Macroevolution of venom apparatus innovations in auger snails (Gastropoda; Conoidea; Terebridae)

Castelin M. 1, 2, 3, 4, Puillandre Nicolas ${ }^{4,5}$, Kantor Yu. I. ${ }^{6}$, Modica M. V. ${ }^{1,2,3}$, Terryn Y. ${ }^{7}$, Cruaud C. ${ }^{8}$, Bouchet P. ${ }^{9}$, Holford M. 1, 2,3

${ }^{1}$ CUNY Hunter Coll, New York, NY 10065 USA.
${ }^{2}$ CUNY, Grad Ctr, New York, NY 10016 USA.
${ }^{3}$ Amer Museum Nat Hist, New York, NY 10024 USA.
${ }^{4}$ Museum Natl Hist Nat, UMR 7138, Dept Systemat \& Evolut, F-75231 Paris, France.
${ }^{5}$ Atheris Labs, CH-1233 Bernex Geneva, Switzerland.
${ }^{6}$ Russian Acad Sci, AN Severtsov Inst Ecol \& Evolut, Moscow 119071, Russia.
${ }^{7}$ NaturalArt, B-9000 Ghent, Belgium.
${ }^{8}$ Ctr Natl Sequencage, GENOSCOPE, F-91057 Evry, France.
${ }^{9}$ Muséum National d'Histoire Naturelle, Departement Systematique et Evolution, 55, Rue Buffon, 75231
Paris, France

Corresponding authors : email addresses: magcastelin@mnhn.fr ; puillandre@mnhn.fr ; kantor@malaco-sevin.msk.ru ; mariavittoria.modica@uniroma1.it ; yves@naturalart.be ; cruaud@genoscope.cns.fr ; pbouchet@mnhn.fr ; mholford@hunter.cuny.edu

Abstract

: The Terebridae are a diverse family of tropical and subtropical marine gastropods that use a complex and modular venom apparatus to produce toxins that capture polychaete and enteropneust preys. The complexity of the terebrid venom apparatus suggests that venom apparatus development in the Terebridae could be linked to the diversification of the group and can be analyzed within a molecular phylogenetic scaffold to better understand terebrid evolution. Presented here is a molecular phylogeny of 89 terebrid species belonging to 12 of the 15 currently accepted genera, based on Bayesian inference and Maximum Likelihood analyses of amplicons of 3 mitochondrial (COI, 16S and 12S) and one nuclear (28S) genes. The evolution of the anatomy of the terebrid venom apparatus was assessed by mapping traits of six related characters: proboscis, venom gland, odontophore, accessory proboscis structure, radula, and salivary glands. A novel result concerning terebrid phylogeny was the discovery of a previously unrecognized lineage, which includes species of Euterebra and Duplicaria. The nonmonophyly of most terebrid genera analyzed indicates that the current genus-level classification of the group is plagued with homoplasy and requires further taxonomic investigations. Foregut anatomy in the family Terebridae reveals an inordinate diversity of features that covers the range of variability within the entire superfamily Conoidea, and that hypodermic radulae have likely evolved independently on at least three occasions. These findings illustrate that terebrid venom apparatus evolution is not perfunctory, and involves independent and numerous changes of central features in the foregut anatomy. The multiple emergence of hypodermic marginal radular teeth in terebrids are presumably associated with variable functionalities, suggesting that terebrids have adapted to dietary changes that may have resulted from

predator-prey relationships. The anatomical and phylogenetic results presented serve as a starting point to advance investigations about the role of predator-prey interactions in the diversification of the Terebridae and the impact on their peptide toxins, which are promising bioactive compounds for biomedical research and therapeutic drug development.

Graphical abstract

Highlights

- An expanded molecular phylogeny of venomous marine snails Terebridae is presented. Six characters associated with the venom apparatus are used to map terebrid evolution. Hypodermic teeth and other innovations have evolved on numerous occasions. Multiple radular origins may reflect variable functionalities associated to feeding. Terebrids may have adapted to dietary changes following predator-prey relationships.

Keywords : Character evolution, Key innovations, Predator-prey system, Radula, Teretoxins, Peptide toxins

1. Introduction

At the macroevolutionary level, it is hypothesized that the tempo of evolution can be viewed through the lens of key innovations (Sanderson and Donoghue, 1994). Key innovations are biological traits that promote lineage diversification (Heard and Hauser, 1995; Hodges and Arnold, 1995). The development of a venom apparatus in the marine gastropod superfamily Conoidea is a key innovation that can be used as an organizational framework to decipher the evolutionary history of this megadiverse group. Here the evolution of the venom apparatus in auger snails (Neogastropoda; Conoidea; Terebridae) is investigated using a molecular phylogenetic scaffold.

The Terebridae are a diverse family of medium to large-sized (mostly $15-150 \mathrm{~mm}$) marine gastropods distributed throughout most tropical and subtropical oceans. Terebrids use their venom apparatus to capture prey, and perhaps also to defeat competitors or predators (Olivera, 1997). Similar to the peptide toxins produced by cone snails (Neogastropoda; Conoidea; Conidae), the peptide toxins produced by terebrids, teretoxins, are promising bioactive compounds for biomedical research and therapeutic drug development (Puillandre and Holford, 2010). Peptide toxins from a venom source are of increasing interest in the pharmacological industry (Chin et al., 2006; Newman and Cragg, 2007; Butler, 2008; Casewell et al., 2009; Hong, 2011). As recently demonstrated (Fry et al., 2003; Modica and Holford, 2010; Puillandre et al., 2010; Saslis-Lagoudakis et al., 2011), understanding how the organisms that produce these toxins have emerged and evolved over time, may become central in the process of drug discovery. Specifically, in the case of the Terebridae, not all species have a venom apparatus, therefore identifying the lineages that have a venom apparatus is an effective route to peptide toxin characterization. Currently, the extent of species diversification of the Terebridae is largely underestimated and the evolutionary pathways explored by the terebrid groups, especially regarding the peptide toxins they produce, remains largely unknown.

Whether used for defense or attack, the diversity of toxins developed by venomous organisms is often attributed to the process of co-evolution in predator-prey relationships (Kordis and Gubensek, 2000; Lynch, 2007; Duda, 2008; Kozminsky-Atias et al., 2008; Barlow et al., 2009). Co-evolutionary predator-prey interactions may lead to the development of specialized adaptations in the predator that are followed by counteradaptations in the prey, which in turn can lead to further adaptations in the predator, and so on, as dictated by biotic, "Red Queen" (Van Valen, 1973) or abiotic, "Court Jester" (Barnosky, 2001) pressures. For example, numerous plants produce toxic secondary compounds that influence the behavior, growth, or survival of insects and other herbivores. In addition, herbivores have developed ways to detoxify, sequester, or render ineffective specific plant poisons (Laycock, 1978; Fowler, 1983; Zangerl et al., 2008). In snakes, it has been demonstrated that venom diversity may result by adaptation toward specific diets (Daltry et al., 1996; Wüster et al., 1999; Barlow et al., 2009). In parallel, some snake prey
have developed the ability to inhibit specific venom toxins (Heatwole and Poran, 1995; Biardi et al., 2005). By its indirect effect on fitness, the predator-prey arms race can represent a driving force of speciation and species diversification in both predators and preys populations. This is referred to as the "escalation/diversification hypothesis" (Ehrlich and Raven, 1964; but see also Berenbaum and Feeny, 1981; Berenbaum, 1983; Vermeij, 1993). Phylogenetic analyses can provide seminal evidence on rates and patterns of predation-traits evolution and species diversification (Farrell et al., 1991). However, the correlation between adaptative changes of predation- traits and species-diversification in predator-prey systems is difficult to study. Such a study requires a good understanding of the biology and the ecology of the species involved and necessitates a thorough taxonomic sampling of both predator and prey taxa. A good alternative, as attempted here with the Terebridae, is to obtain an exhaustive taxonomic sampling of one of the two taxa (predator or prey) and to study the traits or innovations that affect the ability to accomplish or avoid predation. Mapping these innovations on a phylogenetic tree then reveals patterns that may impact species diversification.

Understanding the evolutionary patterns of venom apparatus evolution in the Terebridae would significantly advance clarifying the phylogeny and systematics of the group, in addition to advancing the characterization of terebrid peptide toxins for biomedical applications. Recent molecular phylogenies (Holford et al., 2009a, 2009b; Puillandre et al., 2011) of the family Terebridae based on samples from Western and Eastern Pacific demonstrated the monophyly of terebrids relative to the other families of conoideans. Also illustrated in these phylogenetic studies is the existence of five distinctive clades, Pellifronia, Oxymeris [= Acus], Terebra, Hastula, and Myurella, numbered clades A to E, respectively, with clade A, containing the recently revised Pellifronia jungi (Terryn and Holford, 2008), as sister species of all the other terebrids. Previous molecular analyses combined with mapping of venom apparatus morphology also indicated that the Terebridae have lost the venom apparatus at least twice during their evolution (in clades B and E). However, these phylogenies were based on a limited number of species (~ 50 for the most complete, vs the \sim 400 currently described species), and sampling was limited to the Pacific Ocean. Additionally, only the presence and absence of the venom glands were studied, overlooking other morphological and anatomical innovations potentially linked to the evolution of terebrid predatory skills and toxin diversity. In contrast, the present expanded study of the molecular phylogeny of the family Terebridae almost doubles the number of species from 50 to 89 , including 12 out of the 15 accepted genera, almost triples the number of specimens, and increases the geographical area sampled by including the western Indian Ocean. The molecular phylogeny in this study is based on the three mitochondrial genes, COI, $12 \mathrm{~S}, 16 \mathrm{~S}$, previously used in conoidean phylogenies, with the addition of one nuclear gene, 28 S , shown to be useful in resolving relationships at the genus level in Conoidea and other gastropods (Williams and Ozawa, 2006; Puillandre et al., 2008). The analysis of the venom apparatus, previously reduced to the presence or absence of the venom gland, and thus underestimating the diversity of the evolutionary pathways the terebrids may have explored, is here extended to other anatomical features linked to the venom apparatus. The morphology of the radula, in particular, has been linked to prey capture, and consequently different radula types may correlate to innovations in predatory behavior, including venom evolution.

2. Material and methods

2.1. Taxon sampling

All the material studied herein was collected during several expeditions conducted by the Museum National d'Histoire Naturelle of Paris (MNHN), in partnership with Pro-Natura International (PNI), Instituto Español de Oceanografia (IOE), and Institut de Recherche pour
le Développement (IRD), the Natural History Museum of London (NHM), and the Smithonian Tropical Research Institute (STRI) (See Table 1 and acknowledgements). Samples include 406 specimens assigned to 89 species collected off New Caledonia (4 specimens), Philippine Islands (49), Vanuatu (115), Solomon Islands (12), Australia (4), the Coral Sea (4), Panama (50), Madagascar (87), Mozambique (75), Tahiti (4), New- Zealand (1) and Fiji (1) (Fig. 1). These samples originate from depths ranging from 0 m to $\sim 800 \mathrm{~m}$ (Table 1). In the field, all specimens were specifically fixed for molecular analysis. Living specimens were anesthetized using magnesium chloride $\left(\mathrm{MgCl}_{2}\right)$, a piece of tissue was cut from the head-foot, and fixed in 95% ethanol. Shells were kept intact for identification. Vouchers are deposited in MNHN. Taxonomy follows Terryn (2007), with updates in Terryn (2011) (Cinguloterebra synonymized with Triplostephanus, Impages with Hastula, and Acus and Perirhoe with Oxymeris). Three specimens of the family Turridae (putative sister-group of the Terebridae - Puillandre et al., 2011), Cochlespiridae (Conoidea) and Conidae (Conoidea) were used as closely related outgroups. Harpa kajiyamai, belonging to another neogastropod family (Harpidae), was used as a distant outgroup to root the tree.

2.2. PCR amplification and DNA sequencing

Total genomic DNA was extracted from muscle tissue using NucleoSpin ${ }^{\mathrm{R}} 96$ Tissues (Macherey- Nagel) and following the manufacturer's instructions. Fragments of the mitochondrial genes Cytochrome Oxidase I (COI), 16S rRNA and 12S rRNA as well as the nuclear 28S rRNA were amplified (Table 2). PCR reactions were performed in $25 \mu \mathrm{~L}$ final volume, containing approximately 3 ng template DNA, $1.5 \mathrm{mM} \mathrm{MgCl} 2,0.26 \mathrm{mM}$ of each nucleotide, $0.3 \mu \mathrm{M}$ of each primer, $5 \% \mathrm{DMSO}$ and 0.75 U of Taq Polymerase (Qbiogene). Amplification products were generated by an initial denaturation step of 4 min at $94^{\circ} \mathrm{C}$ followed by 35 cycles at $94^{\circ} \mathrm{C}$ for 40 s , annealing at $50^{\circ} \mathrm{C}$ for $\mathrm{COI}, 52^{\circ} \mathrm{C}$ for $28 \mathrm{~S}, 51^{\circ} \mathrm{C}$ for 12 S rRNA and 16 S rRNA for 40 s and by an extension at $72^{\circ} \mathrm{C}$ for 1 min . PCR products were purified using ExonucleaseI and Phosphatase and sequenced using BigDye Terminator V3.1 kit (Applied biosystem) and the AB3730XL sequencer. All genes were sequenced for both directions to confirm accuracy of each sequence. Chromatograms were edited using CodonCode Aligner version 3.7.1.1. All the sequences were deposited in GenBank and BOLD (Table 1).

2.3. Datasets

Six datasets were analyzed. The first three datasets were analyzed for all taxa listed in Table 1 and consisted of three independent gene analyses performed from COI, 16S and 12 S genes. The fourth dataset consisted of a combined data set of COI, 16 S , and 12 S and is referred to as CD1. To evaluate the robustness of the mitochondrial phylogeny, a fifth dataset corresponding to the nuclear 28 S gene set was built, with one representative for most of the species. This reduced dataset was then combined with the three mitochondrial genes and is referred to as CD2.

2.4. Phylogenetic analyses

Sequences were aligned for each gene independently using MUSCLE (Edgar, 2004). The accuracy of automatic alignments was confirmed by eye using BioEdit version 7.0.0.0 (Hall, 1999). Hyper-variable regions of 12 S and 16 S rRNA genes were excluded from further analyses to avoid ambiguities in the homology hypotheses. Best-fit substitution models were identified for each gene separately and for each combined dataset using Modelgenerator V. 85 (Keane et al., 2006). Best-scoring Maximum Likelihood (ML) trees were estimated using RaxML (Stamatakis, 2006) from 100 independant searches each starting from distinct random trees. Robustness of the nodes were assessed using the thorough bootstrapping algorithm (Felsenstein, 1985a) with 1000 replicates. Bayesian Analyses (BA) were performed running two parallel analyses in MrBayes (Huelsenbeck and Ronquist, 2001),
consisting each of eight Markov chains of 100,000,000 generations with a sampling frequency of one tree each ten thousand generations. The number of swaps chains was set to 5 , and the chain temperature at 0.02 . Convergence of each analysis was evaluated using Tracer 1.4.1 (Rambaut and Drummond, 2007) to check that ESS values were all greater than 200. A consensus tree was then calculated after omitting the first 25% trees as burn-in. For the treatment of combined data using ML and BA, the data were separated into six unlinked partitions: $16 \mathrm{~S}, 12 \mathrm{~S}, 28 \mathrm{~S}$ and the three codon positions of the COI gene. Analyses were performed on the Cipres Science Gateway (http://www.phylo.org/portal2), using the RAxML-HPC2 on TG tool for ML and the MrBayes on TG tool for BA.

