Occurrence of the Hyperparasite *Ampelomyces quisqualis* on *Golovinomyces neosalviae* (Erysiphaceae), Causal Agent of Powdery Mildew on Common Sage (*Salvia officinalis*)

Shady Hamzeh^{1*}, Walid Naffaa² and M. Fawaz Azmeh²

 (1) Biodiversity LAB, National Commission for Biotechnology, Damascus, Syria; (2) Department of Plant Protection, Faculty of Agriculture, Damascus University, 30621 Damascus, Syria.
 *Email address of corresponding author: sh.ham017@gmail.com

shan address of corresponding addror. sh.namor / @gman.com

Abstract

Hamzeh, S., W. Naffaa and M.F. Azmeh. 2022. Occurrence of the Hyperparasite Ampelomyces quisqualis on Golovinomyces neosalviae (Erysiphaceae), Causal Agent of Powdery Mildew on Common Sage (Salvia officinalis). Arab Journal of Plant Protection, 40(2): 158-163. https://doi.org/10.22268/AJPP-040.2.158163

Ampelomyces quisqualis, the oldest mycoparasite of powdery mildew (PM), has been widely studied due to its potential in biocontrol. Many strains of this hyperparasite have been experimented worldwide and some of them were successfully applied for biocontrol, but others have been less efficient. No previous identification of *Ampelomyces* strains has been done in Syria, but some isolates were morphologically identified in the coastal region. There was no indication of *Ampelomyces* occurrence in any other location in Syria. During this three years survey (2019–2021), 73 plant samples were collected from five governorates, including coastal and southern regions in Syria. *Ampelomyces* pycnidia were detected in five samples from the coastal area and a new unpredictable finding of *Ampelomyces* neosalviae, the causal agent of PM on common sage (*Salvia officinalis*). Successful isolation of S.ham82 on PDA was conducted and parasitic activity was assessed by artificial inoculation using *In vitro* detached leaf assay. Morphological characteristics of this isolate were determined and compared with isolate Bah1 from the coastal region. *Ampelomyces* sp. (S.ham82) pycnidia size were 77.44 (±17.16) x 25.28 (±6.12) µm in natural host, 125.27 (±42.34) x 115.95 (±40.14) µm, 189.51 (±60.06) x 167.64 (±52.41) µm on PDA media pre and post artificial inoculation, respectively, and 88.24 (±20.05) x 27.98 (±5.68) µm on inoculated detached leaves. Conidia were also morphologically characterized and measured 8.11 (±0.87) x 3.88 (±0.51) µm in natural host, 8.86 (±1.65) x 3.18 (±0.80) µm in PDA pre and post artificial inoculation, respectively, and 7.82 (±0.69) x 3.61 (±0.37) µm in inoculated detached leaves. To our knowledge, this is the first report of the natural occurrence of *Ampelomyces* sp. in *G. neosalviae* on *Saliva officinalis*.

Keywords: Ampelomyces sp., Common sage, Golovinomyces neosalviae, Syria.

