
TintMalloc: Reducing Memory Access Divergence

via Controller-Aware Coloring

Xing Pan, Yasaswini Jyothi Gownivaripalli, Frank Mueller

North Carolina State University, Dept. of Computer Science, Raleigh, NC, USA, Email: mueller@cs.ncsu.edu

Abstract—DRAM memory of modern multicores is partitioned
into sets, each with its own memory controller governing multiple
banks. Accesses can be served in parallel to controllers and banks,
but sharing of either between threads results in contention that
increases latency, and so do accesses to remote controllers due to
the non-uniform memory access (NUMA) design. Above DRAM,
a last-level cache (LLC), typically at level 3 (L3), is shared by
all cores while L1 and L2 caches tend to be core private.

This NUMA design inflicts significant variations in execution
time for applications with large datasets due to different latencies
incurred by remote memory node accesses or contention in
LLC and at memory banks/controllers. As a result, single
program multiple data (SPMD) applications tend to experience
computational imbalance at barriers, which inflicts idle (wait)
time for threads that at barriers arrive early and thus impairs
effective processor utilization and ultimately performance.

This work contributes a novel memory allocator called Tint-
Malloc that colors memory at the LLC, bank, and controller
level to ensure locality to the local memory node while reducing
contention at the LLC/bank levels in software. After adding
one line of code during initialization in each thread, existing
applications automatically obtain colored heap space through
regular malloc calls.

Experimental results with the SPEC and Parsec benchmarks
show that by choosing disjoint colors per thread, locality is
increased, contention is decreased, and overall SPMD execution
becomes more balanced at barriers than default memory alloca-
tion under Linux as well as prior coloring approaches.

Keywords-NUMA, caches, memory controller, page coloring

I. INTRODUCTION

Contemporary multicores provide a NUMA memory ar-

chitecture, where L1 and L2 caches are often core private

while the L3 cache, the last level cache (LLC), is shared

among cores. Sets of cores further comprise a memory “node”,

where each node features a local memory (DRAM) controller.

The controller further provides access to a different banks. A

memory reference then is non-uniform in access latency due

to increasingly expensive access penalties for data obtained

from L1, L2, LLC, and DRAM.

Fig. 1 depicts two sockets of such multicore chips. Even

within each socket, core-local DRAM accesses (via the local

memory controller), e.g., from core 0 via controller 0, have

lower latency than other controllers on the socket, e.g., from

core 0 to controller 1 as they traverse over the fast on-

chip interconnect (Hypertransport/Quickpath for AMD/Intel).

References to other sockets result in even longer latencies for

both remote LLC (core 0 to the LLC of socket 1) and yet

longer for remote controllers (core 0 to controllers 3 or 4) as

they transverse the off-chip interconnect (typically narrower,

lower bandwidth Hypertransport/Quickpath lanes).

Fig. 1. Architecture of memory and cache on AMD Opteron

In general different controllers and banks can be accessed

in parallel, but sharing of either, even locally, may result in

resource contention. Furthermore, non-local access can result

in contention on the on-chip interconnect. Contention may also

exist of the LLC level, typically due to large working set sizes

that result in more data blocks being mapped to the same cache

line than the LLC can hold given its associativity.

Application performance will degrade when data references

result in frequent contention or suffer remote access penalties.

It is thus imperative to try to keep as many references as

possible local in order to improve memory performance while

utilizing all cores of a processor.

Furthermore, multi-threaded programs often utilize fork-join

parallelism with data- or task-parallel execution in parallel

sections using POSIX threads or OpenMP. At the end of

such parallel sections, implicit barriers synchronize all threads.

If execution is highly variable across threads in a parallel

section, idle time is incurred for early arrivers at barriers in

an unbalanced manner. Memory contention and non-uniform

access penalties contribute to the aggregate cost of idle time,

i.e., unutilized processing resources.

In this work, we propose TintMalloc, a heap allocator

that “colors” memory pages with (1) locality affinity for

controller- , (2) bank- and (3) LLC-awareness suitable for

high performance computing on NUMA architectures. With

TintMalloc, programmers can select one (or more) colors to

choose memory controller, bank and LLC regions disjoint

from those of other tasks. Our coloring allocator establishes

memory and LLC isolation between tasks, so that each task

only accesses its local memory controller, private memory

banks and LLC. Due to this isolation, remote access penalties

are avoided (except for shared data regions which is typically



smaller) and interference is reduced. The approach can keep

the runtime of tasks in parallel section more balanced, which

reduces idle time and increases core utilization.