2.5. Overview of Terebridae anatomy and foregut characters

Foregut anatomy was examined by dissecting sequenced specimens. The radulae were cleaned with diluted bleach (1 part of commercially available bleach to 3-4 parts of water), rinsed several times in distilled water, mounted on clear glass cover-slips and air-dried. The cover-slips were glued to stubs, coated with gold and examined by scanning electron microscopy. Terminology previously used for description of the foregut structures in Terebridae is rather inconsistent and confusing (Miller, 1970, 1975, 1979). Here the terminology of Taylor et al. (1993), which reflects the supposed homologies within the entire Conoidea was followed. Six characters of the foregut were examined and used for tracing evolutionary pathways on the molecular tree (Table 3):

Character 1-Proboscis (PR): 0 - absent, 1 - present. PR is very variable in length, from extremely short to very long. In long proboscises, walls often form telescopic folds, while the proboscis can be coiled within the rhynchodaeum. The proboscis contains the buccal tube, i.e., the portion of the alimentrary canal extending between the buccal cavity and the true mouth, which is situated at the distal end of the proboscis (Taylor et al., 1993). The buccal tube is absent only in those species where the proboscis is lost. All examined terebrid species possess a more or less long rhynchodeal introvert (also known as labial tube Miller, 1970). The length of the introvert correlates with the presence of the proboscis: in species without proboscis, the rhynchodeal introvert is much longer than in species with proboscis.

Character 2—Venom gland (VG): 0 - absent, 1 - present. VG, sometimes called venom duct, is an autapomorphy of Conoidea (Taylor et al., 1993); when present it always has a muscular bulb, also referred to as the venom bulb. The venom gland in Terebridae opens just posterior to the radular sac.

Character 3-Odontophore (OD): 0 - absent, 1 - present. OD, consisting of subradular cartilages and muscles, usually present in species having a radula with a strong subradular membrane. In Terebridae it can vary from being massive (e.g., Duplicaria bernardii) to being vestigial and hardly recognizable (e.g., Terebra succincta, clade E3).

Character 4-Accessory proboscis structure (APS): 0 - absent, 1 - present. APS is an extensible muscular structure that arises from the wall of the rhynchodaeum. It can be branching or club-shaped, distally papillated, or simple, stalk-shaped. A somewhat similar structure, named rhynchodeal outgrowth, is found in other Conoidea - Horaiclavidae and Zemacies (Borsoniidae) (Fedosov and Kantor, 2008).

Character 5—Radula (RadT): 0 - absent, 1 - consists of duplex marginal teeth, 2 consists of solid recurved marginal teeth, 3 - consists of flat marginal teeth, 4 - consists of semi-enrolled marginal teeth, 5 - consists of hypodermic marginal teeth. Radula in Terebridae consists only of a pair of marginal teeth per transverse row. The radula was
completely lost in several lineages, but when present the marginal teeth exhibit a range of morphological types, and five major types are here recognized: (1) Duplex teeth (Fig. 2 AC), consisting of a major element (limb), attached to the subradular membrane along most of its length, and an accessory limb, which is the thickened edge of the major element, usually somewhat elevated above the membrane. Here, the radula has about 20-25 rows of teeth; (2) Solid recurved teeth (Fig. 2 F-G) with a broad flatened base, which is attached to the relatively strong subradular membrane. In species with this type of teeth, the radula is short, with only 15-20 rows; (3) Flat and simple teeth (Fig. 2 D-E), attached by a narrow base to the subradular membrane. Two, not clearly delimitated, variants - broad triangular (Fig. 2E) and long irregular (Fig. 2D) - are coded as the same radular type in the analysis. The subradular membrane is usually very thin and fragile, and easily tears apart. Radulae with this type of teeth consist of 20 or more rows; (4) Semi-enrolled teeth with tooth edges overlaping at the base, forming a loosely enrolled tube, while closer to the tip the tooth is trough shape in section. Radulae with this type of teeth are very short, with only about 10 rows; (5) Hypodermic hollow teeth (Fig. 3 A-P), rather similar to the hypodermic teeth present in other Conoidea. Such teeth have a very broad basal opening of the tooth canal, with usually a reflected outward edge of the tooth, forming a collar-like structure; the apical opening can be unarmed or it can have small barb(s) or blade(s). The subradular membrane is usually very thin and vestigial. The number of rows of teeth varies from about 10 (Terebra jenningsi) to about 30 (Hastula hectica and H. penicillata).

Character 6—Salivary glands (SG): 0 - absent, 1 - present. SG can be paired, but are more often fused, bipartite with paired ducts. In some species, a single gland is present.

Accessory salivary gland(s) are present in different species of Terebridae, as well as in some other conoideans. They usually are very small and difficult to find by dissection, therefore not used in the analysis.

2.6. Evolution of the anatomy

A reduced dataset was built for the 46 species (including the four outgroups) for which anatomical data were available. To minimize the risk of undetected cryptic species, the dissected and sequenced specimens were the same in most cases. However, for Pellifronia jungi and Hastulopsis pseudopertusa (Table 3), sequences were not obtained from the dissected specimens, and a conspecific specimen was used. Four species, Oxymeris dimidiata, O. maculata, Terebra subulata and Hastula hectica, were dissected by YK and John D. Taylor using non-sequenced material, and conspecific specimens were used for sequencing. ML analyses were performed using the method described above. The evolution of the six characters listed in Table 3, and described in the anatomy overview above, was assessed with Mesquite V2.74 (Maddison and Maddison, 2009), using the option "tracing character history" and the parsimony ancestral reconstruction method. The characters PR (proboscis), VG (venom gland), OD (odontophore), and RadT (marginal radular teeth anatomy) were treated as ordered characters (using a stepmatrix), prohibiting some of the transformation sequences, in our case from absent to present, as reapparition of these features is highly unlikely. Other characters were treated as unordered. Additionally, Bayestraits (Pagel and Meade, 2006) was used to test if the evolution of foregut characters were correlated. As Bayestraits cannot compare characters with more than two states, the character $5(\operatorname{RadT})$ were recoded in two different characters, RadT1 and RadT2, with the states 0 "radula absent" and 1 "radula present" for RadT1, and states 0 "radula solid" and 1 "radula hypodermic" for RadT2. In the latter case, an absence of radula was coded as missing data. Independent and dependent models of Bayesdiscrete were compared. MCMC were run with default parameters, except for the number of generations, which were set to 2050000.

3. Results

3.1. Genetic diversity

Of the total of 406 samples of Terebridae used to reconstruct the molecular phylogeny of the family, 389 were sequenced for the COI gene, 400 for the 16 S gene, 369 for the 12 S gene and 63 for the 28 S gene. For COI, 658 bp were sequenced and no indels were found. After the alignments and the removal of ambiguously aligned sites, fragments of 591, 654 and 761 $b p$ in length were obtained for the $16 \mathrm{~S}, 12 \mathrm{~S}$ and 28 S genes, respectively. For the COI gene, 218 different haplotypes were found, displaying 121 polymorphic sites and 278 parsimony informative sites. For the 16 S gene, 162 different haplotypes were found, displaying 277 polymorphic sites and 235 parsimony informative sites. For the 12 S gene, 164 different haplotypes were found, displaying 412 polymorphic sites and 369 parsimony informative sites. Representatives of the mitochondrial diversity were also sequenced for the 28 S gene (62 specimens, including 2 outrgoups). Overall, the variability for the 28 S gene was less important than for the mitochondrial genes, with 127 polymorphic sites and 94 parsimony informative sites.

3.2. Phylogenetic analyses: single-gene data sets

Modelgenerator results indicated that GTR $+\mathrm{I}+\mathrm{G}$ model was the best-fit model of evolution for the four genes analyzed (COI: $I=0.47, a=0.55 ; 16 S: I=0.56, a=0.6 ; 12 S$: I $=0.3, a=0.6$ and $28 S: I=0.63, a=0.4)$. Parameters of the models were estimated during the maximum likelihood and bayesian analyses for both single-gene and concatenated datasets (see below). For each gene analyzed, no supported conflict was found between the different analyses. In each of the four single gene analyses, the consensus tree showed the Terebridae to be monophyletic however, the relationships within terebrids were generally poorly resolved, with few well-supported clades (Supplementary data 1-4). Therefore only the results obtained for the combined datasets CD1 and CD2 are presented.

3.3. Phylogenetic analyses: combined data set 1 (CD1)

The best-fit model of evolution was GTR $+\mathrm{I}+\mathrm{G}(\mathrm{I}=0.45, \mathrm{a}=0.59)$. Topologies derived from ML analyses of the combined data set 1 (CD1) were congruent with the topology derived from BA analyses. From these combined analyses, the Terebridae were found monophyletic, CD1, Posterior Probabilities PP $=0.99$, Bootstraps $\mathrm{B}=96 \%$ (Fig. 4). Within the Terebridae, the five major clades, Pellifronia, Oxymeris [= Acus], Terebra, Hastula and Myurella (clades A-E, respectively) previously identified in Holford et al. (2009a) were recovered. Each were still strongly supported ($\mathrm{PP}>0.90$, $\mathrm{B}>70 \%$), and the topological relationships among the clades were similar, e.g., clades $\mathrm{B}-\mathrm{E}$ were grouped together ($\mathrm{PP}=$ $0.99, \mathrm{~B}=90 \%$) (Fig. 4, and see Fig. 2 in Holford et al. (2009a). A sixth clade, hereafter designated as clade F , is novel in the molecular analysis and presented here for the first time. Intra-clade relationships for clades A-F are detailed in Figures 5 and 6, and some shells are illustrated for each clade in Figure 7. Clade F appeared to be the sister group to clades B-E, although the corresponding node is not supported ($\mathrm{PP}=0.93, \mathrm{~B}=46 \%$). It is comprised of six newly-sampled species, four from South Madagascar, one from Australia and one from New-Zealand. The species composition of clade A remained unchanged compared to Holford et al., 2009a and 2009b, still including a single species, and appearing to be the sister group to all the other clades (althgough without statistical support). A newly-sampled species from South Mozambique was added to clade B, now totalling eight species ($\mathrm{PP}=$ $0.99, B=100 \%)$. Three newly- sequenced species, one from South Madagascar, one from South Mozambique, and one from Philippines and the Solomon Islands, were added to clade C , now comprising nineteen species ($\mathrm{PP}=0.99, \mathrm{~B}=73 \%$). Clade D included eleven species, of which one species, sampled in Madagascar, was new to the taxon set ($\mathrm{PP}=1, \mathrm{~B}=100 \%$). Clade E contained five well-supported subclades (E1-E5), but the relationships among these
were in general poorly resolved. Clade $\mathrm{E} 1(\mathrm{PP}=1, \mathrm{~B}=96 \%)$ included eleven species of which one, from Vanuatu and Australia, was new to the taxon set. Two newly-sequenced species, one from New Caledonia and one from Vanuatu and South Madagascar, were added to the thirteen species previously included in clade $\mathrm{E} 2(\mathrm{PP}=1, \mathrm{~B}=97 \%)$. Clade E 3 ($\mathrm{PP}=$ $0.97, \mathrm{~B}=66 \%$) included five species of which two, from the Coral Sea and Solomon Islands respectively, were new to the taxon set. Clade $\mathrm{E} 4(\mathrm{PP}=1, \mathrm{~B}=75 \%)$ was new to the taxon set, with six species from Pacific Panama. Two newly-sampled species from Madagascar were added to clade E5, now comprising eight species ($\mathrm{PP}=1, \mathrm{~B}=94 \%$).

Molecular analyses highlighted several incongruencies at the genus and species levels. With the exception of three genera (Oxymeris - clade B, Pellifronia - clade A and Terenolla clade E1, the last two represented each by a single species), all the analyzed genera were found to be non-monophyletic. Clade B comprises eight species of the genus Oxymeris. As previously found (Holford et al., 2009a), clade C consists of 6 species of Triplostephanus and 13 of Terebra (s.s.), including Terebra subulata, the type species of Terebra. Clade D comprises eight species of Hastula and one Duplicaria. Clade E, the largest clade in terms of number of species, comprises primarily species of the genera Myurella, Clathroterebra, Terenolla, Hastulopsis, Strioterebrum, and the "Terebra" textilis-group (Terryn, 2007). However, as shown in Holford et al. (2009a), all these genera (except Terenolla) are polyphyletic, with species of each genus placed in several of the five clades E1-E5. Specifically, Myurella species were found in E1, E2, E3 and E5, Clathroterebra in E1 and E3, Hastulopsis in E1 and E5, Strioterebrum in E1 and E2, and species of Terebra (s.s.) are distributed in clades C, E2, E3, E4 and E5. Also, the addition of newly sampled species impacted the generic composition of clade E. For example, clade E2 now includes two species that were attributed to Duplicaria, D. baileyi and a new species D. sp3, and one species currently attributed to Triplostephanus. A newly sampled species, currently attributed to Hastulopsis (H. pseudopertusa), was included in clade E5. The new lineage, clade F, includes both Duplicaria and Euterebra species.

At species level, plumbeum, pertusa, strigilata, succincta and textilis each end up in two distinct clades, revealing cryptic species. The COI pairwise genetic distances (K2P) between the two clades were 9.6% for plumbeum, 9.9% for pertusa, 6.4% for strigilata, 12.47% for succincta and 7.73% for textilis. Fourteen different lineages (five in the genus Terebra, three in Strioterebrum, three in Duplicaria, and one each in Myurella, Triplostephanus and Hastula) were not identified to species level and may represent new species. Conversely, two specimens identified as Triplostephanus cumingii and Terebra punctatostriata (Clade C, Fig. 5) share almost identical sequences (no difference in the 16 S gene and only four mutations in the 12 S gene); revealing initial misidentification and/or synonymy of a species in the T. anilis complex.

3.4. Phylogenetic analyses: combined-gene data set 2 (CD2)

The best-fit model of evolution was GTR $+\mathrm{I}+\mathrm{G}(\mathrm{I}=0.58, a=0.55)$. The combined data set 2 (CD2) included 62 specimens for which at least two mitochondrial genes and the nuclear 28S gene were available. Topologies derived from both ML and BA analyses using CD2 were similar and consistent with the topology derived from analyses of the CD1 data set (Fig. 8). The family Terebridae was confirmed monophyletic ($\mathrm{PP}=1, \mathrm{~B}=89 \%$). The nine clades (A-D, E1, E2, E3, E5 and F) represented in this dataset were also strongly supported, for some of them with PP and/or B superior to the supports obtained in CD1 analysis. Relationships between and within the main clades are generally similar, except for some non-supported nodes. For example, clade A is sister-group to all the other terebrids in CD1, but in CD2 its position is inverted with clade F.

