9.5	65	26
WA99-0032	WILLAPA BAY						station no	t sampled					

Table D-3. Sediment individual HPAH concentrations - with and without outlier at Station WA99-0050, Lab Rep 4

EMAP		Benz(a)	Benzo(a)	Benzo(b) fluor-	Benzo[e]	Benzo (g,h,i)	Benzo(k) fluor-		Dibenz (a,h)	Fluor-	Indeno (1,2,3-c,d)		
Station ID	Station Location	anthracene	pyrene	anthene	pyrene	perylene	anthene	Chrysene	anthracene	anthene	pyrene	Perylene	Pyrene
WA99-0033	WILLAPA BAY	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.75
WA99-0034	WILLAPA BAY	2.6	ND	3.7	ND	ND	ND	4	ND	6.5	ND	45	6.9
WA99-0035	WILLAPA BAY	0.72	ND	0.55	0.74	ND	0.61	1.2	ND	1.4	ND	11	1.3
WA99-0036	WILLAPA BAY	ND	ND	ND	ND	ND	ND	ND	ND	1.1	ND	ND	1
WA99-0037	WILLAPA BAY						station no	t sampled					
WA99-0038	BAKER BAY	11	15	12	8.9	ND	8.9	15	ND	32	ND	45	33
WA99-0039	BAKER BAY	40	57	39	24	41	43	45	ND	117	50	298	131
WA99-0040	BAKER BAY	6	8	7.8	5.4	ND	6.5	8.4	ND	14	ND	40	15
WA99-0041	GRAYS RIVER						station no	t sampled					
WA99-0042	BAKER BAY	ND	ND	ND	ND	ND	ND	1.4	ND	1.4	ND	ND	1.5
WA99-0043	GRAYS BAY	2.6	ND	ND	ND	ND	ND	5.2	ND	8.4	ND	410	9.6
WA99-0044	GRAYS BAY	ND	ND	1.7	ND	ND	ND	2.5	ND	2.5	ND	294	4.2
WA99-0045	GRAYS BAY	1.8	ND	4.6	3.3	ND	2	5	ND	4.5	ND	203	7.1
WA99-0046	GRAYS BAY	2.3	8.1	6.6	5.7	7.3	4.7	4.5	ND	3.4	ND	218	4.6
WA99-0047	GRAYS BAY	ND	ND	ND	ND	ND	ND	ND	ND	0.76	ND	6.8	0.64
WA99-0048	COWLITZ RIVER	ND	ND	ND	ND	ND	ND	ND	ND	0.41	ND	ND	0.32
WA99-0049	CARROLLS CHANNEL	1.9	2	2.8	1.8	1.9	1.7	2.9	ND	3.6	2.1	12	3.5
WA99-0050													
with outlier	MARTIN SLOUGH	401.5	199.8	142.3	128	72.8	207.5	2465.3	20.98	2163.3	99.3	203.8	1291.5
WA99-0050													
w/o outlier	MARTIN SLOUGH	75.3	76.7	84	52	36.7	80.7	450.3	8.63	407.7	43.3	182	338.7
• •	veraged over lab replica nt quality guidelines.	ates, if any.(2) Non-det	tects (ND)	set to zero	o for EMA	P analyse:	s. (3) Non-	detects (ND)) exclude	d for compa	rison to El	RL and

			2-Methyl-						
EMAP		тос	•	Acenaphthene	Acenaphthylene	Anthracene	Fluorene	Naphthalene	Phenanthrene
Station ID	Station Location	(%)	(ppm org. C)	(ppm org. C)	(ppm org. C)	(ppm org. C)	(ppm org. C)		(ppm org. C)
WA99-0001	MAKAH BAY	0.46	39.57	1.35	0.11*	0.57	8.70	16.09	38.70
WA99-0002	MAKAH BAY	0.22	37.27	1.27	1*	0.55	9.09	13.18	47.73
WA99-0003	MAKAH BAY	0.18	54.44	2.44	1.83	0.27*	15.56	18.89	77.22
WA99-0004	HOKO RIVER	0.10	24.00	1.20	0.5*	0.55	5.60	9.40	48.00
WA99-0005	OZETTE RIVER				station n	ot sampled			
WA99-0006	FRESHWATER BAY				no sedim	ent sampled			
WA99-0007	FRESHWATER BAY	0.39	3.85	0.32	0.18	0.51	1.05	2.01	4.74
WA99-0008	FRESHWATER BAY				no sedim	ent sampled			
WA99-0009	DUNGENESS BAY	0.70	1.27	0.36	0.07*	1.09	0.83	0.99	3.14
WA99-0010	DISCOVERY BAY	1.72	3.43	0.24	0.28	0.58	1.05	2.09	4.94
WA99-0011	DISCOVERY BAY	0.87	2.64	0.18	0.22	0.44	0.82	1.61	3.91
WA99-0012	DISCOVERY BAY	0.67	1.31	0.07*	0.15*	0.34	0.48	1.09	2.24
WA99-0013	DISCOVERY BAY	3.24	1.67	0.18	0.20	0.46	0.62	1.17	2.87
WA99-0014	DISCOVERY BAY	0.98	1.22	0.15	0.05*	0.28	0.26	1.02	1.63
WA99-0015	KALALOCH CREEK	0.14	7.86	0.46	0.79	49.29	6.00	3.07	26.43
WA99-0016	RAFT RIVER	2.00	9.55	0.02*	0.02*	0.22	1.15	3.10	5.50
WA99-0017	QUINAULT RIVER	0.37	4.32	0.22	0.14*	0.27	0.92	2.05	4.59
WA99-0018	QUINAULT RIVER					ot sampled			
WA99-0019	CONNER CREEK	0.14	1.90	0.36*	0.36*	0.39*	0.88	1.17*	3.37
WA99-0020	GRAYS HARBOR	0.54	1.65	0.20	0.20	0.24	0.52	1.41	3.15
WA99-0021	GRASS CREEK	0.17	2.29	0.38	0.54	0.56	1.00	2.65	3.94
WA99-0022	GRAYS HARBOR	0.53	1.76	0.25	0.52	0.51	0.81	2.36	2.55
WA99-0023	GRAYS HARBOR	0.07	3.71	0.71*	0.71*	1.04	1.46	3.14*	5.86
WA99-0024	GRAYS HARBOR	0.07	3.14	1.11	0.8*	1.33	1.63	4.29	6.07
WA99-0025	GRAYS HARBOR	1.70	2.18	2.53	1.12	1.59	2.53	3.82	9.12
		non-	cannot	cannot	cannot	cannot	cannot	cannot	cannot
WA99-0026	GRAYS HARBOR	detect	calculate*	calculate*	calculate*	calculate*	calculate	calculate*	calculate
WA99-0027	BEARDSLEE SLOUGH	0.98	0.63	0.05*	0.05*	0.09	0.18	0.55	0.68
WA99-0028	BEARDSLEE SLOUGH				station n	ot sampled			
WA99-0029	GRAYS HARBOR	0.15	0.33*	0.33*	0.33*	0.33*	0.33*	0.33*	0.33*
WA99-0030	WILLAPA BAY					ent sampled			
WA99-0031	WILLAPA BAY	0.86	1.06	0.15	0.22	0.38	0.41	1.28	2.33

Table D-4. Sediment individual LPAH concentrations - TOC-normalized with and without outlier at Station WA99-0050, Lab Rep 4

			2-Methyl-						
EMAP		TOC	naphthalene	Acenaphthene	Acenaphthylene				Phenanthrene
Station ID	Station Location	(%)	(ppm org. C)	(ppm org. C)	(ppm org. C)	(ppm org. C)	(ppm org. C)	(ppm org. C)	(ppm org. C)
WA99-0032	WILLAPA BAY				station n	ot sampled			
WA99-0033	WILLAPA BAY	0.02	4.35*	2.4*	2.4*	2.4*	2.4*	4.15*	4.85
WA99-0034	WILLAPA BAY	0.49	1.07	0.18	0.43	0.32	0.36	1.72	1.54
WA99-0035	WILLAPA BAY	0.11	1.09*	0.45*	0.45*	0.38	0.53	0.91*	1.45
WA99-0036	WILLAPA BAY	0.08	1.13*	0.6*	0.6*	0.6*	0.6*	1.1*	1.75
WA99-0037	WILLAPA BAY				station n	ot sampled			
WA99-0038	BAKER BAY	0.35	0.80	0.37	0.77	1.29	0.97	2.06	6.86
WA99-0039	BAKER BAY	1.30	1.08	0.85	1.00	2.00	1.31	4.38	6.08
WA99-0040	BAKER BAY	0.39	0.59	0.46	0.41	0.64	0.44	1.31	1.87
WA99-0041	GRAYS RIVER				station n	ot sampled			
WA99-0042	BAKER BAY	0.09	0.54*	0.54*	0.54*	0.61*	0.54*	1.44*	2.00
WA99-0043	GRAYS BAY	0.81	0.44	0.12	0.09	0.14	0.23	0.63	1.22
WA99-0044	GRAYS BAY	0.22	1.45	0.24	0.23	0.22	0.45	1.86	1.86
WA99-0045	GRAYS BAY	0.27	1.37	0.26	0.22	0.22	0.41	1.78	2.15
WA99-0046	GRAYS BAY	0.27	1.04	0.23	0.59	0.27	0.48	1.22	1.30
WA99-0047	GRAYS BAY	0.06	0.83*	0.83*	1.27	0.80	0.83*	0.83*	2.00
WA99-0048	COWLITZ RIVER	0.02	5.00	1.45	1.60	2.3*	1.80	4.05*	5.00
WA99-0049	CARROLLS CHANNEL	0.21	1.48	0.36	0.52	0.38	0.52	2.43	1.57
WA99-0050									
with outlier	MARTIN SLOUGH	0.85	138.55	3.42	2.07	2954.21	898	47.88	1956.44
WA99-0050									
w/o outlier	MARTIN SLOUGH	0.85	1.21	0.48	1.39	25.22	5.18	4.24	51.73
* All concentr Ecology (199	ations were non-detects 5).	s; therefo	ore, the highes	t reporting limit	(RL) was used as	the concentra	ation, per Wasl	hington State I	Department of

									Indeno		Total
			Benz(a)	Benzo(a)	Benzo(g,h,i)		Dibenz(a,h)	Fluor-	(1,2,3-c,d)		Benzo-
EMAP		TOC	anthracene	pyrene	perylene	Chrysene	anthracene	anthene	pyrene	Pyrene	fluoranthenes
	Station Location	(%)	(ppm org. C)			(ppm org. C)	(ppm org. C)			(ppm org. C)	
	MAKAH BAY	0.46	2.39	1.48*	1.80*	8.26	0.48*	6.09	0.78*	6.96	
	MAKAH BAY	0.22	2.73	1.86*	2*	10.91	0.22*	7.73	1.09*	7.73	7.04
WA99-0003	MAKAH BAY	0.18	3.67	2.67*	2.89*	16.11	0.48*	11.11	1.39*	12.22	10.27
	HOKO RIVER	0.10	2*	1*	2.6*	14.50	0.5*	3.90	0.5*	5.05	7.9*
	OZETTE RIVER					station	not sampled				
WA99-0006	FRESHWATER BAY						nent sampled				
WA99-0007	FRESHWATER BAY	0.39	0.96	0.96	1.10	1.78		2.49	1.03	2.21	2.50
WA99-0008	FRESHWATER BAY						nent sampled				
WA99-0009	DUNGENESS BAY	0.70	1.00	0.7*	0.74*	1.71	0.07*	6.14	0.63*	3.14	2.34
WA99-0010	DISCOVERY BAY	1.72	1.22	1.28	1.40	2.21	0.42	3.78	1.40	3.26	3.14
WA99-0011	DISCOVERY BAY	0.87	0.93	1.05	1.38	1.72	0.13	2.87	1.38	2.41	2.87
WA99-0012	DISCOVERY BAY	0.67	0.69	0.72*	0.81*	1.13		2.09	0.88*	1.64	1.88*
WA99-0013	DISCOVERY BAY	3.24	1.05	1.27	1.45	1.73	0.09	3.61	1.51	3.24	3.18
WA99-0014	DISCOVERY BAY	0.98	0.55	0.52*	0.51*	0.71	0.05*	1.53	0.49*	1.33	1.14*
WA99-0015	KALALOCH CREEK	0.14	3.21	4.57	5.29*	34.29	1.14*	3.21	5.71	3.00	10.57
WA99-0016	RAFT RIVER	2.00	0.49	0.38*	0.36*	1.80	0.17*	0.75	0.265*	1.05	0.97
WA99-0017	QUINAULT RIVER	0.37	0.46	0.27	0.46	2.19	0.14*	1.65	0.35*	1.59	1.63
WA99-0018	QUINAULT RIVER					station	not sampled				
WA99-0019	CONNER CREEK	0.14	0.81*	0.68*	0.95*	2.34	0.36*	2.12	0.80*	1.90	2.19*
WA99-0020	GRAYS HARBOR	0.54	0.59	0.44*	0.74*	1.59	0.19*	1.52	0.5*	1.65	1.56*
WA99-0021	GRASS CREEK	0.17	0.82	0.71	0.94	2.12	0.29*	3.47	0.88	3.35	2.24
WA99-0022	GRAYS HARBOR	0.53	0.60	0.64*	0.64*	1.00	0.19*	2.26	0.55*	2.08	1.25*
WA99-0023	GRAYS HARBOR	0.07	1.43*	0.97*	1.57*	3.29	0.71*	3.50	1.57*	3.71	2.97*
WA99-0024	GRAYS HARBOR	0.07	2.43*	4.57*	6.86*	4.00	1.86*	3.71	9.14*	4.43	8.14*
WA99-0025	GRAYS HARBOR	1.70	6.59	3.24	1.35	4.47	0.65	16.24	1.82	14.41	7.12
		non-	cannot	cannot	cannot	cannot	cannot	cannot	cannot	cannot	cannot
WA99-0026	GRAYS HARBOR	detect	calculate*	calculate*	calculate*	calculate	calculate*	calculate	calculate*	calculate	calculate*
	BEARDSLEE SLOUGH	0.98	0.16	0.17*	0.22*	0.31	0.05*	0.49	0.18*	0.44	0.42*
WA99-0028	BEARDSLEE SLOUGH	U				station	not sampled			•	•
	GRAYS HARBOR	0.15	0.33*	0.33*	0.33*	0.33*	0.33*	0.33*	0.33*	0.33*	0.67*
	WILLAPA BAY					no sedir	nent sampled				

Table D-5. Sediment individual HPAH concentrations - TOC-normalized with and without outlier at Station WA99-0050, Lab Rep 4

			Benz(a)	Benzo(a)	Benzo(g,h,i)		Dibenz(a,h)	Fluor-	Indeno (1,2,3-c,d)		Total Benzo-
EMAP		тос	anthracene	pyrene	perylene	Chrysene	anthracene	anthene	pyrene	Pyrene	fluoranthenes
Station ID	Station Location	(%)		(ppm org. C)		(ppm org. C)	(ppm org. C)				(ppm org. C)
WA99-0031	WILLAPA BAY	0.86	1.05	1.16	1.00	1.40	0.11	2.67	1.10	3.02	2.29
WA99-0032	WILLAPA BAY	•				station	not sampled				
WA99-0033	WILLAPA BAY	0.02	2.6*	2.4*	2.4*	4.25*	2.4*	3.05*	2.4*	3.75	4.8*
WA99-0034	WILLAPA BAY	0.49	0.53	0.71*	0.77*	0.81	0.10*	1.32	0.81*	1.40	1.32
WA99-0035	WILLAPA BAY	0.11	0.65	0.49*	0.82*	1.09	0.45*	1.27	0.77*	1.18	1.05
WA99-0036	WILLAPA BAY	0.08	0.96*	1.38*	1.25*	1.75*	0.6*	1.38	0.6*	1.25	2.35*
WA99-0037	WILLAPA BAY					station	not sampled				
WA99-0038	BAKER BAY	0.35	3.14	4.29	2.86*	4.29	0.54*	9.14	3.43*	9.43	5.97
WA99-0039	BAKER BAY	1.30	3.08	4.38	3.15	3.46	0.17*	9.00	3.85	10.08	6.31
WA99-0040	BAKER BAY	0.39	1.54	2.05	1.79*	2.15	0.13*	3.59	2.05*	3.85	3.67
WA99-0041	GRAYS RIVER					station	not sampled				
WA99-0042	BAKER BAY	0.09	0.84*	1.11*	0.54*	1.56	0.54*	1.56	0.54*	1.67	1.54*
WA99-0043	GRAYS BAY	0.81	0.32	0.49*	0.54*	0.64	0.06*	1.04	0.43*	1.19	1.11*
WA99-0044	GRAYS BAY	0.22	0.45*	0.73*	1.14*	1.14	0.24*	1.14	0.73*	1.91	1.23
WA99-0045	GRAYS BAY	0.27	0.67	0.67*	1.63*	1.85	0.21*	1.67	1.04*	2.63	2.44
WA99-0046	GRAYS BAY	0.27	0.85	3.00	2.70	1.67	0.21*	1.26	2.52*	1.70	4.19
WA99-0047	GRAYS BAY	0.06	1.03*	2.67*	3.33*	1.35*	0.83*	1.27	3.67*	1.07	3.2*
WA99-0048	COWLITZ RIVER	0.02	2.3*	2.2*	2.3*	2.65*	2.3*	2.05	2.3*	1.60	4.6*
WA99-0049	CARROLLS CHANNEL	0.21	0.90	0.95	0.90	1.38	0.20*	1.71	1.00	1.67	2.14
WA99-0050											
with outlier	MARTIN SLOUGH	0.85	8.86	9.02	4.31	52.98	1.02	47.96	5.10	39.84	41.15
WA99-0050											
	MARTIN SLOUGH	0.85	47.24	23.50	8.56	290.03	2.47	254.50	11.68	151.94	41.15
* All concenti (1995).	rations were non-detect	s; therefo	ore, the highe	est reporting l	imit (RL) was	used as the	concentratior	n, per Washir	ngton State D	epartment o	f Ecology

		EMAP	EMAP	EMAP		SQS/CSL	SQS/CSL	Total	ERL/ERM	ERL/ERM
EMAP		Total LPAH	Total HPAH	Total PAH	TOC	Total LPAH	Total HPAH	LPAH	Total HPAH	Total PAH
Station ID	Station Location	(ng/g)	(ng/g)	(ng/g)	(%)	(ppm org. C)	(ppm org. C)	(ng/g)	(ng/g)	(ng/g)
WA99-0001	МАКАН ВАҮ	746.7	154	900.7	0.46	65.5	38.02	482.8	109	591.8
WA99-0002	MAKAH BAY	394.9	79	473.9	0.22	72.82	41.3	240	64	304
WA99-0003	MAKAH BAY	411.2	95.6	506.8	0.18	116.21	60.8	306.7	77.6	384.3
WA99-0004	HOKO RIVER	104.25	23.45	127.7	0.1	65.25	37.95	88.75	23.45	112.2
WA99-0005	OZETTE RIVER				statio	on not sampled				
WA99-0006	FRESHWATER BAY				no se	diment sampled				
WA99-0007	FRESHWATER BAY	72.69	51.04	123.73	0.39	8.82	13.15	49.41	33.23	82.64
WA99-0008	FRESHWATER BAY					diment sampled				
WA99-0009	DUNGENESS BAY	58.7	95	153.7	0.7	6.47	16.48		84	
WA99-0010	DISCOVERY BAY	309	311.2	620.2	1.72	9.18	18.09	216.9	209.2	426.1
	DISCOVERY BAY	121.4	128.3	249.7	0.87	7.17	14.75	85.4	79.3	
	DISCOVERY BAY	56.03	37.2	93.23	0.67	4.37	9.91	36.6	37.2	
	DISCOVERY BAY	338.9	554.9	893.8	3.24	5.51	17.13	232.4	355.9	
WA99-0014	DISCOVERY BAY	59.23	40.4	99.63	0.98	3.39	6.84	44.7	40.4	85.1
	KALALOCH CREEK	115.64	90.4	206.04	0.14	86.03	71	131.44	67.6	
	RAFT RIVER	530.8	100.7	631.5	2	10.01	6.23	390.3	81.7	472
	QUINAULT RIVER	55.89	30	85.89	0.37	8.19	8.74	45.79	22.8	68.59
	QUINAULT RIVER					on not sampled				
	CONNER CREEK	10.1	8.7		0.13667	6.52	12.15	8.4	8.7	17.1
	GRAYS HARBOR	49.1	28.9	78	0.54	5.72	8.78	39.8	28.9	
	GRASS CREEK	22.23	24.7	46.93	0.17	9.07	14.82	19.31	17.8	
	GRAYS HARBOR	55.56	33.45	89.01	0.53	7	9.21	46.45	31.5	
WA99-0023	GRAYS HARBOR	9.90	7.35	17.25	0.07	12.94	19.73	8.46	7.35	
WA99-0024	GRAYS HARBOR	10.78	12.2	22.98	0.07	15.23	45.14	12.3	10.2	22.5
WA99-0025	GRAYS HARBOR	320.3	950	1270.3	1.7	20.71	55.88	389	775	1164
					non-	cannot	cannot			
WA99-0026	GRAYS HARBOR	3.33	4	7.33	detect	calculate	calculate	2.83	4	6.83
	BEARDSLEE SLOUGH	30.3	13.7	44	0.98	1.60	2.44	20.9	13.7	34.6
WA99-0028	BEARDSLEE SLOUGH				statio	on not sampled			-	
		0	0	0		2	3.33		all	all
	GRAYS HARBOR	(all non-detect)	(all non-detect)	(all non-detect)		(max RL used)		non-detect	non-detect	non-detect
WA99-0030	WILLAPA BAY				no se	diment sampled				

Table D-6. Sediment Total PAH concentrations, with and without outlier at Station WA99-0050, Lab Rep 4

		EMAP	EMAP	EMAP		SQS/CSL	SQS/CSL	Total	ERL/ERM	ERL/ERM
EMAP		Total LPAH	Total HPAH	Total PAH	TOC	Total LPAH	Total HPAH	LPAH	Total HPAH	
Station ID	Station Location	(ng/g)	(ng/g)	(ng/g)	(%)	(ppm org. C)	(ppm org. C)	(ng/g)	(ng/g)	(ng/g)
WA99-0031	WILLAPA BAY	55.03	118.75	173.78	0.86	4.77	13.81	50.1	80.95	131.05
WA99-0032	WILLAPA BAY					on not sampled				
WA99-0033	WILLAPA BAY	0.31	0.75	1.06	0.02	18.60	28.05	0.97	0.75	1.72
WA99-0034	WILLAPA BAY	31.15	23.7	54.85	0.49	4.56	7.76	27.8	20	47.8
WA99-0035	WILLAPA BAY	2.43	5.78	8.21	0.11	4.18	7.79	2.6	4.62	7.22
WA99-0036	WILLAPA BAY	0.31	2.1	2.41	0.08	5.25	11.51	1.4	2.1	3.5
WA99-0037	WILLAPA BAY				statio	on not sampled				
WA99-0038	BAKER BAY	31.2	126.9	158.1	0.35	12.31	43.09	45.9	106	151.9
WA99-0039	BAKER BAY	183.6	563	746.6	1.30	15.62	43.48	217	390	607
WA99-0040	BAKER BAY	22.95	65.7	88.65	0.39	5.13	20.82	22.3	51.4	73.7
WA99-0041	GRAYS RIVER				statio	on not sampled				
WA99-0042	BAKER BAY	3.23	4.3	7.53	0.09	5.69	9.91	1.8	4.3	6.1
WA99-0043	GRAYS BAY	21.45	25.8	47.25	0.81	2.44	5.83	23.35	25.8	49.15
WA99-0044	GRAYS BAY	14.08	10.9	24.98	0.22	4.88	8.70	13.93	9.2	23.13
WA99-0045	GRAYS BAY	17.4	25	42.4	0.27	5.03	12.80	17.29	18.4	35.69
WA99-0046	GRAYS BAY	13.91	41.5	55.41	0.27	4.09	18.10	13.84	22.9	36.74
WA99-0047	GRAYS BAY	1.24	1.4	2.64	0.06	6.57	18.42	2.44	1.4	3.84
WA99-0048	COWLITZ RIVER	2.41	0.73	3.14	0.02	16.20	22.30	2.97	0.73	3.7
WA99-0049	CARROLLS CHANNEL	14.99	22.4	37.39	0.21	5.79	10.86	15.26	13.9	29.16
WA99-0050										
with outlier	MARTIN SLOUGH	36184.5	7063.98	43248.4	0.85	5862.02***	831.056	51004.9**	6542.23*	57547.1**
WA99-0050										
without										
outlier	MARTIN SLOUGH	385.3	1601.97	1987.27	0.85	88.224	188.467	760.167	1357.3	2117.47
		eds ERL and ER		s SQS and CSL.	0.00					
()=;	······································		()======							

EMAP		TOTAL	PCB	РСВ	РСВ	РСВ	РСВ	РСВ	РСВ	РСВ	РСВ	РСВ	РСВ	РСВ	РСВ	РСВ	РСВ
Station ID	Station Location	PCB	8	18	28	44	52	66	101	105	110	118	138	153	170	180	187
WA99-0001	MAKAH BAY	1.84	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.23	0.22	0.3	0.77	0.32
WA99-0002	МАКАН ВАҮ	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
WA99-0003	МАКАН ВАҮ	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
WA99-0004	HOKO RIVER	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
WA99-0005	OZETTE RIVER		пъ	TTD		110				t sample							
WA99-0006	FRESHWATER BAY									nt samp							
WA99-0007	FRESHWATER BAY	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
WA99-0008	FRESHWATER BAY							no	sedime	nt samp	led						
WA99-0009	DUNGENESS BAY	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
WA99-0010	DISCOVERY BAY	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
WA99-0011	DISCOVERY BAY	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
WA99-0012	DISCOVERY BAY	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
WA99-0013	DISCOVERY BAY	1.81	ND	ND	ND	ND	0.33	ND	0.31	ND	ND	0.34	0.42	0.41	ND	ND	ND
WA99-0014	DISCOVERY BAY	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
WA99-0015	KALALOCH CREEK	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
WA99-0016	RAFT RIVER	1.25	ND	ND	ND	ND	ND	ND	0.17	0.16	0.27	0.18	0.33	0.14	ND	ND	ND
WA99-0017	QUINAULT RIVER	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
WA99-0018	QUINAULT RIVER							st	ation no	t sample	ed	-					
WA99-0019	CONNER CREEK	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
WA99-0020	GRAYS HARBOR	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
WA99-0021	GRASS CREEK	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
WA99-0022	GRAYS HARBOR	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
WA99-0023	GRAYS HARBOR	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
WA99-0024	GRAYS HARBOR	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
WA99-0025	GRAYS HARBOR	4.41	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.49	1.1	0.32	1	1.5
WA99-0026	GRAYS HARBOR	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
WA99-0027	BEARDSLEE SLOUGH	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
WA99-0028	BEARDSLEE SLOUGH	station not sampled															
WA99-0029	GRAYS HARBOR	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
WA99-0030	WILLAPA BAY							no	sedime	nt samp	led						
WA99-0031	WILLAPA BAY	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
WA99-0032	WILLAPA BAY								ation no	t sample							
WA99-0033	WILLAPA BAY	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

Table D-7. Sediment total and individual PCB concentrations (ng/g dry weight)

EMAP		TOTAL	PCB	PCB	PCB	PCB	PCB	PCB	РСВ	РСВ	PCB	РСВ	PCB	РСВ	PCB	PCB	РСВ
Station ID	Station Location	PCB	8	18	28	44	52	66	101	105	110	118	138	153	170	180	187
WA99-0034	WILLAPA BAY	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
WA99-0035	WILLAPA BAY	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
WA99-0036	WILLAPA BAY	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
WA99-0037	WILLAPA BAY							st	ation no	t sample	əd						
WA99-0038	BAKER BAY	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
WA99-0039	BAKER BAY	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
WA99-0040	BAKER BAY	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
WA99-0041	GRAYS RIVER							st	ation no	t sample	əd						
WA99-0042	BAKER BAY	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
WA99-0043	GRAYS BAY	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
WA99-0044	GRAYS BAY	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
WA99-0045	GRAYS BAY	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
WA99-0046	GRAYS BAY	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
WA99-0047	GRAYS BAY	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
WA99-0048	COWLITZ RIVER	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
WA99-0049	CARROLLS CHANNEL	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
WA99-0050	MARTIN SLOUGH	4.9	0.22	0.33	0.66	0.43	0.61	0.59	0.47	0.22	0.4	0.41	0.32	0.24	ND	ND	ND
Notes: (1) Av not detected a	eraged over lab replicat at any station.	es, if any	. (2) N	on-dete	cts (ND)	set to z	ero for l	EMAP a	nalyses.	(3) PC	B Cong	eners 77	7, 126, 1	28, 195	, 206, ai	nd 209 v	vere

EMAP Station ID	Station Location	Total DDT	4,4'-DDD	4,4'-DDE
WA99-0001	MAKAH BAY	non-detect	non-detect	non-detect
WA99-0002	MAKAH BAY	non-detect	non-detect	non-detect
WA99-0003	MAKAH BAY	non-detect	non-detect	non-detect
WA99-0004	HOKO RIVER	non-detect	non-detect	non-detect
WA99-0005	OZETTE RIVER	:	station not sampled	1
WA99-0006	FRESHWATER BAY		o sediment sample	
WA99-0007	FRESHWATER BAY	non-detect	non-detect	non-detect
WA99-0008	FRESHWATER BAY		o sediment sample	
WA99-0009	DUNGENESS BAY	non-detect	non-detect	non-detect
WA99-0010	DISCOVERY BAY	0.3	non-detect	0.3
WA99-0011	DISCOVERY BAY	non-detect	non-detect	non-detect
WA99-0012	DISCOVERY BAY	non-detect	non-detect	non-detect
WA99-0013	DISCOVERY BAY	0.66	non-detect	0.66
WA99-0014	DISCOVERY BAY	non-detect	non-detect	non-detect
WA99-0015	KALALOCH CREEK	non-detect	non-detect	non-detect
WA99-0016	RAFT RIVER	non-detect	non-detect	non-detect
WA99-0017	QUINAULT RIVER	non-detect	non-detect	non-detect
NA99-0017 NA99-0018	QUINAULT RIVER			
NA99-0018 NA99-0019			station not sampled	
	CONNER CREEK	non-detect	non-detect	non-detect
NA99-0020	GRAYS HARBOR	non-detect	non-detect	non-detect
NA99-0021	GRASS CREEK	non-detect	non-detect	non-detect
NA99-0022	GRAYS HARBOR	non-detect	non-detect	non-detect
NA99-0023	GRAYS HARBOR	non-detect	non-detect	non-detect
NA99-0024	GRAYS HARBOR	non-detect	non-detect	non-detect
NA99-0025	GRAYS HARBOR	non-detect	non-detect	non-detect
NA99-0026	GRAYS HARBOR	non-detect	non-detect	non-detect
NA99-0027	BEARDSLEE SLOUGH	non-detect	non-detect	non-detect
NA99-0028	BEARDSLEE SLOUGH		station not sampled	ł
WA99-0029	GRAYS HARBOR	non-detect	non-detect	non-detect
WA99-0030	WILLAPA BAY	n	o sediment sample	d
WA99-0031	WILLAPA BAY	non-detect	non-detect	non-detect
NA99-0032	WILLAPA BAY	:	station not sampled	ł
WA99-0033	WILLAPA BAY	non-detect	non-detect	non-detect
NA99-0034	WILLAPA BAY	non-detect	non-detect	non-detect
WA99-0035	WILLAPA BAY	non-detect	non-detect	non-detect
WA99-0036	WILLAPA BAY	non-detect	non-detect	non-detect
NA99-0037	WILLAPA BAY		station not sampled	
NA99-0038	BAKER BAY	0.21	non-detect	0.21
NA99-0039	BAKER BAY	0.49	non-detect	0.49
VA99-0040	BAKER BAY	0.27	non-detect	0.27
WA99-0041	GRAYS RIVER		station not sampled	
WA99-0041 WA99-0042	BAKER BAY	non-detect	non-detect	non-detect
WA99-0042 WA99-0043	GRAYS BAY	0.32	non-detect	0.32
WA99-0043 WA99-0044				non-detect
	GRAYS BAY	non-detect 0.43	non-detect	
WA99-0045	GRAYS BAY		non-detect	0.43
WA99-0046	GRAYS BAY	0.43	non-detect	0.43
WA99-0047	GRAYS BAY	non-detect	non-detect	non-detect
WA99-0048	COWLITZ RIVER	non-detect	non-detect	non-detect
WA99-0049	CARROLLS CHANNEL	non-detect	non-detect 0.59	non-detect 1.5
WA99-0050	MARTIN SLOUGH	2.09		