For example, a task running on core 1 is assigned LLC

color 0 and memory bank 0 from its local node (controller)

0. Another task on core 4 is assigned LLC color 1 and

memory bank 1 from its local node 1. As a result, every

task accesses a local memory controller instead of requiring

remote node accesses. A task also has its private memory bank

space and private LLC lines. Interference between tasks will

be removed. This effectively shortens the execution time and

makes execution more balanced for these sample tasks.

TintMalloc only requires one line of code to be added to

application initialization. An initial system call indicates a

thread’s color, which is stored with the task control block

inside the operating system (OS). We have modified the OS

kernel so that each task has its own dynamic allocation policy,

which triggers either the legacy default allocation policy or

TintMalloc’s policy for mmap() system calls. Heap allocations

by a task return pages adhering to the respective policy. This

allows us to limit program modifications to just a single-line

of code to select colors during initialization.

We performed extensive experiments to assess the per-

formance of TintMalloc for a set of benchmarks from the

SPEC2006 and Parsec on a standard AMD Opteron hardware

platform. Experimental results with TintMalloc and other heap

allocators show the following: (1) The latency of local memory

controller accesses is much lower than that of remote memory

controller accesses. (2) TintMalloc avoids memory accesses

to remote nodes, reduces conflicts among banks and thread

interference in LLC. (3) It reduces the runtime of parallel

programs. (4) TintMalloc decreases the idle time of parallel

tasks and makes them more balanced.

Several approaches have been proposed to address con-

tention between shared resources, e.g., scheduling algorithms

based on data reference characteristics [1]–[3], cache local-

ity [4]–[7], and page coloring for DRAM partitioning [8]–[10].

Compared to them, our approach not only partitions memory

banks and the LLC but also consider the locality of memory

controllers. To our knowledge, it is the first paper to (a) color

memory controllers and (b) combine memory controller, bank

and LLC coloring together. Overall, TintMalloc effectively

lowers contention for shared resources and reduces imbalance

at boundaries of parallel sections in programs resulting in

improved overall performance and core utilization, much in

contrast to other allocators.

II. NUMA MEMORY ARCHITECTURE

This section provides a brief primer of NUMA DRAM

memories for just the aspects relevant this work.

A. Caches

Most modern CPU architectures have multiple levels of

caches organized hierarchically within a single chip. For

example, there are two sockets in our AMD Opteron 6128

system and the cache hierarchy in each socket is shown in

Fig. 2. Each core has its private, local L1 and L2 caches and

all cores share the LLC. A miss in L1 initiates an access to

L2, and a miss in L2 initiates an access to L3. A miss in LLC

initiates an access to memory.

The more cache hits, the faster the system performs. How-

ever, cache misses increase when multiple tasks access caches

simultaneously since one task’s reference may replace data in

LLC of another task’s prior references.

Fig. 2. Cache Organization (AMD Opteron)

B. DRAM Memory

Sets of cores comprise a memory node in NUMA systems.

Each such node has one local memory controller as depicted

in Fig. 1. For example, the AMD Opteron system used in our

experiments has four memory controllers over two sockets

with four cores per controller. The DRAM memory behind

a controller is organized into channels, ranks, and banks

depicted in Fig. 3. On a same controller, accesses to different

banks and channels may proceed in parallel, which provides

the capability of interleaving memory accesses, thereby im-

proving memory bandwidth/throughput.

Fig. 3. DRAM memory controller

A DRAM bank array is organized into rows and columns of

individual data cells. Upon access to data, the corresponding

row is selected and pulled from the array into the row buffer

(incurring a row access strobe penalty). Once in the row buffer

adjacent data may be accessed with just a column access strobe

penalty, which is smaller than the row activation cost. This,

spatial locality in the buffer can be exploited (while temporal

locality is typically taken core of by the upper-level caches).

When a row buffer is replaced, an additional precharge penalty

is incurred to update the row in the array with any modified

data from the row buffer due to memory writes. DRAM cells

are also periodically refreshed by the controller so that they

do not lose their data, which also flushes the row buffer.



Fig. 4. Logical Structure of DRAM Controller

When multiple tasks access (write to or read from) the same

bank in multi-threaded programs, they contend for the row

buffer. Data loaded by one task may be evicted by other tasks,

i.e., the latency of memory accesses will increase if multiple

threads access the same bank concurrently. Thus, the runtime

of two tasks may differ even if their workloads are partitioned

equally. In addition, any barrier in a parallel section may cause

tasks to wait for the last arriving one, thereby incurring idle

time, which becomes more common in NUMA systems due

to memory access divergence.