3.5. Evolution of foregut characters

Reconstruction of the evolution of the proboscis (character 1) clearly demonstrates that it was lost six times in Terebridae: in clades F, B, E1 (all species), and partially in clades E2, E4, and E5 (Fig. 9A). The venom gland (character 2) was lost eight times - in clades F, B, and E1 (all species), and partially in clades E2 (twice), E4 (twice), and E5 (Fig. 9B). In many lineages the odontophore (character 3) is completely absent (including all species having hypodermic marginal radular teeth) (Fig. 9C). Reconstruction of the presence of the odontophore showed that it was lost in most of the clades independently. It is present in clades A and F, and in some species of clades D, E3 and E2. It is vestigial, and hardly discernable in Hastula strigilata, to the extent that its presence was revealed only on serial histological sections (J.D.Taylor, personal communication). It is possible that a rudiment of the odontophore may be present in some other species of Hastula as well. Reconstruction of the presence of accessory proboscis structure (character 4) showed that it appeared independently in clades E1, E2, and E4 (Fig. 9D).

Reconstruction of the presence of the radula and of the morphology of marginal radular teeth (character 5) revealed a complicated evolutionary history of radular transformations (Fig. 9E). The radula was lost several times: in the entire clades B and E1, and in some species of clades E2 and E5. The most parsimonious ancestral state for the Terebridae radular teeth is the duplex type. Duplex teeth are variable in shape: in some species (Terebra succincta, clade E3, and Clathroterebra poppei - Figs. 2 B-C) the limb also has a thickened edge, while in Pellifronia jungi (Fig. 2A) the limb edge is not thickened. Analysis suggests that duplex teeth are the most parsimonious ancestral state for the entire clade E and that flat teeth originated from duplex ones in clade E2. Analysis was not able to resolve a single most parsimonious state for clade D , with duplex and semi-enrolled teeth being equally parsimonious. Solid recurved teeth appeared in the single clade F. Semi-enrolled teeth were found so far in a single of the species examined here, Hastula stylata (Fig. 3Q). Teeth of rather similar shape were recorded in Hastula bacillus (Taylor and Miller, 1990). Finally, hypodermic teeth appeared independently three times - in clade C, in clade D and in the single species, Myurella kilburni, from clade E5. However, the structure of the hypodermic teeth is slightly different in these three lineages. In the species belonging to clade C (Fig. 3A-G), the teeth are slender, have a constriction at the base, and usually a basal spur, i.e. an anterior projection on the base of the tooth. Another important character for the hypodermic radula of clade C is that the teeth are attached to the subradular membrane at their bases. In species of clade D (Hastula spp.), the hypodermic teeth are conical, without constriction at the base and without spur. Contrary to the species of clade C, the teeth are attached along most of their length to the subradular membrane. Species in clade D can have a barb or blade at the tip of the tooth. In Hastula hectica the walls of the tooth are penetrated by numerous holes as previously described (Imperial et al., 2007) (Fig. 3J). The only species in clade E5 with hypodermic teeth (Myurella kilburni) has teeth with a peculiar syringe-like shape, with very narrow, attenuated distal end (slightly less than half of tooth length) and broad and probably rather flacid basal part of the tooth. As the specimen examined was badly damaged, it was not possible to examine the radula of the single species of clade E4, Terebra elata, that possesses a venom gland, although the presence of a venom duct was noticed (Holford, personal observation) and the presence of a radula is highly probable.

Although found in several species, such as Triplostephanus fenestratus and Hastula hectica, the presence or absence of the accessory salivary glands cannot be confirmed without histological sections and therefore the character was excluded from the analysis. Reconstruction of the presence and absence of salivary glands (character 6) suggested independent loss in one species of clade B (Oxymeris felina), in most species of clade E1, in one species of clade E5 (Hastulopsis minipulchra) and one species of clade E2 (Duplicaria sp. 3) (Fig. 9F).

Bayestraits analyses revealed that the evolution of several characters is strongly correlated. As shown in Table 4, the results from Bayestraits analyses indicate that the evolution of the proboscis and the venom gland, of the proboscis and the radula (presence/absence), of the venom gland and the radula (presence/absence) and of the odontophore and the radula (solid/hypodermic) are all strongly correlated with bayes factors > 10. Additionally, the evolution of the proboscis and salivary glands, of the venom gland and the salivary glands, and of the radula (presence/absence) and the salivary gland are weakly correlated with bayes factors between 5 and 10 (Table 4).

4. Discussion

A robust phylogenetic context was used to both clarify the phylogenetic relationships of the Terebridae and to provide a framework to trace the evolution of several anatomical features linked to the venom apparatus, a key innovation of the Conoidea. The molecular phylogeny of the Terebridae presented here was based on an extended dataset compared to the previous large-scale phylogeny of the group (Holford et al., 2009a, 2009b; Puillandre et al., 2011), tripling the number of specimens, doubling the number of species to include twelve out of the fifteen accepted genera, extending the sampled diversity to the West-Indian Ocean, and including an additional nuclear gene that strengthened the initial phylogeny exclusively based on mitochondrial genes. Analysis of terebrid foregut anatomy for the characters related to the presence of a venom apparatus, namely proboscis, venom gland and radula, and other characters, such as odontophore, accessory proboscis structure and salivary glands, identified unexpected evolutionary traits within the Terebridae, with implications for the whole superfamily Conoidea. Summarized below are our findings on the taxonomy, venom apparatus evolution, and predator-prey and toxin relationships in the Terebridae.

4.1. Taxonomy

The phylogenetic trees in this analysis confirmed the monophyly of the family Terebridae (Holford et al., 2009a, 2009b) and the existence of five major clades previously identified as Pellifronia, Acus [now Oxymeris], Terebra, Hastula, and Myurella, clades A-E, respectively (Holford et al., 2009a). A novel result for terebrid molecular analysis is the discovery of a new lineage, Clade F, which includes Euterebra and Duplicaria species, and appears to be the sister group to Clades B-E.

Our results suggest that taxonomic diversity of the family Terebridae is still inadequately understood. In several cases molecular data suggest the existence of at least two distinct species within what has been identified as a single morphospecies. In three cases (S. plumbeum, H. pertusa and T. succincta), the two cryptic species identified morphologically as one, were collected sympatrically, i.e. co-occuring in the same region, and sometimes syntopically, i.e. co-occuring at the same sampling station. This is the case for H. pertusa with includes two molecular species sampled at the same station in Santo, Vanuatu. The detection of several new cryptic lineages emphasizes that species diversity in the family Terebridae may be underestimated. Additonally, among the ca. hundred species analyzed in this study, about twenty could not be attributed to a species name according to the taxonomic literature, suggesting that they could represent new species or nominal species currently treated as synonyms.

Increasing the geographic and species diversity of Terebridae analysed in the molecular tree demonstrates that the current genus-level classification of the group is not tenable. Most of the genera recognized in the last working identification guide of the family are nonmonophyletic (10 out of the 12 genera analyzed). For example, the genus Duplicaria, sampled for the first time in this study, represented by six species in our sampling, was found in three distinct clades (D, E2 and F). This was an unanticipated finding since

Duplicaria, which is characterized by a shell axially ribbed, and a well- marked suture doubled on the whorls by an axial sculpture on the subsutural band (Terryn, 2007), is widely accepted in the taxonomy community and was one of the unambiguous genera recognized by Bratcher and Cernhorsky (1987). Similar problems were observed for Terebra and Myurella, where species were found in five (C, E2-5) and three (E3-5) distinct clades, respectively (see also Clathroterebra, Hastulopsis, Strioterebrum, Triplostephanus - Figs. 5-6). These examples imply that shell morphology, used to describe the diversity of terebrids, can be misleading at both genus and species levels, and can lead to an incorrect classification of the family.

Despite the extensive sampling efforts deployed to complete the taxonomic coverage, our dataset is still not exhaustive. It covers less than one quarter of the species diversity of the family, with 100 analyzed species out of the ~ 400 currently accepted species (WORMS www.marinespecies.org), representing 12 out of the 15 currently accepted genera. Further sampling is needed to obtain the missing genera Granuliterebra, Microtrypetes and Pristiterebra. In addition, among the genera analyzed, numerous type-species are not represented. Considering that recent studies have shown that most terebrid genera are nonmonophyletic, it will also be essential to include the numerous synonymised genera. Although further taxonomic investigations are needed to stabilize the classification of the family, the phylogeny presented here provides a robust framework to analyze the evolution of several characters linked to the venom apparatus in the Terebridae.

4.2. Venom apparatus evolution

The formation of the venom gland and the appearance of the feeding mechanism of Conoidea was the initial key apomorphy of the group (Kantor and Puillandre, in press). The unique mechanism of prey envenomation is the most outstanding character of Conoidea and includes use of individual marginal radular teeth (detached from the subradular membrane) at the proboscis tip for stabbing and injecting neurotoxins into prey (Taylor et al., 1993). Teeth of very different morphologies, i.e. not only hypodermic, are used in a similar manner. This was observed directly (e.g., Kohn, 1956) and inferred from serial sectioning of different conoideans (Kantor and Taylor, 1991). Until recently, the Terebridae remained relatively poorly studied anatomically and existing data confirmed a great disparity of anatomy of the foregut, with loss of major organs, including proboscis, venom gland and radula in many species. Nevertheless, due to the absence of a robust phylogeny, the evolution of the foregut remained largely uncertain, and loss and apparition of novel features were considered ancedotal. The results from this study indicate that the evolution of the venom apparatus is not straightforward, as key features, together with the loss of various structures of the foregut anatomy, have arisen independently on at least three occasions within terebrids. These anatomical modifications appear to be the rule rather than the exception.

Terebridae were always treated as a major independent lineage of Conoidea until the recent molecular phylogeny of the Conoidea superfamily was published (Puillandre et al., 2011). The Conoidea molecular phylogeny suggests that Terebridae is a sister group of the family Turridae (s.s.), the component species of which can possess a venom gland, a radula with strong subradular membrane, and have duplex marginal teeth. The discovery of true duplex teeth, and flat teeth, their derivatives in Terebridae was thus quite unexpected. Prior to this study only two types of radula were known in Terebridae, solid recurved teeth and hypodermic teeth. Duplex teeth appeared to be the ancestral state for the entire family Terebridae and this is consistent with the Turridae and Terebridae being sister- groups. Clade A, represented at the moment only by Pellifronia jungi and likely the sister clade to all other terebrids, has similar radula to that of Turridae.

As suggested by the Bayestraits analyses, the reduction and losses of foregut characters in many lineages of the Terebridae are not casual and have a functional explanation. All species possessing a venom gland have a corresponding radula and proboscis, as the bayes factors >10 for these characters indicate (Table 4). This is explained by the peculiarities of conoidean feeding mechanism, where envenomation of the prey requires the aid of the tooth gripped at the proboscis tip and used for stabbing the prey, or channelling the toxins through the internal lumen of hypodermic teeth. Currently, feeding of radulate terebrids was observed only in different Hastula and Terebra species with hypodermic radular teeth (Marcus and Marcus, 1960; Miller, 1970, 1979; Taylor, 1990; Taylor and Miller, 1990). The observations established that these species fed in a similar manner to other conoideans, with the use of marginal teeth at the proboscis tip. The prey reported were various sedentary polychaetes, mostly spionids. A characteristic feature of terebrid feeding is the welldeveloped rhynchostomal introvert, which is playing an active role in capturing and engulfing the prey.

Analysis of the anatomical characters revealed that hypodermic teeth originated three times independently in Terebridae, in clades C, D, and in a single species from clade E5, Myurella kilburni. As detailed in the results section, the hypodermic teeth of these three groups appear to be rather different (Fig. 3). Independent apparitions of hypodermic teeth suggest increasing the effectiveness of prey envenomation. A very interesting peculiarity was found in Hastula cinerea and H. hectica, both in clade D, where in most of the specimens examined, a tooth was held at the proboscis tip even when the species was not feeding, concealed within the proboscis with its base resting on the large sphincter (Marcus and Marcus, 1960; Imperial et al., 2007). This can be explained by the presence of a relatively strong subradular membrane and tough attachment of the teeth to the membrane. In Hastula, because the teeth in the radular cecum are still attached to the membrane, they cannot be immediately used for stabbing prey when required. In the process of radular growth, the oldest part of the membrane, situated in the radular cecum, is permanently destroyed and the teeth are dislodged. When the tooth is separated from the membrane, it is transferred to the proboscis tip, where it is presumably held until it is used. This is also assumed for members of the other families of "turrids" that have a strong subradular membrane. In most turrid specimens examined, there was a tooth at the proboscis tip held by the sphincter(s) (Kantor and Taylor, 1991).

Although nothing is known on the feeding of species with duplex/flat teeth, it is reasonable to suppose that they are used on the proboscis tip in a manner similar to other conoideans with non- hypodermic teeth. In this respect it was interesting to find in Terebra textilis at the proboscis tip flat teeth very similar to those of Terebra trismacaria (Fig. 2D). A group of four teeth attached to the subradular membrane was found in the buccal tube somewhat posterior to the proboscis tip. It is obvious that in this case the teeth cannot be used separately for stabbing the prey, but the mechanism of transport of the teeth from radular sac to the proboscis tip persists in this species. A probable explanation in this case represents an intermediate stage of reduction of radulae and transition to feeding without use of marginal teeth at the proboscis tip.

An odontophore is present in species that have a more or less strong subradular membrane and non-hypodermic radular teeth (bayes factor >10, Table 4). It is large and powerful in species of clade F, Duplicaria and Euterebra, which lack proboscis and venom gland and therefore do not utilize teeth for stabbing and envenomation of the prey. A well-developed odontophore suggests that the radula is functioning as a whole organ only, probably for transferring the prey from rhynchodaeum to oesophagus. There is no observation on feeding of species of this clade and diet is known for only one species with similar anatomy, Terebra nassoides, feeding on capitellid polychaetes (Taylor, 1990). Similarly to species with
hypodermic radulae, an active role of the introvert in prey capture was also shown in Terebra gouldi, a species lacking venom apparatus, radula and proboscis. and that preys on the enteropneust Ptychodera flava, which is swallowed alive.

While reduction of the venom gland provides economy of energy that is otherwise used for producing toxins and constant formation of the radula, the rhynchostomal introvert, which is present and well-developed in all terebrids, may explain the numerous independent losses of the venom gland and associated organs. With the rhynchostomal introvert present, feeding becomes possible without stabbing and envenomation of the prey. In addition, the proboscis also becomes unnecessary, as its primary function, gripping the tooth, does not exist any more. The muscular buccal lip, which is well developed in radular-less species, serves for transferring the swallowed prey further into oesophagus. Although very little is known about diet of terebrids with such foregut anatomy, Miller (1975) suggested that they feed on different hemichordates. The family Raphitomidae is the only other taxon of Conoidea that possesses a developed rhynchostomal introvert. In that family numerous independent reductions and losses of the venom gland and radula were hypothesized (Kantor and Taylor, 2002). It was also suggested that these reductions were connected with the role of introvert in prey capture.