Table D-8. Sediment total and individual DDT concentrations (ng/g dry weight)

EMAP Station ID	Station Location	Method SW 8081	Method SW 8270
WA99-0001	МАКАН ВАҮ	non-detect	non-detect
WA99-0002	MAKAH BAY	non-detect	non-detect
WA99-0003	MAKAH BAY	non-detect	non-detect
WA99-0004	HOKO RIVER	non-detect	non-detect
WA99-0005	OZETTE RIVER		ot sampled
WA99-0006	FRESHWATER BAY		ent sampled
WA99-0007	FRESHWATER BAY	non-detect	non-detect
WA99-0008	FRESHWATER BAY		ent sampled
WA99-0009	DUNGENESS BAY	non-detect	non-detect
WA99-0009 WA99-0010	DISCOVERY BAY	0.34	non-detect
WA99-0010	DISCOVERY BAY	non-detect	non-detect
WA99-0011 WA99-0012	DISCOVERY BAY	non-detect	non-detect
WA99-0012 WA99-0013	DISCOVERY BAY	non-detect	non-detect
WA99-0013 WA99-0014			non-detect
	DISCOVERY BAY	non-detect	
WA99-0015		non-detect	non-detect
WA99-0016		non-detect	non-detect
WA99-0017		23.1	43
WA99-0018			ot sampled
WA99-0019	CONNER CREEK	non-detect	non-detect
WA99-0020	GRAYS HARBOR	non-detect	non-detect
WA99-0021	GRASS CREEK	non-detect	non-detect
WA99-0022	GRAYS HARBOR	non-detect	non-detect
WA99-0023	GRAYS HARBOR	non-detect	non-detect
WA99-0024	GRAYS HARBOR	non-detect	non-detect
WA99-0025	GRAYS HARBOR	non-detect	non-detect
WA99-0026	GRAYS HARBOR	non-detect	non-detect
WA99-0027	BEARDSLEE SLOUGH	non-detect	non-detect
WA99-0028	BEARDSLEE SLOUGH		ot sampled
WA99-0029	GRAYS HARBOR	non-detect	non-detect
WA99-0030	WILLAPA BAY		ent sampled
WA99-0031	WILLAPA BAY	non-detect	non-detect
WA99-0032	WILLAPA BAY		ot sampled
WA99-0033	WILLAPA BAY	non-detect	non-detect
WA99-0034	WILLAPA BAY	non-detect	non-detect
WA99-0035	WILLAPA BAY	non-detect	non-detect
WA99-0036	WILLAPA BAY	non-detect	non-detect
WA99-0037	WILLAPA BAY	station no	ot sampled
WA99-0038	BAKER BAY	non-detect	non-detect
WA99-0039	BAKER BAY	non-detect	non-detect
WA99-0040	BAKER BAY	non-detect	non-detect
WA99-0041	GRAYS RIVER	station no	ot sampled
WA99-0042	BAKER BAY	non-detect	non-detect
WA99-0043	GRAYS BAY	non-detect	non-detect
WA99-0044	GRAYS BAY	non-detect	non-detect
WA99-0045	GRAYS BAY	non-detect	non-detect
WA99-0046	GRAYS BAY	non-detect	non-detect
WA99-0047	GRAYS BAY	non-detect	non-detect
WA99-0048	COWLITZ RIVER	non-detect	non-detect
WA99-0049	CARROLLS CHANNEL	non-detect	non-detect
		non-detect	non-detect

Table D-9. Sediment chlorinated pesticide concentrations (ng/g dry weight)

				r
		Amphipod	Sea Urchin	Sea Urchin Embryo
		Survival Test	Fertilization Test	Development Test
	-	(Ampelisca abdita)	(Arbacia punctulata)	(Arbacia punctulata)
EMAP		Control-Corrected	Control-Corrected	Normal Development
Station ID	Station Location	Survival (%)	Fertilization (%)	(%)
WA99-0001	MAKAH BAY	87.8	101.0	0.0
WA99-0002	MAKAH BAY	83.7	101.4	96.2
WA99-0003	MAKAH BAY	93.9	103.5	99.6
WA99-0004	HOKO RIVER	87.8	100.3	27.2
WA99-0005	OZETTE RIVER	station not sampled	station not sampled	station not sampled
WA99-0006	FRESHWATER BAY	no sediment sampled	no sediment sampled	no sediment sampled
WA99-0007	FRESHWATER BAY	96.9	100.3	9.9
WA99-0008	FRESHWATER BAY	no sediment sampled	no sediment sampled	no sediment sampled
WA99-0009	DUNGENESS BAY	99.0	101.8	9.1
WA99-0010	DISCOVERY BAY	94.9	102.0	62.9
WA99-0011	DISCOVERY BAY	90.8	102.4	24.3
WA99-0012	DISCOVERY BAY	91.8	94.8	0.0
WA99-0013	DISCOVERY BAY	86.7	1.3	0.0
WA99-0014	DISCOVERY BAY	93.9	99.5	0.0
WA99-0015	KALALOCH CREEK	101.1	102.6	98.1
WA99-0016	RAFT RIVER	94.6	61.4	0.0
WA99-0017	QUINAULT RIVER	95.7	97.8	97.9
WA99-0018	QUINAULT RIVER	station not sampled	station not sampled	station not sampled
WA99-0019	CONNER CREEK	102.2	103.5	88.9
WA99-0020	GRAYS HARBOR	102.2	100.7	99.8
WA99-0021	GRASS CREEK	96.7	98.6	100.9
WA99-0022	GRAYS HARBOR	insufficient control survival	102.4	100.7
WA99-0023	GRAYS HARBOR	insufficient control survival	101.8	80.6
WA99-0024	GRAYS HARBOR	87.0	103.7	99.4
WA99-0025	GRAYS HARBOR	insufficient control survival	101.6	91.8
WA99-0026	GRAYS HARBOR	insufficient control survival	104.1	101.1
WA99-0027	BEARDSLEE SLOUGH	93.5	100.7	101.9
WA99-0028	BEARDSLEE SLOUGH	station not sampled	station not sampled	station not sampled
WA99-0029	GRAYS HARBOR	90.2	103.5	101.9
WA99-0030	WILLAPA BAY	no sediment sampled	no sediment sampled	no sediment sampled
WA99-0031	WILLAPA BAY	insufficient control survival	102.9	99.6
WA99-0032	WILLAPA BAY	station not sampled	station not sampled	station not sampled
WA99-0033	WILLAPA BAY	79.8	104.3	101.9
WA99-0034	WILLAPA BAY	insufficient control survival	94.0	80.8
WA99-0035	WILLAPA BAY	95.7	103.5	92.2
WA99-0036	WILLAPA BAY	88.3	102.9	99.2
WA99-0037	WILLAPA BAY	station not sampled	station not sampled	station not sampled
WA99-0038	BAKER BAY	98.9	103.3	100.0
WA99-0039	BAKER BAY	92.4	101.4	103.2
WA99-0040	BAKER BAY	91.3	101.8	96.9
WA99-0041	GRAYS RIVER	station not sampled	station not sampled	station not sampled
WA99-0042	BAKER BAY	94.6	103.3	100.9
WA99-0043	GRAYS BAY	76.1	100.1	100.5
WA99-0044	GRAYS BAY	84.8	95.5	96.9
WA99-0045	GRAYS BAY	56.5	101.8	96.9
WA99-0046	GRAYS BAY	81.5	101.8	98.8
WA99-0047	GRAYS BAY	90.2	102.4	99.2
WA99-0048	COWLITZ RIVER	72.8	102.2	87.0
WA99-0049	CARROLLS CHANNEL	89.7	102.9	92.6
WA99-0050	MARTIN SLOUGH	insufficient control survival	99.5	99.4

			Negative Control	Control-Corrected
EMAP Station ID	Station Location	Survival (%)	Survival (%)	Survival (%)
WA99-0001	МАКАН ВАҮ	86	98	87.8
WA99-0002	МАКАН ВАҮ	82	98	83.7
WA99-0003	МАКАН ВАҮ	92	98	93.9
WA99-0004	HOKO RIVER	86	98	87.8
WA99-0005	OZETTE RIVER		station not sampled	•
WA99-0006	FRESHWATER BAY		no sediment sampled	d
WA99-0007	FRESHWATER BAY	95	98	96.9
WA99-0008	FRESHWATER BAY		no sediment sampled	
WA99-0009	DUNGENESS BAY	97	98	99.0
WA99-0010	DISCOVERY BAY	93	98	94.9
WA99-0011	DISCOVERY BAY	89	98	90.8
WA99-0012	DISCOVERY BAY	90	98	91.8
WA99-0013	DISCOVERY BAY	85	98	86.7
WA99-0014	DISCOVERY BAY	92	98	93.9
WA99-0015	KALALOCH CREEK	93	92	101.1
WA99-0016	RAFT RIVER	87	92	94.6
WA99-0017	QUINAULT RIVER	88	92	95.7
WA99-0018	QUINAULT RIVER	00	station not sampled	00.1
WA99-0019	CONNER CREEK	94	92	102.2
WA99-0020	GRAYS HARBOR	94	92	102.2
WA99-0020	GRASS CREEK	89	92	96.7
WA99-0022	GRAYS HARBOR		sufficient control survi	
WA99-0023	GRAYS HARBOR		sufficient control surv	
WA99-0024	GRAYS HARBOR	80	92	87.0
WA99-0025	GRAYS HARBOR		sufficient control survi	
WA99-0026	GRAYS HARBOR		sufficient control surv	
WA99-0027	BEARDSLEE SLOUGH	86	92	93.5
WA99-0028	BEARDSLEE SLOUGH	00	station not sampled	00.0
WA99-0029	GRAYS HARBOR	83	92	90.2
WA99-0030	WILLAPA BAY	00	no sediment sampled	
WA99-0031	WILLAPA BAY	in	sufficient control surv	
WA99-0032	WILLAPA BAY	11	station not sampled	ivai
WA99-0033	WILLAPA BAY	75	94	79.8
WA99-0034	WILLAPA BAY		sufficient control surv	
WA99-0035	WILLAPA BAY	90	94	95.7
WA99-0036	WILLAPA BAY	83	94	88.3
WA99-0037	WILLAPA BAY	00	station not sampled	00.5
WA99-0038	BAKER BAY	91	92	98.9
WA99-0039	BAKER BAY	85	92	92.4
WA99-0039 WA99-0040	BAKER BAY	84	92	91.3
WA99-0040 WA99-0041	GRAYS RIVER	04	station not sampled	91.5
WA99-0041 WA99-0042	BAKER BAY	87	92	94.6
WA99-0042 WA99-0043	GRAYS BAY	70	92	76.1
WA99-0043 WA99-0044	GRAYS BAY GRAYS BAY	70	92	84.8
WA99-0044 WA99-0045		52	92	56.5
WA99-0045 WA99-0046	GRAYS BAY	52 75	92	81.5
	GRAYS BAY			
WA99-0047		<u>83</u> 67	92	90.2
WA99-0048	COWLITZ RIVER		92	72.8
WA99-0049	CARROLLS CHANNEL	82.5	92	89.7
WA99-0050	MARTIN SLOUGH	In	sufficient control surv	ivai

Table D-11. Amphipod (Ampelisca abdita) survival test results

		100% salir	nity-adjusted	porewater	50% salin	ity-adjusted	porewater	25% salin	ity-adjusted	porewater
			Negative Control	Control- Corrected		Negative Control	Control- Corrected		Negative Control	Control- Corrected
EMAP		Fertilization	Fertilization	Fertilization	Fertilization	Fertilization	Fertilization	Fertilization	Fertilization	Fertilization
Station ID	Station Location	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)
WA99-0001	MAKAH BAY	95.4	94.5	101.0	96.2	94.5	101.8	97.6	94.5	103.3
WA99-0002	MAKAH BAY	95.8	94.5	101.4	96.2	94.5	101.8	95.8	94.5	101.4
WA99-0003	MAKAH BAY	97.8	94.5	103.5	97	94.5	102.6	96.6	94.5	102.2
WA99-0004	HOKO RIVER	94.8	94.5	100.3	95.6	94.5	101.2	96.2	94.5	101.8
WA99-0005	OZETTE RIVER	stat	ion not samp	oled	stat	tion not samp	oled	stat	ion not samp	bled
WA99-0006	FRESHWATER BAY		ediment sam			ediment sam			ediment sam	
WA99-0007	FRESHWATER BAY	94.8	94.5	100.3	96.8	94.5	102.4	94.4	94.5	99.9
WA99-0008	FRESHWATER BAY		ediment sam			ediment sam	pled		ediment sam	pled
WA99-0009	DUNGENESS BAY	96.2	94.5	101.8	97	94.5	102.6	96.2	94.5	101.8
WA99-0010	DISCOVERY BAY	96.4	94.5	102.0	97.4	94.5	103.1	95.8	94.5	101.4
WA99-0011	DISCOVERY BAY	96.8	94.5	102.4	95.2	94.5	100.7	96.8	94.5	102.4
WA99-0012	DISCOVERY BAY	89.6	94.5	94.8	96	94.5	101.6	97.2	94.5	102.9
WA99-0013	DISCOVERY BAY	1.2	94.5	1.3	4.8	94.5	5.1	71.6	94.5	75.8
WA99-0014	DISCOVERY BAY	94	94.5	99.5	95.8	94.5	101.4	96	94.5	101.6
WA99-0015	KALALOCH CREEK	97	94.5	102.6	98	94.5	103.7	98	94.5	103.7
WA99-0016	RAFT RIVER	58	94.5	61.4	94.8	94.5	100.3	95.4	94.5	101.0
WA99-0017	QUINAULT RIVER	92.4	94.5	97.8	96.4	94.5	102.0	98	94.5	103.7
WA99-0018	QUINAULT RIVER	stat	ion not samp		stat	tion not samp			ion not samp	bled
WA99-0019	CONNER CREEK	97.8	94.5	103.5	98.2	94.5	103.9	96.2	94.5	101.8
WA99-0020	GRAYS HARBOR	95.2	94.5	100.7	96	94.5	101.6	96.4	94.5	102.0
WA99-0021	GRASS CREEK	93.2	94.5	98.6	95.8	94.5	101.4	96.4	94.5	102.0
WA99-0022	GRAYS HARBOR	96.8	94.5	102.4	96.4	94.5	102.0	97	94.5	102.6
WA99-0023	GRAYS HARBOR	96.2	94.5	101.8	97.2	94.5	102.9	98.2	94.5	103.9
WA99-0024	GRAYS HARBOR	98	94.5	103.7	96.2	94.5	101.8	97.6	94.5	103.3
WA99-0025	GRAYS HARBOR	96	94.5	101.6	95.6	94.5	101.2	97.2	94.5	102.9
WA99-0026	GRAYS HARBOR	98.4	94.5	104.1	96.4	94.5	102.0	96.6	94.5	102.2
WA99-0027	BEARDSLEE SLOUGH	95.2	94.5	100.7	96.8	94.5	102.4	96	94.5	101.6
WA99-0028	BEARDSLEE SLOUGH		ion not samp			tion not samp			ion not samp	
WA99-0029	GRAYS HARBOR	97.8	94.5	103.5	98.2	94.5	103.9	97	94.5	102.6

Table D-12. Sea urchin (Arbacia punctulata) fertilization test results

		100% saliı	nity-adjusted	porewater	50% salin	ity-adjusted	porewater	25% salin	ity-adjusted	porewater
			Negative Control	Control- Corrected		Negative Control	Control- Corrected		Negative Control	Control- Corrected
EMAP		Fertilization	Fertilization		Fertilization	Fertilization	Fertilization	Fertilization	Fertilization	
Station ID	Station Location	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)
WA99-0030	WILLAPA BAY		ediment sam			ediment sam	pled		ediment sam	
WA99-0031	WILLAPA BAY	97.2	94.5	102.9	97.2	94.5	102.9	98.8	94.5	104.6
WA99-0032	WILLAPA BAY	stat	ion not samp	oled	stat	tion not samp	oled	stat	tion not samp	oled
WA99-0033	WILLAPA BAY	98.6	94.5	104.3	95.8	94.5	101.4	97.2	94.5	102.9
WA99-0034	WILLAPA BAY	88.8	94.5	94.0	97.8	94.5	103.5	96.8	94.5	102.4
WA99-0035	WILLAPA BAY	97.8	94.5	103.5	97	94.5	102.6	98	94.5	103.7
WA99-0036	WILLAPA BAY	97.2	94.5	102.9	95.8	94.5	101.4	97.4	94.5	103.1
WA99-0037	WILLAPA BAY	stat	ion not samp		stat	tion not samp	oled	stat	tion not samp	bled
WA99-0038	BAKER BAY	97.6	94.5	103.3	97	94.5	102.6	97.8	94.5	103.5
WA99-0039	BAKER BAY	95.8	94.5	101.4	95.8	94.5	101.4	97.4	94.5	103.1
WA99-0040	BAKER BAY	96.2	94.5	101.8	98	94.5	103.7	95.8	94.5	101.4
WA99-0041	GRAYS RIVER	stat	ion not samp		stat	tion not samp	oled	stat	tion not samp	bled
WA99-0042	BAKER BAY	97.6	94.5	103.3	97.6	94.5	103.3	98.4	94.5	104.1
WA99-0043	GRAYS BAY	94.6	94.5	100.1	95.8	94.5	101.4	96	94.5	101.6
WA99-0044	GRAYS BAY	90.2	94.5	95.5	96.2	94.5	101.8	97.2	94.5	102.9
WA99-0045	GRAYS BAY	96.2	94.5	101.8	95.4	94.5	101.0	97.6	94.5	103.3
WA99-0046	GRAYS BAY	96.2	94.5	101.8	96.8	94.5	102.4	97	94.5	102.6
WA99-0047	GRAYS BAY	96.8	94.5	102.4	96.4	94.5	102.0	95.6	94.5	101.2
WA99-0048	COWLITZ RIVER	96.6	94.5	102.2	96.8	94.5	102.4	96.6	94.5	102.2
WA99-0049	CARROLLS CHANNEL	97.2	94.5	102.9	98.6	94.5	104.3	97.8	94.5	103.5
WA99-0050	MARTIN SLOUGH	94	94.5	99.5	94.6	94.5	100.1	96.2	94.5	101.8

		100% salir	nity-adjusted	porewater	50% salin	ity-adjusted	porewater	25% salin	ity-adjusted	porewater
			Negative	Control-		Negative	Control-		Negative	Control-
			Control	Corrected		Control	Corrected		Control	Corrected
EMAP		Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal
Station ID	Station Location	Devel. (%)	Devel. (%)	Devel. (%)	Devel. (%)	Devel. (%)	Devel. (%)	Devel. (%)	Devel. (%)	Devel. (%)
WA99-0001	MAKAH BAY	0	94.8	0.0	8.2	94.8	8.7	93.2	94.8	98.3
WA99-0002	MAKAH BAY	91.2	94.8	96.2	94.6	94.8	99.8	93.6	94.8	98.8
WA99-0003	МАКАН ВАҮ	94.4	94.8	99.6	93.8	94.8	99.0	94.8	94.8	100.0
WA99-0004	HOKO RIVER	25.8	94.8	27.2	93.2	94.8	98.3	94	94.8	99.2
WA99-0005	OZETTE RIVER	stat	ion not samp	oled	stat	ion not sam	oled	stat	ion not sam	oled
WA99-0006	FRESHWATER BAY	no s	ediment sam	pled	no s	ediment sam	npled	no s	ediment sam	npled
WA99-0007	FRESHWATER BAY	9.4	94.8	9.9	92.4	94.8	97.5	94.6	94.8	99.8
WA99-0008	FRESHWATER BAY	no se	ediment sam	pled	no s	ediment sam	npled		ediment sarr	
WA99-0009	DUNGENESS BAY	8.6	94.8	9.1	96.2	94.8	101.5	95.4	94.8	100.7
WA99-0010	DISCOVERY BAY	59.6	94.8	62.9	94	94.8	99.2	95.4	94.8	100.7
WA99-0011	DISCOVERY BAY	23	94.8	24.3	92.6	94.8	97.7	94.4	94.8	99.6
WA99-0012	DISCOVERY BAY	0	94.8	0.0	81	94.8	85.5	90.4	94.8	95.4
WA99-0013	DISCOVERY BAY	0	94.8	0.0	1.6	94.8	1.7	95.4	94.8	100.7
WA99-0014	DISCOVERY BAY	0	94.8	0.0	90.2	94.8	95.2	95.4	94.8	100.7
WA99-0015	KALALOCH CREEK	93	94.8	98.1	95.4	94.8	100.7	93	94.8	98.1
WA99-0016	RAFT RIVER	0	94.8	0.0	24.8	94.8	26.2	94	94.8	99.2
WA99-0017	QUINAULT RIVER	92.8	94.8	97.9	90.6	94.8	95.6	94	94.8	99.2
	QUINAULT RIVER		ion not samp			ion not sam			ion not sam	
WA99-0019	CONNER CREEK	84.2	94.8	88.9	91.2	94.8	96.2	90.4	94.8	95.4
	GRAYS HARBOR	94.6	94.8	99.8	94.2	94.8	99.4	94.6	94.8	99.8
	GRASS CREEK	95.6	94.8	100.9	95	94.8	100.2	95.6	94.8	100.9
WA99-0022	GRAYS HARBOR	95.4	94.8	100.7	97.4	94.8	102.8	97.4	94.8	102.8
	GRAYS HARBOR	76.4	94.8	80.6	96.6	94.8	101.9	97.8	94.8	103.2
	GRAYS HARBOR	94.2	94.8	99.4	95	94.8	100.2	95.2	94.8	100.5
WA99-0025	GRAYS HARBOR	87	94.8	91.8	97	94.8	102.4	95.2	94.8	100.5
WA99-0026	GRAYS HARBOR	95.8	94.8	101.1	95.4	94.8	100.7	95.4	94.8	100.7
	BEARDSLEE SLOUGH	96.6	94.8	101.9	96.4	94.8	101.7	96.2	94.8	101.5
	BEARDSLEE SLOUGH		ion not samp			ion not sam			ion not sam	
WA99-0029	GRAYS HARBOR	96.6	94.8	101.9	94.2	94.8	99.4	95.8	94.8	101.1

Table D-13. Sea urchin (Arbacia punctulata) embryo development test results

		100% salir	nity-adjusted	porewater	50% salin	ity-adjusted	porewater	25% salin	ity-adjusted	porewater
			Negative Control	Control- Corrected		Negative Control	Control- Corrected		Negative Control	Control- Corrected
EMAP		Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal
Station ID	Station Location	Devel. (%)	Devel. (%)	Devel. (%)	Devel. (%)	Devel. (%)	Devel. (%)	Devel. (%)	Devel. (%)	Devel. (%)
WA99-0030	WILLAPA BAY	no se	ediment sam	npled	no s	ediment sam	npled	no s	ediment sam	npled
WA99-0031	WILLAPA BAY	94.4	94.8	99.6	97	94.8	102.4	96.2	94.8	101.5
WA99-0032	WILLAPA BAY	stat	ion not sam	oled	stat	ion not sam	oled	stat	ion not sam	oled
WA99-0033	WILLAPA BAY	96.6	94.8	101.9	96	94.8	101.3	93.8	94.8	99.0
WA99-0034	WILLAPA BAY	76.6	94.8	80.8	94	94.8	99.2	96	94.8	101.3
WA99-0035	WILLAPA BAY	87.4	94.8	92.2	96	94.8	101.3	95.6	94.8	100.9
WA99-0036	WILLAPA BAY	94	94.8	99.2	92.2	94.8	97.3	89.8	94.8	94.8
WA99-0037	WILLAPA BAY	stat	ion not sam	oled	stat	ion not sam	oled	stat	ion not sam	oled
WA99-0038	BAKER BAY	94.8	94.8	100.0	95.4	94.8	100.7	97	94.8	102.4
WA99-0039	BAKER BAY	97.8	94.8	103.2	95.4	94.8	100.7	95.8	94.8	101.1
WA99-0040	BAKER BAY	91.8	94.8	96.9	96	94.8	101.3	91.4	94.8	96.4
WA99-0041	GRAYS RIVER	stat	ion not sam	oled	stat	ion not sam	oled		ion not sam	oled
WA99-0042	BAKER BAY	95.6	94.8	100.9	96.2	94.8	101.5	96	94.8	101.3
	GRAYS BAY	95.2	94.8	100.5	96.4	94.8	101.7	93.6	94.8	98.8
WA99-0044	GRAYS BAY	91.8	94.8	96.9	95.4	94.8	100.7	92.4	94.8	97.5
	GRAYS BAY	91.8	94.8	96.9	95.6	94.8	100.9	92.8	94.8	97.9
WA99-0046	GRAYS BAY	93.6	94.8	98.8	92.4	94.8	97.5	92.2	94.8	97.3
WA99-0047	GRAYS BAY	94	94.8	99.2	94	94.8	99.2	92	94.8	97.1
	COWLITZ RIVER	82.4	94.8	87.0	88.4	94.8	93.3	90.8	94.8	95.8
WA99-0049	CARROLLS CHANNEL	87.8	94.8	92.6	85.2	94.8	89.9	89.4	94.8	94.3
WA99-0050	MARTIN SLOUGH	94.2	94.8	99.4	94.6	94.8	99.8	88.6	94.8	93.5

EMAP			Aluminum	Arsenic	Cadmium	Chromium	Copper	Ę	ead	Mercury	Nickel	Selenium	Silver	Ē	p
Station ID	Station Location	Species	Alt	An	ů	ъ С		Iron		Ň	Ž	Se	Sil	Tin	Zinc
WA99-0001	MAKAH BAY							n sample					-		
	MAKAH BAY	sand sole	12	0.88	0.2	1.1	2.9	19	0.058	0.0314	1.2	0.32	ND	ND	17.9
	MAKAH BAY	sand sole	13	1	ND	1.1	ND	18	0.78	0.016	ND	0.41	ND	ND	21
WA99-0004	HOKO RIVER	speckled sanddab	33	1.4	ND	1	1.32	33	0.11	0.018	ND	0.35	0.017	ND	19
	OZETTE RIVER							not samp							
	FRESHWATER BAY	speckled sanddab	11	2.1	ND	1.2	1.88	18	ND	0.024	ND	0.41	0.015	0.06	17.8
	FRESHWATER BAY	speckled sanddab	8.9	3.07	0.056	1.2	1.39	13	0.051	0.02	ND	0.39	0.012	0.057	17.3
WA99-0008	FRESHWATER BAY		-	-	-	_	no fisł	n sample	d	-	-	-	-	-	
	DUNGENESS BAY					nsufficier									
WA99-0010	DISCOVERY BAY				ir	nsufficier	nt target	species	fish obta	ained					
WA99-0011	DISCOVERY BAY					no	target sp	oecies ol	otained						
WA99-0012	DISCOVERY BAY	English sole	114	3.77	0.052	1.3	ND	108	0.31	0.0089	ND	ND	0.015	ND	17.3
WA99-0013	DISCOVERY BAY	English sole	123	2.5	ND	2.2	3.68	156	0.13	0.01	ND	0.32	0.017	0.15	14.7
WA99-0014	DISCOVERY BAY	English sole	160	3.64	ND	1.6	3.99	233	0.1	0.0086	ND	0.31	ND	0.16	17.1
WA99-0015	KALALOCH CREEK				ir	nsufficier	nt target	species	fish obta	ained					
WA99-0016	RAFT RIVER	starry flounder	109	0.32	ND	1.4	ND	102	0.12	0.017	ND	ND	ND	ND	27.3
WA99-0017	QUINAULT RIVER						no fisł	n sample	ed						
WA99-0018	QUINAULT RIVER						station r	not samp	oled						
WA99-0019	CONNER CREEK					no	target sp	oecies ol	otained						
WA99-0020	GRAYS HARBOR				ir	nsufficier	nt target	species	fish obta	ained					
WA99-0021	GRASS CREEK	English sole	47	0.35	ND	1	ND	59.3	0.079	0.0042	ND	0.34	ND	ND	21.8
WA99-0022	GRAYS HARBOR				ir	nsufficier	nt target	species	fish obta	ained					
WA99-0023	GRAYS HARBOR				ir	nsufficier	nt target	species	fish obta	ained					
WA99-0024	GRAYS HARBOR				ir	nsufficier	nt target	species	fish obta	ained					
WA99-0025	GRAYS HARBOR				ir	nsufficier	nt target	species	fish obta	ained					
WA99-0026	GRAYS HARBOR				ir	nsufficier	nt target	species	fish obta	ained					
WA99-0027	BEARDSLEE SLOUGH	English sole	175	0.88	ND	1	2.25	233	0.13	0.0089	ND	0.63	ND	ND	20.8
WA99-0028	BEARDSLEE SLOUGH						station r	not samp	oled						
WA99-0029	GRAYS HARBOR				ir	nsufficier	nt target	species	fish obta	ained					
WA99-0030	WILLAPA BAY						no fisł	n sample	ed						
WA99-0031	WILLAPA BAY	English sole	186	0.65	ND	1	ND	210	0.24	0.0075	ND	0.5	ND	ND	20.2

Table D-14. Fish-tissue metals concentrations ($\mu g/g$ wet weight)

EMAP			Aluminum	Arsenic	admium	Chromium	Copper	ron	-ead	Mercury	Nickel	Selenium	Silver	Ē	D
Station ID	Station Location	Species	Al	Ar	ů	•	0	_	_	Ň	Ž	Se	Sil	Tin	Zinc
	WILLAPA BAY						station r								
WA99-0033	WILLAPA BAY							n sample		-					
WA99-0034	WILLAPA BAY	English sole	95.4	1.1	ND	1.3	1.92	114	0.84	0.0098	ND	0.6	ND	0.054	18.9
WA99-0035	WILLAPA BAY						no fisł	n sample	ed						
WA99-0036	WILLAPA BAY	English sole	101	0.97	ND	0.75	1.33	135	0.11	0.011	ND	0.56	ND	ND	19.9
WA99-0037	WILLAPA BAY						station r	not samp	oled						
WA99-0038	BAKER BAY	starry flounder	96.3	ND	ND	1.2	3.73	152	0.17	0.017	ND	0.3	ND	0.14	25.3
WA99-0039	BAKER BAY				ii	nsufficier	nt target	species	fish obta	ained					
WA99-0040	BAKER BAY	English sole	73.5	0.36	ND	0.75	2.67	99.7	0.099	0.016	ND	0.34	ND	0.083	20.8
WA99-0041	GRAYS RIVER						station r	not samp	oled						
WA99-0042	BAKER BAY	English sole	108	ND	ND	0.78	1.3	124	0.19	0.016	ND	0.41	0.27	ND	22.4
WA99-0043	GRAYS BAY	starry flounder	48	ND	0.052	0.87	0.83	66.4	0.084	0.013	ND	0.34	ND	ND	26.4
WA99-0044	GRAYS BAY	starry flounder	76	ND	ND	0.67	0.61	151	0.19	0.011	ND	0.32	ND	ND	32.1
WA99-0045	GRAYS BAY					no fis	h kept fo	or tissue	analyse	S					
WA99-0046	GRAYS BAY	starry flounder	37	ND	ND	0.49	2.12	46	0.054	0.012	ND	ND	ND	0.072	27.1
WA99-0047	GRAYS BAY	starry flounder	24.5	ND	ND	0.445	3.115	30	0.07	0.013	ND	0.155	ND	0.12	28.45
WA99-0048	COWLITZ RIVER	starry flounder	34.2	ND	ND	0.635	2.39	14	0.08	0.026	ND	ND	ND	0.0815	22.4
WA99-0049	CARROLLS CHANNEL	starry flounder	24	ND	ND	0.54	0.59	37	0.24	0.021	ND	0.46	ND	ND	29.2
WA99-0050	MARTIN SLOUGH	starry flounder	16	ND	ND	0.38	1.46	23	0.061	18	ND	0.46	ND	ND	23.5
Notes: (1) Av	veraged over lab replic	ates, if any. (2) NDs	set to z	ero for E	MAP and	alyses.									