The memory controller governs the activities across

banks/channels of local memory arrays. An initial con-

troller queue de-multiplexes requests to the respective par-

allel sub-components and then issues DRAM commands for

row/column accesses. Its operations are subject to timing

constraints of banks and buses, which are typically configured

at boot time and limited by manufacturing parameters (see

Fig. 4). Multi-threaded programs can profit from avoiding re-

source contention by utilizing memory of the local controller,

yet of different banks per thread. Access to the same bank

increase latency due to contention, access to remote controllers

increase costs due to propagation latencies over the on-chip (or

cross-socket) interconnects and potential contention on inter-

connects and remote controllers/banks. Hence, data placement

play a decisive role in ensuring that threads issue local accesses

with lower contention and latency penalties instead of remote

accesses of higher contention and latencies.

Yet, shared data memory accesses of parallel programs

can generally not be resolved with remote accesses for at

least some of the threads and the associated contention and

latencies. Fortunately, shared memory regions tend to be small

in many data- and task-parallel programs. The focus of this

work is on the larger portion of data, which is not shared

among threads. The objective of the work is to avoid remote

accesses by ensuring that memory allocated by a thread is

assigned to the local controller in a disjoint bank from other

threads and also disjoint LLC cache lines from other threads.

III. TINTMALLOC DESIGN

TintMalloc is a novel memory allocation policy of the OS

kernel. It has been implemented as part of the Linux kernel

by modifying the mmap() system call code and task control

block (TCB) data. TintMalloc colors the physical memory

space by selecting memory frames for page allocation requests

that comprehensively considers memory controller, bank and

LLC locality. No hardware modifications are required, and

the general techniques apply to any other architecture with

virtual memory support and any other OS with a system

call for memory allocation. TintMalloc responds to dynamical

allocation requests of threads/tasks by selecting a physical

memory frame local to the requesting core. Our assumption

is that task-to-core allocations remain static, e.g., by explicitly

pinning threads to cores once they have been created. The

selection of the frame also ensures that the corresponding

memory bank and LLC line are only used by the current thread

to avoid conflicts/contention.

A. Frame Color Selection

Memory requests under the TintMalloc policy cause a

lookup of the color(s) assigned to the current thread for this

policy. A physical memory frame of 4KB size is subsequently

chosen in accordance to the translation of addresses by the

memory controller into node, channel, rank, bank, columns

and rows, in this order.
The bank color, bc, of a physical page is determined as

bc = ((node∗NN∗NC+channel)∗NR+rank)∗NB+bank (1)

where node (controller), channel, rank, and bank are specific

to the physical frame; NN is number of nodes (controllers)

available within a system; NC is number of channels within a

controller; NR is number of ranks within a channel; and NB

is number of banks within a rank.

This bit-level information is not released by some vendors

(e.g., Intel, not even under non-disclosure agreements, even

though prior work has reverse engineering/obtained data for

specific Intel processors) citing that mappings could change

and optimizations should not rely on such data. Other man-

ufacturers, e.g., AMD and ARM, disclose this information

in their architecture manuals, together with PCI-specific in-

formation in platform and BIOS configuration parameters.

TintMalloc is highly portable, i.e., and can be easily be adapted

to other platforms so long as hardware bit-level physical

addressing information is available.

TintMalloc utilizes information on bit-level physical mem-

ory mapping. Its design is portable to any platform with known

mappings. Our implementation is specific to the AMD Opteron

platform, specifically the Opteron 6128 with bit mapping

indicated in Fig. 5, where we combine fixed mappings with

PCI register information obtained at runtime to determine

address translation bits for node/controller (DRAM base/limit

and limit system address registers indicate bits 16-20), channel

(controller select low register), rank and bank (CS base address

registers indicating bit 7 for the rank and bits 15, 16, and 18

for the bank) as well as row/column (bank address mapping

register) — see AMD’s architectural manuals — to select

frame colors. The LLC color (set index) is given by bits 12-16.

TintMalloc is activated in the late phase of booting Linux

at which time the bit-level information above is derived from

PCI registers. For our Opteron 6128 platform, four memory

controllers detected with two channels each, two ranks per



Fig. 5. Cache Color Address Mapping bits (AMD Opteron)

channel and eight banks per rank. This amounts to 2
7

= 128

banks altogether across all controllers on our platform suitable

for coloring. The LLC also has 2
5

= 32 colors (over 5 bits).