Bayestraits analysis revealed only weak correlations between presence of the salivary glands and proboscis, and of venom gland and presence/absence of radula (bayes factors between 6.68 and 8.38 , Table 4). The low bayes factors suggest that salivary glands are not directly involved in process of envenomation of the prey. It should be noted however, that the salivary glands of cone snail species Conus pulicarius contained peptide toxins when analysed by transcriptome data (Biggs et al., 2008). The functions of the accessory proboscis structure remain unclear as its presence is not correlated with other foregut structures. It was suggested that it has chemosensory functions (Taylor, 1990; Taylor and Miller, 1990). The present data supports the idea that the accessory proboscis structure is not used directly in feeding processes, but may be related to detection of the prey.

4.3. Predator-prey and toxins

Numerous terebrid lineages have lost the venom apparatus, and by contrast the lineages that kept it each developed novel anatomical features, such as hypodermic marginal radular teeth. The components of the venom apparatus, radular, venom duct, venom bulb, and proboscis, were thought to be so complicated that they certainly evolved once or twice. However, the Terebridae acquired or lost similar structure several times, resulting in an anatomy sometimes convergent with that of other conoideans. In the Terebridae alone, a remarkable finding is that the hypodermic teeth, in association with reduction of the odontophore, have likely evolved on multiple and independent occasions. Additionally, the detailed anatomy demonstrates not only different origins of the teeth but also suggests differences in functional use. Analysis of radular evolution in the entire Conoidea indicate that besides terebrids, hypodermic teeth appeared only once in a major clade that unites the families Conidae, Conorbidae, Borsoniidae, Clathurellidae, Mitromorphidae, Mangeliidae and Raphitomidae (Kantor and Puillandre, in press).

The diversity of foregut anatomy in the single family Terebridae is as large as in the whole superfamily Conoidea, which includes 14 other families. For example, all major types of conoidean radular marginal teeth were recorded in the Terebridae. From prototypic duplex teeth they evolved: solid recurved teeth, which appeared independently in some Pseudomelatomidae; flat teeth, which appeared from duplex in some Drilliidae; and hypodermic teeth, which appeared independently in common ancestor of a major clade of Conoidea (Bouchet et al., 2011; Kantor and Puillandre, in press). Moreover, the flat triangular teeth of some Terebridae are unique among Conoidea. The overview of the
foregut anatomy presented in this study revealed an inordinate diversity of features in the family Terebridae. These results suggest that predator-prey relationships have played an important role in the evolutionary history of Terebridae. Indeed, repeated innovations in the foregut anatomy of terebrids suggest that they adapted to different diets (e.g., depositfeeding or carnivorous polychaetes). To date, this hypothesis remains untested as the prey of most of the analyzed terebrid species are unknown. This could be analysed by direct observation, or by indirect approaches, such as DNA-barcoding of the gut contents (Garros et al., 2008; Oliverio et al., 2009) or analysis of stable isotopes composition (Fujikura et al., 2009).

Based on the hypothesis that the diversity of foregut structures in the Terebridae is linked to the diversity of feeding types and preys, it could also be argued that the species diversity of the Terebridae could be linked to the prey diversity, and thus to foregut anatomy. However, the results also illustrate that several species may share an apparently identical foregut structure, suggesting that the diversity of the foregut and the prey are not the only factor at the origin of the species diversity in the Terebridae and other features of the prey-capture system should be investigated e.g., reduced dispersion abilities and geographical isolation (Bouchet, 1981; Duda and Palumbi, 1999; Cunha et al., 2005; Meyer et al., 2005; Cunha et al., 2008; Castelin et al., 2010), or differential selection by abiotic factors such as depth (Chase et al., 1998; Quattro et al., 2001; Zardus et al., 2006). Given the rate of evolution of conopeptides in cone snails, it can be argued that various Terebridae species evolved different toxins as an answer, or a consequence, to prey adapation. Integrative approaches will be employed to complete the phylogeny of the Terebridae, identify their respective preys, and compare their foregut anatomy and the peptide toxins they produce. An integrated approach is not only a promising way to identify the factors that led to the diversification of the Terebridae and potentially the (co-)evolution of their prey, but is also a step forward in the characterization of novel terebrid toxins with novel function and potentially new therapeutic applications. Terebrids have clearly evolved different responses to the costs and benefits of having a venom apparatus under varying conditions. Using, for example, phylogenetic independent contrasts (Felsenstein, 1985b), the large-scale phylogeny presented here could assist in analysing the potential correlation between the anatomical innovations developed by the Terebridae and various biotic and abiotic parameters.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

In addition to the sources enumerated in Holford et al. (2009b), a large part of the material used in the present paper was collected in Mozambique and Madagascar in 2009-2010 during expeditions Mainbaza, Miriky and Atimo Vatae, a cluster of expeditions funded by the Total Foundation, Prince Albert II of Monaco Foundation, and Stavros Niarchos Foundation, and conducted by MNHN and Pro- Natura International (PNI) as part of their "Our Planet Reviewed' programme. The authors also thank Felix Rodriquez, Edwin Diaz, Trinidad Pardo, Moises Bernal, and the crew of the RV-Urraca with collection efforts in Panama. This work was supported by a grant from The Alfred P. Sloan Foundation (B2010-37), NSF (0940108), and NIH-NIGMS (GM088096) to MH; by the "Consortium National de Recherche en Génomique" and the "Service de Systématique Moléculaire" (UMS 2700 CNRS-MNHN) as part of agreement 2005/67 between Genoscope and MNHN for the project "Macrophylogeny of life" directed by Guillaume Lecointre; and by grant RFBR 11-04-01284 "Evolution of digestive system of carnivorous gastropods: testing of morphologically-based hypotheses by molecular data" (PI Yu. Kantor). NP was partly funded by CONCO, the cone snail genome project for health, funded by the European Commission: LIFESCIHEALTH-6 Integrated Project LSHB-CT-2007-037592. The phylogenetic analyses were performed on the Cipres Science Gateway. The authors want to thank Dr. John Taylor for sharing unpublished information on terebrid anatomy and providing material from Australia, and Barbara Buge and José Utge for processing and curation of the molecular collection. The authors thank Dr. Thomas F Duda, Jr. and Dr. Suzanne Williams for very constructive comments on the manuscript.

REFERENCES

Barlow A, Pook CE, Harrison RA, Wüster W. Coevolution of diet and prey-specific venom activity supports the role of selection in snake venom evolution. Proc. R. Soc. Biol. Sci. Ser. B. 2009; 276:2443-2449.
Barnosky AD. Distinguishing the effects of the Red Queen and Court Jester on Miocene mammal evolution in the northern Rocky Mountains. J. Vertebr. Paleontol. 2001; 21:172-185.
Berenbaum M. Coumarins and caterpillars: a case for coevolution. Evolution. 1983; 37:163-179.
Berenbaum M, Feeny P. Toxicity of angular furanocoumarins to swallowtail butterflies: escalation in a coevolutionary arms race? Science. 1981; 212:927-929. [PubMed: 17830190]
Biardi JE, Chien DC, Coss RG. California ground squirrel (Spermophilus beecheyi) defenses against rattlesnake venom digestive and hemostatic toxins. J. Chem. Ecol. 2005; 31:2501-2518. [PubMed: 16273425]
Biggs JS, Olivera BM, Kantor YI. [alpha]-Conopeptides specifically expressed in the salivary gland of Conus pulicarius. Toxicon. 2008; 52:101-105. [PubMed: 18625510]
Bouchet P. Evolution of larval development in eastern Atlantic Terebridae (Gastropoda), Neogene to Recent. Malacologia. 1981; 21:363-369.
Bouchet P, Kantor YI, Sysoev A, Puillandre N. A new operational classification of the Conoidea (Gastropoda). J. Molluscan Stud. 2011; 77:273-308.
Bratcher, T.; Cernohorsky, WO. Living terebras of the world: a monograph of the recent Terebridae of the world. American Malacologists; Melbourne: 1987.
Butler MS. Natural products to drugs: natural product-derived compounds in clinical trials. Nat. Prod. Rep. 2008; 25:475-516. [PubMed: 18497896]
Casewell N, Harrison R, Wüster W, Wagstaff S. Comparative venom gland transcriptome surveys of the saw-scaled vipers (Viperidae: Echis) reveal substantial intra-family gene diversity and novel venom transcripts. BMC Genomics. 2009; 10:564-576. [PubMed: 19948012]
Castelin M, Lambourdiere J, Boisselier C, Lozouet P, Couloux A, Cruaud C, Samadi S. Hidden diversity and endemism on seamounts: focus on poorly dispersive neogastropods. Biol. J. Linn. Soc. 2010; 100:420-438.
Chase MR, Etter RJ, Rex MA, Quattro JM. Bathymetric patterns of genetic variation in a deep-sea protobranch bivalve, Deminucula atacellana. Mar. Biol. 1998; 131:301-308.
Chin YW, Balunas MJ, Chai HB, Kinghorn AD. Drug discovery from natural sources. The AAPS Journal. 2006; 8:239-253.
Cunha RL, Castilho R, Rs ber L, Zardoya R. Patterns of cladogenesis in the venomous marine gastropod genus Conus from the Cape Verde Islands. Syst. Biol. 2005; 54:634-650. [PubMed: 16109706]
Cunha RL, Tenorio MJ, Afonso C, Castilho R, Zardoya R. Replaying the tape: recurring biogeographical patterns in Cape Verde Conus after 12 million years. Mol. Ecol. 2008; 17:885901. [PubMed: 18179424]

Daltry JC, Wüster W, Thorpe RS. Diet and snake venom evolution. Nature. 1996; 379:537-540. [PubMed: 8596631]
Duda TF. Differentiation of venoms of predatory marine gastropods: divergence of orthologous toxin genes of closely related Conus species with different dietary specializations. J. Mol. Evol. 2008; 67:315-321. [PubMed: 18696024]
Duda TF Jr. Palumbi SR. Molecular genetics of ecological diversification: duplication and rapid evolution of toxin genes of the venomous gastropod Conus. Proc. Natl. Acad. Sci. U. S. A. 1999; 96:6820-6823. [PubMed: 10359796]
Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research. 2004; 32:1792-1797. [PubMed: 15034147]
Ehrlich PR, Raven PH. Butterflies and plants: a study in coevolution. Evolution. 1964; 18:586-608.
Farrell BD, Dussourd DE, Mitter C. Escalation of plant defense: do latex and resin canals spur plant diversification? Am. Nat. 1991; 138:881-900.

Fedosov A, Kantor Y. Toxoglossan gastropods of the subfamily Crassispirinae (Turridae) lacking a radula, and a discussion of the status of the subfamily Zemaciinae. J. Molluscan Stud. 2008; 74:27.
Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution. 1985a; 39:783-791.
Felsenstein J. Phylogenies and the comparative method. Am. Nat. 1985b; 125:1-15.
Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol. Mar. Biol. Biotechnol. 1994; 3:294-299. [PubMed: 7881515]
Fowler M. Plant poisoning in free-living wild animals: a review. J. Wildl. Dis. 1983; 19:34-43. [PubMed: 6341628]
Fry BG, Wüster W, Kini RM, Brusic V, Khan A, Venkataraman D, Rooney AP. Molecular evolution and phylogeny of elapid snake venom three-finger toxins. J. Mol. Evol. 2003; 57:110-129. [PubMed: 12962311]
Fujikura K, Sasaki T, Yamanaka T, Yoshida T. Turrids whelk, Phymorhynchus buccinoides feeds on Bathymodiolus mussels at a seep site in Sagami Bay, Japan. Plank. Benth. Res. 2009; 4:23-30.
Garros C, Ngugi N, Githeko AE, Tuno N, Yan G. Gut content identification of larvae of the Anopheles gambiae complex in western Kenya using a barcoding approach. Mol. Ecol. Res. 2008; 8:512-518.
Hall TA. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl. Acid. S. 1999; 41:95-98.
Heard SB, Hauser DL. Key evolutionary innovations and their ecological mechanisms. Hist. Biol. 1995; 10:151-173.
Heatwole H, Poran NS. Resistances of sympatric and allopatric eels to sea snake venoms. Copeia. 1995; 1:136-147.

Hodges SA, Arnold ML. Spurring plant diversification: are floral nectar spurs a key innovation? Proc. Biol. Sci. 1995:343-348.

Holford M, Puillandre N, Modica M, Watkins M, Collin R, Bermingham E, Olivera B. Correlating molecular phylogeny with venom apparatus occurrence in Panamic auger snails (Terebridae). PLoS ONE. 2009a; 4:e7667. [PubMed: 19890382]
Holford M, Puillandre N, Terryn Y, Cruaud C, Olivera B, Bouchet P. Evolution of the Toxoglossa venom apparatus as inferred by molecular phylogeny of the Terebridae. Mol. Biol. Evol. 2009b; 26:15-25. [PubMed: 18840603]
Hong J. Role of natural product diversity in chemical biology. Curr. Opin. Chem. Biol. 2011; 15:350354. [PubMed: 21489856]

Huelsenbeck JP, Ronquist F. MrBayes: a program for the Bayesian inference of phylogeny. Bioinformatics. 2001; 17:754-755. [PubMed: 11524383]
Imperial JS, Kantor Y, Watkins M, Heralde FM Iii, Stevenson B, Chen P, Hansson K, Stenflo J, Ownby JP, Bouchet P. Venomous auger snail Hastula (Impages) hectica (Linnaeus, 1758): molecular phylogeny, foregut anatomy and comparative toxinology. J. Exp. Zool. B Mol. Dev. Evol. 2007; 308:744-756. [PubMed: 17886885]
Jovelin R, Justine J-L. Phylogenetic relationships within the Polyopisthocotylean monogeneans (Plathyhelminthes) inferred from partial 28S rDNA sequences. Int. J. Parasitol. 2001; 31:393-401. [PubMed: 11306118]
Kantor Y, Puillandre N. Evolution of the radular apparatus in Conoidea (Gastropoda: Neogastropoda) as inferred from a molecular phylogeny. Malacologia. in press.
Kantor YI, Taylor JD. Evolution of the toxoglossan feeding mechanism: new information on the use of the radula. J. Molluscan Stud. 1991; 57:129.
Kantor, YI.; Taylor, JD. Foregut anatomy and relationships of raphitomine gastropods (Gastropoda: Conoidea: Raphitominae). In: Oliverio, M.; Chemello, R., editors. Systematics, phylogeny and biology of the Neogastropoda. Bollettino Malacologico; Roma: 2002. p. 161-174.
Keane T, Creevey C, Pentony M, Naughton T, Mclnerney J. Assessment of methods for amino acid matrix selection and their use on empirical data shows that ad hoc assumptions for choice of matrix are not justified. BMC Evol. Biol. 2006; 6:29. [PubMed: 16563161]