EMAP		PCB	PCB	PCB	PCB	PCB	PCB	PCB	PCB	PCB	PCB	PCB	PCB	PCB	PCB	PCB	PCB	Total
Station ID	Station Location	18	28	44	52	66	101	105	118	126	128	138	153	180	187	195	206	PCB
WA99-0001	MAKAH BAY								no fis	h sam	pled							
WA99-0002	MAKAH BAY	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.145	0.24	0.17	0.125	ND	ND	0.68
WA99-0003	MAKAH BAY	ND	ND	ND	ND	ND	0.11	ND	0.098	ND	ND	0.2	0.34	0.2	ND	ND	ND	0.948
WA99-0004	HOKO RIVER	ND	ND	ND	ND	ND	0.23	ND	0.19	ND	ND	0.29	0.44	0.14	0.14	ND	ND	1.43
WA99-0005	OZETTE RIVER								station	not sa	mpled							
WA99-0006	FRESHWATER BAY	ND	ND	ND	ND	ND	0.25	ND	0.21	ND	ND	0.32	0.5	0.16	0.17	ND	ND	1.61
WA99-0007	FRESHWATER BAY	ND	ND	ND	ND	ND	0.27	ND	0.21	ND	ND	0.33	0.53	0.18	0.19	ND	ND	1.71
WA99-0008	FRESHWATER BAY									h sam								
WA99-0009	DUNGENESS BAY						in	sufficie	nt targe	t speci	es fish	obtaine	d					
	DISCOVERY BAY						in		nt targe				d					
	DISCOVERY BAY								target s									
	DISCOVERY BAY	ND	ND	ND	ND	ND	0.25	ND	0.19	ND	ND	0.33	0.56	0.19	0.26	ND	ND	1.78
	DISCOVERY BAY	ND	0.12	0.2	ND	0.098	0.61	0.11	0.4		0.095	0.62	0.99	0.33	0.42	ND	ND	3.993
	DISCOVERY BAY	ND	ND	ND	ND	ND	0.085	ND	ND	ND	ND	0.18	0.28	0.088	0.089	ND	ND	0.722
	KALALOCH CREEK															. <u> </u>		
WA99-0016		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.11	0.13	ND	ND	ND	ND	0.24
	QUINAULT RIVER		no fish sampled															
	QUINAULT RIVER								station									
	CONNER CREEK								target s									
	GRAYS HARBOR				r				nt targe					1				
	GRASS CREEK	ND	ND	ND	ND	ND	0.12	ND	ND	ND	ND	0.19		0.15	0.23	ND	ND	1.06
	GRAYS HARBOR								nt targe									
	GRAYS HARBOR		insufficient target species fish obtained															
	GRAYS HARBOR	<u> </u>	insufficient target species fish obtained															
	GRAYS HARBOR	L							nt targe									
	GRAYS HARBOR	L						·	nt targe									
	BEARDSLEE SLOUGH	ND	ND	ND	ND	ND	0.16	ND	0.096		ND	0.23	0.44	0.12	0.26	ND	ND	1.306
	BEARDSLEE SLOUGH	 	station not sampled															
WA99-0029	GRAYS HARBOR	 	insufficient target species fish obtained															
WA99-0030	WILLAPA BAY	L								h sam			0.44					0.000
	WILLAPA BAY	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.092	0.11	ND	ND	ND	ND	0.202
WA99-0032	WILLAPA BAY	 	station not sampled															
WA99-0033							0.40			h sam		0.05	0.4	ND	0.40			4.45
		ND	ND	ND	ND	ND	0.18	ND	0.14	ND	ND	0.25	0.4	ND	0.18	ND	ND	1.15
							0.44			h sam		0.40	0.04	0.4	0.40			1.00
VVA99-0036	WILLAPA BAY	ND	ND	ND	ND	ND	0.11	ND	0.11	ND	ND	0.19	0.34	0.1	0.18	ND	ND	1.03

EMAP		PCB	PCB	PCB	PCB	PCB	PCB	PCB	PCB	PCB	PCB	PCB	PCB	PCB	PCB	PCB	PCB	Total
Station ID	Station Location	18	28	44	52	66	101	105	118	126	128	138	153	180	187	195	206	PCB
WA99-0037	WILLAPA BAY								station	not sa	mpled							
WA99-0038	BAKER BAY	ND	0.21	0.2	0.66	0.605	1.25	0.395	1.3	ND	0.38	1.65	2.35	0.98	0.9	ND	ND	10.88
WA99-0039	BAKER BAY						in	sufficier	nt targe	t speci	es fish (obtaine	d					
WA99-0040	BAKER BAY	ND	0.093	0.12	0.26	0.28	0.7	0.2	0.61	ND	0.19	0.83	1.2	0.46	0.53	ND	ND	5.473
WA99-0041	GRAYS RIVER		station not sampled															
WA99-0042	BAKER BAY	ND	0.11	0.12	0.27	0.26	0.71	0.18	0.6	ND	0.17	0.78	1.1	0.43	0.49	ND	ND	5.22
WA99-0043	GRAYS BAY	ND	0.15	0.18	0.57	0.51	1.3	0.4	1	ND	0.33	1.4	1.8	0.67	0.76	ND	ND	9.07
WA99-0044	GRAYS BAY	ND	0.14	0.078	0.38	0.33	0.71	0.23	0.63	ND	0.21	0.89	1.2	0.48	0.53	ND	ND	5.808
WA99-0045	GRAYS BAY							no fis	h kept f	or tiss	ue anal	yses						
WA99-0046	GRAYS BAY	ND	0.23	0.29	0.81	1.2	1.8	0.54	1.4	ND	0.47	1.9	2.4	1	0.93	ND	ND	12.97
WA99-0047	GRAYS BAY	ND	0.26	0.3	0.98	0.83	2.2	0.7	1.9	ND	0.6	2.5	3.3	1.3	1.3	ND	ND	16.17
WA99-0048	COWLITZ RIVER	0.32	1.6	2.1	7.7	4	17	4.8	18	ND	3.2	15	16	4.6	3.2	0.24	0.22	97.98
WA99-0049	CARROLLS CHANNEL	0.91	3.4	4	11	6	20	6.2	19	0.26	3.7	17	17	4.4	3.5	0.23	0.28	116.9
WA99-0050	MARTIN SLOUGH	0.51	1.2	1.6	3.7	2.8	4.3	1.4	3.5	0.3	0.9	3.4	4.9	1.9	1.7	ND	ND	32.11
. ,	Notes: (1) Averaged over lab replicates, if any. (2) Non-detects (ND) set to zero for EMAP analyses. (3) PCB Congeners 8, 170, and 209 were not letected at any station.																	

EMAP								
Station ID	Station Location	2,4'-DDD	2,4'-DDE	2,4'-DDT	4,4'-DDD	4,4'-DDE	4,4'-DDT	Total DDT
WA99-0001	MAKAH BAY	,	,		o fish samp		,	
WA99-0002	MAKAH BAY	ND	ND	ND	ND	0.84	ND	0.84
WA99-0003	MAKAH BAY	ND	ND	ND	ND	0.89		0.89
WA99-0004	HOKO RIVER	ND	ND	ND	ND	1.9		1.9
WA99-0005	OZETTE RIVER				ion not san			-
WA99-0006	FRESHWATER BAY	ND	ND	ND	ND	1.6	ND	1.6
WA99-0007	FRESHWATER BAY	ND	ND	ND	ND	1.6		1.6
WA99-0008	FRESHWATER BAY			nc	fish samp			
WA99-0009	DUNGENESS BAY		ins		rget specie		ined	
WA99-0010	DISCOVERY BAY				rget specie			
WA99-0011	DISCOVERY BAY				et species			
WA99-0012	DISCOVERY BAY	ND	ND	ND	ND	0.78	ND	0.78
WA99-0013	DISCOVERY BAY	ND	ND	ND	0.15		ND	1.85
WA99-0014	DISCOVERY BAY	ND	ND	ND	ND	0.38		0.38
WA99-0015	KALALOCH CREEK				rget specie			
WA99-0016	RAFT RIVER	ND	ND	ND	0.12		ND	0.69
WA99-0017	QUINAULT RIVER			nc	o fish samp			
WA99-0018	QUINAULT RIVER station not sampled							
WA99-0019	CONNER CREEK				et species	•		
WA99-0020	GRAYS HARBOR		ins	-	rget specie		ined	
WA99-0021	GRASS CREEK	ND	ND	ND	ND	0.34	-	0.34
WA99-0022	2 GRAYS HARBOR insufficient target species f							
WA99-0023	GRAYS HARBOR insufficient target species fish obtained							
WA99-0024	GRAYS HARBOR insufficient target species fish obtained							
WA99-0025	GRAYS HARBOR	insufficient target species fish obtained						
WA99-0026	GRAYS HARBOR							
WA99-0027	BEARDSLEE SLOUGH	insufficient target species fish obtained ND ND 0.2 0.89 ND 1						1.09
WA99-0028	BEARDSLEE SLOUGH	station not sampled						
WA99-0029	GRAYS HARBOR		ins		rget specie		ined	
WA99-0030	WILLAPA BAY				o fish samp			
WA99-0031	WILLAPA BAY	ND	ND	ND	ND	0.48	ND	0.48
WA99-0032	WILLAPA BAY			stat	ion not san	npled		
WA99-0033	WILLAPA BAY				o fish samp	•		
WA99-0034	WILLAPA BAY	ND	ND	ND	0.27	1.6	ND	1.87
WA99-0035	WILLAPA BAY			nc	fish samp	led		•
WA99-0036	WILLAPA BAY	ND	ND	ND	ND	0.9	ND	0.9
WA99-0037	WILLAPA BAY			stat	ion not san	npled		•
WA99-0038	BAKER BAY	0.34	0.31	0.74	4.55	. 27.5	2.3	35.74
WA99-0039	BAKER BAY		ins	ufficient ta	rget specie	s fish obta	ined	•
WA99-0040	BAKER BAY	0.48	0.2	0.23	2.7	13	0.81	17.42
WA99-0041	GRAYS RIVER			stat	ion not san	npled		•
WA99-0042	BAKER BAY	0.37	0.18	0.16	2.8	. 12	0.84	16.35
WA99-0043	GRAYS BAY	0.52				29		
WA99-0044	GRAYS BAY	0.23	0.19	0.31	3.2	17	0.99	21.92
WA99-0045	GRAYS BAY				pt for tissu	e analyses		-
WA99-0046	GRAYS BAY	0.88	0.5				-	53.48
WA99-0047	GRAYS BAY	0.78	0.59	1.6	6.4	53	3.3	
WA99-0048	COWLITZ RIVER	1.4		9.7				
WA99-0049	CARROLLS CHANNEL	1.2		5.2		94		
WA99-0050	MARTIN SLOUGH	1.2		2.1		70		
Notes: (1) Av	veraged over lab replicate	es, if anv. (2) Non-de	tects (ND)	set to zero	for EMAP	analvses	
	5 · · · · · · · · · · · · · · · · · · ·		2,11011 40	(, 200.	

Table D-16. Fish-tissue individual and Total DDT concentrations (ng/g wet weight)

		alpha-	Hexachloro-	trans-	Total	Total		
	Species	•	benzene	Nonachlor	DDT	PCB		
МАКАН ВАҮ			-					
	sand sole			ND	0.84	0.68		
						0.948		
						1.43		
	speckled sanddab				16	1.61		
						1.71		
				0.10	1.0	1.7 1		
	ins			sh obtained				
			- ·					
	1115		<u> </u>					
	English solo		· ·		0.70	1.78		
						3.993		
					0.38	0.722		
					0.001	0.01		
	starry flounder			ND	0.69	0.24		
GRASS CREEK				ND	0.34	1.06		
GRAYS HARBOR	ins	ufficient tar	get species fis	sh obtained				
GRAYS HARBOR	ins	ufficient tar						
GRAYS HARBOR	ins							
GRAYS HARBOR	insufficient target species fish obtained							
GRAYS HARBOR	insufficient target species fish obtained							
BEARDSLEE SLOUGH	English sole	ND	ND	ND	1.09	1.306		
BEARDSLEE SLOUGH	station not sampled							
GRAYS HARBOR								
WILLAPA BAY		no	fish sampled					
WILLAPA BAY	English sole	ND	ND	ND	0.48	0.202		
WILLAPA BAY		statio	on not sample	ed				
WILLAPA BAY								
	Enalish sole			ND	1.87	1.15		
	U	no						
	English sole			ND	0.9	1.03		
	J							
	starry flounder				35.74	10.88		
					17 42	5.473		
	Lightin bolo				17.12	0.110		
	English sole				16 35	5.22		
						9.07		
						5.808		
					21.02	0.000		
	starry flounder			· · ·	52 / 2	12.97		
						16.17		
						97.98		
						116.88		
MARTIN SLOUGH eraged over lab replicate	starry flounder	0.88	1.9	2	90.11	32.11		
	GRAYS HARBOR GRAYS HARBOR GRAYS HARBOR GRAYS HARBOR BEARDSLEE SLOUGH BEARDSLEE SLOUGH GRAYS HARBOR WILLAPA BAY WILLAPA BAY	MAKAH BAYsand soleMAKAH BAYsand soleMAKAH BAYsand soleHOKO RIVERspeckled sanddabOZETTE RIVERFRESHWATER BAYspeckled sanddabFRESHWATER BAYspeckled sanddabFRESHWATER BAYspeckled sanddabDUNGENESS BAYinsDISCOVERY BAYEnglish soleDISCOVERY BAYEnglish soleDISCOVERY BAYEnglish soleDISCOVERY BAYEnglish soleDISCOVERY BAYEnglish soleDISCOVERY BAYEnglish soleDISCOVERY BAYEnglish soleMAKALALOCH CREEKinsRAFT RIVERstarry flounderQUINAULT RIVERQUINAULT RIVERQUINAULT RIVERGRAYS HARBORGRAYS HARBORinsGRAYS HARBORinsGRAYS HARBORinsGRAYS HARBORinsGRAYS HARBORinsGRAYS HARBORinsGRAYS HARBORinsGRAYS HARBORinsGRAYS HARBORinsGRAYS HARBORinsBEARDSLEE SLOUGHEnglish soleWILLAPA BAYWILLAPA BAYWILLAPA BAYEnglish soleWILLAPA BAYEnglish soleWILLAPA BAYEnglish soleWILLAPA BAYEnglish soleGRAYS RIVEREnglish soleBAKER BAYEnglish soleGRAYS BAYStarry flounderGRAYS BAYStarry flounderGRAYS BAYStarry flounderGRAYS BAYStarry flounder<	MAKAH BAYSpeciesChiordaneMAKAH BAYsand soleNDMAKAH BAYsand soleNDMAKAH BAYsand soleNDHOKO RIVERspeckled sanddabNDOZETTE RIVERstaticFRESHWATER BAYspeckled sanddabNDFRESHWATER BAYspeckled sanddabNDFRESHWATER BAYspeckled sanddabNDFRESHWATER BAYspeckled sanddabNDDUNGENESS BAYinsufficient tarDISCOVERY BAYEnglish soleNDDISCOVERY BAYEnglish soleNDDISCOVERY BAYEnglish soleNDDISCOVERY BAYEnglish soleNDDISCOVERY BAYEnglish soleNDDISCOVERY BAYEnglish soleNDQUINAULT RIVERstarry flounderNDQUINAULT RIVERstaticCONNER CREEKno targeGRAYS HARBORinsufficient tarGRAYS HARBORinsufficient tarBARDSLEE SLOUGHstatidWILLAPA BAYnoWILLAPA BAYinsufficient tarBAKER BAYEnglish soleMULAPA BAYinsufficien	MAKAH BAYSpeciesChlordanebenzeneMAKAH BAYsand soleNDNDMAKAH BAYsand soleNDNDHOKO RIVERspeckled sanddabND0.21OZETTE RIVERstation not sampleFRESHWATER BAYspeckled sanddabND0.24FRESHWATER BAYspeckled sanddabND0.24FRESHWATER BAYspeckled sanddabND0.24FRESHWATER BAYspeckled sanddabND0.24FRESHWATER BAYspeckled sanddabND0.24Species Station not sampledDUNGENESS BAYinsufficient target species fitDISCOVERY BAYEnglish soleND0.15DISCOVERY BAYEnglish soleND0.15DISCOVERY BAYEnglish soleNDNDDISCOVERY BAYEnglish soleNDNDRAFT RIVERstation not sampledQUINAULT RIVERno fish sampledQUINAULT RIVERstation not sampledinsufficient target species fitGRAYS HARBORinsufficient target species fitGRAYS HARBOR <td>SpeciesChlordanebenzeneNonachlorMAKAH BAYsand soleNDNDNDMAKAH BAYsand soleNDNDNDMAKAH BAYsand soleNDNDNDMAKAH BAYsand soleNDNDNDMAKAH BAYspeckled sanddabND0.210.21OZETTE RIVERspeckled sanddabND0.280.2FRESHWATER BAYspeckled sanddabND0.240.19FRESHWATER BAYspeckled sanddabND0.240.19FRESHWATER BAYspeckled sanddabND0.240.19DUNGENESS BAYinsufficient target species fish obtainedDISCOVERY BAYno target species fish obtainedDISCOVERY BAYEnglish soleND0.15NDDISCOVERY BAYEnglish soleNDNDNDDISCOVERY BAYEnglish soleNDNDNDDISCOVERY BAYEnglish soleNDNDNDOUINAULT RIVERinsufficient target species fish obtainedCONNER CREEKinsufficient target species fish obtainedGRAYS HARBORinsufficient target species fis</td> <td>Species Chiordane benzene Nonachlor DDT MAKAH BAY sand sole ND ND ND ND 0.89 MAKAH BAY sand sole ND ND ND 0.21 0.21 1.9 OZETTE RIVER speckled sanddab ND 0.24 0.19 1.6 FRESHWATER BAY insufficient target species fish obtained DISCOVERY BAY insufficient target species obtained DISCOVERY BAY English sole ND 0.15 ND 0.78 DISCOVERY BAY English sole ND ND ND 0.38 KALALOCH CREEK insufficient target species fish obtained GRAYS HARBOR insufficient target species fish obtained GRAYS HARBOR insufficient target species fish obtained GRAYS HARBOR</td>	SpeciesChlordanebenzeneNonachlorMAKAH BAYsand soleNDNDNDMAKAH BAYsand soleNDNDNDMAKAH BAYsand soleNDNDNDMAKAH BAYsand soleNDNDNDMAKAH BAYspeckled sanddabND0.210.21OZETTE RIVERspeckled sanddabND0.280.2FRESHWATER BAYspeckled sanddabND0.240.19FRESHWATER BAYspeckled sanddabND0.240.19FRESHWATER BAYspeckled sanddabND0.240.19DUNGENESS BAYinsufficient target species fish obtainedDISCOVERY BAYno target species fish obtainedDISCOVERY BAYEnglish soleND0.15NDDISCOVERY BAYEnglish soleNDNDNDDISCOVERY BAYEnglish soleNDNDNDDISCOVERY BAYEnglish soleNDNDNDOUINAULT RIVERinsufficient target species fish obtainedCONNER CREEKinsufficient target species fish obtainedGRAYS HARBORinsufficient target species fis	Species Chiordane benzene Nonachlor DDT MAKAH BAY sand sole ND ND ND ND 0.89 MAKAH BAY sand sole ND ND ND 0.21 0.21 1.9 OZETTE RIVER speckled sanddab ND 0.24 0.19 1.6 FRESHWATER BAY insufficient target species fish obtained DISCOVERY BAY insufficient target species obtained DISCOVERY BAY English sole ND 0.15 ND 0.78 DISCOVERY BAY English sole ND ND ND 0.38 KALALOCH CREEK insufficient target species fish obtained GRAYS HARBOR insufficient target species fish obtained GRAYS HARBOR insufficient target species fish obtained GRAYS HARBOR		

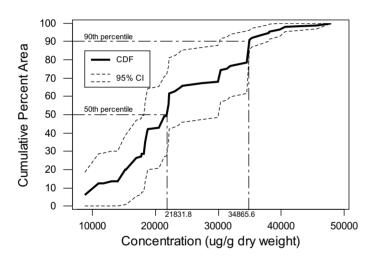
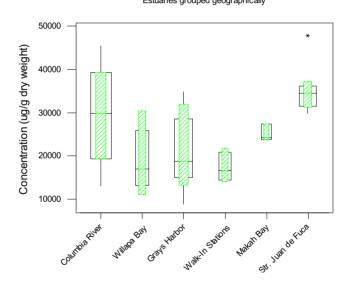

Table D-17.	Fish-tissue r	pesticide.	Total DDT.	and Total PCB	concentrations	(ng/g wet weight)

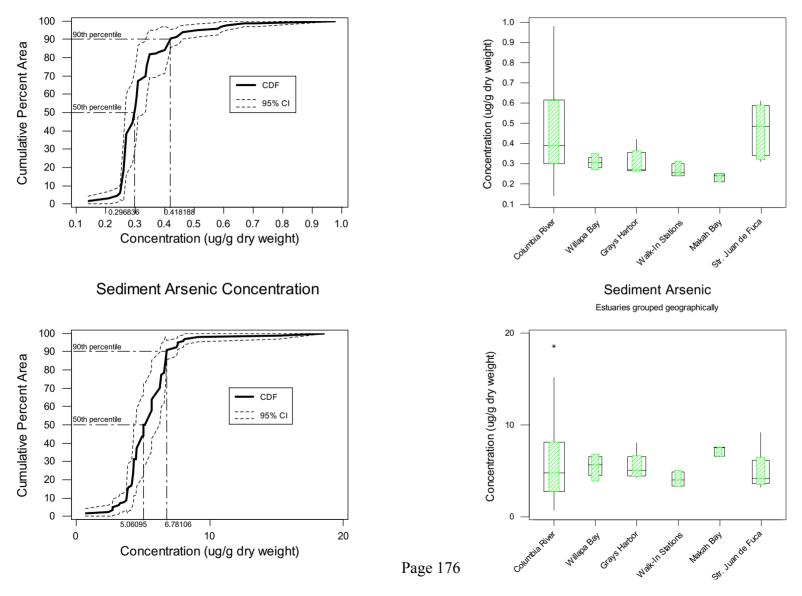
Table D-18. Marine debris and submerged aquatic vegetation


EMAP Station ID	Station Location	Observations
WA99-0002	МАКАН ВАҮ	Rocks in trawl - estimate abundance low (2 to 10), weight low (0.2-1.0 Kg). Trawl hung up hard on boulders on bottom.
		Abandoned site for fishing because of too many rocks. Sediment grabs taken 0.27 nautical miles from station where
		WQ samples acquired due to rocky bottom at other coordinates.
WA99-0003	MAKAH BAY	Marine Vegetation in trawl - estimate abundance low (2 to 10), weight low (0.2-1.0 Kg).
WA99-0004	HOKO RIVER	Marine Vegetation in trawl - estimate abundance low (2 to 10), weight low (0.2-1.0 Kg). SAV (submerged aquatic
		vegetation) present in grab.
WA99-0006	FRESHWATER BAY	Marine Vegetation in trawl - estimate abundance low (2 to 10), weight low (0.2-1.0 Kg). Station rejected for sediment due
		to rocky substrate.
WA99-0007	FRESHWATER BAY	Marine Vegetation in trawl - estimate abundance low (2 to 10), weight low (0.2-1.0 Kg).
WA99-0008	FRESHWATER BAY	Marine Vegetation in trawl - estimate abundance high (> 100), weight high (>10 Kg). Lots of bullwhip kelp and other kelp.
		One trawl stopped due to too much kelp. Station rejected for sediment due to gravel substrate.
WA99-0009	DUNGENESS BAY	Terrestrial & Marine Vegetation in trawl - estimate abundance low (2 to 10), weight low (0.2-1.0 Kg). sea lettuce,
		abundant woody debris.
WA99-0010	DISCOVERY BAY	Marine Vegetation in trawl - estimate abundance low (2 to 10), weight low (0.2-1.0 Kg). Lots of macroalgae.
WA99-0011	DISCOVERY BAY	Marine Vegetation in trawl - estimate abundance high (> 100), weight high (>10 Kg). Trawl hung up on bottom. Lot of
		kelp.
WA99-0012	DISCOVERY BAY	Marine Vegetation in trawl - estimate abundance high (> 100), weight high (>10 Kg). Probably 2,000 lbs of various types
		of kelp it took 1 hour of 3 people working to clear the net of all the kelp.
WA99-0013	DISCOVERY BAY	Terrestrial & Marine Vegetation in trawl - estimate abundance high (T), low (M) (> 100 (T), 2 to 10 (M)), weight high (T),
		low (M) (>10 Kg (T), 0.2-1.0 Kg (M)). Large hunks of wood, with sea lettuce, in trawl.
WA99-0014	DISCOVERY BAY	Marine Vegetation in trawl - estimate abundance low (2 to 10), weight low (0.2-1.0 Kg).
WA99-0016	RAFT RIVER	Walk-in station - station within intertidal area. Tribal fish nets are cleaned on beaches where we sampled.
WA99-0017	QUINAULT RIVER	Walk-in station - station within intertidal area. Tribal fish nets are cleaned on beaches where we sampled.
WA99-0020	GRAYS HARBOR	Marine Vegetation in trawl - estimate abundance moderate (10 to100), weight moderate (1.1-10 Kg). Sea lettuce in trawl.
		Woody debris in grab.
WA99-0021	GRASS CREEK	Marine Vegetation in trawl - estimate abundance high (> 100), weight high (>10 Kg). Sea lettuce in trawl.
WA99-0022	GRAYS HARBOR	Marine Vegetation in trawl - estimate abundance high (> 100), weight high (>10 Kg). Sea lettuce in trawl.
WA99-0023	GRAYS HARBOR	Marine Vegetation in trawl - estimate abundance high (> 100), weight high (>10 Kg). Sea lettuce in trawl. Substrate in
		grab is mix of sand and shell hash.
WA99-0024	GRAYS HARBOR	Marine Vegetation in trawl - estimate abundance low (2 to 10), weight low (0.2-1.0 Kg). Sea lettuce in trawl.
WA99-0027	BEARDSLEE SLOUGH	Terrestrial Vegetation in trawl - estimate abundance low (2 to 10), weight low (0.2-1.0 Kg). One strand Zostera sp. in
		grab.
WA99-0031	WILLAPA BAY	Woody debris in grab.

EMAP Station ID	Station Location	Observations
WA99-0034	WILLAPA BAY	Ripped net, big hole; lots of eel grass in trawl. Small woody debris present in grab.
WA99-0038	BAKER BAY	Marine Vegetation in trawl - estimate abundance low (2 to 10), weight low (0.2-1.0 Kg). Sea lettuce in trawl.
WA99-0039	BAKER BAY	Obstruction - nothing caught in trawl. Woody debris in grab.
WA99-0042	BAKER BAY	Shell fragments present in grab.
WA99-0043	GRAYS BAY	Marine Vegetation in trawl - estimate abundance low (2 to 10), weight low (0.2-1.0 Kg). Mixed sand and wood substrate
		in grab.
WA99-0044	GRAYS BAY	Terrestrial & Marine Vegetation in trawl - estimate abundance low (2 to 10), weight low (0.2-1.0 Kg). Wood chips, green
		algae in net.
WA99-0046	GRAYS BAY	Terrestrial & Marine Vegetation in trawl - estimate abundance low (2 to 10), weight low (0.2-1.0 Kg). Green algae, wood
		chips in net.
WA99-0048	COWLITZ RIVER	Pumice/ash from Mount St Helens in grab sample.
WA99-0049	CARROLLS CHANNEL	Metal Debris in trawl - estimate abundance low (2 to 10), weight low (0.2-1.0 Kg). Steel cable; snagged net twice.
WA99-0050	MARTIN SLOUGH	Snagged net twice. Woody debris abundant in grab.