B. Coloring Policy Activation

TintMalloc groups frames of pages with valid page table

mappings into separate lists for each of these colors to later

serve allocation requests after the boot-up phase via the

mmap() system call. We modified mmap() so that a zero-sized

request is interpreted as the specification of color(s) by the

calling thread for subsequent non-zero sized allocations. More

specifically, a set bit 30 of the protection argument indicates

that the first argument should be interpreted as the color and a

mode, where the most significant bits specify the mode to

indicate if the color should be set or cleared for memory

(controller/bank) or LLC (see Fig. 6). A set color is recorded in

the TCB of the corresponding calling thread/process (handled

uniformly as a task in Linux). A thread may even call mmap()

multiple times to establish a set of “owned” colors.

Fig. 6. mmap() color parameter bits identifiers

For example, the following mmap() call adds the LLC color

“c” to the LLC colors of the current thread:

int length = 0;

char * A = (char*) mmap(c — SET LLC COLOR, length,

prot | COLOR ALLOC, flag, fd, offset);

An analogous call with SET MEM COLOR would estab-

lish controller/bank colors so that any subsequent heap alloca-

tion (malloc/calloc call) results in colored page assignments.

TintMalloc divides the entire memory space and LLC into

multiple partitions. Each task is guaranteed to only access its

local memory node by receiving private (colored) memory and

LLC spaces. This ensures controller locality, bank arbitration

and cache isolation per task. Once a task activates coloring

via mmap(), the OS kernel configures the task’s memory

policy to adhere to these color constraints. A single mmap()

call during application initialization suffices to force any

subsequent memory requests of this task to allocate only pages

(frames) within the specified color set. If there is no memory

left of a given color, mmap() will return an error code indicting

that no more pages of this color are available.

Inside the OS kernel, zero-sized mmap() calls result in

memory controller/bank and LLC colors to be saved in the

task_struct, i.e., the TCB of Linux. In addition, two

coloring flags using_bank and using_llc, are set in

task_struct by kernel. Any subsequent dynamic alloca-

tion calls, e.g. malloc(), set aside pages within the coloring

constraints by looking up the color set of a task in the

TCB. Thus, malloc() calls remain unchanged, i.e., unlike prior

work, they do not require source code changes to provide

an additional color parameter. Again, just 1-2 lines of code

suffice to subsequently color a task’s entire heap space for

controller-/bank- and LLC-aware locality/isolation so as to

reduce memory access conflicts and reference latencies.

C. Heap Policies: Linux Buddy Allocations vs. TintMalloc

Linux currently uses a so-called “buddy allocator” by de-

fault, where memory is partitioned into “buddies” of exponen-

tially increasing sizes (by powers of two, where the exponent

is referred to as “order”). An allocation request is resolved by

returning the matching order (212+order bytes) or next larger

memory region of the respective order-indexed buddy, where

any remaining space is added to lower order free lists.

TintMalloc is currently restricted to serve only order-zero

requests, i.e., 2
12+0

= 4KB, which suffices to handle all

ordinary user heap requests in our test programs. Common

applications allocate only small heap spaces (< 4KB) at a

time, and none that we encountered use so-called huge pages

(2MB ) allocated from specially mounted memory devices.

TintMalloc maintains a free list and 128*32 color lists si-

multaneously inside the Linux kernel. Those color lists are de-

fined as a matrix of color_list[MEM_ID][cache_ID].

At boot-up, these color lists are empty, all free pages are in

the non-colored free list of the buddy allocator. A page fault

by a program causes the kernel to invoke alloc_pages to

find a free page. In the function alloc_pages, we disable

the “pcp list” and use the function _rmqueue_smallest

to serve page allocation requests. The colored page selection

process is shown in Algorithms 1 and 2.

In the algorithm, the kernel reads current task’s color-

ing flag, using_bank and using_llc. using_bank or

using_llc means the kernel should return a free page

according to the memory or LLC coloring constraints. If both

are set, the returned page has to match both the memory and

the LLC requirements. Orders greater than zero default to the

standard buddy allocator while order zero requests traverse the

corresponding colored free list to find an available page. E.g.,

when a task requests a page for MEM_ID 0 and cache_ID

0, the kernel traverses the color_list[0][0]. If this color

list is not empty, the kernel removes one such page and returns

it to the user. Otherwise, the kernel traverses the standard

free list to find an available free page of such a color and

calls the function create_color_list (see Algorithm

2). The call to create_color_list causes a buddy (of

size = 2
12+order) to be separated into 2

order single 4KB pages,



Algorithm 1 Colored Page Selection /* find page of certain

size and color */
1: INPUT: order
2: OUTPUT: page
3: if order==0 and (current->using bank or current->using llc)