Kohn AJ. Piscivorous gastropods of the genus Conus. Proc. Natl. Acad. Sci. U. S. A. 1956; 42:168171. [PubMed: 16589843]

Kordis D, Gubensek F. Adaptive evolution of animal toxin multigene families. Gene. 2000; 261:4352. [PubMed: 11164036]

Kozminsky-Atias A, Bar-Shalom A, Mishmar D, Zilberberg N. Assembling an arsenal, the scorpion way. BMC Evol. Biol. 2008; 8
Laycock W. Coevolution of poisonous plants and large herbivores on rangelands. J. Range Manag. 1978; 31:335-342.
Lynch V. Inventing an arsenal: adaptive evolution and neofunctionalization of snake venom phospholipase A2 genes. BMC Evol. Biol. 2007; 7:2. [PubMed: 17233905]
Maddison, WP.; Maddison, D. Mesquite: a modular system for evolutionary analysis. 2009.
Marcus, E.; Marcus, E. On Hastula cinerea. Boletim da Faculdade de Filosofía Ciencias e Letras. Universidade de Sao Paulo (Zoologia); 1960. p. 25-66.
Meyer CP, Geller JB, Paulay G. Fine scale endemism on coral reefs: archipelagic differentiation in Turbinid gastropods. Evolution. 2005; 59:113-125. [PubMed: 15792232]
Miller, B. Studies on the biology of Indo-Pacific Terebra (Ph. D. dissertation). University of New Hampshire; Durham: 1970.
Miller BA. The biology of Terebra gouldi Deshayes, 1859, and a discussion of life history similarities among other terebrids of similar proboscis type. Pac. Sci. 1975; 29:227-241.
Miller BA. The biology of Hastula inconstans (Hinds, 1844) and a discussion of life history similarities among other Hastulas of similar proboscis type. Pac. Sci. 1979; 33:289-306.
Modica, MV.; Holford, M. The Neogastropoda: evolutionary innovations of predatory marine snails with remarkable pharmacological potential. In: Pontarotti, P., editor. Evolutionary biology concepts, molecular and morphological evolution. Springer; Heidelberg: 2010. p. 249-270.
Newman DJ, Cragg GM. Natural products as sources of new drugs over the last 25 years. J. Nat. Prod. 2007; 70:461-477. [PubMed: 17309302]
Olivera BM. Conus venom peptides, receptor and ion channel targets and drug design: 50 million years of neuropharmacology (EE Just Lecture, 1996). Mol. Biol. Cell. 1997; 8:2101-2109. [PubMed: 9362055]
Oliverio M, Barco A, Modica M, Richter A, Mariottini P. Ecological barcoding of corallivory by second internal transcribed spacer sequences: hosts of coralliophiline gastropods detected by the cnidarian DNA in their stomach. Mol. Ecol. Res. 2009; 9:94-103.
Pagel M, Meade A. Bayesian analysis of correlated evolution of discrete characters by reversible-jump Markov chain Monte Carlo. Am. Nat. 2006; 167:808-825.
Palumbi, SR. Nucleic acids II: the polymerase chain reaction. In: Hillis, DM.; Mable, BK.; Moritz, C., editors. Molecular systematics. Sinauer Associates; Sunderland: 1996. p. 205-247.
Puillandre N, Holford M. The Terebridae and teretoxins: combining phylogeny and anatomy for concerted discovery of bioactive compounds. BMC Chem. Biol. 2010; 10:7. [PubMed: 20849634]
Puillandre N, Kantor YI, Sysoev A, Couloux A, Meyer C, Rawlings T, Todd J, Bouchet P. The dragon tamed? A molecular phylogeny of the Conoidea (Gastropoda). J. Molluscan Stud. 2011; 77:259272.

Puillandre N, Samadi S, Boisselier MC, Sysoev AV, Kantor YI, Cruaud C, Couloux A, Bouchet P. Starting to unravel the toxoglossan knot: molecular phylogeny of the "turrids"(Neogastropoda: Conoidea). Mol. Phylogenet. Evol. 2008; 47:1122-1134. [PubMed: 18180170]
Puillandre N, Sysoev A, Olivera B, Couloux A, Bouchet P. Loss of planktotrophy, fragmentation and speciation: the deep-water gastropod genus Bathytoma (Gastropoda, Conoidea) in the western Pacific. Syst. Biodivers. 2010; 8:371-394.
Quattro, Chase, Rex, Greig, Etter. Extreme mitochondrial DNA divergence within populations of the deep-sea gastropod Frigidoalvania brychia. Mar. Biol. 2001; 139:1107-1113.
Rambaut, A.; Drummond, AJ. Tracer. 2007.
Sanderson MJ, Donoghue MJ. Shifts in diversification rate with the origin of angiosperms. Science. 1994; 264:1590-1593. [PubMed: 17769604]

Saslis-Lagoudakis CH, Klitgaard BB, Forest F, Francis L, Savolainen V, Williamson EM, Hawkins JA. The use of phylogeny to interpret cross-cultural patterns in plant use and guide medicinal plant discovery: an example from Pterocarpus (Leguminosae). PloS One. 2011; 6:e22275. [PubMed: 21789247]
Stamatakis A. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics. 2006; 22:2688-2690. [PubMed: 16928733]
Taylor J. The anatomy of the foregut and relationships in the Terebridae. Malacologia. 1990; 32:1934.

Taylor J, Miller J. A new type of gastropod proboscis: The foregut of Hastula bacillus (Gastropoda: Terebridae). J. Zool. 1990; 220:603-617.
Taylor JD, Kantor YI, Sysoev AV. Foregut anatomy, feeding mechanisms, relationships and classification of the Conoidea (= Toxoglossa)(Gastropoda). Bull. Natl. Hist. Mus. Zool. Ser. 1993; 59:125-170.
Terryn, Y. A collectors guide to recent Terebridae (Mollusca: Neogastropoda). ConchBooks/Natural Art; Hackenheim: 2007.
Terryn, Y. Family Terebridae Mörch, 1852. In: Severns, M., editor. Shells of the Hawaiian Islands. The sea shells. Conchbooks; Hackenheim: 2011. p. 370-381.
Terryn Y, Holford M. The Terebridae of the Vanuatu archipelago with a revision of the genus Granuliterebra Oyama 1961. Visaya Supplement. 2008; 3:6-118.
Van Valen L. A new evolutionary law. Evol. Theor. 1973; 1:1-30.
Vermeij, GJ. Evolution and escalation: an ecological history of life. Princeton University Press; Princeton: 1993.
Williams ST, Ozawa T. Molecular phylogeny suggests polyphyly of both the turban shells (family Turbinidae) and the superfamily Trochoidea (Mollusca: Vetigastropoda). Mol. Phylogenet. Evol. 2006; 39:33-51. [PubMed: 16483804]
Wüster W, Daltry JC, Thorpe RS. Can diet explain intraspecific venom variation? Reply to Sasa. Toxicon. 1999; 37:253-258.
Zangerl A, Stanley M, Berenbaum M. Selection for chemical trait remixing in an invasive weed after reassociation with a coevolved specialist. Proc. Natl. Acad. Sci. 2008; 105:4547-4552. [PubMed: 18238901]
Zardus JD, Etter RJ, Chase MR, Rex MA, Boyle EE. Bathymetric and geographic population structure in the pan Atlantic deep sea bivalve Deminucula atacellana (Schenck, 1939). Mol. Ecol. 2006; 15:639-651. [PubMed: 16499691]

Highlights

An expanded molecular phylogeny of venomous marine snails Terebridae is presented. > Six characters associated with the venom apparatus are used to map terebrid evolution. > Hypodermic teeth and other innovations have likely evolved on multiple occasions. > Multiple radular origins may reflect variable functionalities associated to feeding. > Terebrids may have adapted to dietary changes following predator-prey relationships.

Figure 1.
Map showing localities sampled for Terebridae study. AU, Queensland, Australia; CH, Coral Sea; FI, Fiji; SMA, South Madagascar; MO, Mozambique; NMA, North Madagascar; NNC, North New Caledonia; PA, Pacific Panama; PH, Philippines; SNC, South New Caledonia; SO, Solomon Islands; TA, Tahiti; VA, Vanuatu.

Figure 2.
Flat (A-E) and solid recurved (F-G) teeth of Terebridae. A - Pellifronia jungi
(IM_2007_30591), ventral view of radular membrane, only half shown; B - Clathroterebra poppei (IM_2007_30546), ventral view of radular membrane; C - Terebra succincta (IM_2007_30582), separate marginal tooth; D - Terebra trismacaria (IM_2007_30579), ventral vies of radular membrane; E - Myurella lineaperlata (IM_2007_30635), group of teeth attached to the subradular membrane; F - Euterebra fuscolutea (IM_2009_10133), ventral view of radular membrane, only half shown; G - Duplicaria sp. 2 (IM_2009_10164), ventral view of radular membrane, only half shown. Scale bars - $10 \mu \mathrm{~m}$.

Figure 3.
Hypodermic (A-O) and semienrolled (Q) teeth in Terebridae. Clade C (A-G): A, B Terebra cingulifera (IM_2007_30382); C - Triplostephanus fenestratus (IM_2007_30418); D-E - Triplostephanus triseriatus (IM_2007_30404); F-G - Terebra guttata (IM_2007_30376);. Clade E5 (H-I) - Myurella kilburni (IM_2007_30461); Clade D (J-P): J- K - Hastula hectica, Philippines, Panglao Island; L - Hastula lanceata (IM_2007_30535); M-N - Hastula penicillata (IM_2007_30540), N - central part of the radular membrane; O-P - Hastula strigilata (IM_2007_30607); Q - Hastula stylata (IM_2009_10106). Scale bars: 50 $\mu \mathrm{m}$ (except E, G, $\mathrm{P}-10 \mu \mathrm{~m}$).

Figure 4.
Likelihood phylogenetic tree obtained with 410 specimen sequences for the COI, 12S and 16 S genes. Boostraps and Posterior Probabilities are indicated for each node (when $>\mathrm{B}=$ 70% and $>\mathrm{PP}=0.90$ respectively). The ten collapsed clades of Terebridae (A, B, C, D, E1, E2, E3, E4, E5 and F) are detailed on Figures 2-5.

Figure 5.
Likelihood phylogenetic tree for clades A, B, C, D, F. Boostraps and Posterior Probabilities are indicated for each node (when >70 and >0.90 respectively). For clarity purposes, intraspecific support values are not shown.

Figure 6.
Likelihood phylogenetic tree for the clades E1-E5. Boostraps and Posterior Probabilities are indicated for each node (when $\mathrm{B}>70 \%$ and $\mathrm{PP}>0.90$ respectively). For clarity purposes, intraspecific support values are not shown.

Figure 7.
Illustration of some specimens in each clade. From left to right: Clade A: Pellifronia jungi IM_2007_30539; Clade B: Oxymeris maculata IM_2007_30370, Oxymeris crenulata IM_2007_30377, Oxymeris dimidiata IM_2007_30379; Clade C: Terebra argus IM_2007_30383, Terebra guttata IM_2007_30387, Terebra funiculata IM_2007_30394, Triplostephanus fujitai IM_2007_30482, Terebra cingulifera IM_2007_30485, Terebra tricolor IM_2007_30493; Clade D: Hastula strigilata IM_2007_30416, Hastula hectica IM_2007_30426, Hastula albula IM_2007_30437; Clade E1: Terenolla pygmaea IM_2009_10121, Hastulopsis pertusa IM_2007_30388, Clathroterebra fortunei IM_2007_30391, Myurella affinis IM_2007_30415; Clade E2: Terebra fijiensis IM_2007_30423, Terebra succincta IM_2007_30433, Terebra textilis IM_2007_30451, Myurella lineaperlata IM_2007_30471, Duplicaria sp. 3 IM_2009_10151; Clade E3: Terebra succincta IM_2007_16731, Myurella orientalis IM_2007_30515; Clade E4: Terebra elata IM_2007_42111, Terebra larvaeformis IM_2007_42113, Terebra puncturosa IM_2007_42116, Terebra berryi IM_2007_42144; Clade E5: Myurella undulata IM_2007_30384, Myurella paucistriata IM_2007_30453, Terebra sp. 5 IM_2007_30946; Clade F: Euterebra fuscolutea IM_2009_10112, Duplicaria albofuscata IM_2009_10162

Figure 8.
Likelihood phylogenetic tree obtained with 63 specimens sequences for the COI, 12S, 16 S and 28 S genes.

Figure 9.
Character mapping of the six characters presented in the Table 2. Bootstraps are shown for each node.