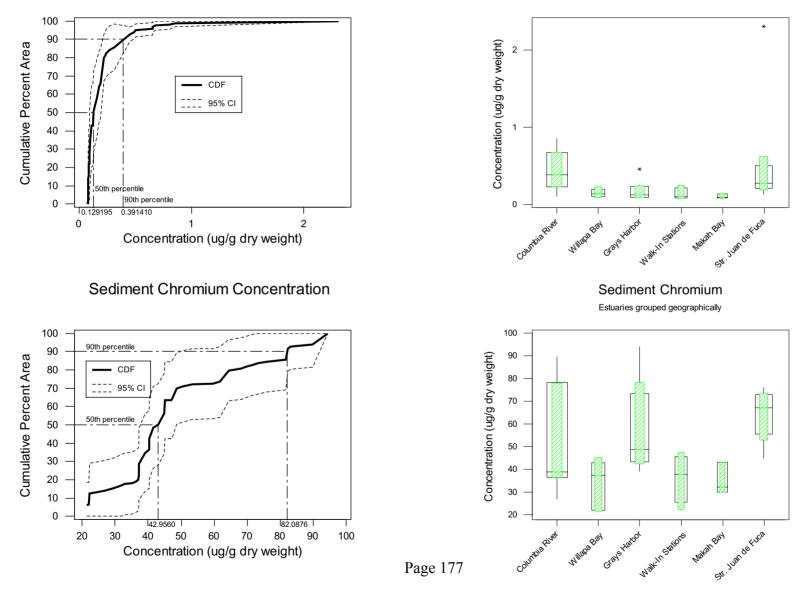
Figure D-1. Sediment Metals

Sediment Aluminum Concentration

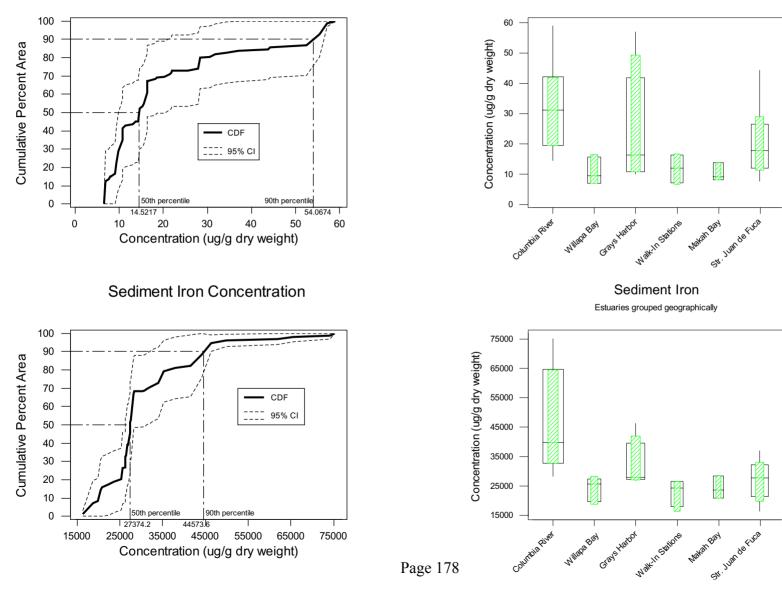


Sediment Aluminum Estuaries grouped geographically

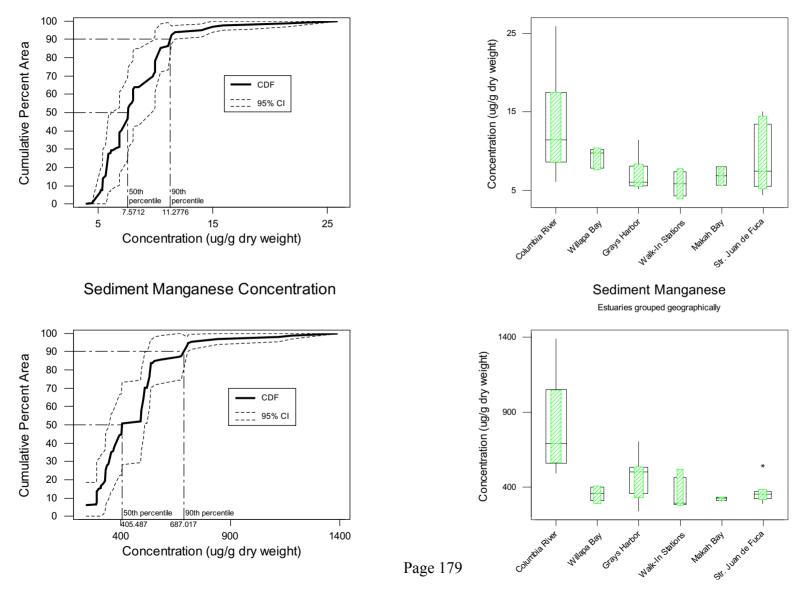
Sediment Antimony Concentration


Sediment Antimony

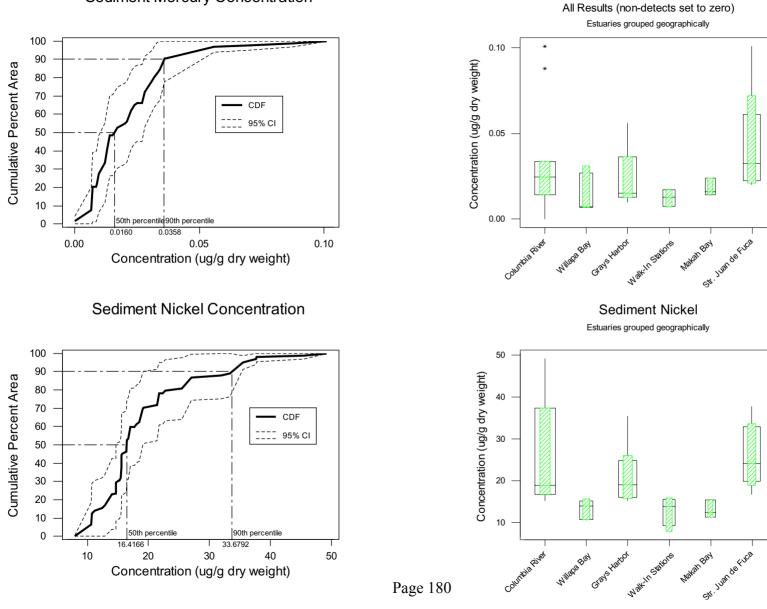
Estuaries grouped geographically


Sediment Cadmium Concentration

Sediment Cadmium

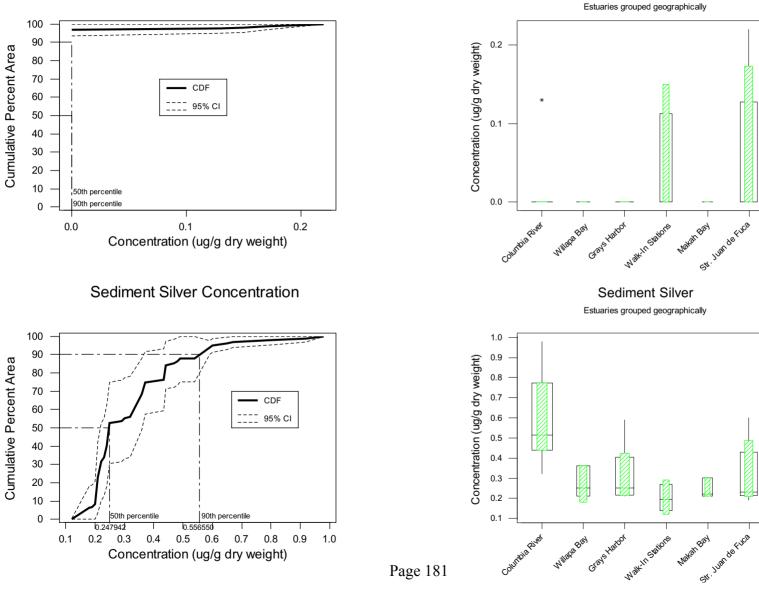

Sediment Copper Concentration

Sediment Copper



Sediment Lead Concentration

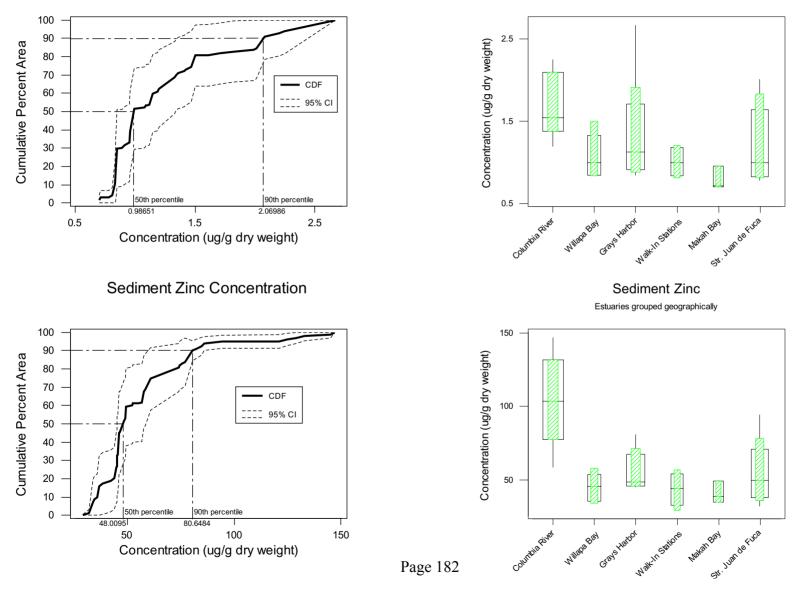
Sediment Lead

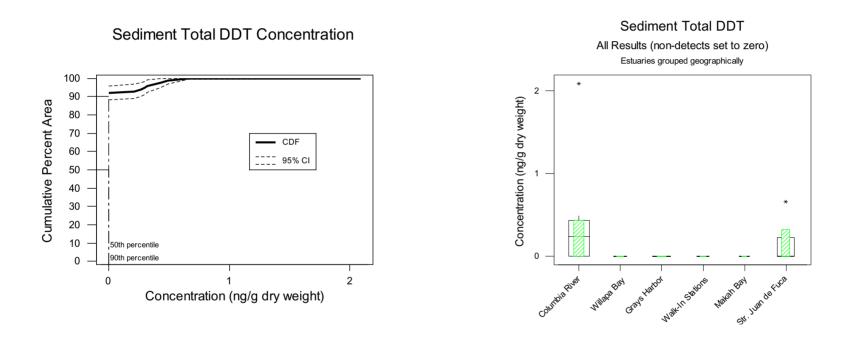

Sediment Mercury Concentration

Sediment Mercury

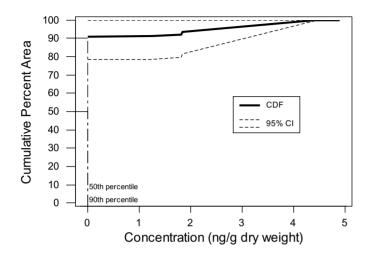
Page 180

Sediment Selenium Concentration


Sediment Selenium


All Results (non-detects set to zero)

Page 181


Sediment Tin Concentration

Sediment Tin

Sediment Total PCB Concentration

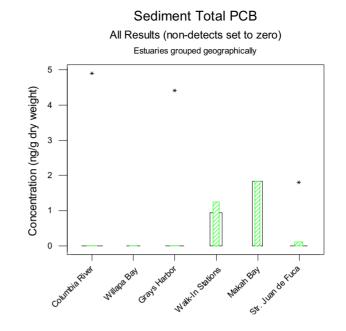
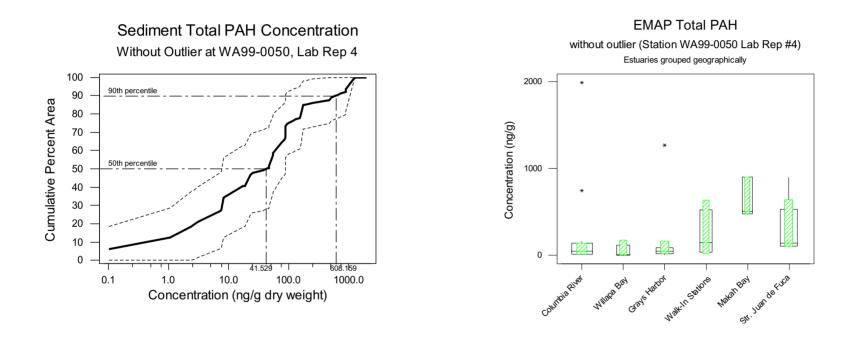
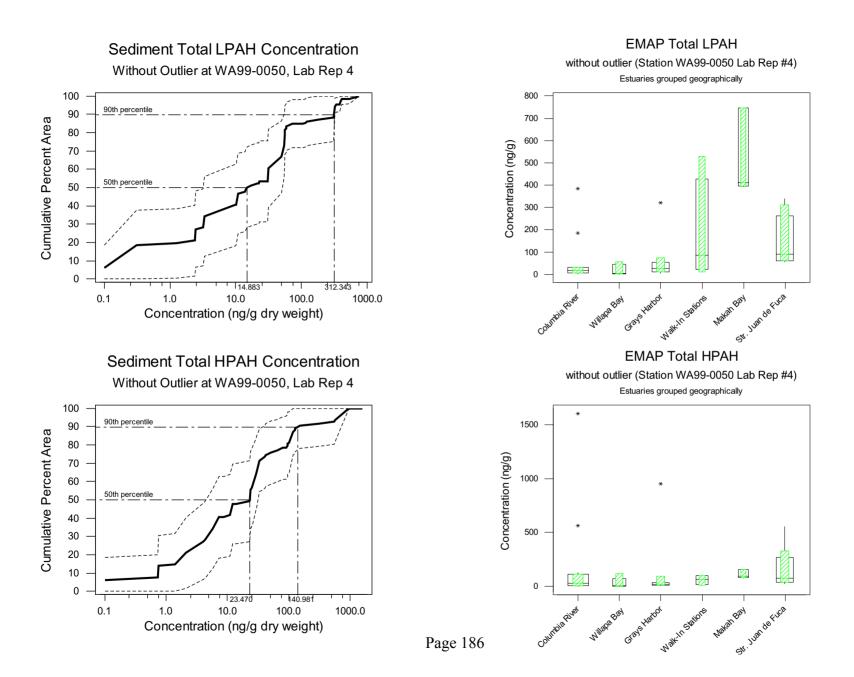
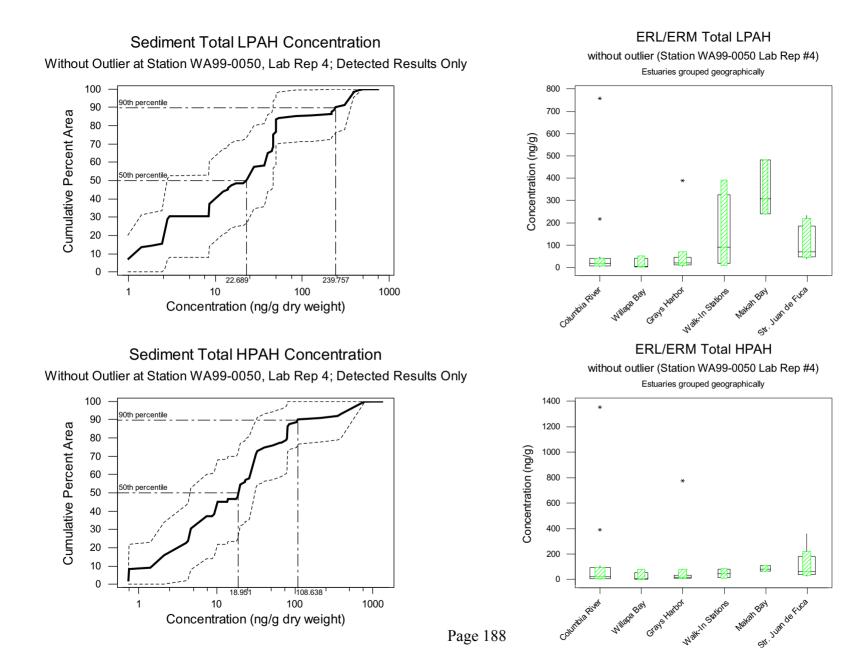
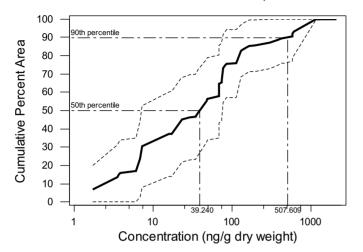




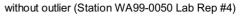

Figure D-3. Sediment Total PAHs





×

E 🖉 🗗



Sediment Total PAH Concentration

Without Outlier at Station WA99-0050, Lab Rep 4; Detected Results Only

ERL/ERM Total PAH

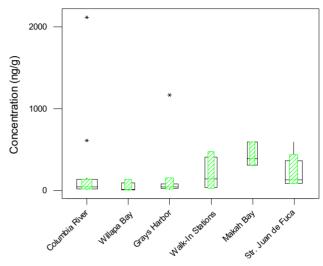
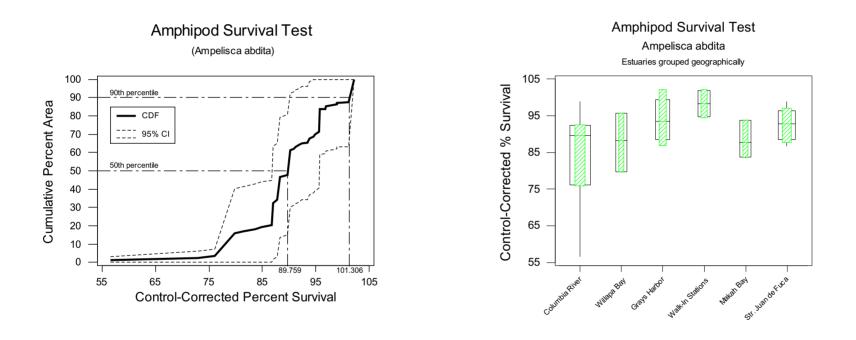



Figure D-4. Sediment Toxicity

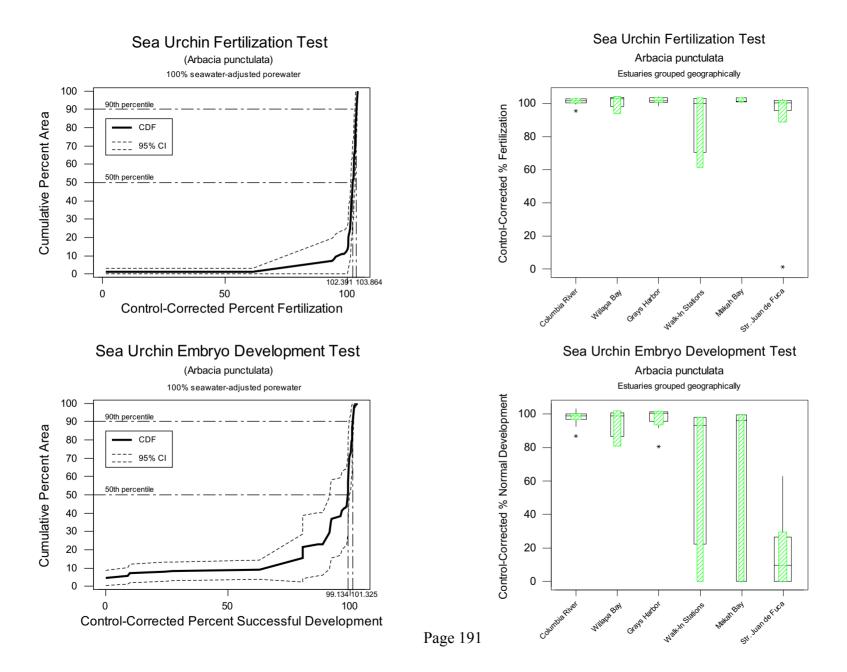
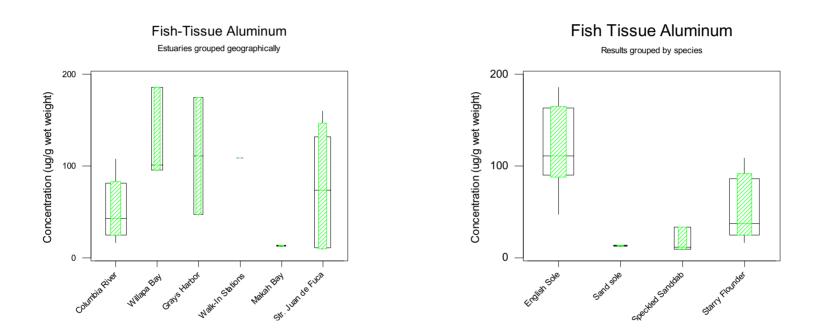
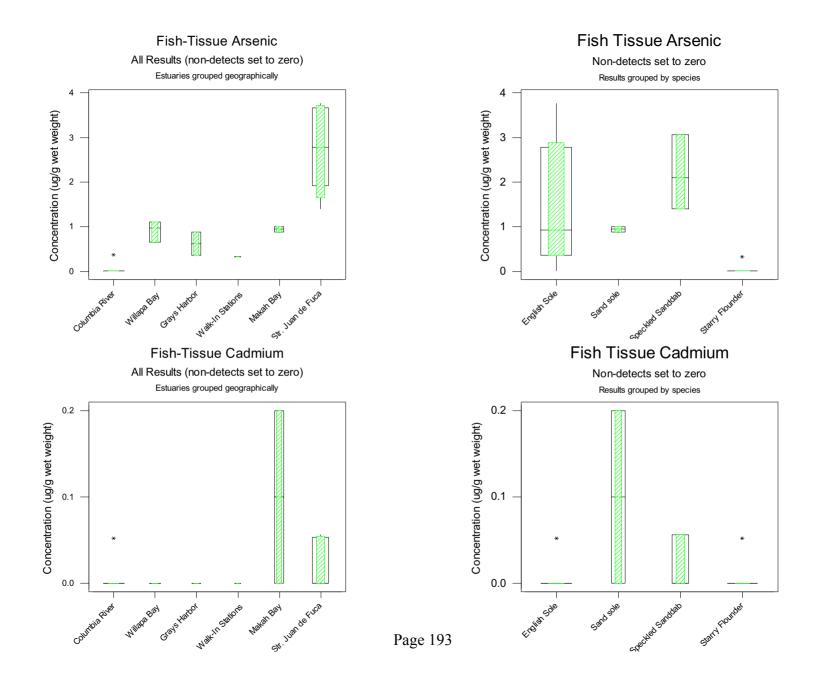
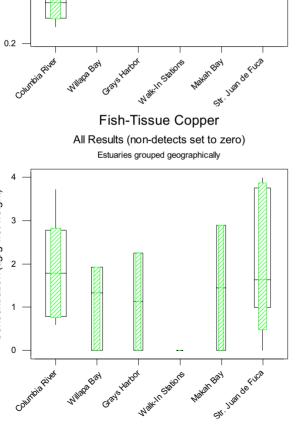




Figure D-5. Fish-Tissue Chemistry

Fish-Tissue Chromium

2.2

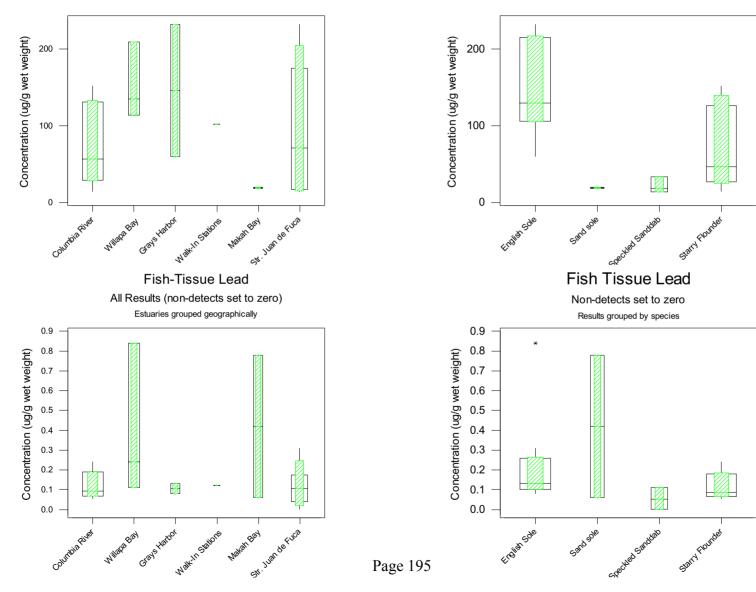

1.2

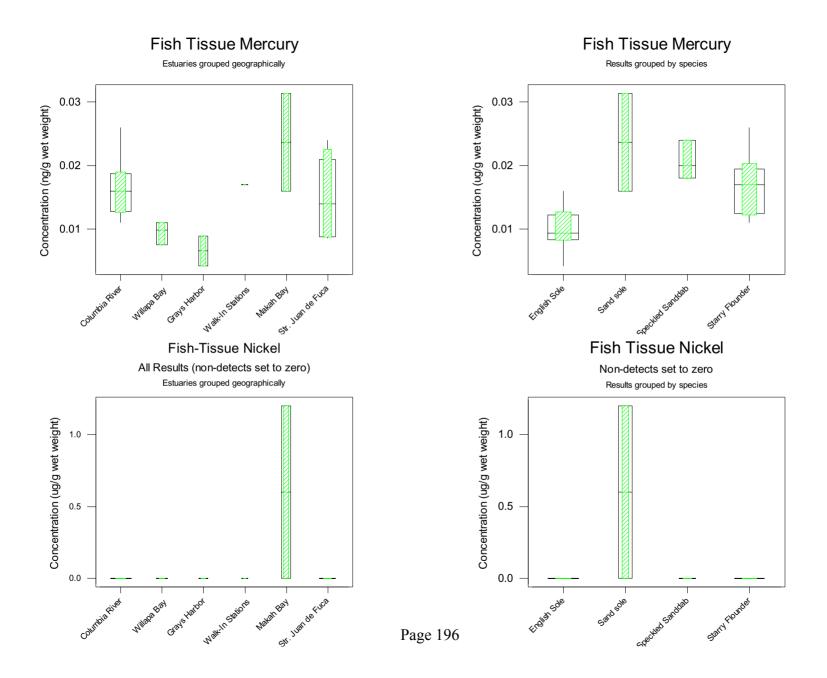
Concentration (ug/g wet weight)

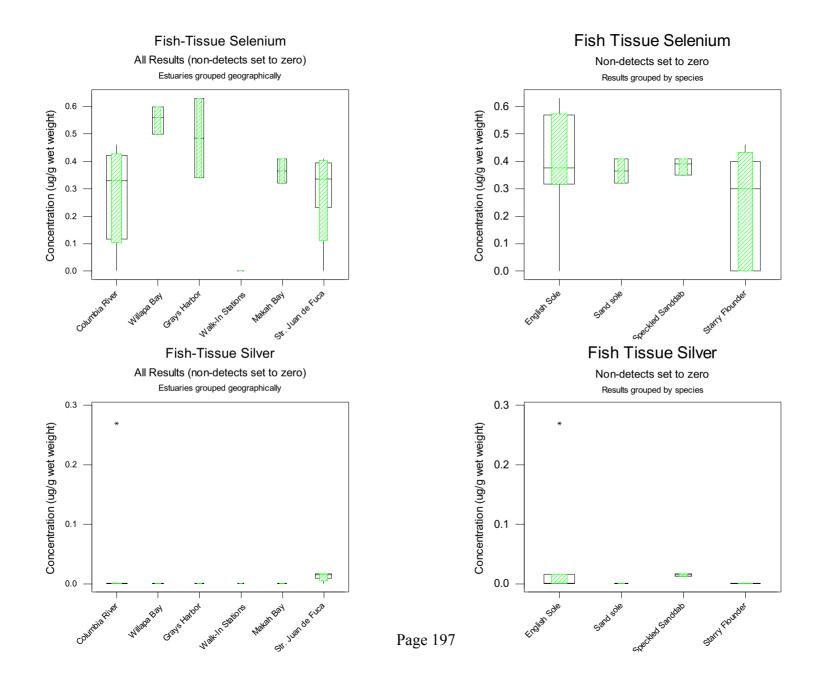
Concentration (ug/g wet weight)

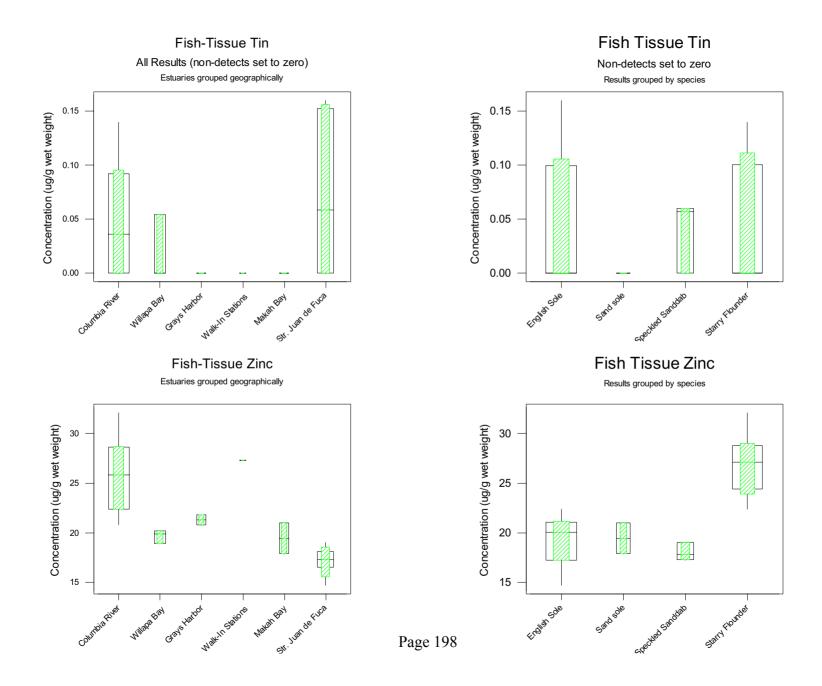
Estuaries grouped geographically

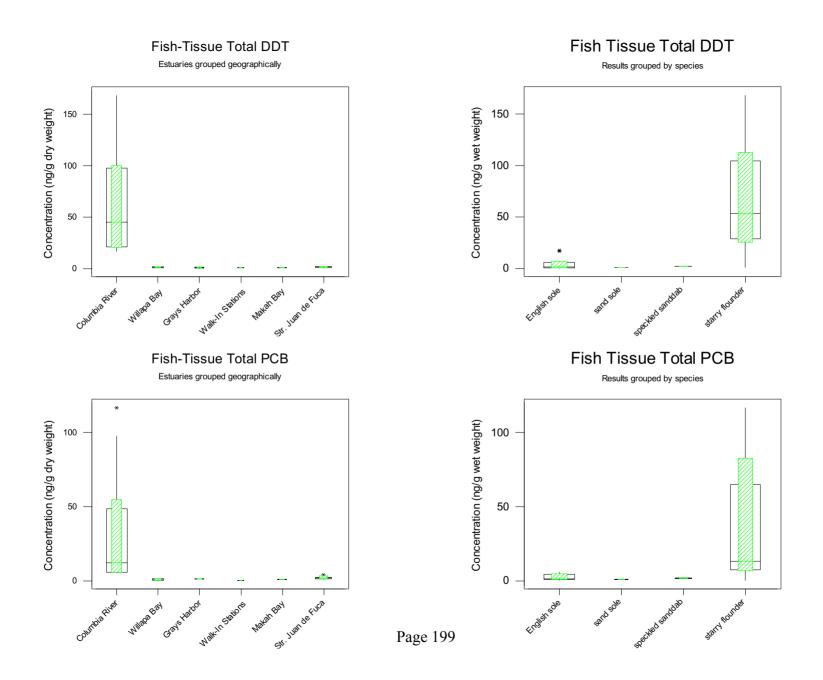
2.2 -Concentration (ug/g wet weight) 1.2 0.2 coeched sander Erolish Sole Stary Foundat sand sole **Fish Tissue Copper** Non-detects set to zero Results grouped by species 4 Concentration (ug/g wet weight) 3 2 1 0 Floghan Sole croculad sandara Sany Foundar


Fish Tissue Chromium


Results grouped by species

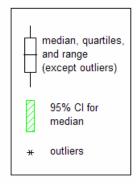

Fish-Tissue Iron Estuaries grouped geographically


Fish Tissue Iron


Results grouped by species

This page is purposely left blank for duplex printing.

Appendix E


Biotic Condition Indicators

The data tables in this appendix contain the values used in the statistical analyses. The raw data are available in the national EMAP database or upon request.

- Table E-1: Benthic infauna species percent composition data
- Table E-2: Infauna species abundance data by station
- Table E-3: Benthic infauna community diversity indicators data
- Table E-4: Infauna abundance by major taxa data
- Table E-5: Demersal fish species percent composition data
- Table E-6: Fish species catch data by station
- Table E-7: Fish species richness, abundance, and catch per area swept data
- Table E-8:
 Epibenthic invertebrate abundance in trawls
- Figure E-1: Benthic infauna CDFs and graphical summaries
- Figure E-2: Mean infauna abundance and major taxa graphical summary
- Figure E-3: Percent infauna abundance by major taxa graphical summary
- Figure E-4: Relative mean infauna abundance by major taxa graphical summary
- Figure E-5: Demersal fish species richness and abundance CDFs and graphical summaries
- Figure E-6: Epibenthic invertebrates graphical summary
- Figure E-7: Relative mean epibenthos occurrence graphical summary

The graphical summaries in Figures E-1 through E-7 group the data for estuaries geographically as shown in Figure B-2 in Appendix B.

Box-and-whisker plots, or boxplots, display median $(50^{\text{th}}\text{-percentile})$, $25^{\text{th}}\text{-percentile}$, $75^{\text{th}}\text{-percentile}$, and extreme values of the results, with a 95% confidence interval for the median. Outliers are unusually high or unusually low values. The width of the boxplot is proportional to the number of samples.