then
4: for i = order ... MAX_ORDER do
5: if current->using bank & current->using llc then
6: Get a memory list ID (MEM ID) and last level cache

list ID (LLC ID) that match requirements
7: set found flag
8: else if current->using bank then
9: Get a memory list ID (MEM ID) that matches

requirements
10: set found flag
11: else if current->using llc then
12: Get a cache list ID (LLC ID) that matches require-

ments
13: set found flag
14: end if
15: if found flag then
16: return page from color list[MEM ID][LLC ID]
17: else
18: if free list[i] is empty then
19: continue //try next order
20: else
21: /* move page from buddy free list to colored

free lists for next order */
22: create color list (i,head page of the buddy set)
23: end if
24: end if
25: end for
26: return NULL /* no more page of this color */
27: else
28: return page from normal buddy alloc
29: end if

Algorithm 2 create color list /*move page from buddy

free list to colored free lists*/
1: INPUT: order, page
2: for i = 0 ... 2order−1 do
3: page bank = page[i].bank color
4: page llc = page[i].llc color
5: append page to color list[page bank][page llc]
6: end for

which will be added to the respective color lists. If available,

the kernel will return a free page from the matching color list.

Conversely, calls to free heap space by the application cause

the kernel to add pages to the corresponding colored free lists.

In this manner, memory space can be configured for a spe-

cific controller, bank and LLC per application thread/process.

Given our design, the overhead of colored allocations is higher

for the first heap requests as the kernel traverses the general

buddy free list. This higher cost typically impacts only the

initialization phase of an application. Once the colored free

list has been populated with pages, the overhead becomes

constant for a stable working set size, even for dynamic

allocations/deallocation assuming the are balanced in size

(instead of always growing the utilized heap space).

IV. EXPERIMENTAL PLATFORM

We perform experiments on a dual socket machine with

two AMD Opteron 6128 processors. Each socket has 8 cores

per for a total of 16 cores. Each core has private L1 caches

for instructions and data (128KB each), a private unified L2

cache (512KB) and an L3 cache (12MB) shared among all 16

cores of both sockets. All caches have a line size of 128 bytes.

Each socket has two memory controllers (so-called memory

nodes) for a total of 8 controllers at machine level. Cores

are connected via HyperTransport with a 1.8GHz link speed.

Cores within a memory node are 1 hop apart, cores across

nodes in the same socket are 2 hops apart, and cores of

different sockets are 3 hops apart. The processing frequency

of cores can be varied from 800MHz to 2GHz, but the CPU

governor policy immediately elevates the frequency to 2GHz

when a CPU-bound application is initiated. As mentioned

before, there are 128 banks (colors) over 4 memory controllers

and 32 LLC colors at the disposal of TintMalloc.

V. EXPERIMENTAL RESULT

We performed a set of experiments with synthetic bench-

marks and standard benchmarks from the SPEC and Parsec

suites to compare TintMalloc to the default buddy allocator of

Linux and prior coloring approaches. All experiments were

repeated ten times, and their averages are reported in the

following.

A. Synthetic Benchmark Results

We designed a synthetic benchmark that allocates a large

memory space. This space is subsequently accessed in a

pattern with alternating strides such that each cache line is

only accessed once. This ensures that references punch through

the private L1/L2 and even the shared L3 caches and have

to be resolved in DRAM. The access pattern starts with a

write in the middle of our allocation, M, followed by a write

to M+1C (where C=128 bytes is the cache line size), M-1C,

M+2C, M-2C, etc. This access pattern defeats hardware pre-

fetching and results in page faults for a large address space.

The pattern is exercised for different numbers of threads, each

of which obtains different heap space via buddy allocation and

TintMalloc (with disjoint colors across threads for the latter).

In essence, this benchmark assesses the write latency of

DRAM as it inflicts first cold and later capacity misses

in L1/L2 caches for LLC coloring, or all caches for con-

troller+bank coloring. Fig. 7 illustrates how one task may

access a remote memory node and suffer the remote latency

penalty under the buddy allocator. In addition, multiple tasks

may share the same memory bank under buddy allocation.

When two tasks access this bank at same time (Fig. 8), the

second one will populate the row buffer and evict data from

first one. This will inflate the memory access time of first task.

The same problem also occurs in LLC accesses (Fig. 9). Here,

the task’s L3 cache miss rate will increase since other tasks

evict its data from LLC.

Fig. 10 depicts the execution time of the synthetic bench-

mark on the y-axis for different coloring policies on x-axis.