Introduction

The most widespread and oldest known natural enemies of powdery mildew (PM) Ampelomyces spp. are intracellular mycoparasites where its hyphae grow inside the mycelia of their hosts killing the PM hyphae by degeneration of the cell content (Falk et al., 1995a, 1995b; Hashioka & Nakai, 1980; Kiss, 2008; Kiss et al., 2004). The early stages of hyperparasitism are seemingly obligate, and death of invasive PM colonies is initiated by direct consumption mechanism of host cell bioenergy (Hashioka & Nakai, 1980; Sandheim & Krekling, 1982). Ampelomyces can spread to long distances as hyphal fragments in parasitized and detached PM conidia (Jarvis & Slingsby, 1977). When these parasitized air-borne conidia within or in proximity of any PM colony under humid conditions, the outgrowing hyphae of Ampelomyces can penetrate their mycelia (Kiss et al., 2004). As pesticide, A. quisqualis is the active ingredient of the oldest mildew bio-fungicide commercially known as AQ10TM and other products based on different Ampelomyces strains such as Q-fect WP developed in Korea (Lee et al., 2004). The natural occurrence of A. quisqualis on various Erysiphaceae species has been reported in different geographic regions worldwide (Angeli et al., 2009; Kiss, 1997; Kiss et al., 2004; Rankovic, 1997). Kiss (1998) recorded the occurrence of Ampelomyces spp. in 570 samples representing 27 species (nine genera) of the Erysiphaceae infecting 41 host plant genera. In Syria, the coastal area was the only known habitat of A. quisqualis on PMs according to the study published by Younes et al., (2009), indicating the occurrence of Ampelomyces on 29 species of PM belonging to 8 different genera on 59 plant species distributed in 22 families. Therefore, no previous studies have mentioned the occurrence of Ampelomyces in any other location in Syria. Furthermore, none of the previous studies mentioned the occurrence of the hyperparasite on Golovinomyces neosalviae (Ervsiphe salivae Blumer), parasiting Salvia officinalis, previously recorded by Cabrera et al. (2010) and Götz et al. (2018). To our best knowledge, Ampelomyces parasitism on G. neosalviae has not been previously reported in Syria or elsewhere. Many factors related to the appropriate environmental conditions control the occurrence of Ampelomyces on PM such as temperature, humidity and other factors. Most of previous investigations have emphasized the great need to high relative humidity (RH) for internal growth and sporulation of Ampelomyces strains (Jarvis & Slingsby, 1977; Philipp & Crüger, 1979). Therefore, there is interest to discover the occurrence Ampelomyces isolates in new locations in Syria and investigate further this pycnidial parasite of PM fungi and how could we benefit from it.

https://doi.org/10.22268/AJPP-040.2.158163

الجمعية العربية لوقاية النبات 2022 Arab Society for Plant Protection الجمعية العربية لوقاية النبات

This study focused on proving and documenting the occurrence of *A. quisqualis* in a new PM mycohost, *G. neosalviae* on common sage and in a new ecologically different area in Syria, as well to confirm the occurrence of *A. quisqualis* in the coastal area.

Materials and methods

Field surveillance

Several surveys per year were conducted during 2019, 2020 and 2021 to detect the presence of *Ampelomyces* mycoparasites in PM colonies growing on different host plants. Plant samples infected by their respective mildew pathogens were collected from 10 locations distributed in three governorates (Damascus, Damascus countryside and Sweida) in southern Syria as well as from 20 locations distributed in two coastal governorates (Lattakia and Tartous) in Syrian. Samples were transferred to the laboratory and examined microscopically for the possible presence of *Ampelomyces* sp. (Table 1).

Isolation and morphological characterization of *Ampelomyces* sp. (S.ham82)

The presence of *Ampelomyces* pycnidia was examined using stereomicroscope (optic ivymen system). For confirmation, the observed pycnidia were re-examined again using light microscope (BIOBASE) by applying a slight pressure on the slide-cover to force pycnidium wall to rupture releasing conidia. Pycnidia were transferred to potato dextrose agar medium (PDA) using sterile hand-made glass needles (Goh, 1999), incubated at 25°C, to obtain pure cultures. Morphological characters of *Ampelomyces* sp. (S.ham82) such as hyphae, pycnidia and conidiogenous cells were examined using stereo and light microscope. In addition, Daily diameter measurement was performed to determine the growth rate of *Ampelomyces* colonies. Morphological characters of hyperparasite structures were determined in natural host and on PDA medium.

For artificial inoculation, a conidiospore suspension was made by transferring several pycnidia from pure culture to 1ml tube filled with 500 μ l sterile distilled water and 0.1% Tween 80, mixing with stirrer for a minute and waiting for few hours to allow spores to liberate through ruptured pycnidia walls. Concentration of spore suspension was adjusted using Neubauer chamber.

Mycoparasitism activity of *Ampelomyces quisqualis* (S.ham82 isolate) against common sage PM under controlled conditions

Detached leaf assay was performed as described by Zang *et al.* (2020) with some modifications. Leaves of common sage (*Salvia officinalis*) were collected from previously cultivated plants in pots for *in vitro* artificial inoculation. A pair of 9 cm petri dishes were mounted (one above the other) as explained in Figure 1. The upper plate was stuck to the lid of the bottom one and a hole was made in the stuck dish layers to allow passage of the leaf petiole. Detached leaf was put in the upper plate and its petiole was allowed to penetrate the hole towards the down petri dish filled with sterile water for leaf survival and as moist source.