Order of Dominance	Taxon	Total Number of Individuals	% of Total	Species Classification
1	Americorophium salmonis	3526	19.72%	
2	Pygospio elegans	2116	11.83%	
3	Owenia fusiformis	1969	11.01%	
4	Oligochaeta	1293	7.23%	
5	Mediomastus californiensis	650	3.64%	
6	Phyllochaetopterus prolifica	562	3.14%	
7	Mediomastus sp	342	1.91%	
8	Rochefortia tumida	322	1.80%	
9	Streblospio benedicti	306	1.71%	
10	Aphelochaeta glandaria	299	1.67%	
11	Corbicula fluminea	282	1.58%	Exotic
12	Macoma balthica	273	1.53%	
13	Axinopsida serricata	235	1.31%	
14	Alvania compacta	191	1.07%	
15	Magelona sacculata	170	0.95%	
16	Tharyx parvus	134	0.75%	
17	Neanthes limnicola	128	0.72%	
18	Mya arenaria	125	0.70%	Exotic
19	Aphelochaeta monilaris	124	0.69%	
20	Magelona longicornis	121	0.68%	
21	Glycinde polygnatha	113	0.63%	
22	<i>Capitella capitata</i> Cmplx	112	0.63%	
23	Clinocardium nuttallii	108	0.60%	
24	Monocorophium acherusicum	107	0.60%	Exotic
25	Leptochelia dubia	93	0.52%	
26	Scoloplos armiger armiger	89	0.50%	
27	Lumbrineris californiensis	85	0.48%	
28	Pholoides asperus	80	0.45%	
29	Pseudopolydora kempi	80	0.45%	Exotic
30	Sphaerosyllis californiensis	80	0.45%	
31	<i>Ophiurida</i>	79	0.44%	
32	Hobsonia florida	76	0.43%	Exotic
33	Clinocardium sp	75	0.42%	
34	Macoma sp	75	0.42%	
35	Crepipatella dorsata	74	0.41%	
36	Cryptomya californica	73	0.41%	
37	Prionospio (Prionospio) steenstrupi	70	0.39%	
38	Exogone lourei	61	0.34%	
39	Nephtys cornuta	61	0.34%	
40	Spiophanes berkeleyorum	60	0.34%	
41	Dipolydora socialis	59	0.33%	
42	Grandidierella japonica	59	0.33%	Exotic
43	Eumida longicornuta	57	0.32%	
44	Leitoscoloplos pugettensis	54	0.30%	
45	Petaloproctus borealis	53	0.30%	

 Table E-1. Percent composition of benthic macrofauna taxa (van Veen grabs only)

Order of Dominance	Taxon	Total Number of Individuals	% of Total	Species Classification
46	Lineidae	49	0.27%	
47	Monoporeia affinis	48	0.27%	
48	Neanthes sp	48	0.27%	
49	Nutricola lordi	47	0.26%	
50	Heteromastus filobranchus	46	0.26%	
51	Lamprops quadriplicatus	45	0.25%	
52	Decamastus gracilis	44	0.25%	
53	Polydora cornuta	41	0.23%	Exotic
54	Notomastus hemipodus	40	0.23%	Exotic
55	Sigambra bassi	38	0.22%	
56	Macoma yoldiformis	37	0.21%	
57	Nephtys caecoides	36	0.21%	
58				
	Phoronidae	36	0.20%	Enstin
59	Anobothrus gracilis	35	0.20%	Exotic
60	Parvilucina tenuisculpta	34	0.19%	
61	Spiochaetopterus costarum	34	0.19%	
62	Exogone dwisula	31	0.17%	
63	Mytilidae	31	0.17%	
64	Acila castrensis	30	0.17%	
65	Eohaustorius estuarius	30	0.17%	
66	Trochochaeta multisetosa	30	0.17%	Exotic
67	Amphiodia sp	28	0.16%	
68	Eteone columbiensis	28	0.16%	
69	Nippoleucon hinumensis	28	0.16%	Exotic
70	Paraprionospio pinnata	28	0.16%	
71	Monocorophium insidiosum	26	0.15%	Exotic
72	Grandifoxus grandis	25	0.14%	
73	Nereis procera	25	0.14%	
74	Spio butleri	25	0.14%	
75	Ampharete labrops	23	0.13%	
76	Platynereis bicanaliculata	23	0.13%	
77	Polydora limicola	23	0.13%	
78	Astyris gausapata	22	0.12%	
79	Chironomidae	22	0.12%	
80	Tellina nuculoides	22	0.12%	
81	Nephtys ferruginea	21	0.12%	
82	Photis parvidons	21	0.12%	
83	Photis sp	21	0.12%	
84	Euclymeninae	20	0.11%	
85	Archaeomysis grebnitzkii	19	0.11%	
86	Heterophoxus conlanae	19	0.11%	
87	Asabellides sibirica	18	0.10%	
88	Glycera macrobranchia	18	0.10%	
89	Halcampa decemtentaculata	18	0.10%	
90	Scoletoma luti	18	0.10%	
91	Eusarsiella zostericola	17	0.10%	Exotic
92	Lumbrineridae	17	0.10%	
93	Odostomia sp	17	0.10%	
94	Protomedeia prudens	17	0.10%	

Order of Dominance	Taxon	Total Number of Individuals	% of Total	Species Classification
95	Siliqua sp	17	0.10%	
96	Ampelisca careyi	16	0.09%	
97	Cyclocardia ventricosa	16	0.09%	
98	Macoma golikovi	16	0.09%	
99	Ophelia assimilis	16	0.09%	
100	Actiniidae	15	0.09%	
100	Macoma nasuta	15	0.08%	
101	Tetrastemma candidum	15	0.08%	
102	Typosyllis caeca	15	0.08%	
103	Armandia brevis	13	0.08%	
104	Barantolla nr americana	14	0.08%	
105	Cumella vulgaris	14	0.08%	
100	Č Č	14		
107	Ischyrocerus sp Manayunkia aestuarina	14	0.08%	Exotic
108	Pseudopolydora paucibranchiata	14	0.08%	Exotic
110		14	0.08%	Exotic
110	Terebellides sp	14		
	Cerebratulus montgomeryi	13	0.07%	
112	Euclymeninae sp A		0.07%	
113	Scoloplos armiger alaskensis	13	0.07%	
114	Terebellides californica	13 12	0.07%	
115	Chironomidae		0.07%	
116	<i>Tetrastemma</i> sp	12	0.07%	
117	Ampelisca lobata	11	0.06%	
118	Ampelisca pugetica	11	0.06%	
119	Gattyana cirrosa	11	0.06%	
120	Manayunkia speciosa	11	0.06%	Exotic
121	Saccoglossus sp	11	0.06%	
122	Solamen columbianum	11	0.06%	
123	Ampithoe valida	10	0.06%	Exotic
124	Aphelochaeta sp	10	0.06%	
125	Desdimelita desdichada	10	0.06%	
126	Enteropneusta	10	0.06%	
127	Eulalia californiensis	10	0.06%	
128	Photis brevipes	10	0.06%	
129	Scolelepis squamata	10	0.06%	
130	Americorophium spinicorne	9	0.05%	
131	Aoroides sp	9	0.05%	
132	Diastylopsis dawsoni	9	0.05%	
133	Dipolydora caulleryi	9	0.05%	Exotic
134	Macoma carlottensis	9	0.05%	
135	Magelona sp	9	0.05%	
136	Olivella pycna	9	0.05%	
137	Pectinaria granulata	9	0.05%	
138	Phoronopsis harmeri	9	0.05%	
139	Rhepoxynius abronius	9	0.05%	
140	Themiste pyroides	9	0.05%	
141	Carinoma mutabilis	8	0.04%	
142	Cirratulus multioculatus	8	0.04%	
143	Crangon sp	8 Page 205	0.04%	

Order of Dominance	Taxon	Total Number of Individuals	% of Total	Species Classification
144	Eudorella pacifica	8	0.04%	
145	Euphilomedes producta	8	0.04%	
146	Glycera nana	8	0.04%	
147	<i>Glycinde</i> sp	8	0.04%	
148	Hydrobiidae	8	0.04%	
149	Prionospio (Minuspio) lighti	8	0.04%	
150	Spiophanes bombyx	8	0.04%	
151	Cardiomya pectinata	7	0.04%	
152	Cerebratulus californiensis	7	0.04%	
153	Cirratulidae	7	0.04%	
154	Dendraster excentricus	7	0.04%	
155	Eobrolgus sp	7	0.04%	
156	Galathowenia oculata	7	0.04%	
157	Heteromastus sp	7	0.04%	
158	Lepidasthenia berkeleyae	7	0.04%	
159	Nuculana minuta	7	0.04%	
160	Podarkeopsis glabrus	7	0.04%	
161	Rhynchospio glutaea	7	0.04%	
162	Sinelobus stanfordi	7	0.04%	Exotic
163	Amphipholis sp	6	0.03%	LAone
164	Boccardia pugettensis	6	0.03%	
165	Cerebratulus sp	6	0.03%	
166	<i>Eumida</i> sp	6	0.03%	
167	Euphilomedes carcharodonta	6	0.03%	
168	<i>Glycera americana</i>	6	0.03%	
169	Lirularia lirulata	6	0.03%	
170	Lumbrineris limicola	6	0.03%	
170	Oregonia gracilis	6	0.03%	
171	Pentamera lissoplaca	6	0.03%	
172	Pherusa plumosa	6	0.03%	
173	Phyllodoce groenlandica	6	0.03%	
174	Pilargis maculata	6	0.03%	
175	Pinnixa schmitti	6	0.03%	
170	Proceraea cornuta	6	0.03%	
177	Rhabdocoela	6	0.03%	
178	Sigalion spinosus	6	0.03%	
180	Sternaspis cf fossor	6	0.03%	
180	Ampelisca agassizi	5	0.03%	
181	Amperiscu ugussizi Ascidiacea	5	0.03%	
182	Byblis millsi	5	0.03%	
183	Clausidium vancouverense	5	0.03%	
185	Crangon franciscorum	5	0.03%	
185	Diastylis santamariensis	5	0.03%	
180	Eogammarus confervicolus Cmplx	5	0.03%	
187	Eteone lighti	5	0.03%	
188	Eteone sp	5	0.03%	
189	Eudistylia catharinae	5	0.03%	
190	Eyakia robusta	5	0.03%	
171	Буаки горизи	5	0.03%	

Order of Dominance	Taxon	Total Number of	% of Total	Species Classification
		Individuals		
193	Kurtzia arteaga	5	0.03%	
194	Leptochiton rugatus	5	0.03%	
195	Lumbrineris sp	5	0.03%	
196	Majoxiphalus major	5	0.03%	
197	Mandibulophoxus mayi	5	0.03%	
198	Melanochlamys diomedea	5	0.03%	
199	Monocorophium californianum	5	0.03%	
200	Neosabellaria cementarium	5	0.03%	
201	Nephtys caeca	5	0.03%	
202	Nutricola tantilla	5	0.03%	
203	Phyllodoce sp	5	0.03%	
204	Pista elongata	5	0.03%	
205	Polycirrus sp I	5	0.03%	
206	Praxillella pacifica	5	0.03%	
207	Rutiderma lomae	5	0.03%	
208	Sabaco elongatus	5	0.03%	Exotic
209	Amphiodia urtica	4	0.02%	
210	Aphelochaeta tigrina	4	0.02%	
211	Aricidea (Acmira) lopezi	4	0.02%	
212	Caecidotea racovitzai	4	0.02%	Exotic
213	Caprella laeviuscula	4	0.02%	
214	Ennucula tenuis	4	0.02%	
215	Eualus subtilis	4	0.02%	
216	Gammaropsis thompsoni	4	0.02%	
217	Golfingia vulgaris	4	0.02%	
218	Harmothoinae	4	0.02%	
219	Heterophoxus ellisi	4	0.02%	
220	Lyonsia californica	4	0.02%	
221	Notomastus latericeus	4	0.02%	
222	<i>Oenopota</i> sp	4	0.02%	
223	Ophelina acuminata	4	0.02%	
223	Ophiodromus pugettensis	4	0.02%	
225	Phyllochaetopterus pottsi	4	0.02%	
226	Psammonyx longimerus	4	0.02%	
220	Rhodine bitorquata	4	0.02%	
228	Saxidomus giganteus	4	0.02%	
229	Scionella japonica	4	0.02%	
230	Turbonilla sp	4	0.02%	
230	Ampharete acutifrons	3	0.02%	
232	Ampharetidae	3	0.02%	
232	Apistobranchus ornatus	3	0.02%	
233	Bivalvia	3	0.02%	
234	Bowerbankia gracilis	3	0.02%	Exotic Colonial
235	Caulleriella pacifica	3	0.02%	
236	Chaetozone acuta	3	0.02%	
		3		
238	Chaetozone nr setosa		0.02%	
239	Chironomidae	3	0.02%	
240	Compsomyax subdiaphana			

Order of Dominance	Taxon	Total Number of	% of Total	Species Classification
		Individuals		
242	Euchone incolor	3	0.02%	
243	Exogone molesta	3	0.02%	
244	Glycinde armigera	3	0.02%	
245	Haliophasma geminatum	3	0.02%	
246	Harmothoe multisetosa	3	0.02%	
247	Hirudinea	3	0.02%	
248	Lanassa venusta	3	0.02%	Exotic
249	Mesochaetopterus taylori	3	0.02%	
250	Molgula pugetiensis	3	0.02%	
251	Monticellina tesselata	3	0.02%	
252	Naineris uncinata	3	0.02%	
253	Nassarius mendicus	3	0.02%	
254	Pagurus sp	3	0.02%	
255	Pinnixa sp	3	0.02%	
256	Pista brevibranchiata	3	0.02%	
257	Podocopida	3	0.02%	
258	Polycirrus sp	3	0.02%	
259	Syllis elongata	3	0.02%	
260	Tecticeps pugettensis	3	0.02%	
261	Tellina modesta	3	0.02%	
262	Tresus sp	3	0.02%	
263	Tubulanus polymorphus	3	0.02%	
264	Adontorhina cyclia	2	0.01%	
265	Amphissa columbiana	2	0.01%	
266	Barentsia benedeni	2	0.01%	Exotic Colonial
267	Bivalvia sp 1	2	0.01%	
268	Cancer oregonensis	2	0.01%	
269	Caprella californica	2	0.01%	
270	Celleporella hyalina	2	0.01%	Colonial
271	Chaetozone sp	2	0.01%	
272	Circeis spirillum	2	0.01%	Exotic
273	Coullana canadensis	2	0.01%	Exotic
274	Crangon alaskensis	2	0.01%	
275	Cylichna attonsa	2	0.01%	
276	Dendrobeania lichenoides	2	0.01%	Colonial
277	Dipolydora quadrilobata	2	0.01%	Exotic
278	Eobrolgus chumashi	2	0.01%	
279	Eupolymnia heterobranchia	2	0.01%	
280	<i>Hexagenia</i> sp	2	0.01%	
281	Levinsenia gracilis	2	0.01%	
282	Magelona pitelkai	2	0.01%	
283	Mediomastus ambiseta	2	0.01%	
284	Megalomma splendida	2	0.01%	
285	Membranipora sp	2	0.01%	Colonial
286	Mopalia sp	2	0.01%	
287	Neotrypaea californiensis	2	0.01%	
288	Nephtys sp	2	0.01%	
289	Nicomache personata	2	0.01%	
290	Olivella baetica	2	0.01%	

291 Olivella biplicata 2 0.01% 292 Onuphidae 2 0.01% 293 Onuphis iridescens 2 0.01% 294 Paleanous bellis 2 0.01% 295 Pectinaria californiensis 2 0.01% 295 Pectinaria californiensis 2 0.01% 296 Pholog glabra 2 0.01% 298 Polycitrus californicus 2 0.01% 299 Polyplacophora 2 0.01% 300 Protothaca staminea 2 0.01% 301 Sabelliphilidae 2 0.01% 303 Sthenelais berkeleyi 2 0.01% 304 Telina sp 2 0.01% 305 Teronia priops 2 0.01% 306 Tetrastenma nigrifrons 2 0.01% 310 Achelia alaskensis 1 0.01% 311 Achelia alaskensis 1 0.01% 312 Aglaja	Order of Dominance	Taxon	Total Number of Individuals	% of Total	Species Classification
292 Onuphia iridescens 2 0.01% 293 Onuphis iridescens 2 0.01% 294 Paleanotus bellis 2 0.01% 295 Pectinaria californiensis 2 0.01% 296 Pholoe glabra 2 0.01% 297 Physella sp 2 0.01% 298 Polyticrus californicus 2 0.01% 300 Protothaca staminea 2 0.01% 301 Sabelliahe 2 0.01% 302 Sabelliphilidae 2 0.01% 303 Sthenelais berkeleyi 2 0.01% 304 Tellina sp 2 0.01% 305 Tenonia priops 2 0.01% 306 Tetrastenma nigrifons 2 0.01% 308 Abietinaria sp 1 0.01% 310 Achelia alskensis 1 0.01% 311 Achelia cchinata 1 0.01% 313 Ampharete of crassist	291	Olivella hinlicata		0.01%	
293 Onlphis iridescens 2 0.01% 294 Paleanotus bellis 2 0.01% 295 Pectinaria californiensis 2 0.01% 296 Pholoe glabra 2 0.01% 297 Physella sp 2 0.01% 298 Polycirrus californicus 2 0.01% 299 Polyplacophora 2 0.01% 300 Protothaca staminea 2 0.01% 301 Sabelliphilidae 2 0.01% 302 Sabelliphilidae 2 0.01% 303 Sthenelais berkeleyi 2 0.01% 304 Telina sp 2 0.01% 305 Tenonia priops 2 0.01% 306 Tetrastenma nigrifrons 2 0.01% 307 Thelepus setosus 2 0.01% 310 Achelia atskensis 1 0.01% 311 Achelia achinata 1 0.01% 313 Amphiporus sp <td></td> <td></td> <td></td> <td></td> <td></td>					
294 Palaanotus bellis 2 0.01% 295 Pectinaria californiensis 2 0.01% 296 Pholoe glabra 2 0.01% 297 Physella sp 2 0.01% 298 Polycirrus californicus 2 0.01% 299 Polyplacophora 2 0.01% 300 Protothaca staminea 2 0.01% 301 Sabelliphilidae 2 0.01% 303 Sthenelais berkeleyi 2 0.01% 304 Tellina sp 2 0.01% 305 Tenonia priops 2 0.01% 306 Tetrastemma nigrifrons 2 0.01% 307 Thelepus setosus 2 0.01% 308 Abietinaria sp 1 0.01% 310 Achelia alaskensis 1 0.01% 311 Achelia alaskensis 1 0.01% 312 Aglaja ocelligera 1 0.01% 313 Ampharete cf cra		4			
295 Pectinaria californiensis 2 0.01% 296 Pholoe glabra 2 0.01% 297 Physella sp 2 0.01% 298 Polycirrus californicus 2 0.01% 299 Polyplacophora 2 0.01% 300 Protothaca staminea 2 0.01% 301 Sabellidhe 2 0.01% 302 Sabelliphilidae 2 0.01% 303 Sthenelisis berkeleyi 2 0.01% 304 Tellina sp 2 0.01% 305 Tenonia priops 2 0.01% 306 Tetrastemma nigrifons 2 0.01% 307 Thelepus setosus 2 0.01% 308 Abietinaria sp 1 0.01% 310 Acchelia alaskensis 1 0.01% 311 Achelia echinata 1 0.01% 312 Aglaja ocelligera 1 0.01% 313 Ampharete cf crassiseta		*			
296 Pholoe glabra 2 0.01% 297 Physella sp 2 0.01% 298 Polycirrus californicus 2 0.01% 299 Polyplacophora 2 0.01% 300 Protothaca staminea 2 0.01% 301 Sabelliphilidae 2 0.01% 302 Sabelliphilidae 2 0.01% 303 Sthenelais berkeleyi 2 0.01% 304 Tellina sp 2 0.01% 305 Tenonia priops 2 0.01% 306 Tetrastemma nigrifrons 2 0.01% 307 Thelepus setosus 2 0.01% 308 Abietinaria sp 1 0.01% 310 Achelia chinata 1 0.01% 311 Achelia chinata 1 0.01% 312 Aglaja ocelligera 1 0.01% 314 Amphiprorus sp 1 0.01% 315 Amphitrite edwardsi <t< td=""><td></td><td></td><td></td><td></td><td></td></t<>					
297 Physela sp 2 0.01% 298 Polycirrus californicus 2 0.01% 299 Polyplacophora 2 0.01% 300 Protothaca staminea 2 0.01% 301 Sabellidae 2 0.01% 302 Sabelliphilidae 2 0.01% 303 Sthenelais berkeleyi 2 0.01% 304 Tellina sp 2 0.01% 305 Tenonia priops 2 0.01% 306 Tetrastemma nigrifrons 2 0.01% 307 Thelepus setosus 2 0.01% 308 Abietinaria sp 1 0.01% 310 Achelia alaskensis 1 0.01% 311 Achelia celinata 1 0.01% 312 Aglaja ocelligera 1 0.01% 313 Amphiporus sp 1 0.01% 314 Amphiprorus occidentalis 1 0.01% 315 Amphiritie edwardsi					
298 Polycirrus californicus 2 0.01% 299 Polyplacophora 2 0.01% 300 Protothaca staminea 2 0.01% 301 Sabellidae 2 0.01% 302 Sabelliphilidae 2 0.01% 303 Sthenelais berkeleyi 2 0.01% 304 Tellina sp 2 0.01% 305 Tenonia priops 2 0.01% 306 Tertrastemma nigrifrons 2 0.01% 307 Thelepus setosus 2 0.01% 308 Abietinaria sp 1 0.01% 309 Acarina 1 0.01% 310 Achelia alskensis 1 0.01% 311 Ashgia ocelligera 1 0.01% 313 Ampharete cf crassiseta 1 0.01% 314 Amphirite edwardsi 1 0.01% 315 Amphirite edwardsi 1 0.01% 316 Anchicolurus occidentali					
299 Polyplacophora 2 0.01% 300 Protothaca staminea 2 0.01% 301 Sabellidae 2 0.01% 302 Sabelliphilidae 2 0.01% 303 Sthenelais berkeleyi 2 0.01% 304 Tellina sp 2 0.01% 305 Tenonia priops 2 0.01% 306 Tetrastemma nigrifrons 2 0.01% 307 Thelepus setosus 2 0.01% 308 Abietinaria sp 1 0.01% 310 Achelia alaskensis 1 0.01% 311 Achelia echinata 1 0.01% 312 Aglaja ocelligera 1 0.01% 313 Ampharete cf crassiseta 1 0.01% 314 Amphiritie edwardsi 1 0.01% 315 Amphiritie edwardsi 1 0.01% 316 Anchicolurus occidentalis 1 0.01% 320 Aricidea sp					
300 Protochaca staminea 2 0.01% 301 Sabellidae 2 0.01% 302 Sabelliphilidae 2 0.01% 303 Sthenelais berkeleyi 2 0.01% 304 Tellina sp 2 0.01% 305 Tenonia priops 2 0.01% 306 Tetrastemma nigrifrons 2 0.01% 307 Thelepus setosus 2 0.01% 308 Abietinaria sp 1 0.01% 309 Acarina 1 0.01% 310 Achelia alaskensis 1 0.01% 311 Achelia ocelligera 1 0.01% 312 Aglaja ocelligera 1 0.01% 314 Amphiporus sp 1 0.01% 315 Amphitrite edwardsi 1 0.01% 316 Ancicolurus occidentalis 1 0.01% 320 Aricidea sp 1 0.01% 321					
301 Sabellidae 2 0.01% 302 Sabelliphilidae 2 0.01% 303 Sthenelais berkeleyi 2 0.01% 304 Tellina sp 2 0.01% 305 Tenonia priops 2 0.01% 306 Tetrastemma nigrifrons 2 0.01% 307 Thelepus setosus 2 0.01% 308 Abietinaria sp 1 0.01% 309 Acarina 1 0.01% 310 Achelia alaskensis 1 0.01% 311 Achelia echinata 1 0.01% 312 Agleja ocelligera 1 0.01% 313 Ampharete cf crassiseta 1 0.01% 314 Amphiporus sp 1 0.01% 315 Amphitrite edwardsi 1 0.01% 316 Anchicolurus occidentalis 1 0.01% 320 Aricidea sp 1 0.01% 321 Balanus crenatus <t< td=""><td></td><td>** *</td><td></td><td></td><td></td></t<>		** *			
302 Sabelliphilidae 2 0.01% 303 Sthenelais berkeleyi 2 0.01% 304 Tellina sp 2 0.01% 305 Tenonia priops 2 0.01% 306 Tetrastemma nigrifrons 2 0.01% 307 Thelepus setosus 2 0.01% 308 Abietinaria sp 1 0.01% 309 Acarina 1 0.01% 310 Achelia alaskensis 1 0.01% 311 Achelia cehinata 1 0.01% 312 Aglaja ocelligera 1 0.01% 313 Ampharete cf crassiseta 1 0.01% 314 Amphiporus sp 1 0.01% 316 Anchicolurus occidentalis 1 0.01% 317 Anonyx cf liljeborgi 1 0.01% 320 Aricidea sp 1 0.01% 321 Balanus crenatus 1 0.01% 322 Boltenia villosa					
303 Sthenelais berkeleyi 2 0.01% 304 Tellina sp 2 0.01% 305 Tenonia priops 2 0.01% 306 Tetrastemma nigrifrons 2 0.01% 307 Thelepus setosus 2 0.01% 308 Abietinaria sp 1 0.01% 309 Acarina 1 0.01% 310 Achelia alaskensis 1 0.01% 311 Achelia echinata 1 0.01% 312 Aglaja ocelligera 1 0.01% 313 Ampharete cf crassiseta 1 0.01% 314 Amphirite edwardsi 1 0.01% 315 Amphirite edwardsi 1 0.01% 316 Anchicolurus occidentalis 1 0.01% 318 Araphura cuspirostris 1 0.01% 320 Aricidea sp 1 0.01% 321 Balanus crenatus 1 0.01% 322 Bolgainvillidae<					
304 Tellina sp 2 0.01% 305 Tenonia priops 2 0.01% 306 Tetrastemma nigrifrons 2 0.01% 307 Thelepus setosus 2 0.01% 308 Abietinaria sp 1 0.01% 309 Acarina 1 0.01% 310 Achelia alaskensis 1 0.01% 311 Achelia echinata 1 0.01% 312 Aglaja ocelligera 1 0.01% 313 Ampharete cf crassiseta 1 0.01% 314 Amphiporus sp 1 0.01% 315 Amphitrite edwardsi 1 0.01% 316 Anchicolurus occidentalis 1 0.01% 317 Anonyx cf lilljeborgi 1 0.01% 319 Argissa hamatipes 1 0.01% 320 Aricidea sp 1 0.01% 321 Balanus crenatus 1 0.01% 322 Boltenia villosa		4			
305 Tenonia priops 2 0.01% 306 Tetrastemma nigrifrons 2 0.01% 307 Thelepus setosus 2 0.01% 308 Abietinaria sp 1 0.01% 309 Acarina 1 0.01% 310 Achelia alaskensis 1 0.01% 311 Achelia echinata 1 0.01% 312 Aglaja ocelligera 1 0.01% 313 Ampharete cf crassiseta 1 0.01% 314 Amphiporus sp 1 0.01% 315 Amphiprus sp 1 0.01% 316 Anchicolurus occidentalis 1 0.01% 318 Araphura cuspirostris 1 0.01% 320 Aricidea sp 1 0.01% 321 Balanus crenatus 1 0.01% 322 Boltenia villosa 1 0.01% 323 Bougainvilliidae 1 0.01% 324 Caecum occidentale		*			
306 Tetrastemma nigrifrons 2 0.01% 307 Thelepus setosus 2 0.01% 308 Abietinaria sp 1 0.01% Cr 309 Acarina 1 0.01% Cr 309 Acarina 1 0.01% Cr 310 Achelia alaskensis 1 0.01% St 311 Achelia echinata 1 0.01% St 311 Achelia echinata 1 0.01% St 312 Aglaja ocelligera 1 0.01% St 313 Ampharete cf crassiseta 1 0.01% St 314 Amphitrite edwardsi 1 0.01% St 315 Amphitrite edwardsi 1 0.01% St 316 Anchicolurus occidentalis 1 0.01% St 317 Anonyx cf lilljeborgi 1 0.01% St 320 Aricidea sp 1 0.01% St 321					
307 Thelepus setosus 2 0.01% 308 Abietinaria sp 1 0.01% C 309 Acarina 1 0.01% C 310 Achelia alaskensis 1 0.01% C 311 Achelia echinata 1 0.01% E 312 Aglaja ocelligera 1 0.01% E 313 Ampharete cf crassiseta 1 0.01% E 314 Amphirite edwardsi 1 0.01% E 316 Anchicolurus occidentalis 1 0.01% E 317 Anonyx cf liljeborgi 1 0.01% E 318 Araphura cuspirostris 1 0.01% E 320 Aricidea sp 1 0.01% E 321 Balanus crenatus 1 0.01% E 322 Boltenia villosa 1 0.01% E 323 Bougainvilliidae 1 0.01% E 324					
308 Abieinaria sp 1 0.01% C 309 Acarina 1 0.01% C 310 Achelia alaskensis 1 0.01% C 311 Achelia echinata 1 0.01% F 312 Aglaja ocelligera 1 0.01% F 313 Ampharete cf crassiseta 1 0.01% F 314 Amphirite edwardsi 1 0.01% F 316 Anchicolurus occidentalis 1 0.01% F 317 Anonyx cf lilljeborgi 1 0.01% F 318 Araphura cuspirostris 1 0.01% F 320 Aricidea sp 1 0.01% F 321 Balanus crenatus 1 0.01% F 322 Boltenia villosa 1 0.01% F 323 Bougainvilliidae 1 0.01% F 324 Caecum occidentale 1 0.01% F		× *			
309 Acarina 1 0.01% 310 Achelia alaskensis 1 0.01% 311 Achelia echinata 1 0.01% 312 Aglaja ocelligera 1 0.01% 313 Ampharete cf crassiseta 1 0.01% 314 Amphiporus sp 1 0.01% 315 Amphitrite edwardsi 1 0.01% 316 Anchicolurus occidentalis 1 0.01% 317 Anonyx cf lilljeborgi 1 0.01% 318 Araphura cuspirostris 1 0.01% 319 Argissa hamatipes 1 0.01% 320 Aricidea sp 1 0.01% 321 Balanus crenatus 1 0.01% 322 Boltenia villosa 1 0.01% 323 Bougainvillidae 1 0.01% 324 Caecum occidentale 1 0.01% 325 Caecum sp 1 0.01% 326 Caprella sp					Colonial
310 Achelia alaskensis 1 0.01% 311 Achelia echinata 1 0.01% H 312 Aglaja ocelligera 1 0.01% H 313 Ampharete cf crassiseta 1 0.01% H 314 Amphiporus sp 1 0.01% H 315 Amphiporus ccidentalis 1 0.01% H 316 Anchicolurus occidentalis 1 0.01% H 317 Anonyx cf lilljeborgi 1 0.01% H 318 Araphura cuspirostris 1 0.01% H 319 Argissa hamatipes 1 0.01% H 320 Aricidea sp 1 0.01% H 321 Balanus crenatus 1 0.01% H 322 Boltenia villosa 1 0.01% H 323 Bougainvilliidae 1 0.01% H 324 Caecum occidentale 1 0.01% H					Colonial
311 Achelia echinata 1 0.01% H 312 Aglaja ocelligera 1 0.01% 1 313 Ampharete cf crassiseta 1 0.01% 1 314 Amphiporus sp 1 0.01% 1 315 Amphitrite edwardsi 1 0.01% 1 316 Anchicolurus occidentalis 1 0.01% 1 317 Anonyx cf lilljeborgi 1 0.01% 1 318 Araphura cuspirostris 1 0.01% 1 319 Argissa hamatipes 1 0.01% 1 320 Aricidea sp 1 0.01% 1 321 Balanus crenatus 1 0.01% 1 322 Boltenia villosa 1 0.01% 1 323 Bougainvilliidae 1 0.01% 1 324 Caecum occidentale 1 0.01% 1 325 Caecum sp 1 0.01% 1					
312 Aglaja ocelligera 1 0.01% 313 Ampharete cf crassiseta 1 0.01% 314 Amphiporus sp 1 0.01% 315 Amphitrite edwardsi 1 0.01% 316 Anchicolurus occidentalis 1 0.01% 317 Anonyx cf lilljeborgi 1 0.01% 318 Araphura cuspirostris 1 0.01% 319 Argissa hamatipes 1 0.01% 320 Aricidea sp 1 0.01% 321 Balanus crenatus 1 0.01% 322 Boltenia villosa 1 0.01% 323 Bougainvilliidae 1 0.01% 324 Caecum occidentale 1 0.01% 325 Caecum sp 1 0.01% 326 Campanulariidae 1 0.01% 329 Caulibugula ciliata 1 0.01% 330 Cellaria mandibulata 1 0.01% 331 Ce					Exotic
313 Ampharete cf crassiseta 1 0.01% 314 Amphiporus sp 1 0.01% 315 Amphitrite edwardsi 1 0.01% 316 Anchicolurus occidentalis 1 0.01% 317 Anonyx cf liljeborgi 1 0.01% 318 Araphura cuspirostris 1 0.01% 319 Argissa hamatipes 1 0.01% 320 Aricidea sp 1 0.01% 321 Balanus crenatus 1 0.01% 322 Boltenia villosa 1 0.01% 323 Bougainvilliidae 1 0.01% 324 Caecum occidentale 1 0.01% 325 Caecum sp 1 0.01% 326 Campanulariidae 1 0.01% 327 Campulaspis hartae 1 0.01% 328 Caprella sp 1 0.01% 329 Caulibugula ciliata 1 0.01% 331 Ceratopogonidae					Exotic
314 Amphiporus sp 1 0.01% 315 Amphitrite edwardsi 1 0.01% H 316 Anchicolurus occidentalis 1 0.01% H 316 Anchicolurus occidentalis 1 0.01% H 317 Anonyx cf lilljeborgi 1 0.01% H 318 Araphura cuspirostris 1 0.01% H 319 Argissa hamatipes 1 0.01% H 320 Aricidea sp 1 0.01% H 321 Balanus crenatus 1 0.01% H 322 Boltenia villosa 1 0.01% H 323 Bougainvilliidae 1 0.01% H 324 Caecum occidentale 1 0.01% H 325 Caecum sp 1 0.01% H 326 Campanulariidae 1 0.01% H 329 Caulibugula ciliata 1 0.01% H H <td></td> <td></td> <td></td> <td></td> <td></td>					
315 Amphitrite edwardsi 1 0.01% H 316 Anchicolurus occidentalis 1 0.01% 1 317 Anonyx cf lilljeborgi 1 0.01% 1 318 Araphura cuspirostris 1 0.01% 1 319 Argissa hamatipes 1 0.01% 1 320 Aricidea sp 1 0.01% 1 321 Balanus crenatus 1 0.01% 1 322 Boltenia villosa 1 0.01% 1 323 Bougainvilliidae 1 0.01% 1 324 Caecum occidentale 1 0.01% 1 325 Caecum sp 1 0.01% 1 326 Campulariidae 1 0.01% 1 329 Caulibugula ciliata 1 0.01% 1 330 Cellaria mandibulata 1 0.01% 1 331 Ceratopogonidae 1 0.01% 1		* · ·			
316 Anchicolurus occidentalis 1 0.01% 317 Anonyx cf lilljeborgi 1 0.01% 318 Araphura cuspirostris 1 0.01% 319 Argissa hamatipes 1 0.01% 320 Aricidea sp 1 0.01% 321 Balanus crenatus 1 0.01% 322 Boltenia villosa 1 0.01% 323 Bougainvilliidae 1 0.01% 324 Caecum occidentale 1 0.01% 325 Caecum sp 1 0.01% 326 Campanulariidae 1 0.01% 327 Campylaspis hartae 1 0.01% 328 Caprella sp 1 0.01% 330 Cellaria mandibulata 1 0.01% 331 Ceratopogonidae 1 0.01% 332 Chaetozone bansei 1 0.01% 333 Chaetozone bansei 1 0.01% 3334 Chironomidae					Evotio
317 Anonyx cf lilljeborgi 1 0.01% 318 Araphura cuspirostris 1 0.01% 319 Argissa hamatipes 1 0.01% 320 Aricidea sp 1 0.01% 321 Balanus crenatus 1 0.01% 322 Boltenia villosa 1 0.01% 323 Bougainvilliidae 1 0.01% 324 Caecum occidentale 1 0.01% 325 Caecum sp 1 0.01% 326 Campanulariidae 1 0.01% 327 Campylaspis hartae 1 0.01% 328 Caprella sp 1 0.01% 329 Caulibugula ciliata 1 0.01% 330 Cellaria mandibulata 1 0.01% 331 Ceratopogonidae 1 0.01% 333 Chaetozone bansei 1 0.01% 334 Chironomidae 1 0.01% 336 Cossura pygodactylata					Exotic
318 Araphura cuspirostris 1 0.01% 319 Argissa hamatipes 1 0.01% 320 Aricidea sp 1 0.01% 321 Balanus crenatus 1 0.01% 322 Boltenia villosa 1 0.01% 323 Bougainvilliidae 1 0.01% 324 Caecum occidentale 1 0.01% 325 Caecum occidentale 1 0.01% 326 Campanulariidae 1 0.01% 327 Campylaspis hartae 1 0.01% 328 Caprella sp 1 0.01% 329 Caulibugula ciliata 1 0.01% 330 Cellaria mandibulata 1 0.01% 333 Chaetozone bansei 1 0.01% 333 Chaetozone bansei 1 0.01% 334 Chironomidae 1 0.01% 336 Cossura pygodactylata 1 0.01%					
319 Argissa hamatipes 1 0.01% 320 Aricidea sp 1 0.01% 321 Balanus crenatus 1 0.01% 322 Boltenia villosa 1 0.01% 323 Bougainvilliidae 1 0.01% 324 Caecum occidentale 1 0.01% 325 Caecum sp 1 0.01% 326 Campanulariidae 1 0.01% 327 Campanulariidae 1 0.01% 328 Caprella sp 1 0.01% 329 Caulibugula ciliata 1 0.01% 330 Cellaria mandibulata 1 0.01% 332 Chaetozone bansei 1 0.01% 333 Chapperiopsis patula 1 0.01% 334 Chironomidae 1 0.01% 336 Cossura pygodactylata 1 0.01%		• • • •			
320 Aricidea sp 1 0.01% 321 Balanus crenatus 1 0.01% 322 Boltenia villosa 1 0.01% 323 Bougainvilliidae 1 0.01% 324 Caecum occidentale 1 0.01% 325 Caecum sp 1 0.01% 326 Campanulariidae 1 0.01% 327 Campanulariidae 1 0.01% 328 Caprella sp 1 0.01% 329 Caulibugula ciliata 1 0.01% 330 Cellaria mandibulata 1 0.01% 331 Ceratopogonidae 1 0.01% 333 Chaetozone bansei 1 0.01% 334 Chironomidae 1 0.01% 335 Chlamys hastata 1 0.01% 336 Cossura pygodactylata 1 0.01%					
321 Balanus crenatus 1 0.01% 322 Boltenia villosa 1 0.01% 323 Bougainvilliidae 1 0.01% 324 Caecum occidentale 1 0.01% 325 Caecum sp 1 0.01% 326 Campanulariidae 1 0.01% 327 Campylaspis hartae 1 0.01% 328 Caprella sp 1 0.01% 329 Caulibugula ciliata 1 0.01% 330 Cellaria mandibulata 1 0.01% 332 Chaetozone bansei 1 0.01% 333 Chapperiopsis patula 1 0.01% 334 Chironomidae 1 0.01% 336 Cossura pygodactylata 1 0.01%		~ ~			
322 Boltenia villosa 1 0.01% 323 Bougainvilliidae 1 0.01% C. 324 Caecum occidentale 1 0.01% C. 325 Caecum sp 1 0.01% C. 326 Campanulariidae 1 0.01% C. 327 Campylaspis hartae 1 0.01% C. 328 Caprella sp 1 0.01% C. 329 Caulibugula ciliata 1 0.01% C. 330 Cellaria mandibulata 1 0.01% C. 331 Ceratopogonidae 1 0.01% C. 333 Chaetozone bansei 1 0.01% C. 334 Chironomidae 1 0.01% C. 335 Chlamys hastata 1 0.01% C.			1		
323 Bougainvilliidae 1 0.01% Cu 324 Caecum occidentale 1 0.01% Cu 325 Caecum sp 1 0.01% Cu 326 Campanulariidae 1 0.01% Cu 327 Campylaspis hartae 1 0.01% Cu 328 Caprella sp 1 0.01% Cu 329 Caulibugula ciliata 1 0.01% Cu 330 Cellaria mandibulata 1 0.01% Cu 331 Ceratopogonidae 1 0.01% Cu 332 Chaetozone bansei 1 0.01% Cu 333 Chapperiopsis patula 1 0.01% Cu 334 Chironomidae 1 0.01% Cu 336 Cossura pygodactylata 1 0.01% Cu			1		
324 Caecum occidentale 1 0.01% 325 Caecum sp 1 0.01% 326 Campanulariidae 1 0.01% 327 Campylaspis hartae 1 0.01% 328 Caprella sp 1 0.01% 329 Caulibugula ciliata 1 0.01% 330 Cellaria mandibulata 1 0.01% 331 Ceratopogonidae 1 0.01% 333 Chaetozone bansei 1 0.01% 334 Chironomidae 1 0.01% 335 Chlamys hastata 1 0.01% 336 Cossura pygodactylata 1 0.01%					Colonial
325 Caecum sp 1 0.01% 326 Campanulariidae 1 0.01% Company 327 Campylaspis hartae 1 0.01% Company 328 Caprella sp 1 0.01% Company 329 Caulibugula ciliata 1 0.01% Company 330 Cellaria mandibulata 1 0.01% Company 331 Ceratopogonidae 1 0.01% Company 332 Chaetozone bansei 1 0.01% Company 333 Chapperiopsis patula 1 0.01% Company 334 Chironomidae 1 0.01% Company 336 Cossura pygodactylata 1 0.01% Company					Colonial
326 Campanulariidae 1 0.01% Composition 327 Campylaspis hartae 1 0.01% Composition 0.01% Composition 0.01% Composition 0.01% Composition 0.01% Composition 0.01% Composition Composition 0.01% Composition Composition					
327 Campylaspis hartae 1 0.01% 328 Caprella sp 1 0.01% 329 Caulibugula ciliata 1 0.01% 330 Cellaria mandibulata 1 0.01% 331 Ceratopogonidae 1 0.01% 332 Chaetozone bansei 1 0.01% 333 Chapperiopsis patula 1 0.01% 334 Chironomidae 1 0.01% 335 Chlamys hastata 1 0.01% 336 Cossura pygodactylata 1 0.01%		•			Calarial
328 Caprella sp 1 0.01% 329 Caulibugula ciliata 1 0.01% Cc 330 Cellaria mandibulata 1 0.01% Cc 331 Ceratopogonidae 1 0.01% Cc 332 Chaetozone bansei 1 0.01% Cc 333 Chapperiopsis patula 1 0.01% Cc 334 Chironomidae 1 0.01% Cc 335 Chlamys hastata 1 0.01% Cc 336 Cossura pygodactylata 1 0.01% Cc					Colonial
329 Caulibugula ciliata 1 0.01% Cultom 330 Cellaria mandibulata 1 0.01% Cultom 331 Ceratopogonidae 1 0.01% Cultom 332 Chaetozone bansei 1 0.01% Cultom 333 Chaetozone bansei 1 0.01% Cultom 333 Chapperiopsis patula 1 0.01% Cultom 334 Chironomidae 1 0.01% Cultom 335 Chlamys hastata 1 0.01% Cultom 336 Cossura pygodactylata 1 0.01% Cultom					
330 Cellaria mandibulata 1 0.01% C 331 Ceratopogonidae 1 0.01% C 332 Chaetozone bansei 1 0.01% C 333 Chapperiopsis patula 1 0.01% C 334 Chironomidae 1 0.01% C 335 Chlamys hastata 1 0.01% C 336 Cossura pygodactylata 1 0.01% C					Colonial
331 Ceratopogonidae 1 0.01% 332 Chaetozone bansei 1 0.01% 333 Chapperiopsis patula 1 0.01% 334 Chironomidae 1 0.01% 335 Chlamys hastata 1 0.01% 336 Cossura pygodactylata 1 0.01%					
332 Chaetozone bansei 1 0.01% 333 Chapperiopsis patula 1 0.01% C 334 Chironomidae 1 0.01% C 335 Chlamys hastata 1 0.01% C 336 Cossura pygodactylata 1 0.01% C					Colonial
333 Chapperiopsis patula 1 0.01% C 334 Chironomidae 1 0.01% C 335 Chlamys hastata 1 0.01% C 336 Cossura pygodactylata 1 0.01% C		1 0			
334 Chironomidae 1 0.01% 335 Chlamys hastata 1 0.01% 336 Cossura pygodactylata 1 0.01%					C - 1' 1
335 Chlamys hastata 1 0.01% 336 Cossura pygodactylata 1 0.01%					Colonial
336 Cossura pygodactylata 1 0.01%					
<i>337</i> Crisia sp 1 0.01% C					01.11
					Colonial
338 Cyclostomata 1 0.01% C 339 Cylindroleberididae 1 0.01% C		•			Colonial