The shortest execution time is obtained with MEM/LLC,

which indicates that both memory and LLC coloring are

activated under TintMalloc. With MEM/LLC coloring, each





LLC colors. For MEM+LLC(part) coloring with 16 threads,

we create 4 thread groups. Each group has its private 8 LLC

colors. Those 8 LLC colors are shared by the 4 threads in this

group. For 8 threads in a parallel section, there are 2 threads

per group sharing 8 LLC colors. In contrast, for MEM+LLC

coloring, if 16 threads are in a parallel section, each thread

has two private LLC colors. For 8 threads, each thread has

four private LLC colors.

We compared MEM+LLC coloring, standard buddy alloca-

tion, previous work (BPM) and the best result from MEM,

LLC, MEM+LLC(part) and LLC+MEM(part). The re-

sults are shown in Figures 11, 12 , 13 and 14.

Fig. 11 shows normalized benchmark runtimes for these

approaches relative to the standard buddy allocator. We ob-

serve that MEM+LLC coloring results in shorter runtimes than

buddy and previous work (BPM) for all six benchmarks.

For example, for 16 threads and 4 memory nodes, our ap-

proach reduces the average runtime by up to 29.84% over

standard buddy allocation (for SPEC/lbm). We observe that

some benchmarks’ performance enhancements exceed than

of our synthetic benchmark. This is caused by additional

spatial locality resulting in cache hits for these codes. The

synthetic benchmark, in contrast, cannot benefit from spatial

locality at all since only one access occurs per cache line.

The error bar shows the maximum and minimum runtime

of each benchmark over 10 repeated experiments. We also

observe that our approach reduces the deviation of runtime,

i.e., it reduces the variance of execution time, which helps

increase computational balance in parallel sections at barri-

ers. In addition, the previous work (BPM) always results in

longer runtimes than our coloring approach and the standard

buddy allocator. This is because BPM only partitions memory

banks and LLC but does not indicate a memory controller.

In this case, tasks may access remote memory nodes and

have to pay the remote access penalty. Of the different col-

oring configurations, 16_threads_4_nodes experiences

the largest performance boost over the 6 benchmarks. This

is because more tasks increase the probability to access a

remote memory, which results in more memory bank and

LLC contention. Fig. 12 also indicates that a benchmark’s

idle time can be reduced by our coloring approach. For

16_threads_4_nodes, our MEM+LLC coloring results

in up to 74.3% lower idle time compared to standard buddy

allocation due to more balanced computation (less runtime

variation). In fact, we observe a correlation between idle

reduction and benchmark runtimes across experiments.

Figures 13 and 14 indicate the runtime and idle time,

respectively, spent by each thread in parallel sections. We

observe that difference in runtime between the fastest and

slowest thread under standard buddy allocation is larger than

under our TintMalloc. For example, for SPEC/lbm benchmark

in the 16_threads_4_nodes configuration, the difference

in maximum thread running time and minimum thread running

time for buddy allocator is 4.38 times larger than that of

the MEM+LLC coloring approach. In addition, the maximum

thread runtime under MEM+LLC coloring is 30.77% smaller

than for standard buddy. The maximum thread idle time of the

lbm benchmark is also reduced by 75% under MEM+LLC

coloring compared to buddy allocation. The results show

that TintMalloc effectively results in more balanced parallel

program execution and enhance performance at the same time.

Considering the four metrics comprehensively, we observe

that the benchmark SPEC/lbm exhibits the largest performance

enhancement under TintMalloc compared to buddy alloca-

tion. In addition, the Parsec/freqmine, Parsec/bodytrack and

SPEC/art benchmarks are also sped up significantly. For those

results, the averages and difference between maximum and

minimum of each metric (benchmark runtime, total idle time,

thread’s runtime and idle time) are reduced by TintMalloc.

This is because (1) these benchmarks allocate a large memory

space on the heap, (2) they are memory intensive, i.e., their

data space is accessed (data is reused) multiple times, and

(3) the memory access patterns (and the data partition across

threads) matches the per-thread first touch access allocation

policy of the OS during initialization. In such cases, TintMal-

loc gets the most benefits in performance and load balance.