Table1. Plant hosts infected with PM collected during seasons 2019, 2020 and 2021 in southern and coastal regions of Syria.

Location	Plant hosts	PM species
SOUTHERN AI	REA	
Damascus		
Abo Jarash	Euonymus japonicus	Erysiphe euonymi-japonici
	Convolvulus sp.	Erysiphe convolvuli
	Conyza bonariensis	Podosphaera erigerontis
	Salvia officinalis	Golovinomyces neosalviae
Fac. Of Mech. & Elect Eng	E. japonicus	E. euonymi-japonici
Damascus	C. arvensis	E. convolvuli
		2. controllant
Damascus Coun Sasaa	C. arvensis	E. convolvuli
Sasaa	Helianthus annuus	Sphaerotheca fuliginea,
	nenannas annaas	Oidium (Blumer)
Ghouta	Polygonium sp.	E. polygonii
Jaramana	C. arvensis	E. convolvuli
Jaramana	Cucurbita maxima	S. fuliginea, E.
		cichoracearum
	Cucurbita pepo	S. fuliginea, E.
		cichoracearum
Nabk	C. arvensis	E. convolvuli
Sweida		
Orman mountin	C. arvensis	E. convolvuli
Qanawat	Vitis vinifera	Uncinula necator
Reemt Allohf	V. vinifera	U. necator
COASTAL ARE	7 .	
Tartous		D 4."
Akkar	Cucurbita maxima	P. xanthii
Alkhrab	C. arvensis	E. convolvuli
Banias	Solanum-	Leveillula- taurica
	lycopersicum S. melongena	L. taurica
Hrysoun	S. hycopersicum	L. taurica
Inysoun	V. vinifera	U. necator
T T	v. vinijera	0. 1100
Lattakia	C han anti-	D
Lattakia	C. bonariensis C. arvensis	P. erigerontis E. convolvuli
Kangrah Krrameh,Bahl-	C. arvensis C. arvensis	E. convolvuli E. convulvuli
ouliyah	<i>Hibiscus esculentus</i>	E. cichoracearum
oullyan	Trifolium sp.	Microsphaera trifolii
Bahlouliyah	C. arvensis	E. convolvuli
Damounyan	H. esculentus	E. cichoracearum
	Ammi majus	E. cicnoracearum E. heraclei
Qasmin	C. arvensis	E. convolvuli
Z	Cucurbita pepo	P. xanthii
	H. esculentus	E. cichoracearum
Knysat	Capsicum sp.	L. taurica
	Inula sp.	
Shamiyah	H. esculentus	E.cichoracearum
Amrouniyah	C. arvensis	E. convolvuli
	H. esculentus	E. cichoracearum
Burj Eslam	Quercus sp.	Microsphaera alphitoides
Daatoor	C. arvensis	E. convolvuli
Mashkita	Melia azedarach	Phyllactinia guttata
Demsarkho	V. vinifera	U. necator
	Urospermum sp.	E. cichoracearum
Hmeimim- Gableh	Cucumis sativus	E. cichoracearum, S. fuliginea
Gubiell	Ainsworthia sp.	E. heraclei
Snoubr	Solanum sp	L taurica
Snoubr Hennadi	Solanum sp. Ammi majus	L. taurica L. umbelliferarum

*new record

Spore suspension $(4.4 \times 10^6 \text{ conidia/ml})$ of S.ham82 was prepared as described above, and 20 µl were sprayed on leaves surfaces, then fresh mildew spores collected from infected leaves of common sage were immediately spread on the leaves surfaces previously inoculated with *Ampelomyces* using a soft brush. Inoculated petri dishes were sealed, incubated at 25°C for 24 h in dark, and then transferred to 12/12 light and dark system (Zang *et al.*, 2020).