Order of Dominance	Taxon	Total Number of Individuals	% of Total	Species Classification
340	Deflexilodes similis	1	0.01%	
340	Deplexitodes similis Demonax sp	1	0.01%	
341	Dendrochirotida	1	0.01%	
342	Diaphana californica	1	0.01%	
343	Dichonemertes hartmanae	1	0.01%	
344		1	0.01%	
	Diopatra sp	1		
346	Discorsopagurus schmitti	-	0.01%	Calarial
347	Disporella fimbriata	1	0.01%	Colonial
348	Ectinosoma sp	_	0.01%	C - 1
349	Electra crustulenta arctica	1	0.01%	Colonial
350	Eohaustorius washingtonianus	1	0.01%	
351	Eranno bicirrata	1	0.01%	
352	Eteone fauchaldi	1	0.01%	
353	Eudistylia polymorpha	1	0.01%	
354	<i>Eudistylia</i> sp	1	0.01%	
355	Euphysa ruthae	1	0.01%	<u> </u>
356	Eurystomella bilabiata	1	0.01%	Colonial
357	Eusyllis habei	1	0.01%	
358	<i>Gastropoda</i> sp 4	1	0.01%	
359	Gattyana treadwelli	1	0.01%	
360	Geminosyllis ohma	1	0.01%	Exotic
361	Gnathopleustes sp	1	0.01%	
362	Grantiidae	1	0.01%	Colonial
363	Harmothoe extenuata	1	0.01%	
364	Heptacarpus kincaidi	1	0.01%	
365	Hesperonoe complanata	1	0.01%	
366	Heteromastus filiformis	1	0.01%	
367	Heterophoxus oculatus group	1	0.01%	
368	Heteropodarke heteromorpha	1	0.01%	
369	Heteropora pacifica	1	0.01%	Colonial
370	Hiatella arctica	1	0.01%	
371	Hoplonemertea	1	0.01%	
372	Humilaria kennerlyi	1	0.01%	
373	Hyas lyratus	1	0.01%	
374	Idanthyrsus saxicavus	1	0.01%	
375	Lagenipora socialis	1	0.01%	Colonial
376	Laonice cirrata	1	0.01%	Exotic
377	Lepidasthenia longicirrata	1	0.01%	
378	Levinsenia oculata	1	0.01%	
379	<i>Longipedia</i> sp	1	0.01%	
380	Lophopanopeus bellus	1	0.01%	
381	Macoma elimata	1	0.01%	
382	Macoma inquinata	1	0.01%	
383	Macoma secta	1	0.01%	
384	Mandibulophoxus gilesi	1	0.01%	
385	Margarites sp	1	0.01%	
386	Microphthalmus sczelkowii	1	0.01%	
387	Micrura alaskensis	1	0.01%	
388	<i>Micrura</i> sp	1	0.01%	

Order of Dominance	Taxon	Total Number of Individuals	% of Total	Species Classification
389	Modiolus sp	1	0.01%	
390	Molpadia intermedia	1	0.01%	
391	Monostylifera	1	0.01%	
392	Monticellina secunda	1	0.01%	
393	Narpus sp	1	0.01%	
394	Neomysis mercedis	1	0.01%	
395	Nephtys californiensis	1	0.01%	
396	Nereididae	1	0.01%	
397	Nereis sp	1	0.01%	
398	Nolella stipata	1	0.01%	Colonial
399	Obelia longissima	1	0.01%	Colonial
400	Oplorhiza gracilis	1	0.01%	Colonial
401	Pachynus cf barnardi	1	0.01%	
402	Parandalia fauveli	1	0.01%	
403	Paraonella platybranchia	1	0.01%	
404	Phoronis sp	1	0.01%	
405	Phoxocephalidae	1	0.01%	
406	Phyllodoce cuspidata	1	0.01%	
407	Pinnotheridae	1	0.01%	
408	Pista wui	1	0.01%	
409	Polydora websteri	1	0.01%	Exotic
410	Pontogeneia rostrata	1	0.01%	Exotic
411	Pulsellum salishorum	1	0.01%	
412	Rocinela belliceps	1	0.01%	
413	Scalibregma inflatum	1	0.01%	
414	Scyphozoa	1	0.01%	
415	Solen sicarius	1	0.01%	
416	Solidobalanus hesperius	1	0.01%	
417	Spio filicornis	1	0.01%	
418	Spirontocaris ochotensis	1	0.01%	
419	Streblosoma sp B	1	0.01%	
420	Styela gibbsii	1	0.01%	
421	Tellina bodegensis	1	0.01%	
422	Terebellidae	1	0.01%	
423	Thyasira flexuosa	1	0.01%	
424	Thysanocardia nigra	1	0.01%	
425	Trichobranchus glacialis	1	0.01%	
426	Tubulanus cingulatus	1	0.01%	
427	<i>Tubulipora</i> sp	1	0.01%	Colonial
428	Venerupis philippinarum	1	0.01%	Exotic
429	Yoldia hyperborea	1	0.01%	
430	Yoldia seminuda	1	0.01%	
431	<i>Yoldia</i> sp	1	0.01%	
	TOTAL	17881	100.00%	

Table E-2. Benthic infauna by station. Top 10 abundant taxa in bold.

WA99-0001 MAKAH BAY Count Taxon 14 Ampelisca careyi 8 Diastylopsis dawsoni 7 Rhepoxynius abronius 4 Olivella pycna 2 Olivella biplicata 2 Tecticeps pugettensis 1 Anchicolurus occidentalis

- 1 Chaetozone bansei
- 1 Eurystomella bilabiata
- 1 Glycinde armigera
- 1 Heteropora pacifica
- 1 Naineris uncinata
- 1 Notomastus hemipodus
- 44 TOTAL

WA99-0002 MAKAH BAY
Count Taxon
7 Eohaustorius estuarius
5 Glycera macrobranchia
4 Psammonyx longimerus
2 Naineris uncinata
1 Aphelochaeta sp
1 Nephtys caecoides
1 Tetrastemma sp
21 TOTAL
WA99-0003 MAKAH BAY
Count Taxon
13 Eohaustorius estuarius
6 Sigalion spinosus
5 Olivella pycna
4 Mandibulophoxus mavi

- 4 Mandibulophoxus mayi
- **3 Dendraster excentricus**
- 2 Ampelisca careyi
- 2 Majoxiphalus major
- 1 Diastylopsis dawsoni
- 1 Macoma secta
- 1 Nephtys caecoides
- 1 Phoxocephalidae
- 1 Rhepoxynius abronius
- 1 Scoloplos armiger armiger

41 TOTAL

WA99-0004	4 HOKO RIVER
Count Taxon	
8 Archaeomys	is arebnitzkii

~	na enaeeningene greannana
6	Armandia brevis
5	Rhynchospio glutaea
3	Majoxiphalus major
2	Olivella baetica

- 1 Capitella capitata Cmplx
- 1 Crangon alaskensis
- 1 Crangon sp
- 1 Eobrolgus chumashi
- 1 Glycinde polygnatha
- 1 Leitoscoloplos pugettensis
- 1 Magelona sacculata
- 1 Mandibulophoxus mayi
- 1 Paraonella platybranchia
- 1 Rhepoxynius abronius
- 1 Scoloplos armiger armiger
- 1 Spiophanes bombyx
- 1 Tecticeps pugettensis 1 Tellina bodegensis
- 1 Tellina modesta

39 TOTAL

42 Magelona longicornis 38 Nutricola lordi 28 Axinopsida serricata 21 Photis parvidons

Count Taxon

- 20 Photis sp
- 17 Protomedeia prudens

100 Phyllochaetopterus prolifica

- 13 Cyclocardia ventricosa
- 12 Dipolydora socialis
- 11 Rochefortia tumida
- 10 Desdimelita desdichada
- 9 Decamastus gracilis
- 9 Ischyrocerus sp
- 9 Photis brevipes 7 Heterophoxus conlanae
- 7 Mediomastus californiensis
- 7 Mya arenaria
- 7 Prionospio (Prionospio) steenstrupi
- 6 Boccardia pugettensis
- 6 Eudorella pacifica
- 6 Parvilucina tenuisculpta
- 6 Spiochaetopterus costarum
- 5 Ampelisca agassizi
- 5 Aphelochaeta glandaria
- 5 Byblis millsi
- 5 Exogone lourei
- 5 Eyakia robusta
- 5 Monocorophium californianum
- 5 Nephtys ferruginea
- 4 Diastylis santamariensis
- 4 Euclymeninae
- 4 Eudistylia catharinae
- 4 Eumida longicornuta
- 4 Heterophoxus ellisi
- 4 Lumbrineris californiensis
- 4 Macoma golikovi
- 4 Nephtys caecoides
- 4 Nuculana minuta
- 4 Sabaco elongatus
- 3 Apistobranchus ornatus
- 3 Gammaropsis thompsoni
- 3 Glycinde polygnatha
- 3 Haliophasma geminatum
- 3 Molgula pugetiensis
- 3 Pectinaria granulata
- 3 Typosyllis caeca 2 Adontorhina cyclia
- 2 Ampelisca pugetica
- 2 Amphissa columbiana
- 2 Aoroides sp
- 2 Aphelochaeta sp
- 2 Chaetozone nr setosa
- 2 Chaetozone sp
- 2 Circeis spirillum
- 2 Hobsonia florida 2 Megalomma splendida
- 2 Nicomache personata
- 2 Oregonia gracilis
- 2 Polycirrus californicus

Page 212

- 1 Amphipholis sp 1 Amphiporus sp 1 Anonyx cf lilljeborgi 1 Argissa hamatipes 1 Campylaspis hartae 1 Cancer oregonensis 1 Caulleriella pacifica 1 Cellaria mandibulata 1 Chaetozone acuta 1 Clinocardium nuttallii 1 Crangon sp 1 Cyclostomata 1 Cylindroleberididae 1 Deflexilodes similis 1 Discorsopagurus schmitti 1 Disporella fimbriata 1 Eteone lighti 1 Eualus subtilis 1 Euclymeninae sp A
- 1 Eumida sp

WA99-0007 FRESHWATER BAY

Count Taxon

2 Polycirrus sp

2 Sthenelais berkeleyi

1 Ampharete cf crassiseta

1 Alvania compacta

- 1 Galathowenia oculata
- 1 Heptacarpus kincaidi
- 1 Hiatella arctica
- 1 Laonice cirrata
- 1 Leitoscoloplos pugettensis
- 1 Lirularia lirulata
- 1 Lumbrineris limicola 1 Lumbrineris sp

1 Lyonsia californica

1 Macoma inquinata

1 Monticellina secunda

1 Notomastus latericeus

1 Macoma elimata

1 Nutricola tantilla

1 Onuphis iridescens

1 Ophelina acuminata

1 Pholoides asperus

1 Phyllodoce cuspidata

1 Phyllodoce sp

1 Praxillella pacifica

1 Proceraea cornuta

1 Rhodine bitorguata

1 Rocinela belliceps

1 Sabellidae

1 Scoletoma luti 1 Spiophanes berkelevorum

1 Protothaca staminea

1 Scalibregma inflatum

1 Spiophanes bombyx

1 Thyasira flexuosa

573 TOTAL

1 Thysanocardia nigra

1 Spirontocaris ochotensis 1 Tetrastemma nigrifrons

1 Phyllochaetopterus pottsi

WA99-0009 DUNGENESS BAY	WA99-0010 DISCOVERY BAY
Count Taxon	Count Taxon
289 Aphelochaeta glandaria	157 Axinopsida serricata
63 Owenia fusiformis	46 Heteromastus filobranchus
56 Capitella capitata Cmplx	45 Spiophanes berkeleyorum
42 Oligochaeta	29 Trochochaeta multisetosa
29 Leitoscoloplos pugettensis	21 Rochefortia tumida
22 Mediomastus sp	13 Sigambra bassi
20 Ampharete labrops	12 Scoletoma luti
10 Leptochelia dubia	8 Macoma carlottensis
10 Prionospio (Prionospio) steenstrupi	7 Euclymeninae sp A
9 Axinopsida serricata	7 Lepidasthenia berkeleyae
8 Exogone lourei	7 Nereis procera
8 Macoma nasuta	6 Glycera nana
6 Glycinde polygnatha	5 Lumbrineris limicola
5 Clinocardium sp	5 Spiophanes bombyx
5 Lirularia lirulata	4 Astyris gausapata
5 Mediomastus californiensis	4 Heteromastus sp
4 Nutricola lordi	4 Praxillella pacifica
4 Nutricola tantilla	4 Sternaspis cf fossor
3 Ampharete acutifrons	3 Nephtys ferruginea
3 Aricidea (Acmira) lopezi	3 Paraprionospio pinnata
3 Armandia brevis	3 Pinnixa sp
3 Dipolydora socialis	2 Levinsenia gracilis
3 Eteone lighti	1 Amphiodia urtica
2 Dipolydora quadrilobata	1 Aphelochaeta sp
2 Glycinde sp	1 Aricidea (Acmira) lopezi
2 Pseudopolydora paucibranchiata	1 Compsomyax subdiaphana
2 Pygospio elegans	1 Crepipatella dorsata
2 Rhynchospio glutaea	1 Cylichna attonsa
1 Ampelisca pugetica	1 Ennucula tenuis
1 Ampharetidae	1 Eteone lighti
1 Carinoma mutabilis	1 Eteone sp
1 Chaetozone nr setosa	1 Gattyana treadwelli
1 Crangon sp	1 Glycera americana
1 Diastylis santamariensis	1 Glycinde armigera
1 Eobrolgus chumashi	1 Heteromastus filiformis
1 Euphilomedes carcharodonta	1 Heterophoxus oculatus group
1 Gnathopleustes sp	1 Leptochelia dubia
1 Lamprops quadriplicatus	1 Levinsenia oculata
1 Melanochlamys diomedea	1 Molpadia intermedia
1 Micrura alaskensis	1 Nuculana minuta
1 Neanthes limnicola	1 Nutricola lordi
1 Nephtys caecoides	1 Oligochaeta
1 Notomastus hemipodus	1 Ophelina acuminata
1 Ophelina acuminata	1 Parvilucina tenuisculpta
1 Pista wui	1 Pectinaria granulata
1 Scoloplos armiger armiger	1 Pilargis maculata
1 Spio filicornis	1 Podarkeopsis glabrus
1 Tellina modesta	1 Prionospio (Minuspio) lighti
640 TOTAL	1 Tenonia priops
	422 TOTAL

101	Annopsida serricata
46	Heteromastus filobranchus
45	Spiophanes berkeleyorum
29	Trochochaeta multisetosa
21	Rochefortia tumida
13	Sigambra bassi
12	Scoletoma luti
8	Macoma carlottensis
7	Euclymeninae sp A
7	Lepidasthenia berkeleyae
7	Nereis procera
6	Glycera nana
5	Lumbrineris limicola
5	Spiophanes bombyx
4	Astyris gausapata
4	Heteromastus sp
4	Praxillella pacifica
4	Sternaspis cf fossor
3	Nephtys ferruginea
3	Paraprionospio pinnata
3	Pinnixa sp
2	Levinsenia gracilis
1	Amphiodia urtica
1	Aphelochaeta sp
1	Aricidea (Acmira) lopezi
1	Compsomyax subdiaphana
1	Crepipatella dorsata
1	Cylichna attonsa
1	Ennucula tenuis
1	Eteone lighti
1	Eteone sp
1	Gattyana treadwelli
1	Glycera americana
1	Glycinde armigera
1	Heteromastus filiformis
1	Heterophoxus oculatus group
1	Leptochelia dubia
1	Levinsenia oculata
1	Molpadia intermedia
1	Nuculana minuta
1	Nutricola lordi
1	Oligochaeta
1	Ophelina acuminata
1	Parvilucina tenuisculpta
1	Pectinaria granulata
1	Pilargis maculata
1	Podarkeopsis glabrus
1	Prionospio (Minuspio) lighti
	Tenonia priops
422	TOTAL

WA99-0011 DISCOVERY BAY			
Count	Taxon	Count Taxon	Count Taxon
67	Crepipatella dorsata	3 Harmothoe multisetosa	1 Eudistylia catharinae
60	Pholoides asperus	3 Heterophoxus conlanae	1 Eudistylia polymorpha
53	Petaloproctus borealis	3 Monticellina tesselata	1 Eudistylia sp
50	Magelona longicornis	3 Oenopota sp	1 Eudorella pacifica
45	Alvania compacta	3 Owenia fusiformis	1 Gammaropsis thompsoni
28	Macoma yoldiformis	3 Parvilucina tenuisculpta	1 Geminosyllis ohma
28	Phyllochaetopterus prolifica	3 Pectinaria granulata	1 Glycera americana
26	Mya arenaria	3 Phoronopsis harmeri	1 Harmothoe extenuata
23	Lumbrineris californiensis	3 Pista elongata	1 Harmothoinae
23	Rochefortia tumida	3 Proceraea cornuta	1 Heteromastus sp
22	Acila castrensis	3 Rhodine bitorquata	1 Humilaria kennerlyi
21	Prionospio (Prionospio) steenstrupi	2 Chaetozone acuta	1 Idanthyrsus saxicavus
20	Anobothrus gracilis	2 Dipolydora socialis	1 Lagenipora socialis
16	Lineidae	2 Glycera nana	1 Lepidasthenia longicirrata
14	Euclymeninae	2 Glycinde polygnatha	1 Margarites sp
13	Odostomia sp	2 Lanassa venusta	1 Mediomastus sp
12	Astyris gausapata	2 Lyonsia californica	1 Micrura sp
12	Macoma golikovi	2 Mesochaetopterus taylori	1 Modiolus sp
12	Notomastus hemipodus	2 Nassarius mendicus	1 Nereis procera
	Sphaerosyllis californiensis	2 Nuculana minuta	1 Nereis sp
	Lumbrineridae	2 Nutricola lordi	1 Nolella stipata
11	Terebellides sp	2 Pilargis maculata	1 Notomastus latericeus
	Eulalia californiensis	2 Pinnixa schmitti	1 Obelia longissima
	Nephtys ferruginea	2 Pista brevibranchiata	1 Onuphidae
	Gattyana cirrosa	2 Polyplacophora	1 Onuphis iridescens
	Paraprionospio pinnata	2 Sabelliphilidae	1 Ophiodromus pugettensis
	Cirratulus multioculatus	2 Sternaspis cf fossor	1 Ophiurida
	Euphilomedes producta	2 Thelepus setosus	1 Oplorhiza gracilis
7	Asabellides sibirica	2 Themiste pyroides	1 Pagurus sp
7	Cardiomya pectinata	2 Turbonilla sp	1 Paleanotus bellis
	Eumida longicornuta	1 Amphitrite edwardsi	1 Pholoe glabra
	Solamen columbianum	1 Araphura cuspirostris	1 Phoronidae
7	Terebellides californica	1 Armandia brevis	1 Phoronis sp
	Ampelisca lobata	1 Balanus crenatus	1 Photis sp
	Amphipholis sp	1 Barentsia benedeni	1 Pinnotheridae
	Ascidiacea	1 Bougainvilliidae	1 Platynereis bicanaliculata
	Axinopsida serricata	1 Bowerbankia gracilis	1 Podocopida
	Galathowenia oculata	1 Campanulariidae	1 Polycirrus sp
	Leptochiton rugatus	1 Caulibugula ciliata	1 Polydora limicola
	Neosabellaria cementarium	1 Caulleriella pacifica	1 Polydora websteri
	Aphelochaeta sp	1 Chlamys hastata	1 Pulsellum salishorum
	Aphelochaeta tigrina	1 Cirratulidae	1 Rutiderma Iomae
	Golfingia vulgaris	1 Compsomyax subdiaphana	1 Sabellidae
	Kurtzia arteaga	1 Cossura pygodactylata	1 Scoletoma luti
	Scionella japonica	1 Crangon sp	1 Streblosoma sp B
	Spiochaetopterus costarum	1 Demonax sp	1 Tetrastemma candidum
	Aphelochaeta glandaria	1 Dendrobeania lichenoides	1 Trichobranchus glacialis
	Cyclocardia ventricosa	1 Dendrochirotida	1 Trochochaeta multisetosa
	Decamastus gracilis	1 Dichonemertes hartmanae	1 Tubulanus cingulatus
	Euchone incolor	1 Diopatra sp	1 Typosyllis caeca
	Exogone dwisula	1 Edwardsia sipunculoides	1 Yoldia seminuda
	Exogone lourei	1 Ennucula tenuis	893 TOTAL
	Exogone molesta	1 Eranno bicirrata	

