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Abstract

Natural products have provided over 60% of our medicines to date, but their search has focused on
easy to access habitats, leaving the marine realm underexplored. The deep-sea, which is the world’s
largest biome and contains some of the most biodiverse and inaccessible ecosystems, could represent
an untapped source of natural products, especially since harsh environmental gradients and
competition for resources in deep-sea habitats can lead to evolutionary adaptations with the potential
to yield novel internal chemistry.

A series of three expeditions to Ireland’s continental slope and associated submarine canyon systems,
collected corals and sponges from rich habitats. As part of a wider project whose aim was to isolate
novel bioactive deep-sea metabolites with pharmaceutical potential, herein focus was applied to two
species. Characella pachastrelloides was selected because of the interesting chemical profile of an
initial extract. Paragorgia arborea was selected for its bioactivity in a screening programme.

Four novel glycolipopeptides which contain a rare sugar moiety and rare D-amino acids were extracted
and elucidated from the deep-sea sponge Characella pachastrelloides collected in Whittard Canyon at
800 m depth. These four compounds represent two pairs of stereo enantiomers which differ in the
length of the fatty acid chain. Enantiomers Characellide A and B showed potent anti-inflammatory
activity in a bioassay measuring ROS production. Subsequent synthesis of Characellide A by
international colleagues demonstrated that further analysis of the absolute configuration of the
natural product is required.

It became apparent that optimisation of classical and feature-based data acquisition parameters was
required to effectively apply molecular networking to fractions of the Characella pachastrelloides
extract. A fractional factorial analysis applied to three extracts (an alga, a sea squirt and a zoanthid)
that varied widely in their chemodiversity showed that four factors have the greatest effect on
molecular network topology: concentration, liquid chromatography separation, the number of
precursors per cycle, and collision energy. The relative importance of factors varied between
featured-based and classical molecular networking and depends on the planned application of the
network itself.

Using the optimised data acquisition parameters for molecular networking the full chemodiversity of
Characella pachastrelloides was analysed. This led to the discovery and elucidation of two additional
characellides, light sensitive poecillastrins (cytotoxic polyketides), and a novel methylated histidine (6-
methyl hercynine) whose imidazole ring has a unique methylation pattern not previously seen in
nature whereby the methylation occurs on a C. In addition, cyanocobalamine was identified revealing
its occurrence in nature for the first time.

Bioactivity screening led to prioritisation of the bubble gum coral Paragorgia arborea for natural
product isolation. New bicyclic diterpenoids were elucidated. These included two miolenols with a
rare cyclobutanol ring and one new and five known xeniolides. Miolenol showed interesting
conformational flexibility as evidenced by temperature-variable NMR and NOESY correlations. All
diterpenoids showed mild anti-plasmodial activity and the known compound 9-deoxyxenolide showed
strong activity against a drug resistant strain of malaria.

This discovery of new and novel compounds illustrates the untapped chemistry of the deep sea. The
pharmaceutical potential shown by these metabolites further highlights the importance of this
biome in future drug discovery efforts.
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Chapter 1. General Introduction

1.1 Marine Biodiscovery

1.1.1  Marine Biodiversity

The marine biosphere contains some of the
most biodiverse ecosystems on earth.
Variations in environmental conditions such as
water temperature, water current, dissolved
carbon content, depth etc. gave rise to a broad
range of ecosystems from kelp forests in
temperate waters, to coral reefs in some
shallow seas of the tropics[1]. These
ecosystems contain a diversity of living
organisms that is unmatched when compared
to terrestrial ecosystems. As a result of life
originating in our oceans before colonizing land,
there are 34 phyla in the ocean, while 15 phyla
are found on land. This results in ecosystems
with large phylogenetic distances between
species in marine habitats, when compared to
terrestrial habitats[2].

1.1.2 Marine Natural Products and Drug

Figure 1. Example of biodiversity found in marine ecosystems. )
This kelp forest contains a wide range of organisms including DiSCOVery

algae, sponges, corals, arthropods, and echinoderms. New Marine organisms have proven to be a reservoir
Quay, Co. Clare, Ireland. of structurally diverse natural products with
potential therapeutic application[3]. Initial
Interest in marine natural products was sparked by various toxins, such as tetrodotoxin, which were
causing poisoning in coastal communities.[4-6] Chemical studies into these toxins highlighted unique
chemical adaptations (e.g. bromination) that were previously unknown to occur in nature[7, 8]. Early
knowledge of marine natural products paled in comparison to that of terrestrial organisms,
particularly plants. This was caused by the difficulty in collecting marine organisms. Discovery of these
new chemical features and scaffolds further encouraged searching for novel natural products with
therapeutic potential from marine life forms[4, 7, 9]. 70% of marine natural product chemical scaffolds
are unique to marine organisms[10]. Large intertidal and shallow water organisms such as algae,
sponges and soft corals were the initial subjects of secondary metabolite investigation, due to the
ease with which they could be collected. The introduction and wide adaption of Self-Contained
Underwater Breathing Apparatus (SCUBA) revolutionised the early marine natural products field. This
allowed collections of a diverse range of marine organisms down to depths of ~50 m.

Two phyla of marine invertebrates that were quickly identified as rich in original natural products were
sponges (Phylum: Porifera) and corals (Phylum: Cnidaria), comprising 30.1% and 18.9% of 38,439
marine natural products isolated to date, respectively[11]. Multiple factors contribute to the rich
diversity of natural products in sponges and corals [11].