MNHN Ids	Genus	species	Country	Coordinates; depth (m)	Clade	BOLD ID	Genbank COI	GenBank 12S	GenBank 16S	GenBank 28s
IM_2007_30391	Clathroterebra	fortunei	Solomon Islands	$7^{\circ} 5^{\prime} \mathrm{S}, 157^{\circ} 33^{\prime} \mathrm{E}, 260$	E1	CONO381-08	EU685535	EU685384	EU685675	
IM_2007_30401	Clathroterebra	fortunei	Prilippines	$9^{\circ} 39^{\prime} \mathrm{N}, 123^{\circ} 48^{\prime} \mathrm{E}$; 255-268	E1	CONO284-08	EU685526	EU685371	EU685663	
IM_2007_30581	Clathroterebra	fortunei	Philippines	$9^{\circ} 39^{\prime} \mathrm{N}, 123^{\circ} 48^{\prime} \mathrm{E}$; $255-268$	E1	xxx	xxx	xxx		
IM_2009_9971	Clathroterebra	fortunei	Mozambique	$25^{\circ} 33^{\prime} \mathrm{S}$, $33^{\circ}{ }^{1} 3^{\prime} \mathrm{E}$; 253-262	E1	xxx	xxx	xxx	xxx	
IM_2007_30455	Clathroterebra	poppei	Philippines	$9^{9} 36.4^{\prime} \mathrm{N}, 123^{\circ} 5.8^{\prime} \mathrm{E}$; $60-62$	E3	CONO266-08	EU685523	EU685368	EU685660	xxx
IM_2007_30546	Clathroterebra	poppei	Vanuatu	$15^{\circ} 36^{\prime} \mathrm{S}, 167^{\circ} 03^{\prime} \mathrm{E}$; $86-118$	E3	CONO482-08	EU685596	EU685455	EU685748	
IM_2009_10162	Duplicaria	albofiscata	South Madagascar	$25^{\circ} 03.7-8^{\prime} \mathrm{S}$, $46^{\circ} 57.7{ }^{\prime} \mathrm{E}$; 3-4	F	xxx	xxx		xxx	xxx
IM_2009_10163	Duplicaria	albofuscata	South Madagascar	$25^{\circ} 03.7-8^{\prime} \mathrm{S}, 46^{\circ} 57.7{ }^{\prime} \mathrm{E} ; 3-4$	F	xxx	xxx		xxx	
IM_2009_9973	Duplicaria	baileyi	South New-Caledonia	$22^{\circ} 06^{\prime}$ S, $167^{\circ} 03^{\prime} \mathrm{E}$; $190-200$	E2	xxx	xxx	xxx	xxx	xxx
IM_2009_9977	Duplicaria	baileyi	South New-Caledonia		E2	xxx	xxx	xxx	xxx	
IM_2009_10908	Duplicaria	bernardi	Australia	$26^{\circ} 56^{\prime} 607^{\prime \prime} \mathrm{S}, 153^{\circ} 23^{\prime} 813^{\prime \prime} \mathrm{E}, 40$	F	xxx	xxx		xxx	xxx
IM_2009_9951	Duplicaria	raphanula	North Madagascar	$14^{\circ} 1^{\prime} \mathrm{S}$, $47^{\circ} 25^{\prime} \mathrm{E}$; $50-107$	D	xxx	xxx	xxx		
IM_2009_9952	Duplicaria	raphanula	North Madagascar	$14^{\circ} 1^{\prime} \mathrm{S}$, $47^{7} 25^{\prime} \mathrm{E}$; 50-107	D	xxx	xxx	xxx	xxx	xxx
IM_2009_10111	Duplicaria	sp. 1	South Madagascar		F	xxx	xxx		xxx	xxx
IM_2009_10117	Duplicaria	sp. 1	South Madagascar	$25^{\circ} 04.47^{\prime} \mathrm{S}, 46^{\circ} 5.5 .-56.3^{\prime} \mathrm{E} ; 19-$	F	xxx	xxx		xxx	
IM_2009_10113	Duplicaria	sp. 2	South Madagascar	$25^{\circ} 03.7-8^{\prime}$ S, 46 ${ }^{\circ} 57.6-7^{\prime}$ E; 2-7	F	xxx	xxx		xxx	
IM_2009_10164	Duplicaria	sp. 2	South Madagascar	$25^{\circ} 03.7-8^{\prime} \mathrm{S}$, $46^{\circ} 57.6 .67^{\prime} \mathrm{E} ; 2-7$	F	xxx	xxx		xxx	xxx
IM_2007_30432	Duplicaria	sp. 3	Vanuatu	$15^{\circ} 35.4^{\prime} \mathrm{S}$, 166 ${ }^{\circ} 58.7^{\prime} \mathrm{E}$; 3-8	E2	xxx	xxx	xxx	xxx	
IM_2007_30466	Duplicaria	sp. 3	Vanuatu	$15^{5} 35.4{ }^{\prime} \mathrm{S}$, $166^{\circ} 58.7^{\prime} \mathrm{E}$; 3-8	E2	xxx	xxx	xxx		
IM_2009_10122	Duplicaria	sp. 3	South Madagascar	25926.1-4's, 44 ${ }^{\circ} 55.2-6^{\prime} \mathrm{E}$; 17-20	E2	xxx	xxx	xxx	xxx	xxx
IM_2009_10123	Duplicaria	sp. 3	South Madagascar	25 ${ }^{\circ} 25.80-8^{\prime} \mathrm{S}$, 44955.7-8'E; 11-13	E2	xxx	xxx	xxx	xxx	
IM_2009_10124	Duplicaria	sp. 3	South Madagascar	25 ${ }^{\circ} 24.1-2^{\prime}$ S, $44^{\circ} 51.1-7^{\prime} \mathrm{E}$; $24-26$	E2	xxx	xxx	xxx	xxx	
IM_2009_10125	Duplicaria	sp. 3	South Madagascar		E2	xxx	xxx	xxx	xxx	
IM_2009_10126	Duplicaria	sp. 3	South Madagascar	25924.1-2'S, 44 ${ }^{\circ} 51.1-7^{\prime} \mathrm{E}$; $24-26$	E2	xxx	xxx	xxx	xxx	
IM_2009_10134	Duplicaria	sp. 3	South Madagascar	$25^{\circ} 25.9^{\prime} \mathrm{S}$, 44055.1-2'E; 18-20	E2	xxx	xxx	xxx	xxx	
IM_2009_10136	Duplicaria	sp. 3	South Madagascar	25 ${ }^{\circ} 26.1$ 1-4'S, $44^{4} 555.2-6^{\prime}$ E; $17-20$	E2	xxx	xxx	xxx	xxx	
IM_2009_10137	Duplicaria	sp. 3	South Madagascar	25 ${ }^{\circ} 25.80-8^{\prime}$ S, 44955.7-8' E ; 11-13	E2	xxx	xxx	xxx	xxx	

ıd!̣อsnuew doułn \forall Vd-HIN							ıd!̣Osnuew routn \forall ¢d-HIN			
MNHN Ids	Genus	species	Country	Coordinates; depth (m)	Clade	BOLD ID	Genbank COI	GenBank 12S	GenBank 16S	GenBank 28S
IM_2009_10138	Duplicaria	sp. 3	South Madagascar	$25^{\circ} 23.1-2^{\prime} \mathrm{S}, 44^{\circ} 51.4-6^{\prime} \mathrm{E}$; 20-23	E2	XxX	XxX	XXX	XXXe	
IM_2009_10139	Duplicaria	sp. 3	South Madagascar	$25^{\circ} 24.1-2^{\prime} \mathrm{S}, 44^{\circ} 51.1-7^{\prime} \mathrm{E} ; 24-26$	E2	xxx	xxx	xxx	xxx	
IM_2009_10140	Duplicaria	sp. 3	South Madagascar	$25^{\circ} 23.6-7^{\prime} \mathrm{S}, 44^{\circ} 53.3-5^{\prime} \mathrm{E}$; $10-12$	E2	xxx	xxx	xxx	xxx	
IM_2009_10141	Duplicaria	sp. 3	South Madagascar	$25^{\circ} 24.1-2^{\prime} \mathrm{S}, 44^{\circ} 51.1-7^{\prime} \mathrm{E}$; $24-26$	E2	xxx	xxx	xxx	xxx	
IM_2009_10142	Duplicaria	sp. 3	South Madagascar	$25^{\circ} 24.1-2^{\prime} \mathrm{S}, 44^{\circ} 51.1-7^{\prime} \mathrm{E}$; $24-26$	E2	Xxx	XxX	XxX	xxx	
IM_2009_10145	Duplicaria	sp. 3	South Madagascar	$25^{\circ} 24.1-2^{\prime} \mathrm{S}$, 44*51.1-7'E; 24-26	E2	XxX	XXX	XxX	XxX	
IM_2009_10146	Duplicaria	sp. 3	South Madagascar	$25^{\circ} 26.1-4^{\prime} \mathrm{S}, 44^{\circ} 55.2-6^{\prime} \mathrm{E}$; 17-20	E2	XxX	XXX	XxX	XXX	
IM_2009_10148	Duplicaria	sp. 3	South Madagascar	$25^{\circ} 26.7^{\prime} \mathrm{S}$, $44^{\circ} 55.8^{\prime}$ E; 15	E2	XxX	XxX	XXX	xxx	
IM_2009_10149	Duplicaria	sp. 3	South Madagascar	$25^{\circ} 26.7^{\prime} \mathrm{S}$, $44^{\circ} 55.8^{\prime}$ E; 15	E2	xxx	xxx	xxx	xxx	
IM_2009_10150	Duplicaria	sp. 3	South Madagascar	$25^{\circ} 26.7^{\prime} \mathrm{S}, 44^{\circ} 55.8^{\prime} \mathrm{E} ; 15$	E2	XxX	XXX	XxX	Xxx	
IM_2009_10151	Duplicaria	sp. 3	South Madagascar	$25^{\circ} 24.1-2^{\prime}$ ', 44 ${ }^{\circ} 51.1-7^{\prime} \mathrm{E}$; $24-26$	E2	XxX	XXX	XxX	Xxx	
IM_2009_10152	Duplicaria	sp. 3	South Madagascar	$25^{\circ} 24.1-2^{\prime} \mathrm{S}, 44^{\circ} 51.1-7^{\prime} \mathrm{E}$; $24-26$	E2	XxX	XXX	XxX	Xxx	
IM_2009_10153	Duplicaria	sp. 3	South Madagascar	$25^{\circ} 24.1-2^{\prime} \mathrm{S}$, 44051.1-7'E; $24-26$	E2	XXX	XXX	XXX	XXX	
IM_2009_10154	Duplicaria	sp. 3	South Madagascar		E2	xxx	XxX	xxx	xxx	
IM_2009_10155	Duplicaria	sp. 3	South Madagascar	$25^{\circ} 25.80-8^{\prime} \mathrm{S}, 44^{\circ} 55.7-8^{\prime} \mathrm{E}$; 11-13	E2	XXX	XXX	XxX	xxx	
IM_2009_10156	Duplicaria	sp. 3	South Madagascar	$25^{\circ} 25.80-8^{\prime}$ S, 44 ${ }^{\circ} 55.7-8^{\prime} \mathrm{E}$; 11-13	E2	XxX	XXX	XxX	XxX	
IM_2009_10159	Duplicaria	sp. 3	South Madagascar	$25^{\circ} 25.80-8^{\prime}$ S, 44 ${ }^{\circ} 55.7-8^{\prime} \mathrm{E}$; 11-13	E2	XxX	XXX	XxX	Xxx	
IM_2009_10160	Duplicaria	sp. 3	South Madagascar	$25^{\circ} 26.1-4^{\prime} \mathrm{S}, 44^{\circ} 55.2-6^{\prime} \mathrm{E}$; 17-20	E2	XXX	XXX	XxX	Xxx	
IM_2009_10112	Euterebra	fuscolutea	South Madagascar	$\begin{gathered} 25^{\circ} 04.4-7^{\prime} \mathrm{S}, 46^{\circ} 55.3-56.3^{\prime} \mathrm{E} ; \\ 26 \end{gathered}$	F	XXX	XXX		XXX	XXX
IM_2009_10114	Euterebra	fuscolutea	South Madagascar	$25^{\circ} 03.7{ }^{\prime} \mathrm{S}, 46^{\circ} 57.8^{\prime} \mathrm{E} ; 7$	F	XxX	XxX		XxX	
IM_2009_10127	Euterebra	fuscolutea	South Madagascar	$25^{\circ} 26.0-1^{\prime} \mathrm{S}, 44^{\circ} 54.2-9^{\prime} \mathrm{E}$; 21-24	F	XxX	XXX		XxX	
IM_2009_10133	Euterebra	fuscolutea	South Madagascar	$25^{\circ} 26.8^{\prime} \mathrm{S}, 44^{\circ} 54.9{ }^{\prime} \mathrm{E} ; 27$	F	XxX	XxX		Xxx	
IM_2009_10147	Euterebra	fuscolutea	South Madagascar	$25^{\circ} 25.9^{\prime} \mathrm{S}, 44^{\circ} 55.1-2^{\prime} \mathrm{E} ; 18-20$	F	XXX	XXX		Xxx	
Museum of New Zealand	Euterebra	tristis	New-Zealand	$35^{\circ} 13.20^{\prime} \mathrm{S}, 174^{\circ} 14,30^{\prime} \mathrm{E}, 2-8$	F			HQ401611	HQ401677	
IM_2007_30437	Hastula	albula	Vanuatu	$15^{\circ} 26.6^{\prime} \mathrm{S}, 167^{\circ} 15.2^{\prime} \mathrm{E}$;	D	CONO477-08	EU685592		EU685743	
IM_2007_30438	Hastula	albula	Vanuatu	$15^{\circ} 26.6^{\prime} \mathrm{S}, 167^{\circ} 15.2^{\prime} \mathrm{E}$;	D	CONO478-08	EU685593	EU685451	EU685744	$\mathbf{x x x}$
IM_2007_30457	Hastula	albula	Vanuatu	$15^{\circ} 22.6^{\prime} \mathrm{S}, 167^{\circ} 11.6^{\prime} \mathrm{E}$;	D	CONO501-08	EU685612	EU685471	EU685764	
IM_2007_30630	Hastula	albula	Vanuatu	$15^{\circ} 35.7^{\prime}$ S, 166059.3'E; 12	D	CONO511-08	EU685620	EU685480	EU685773	
IM_2009_7100	Hastula	albula	Mozambique	$25^{\circ} 59.0^{\prime} \mathrm{S}, 32^{\circ} 54.5^{\prime} \mathrm{E} ; 0$	D	$\mathbf{x x x}$	$\mathbf{x x x}$	$\mathbf{x x X}$	$\mathbf{x x x}$	
IM_2009_7101	Hastula	albula	Mozambique	$25^{\circ} 59.0{ }^{\prime} \mathrm{S}, 32^{\circ} 54.5^{\prime} \mathrm{E} ; 0$	D	XxX	XxX	XxX	XxX	