WA99-0012 DISCOVERY BAY

Count Taxon

Count	Taxon
434	Phyllochaetonterus prolifica

- 140 Alvania compacta
- 119 Rochefortia tumida
- 78 Ophiurida
- 57 Lumbrineris californiensis 57 Mva arenaria
- 43 Eumida longicornuta
- 42 Dipolydora socialis
- 35 Axinopsida serricata
- 30 Prionospio (Prionospio) steenstrupi
- 28 Amphiodia sp
- 28 Exogone dwisula
- 26 Magelona longicornis
- 22 Polydora limicola
- 21 Spiochaetopterus costarum
- 19 Pholoides asperus
- 15 Anobothrus gracilis
- 14 Nereis procera
- 13 Parvilucina tenuisculpta
- 13 Platynereis bicanaliculata
- 11 Asabellides sibirica
- 11 Typosyllis caeca
- 10 Glycinde polygnatha
- 10 Owenia fusiformis
- 10 Spiophanes berkeleyorum
- 9 Heterophoxus conlanae
- 9 Lineidae
- 9 Mediomastus californiensis
- 9 Paraprionospio pinnata
- 8 Ampelisca pugetica
- 8 Sigambra bassi
- 7 Acila castrensis
- 7 Aoroides sp
- 7 Carinoma mutabilis
- 7 Eobrolaus sp
- 7 Macoma yoldiformis
- 7 Themiste pyroides
- 6 Ampelisca lobata
- 6 Crepipatella dorsata
- 6 Lumbrineridae
- 6 Nephtys cornuta
- 6 Pentamera lissoplaca
- 6 Pherusa plumosa
- 6 Phyllodoce groenlandica
- 6 Terebellides californica
- 5 Astyris gausapata
- 5 Euclymeninae sp A 5 Eumida sp
- 5 Ischyrocerus sp
- 5 Polycirrus sp I
- 4 Eteone columbiensis
- 4 Lumbrineris sp 4 Mediomastus sp
- 4 Notomastus hemipodus
- 4 Odostomia sp
- 4 Oregonia gracilis

- 4 Phyllodoce sp
- 4 Pinnixa schmitti
- 4 Rutiderma lomae
- 4 Scoletoma luti
- 4 Solamen columbianum

- 3 Amphiodia urtica
- 3 Eualus subtilis
- 3 Monocorophium acherusicum
- - 3 Nephtys ferruginea
- 3 Phyllochaetopterus pottsi
- 3 Pilargis maculata

2 Ampharetidae

- 3 Ophiodromus pugettensis

- 3 Syllis elongata
- 3 Terebellides sp
 - - 1 Yoldia sp 1617 TOTAL

2 Eteone sp 2 Euclymeninae 2 Euphilomedes carcharodonta 2 Eupolymnia heterobranchia 2 Gattvana cirrosa 2 Glycera americana 2 Harmothoinae 2 Leitoscoloplos pugettensis

2 Mopalia sp

2 Pagurus sp

2 Pista elongata

2 Podocopida

2 Turbonilla sp

2 Ennucula tenuis

2 Leptochelia dubia 2 Mediomastus ambiseta

2 Notomastus latericeus

2 Pectinaria californiensis

2 Podarkeopsis glabrus

2 Proceraea cornuta

1 Aglaja ocelligera

1 Armandia brevis

1 Boltenia villosa

1 Barentsia benedeni

1 Cancer oregonensis

1 Caulleriella pacifica

1 Celleporella hvalina

1 Chapperiopsis patula

1 Clinocardium nuttallii

1 Diaphana californica

1 Galathowenia oculata

1 Eudorella pacifica

1 Eusyllis habei

1 Grantiidae

1 Hyas lyratus

1 Nereididae

1 Oenopota sp

1 Kurtzia arteaga

1 Lanassa venusta

1 Lvonsia californica

1 Macoma carlottensis

1 Ophelina acuminata

1 Paleanotus bellis

1 Parandalia fauveli

1 Pholoe glabra

1 Pachynus cf barnardi

1 Phoronopsis harmeri

1 Pista brevibranchiata

1 Saxidomus giganteus

1 Tetrastemma nigrifrons

1 Tubulanus polymorphus

Page 215

1 Pygospio elegans

1 Styela gibbsii

1 Terebellidae

1 Tubulipora sp

1 Yoldia hyperborea

1 Prionospio (Minuspio) lighti

1 Mesochaetopterus taylori

1 Microphthalmus sczelkowii

1 Lophopanopeus bellus

1 Cylichna attonsa

1 Cerebratulus sp

1 Cirratulidae

1 Crisia sp

1 Capitella capitata Cmplx

1 Cerebratulus montgomeryi

1 Dendrobeania lichenoides

1 Edwardsia sipunculoides

2 Aphelochaeta glandaria

WA99-0013 DISCOVERY BAY

Count Taxon

59 TOTAL

Count Taxon

46 Nephtys cornuta

2 Sigambra bassi

1890 Owenia fusiformis

148 Rochefortia tumida

348 Oligochaeta

71 Macoma sp 63 Mediomastus sp

7 Paraprionospio pinnata

3 Parvilucina tenuisculpta

1 Compsomyax subdiaphana

WA99-0014 DISCOVERY BAY

84 Monocorophium acherusicum

54 Mediomastus californiensis

48 Clinocardium nuttallii

47 Clinocardium sp

45 Exogone lourei

20 Lineidae

32 Decamastus gracilis

23 Glycinde polygnatha

22 Notomastus hemipodus

21 Leitoscoloplos pugettensis

17 Capitella capitata Cmplx

9 Platynereis bicanaliculata 8 Cumella vulgaris

8 Parvilucina tenuisculpta

7 Cerebratulus californiensis

6 Nippoleucon hinumensis

5 Grandidierella japonica

5 Alvania compacta

5 Haminaea vesicula

5 Phoronopsis harmeri

4 Podarkeopsis glabrus

3 Cryptomya californica

3 Eumida longicornuta

3 Magelona longicornis

2 Glycera americana 2 Macoma yoldiformis

2 Pectinaria granulata

2 Tubulanus polymorphus

2 Nephtys cornuta

2 Nutricola lordi

1 Acila castrensis

1 Ectinosoma sp

1 Longipedia sp

1 Nephtys caecoides

1 Eteone sp

1 Nephtys sp 1 Onuphidae 1 Protothaca staminea 1 Solidobalanus hesperius 1 Tellina modesta 1 Tenonia priops 3106 TOTAL

1 Astyris gausapata

1 Axinopsida serricata

1 Edwardsia sipunculoides

1 Lumbrineris californiensis

2 Tellina sp

3 Macoma nasuta

3 Nereis procera

2 Bivalvia

5 Prionospio (Minuspio) lighti

4 Melanochlamys diomedea

4 Spiophanes berkelevorum 3 Ampharete labrops

3 Euphilomedes carcharodonta

3 Spiochaetopterus costarum

2 Cerebratulus montgomeryi

2 Prionospio (Prionospio) steenstrupi

8 Pseudopolydora paucibranchiata

16 Leptochelia dubia

15 Sigambra bassi

WA99-0020 GRAYS HARBOR	
Count Taxon	(
12 Mediomastus sp	7 6
9 Cryptomya californica	
8 Nephtys caecoides	
4 Scolelepis squamata	
3 Nippoleucon hinumensis	
3 Oligochaeta	
1 Capitella capitata Cmplx	
1 Clinocardium nuttallii	
1 Hesperonoe complanata	
1 Macoma balthica	
1 Neotrypaea californiensis	
1 Owenia fusiformis	
1 Siliqua sp	
46 TOTAL	7

WA99-0021 GRASS CREEK Count Taxon 34 Phoronidae

- 23 Cryptomya californica
- 11 Barantolla nr americana
- 8 Mediomastus sp
- 7 Clinocardium nuttallii
- 6 Lamprops quadriplicatus
- 4 Nephtys caecoides
- 3 Glycinde sp
- 3 Oligochaeta
- 2 Eohaustorius estuarius
- 2 Nephtys caeca
- 1 Bowerbankia gracilis
- 1 Capitella capitata Cmplx
- 1 Cerebratulus montgomeryi
- 1 Harmothoinae
- 1 Macoma nasuta
- 1 Membranipora sp
- 1 Mya arenaria
- 1 Scolelepis squamata
- 1 Tharyx parvus
- 112 TOTAL
- WA99-0022 GRAYS HARBOR Count Taxon 18 Cryptomya californica 9 Dipolydora caulleryi 7 Lamprops quadriplicatus 6 Nephtys caecoides 5 Clausidium vancouverense 5 Glycinde polygnatha 5 Scolelepis squamata 3 Clinocardium nuttallii 3 Polydora cornuta 2 Aphelochaeta sp 2 Monocorophium acherusicum 1 Barantolla nr americana 1 Capitella capitata Cmplx 1 Caprella laeviuscula 1 Caprella sp 1 Cerebratulus sp 1 Eogammarus confervicolus CMPLX 1 Eohaustorius estuarius 1 Glycinde armigera

 - 1 Glycinde sp
 - 1 Macoma balthica
 - 1 Neotrypaea californiensis
 - 1 Tharyx parvus

 - 77 TOTAL

WA99-0023 GRAYS HARBOR
Count Taxon
141 Magelona sacculata
11 Mytilidae
8 Scoloplos armiger armiger
7 Clinocardium nuttallii
5 Glycera macrobranchia
5 Spio butleri
4 Siliqua sp
3 Archaeomysis grebnitzkii
3 Lamprops quadriplicatus
3 Magelona sp
2 Glycinde polygnatha
1 Caecum occidentale
1 Caecum sp
1 Cryptomya californica
1 Electra crustulenta arctica
1 Glycinde sp
1 Grandidierella japonica
1 Heteropodarke heteromorpha
1 Lineidae
1 Nassarius mendicus
1 Olive sheets

- 1 Oligochaeta
- 1 Ophelia assimilis
- 1 Saxidomus giganteus
- 1 Tresus sp
- 205 TOTAL

	WA99-0024 GRAYS HARBOR
Count	Taxon
10	Scoloplos armiger armiger
5	Glycera macrobranchia
4	Siliqua sp
3	Mediomastus sp
2	Grandifoxus grandis
2	Magelona sacculata
1	Bowerbankia gracilis
1	Glycinde polygnatha
1	Lamprops quadriplicatus
29	TOTAL

- WA99-0025 GRAYS HARBOR Count Taxon 10 Polydora cornuta
 - 5 Glycinde polygnatha
 - 3 Macoma balthica
 - 2 Mya arenaria
 - 1 Americorophium salmonis
 - 1 Nippoleucon hinumensis
 - 1 Streblospio benedicti
 - 1 Tetrastemma sp

24 TOTAL

Page 216

WA99-0026 GRAYS HARBOR

Count Taxon

- 26 Magelona sacculata
- 21 Tellina nuculoides
- 9 Scoloplos armiger armiger
- 7 Spio butleri
- 6 Magelona sp
- 5 Grandifoxus grandis
- 4 Ophelia assimilis
- 2 Archaeomysis grebnitzkii
- 2 Glycinde polygnatha
- 2 Lamprops quadriplicatus 2 Nephtys caecoides
- 1 Clinocardium nuttallii
- 1 Eogammarus confervicolus CMPLX
- 1 Glycera macrobranchia
- 1 Mytilidae
- 1 Oligochaeta
- 1 Siliqua sp 1 Spiophanes bombyx
- 93 TOTAL

Count	Taxon
388	Oligochaeta
	Streblospio benedicti
68	Sphaerosyllis californiensis
63	Leptochelia dubia
63	Pseudopolydora kempi
60	Americorophium salmonis
60	Hobsonia florida
58	Pygospio elegans
40	Tharyx parvus
26	Monocorophium insidiosum
	Mya arenaria
21	Capitella capitata Cmplx
	Polydora cornuta
	Halcampa decemtentaculata
	Nippoleucon hinumensis
	Manayunkia aestuarina
	Chironomidae
	Ampithoe valida
	Eusarsiella zostericola
	Grandidierella japonica
	Scoloplos armiger alaskensis
	Sinelobus stanfordi
	Tetrastemma sp
	Clinocardium sp
	Cumella vulgaris
	Glycinde polygnatha
	Nephtys cornuta
	Rhabdocoela
	Americorophium spinicorne
	Monocorophium acherusicum
	Macoma sp
	Coullana canadensis
	Crangon franciscorum
	Bivalvia
	Eteone sp
	Euphysa ruthae
	Hoplonemertea
	Membranipora sp
	Monostylifera
	Pseudopolydora paucibranchiata TOTAL

5 Eohaustorius estuarius
5 Mya arenaria
3 Tetrastemma sp
1 Acarina
1 Actiniidae
1 Archaeomysis grebnitzkii
1 Crangon franciscorum
1 Eogammarus confervicolus CMPLX
1 Grandifoxus grandis

WA99-0029 GRAYS HARBOR

- 1 Leptochelia dubia
- 1 Nephtys sp
- 21 TOTAL

Count Taxon

	WA99-0031 WILLAPA BAY
Count	Taxon
124	Aphelochaeta monilaris
40	Tharyx parvus
36	Mediomastus californiensis
29	Mediomastus sp
25	Oligochaeta
17	Clinocardium sp
16	Glycinde polygnatha
14	Monocorophium acherusicum
10	Enteropneusta
10	Saccoglossus sp
9	Eusarsiella zostericola
	Cerebratulus montgomeryi
Ŭ	Cirratulidae
5	Clinocardium nuttallii
4	Pseudopolydora kempi
4	Scoloplos armiger alaskensis
3	Crangon sp
3	Mya arenaria
2	Archaeomysis grebnitzkii
	Lamprops quadriplicatus
2	Mytilidae
2	Nephtys caeca
	Streblospio benedicti
	Abietinaria sp
1	Capitella capitata Cmplx

- 1 Macoma balthica
- 1 Macoma sp
- 1 Polydora cornuta 1 Pseudopolydora paucibranchiata
- 1 Sabaco elongatus
- 1 Solen sicarius
- 1 Tresus sp 381 TOTAL

WA99-00	33 WILLAPA BAY
Count Taxon	
53 Scoloplos	armiger armiger
11 Ophelia as	similis
10 Capitella c	apitata Cmplx
4 Dendraste	r excentricus
4 Siliqua sp	
4 Spio butle	ri
2 Clinocardi	um nuttallii
2 Grandifox	us grandis
2 Magelona	pitelkai
1 Archaeom	ysis grebnitzkii
1 Eteone col	umbiensis
1 Eteone fau	ichaldi
1 Glycera ma	acrobranchia
1 Mandibulo	phoxus gilesi
1 Nephtys ca	aliforniensis

Page 217

1 Tellina nuculoides

99 TOTAL

WA99-0034 WILLAPA BAY	I 🗖
Count Taxon	Co
539 Mediomastus californiensis	I E
195 Mediomastus sp	
42 Tharyx parvus	
32 Clinocardium nuttallii	
30 Glycinde polygnatha	
26 Oligochaeta	
16 Cryptomya californica	
14 Lamprops quadriplicatus	
12 Grandidierella japonica	
7 Nephtys caecoides	
4 Cerebratulus sp	
4 Polydora cornuta	
3 Armandia brevis	
3 Caprella laeviuscula	
3 Scoloplos armiger armiger	
3 Siliqua sp	
2 Caprella californica	
2 Macoma balthica	
2 Macoma nasuta	Co
2 Owenia fusiformis	
2 Saxidomus giganteus	
1 Achelia alaskensis	
1 Achelia echinata	
1 Celleporella hyalina	
1 Cerebratulus montgomeryi	
1 Crangon alaskensis	
1 Glycinde sp	
1 Grandifoxus grandis	
1 Lineidae	
1 Photis brevipes	
1 Pontogeneia rostrata	Co
1 Prionospio (Minuspio) lighti	
1 Pseudopolydora paucibranchiata	
1 Scoloplos armiger alaskensis	
1 Tresus sp	1
957 TOTAL	

WA99-0035 WILLAPA BAY	
Count Taxon	
10 Tharyx parvus	
6 Lamprops quadriplicatus	
5 Oligochaeta	
3 Mediomastus sp	
3 Pseudopolydora kempi	
1 Aricidea sp	
1 Cryptomya californica	
1 Glycinde polygnatha	
1 Lineidae	
1 Macoma balthica	
1 Macoma nasuta	
1 Nephtys caeca	
1 Pseudopolydora paucibranchiata	
1 Saccoglossus sp	
36 TOTAL	

	WA99-0036 WILLAPA BAY
Count	Taxon
3	Grandifoxus grandis
3	Lamprops quadriplicatus
3	Scoloplos armiger armiger
2	Barantolla nr americana
2	Capitella capitata Cmplx
1	Archaeomysis grebnitzkii
1	Cryptomya californica
1	Glycera macrobranchia
1	Lineidae
1	Oligochaeta
1	Phoronidae
1	Scyphozoa
1	Venerupis philippinarum
21	TOTAL

	WA99-0038 BAKER BAY
ount	Taxon
32	Macoma balthica
10	Americorophium salmonis
4	Grandidierella japonica
3	Neanthes sp
2	Eohaustorius estuarius
1	Pygospio elegans
52	TOTAL

WA99-0039 BAKER BAY

	TAGO COOC BAREN BAT
Count	Taxon
148	Pygospio elegans
122	Macoma balthica
76	Americorophium salmonis
66	Neanthes limnicola
14	Hobsonia florida
4	Oligochaeta
3	Americorophium spinicorne
2	Heteromastus sp
1	Crangon franciscorum
1	Crangon sp
1	Eteone columbiensis
1	Grandidierella japonica
1	Mediomastus sp
1	Mya arenaria
1	Neanthes sp
1	Polydora cornuta
1	Pseudopolydora kempi
1	Tetrastemma candidum
445	TOTAL

	WA99-0040 BAKER BAY
Count	Taxon
1905	Pygospio elegans
491	Americorophium salmonis
110	Macoma balthica
52	Neanthes limnicola
28	Grandidierella japonica
22	Eteone columbiensis
18	Oligochaeta
13	Tetrastemma candidum
9	Pseudopolydora kempi
2	Eogammarus confervicolus CMPLX
2	Streblospio benedicti
1	Crangon franciscorum
1	Mya arenaria

•	inga aronana
1	Nephtys caecoides
1	Nonhtya cornuta

- 1 Nephtys cornuta 1 Polydora cornuta 2657 TOTAL

WA99-0042 BAKER BAY

Count Taxon

- 17 Mytilidae 14 Actiniidae
- 11 Grandifoxus grandis
- 9 Spio butleri
- 1 Americorophium salmonis 1 Archaeomysis grebnitzkii
- 1 Cryptomya californica
- 1 Eohaustorius washingtonianus
- 1 Pygospio elegans
- 56 TOTAL

WA99-0043 GRAYS BAY

Count Taxon

- 463 Americorophium salmonis
- 44 Neanthes sp
- 16 Oligochaeta
- 4 Corbicula fluminea
- 2 Chironomidae
- 2 Hirudinea
- 1 Neanthes limnicola 532 TOTAL
- WA99-0044 GRAYS BAY Count Taxon 154 Americorophium salmonis 37 Corbicula fluminea 2 Physella sp 1 Ceratopogonidae 1 Chironomidae 1 Gastropoda sp 4 1 Hirudinea
 - 1 Oligochaeta 198 TOTAL
- WA99-0045 GRAYS BAY Count Taxon 347 Americorophium salmonis 59 Corbicula fluminea 48 Monoporeia affinis 3 Chironomidae 3 Hydrobiidae 460 TOTAL

	WA99-0046 GRAYS BAY
Count	Taxon
973	Americorophium salmonis
54	Corbicula fluminea
2	Hydrobiidae
1	Americorophium spinicorne
1	Chironomidae
1	Mediomastus sp
1	Narpus sp
1033	TOTAL
	WARD DATE ODAVC DAV

	WA99-0047 GRAYS BAY
Count	Taxon
682	Americorophium salmonis
123	Corbicula fluminea
4	Oligochaeta
809	TOTAL

	WA99-0048 COWLITZ RIVER
Count	Taxon
3	Americorophium salmonis
3	TOTAL

W	A99-0049 CARROLLS CHANNEL
Count	Taxon
155	Americorophium salmonis
12	Oligochaeta

- 3 Corbicula fluminea
- 3 Hydrobiidae
- 1 Chironomidae
- 1 Neomysis mercedis
- 175 TOTAL

WA99-0050 MARTIN SLOUGH
Count Taxon
394 Oligochaeta
110 Americorophium salmonis
18 Chironomidae
11 Manayunkia speciosa
8 Neanthes limnicola
4 Caecidotea racovitzai
2 Bivalvia sp 1
2 Corbicula fluminea
2 Hexagenia sp
551 TOTAL

WALK-IN STATIONS (BELOW) --Not included in species counts

	WA99-0015 KALALOCH CREEK
Count	Taxon
13	Chironomidae
13	TOTAL

WA99-0016 RAFT RIVER

- Count Taxon
 - 72 Oligochaeta 9 Owenia fusiformis

 - 2 Chironomidae
 - 1 Eteone columbiensis 1 Pseudopolydora paucibranchiata
 - 85 TOTAL

	WA99-0017 QUINAULT RIVER
Count	Taxon
2	Neanthes limnicola
2	Owenia fusiformis
1	Gastropoda sp 3
5	TOTAL

WA99-0019 CONNER CREEK

- Count Taxon
 - 51 Americorophium salmonis 41 Chironomidae
 - 15 Oligochaeta
 - **3 Neanthes limnicola**
 - 3 Physella sp
 - 1 Callibaetis sp
 - 1 Cecidomyiidae
 - 1 Coenagrionidae
 - 1 Ephydridae 1 Haliplus sp
- 118 TOTAL

						Deminence
		T	Ohannan		Outrantal	Dominance
		Taxa	Shannon-	D : 1 1	Swartz'	Standardized
EMAP		Richness	Weiner	_ Pielou's	Dominance*	by Taxa
Station ID	Station Location	(# taxa)		Evenness J'	(# taxa)	Richness (%)
WA99-0001	MAKAH BAY	13	2.98319	0.229476	4	0.30769
WA99-0002	MAKAH BAY	7	2.4275		3	0.42857
WA99-0003	MAKAH BAY	13	3.11414	0.239549	5	0.38462
WA99-0004	HOKO RIVER	20	3.80145		11	0.55
WA99-0005	OZETTE RIVER			station not sa		
WA99-0006	FRESHWATER BAY			o sediment sa		
WA99-0007	FRESHWATER BAY	117	5.52149	0.047192	30	0.25641
WA99-0008	FRESHWATER BAY		n	o sediment sa	ampled	
WA99-0009	DUNGENESS BAY	48	3.29174	0.068578	6	0.125
WA99-0010	DISCOVERY BAY	49	3.64843	0.074458	7	0.14286
WA99-0011	DISCOVERY BAY	157	5.98813	0.038141	34	0.21656
WA99-0012	DISCOVERY BAY	141	4.94101	0.035043	19	0.13475
WA99-0013	DISCOVERY BAY	5	1.12857	0.225714	1	0.2
WA99-0014	DISCOVERY BAY	65	2.57891	0.039676	3	0.04615
WA99-0015	KALALOCH CREEK				tandard sampl	
WA99-0016	RAFT RIVER				tandard sampl	
WA99-0017	QUINAULT RIVER				tandard sampl	
WA99-0018	QUINAULT RIVER			station not sa		0
WA99-0019	CONNER CREEK				tandard sampl	Δ
WA99-0020	GRAYS HARBOR	13	3.06577	0.235828	5	0.38462
WA99-0020	GRASS CREEK	20	3.27396		6	0.30402
WA99-0021 WA99-0022	GRAYS HARBOR	20	3.83707	0.166829	8	0.34783
WA99-0022 WA99-0023	GRAYS HARBOR	23	2.13867	0.089111	3	0.125
WA99-0024	GRAYS HARBOR	9 8	2.7344	0.303822	4	0.44444
WA99-0025	GRAYS HARBOR		2.43564	0.304455		0.375
WA99-0026	GRAYS HARBOR	18	3.25152	0.18064	6	0.33333
WA99-0027	BEARDSLEE SLOUGH	40	3.64872	0.091218	8	0.2
WA99-0028	BEARDSLEE SLOUGH			station not sa		0 5 4 5 4 5
WA99-0029	GRAYS HARBOR	11	3.06021		6	0.54545
WA99-0030	WILLAPA BAY			o sediment sa		
WA99-0031	WILLAPA BAY	32	3.63197			0.21875
WA99-0032	WILLAPA BAY			station not sa		
WA99-0033	WILLAPA BAY	16	2.53993			0.25
WA99-0034	WILLAPA BAY	35	2.3211	0.066317	2	0.05714
WA99-0035	WILLAPA BAY	14	3.22969		5	0.35714
WA99-0036	WILLAPA BAY	13	3.52257	0.270967	8	0.61538
WA99-0037	WILLAPA BAY		:	station not sa	mpled	
WA99-0038	BAKER BAY	6	1.70094	0.283489	2	0.33333
WA99-0039	BAKER BAY	18	2.38333	0.132407	3	0.16667
WA99-0040	BAKER BAY	16	1.37326	0.085828	2	0.125
WA99-0041	GRAYS RIVER			station not sa	mpled	
WA99-0042	BAKER BAY	9	2.4257	0.269522	3	0.33333
WA99-0043	GRAYS BAY	7	0.75449	0.107785	1	0.14286
WA99-0044	GRAYS BAY	8	0.99383		1	0.125
WA99-0045	GRAYS BAY	5	1.12174	0.224348	1	0.2
WA99-0046	GRAYS BAY	7	0.36011	0.051444	1	0.14286
WA99-0047	GRAYS BAY	3	0.65873	0.219577	1	0.33333
WA99-0048	COWLITZ RIVER	1	0.00070	0.210077	1	1
WA99-0040	CARROLLS CHANNEL	6	0.70648	-	1	0.16667
WA99-0049 WA99-0050	MARTIN SLOUGH	9	1.31253		2	0.22222
Swartz' Don	ninance is the number of	iaxa accou	nung for at le	ast 15% of the	e lotal abunda	nce.

Table E-3. Benthic infauna community diversity indicators

							- ()
EMAP						-	Total
Station ID	Station Location			Echinodermata			
	MAKAH BAY	4	32	0	6	2	44
	MAKAH BAY	9	11	0	0	1	21
WA99-0003		8	24	3	6	0	41
	HOKO RIVER	18	17	0	4	0	39
	OZETTE RIVER			no sediment			
	FRESHWATER BAY			station not s			
	FRESHWATER BAY	287	151	1	125	9	573
	FRESHWATER BAY			no sediment			
WA99-0009	DUNGENESS BAY	584	17	0	37	2	640
WA99-0010	DISCOVERY BAY	218	5	2	197	0	422
WA99-0011	DISCOVERY BAY	504	30	7	305	47	893
WA99-0012	DISCOVERY BAY	977	73	115	414	38	1617
WA99-0013	DISCOVERY BAY	55	0	0	4	0	59
WA99-0014	DISCOVERY BAY	2589	125	0	355	37	3106
WA99-0015	KALALOCH CREEK		walk	-in station non	-standard	sample	
WA99-0016	RAFT RIVER			-in station non			
WA99-0017	QUINAULT RIVER		walk	-in station non	-standard	sample	
WA99-0018	QUINAULT RIVER			station not s		•	
WA99-0019	CONNER CREEK		walk	-in station non		sample	
	GRAYS HARBOR	30	4	0	12	0	46
	GRASS CREEK	35	8	0	32	37	112
	GRAYS HARBOR	35	19	0	22	1	77
	GRAYS HARBOR	168	7	0	28	2	205
	GRAYS HARBOR	21	3	0	4	1	29
	GRAYS HARBOR	16	2	0	5	1	24
	GRAYS HARBOR	59	10	0	24	0	93
	BEARDSLEE SLOUGH	1056	231	0	32	35	1354
	BEARDSLEE SLOUGH	1000	201	station not s			1001
	GRAYS HARBOR	1	11	0		4	21
	WILLAPA BAY	•		no sediment			21
	WILLAPA BAY	291	30	0		29	381
	WILLAPA BAY	201	00	station not s	•	20	001
	WILLAPA BAY	84	4			0	99
	WILLAPA BAY	855	37	0	= 0	-	
	WILLAPA BAY	25	6		3	2	36
	WILLAPA BAY	9	7	0	2	3	21
	WILLAPA BAY	5		station not s			21
WA99-0037 WA99-0038		4	16			0	52
WA99-0038 WA99-0039		239	82	0	123	1	445
WA99-0039 WA99-0040		239	522	0	123	13	
	GRAYS RIVER	2011	522	station not s		15	2007
WA99-0041 WA99-0042		10	14		18	14	56
WA99-0042 WA99-0043		63	465		4	0	532
WA99-0043 WA99-0044			465		40	0	
WA99-0044 WA99-0045		2 0	398		40 62		
						0	460
WA99-0046		1	976		56	0	1033
WA99-0047		4	682	0	123	0	809
	COWLITZ RIVER	0	3	0	0	0	3
	CARROLLS CHANNEL	12	157	0	6	0	175
VVA99-0050	MARTIN SLOUGH	413	134	0	4	0	551

Table E-4. Infauna abundance (individuals/ 0.1 m^2) – total and major taxonomic groups

Order of Dominance	Species	Common Name	Total Abundance	% of Total
1	Pleuronectes vetulus	English sole	565	44.31%
2	Cymatogaster aggregata	shiner perch	219	17.18%
3	Citharichthys stigmaeus	speckled sanddab	129	10.12%
4	Platichthys stellatus	starry flounder	88	6.90%
5	Gasterosteus aculeatus	three-spine stickleback	75	5.88%
6	Spirinchus thaleichthys	longfin smelt	45	3.53%
7	Leptocottus armatus	Pacific staghorn sculpin	35	2.75%
8	Psettichthys melanostictus	sand sole	19	1.49%
9	Chitonotus pugetensis	roughback sculpin	13	1.02%
10	Pomoxis sp.	crappie	11	0.86%
11	Lumpenus sagitta	snake prickleback	9	0.71%
12	Microgadus proximus	Pacific tomcod	8	0.63%
13	Oncorhynchus tshawytscha	chinook salmon	8	0.63%
14	Hyperprosopon argenteum	walleye surfperch	6	0.47%
15	Artedius fenestralis	padded sculpin	5	0.39%
16	Sarritor frenatus	sawback poacher	5	0.39%
17	Citharichthys sordidus	Pacific sanddab	4	0.31%
18	Enophrys bison	buffalo sculpin	3	0.24%
19	Hydrolagus colliei	spotted ratfish	3	0.24%
20	Icelus spiniger	thorny sculpin	3	0.24%
21	Phanerodon furcatus	white seaperch	3	0.24%
22	Pholis ornata	saddleback gunnel	3	0.24%
23	Hexagrammos stelleri	whitespotted greenling	2	0.16%
24	Hyperprosopon anale	spotfin seaperch	2	0.16%
25	Microstomus pacificus	Dover sole	2	0.16%
26	Pleuronectes bilineatus	rock sole	2	0.16%
27	Porichthys notatus	plainfin midshipman	2	0.16%
28	Syngnathus leptorhynchus	bay pipefish	2	0.16%
29	Gadus macrocephalus	Pacific cod	1	0.08%
30	Ophiodon elongatus	lingcod	1	0.08%
31	Raja binoculata	big skate	1	0.08%
32	Sebastes auriculatus	brown rockfish	1	0.08%
		Total	1275	100.00%

 Table E-5. Percent composition of fish species, standard trawls only (1st successful trawl)

EMAP Station ID	Species	Size Class (cm)	Abundance	Number of Individuals	Number of Species
WA99-0002	Microgadus proximus	7	1	8	3
partial trawl —	Pleuronectes vetulus	8	1		
abandoned due to hanging up on	Psettichthys melanostictus	11	1	-	
rocks		12	2		
		14	1		
		16	1		
		18	1	-	
WA99-0003	Hyperprosopon anale	7	1	11	4
		8	1		
	Microgadus proximus	7	1		
		9	1		
	Pleuronectes vetulus	5	2		
	Psettichthys melanostictus	6	1		
		7	1		
		8	1		
		12	1		
		14	1		
WA99-0004	Chitonotus pugetensis	11	1	336	7
	Citharichthys stigmaeus	8	6		
		9	9		
		10	9		
		13	4		
		14	2		
		catch-all	41		
	Hexagrammos stelleri	11	1		
	Leptocottus armatus	13	1		
	Pleuronectes vetulus	5	2		
		6	2		
		7	5		
		8	6		
		9	5		
		10	4		
		11	3		
		12	1		
		19	1		
		30	1		
		catch-all	226		
	Psettichthys melanostictus	23	1		
	Sarritor frenatus	6	2		
		7	3]	
WA99-0006	Citharichthys stigmaeus	9	1	9	5
		13	1		
		16	1]	
	Gadus macrocephalus	12	1		

Table E-6. Fish species, abundance, and size distribution, all stations, 1st trawl or seine