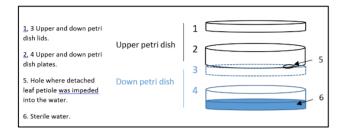
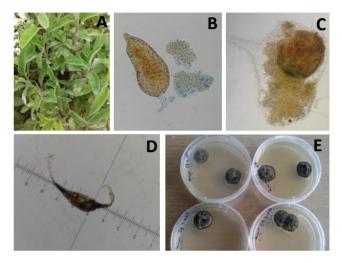


Figure 1. Manipulation of petri dishes for the detached leaf assay

Results and discussion

Field surveillance


Seventy-three wild and cultivated plant samples infected with PM were collected during the seasons 2019, 2020 and 2021. Ampelomyces quisqualis was detected in six specimens belonging to three different genera of PM on three host plants. A. quisqualis was detected in four plant samples of Convolvulus sp. infected with Erysiphe convolvuli and collected from four locations (Qasimin, Krrameh, Bahlouliayh and Amrouniyah), and one plant sample of Ammi majus infected with E. heraclei and collected from Bahlouliyah along the Syrian coast during 2019 and 2020. A new occurrence of A. quisqualis was observed on common sage (S. officinalis) parasitized by G. neosalviae PM which is not included in mildew species listed by Younes et al. (2009) in Syria, nor in previous international studies (Kiss, 1998, 2003; Liang et al., 2007). Moreover, our observation of A. quisqualis during the 2021 season was detected in Damascus, where its occurrence was not expectable. In general, southern Syria environment is inappropriate for Ampelomyces fungus, due to low levels of RH most of the year with some exceptions, so it was a surprise to find this mycoparasite in such region. This finding gave a motivation to confirm the presence of this isolate and later to test it as a candidate for biological control against PM diseases.

Morphological characteristics of *Ampelomyces* S.ham82 isolate

All *Ampelomyces* isolates diagnosed in this study were capable to form pycnidia 5-7 days post inoculation (dpi) and this was in agreement with Kiss (2008), and developed mature ones 8-10 dpi.

Morphological characteristics of *Ampelomyces quisqualis* In natural infections, pycnidia shape varied from fusiform to ovoid, pedicellate, light to dark brown in color and measured 45.72 - 107.5 x 18.29 - 46.23 μm [av. (±SD) 77.44 (±17.16) x 25.28 (±6.12), n = 20]. Conidia were unicellular, hyaline, discrete, varying in shape from ovoid, pyriform, oblong, globose and measuring 6.25 - 10 x 3 - 5 μm [av. (±SD) 8.11 (±0.87) x 3.88 (±0.51), n = 20] (Figure 2-b and 2-d).

On PDA culture medium, pycnidia were mostly globose to sub-globose and measured $50.29 - 205.74 \times 45.72 - 205.74 \ \mu m$ [av. (±SD) 125.27 (±42.34) x 115.95 (±40.14), n = 25]. Conidia were unicellular, hyaline, discrete, varying in shape from ovoid, flask shaped, oblong, curved, globose and measuring 5 - 12.5 x 2.5 - 5 μm [av. (±SD) 8.86 (±1.65) x 3.18 (±0.80), n = 25] (Figure 2-e).

Figure 2. Occurrence of *Ampelomyces quisqualis* (S.ham82) on PM *Golovinomyces neosalviae* infecting common sage (*Salvia officinalis*). A) Common sage infected with Powdery mildew. B) *A. quisqualis* pycnidium isolated from powdery mildew infected common sage. C) Pycnidium with released conidia of cultured mycoparasite on PDA. D) Pycnidia measurement of *A. quisqualis*. E) Colonies of hyperparasite on PDA.

On detached leaf after artificial inoculation, pycnidia were mostly fusiform and measured 45.72-137.16 x 18.288-41.15 μ m [av. (±SD) 88.24 (±20.05) x 27.98 (±5.68), n = 25]. Conidia were unicellular, hyaline, discrete, varying in shape from ovoid, pyriform, oblong, globose and measuring 4.5-8.75 x 2.5-4.5 μ m [av. (±SD) 7.82 (±0.69) x 3.61 (±0.37), n = 14].

On PDA culture medium following artificial inoculation, pycnidia were globose to sub-globose and measured 114.3-293.8 × 91.44-262.89 μ m [av. (±SD) 189.51 (±60.06) x 167.64 (±52.41), n = 15]. Conidia were unicellular, hyaline, discrete, varying in shape from ovoid, flask shaped, oblong, curved, globose, and measuring 5 - 12.5 × 2.5 - 5 μ m [av. (±SD) 8.86 (±1.65) x 3.18 (±0.80), n = 15].