Unlike any known terrestrial animals, sponges and corals in the adult phase are sessile. This inability
to move led sponges and corals to build structures that allow them to filter-feed on food items
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Chapter 1. General Introduction

suspended in the water current (e.g., planktonic, bacteria, cell debris etc). This creates competition
for space to get primary access to food in the water current, and/or light for symbiotic cyanobacteria.
To prevent neighbouring organisms from over growing them (i.e. biofouling) and to deter predation,
sponges and corals have been found to produce specialised metabolites which can inhibit potential
colonisers[12-15]. These same metabolites are used in an offensive role, allowing sponges and corals
to expand over neighbouring organisms. Many of these chemical defence metabolites inhibit cellular
growth and functions that have been applied to therapeutic applications, including anti-tumour
treatments.

Some shallow water coral and sponge species have developed symbiotic relationships with single-
celled dinoflagellates and zooxanthellae, which can photosynthesise, providing the host organism with
energy in the form of organic carbon products from photosynthesis. Sponges in particular host
taxonomically diverse microbiomes, which in some species can comprise up to 35% of the sponge
biomass. Recent studies have suggested that some species-specific microbial communities can
metabolize nitrogen, sulphur, and phosphorus, and have the ability to fix carbon dioxide and
biosynthesise B-vitamins, which are essential to life. The diversity of holobionts (e.g. bacteria, fungi,
cyanobacteria) in combination with the different types of relationships (symbiotic, parasitic, etc.)
effectively results in sponges and corals hosting a plethora of chemical architectures representing the
diversity of biosynthetic gene cluster (BGC) present in the animals and microbes. Many natural
products isolated from sponges and corals are combination products from different metabolic
pathways and organisms[4].

To date, ~38,000 marine natural products have been reported[11]. Multiple comparative studies show
a general trend of marine natural products possessing more potent bioactivities when compared to
terrestrial natural products. In particular a large number of marine natural products show
cytotoxic/antiproliferation activities[16]. This may be due to the role of these compounds in chemical
defence[17, 18]. As of April 2022, there are 17 marine derived pharmaceuticals approved by the
Federal Drugs Administration (FDA), with an additional 29 compounds in clinical trials[19].
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, chemical class,

ing source organism

Table 1. Approved marine derived pharmaceuticals with their correspond

molecular target, and disease area of the therapeutic[19].

5IPage

Compound Name j‘mamﬁqu\ Year of FDA- Marine Organism Chemical Class Molecular Target Disease Area
Prescription Approval
Cytarabine (Ara-C) Cytosar-U® -1969 Sponge Nucleoside DNA polymerase Cancer: Leukemia
Vidarabine (Ara-A) Arasena A® -1976 Sponge Nucleoside Viral DNA polymerase Antiviral: Herpes Simplex Virus
Ziconotide Prialt® -2004 Cone snail Peptide N-Type Ca channel Pain: Severe Chronic Pain
Omega-3-acid ethyl esters
*status is debatable at the Lovaza® -2004 Fish Omega-3 fatty acids  Triglyceride-synthesizing enzymes Hypertriglyceridemia
moment
Mﬂwm_m%ﬂwm enoic acid Vascepa® -2012 Fish Omega-3 fatty acids  Triglyceride-synthesizing enzymes Hypertriglyceridemia
Omega-3-carboxylic acid  Epanova® -2014 Fish Omega-3 fatty acids  Triglyceride-synthesizing enzymes Hypertriglyceridemia
Eribulin Mesylate (E7389) Halaven® -2010 Sponge Macrolide Microtubles Cancer: Metastatic Breast Cancer
B i i N- : Anaplastic | T-cell i
rentuximab vedotin (SG Adcet -2011 Mollusk/cyanobacterium ADC (MMAE) CD30 & microtubules nmqnmﬂ naplastic large nw _m<m.,83_n
35) malignant lymphoma, Hodgkin's disease
Trabectedin (ET-743) Yondelis® -2015Tunicate Alkaloid Minor groove of DNA Cancer: Soft jmmrn_”mmwmmoam and Ovarian
Panobinostat Farydak® -2015 Sponge Hydroxamic acid Histone Cancer: Multiple Myeloma
. . . . ) . . Cancer: Multiple Myeloma, Leukemia
*% ® g ’
Plitidepsin Aplidin (2018) [Australia] Tunicate Depsipeptide Deacetylase Lymphoma
Polatuzumab vedotin Cancer: Non-Hodgkin lymphoma, Chronic
Polivy™ -2019 Mollusk/cyanobacterium ADC (MMAE) eEF1A2 lymphocytic leukemia, Lymphoma, B-Cel
(DCDS-4501A) )
lymphoma, Folicular
Enfortumab Vedotin-ejfv  PADCEV™ -2019 Mollusk/cyanobacterium ADC (MMAE) Nectin-4 Metastatic urothelial cancer
Lurbinectedin Zepzelca™ (2020 * Tunicate Alkaloid RNA Polymerase Il Cancer: Metastatic Small Cell Lung Cancel
P [Australia 2021] v . &
WMWMSBM% Mafodotin- Blenrep™ -2020 Mollusk/cyanobacterium ADC (MMAF) BCMA Cancer: Relapsed/refractory multiple myelo
Cancer: Urothelial Carcinoma, Advanced
Disitamab Vedotin Aidixi™ 2021 (China) Mollusk/cyanobacterium ADC (MMAE) HER2 nm:nm.n mmmﬂ.:n Cancer, HER2 Overexpressi
Gastric Carcinoma, Advanced Breast Cance
Solid Tumors
Tisotumab vedotin-tftv TIVDAK™ -2021 Mollusk/cyanobacterium ADC (MMAE) Microtubule Metastatic cervical cancer
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1.2 The Deep Sea

Bathymetry
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Figure 2. A global bathymetry map displaying the ocean depth and various submarine geographical feature