Furthermore, these benchmarks consist of alternating par-

allel and serial sections. The idle time reduction only affects

performance enhancements for parallel sections while bench-

mark runtime reductions represent performance enhancements

of the entire benchmark. Results indicate that the idle time

reduction over all threads is larger than the runtime reduction

due to more balanced barriers for most benchmarks under

TintMalloc. For SPEC/equake, the benchmark’s runtime and

total idle time are also reduced by TintMalloc. However,

the improvement in idle time is less than that of overall

benchmark runtime. This is because the benchmark runtime

is most affected by the proportionate reduction in runtime of

the slowest thread, and the fastest thread’s idle time will be

reduced the most. After normalization, the ratio of runtime

reduction may be larger than the benchmark’s total idle time

reduction (given that the idle time reduction of other threads

is smaller than that of the fastest one).

In addition, we obverse that Parsec/blackscholes has the

least performance improvement of the six benchmarks. Of

all TintMalloc coloring solutions, MEM+LLC(part) is the

best one and it reduces the runtime by 3.6% compared to

buddy allocation for 16 threads on 4 nodes. This happens

because blackscholes reads a large mount of input data and

is less memory intensive. Furthermore, the large fraction

of the master thread’s runtime prevents further performance

enhancements since the master thread suffers from more

restrictive memory allocation due to coloring. The larger the

serial portion on the master thread is, the smaller will be the

benchmark’s performance enhancement.

The result also indicates that the MEM+LLC coloring

approach is not always the best: For the Parsec/freqmine

benchmark in the 16_threads_4_nodes configuration,

LLC+MEM(part) coloring outperforms MEM+LLC coloring

in this case. This is because MEM+LLC coloring partitions

the entire memory and LLC space, which restricts the overall

memory space. This restriction increases the number of LLC







memory contention for parallel execution on multicore plat-

form. The basic idea of using DRAM organization information

in allocating memory at the OS level is explored in recent

work [8], [9]. Awasthi et al. [9] examine the benefits of data

placement across multiple memory controllers in NUMA sys-

tems. They introduce an adaptive first-touch page placement

policy and dynamic page-migration mechanisms to reduce

DRAM access delays in multiple memory controllers system

but do not consider bank effects, nor do they reduce cache

conflicts. Mi et al. [22] develop a hardware/software co-design

for bank coloring using address bit selection (XOR) but do not

exploit virtual to physical address mapping purely in software

as TintMalloc does. Palloc [8] is a DRAM bank-aware memory

allocator that provides performance isolation on multicore

platforms by reducing conflicts between interleaved banks. Liu

et al. [10] modify the OS memory management subsystem

to adopt a page-coloring based LLC and bank level partition

mechanism (BPM), which allocates specific LLC and DRAM

banks to specific cores (threads). In contrast, our TintMalloc

approach not only partitions memory banks and the LLC but

also consider the locality of memory controllers, which is

unprecedented in this combination.

VII. CONCLUSION

This work contributes TintMalloc, a controller-aware mem-

ory and LLC coloring allocator for parallel systems. TintMal-

loc comprehensively considers memory node, bank and LLC

locality to color the main memory and cache space without

requiring hardware modifications. Only one additional line of

an mmap() call in the initialization code suffices to trigger our

controller-aware coloring heap allocation. This work describes

the design and implementation of TintMalloc as an extension

to the Linux kernel. Coloring address bits from PCI registers

are utilized to determine locality and placement of a frame

corresponding to a physical address, which makes the ap-

proach portable across x86 architectures with documented bit

mappings (currently all AMD processors). With our approach,

accesses to a remote memory node can be avoided for all tasks

while bank and LLC access conflicts are reduced.

We assess TintMalloc in a number of experiments on a

multicore platform with microbenchmarks as well as SPEC

and Parsec OpenMP codes. Experimental results indicate that

TintMalloc makes parallel tasks more balanced and enhances

parallel system performance by reducing overall runtime and

idle time at barriers.

ACKNOWLEDGMENT

This work was supported in part by NSF grants 1239246,

1525609, and 0958311.

REFERENCES

[1] Y. Kim, M. Papamichael, O. Mutlu, and M. Harchol-Balter, “Thread
cluster memory scheduling: Exploiting differences in memory access
behavior,” in Microarchitecture (MICRO), 2010 43rd Annual IEEE/ACM

International Symposium on. IEEE, 2010, pp. 65–76.

[2] Y. Kim, D. Han, O. Mutlu, and M. Harchol-Balter, “Atlas: A scalable
and high-performance scheduling algorithm for multiple memory con-
trollers,” in International Symposium on High Performance Computer

Architecture. IEEE, 2010, pp. 1–12.
[3] S. P. Muralidhara, L. Subramanian, O. Mutlu, M. Kandemir, and

T. Moscibroda, “Reducing memory interference in multicore systems via
application-aware memory channel partitioning,” in Proceedings of the

44th Annual IEEE/ACM International Symposium on Microarchitecture.
ACM, 2011, pp. 374–385.