Isolate S.ham82 was compared morphologically on PDA with Bah1 (an *A. quisqualis* isolate from coastal area in this study). Several characteristics studied earlier by Sharma (2006) were used in this comparison, in addition to pycnidia and conidia dimensions (Table 2). In our study, pycnidia and conidia of S.ham82 measured $45.72-107.5 \times 18.29-46.23 \,\mu m$

and 6.25-10 x 3-5 µm respectively in natural mycohost which are nearly identical to those obtained earlier (45 - 106)x 25.5-40.5 µm and 4.5-10.5 x 2.5-4.8 µm), respectively (Rancovic, 1997). Younes et al. (2008) documented the size of pycnidia and conidia on PDA as follows: 118.387(±26.676) х 113.575(±26.565) um and $9.433(\pm 1.804) \times 3.561(\pm 0.465) \mu m$, respectively, whereas S.ham82 pycnidia and conidia measured slightly larger $(125.27 (\pm 42.34) \times 115.95 (\pm 40.14) \mu m and 8.86 (\pm 1.65) x$ 3.18 (± 0.80) µm, respectively, on PDA. Athira *et al.* (2017) reported the radial and fluffy raised growth pattern of different isolates of Ampelomyces. Pycnidia were ovoid, ellipsoid, cylindrical, pyriform to globose in shape, measuring 29.2 - 72.5 x 22.4 - 43.1 µm.

All isolates studied in this work were classified as slow growing isolates, S.ham82 and Bah1 isolates had radial growth rates of 0.54 and 0.37 mm day⁻¹, respectively. This result is in accordance with earlier work (Mhaskar & Rao, 1974; Rudakov, 1979; Kiss & Vajna, 1995; Kiss, 1997; Kiss & Nakasone, 1998) who distinguished between slow isolates with a radial growth rate of 0.1-1mm day⁻¹, and fast ones characterized by 3–4mm day⁻¹ radial growth in culture media at room temperature.

Data in Table 2 show that S.ham82 and Bah1 isolates were similar in some characters and different in others. Concerning the pycnidia shape, both were globose to subglobose on PDA medium but Bah1 pycnidia were slightly larger (152.52 x 132.13 μ m) compared to S.ham82 pycnidia (125.27 x 115.95 μ m). Margins, zonation and topography characteristics of their colonies were similar. On the other hand, S.ham82 had a slightly faster growth rate (0.54 mm.day⁻¹) compared with Bah1 isolate which had a slower growth rate (0.37 mm.day⁻¹). S.ham82 colonies had dark brown to black color, whereas Bah1 colonies were greenish to brown. Lemon shaped conidia were observed only in Bah1 isolate and conidia size was $8.75 \times 3.30 \ \mu\text{m}$. Other conidial characteristics were similar in shape and size with S.ham82 isolate which had conidial size of $8.11 \times 3.88 \ \mu\text{m}$.

Mycoparasitism activity of S.ham82 isolate against common sage PM in detached Leaf

Artificial inoculation produced a successful growth of the hyperparasite on PM colonies grown after artificial inoculation. *Ampylomyces* spread inside the mycelia of mycohost and produced pycnidia on most of mildew colonies. Moreover, re-isolation of the mycoparasites was repeatedly successful from the inoculated PM colonies. Based on Koch's postulate, *A. quisqualis* (S.ham82) isolate was found to be a new pathotype which parasitize *G. neosalviae* the causal agent of powdery mildew on common sage (*S. officinalis*) (Figure 3). In addition, S.ham82 could be a tolerant mutant of hyperparasite, having the ability to survive in low RH environment, while *Ampelomyces* need high levels of humidity for conidiospores germination and growth (Jarvis & Slingsby, 1977; Philipp & Crüger, 1979).

It can be concluded that *A. quisqualis*, the oldest parasite of PM fungi, has the potential to colonize the pathogen *G. neosalviae*, the causal agent of mildew on common sage (*S. officinalis*). It was also observed that this hyperparasite may grow in dryer ecosystem than what was reported earlier in Syria. Such isolate should attract more attention and investigated further for its use as a biocontrol agent. Molecular characterization should be performed on S.ham82 isolate to confirm whether or not it is a new strain of *A. quisoualis* parasitic on *G. neosalviae*.

Table 2. Brief comparison of S.ham82 isolate with Bah1 isolate obtained from the coastal area during the 2019 season grown on PDA culture medium.