EMAP Station ID	Species	Size Class (cm)	Abundance	Number of Individuals	Number of Species
	Hydrolagus colliei	38	1		
		42	1		
	Ophiodon elongatus	17	1		
	Pleuronectes bilineatus	32	1		
		38	1		
WA99-0007	Citharichthys stigmaeus	11	1	4	3
		17	1		
	Enophrys bison	25	1		
	Hydrolagus colliei	50	1		
WA99-0009	Cymatogaster aggregata	6	1	11	3
		11	1		
		13	1		
	Leptocottus armatus	9	1		
	Pleuronectes vetulus	6	3		
		10	1		
		12	3		
WA99-0010	Citharichthys stigmaeus	13	1	1	1
WA99-0011 (short trawl due to kelp)	Enophrys bison	22	1	1	1
WA99-0012	Citharichthys stigmaeus	12	2	17	3
		13	5		
		14	3		
		15	1		
	Leptocottus armatus	6	1		
	Pleuronectes vetulus	11	1		
		14	1		
		15	1		
		16	2		
WA99-0013	Chitonotus pugetensis	7	2	110	10
		9	2		
		10	8		
	Citharichthys sordidus	7	1		
		12	1		
		13	1		
		14	1		
	Citharichthys stigmaeus	8	2		
		9	2		
		10	1		
		13	1		
	Icelus spiniger	11	3]	
	Leptocottus armatus	8	1]	
		9	2]	
		10	1		
		11	3		
		13	1		
		14	1	1	

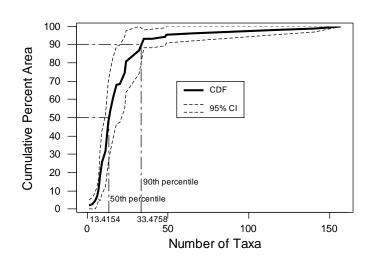
EMAP Station ID	Species	Size Class (cm)	Abundance	Number of Individuals	Number of Species
	Lumpenus sagitta	8	5		
		9	2	-	
	Microstomus pacificus	11	1		
		13	1		
	Pleuronectes vetulus	10	1		
		11	5		
		12	10		
		13	10		
		15	2		
		18	1		
		20	1	-	
		catch-all	35		
	Raja binoculata	27	1	-	
	Sebastes auriculatus	8	1	1	
WA99-0014	Citharichthys stigmaeus	8	1	308	8
		9	9	-	
		10	3	-	
		11	1		
		12	1		
		13	2		
	Cymatogaster aggregata	5	7		
		6	19	-	
		8	2	-	
		9	2	-	
		catch-all	163	-	
	Leptocottus armatus	6	2	-	
		8	4		
		9	2		
	Lumpenus sagitta	16	1	-	
	Lump chus sugina	17	1	-	
	Microgadus proximus	7	1	-	
	interoguaus proximus	8	1	-	
	Phanerodon furcatus	9	1	-	
	Platichthys stellatus	7	1	-	
	Pleuronectes vetulus	8	5	-	
	1 icuronecies vennus	9	12	-	
		10	6	-	
		10	6	-	
		14	1	1	
		catch-all	54	1	
WA99-0015	Oligocottus maculosus	2	1	85	3
beach seine	Ouzoconus macutosus	3	9	0.5	5
		4		4	
			19	-	
		5	1	4	
		catch-all	53	4	
	Platichthys stellatus	6	1		

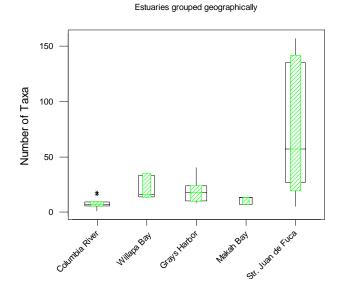
EMAP Station ID	Species	Size Class (cm)	Abundance	Number of Individuals	Number of Species
	Salmo clarkii	8	1		
WA99-0016	Oligocottus maculosus	2	16	21	2
beach seine		3	3		
		5	1		
	Platichthys stellatus	10	1		
WA99-0019	Gasterosteus aculeatus	2	10	61	2
beach seine		3	13		
		4	4		
		5	2		
		6	1		
		catch-all	29		
	Oncorhynchus tshawytscha	10	1		
		11	1		
WA99-0020	Citharichthys stigmaeus	7	1	4	2
	Pleuronectes vetulus	5	1		
		6	1		
		10	1		
WA99-0021	Citharichthys stigmaeus	9	1	26	6
	Cymatogaster aggregata	10	4		
		11	4		
		13	1	-	
	Leptocottus armatus	10	1		
		11	1		
		12	1	-	
	Platichthys stellatus	15	1		
	Pleuronectes vetulus	7	2	-	
		8	4 3		
		14	-		
	Psettichthys melanostictus	14	1 2	-	
WA99-0022	Pleuronectes vetulus	6	1	1	1
WA99-0022 WA99-0023	Citharichthys stigmaeus	11	1	4	4
W1199-0025	Enophrys bison	10	1		-
	Pholis ornata	13	1		
	Pleuronectes vetulus	12	1		
WA99-0024	Citharichthys stigmaeus	6	3	13	2
		7	5		
		8	3		
		9	1	1	
	Leptocottus armatus	10	1	1	
WA99-0025	Microgadus proximus	18	1	51	4
		19	1]	
		22	1]	
	Pleuronectes vetulus	12	1]	
	Porichthys notatus	11	1		
		12	1		

EMAP Station ID	Species	Size Class (cm)	Abundance	Number of Individuals	Number of Species
	Spirinchus thaleichthys	10	3		
		11	4	-	
		12	9		
		13	12		
		14	2	_	
		catch-all	15		
WA99-0026	Citharichthys stigmaeus	7	2	3	1
		8	1		
WA99-0027	Cymatogaster aggregata	6	1	7	4
(trawl #2 used)		7	1	-	
	X	13	1		
	Leptocottus armatus	12	1	-	
	Dhaman dan Gunantur	14	1	-	
	Phanerodon furcatus	8	1	-	
WA99-0029	Pleuronectes vetulus	6		20	5
partial trawl —	Cymatogaster aggregata		1 3	20	5
fouled net		10	1	-	
			2	-	
	I anto a attua	11 9	1	-	
	Leptocottus armatus	10	1	-	
		10	1		
		11	1	-	
	Phanerodon furcatus	9	1	-	
	Pholis ornata	6	1		
		8	1		
	Pleuronectes vetulus	6	2		
	T leuronecies veiulus	7	1		
		8	2		
		10	1	-	
WA99-0031	Leptocottus armatus	10	1	3	2
W/())-0051	Pleuronectes vetulus	8	2		2
WA99-0034	Cymatogaster aggregata	6	1	9	2
(11)) 0001	Cymaiosaster assresata	7	1		_
		8	1	-	
	Hyperprosopon argenteum	7	1		
		8	5	-	
WA99-0036	Pleuronectes vetulus	5	3	89	3
		6	5		
		7	12]	
		8	6		
		9	4		
		catch-all	52		
	Psettichthys melanostictus	5	4	-	
		6 Page 227	1		

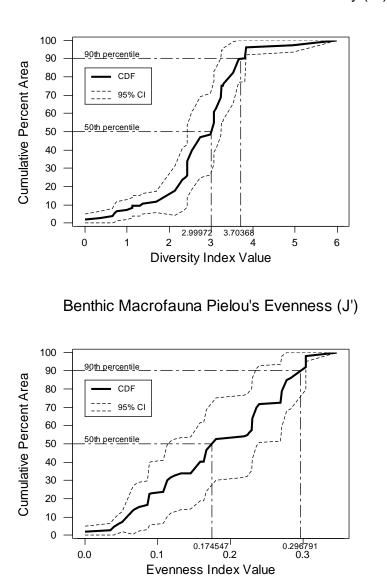
EMAP Station ID	Species	Size Class (cm)	Abundance	Number of Individuals	Number of Species
	Syngnathus leptorhynchus	14	1		
		25	1		
WA99-0038	Platichthys stellatus	6	1	6	2
		7	1		
		8	1		
		9	1		
		22	1		
	Pleuronectes vetulus	7	1		
WA99-0039	Leptocottus armatus	10	1	7	2
	Platichthys stellatus	5	1		
		6	1		
		7	3		
		9	1		
WA99-0040	Cymatogaster aggregata	11	1	34	3
	Platichthys stellatus	5	1	-	
		6	1	-	
	Pleuronectes vetulus	6	5	-	
		7	8	-	
		8	12	-	
		9	5	-	
		catch-all	1		
WA99-0042	Hexagrammos stelleri	12	1	14	4
partial trawl — hung up after 8	Leptocottus armatus	10	1	-	
minutes		12	1		
		14	1		
	Platichthys stellatus	8	1		
		9	2		
		10	1		
	Pleuronectes vetulus	6	3		
		7	2		
		8	1		
WA99-0043	Artedius fenestralis	8	1	6	3
	Gasterosteus aculeatus	6	1		
	Platichthys stellatus	5	2		
		6	2		
WA99-0044	Gasterosteus aculeatus	6	4	6	2
	Platichthys stellatus	6	1		
		7	1		
WA99-0045	Gasterosteus aculeatus	5	2	40	2
		6	4	4	
		7	1	4	
	Platichthys stellatus	5	10		
		6	7		
		7	11		
		8	2	4	
		catch-all	3		

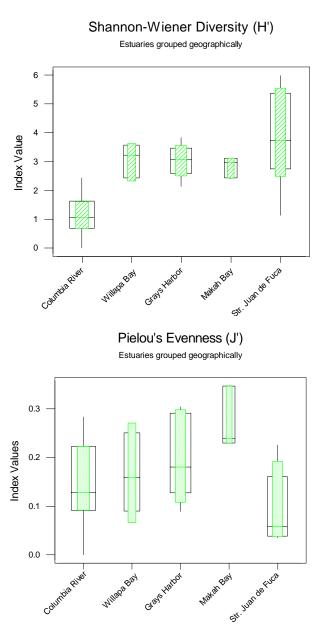
EMAP Station ID	Species	Size Class (cm)	Abundance	Number of Individuals	Number of Species
WA99-0046	Gasterosteus aculeatus	6	2	10	2
		7	1		
	Platichthys stellatus	7	3		
		8	1		
		9	1		
		10	1		
		17	1		
WA99-0047	Gasterosteus aculeatus	5	1	21	2
	Platichthys stellatus	4	2		
		5	7		
		6	6		
		7	2		
		8	2		
		9	1		
WA99-0048	Oncorhynchus tshawytscha	7	1	8	1
		8	1		
		9	6		
WA99-0049	Platichthys stellatus	14	1	1	1
WA99-0050	Artedius fenestralis	14	2	17	3
		16	2		
	Platichthys stellatus	18	2		
	Pomoxis sp	5	1		
		6	6		
		11	2		
		12	1		
		15	1		

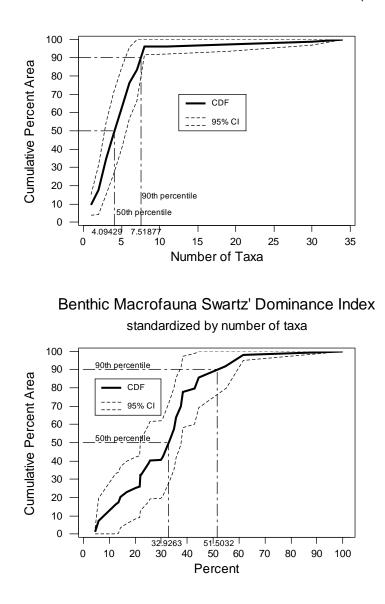

		All Ti (includes be			Comple	ete Standa	rd Trawls Onl	y
		Таха	Total Fish	Таха	Total Fish	Width of	Distance	Catch per Area
EMAP Station ID	Station Location	Richness	Abundance	Richness	Abundance	Net (ft)	Trawled (m)	•
WA99-0001	МАКАН ВАҮ	no tra	wling			no traw	ling	· · · · · ·
WA99-0002	MAKAH BAY	3	8			incomplet	e trawl	
WA99-0003	MAKAH BAY	4	11	4	11	19	393	4833.2
WA99-0004	HOKO RIVER	7	336	7	336	19	409	141855.9
WA99-0005	OZETTE RIVER	station no	t sampled		S	tation not	sampled	
WA99-0006	FRESHWATER BAY	5	9	5	9	19	451	3445.9
WA99-0007	FRESHWATER BAY	3	4	3	4	19	179	3858.7
WA99-0008	FRESHWATER BAY	trawling hind	lered by kelp		traw	ling hinde	red by kelp	
WA99-0009	DUNGENESS BAY	3	11	3	11	19	287	6618.2
WA99-0010	DISCOVERY BAY	1	1	1	1	19	261	661.6
WA99-0011	DISCOVERY BAY	1	1		-	incomplet	e trawl	
WA99-0012	DISCOVERY BAY	3	17	3	17	19	337	8710.6
WA99-0013	DISCOVERY BAY	10	110	10	110	19	320	59357.3
WA99-0014	DISCOVERY BAY	8	308	8	308	19	305	174374.2
WA99-0015	KALALOCH CREEK	3	85		non-sta	ndard traw	l (beach seine	e)
WA99-0016	RAFT RIVER	2	21		non-sta	ndard traw	l (beach seine	e)
WA99-0017	QUINAULT RIVER	no tra	wling			no traw	ling	
WA99-0018	QUINAULT RIVER	station no	t sampled		S	tation not a	sampled	
WA99-0019	CONNER CREEK	2	61		non-sta	ndard traw	l (beach seine	e)
WA99-0020	GRAYS HARBOR	2	4	2	4	19	322	2145.0
WA99-0021	GRASS CREEK	6	26	6	26	19	251	17886.7
WA99-0022	GRAYS HARBOR	1	1	1	1	19	256	674.5
WA99-0023	GRAYS HARBOR	4	4	4	4	19	120	5755.9
WA99-0024	GRAYS HARBOR	2	13	2	13	19	236	9511.8
WA99-0025	GRAYS HARBOR	4	51	4	51	19	250	35225.9
WA99-0026	GRAYS HARBOR	1	3	1	3	19	301	1721.0
WA99-0027	BEARDSLEE SLOUGH	4	7	4	7	19	263	4595.9
WA99-0028	BEARDSLEE SLOUGH	station no		station not sampled				
WA99-0029	GRAYS HARBOR	5	20			incomplet	e trawl	
WA99-0030	WILLAPA BAY	no tra	wling			no traw	rling	

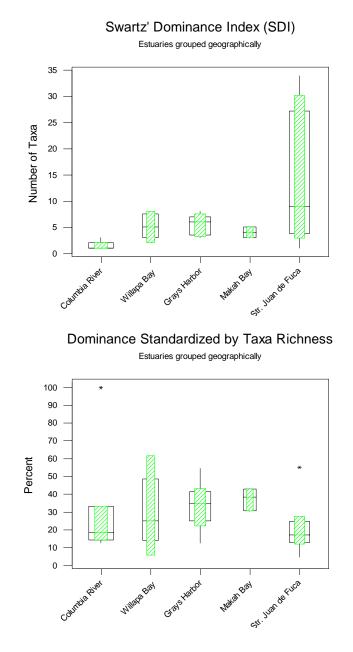

Table E-7. Demersal fish species richness, abundance, and catch per area swept

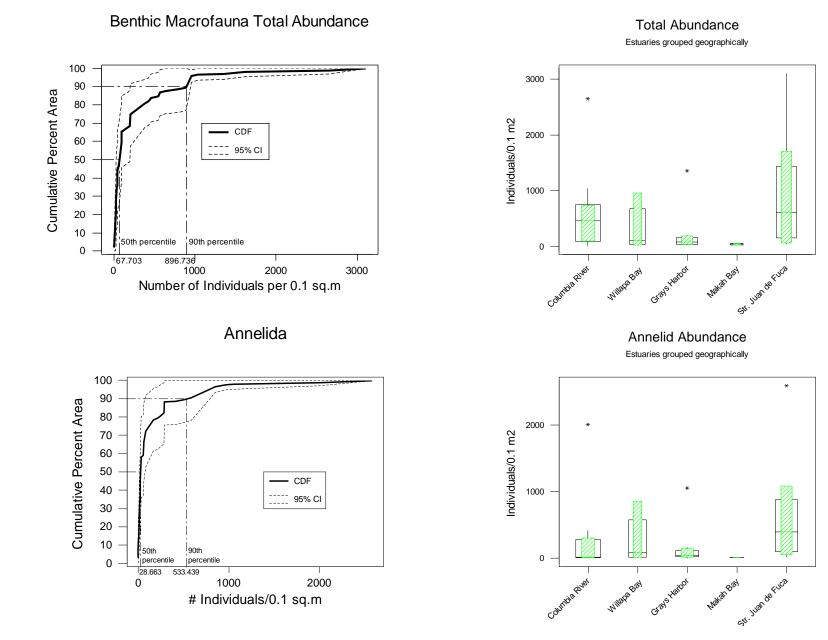
	All Trawls (includes beach seines)		Complete Standard Trawls Only					
		Таха	Total Fish	Таха	Total Fish	Width of	Distance	Catch per Area
EMAP Station ID	Station Location	Richness	Abundance	Richness	Abundance	Net (ft)	Trawled (m)	
WA99-0031	WILLAPA BAY	2	3	2	3	19	253	2047.5
WA99-0032	WILLAPA BAY	station no	t sampled	station not sampled				
WA99-0033	WILLAPA BAY	no tra	wling	no trawling				
WA99-0034	WILLAPA BAY	2	9	2	9	19	426	3648.1
WA99-0035	WILLAPA BAY	no tra	wling	no trawling				
WA99-0036	WILLAPA BAY	3	89	3	89	19	338	45467.9
WA99-0037	WILLAPA BAY	station no	t sampled	station not sampled				
WA99-0038	BAKER BAY	2	6	2	6	19	472	2195.0
WA99-0039	BAKER BAY	2	7	2	7	19	238	5078.7
WA99-0040	BAKER BAY	3	34	3	34	19	447	13134.2
WA99-0041	GRAYS RIVER	station no	t sampled	station not sampled				
WA99-0042	BAKER BAY	4	14	incomplete trawl				
WA99-0043	GRAYS BAY	3	6	3	6	19	370 (est.)	2800.1
WA99-0044	GRAYS BAY	2	6	2	6	19	309	3352.9
WA99-0045	GRAYS BAY	2	40	2	40	19	326	21187.2
WA99-0046	GRAYS BAY	2	10	2	10	19	357	4836.9
WA99-0047	GRAYS BAY	2	21	2	21	19	300	12087.3
WA99-0048	COWLITZ RIVER	1	8	1	8	19	378	3654.5
WA99-0049	CARROLLS CHANNEL	1	1	1	1	19	340	507.9
WA99-0050	MARTIN SLOUGH	3	17	3	17	19	362	8109.1



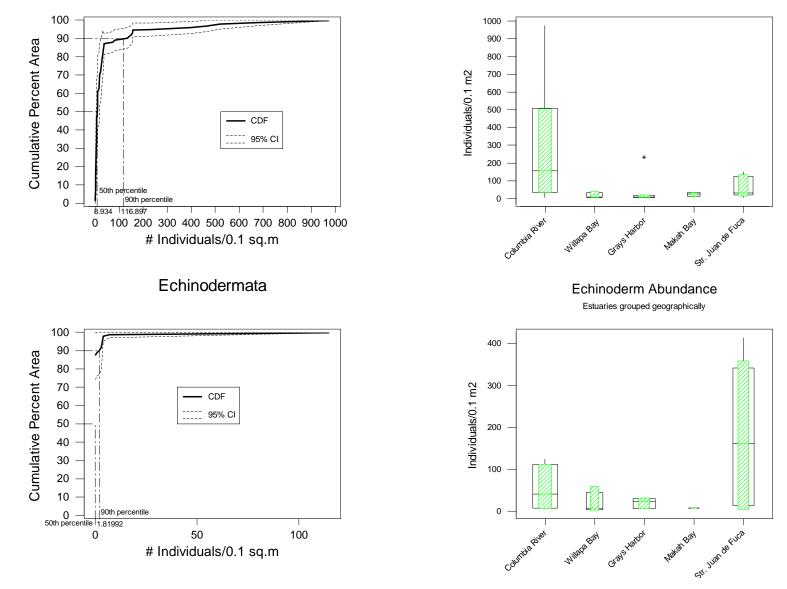


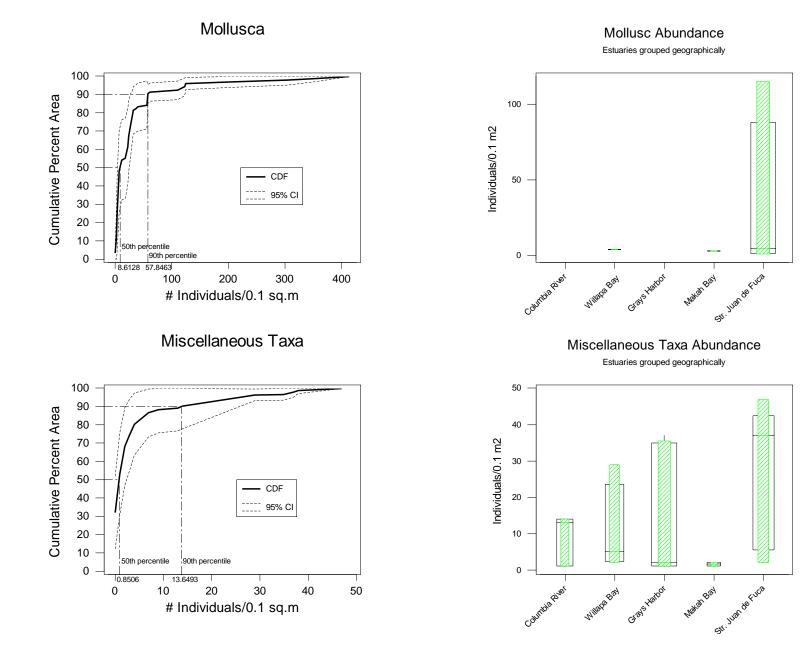

Taxa Richness



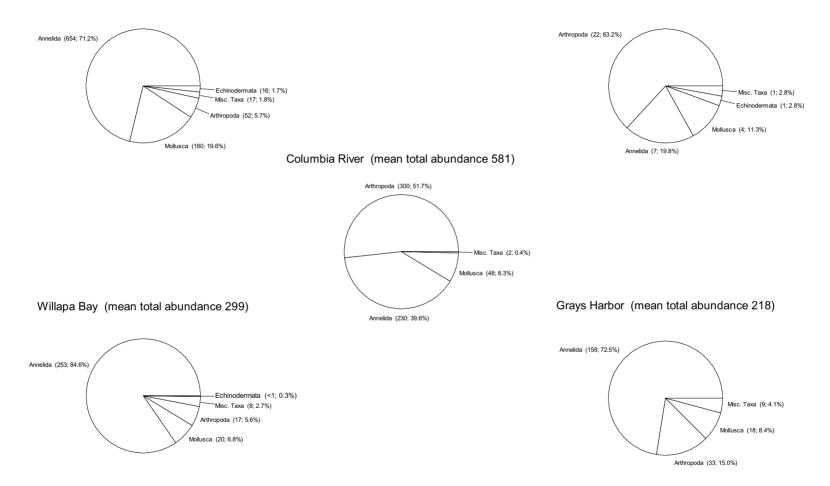

Benthic Macrofauna Shannon-Wiener Diversity (H')

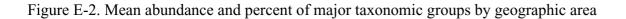
Benthic Macrofauna Swartz' Dominance Index (SDI)


Page 234



Arthropod Abundance


Estuaries grouped geographically



Strait of Juan de Fuca (mean total abundance 919)

Makah Bay (mean total abundance 35)

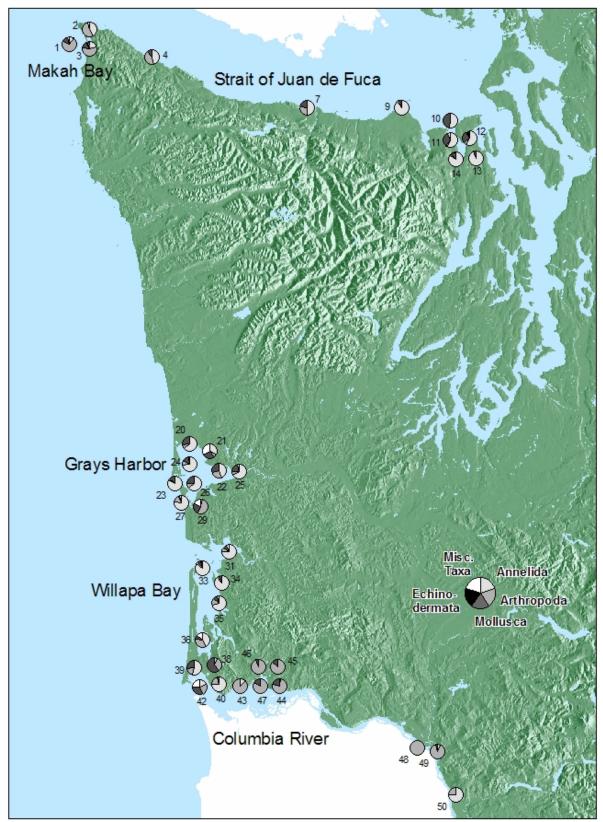
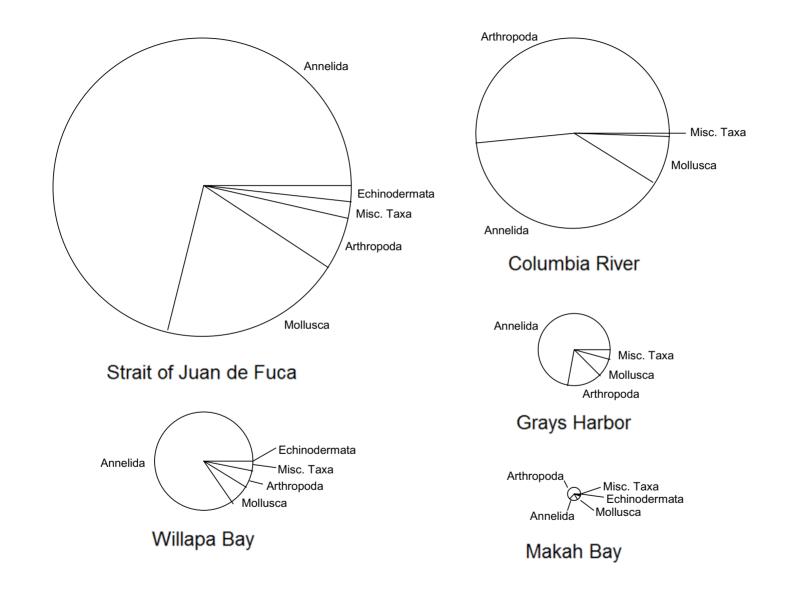
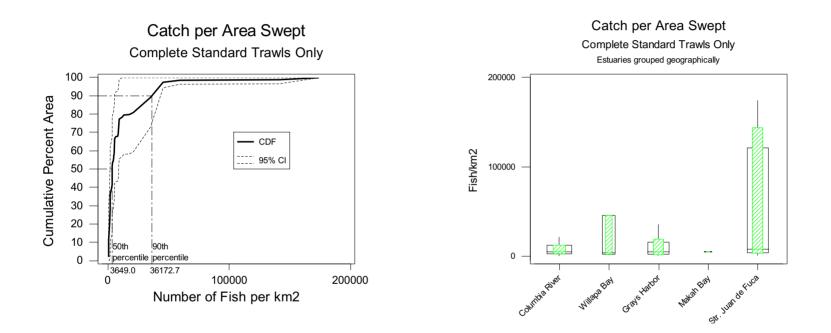
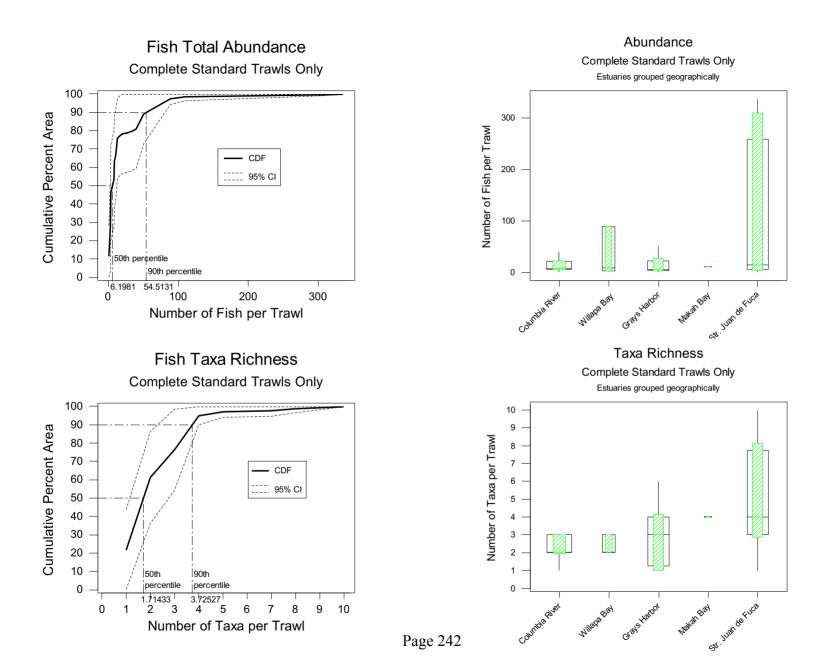
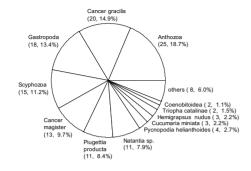
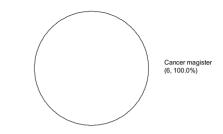
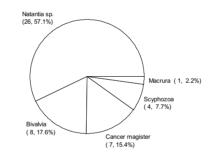


Figure E-3. Percent abundance by major taxonomic group at each station sampled. The numbers in the diagram are the station IDs.

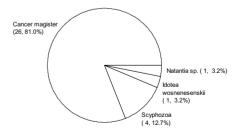




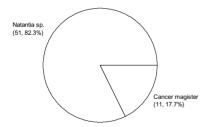

Figure E-4. Relative mean abundance of major taxonomic groups by geographic area. The diameters are proportional to the abundances.

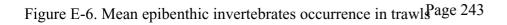



Epibenthos Mean Abundance - Strait of Juan de Fuca (134)

Epibenthos Mean Abundance - Makah Bay (6)




Epibenthos Mean Abundance - Columbia River



Epibenthos Mean Abundance - Grays Harbor (32)

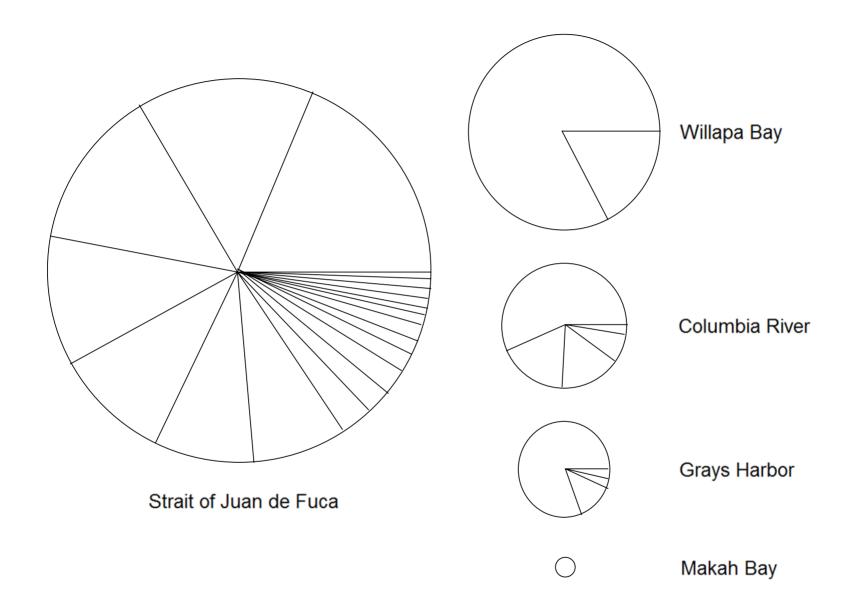


Figure E-7. Relative number of taxa and mean abundance of epibenthic invertebrates caught in trawls. The diameters are proportional to the abundances. Species are identified in Figure E-6.