MNHN Ids	Genus	species	Country	Coordinates; depth (m)	Clade	BOLD ID	Genbank COI	GenBank 12S	GenBank 16S	GenBank 28S
IM_2009_7102	Hastula	albula	Mozambique	$25^{\circ} 59.0^{\prime} \mathrm{S}, 32^{\circ} 54.5^{\prime} \mathrm{E} ; 0$	D	XxX	XXX	XXX		
IM_2009_7103	Hastula	albula	Mozambique	$25^{\circ} 59.0^{\prime} \mathrm{S}, 32^{\circ} 54.5^{\prime} \mathrm{E} ; 0$	D	Xxx	XXX		XXX	
IM_2007_30407	Hastula	hectica	Philippines	$07^{\circ} 38,5^{\prime} \mathrm{N}, 008^{\circ} 25,1^{\prime} \mathrm{W}$; 883	D	CONO260-08	EU685518	EU685363	EU685655	XxX
IM_2007_30426	Hastula	hectica	Vanuatu	$15^{\circ} 35.4^{\prime}$ S, $166^{\circ} 58.7^{\prime} \mathrm{E}$; 3-8	D	CONO498-08	EU685610	EU685469	EU685762	
IM_2009_10104	Hastula	hectica	South Madagascar	$25^{\circ} 08.9{ }^{\prime} \mathrm{S}, 46^{\circ} 45.4{ }^{\prime} \mathrm{E} ; 0-1$	D	$\mathbf{x x x}$	$\mathbf{x x x}$	$\mathbf{x x x}$	XxX	
IM_2009_11872	Hastula	hectica	Tahiti	$17^{\circ} 30^{\prime} 28.28^{\prime \prime} \mathrm{S}, 149^{\circ} 27^{\prime} 0.14{ }^{\prime \prime} \mathrm{W} ; 0$	D	Xxx	XxX		xxx	
IM_2009_11873	Hastula	hectica	Tahiti	$17^{\circ} 30^{\prime} 28.28^{\prime \prime} \mathrm{S}, 149^{\circ} 27^{\prime} 0.14 \mathrm{~W}$ W; 0	D	xxx	XxX		xxx	
IM_2009_11874	Hastula	hectica	Tahiti	$17^{\circ} 30^{\prime} 28.28^{\prime \prime} \mathrm{S}, 149^{\circ} 27^{\prime} 0.14{ }^{\prime \prime} \mathrm{W} ; 0$	D	xxx	xxx		xxx	
IM_2009_11875	Hastula	hectica	Tahiti	$17^{\circ} 30^{\prime} 28.28^{\prime \prime} \mathrm{S}, 149^{\circ} 27^{\prime} 0.14{ }^{\prime \prime} \mathrm{W} ; 0$	D	$\mathbf{x x x}$	$\mathbf{x X X}$		XxX	
IM_2007_30535	Hastula	lanceata	Philippines	$9^{\circ} 33.0^{\prime} \mathrm{N}, 123^{\circ} 46.5^{\prime} \mathrm{E}$; 8-14	D	CONO203-08	EU685495		EU685631	$\mathbf{x x x}$
IM_2009_7089	Hastula	lanceata	Mozambique	$25^{\circ} 59.0{ }^{\prime} \mathrm{S}, 32^{\circ} 54.5^{\prime} \mathrm{E} ; 0$	D	XxX	$\mathbf{x x x}$	Xxx	Xxx	
IM_2009_7090	Hastula	lanceata	Mozambique	$25^{\circ} 59.0{ }^{\prime} \mathrm{S}, 32^{\circ} 54.5^{\prime} \mathrm{E} ; 0$	D	XXX	XxX	XXX	XXX	
IM_2009_7091	Hastula	lanceata	Mozambique	$25^{\circ} 59.0^{\prime} \mathrm{S}, 32^{\circ} 54.5^{\prime} \mathrm{E} ; 0$	D	$\mathbf{x x x}$	XxX	XxX	$\mathbf{x x x}$	
IM_2007_30540	Hastula	penicillata	Vanuatu	$15^{\circ} 22.6{ }^{\prime} \mathrm{S}, 167^{\circ} 11.6^{\prime} \mathrm{E}$;	D	CONO503-08	EU685614	EU685473	EU685766	
IM_2007_30542	Hastula	penicillata	Vanuatu	$15^{\circ} 22.6{ }^{\prime}$ S, $167^{\circ} 11.6^{\prime} \mathrm{E}$;	D	CONO502-08	EU685613	EU685472	EU685765	$\mathbf{x x x}$
IM_2007_30417	Hastula	solida	Vanuatu	$15^{\circ} 26.6$ 'S, $167^{\circ} 15.2^{\prime} \mathrm{E}$;	D	$\mathbf{x x x}$	XXX	EU685450	EU685742	
IM_2007_30549	Hastula	solida	Vanuatu	$15^{\circ} 26.6^{\prime} \mathrm{S}, 167^{\circ} 15.2^{\prime} \mathrm{E}$;	D	xxx		EU685449	EU685741	
IM_2007_30550	Hastula	solida	Vanuatu	$15^{\circ} 26.6{ }^{\prime} \mathrm{S}, 167^{\circ} 15.2^{\prime} \mathrm{E}$;	D	CONO476-08	EU685591	EU685448	EU685740	
IM_2009_7096	Hastula	solida	Mozambique	$25^{\circ} 59.0^{\prime} \mathrm{S}, 32^{\circ} 54.5^{\prime} \mathrm{E} ; 0$	D	XXX	XXX	XXX	XXX	
IM_2009_7097	Hastula	solida	Mozambique	$25^{\circ} 59.0{ }^{\prime} \mathrm{S}$, $32^{\circ} 54.5^{\prime} \mathrm{E} ; 0$	D	XXX	XxX	XxX	Xxx	$\mathbf{x x x}$
IM_2009_7098	Hastula	solida	Mozambique	$25^{\circ} 59.0{ }^{\prime} \mathrm{S}, 32^{\circ} 54.5^{\prime} \mathrm{E} ; 0$	D	XxX		XXX	XXX	
IM_2009_7099	Hastula	solida	Mozambique	$25^{\circ} 59.0{ }^{\prime} \mathrm{S}$, $32^{\circ} 54.5^{\prime} \mathrm{E} ; 0$	D	XXX		XXX	XXX	
IM_2009_10110	Hastula	sp.	South Madagascar	$25^{\circ} 03.7{ }^{\prime} \mathrm{S}$, $46^{\circ} 57.8^{\prime} \mathrm{E} ; 7$	D	XxX		XxX	XXX	
IM_2007_30416	Hastula	strigilata	Vanuatu	$15^{\circ} 35.22^{\prime}$ S, 167 ${ }^{\circ} 59.4{ }^{\prime} \mathrm{E}$;	D	$\mathbf{X X X}$	XXX	EU685435	EU685727	
IM_2007_30420	Hastula	strigilata	Vanuatu	$15^{\circ} 35.22^{\prime}$ S, 167 ${ }^{\circ} 59.4{ }^{\prime} \mathrm{E}$;	D	CONO466-08	EU685581	EU685434	EU685726	
IM_2007_30435	Hastula	strigilata	Vanuatu	$15^{\circ} 33.4^{\prime} \mathrm{S}, 167^{\circ} 12.4{ }^{\prime} \mathrm{E}$; 2-6	D	XXX	XXX	XXX	XXX	XXX
IM_2007_30607	Hastula	strigilata	Vanuatu	$15^{\circ} 35.2{ }^{\prime} \mathrm{S}, 167^{\circ} 59.4^{\prime} \mathrm{E}$;	D	XXX	XXX	EU685433	EU685725	
IM_2007_30608	Hastula	strigilata	Vanuatu	$15^{\circ} 35.22^{\prime}$ S, 167 ${ }^{\circ} 59.4{ }^{\prime} \mathrm{E}$;	D	CONO465-08	EU685580		EU685724	
IM_2009_10143	Hastula	strigilata	South Madagascar	$25^{\circ} 23.6-7^{\prime} \mathrm{S}, 44^{\circ} 53.3-5^{\prime} \mathrm{E}, 10-12$	D	$\mathbf{x x x}$		$\mathbf{x x x}$	XXX	$\mathbf{x x x}$
IM_2009_10161	Hastula	strigilata	South Madagascar	$25^{\circ} 08.9^{\prime} \mathrm{S}, 46^{\circ} 45.4^{\prime} \mathrm{E} ; 0-1$	D	XxX		XxX	Xxx	
IM_2009_10106	Hastula	stylata	South Madagascar	$24^{\circ} 47.1^{\prime} \mathrm{S}, 47^{\circ} 11.9^{\prime} \mathrm{E} ; 0-1$	D	XXX	XXX	XxX	XXX	XXX

MNHN Ids	Genus	species	Country	Coordinates; depth (m)	Clade	BOLD ID	Genbank COI	GenBank 12S	GenBank 16S	GenBank 28S
IM_2007_30488	Hastulopsis	amoena	Vanuatu	$15^{\circ} 31.7^{\prime} \mathrm{S}$, $167^{\circ} 09.4{ }^{\prime} \mathrm{E}$; 9-13	E1	xxx	XxX	XxX	xxx	XXX
IM_2009_10909	Hastulopsis	amoena	Australia	$26^{\circ} 56^{\prime} 607{ }^{\prime \prime S}$, $153^{\circ} 23^{\prime} 813^{\prime \prime} \mathrm{E}$; 40	E1	XxX	XxX	XxX	XxX	
IM_2009_10910	Hastulopsis	amoena	Australia	$26^{\circ} 56^{\prime} 607{ }^{\prime \prime} \mathrm{S}, 153^{\circ} 23^{\prime} 813^{\prime \prime} \mathrm{E} ; 40$	E1	$\mathbf{x x x}$	$\mathbf{x x x}$		Xxx	
IM_2007_30463	Hastulopsis	conspersa	Vanuatu		E1	CONO445-08	EU685560	EU685411	EU685702	XxX
IM_2007_30478	Hastulopsis	conspersa	Vanuatu		E1	CONO446-08	EU685561	EU685412	EU685703	
IM_2007_30619	Hastulopsis	conspersa	Vanuatu	$15^{\circ} 33.1{ }^{\prime} \mathrm{S}, 167^{\circ} 12.2^{\prime} \mathrm{E} ; 3-40$	E1	CONO437-08	EU685552	EU685403	EU685694	
IM_2007_30623	Hastulopsis	conspersa	Vanuatu		E1	CONO443-08	EU685558	EU685409	EU685700	
IM_2007_30624	Hastulopsis	conspersa	Vanuatu	$15^{\circ} 33.4^{\prime} \mathrm{S}, 167^{\circ} 12.4{ }^{\prime} \mathrm{E}$; 2-6	E1	CONO518-08	EU685623	EU685483	EU685776	
IM_2007_30442	Hastulopsis	mindanaoensis	Philippines		E1	CONO207-08	EU685499	EU685344	EU685635	
IM_2009_10118	Hastulopsis	minipulchra	South Madagascar	$25^{\circ} 30.2^{\prime} \mathrm{S}, 45^{\circ} 46.3^{\prime} \mathrm{E}, 41-42$	E5	$\mathbf{x x x}$	XxX	XxX	Xxx	XxX
IM_2009_10119	Hastulopsis	minipulchra	South Madagascar	$25^{\circ} 28.6^{\prime} \mathrm{S}, 44^{\circ} 56.8^{\prime} \mathrm{E}$; 12	E5	XxX	XxX	Xxx	Xxx	
IM_2009_10120	Hastulopsis	minipulchra	South Madagascar	25 ${ }^{\circ} 22.8-23.7^{\prime}$ S, $44^{\circ} 51.1^{\prime}$ E; $18-21$	E5	Xxx	Xxx	Xxx	xxx	
IM_2009_10128	Hastulopsis	minipulchra	South Madagascar	25 ${ }^{\circ} 22.8-23.7{ }^{\prime} \mathrm{S}, 44^{\circ} 51.1^{\prime} \mathrm{E}$; $18-21$	E5	XxX	XxX	XxX	xxx	
IM_2009_10129	Hastulopsis	minipulchra	South Madagascar	$25^{\circ} 28.6^{\prime} \mathrm{S}, 44^{\circ} 56.8^{\prime} \mathrm{E} ; 12$	E5	XxX	XxX	XxX	Xxx	
IM_2009_10131	Hastulopsis	minipulchra	South Madagascar	$25^{\circ} 22.8-23.7^{\prime} \mathrm{S}, 44^{\circ} 51.1^{\prime} \mathrm{E} ; 18-21$	E5	$\mathbf{x x x}$	XxX	XxX	Xxx	
IM_2007_30388	Hastulopsis	pertusa	Vanuatu		E1	CONO447-08	EU685562	EU685413	EU685704	$\mathbf{x x x}$
IM_2007_30392	Hastulopsis	pertusa	Vanuatu		E1	CONO448-08	EU685563	EU685414	EU685705	
IM_2007_30480	Hastulopsis	pertusa	Vanuatu		E1	CONO444-08	EU685559	EU685410	EU685701	
IM_2009_10080	Hastulopsis	pseudopertusa	North Madagascar	$13^{\circ} 25^{\prime}$ S, $47^{\circ} 57^{\prime}$ E; 71-158	E5	XxX	XxX		Xxx	
IM_2009_9954	Hastulopsis	pseudopertusa	North Madagascar	$13^{\circ} 25^{\prime} \mathrm{S}$, $47^{\circ} 57^{\prime}$ ' ${ }^{\text {\% }} 71-158$	E5	XxX	XxX	XxX	XxX	XxX
IM_2007_30412	Myurella	affinis	Vanuatu	$15^{\circ} 26.6^{\prime} \mathrm{S}, 167^{\circ} 15.2^{\prime} \mathrm{E}$;	E1	CONO468-08	EU685583	EU685437	EU685729	
IM_2007_30414	Myurella	affinis	Vanuatu	$15^{\circ} 26.6^{\prime} \mathrm{S}, 167^{\circ} 15.2^{\prime} \mathrm{E}$;	E1	CONO467-08	EU685582	EU685436	EU685728	
IM_2007_30415	Myurella	affinis	Vanuatu	$9^{\circ} 32.8^{\prime} \mathrm{N}, 123^{\circ} 45.9^{\prime} \mathrm{E} ; 2$	E1	$\mathbf{x x x}$	$\mathbf{x x x}$	$\mathbf{x x x}$	XXX	
IM_2007_30430	Myurella	affinis	Philippines	$9^{\circ} 37.4^{\prime} \mathrm{N}, 123^{\circ} 54.5^{\prime} \mathrm{E} ; 6$ 6-8	E1	CONO214-08	EU685506	EU685351	EU685642	
IM_2007_30439	Myurella	affinis	Philippines	$08^{\circ} 36.7^{\prime} \mathrm{N}, 079^{\circ} 00^{\prime} \mathrm{W} ; 28$	E1	CONO218-08	EU685508	EU685353	EU685644	xxx
IM_2007_30452	Myurella	affinis	Philippines	$9^{\circ} 37.4^{\prime} \mathrm{N}, 123^{\circ} 54.5^{\prime} \mathrm{E} ; 6-8$	E1	CONO215-08	EU685507	EU685352	EU685643	
IM_2007_30460	Myurella	affinis	Philippines	$9^{\circ} 35.7^{\prime} \mathrm{N}, 123^{\circ} 44.44^{\prime} \mathrm{E} ; 0-2$	E1	CONO239-08	EU685512	EU685356	EU685648	
IM_2007_30481	Myurella	affinis	Philippines	$9^{\circ} 35.7^{\prime} \mathrm{N}, 123^{\circ} 44.44^{\prime} \mathrm{E} ; 0-2$	E1	CONO283-08	EU685525	EU685370	EU685662	
IM_2007_30529	Myurella	affinis	Philippines	$08^{\circ} 36.7^{\prime} \mathrm{N}, 079^{\circ} 00^{\prime} \mathrm{W} ; 28$	E1	$\mathbf{x x x}$	$\mathbf{x x x}$	$\mathbf{X X X}$		
IM_2007_30541	Myurella	affinis	Vanuatu	$15^{\circ} 36.8^{\prime} \mathrm{S}, 167^{\circ} 08.5^{\prime} \mathrm{E}$; 1-42	E1	CONO485-08	EU685599	EU685458	EU685751	
IM_2007_30551	Myurella	affinis	Vanuatu	$9^{\circ} 32.8{ }^{\prime} \mathrm{N}, 123^{\circ} 45.9^{\prime} \mathrm{E} ; 2$	E1	$\mathbf{x x x}$	$\mathbf{x x x}$	$\mathbf{x x x}$	$\mathbf{x x x}$	