Characteristics	S.ham82	Bah1
Pycnidia shape	mostly globose to sub-globose	mostly globose to sub-globose
Size	125.27 x 115.95 μm	152.52 x 132.13 μm
Conidia shape	unicellular, hyaline, discrete, ovoid, flask	unicellular, hyaline, discrete,
-	shaped, oblong, curved, globose	lemon and flask shaped, oblong, curved, globose
Size	8.11 x 3.88 µm	8.75 x 3.3 μm
Colony radial growth rate/day	0.54mm	0.37mm
Color	Dark brown to black	Brown to greenish brown
Margin	Wavy to diffuse	Wavy to diffuse
Zonation	Present/radial sectors	Present/radial sectors
topography	Septate, Hyaline	Septate, Hyaline
(Mycelium growth nature)	Fluffy when young then tufty	Fluffy when young then tufty

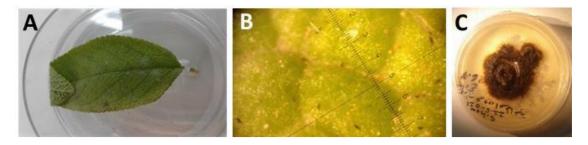


Figure 3. Detached leaf assay. a) Detached leaf of *S. officinalis* inoculated with *G. neosalviae* and bearing pycnidia of mycoparasite. b) Pycnidia spread on detached leaf after inoculation. c) Re-isolation on PDA and successful growth of the mycoparasite.

الملخص

حمزة، شادي، وليد نفاع ومحمد فواز العظمة. 2022. ظهور الفطر فائق التطفل Ampelomyces quisqualis على الفطر Golovinomyces. مجلة وقاية النبات العربية، 40(2): (Erysiphaceae) neosalviae (Erysiphaceae) المسبب لمرض البياض الدقيقي على المريمية الشائعة Salvia officinalis. مجلة وقاية النبات العربية، 40(2): (https://doi.org/10.22268/AJPP-040.2.158163.

تمت دراسة الفطر على مناسبة عن الطفل في جميع أنحاء العالم، واستُخدم بعضها بنجاح في المكافحة الحيوية، على نطاق واسع نظراً لإمكانية استخدامه في المكافحة الحيوية. اختُبرت العديد من سلالات هذا الطفيل في جميع أنحاء العالم، واستُخدم بعضها بنجاح في المكافحة الحيوية، في حين كان بعضها الآخر أقل كفاءة. لم يتم تعريف أي من سلالات الفطر على مسلولات هذا الطفيل في جميع أنحاء العالم، واستُخدم بعضها بنجاح في المكافحة الحيوية، في حين كان بعضها الآخر أقل كفاءة. لم يتم تعريف أي من سلالات الفطر على مسلولات هذا الطفيل في جميع أنحاء العالم، واستُخدم بعض العزلات مورفولوجياً في المنطقة الساحلية، ولم ينَّثر إلى وجوده في أي من سلالات الفطر على مسلولات هذا شناف في سورية، بيد أنه متنوات (2019 – 2021)، تمّ جمع 73 عينة بناتية من 5 محافظات، متضمنت المناطق الساحلية والحذوبية. وتربية، وجدت بكنيدات الفطر على على مدار ثلاث سنوات (2019 – 2021)، تمّ جمع 73 عينة بناتية من 5 محافظات، تضمنت المناطق الساحلية والجنوبية. وبحد بلي واحدة من المنطقة الجنوبية، تم توثيق الفطر على على مدار ثلاث سنوات (2019 – 2021)، تمّ جمع 73 على نباتية من 5 محافظات، تضمنت المناطق الساحلية والجنوبية. وبحد بكنيدات المورية الفطر على على مدار ثلاث سنوات (2019 – 2021)، تمّ جمع 73 على منورية واحدة من المنطقة الجنوبية. تم توثيق الفطر على عائل فطري جديد هو *Covinomyces neosalviae على م*ريق العربي العروي الاصطناعية باستخدام طريقة الورقة المفصولة ضمن ظروف المحصول على العزلة كلموي جديد هو PDA وأول الوسلام التطفلي عن طريق العربي الدقيقي على دنبات المريمية الثائعة المنطوقة المروف وجود هذا الفطر على العزلة وتأورنت مع المورلة المناط التطفلي عن طريق العربي الاصطناعية باستخدام لمريقة الورقة المفصولة معن طروف المحتبر . دُرست الصفات الثكلية لهذا لعزلة وقورنت مع العزلة الما التطفلي عن ماريق الدوية العادي والم عنون و (الد22) على مرعنو والدة مع مروف ومتوسط أبعاد البيولي المرعية الورند ماوسلا الطبيعي ورلاد مروبي المالينية الورية المورية المالية المونيي أول من طريق الروبي المورية ومعان عارد المروف ورد على الروف المعنوبية المووني الموبي عارد مار ولوف المورية على الورلة المنطيق عالى مريوا العامي ورده المومية أورند المعنوني مع مالي المعيعي ورد المعانية على المروف المعنوبي مع ما المول علي وبعد العنوي ف