[4] Z. Majo and T. R. Gross, “Memory management in numa multicore
systems: trapped between cache contention and interconnect overhead,”
in International Symposium on Memory Management, vol. 46, no. 11.
ACM, 2011, pp. 11–20.

[5] S. Cho and L. Jin, “Managing distributed, shared l2 caches through os-
level page allocation,” in MICRO-39. IEEE Computer Society, 2006,
pp. 455–468.

[6] S. Perarnau, M. Tchiboukdjian, and G. Huard, “Controlling cache
utilization of hpc applications,” in Proceedings of the international

conference on Supercomputing. ACM, 2011, pp. 295–304.
[7] G. E. Suh, L. Rudolph, and S. Devadas, “Dynamic partitioning of shared

cache memory,” The Journal of Supercomputing, vol. 28, no. 1, pp. 7–26,
2004.

[8] H. Yun, R. Mancuso, Z.-P. Wu, and R. Pellizzoni, “Palloc: Dram
bank-aware memory allocator for performance isolation on multicore
platforms,” in IEEE Real-Time Embedded Technology and Applications

Symposium, 2014, pp. 155–166.
[9] M. Awasthi, D. W. Nellans, K. Sudan, R. Balasubramonian, and

A. Davis, “Handling the problems and opportunities posed by multiple
on-chip memory controllers,” in International Conference on Parallel

Architectures and Compilation Techniques, 2010, pp. 319–330.
[10] L. Liu, Z. Cui, M. Xing, Y. Bao, M. Chen, and C. Wu, “A software

memory partition approach for eliminating bank-level interference in
multicore systems,” in International Conference on Parallel Architec-

tures and Compilation Techniques, 2012, pp. 367–376.
[11] S. Blagodurov, S. Zhuravlev, A. Fedorova, and A. Kamali, “A case

for numa-aware contention management on multicore systems,” in
International Conference on Parallel Architectures and Compilation

Techniques, 2010, pp. 557–558.
[12] C. McCurdy and J. Vetter, “Memphis: Finding and fixing numa-related

performance problems on multi-core platforms,” in International Sympo-

sium on Performance Analysis of Systems & Software, 2010, pp. 87–96.
[13] J. Marathe, V. Thakkar, and F. Mueller, “Feedback-directed page place-

ment for ccnuma via hardware-generated memory traces,” Journal of

Parallel and Distributed Computing, vol. 70, no. 12, pp. 1204–1219,
2010.

[14] R. Lachaize, B. Lepers, V. Quéma et al., “Memprof: A memory profiler
for numa multicore systems.” in USENIX Annual Technical Conference,
2012, pp. 53–64.

[15] Z. Majo and T. R. Gross, “(mis) understanding the numa memory system
performance of multithreaded workloads,” in International Symposium

on Workload Characterization, 2013, pp. 11–22.
[16] H. Yun, R. Pellizzoni, and P. Valsan, Kumar, “Parallelism-aware memory

interference delay analysis for cots multicore systems,” in Euromicro

Conference on Real-Time Systems, 2015.
[17] K. Sudan, N. Chatterjee, D. Nellans, M. Awasthi, R. Balasubramonian,

and A. Davis, “Micro-pages: increasing dram efficiency with locality-
aware data placement,” ASPLOS, vol. 45, no. 3, pp. 219–230, 2010.

[18] H. Li, S. Tandri, M. Stumm, and K. C. Sevcik, “Locality and loop
scheduling on numa multiprocessors,” in International Conference on

Parallel Processing, vol. 93, 1993, pp. 140–147.
[19] Z. Majo and T. R. Gross, “Matching memory access patterns and data

placement for numa systems,” in International Symposium on Code

Generation and Optimization, 2012, pp. 230–241.
[20] T. Ogasawara, “Numa-aware memory manager with dominant-thread-

based copying gc,” in Conference on Object Oriented Programming

Systems, Languages and Applications, 2009, pp. 377–390.
[21] F. Broquedis, O. Aumage, B. Goglin, S. Thibault, P.-A. Wacrenier,

and R. Namyst, “Structuring the execution of openmp applications
for multicore architectures,” in International Parallel & Distributed

Processing Symposium. IEEE, 2010, pp. 1–10.
[22] W. Mi, X. Feng, J. Xue, and Y. Jia, “Software-hardware cooperative

dram bank partitioning for chip multiprocessors,” in Network and

Parallel Computing. Springer, 2010, pp. 329–343.