عناوين الباحثيين: حمزة شادي¹*، وليد نفاع² ومحمد فواز العظمة². (1) مختبر التنوع الحيوية، الهيئة الوطنية للتكنولوجيا الحيوية، دمشق، سورية؛ (2) قم وقاية النبات، كلية الزراعة، جامعة دمشق، سورية. *البريد الالكتروني للباحث المراسل: sh.ham017@gmail.com

References

- Angeli, D., E. Pellegrini, S. Micheli, D. Ress, M. Maurhofer, I. Pertot and C. Gessler. 2009. Molecular characterization of *Ampelomyces* spp. isolates from different hosts and geographic origins and evaluation of their potential to control powdery mildew of cucumber. IOBC-WPRS Bulletin, 43: 40-44.
- Athira, K., N. Ragupathi and T. Raguchander. 2017. Morphological characterization of *Ampelomyces* spp., a hyperparasite of Bhendi (*Abelmoschus esculentus* (L.) Moench) powdery mildew. Journal of Applied and Natural Science, 94: 1954-1957. <u>https://doi.org/10.31018/jans.v9i4.1471</u>
- **Cabrera, M.G., G. Vobis and R.E. Álvarez.** 2010. Powdery mildew on salvia officinalis in Corrientes, Argentina. Mycosphere, 1: 289-291.
- Falk, S.P., D.M. Gadoury, P. Cortesi, R.C. Pearson and R.C. Seem. 1995a. Parasitism of Uncinula necator cleistothecia by the mycoparasite *Ampelomyces quisqualis*. Phytopathology, 85: 794-800.
- Falk, S.P., D.M. Gadoury, R.C. Pearson and R.C. Seem. 1995b. Partial control of grape powdery mildew by the mycoparasite *Ampelomyces quisqualis*. Plant Disease, 79: 483-490. <u>https://doi.org/10.1094/PD-79-0483</u>

- Goh, T.K. 1999. Single-spore isolation using a hand-made glass needle. Fungal Diversity, 2: 47-63.
- Götz, M., E. Idczak, K. Richert-Pöggeler and U. Braun. 2018. A new morphotype of Golovinomyces neosalviae infecting Salvia officinalis. Plant Pathology & Quarantine, 8: 131-139. https://doi.org/10.5943/ppg/8/2/4

- Hashioka, Y. and Y. Nakai. 1980. Ultrastructure of pycnidial development and mycoparasitism of Ampelomyces quisqualis parasitic on Erysiphales. Transacxtions of the Mycological Society of Japan, 21: 329-338.
- Jarvis, W.R. and K. Slingsby. 1977. The control of powdery mildew of greenhouse cucumber by water spray and Ampelomyces quisqualis. Plant Disease Reporter, 61: 728-730.
- Kiss, L. 1997. Genetic diversity in Ampelomyces isolates, hyperparasites of powdery mildew fungi, inferred from RFLP analysis of the rDNA ITS region. Mycological Research, 101: 1073-1080.

https://doi.org/10.1017/S0953756297003705

- Kiss, L. 1998. Natural occurrence of Ampelomyces intracellular mycoparasites in mycelia of Powdery Mildew fungi. New Phytologist, 140: 709-714. https://doi.org/10.1046/j.1469-8137.1998.00316.x
- Kiss, L. 2003. A review of fungal antagonists of powdery mildews and their potential as biocontrol agents. Pest Management Science, 59: 475-483. https://doi.org/10.1002/ps.689
- Kiss, L. 2008. Chapter 3, Intracellular mycoparasites in action: interactions between powdery mildew fungi and Ampelomyces. Pages 37-52. In: British Mycological Society Symposia Series. M.S. Simon, V. Avery and W. Pieter Van (eds.). Academic Press, Waltham, MA.
- Kiss, L. and K.K. Nakasone. 1998. Ribosomal DNA internal transcribed spacer sequences do not support the species status of Ampelomyces quisqualis, a hyperparasite of powdery mildew fungi. Current Genetics, 33: 362-367.

https://doi.org/10.1007/s002940050348

- Kiss, L. and L. Vajna. 1995. New approaches in the study of the genus Ampelomyces, hyperparasites of Powdery Mildew fungi. Pages 301-304. In: Environmental Biotic Factors in Integrated Plant Disease Control. : M. Manka (ed.), Polish Phytopathological Society, Poznan (Poland).
- Kiss, L., J. Russell, O. Szentivánvi, X. Xu and P. Jeffries. 2004. Biology and biocontrol potential of Ampelomyces mycoparasites, natural antagonists of Powdery Mildew fungi. Biocontrol Science and Technology, 14: 635-651. https://doi.org/10.1080/09583150410001683600

Lee, S.Y., S.B. Lee and C.H. Kim. 2004. Biological control of powdery mildew by Q-fect WP (Ampelomyces quisqualis 94013) in various crops. IOBC/wprs Bulletin, 27: 329-331.

- Liang, C., J. Yang, G.M. Kovács, O. Szentiványi, B. Li, X.M. Xu and L. Kiss. 2007. Genetic diversity of Ampelomyces mycoparasites isolated from different powdery mildew species in China inferred from analyses of rDNA ITS sequences. Fungal Diversity, 24: 225-240.
- Mhaskar, D.N. and V.G. Rao. 1974. The mycoparasite Ampelomyces quisqualis Ces. in artificial culture II. Effect of environmental factors. Phytopathologia Mediterranea, 13: 147-154.
- Philipp, W.D. and G. Crüger. 1979. Parasitismus von Ampelomyces quisqualis auf Echten Mehltaupilzen an Gurken und anderen Gemüsearten. Zeitschrift für Pflanzenkrankheiten und Pflanzenschutz. 86: 129-142.
- Rancovic, B. 1997. Hyperparasites of the genus Ampelomyces on Powdery Mildew fungi in Serbia. Mycopathologia, 139: 157-164. https://doi.org/10.1023/A:1006811924205
- Rudakov, O.L. 1979. Fungi of the Genus Ampelomyces Ces. Ex. Schlecht. Mikologiya I Fitopatologiya (In Russian), 13:104-110.
- Sandheim, L. and T. Krekling. 1982. Host-parasite relationships of the hyperparasite Ampelomyces quisqualis and its powdery mildew host Sphaerotheca fuliginea. Journal of Phytopathology, 104: 202-210. https://doi.org/10.1111/j.1439-0434.1982.tb00527.x
- Sharma, S. 2006. Integrated Management of Powdery Mildew of Apple, ICAR Adhoc Research Scheme, India. Final Report (2003-2006).
- Younes, G., N. Ali and M. Ahmad. 2008. Isolation and Identification of the Mycoparasite Fungus Ampelomyces quisqualis Ces. (Deuteromycetes: sphaeropsidales) on Powdery mildew Fungi (Erysiphaceae) and study the effect of some culture media in its growth. Tishreen University Journal for Research and Scientific Studies - Biological Sciences Series (In Arabic), 30: 83-90.
- Younes, G., N. Ali and M. Ahmad. 2009. Natural distribution of the mycoparasite fungus Ampelomyces quisqualis Ces. on powdery mildew fungi in Syrian Coastal Region. Arab Journal of Plant Protection (In Arabic), 27: 66-72.
- Zang, C., Q. Lin, J. Xie, Y. Lin, K. Zhao and C. Liang. 2020. The biological control of the grapevine downy mildew disease using Ochrobactrum sp. Plant Protection Science, 56: 52-61. https://doi.org/10.17221/87/2019-PPS

Received: October 27, 2021; Accepted: March 12, 2022

تاريخ الاستلام: 2021/10/27؛ تاريخ الموافقة على النشر: 2022/3/12