MNHN Ids	Genus	species	Country	Coordinates; depth (m)	Clade	BOLD ID	Genbank COI	GenBank 12S	GenBank 16S	GenBank 28S
IM_2007_30594	Myurella	affinis	Vanuatu	$9^{\circ} 32.8^{\prime} \mathrm{N}, 123^{\circ} 45.9^{\prime} \mathrm{E}$; 2	E1	CONO475-08	EU685590	EU685447	EU685739	
IM_2009_10021	Myurella	affinis	Mozambique	$25^{\circ} 59.0^{\prime} \mathrm{S}, 32^{\circ} 54.5^{\prime} \mathrm{E} ; 0$	E1	$\mathbf{x x x}$	xxx	xxx	$\mathbf{x x x}$	
IM_2009_10022	Myurella	affinis	Mozambique	$25^{\circ} 59.0^{\prime} \mathrm{S}, 32^{\circ} 54.5^{\prime} \mathrm{E} ; 0$	E1	XxX	Xxx	xxx	Xxx	
IM_2009_10056	Myurella	affinis	Mozambique	$25^{\circ} 59.0{ }^{\prime} \mathrm{S}, 32^{\circ} 54.5^{\prime} \mathrm{E} ; 0$	E1	XXX	XXX	XxX	XxX	
IM_2009_10058	Myurella	affinis	Mozambique	$25^{\circ} 59.0{ }^{\prime} \mathrm{S}, 32^{\circ} 54.5^{\prime} \mathrm{E} ; 0$	E1	XXX	XXX	XXX	XXX	
IM_2009_10059	Myurella	affinis	Mozambique	$25^{\circ} 59.0{ }^{\prime} \mathrm{S}, 32^{\circ} 54.5^{\prime} \mathrm{E} ; 0$	E1	XXX	XXX	XxX	XXX	
IM_2009_10060	Myurella	affinis	Mozambique	$25^{\circ} 59.0{ }^{\prime} \mathrm{S}, 32^{\circ} 54.5^{\prime} \mathrm{E} ; 0$	E1	XxX	XxX	Xxx	Xxx	
IM_2009_10061	Myurella	affinis	Mozambique	$25^{\circ} 59.0{ }^{\prime} \mathrm{S}, 32^{\circ} 54.5^{\prime} \mathrm{E} ; 0$	E1	XXX	XXX	XxX	XxX	
IM_2009_10062	Myurella	affinis	Mozambique	$25^{\circ} 59.0{ }^{\prime} \mathrm{S}, 32^{\circ} 54.5^{\prime} \mathrm{E} ; 0$	E1	XXX	XXX	XxX	Xxx	
IM_2009_10063	Myurella	affinis	Mozambique	$25^{\circ} 59.0{ }^{\prime} \mathrm{S}, 32^{\circ} 54.5^{\prime} \mathrm{E} ; 0$	E1	XxX	XxX	Xxx	xxx	
IM_2009_10064	Myurella	affinis	Mozambique	$25^{\circ} 59.0{ }^{\prime} \mathrm{S}, 32^{\circ} 54.5^{\prime} \mathrm{E} ; 0$	E1	XXX	XXX	XxX	XxX	
IM_2009_10065	Myurella	affinis	Mozambique	$25^{\circ} 59.0{ }^{\prime} \mathrm{S}, 32^{\circ} 54.5^{\prime} \mathrm{E} ; 0$	E1	XXX	XxX	XxX	Xxx	
IM_2009_10066	Myurella	affinis	Mozambique	$25^{\circ} 59.0{ }^{\prime} \mathrm{S}, 32^{\circ} 54.5^{\prime} \mathrm{E} ; 0$	E1	XXX	XXX		XxX	
IM_2009_10067	Myurella	affinis	Mozambique	$25^{\circ} 59.0{ }^{\prime} \mathrm{S}, 32^{\circ} 54.5^{\prime} \mathrm{E} ; 0$	E1	XXX	XXX	Xxx	Xxx	
IM_2009_7092	Myurella	affinis	Mozambique	$25^{\circ} 59.0{ }^{\prime} \mathrm{S}, 32^{\circ} 54.5^{\prime} \mathrm{E} ; 0$	E1	XXX	XXX	XxX	XxX	
IM_2009_7093	Myurella	affinis	Mozambique	$25^{\circ} 59.0{ }^{\prime} \mathrm{S}, 32^{\circ} 54.5^{\prime} \mathrm{E} ; 0$	E1	XXX	XXX	XxX	Xxx	
IM_2009_7094	Myurella	affinis	Mozambique	$25^{\circ} 59.0{ }^{\prime} \mathrm{S}$, $32^{\circ} 54.5^{\prime} \mathrm{E} ; 0$	E1	XXX	XXX	XxX	Xxx	
IM_2009_7095	Myurella	affinis	Mozambique	$25^{\circ} 59.0^{\prime} \mathrm{S}, 32^{\circ} 54.5^{\prime} \mathrm{E} ; 0$	E1	XxX	XxX	XXX	XxX	
IM_2007_30510	Myurella	columellaris	Philippines	$9^{\circ} 35.7{ }^{\prime} \mathrm{N}, 123^{\circ} 44.4{ }^{\prime} \mathrm{E} ; 0-2$	E5	CONO237-08	EU685510		EU685646	
IM_2007_30598	Myurella	columellaris	Vanuatu	$15^{\circ} 26.6^{\prime} \mathrm{S}, 167^{\circ} 15.2^{\prime} \mathrm{E}$;	E5	CONO469-08	EU685584	EU685438	EU685730	XXX
IM_2009_10020	Myurella	columellaris	Mozambique	$25^{\circ} 59.0^{\prime} \mathrm{S}, 32^{\circ} 54.5^{\prime} \mathrm{E} ; 0$	E5	$\mathbf{x x x}$	XxX	$\mathbf{x x x}$	Xxx	
IM_2007_30465	Myurella	flavofasciata	Philippines	$9^{\circ} 29.4{ }^{\prime} \mathrm{N}, 123^{\circ} 56.0^{\prime} \mathrm{E} ; 15-20$	E1	CONO247-08	EU685515	EU685360	EU685652	$\mathbf{x x x}$
IM_2009_7436	Myurella	flavofasciata	Mozambique	$25^{\circ} 59.0^{\prime} \mathrm{S}, 32^{\circ} 54.5^{\prime} \mathrm{E} ; 0$	E1	$\mathbf{x x x}$	XXX		XxX	
IM_2007_30459	Myurella	kilburni	Philippines	$9^{\circ} 35.7{ }^{\prime} \mathrm{N}, 123^{\circ} 44.4{ }^{\prime} \mathrm{E} ; 0-2$	E5	CONO238-08	EU685511	EU685355	EU685647	$\mathbf{x x x}$
IM_2007_30461	Myurella	kilburni	Vanuatu	$15^{\circ} 42.7^{\prime} \mathrm{S}$, $167^{\circ} 15.1^{\prime} \mathrm{E}$; 2-3	E5	CONO491-08	EU685604	EU685463	EU685756	
IM_2007_30471	Myurella	lineaperlata	Vanuatu	$15^{\circ} 29^{\prime}$ S, 167 ${ }^{\circ} 14.9^{\prime}$ E; 2-4	E2	CONO461-08	EU685576	EU685429	EU685720	
IM_2007_30612	Myurella	lineaperlata	Vanuatu	$15^{\circ} 29^{\prime}$ S, $167^{\circ} 14.9{ }^{\prime}$ E; 2-4	E2	CONO460-08	EU685575	EU685428	EU685719	
IM_2007_30635	Myurella	lineaperlata	Vanuatu	$15^{\circ} 33.4{ }^{\prime} \mathrm{S}, 167^{\circ} 12.4{ }^{\prime} \mathrm{E}$; 2-6	E2	CONO519-08	EU685624	EU685484	EU685777	$\mathbf{x x x}$
IM_2007_30378	Myurella	nebulosa	Vanuatu	$15^{\circ} 33.1^{\prime} \mathrm{S}$, $167^{\circ} 12.2^{\prime} \mathrm{E} ; 3-40$	E1	CONO407-08		EU685392	EU685683	
IM_2007_30408	Myurella	nebulosa	Philippines	$9^{\circ} 29.4{ }^{\prime} \mathrm{N}, 123^{\circ} 56.0^{\prime} \mathrm{E} ; 15-20$	E1	CONO248-08	EU685516	EU685361	EU685653	
IM_2007_30498	Myurella	nebulosa	Vanuatu	$15^{\circ} 27.6{ }^{\prime} \mathrm{S}, 167^{\circ} 14.3^{\prime} \mathrm{E} ; 6-35$	E1	CONO479-08	EU685594	EU685453	EU685746	$\mathbf{x x x}$

MNHN Ids	Genus	species	Country	Coordinates; depth (m)	Clade	BOLD ID	Genbank COI	GenBank 12S	GenBank 16S	GenBank 28S
IM_2007_30567	Myurella	nebulosa	Vanuatu	$15^{\circ} 34.7{ }^{\prime}$ S, $167^{\circ} 13.8{ }^{\prime} \mathrm{E}$; $14-25$	E1	CONO459-08	EU685574	EU685426	EU685717	
IM_2009_10098	Myurella	nebulosa	Mozambique	$26^{\circ} 12^{\prime} \mathrm{S}, 35^{\circ} 03^{\prime} \mathrm{E}$; $87-90$	E1	Xxx	XxX	Xxx	XxX	
IM_2009_10099	Myurella	nebulosa	Mozambique	$26^{\circ} 12^{\prime} \mathrm{S}, 35^{\circ} 03^{\prime} \mathrm{E}$; $87-90$	E1	XxX	Xxx	XxX	XxX	
IM_2009_7437	Myurella	nebulosa	Mozambique	$26^{\circ} 12^{\prime} \mathrm{S}, 35^{\circ} 03^{\prime} \mathrm{E}$; 87-90	E1	Xxx	XxX	Xxx		
IM_2009_7438	Myurella	nebulosa	Mozambique	$26^{\circ} 12^{\prime} \mathrm{S}, 35^{\circ} 03^{\prime} \mathrm{E}$; 87-90	E1	XxX	XXX	XxX	XxX	
IM_2009_7439	Myurella	nebulosa	Mozambique	$26^{\circ} 12^{\prime} \mathrm{S}$, $35^{\circ} 03^{\prime} \mathrm{E}$; 87-90	E1	xxx	XxX	XxX	XxX	
IM_2007_30515	Myurella	orientalis	Chesterfield Islands	$20^{\circ} 06^{\prime} \mathrm{S}, 160^{\circ} 23^{\prime}$ E; 280-304	E3	CONO202-08	EU685494	EU685340	EU685630	
IM_2007_30524	Myurella	orientalis	Solomon Islands	$9^{\circ} 07^{\prime} \mathrm{S}$, 1588${ }^{\circ} 21^{\prime}$ E; 267-329	E3	XxX	XxX	XXX	XXX	
IM_2007_30530	Myurella	orientalis	Chesterfield Islands	$20^{\circ} 29^{\prime} \mathrm{S}, 158^{\circ} 42^{\prime}{ }^{\text {E; }}$ 197-230	E3	CONO201-08	EU685493	EU685339	EU685629	
IM_2009_9974	Myurella	orientalis	North New-Caledonia	$18^{\circ} 02^{\prime} \mathrm{S}, 163^{\circ} 04^{\prime} \mathrm{E} ; 320-337$	E3	$\mathbf{x x x}$	$\mathbf{x x x}$	$\mathbf{x x X}$	$\mathbf{x x x}$	
IM_2007_30453	Myurella	paucistriata	Vanuatu	$15^{\circ} 29.6^{\prime}$ S, $167^{\circ} 14.99^{\prime} \mathrm{E} ; 2-5$	E5	CONO480-08	EU685595	EU685454	EU685747	
IM_2007_30513	Myurella	sp.	Philippines	$9^{\circ} 36.4{ }^{\prime} \mathrm{N}, 123^{\circ} 53.8^{\prime} \mathrm{E} ;{ }^{60-62}$	E5	CONO265-08	EU685522	EU685367	EU685659	
IM_2009_10090	Myurella	sp.	North Madagascar	$12^{\circ} 35,92^{\prime} \mathrm{S}, 48^{\circ} 35,22^{\prime} \mathrm{E}$; $50-52$	E5	XxX	XxX	XxX	XxX	$\mathbf{x x x}$
IM_2009_10091	Myurella	sp.	North Madagascar	$12^{\circ} 35,92^{\prime} \mathrm{S}, 48^{\circ} 35,22^{\prime} \mathrm{E}$; $50-52$	E5	XxX	XxX	XxX	XXX	
IM_2009_10092	Myurella	sp.	North Madagascar	$12^{\circ} 35,92^{\prime} \mathrm{S}, 48^{\circ} 35,22^{\prime} \mathrm{E}$; 50-52	E5	XxX	XxX	XxX	Xxx	
IM_2009_10094	Myurella	sp.	North Madagascar	$15^{\circ} 30,15^{\prime} \mathrm{S}, 46^{\circ} 4,3^{\prime} \mathrm{E} ; 29-36$	E5	Xxx	Xxx	XxX	Xxx	
IM_2009_10096	Myurella	sp.	North Madagascar	$12^{\circ} 35,92^{\prime} \mathrm{S}, 48^{\circ} 35,22^{\prime} \mathrm{E}$; $50-52$	E5	XXX	XXX	XXX	XXX	
IM_2009_10097	Myurella	sp.	North Madagascar	$12^{\circ} 35,92^{\prime} \mathrm{S}, 48^{\circ} 35,22^{\prime} \mathrm{E}$; $50-52$	E5	XxX	XXX	XxX	Xxx	
IM_2009_7124	Myurella	sp.	Mozambique	$25^{\circ} 59.0{ }^{\prime} \mathrm{S}, 32^{\circ} 54.5^{\prime} \mathrm{E} ; 0$	E5	XxX	XXX	XxX	Xxx	
IM_2009_7125	Myurella	sp.	Mozambique	$25^{\circ} 59.0{ }^{\prime} \mathrm{S}, 32^{\circ} 54.5^{\prime} \mathrm{E} ; 0$	E5	Xxx	XXX	XXX	Xxx	
IM_2009_7326	Myurella	sp.	Mozambique	$25^{\circ} 59.0^{\prime} \mathrm{S}, 32^{\circ} 54.5^{\prime} \mathrm{E} ; 0$	E5	$\mathbf{x x x}$		XxX	XXX	
IM_2007_30384	Myurella	undulata	Vanuatu	$15^{\circ} 26.6^{\prime} \mathrm{S}, 167^{\circ} 15.2^{\prime} \mathrm{E}$;	E5	CONO472-08	EU685587	EU685441	EU685733	
IM_2007_30570	Myurella	undulata	Vanuatu	$15^{\circ} 38.11^{\prime} \mathrm{S}, 167^{\circ} 05.9^{\prime} \mathrm{E}$;	E5	CONO494-08	EU685606	EU685465	EU685758	
IM_2007_30620	Myurella	undulata	Vanuatu	$15^{\circ} 31.3^{\prime} \mathrm{S}, 167^{\circ} 10.4{ }^{\prime} \mathrm{E}$; 3-18	E5	CONO440-08	EU685555	EU685406	EU685697	XXX
IM_2007_30628	Myurella	undulata	Vanuatu	$15^{\circ} 33.1^{\prime} \mathrm{S}, 167^{\circ} 12.2^{\prime} \mathrm{E}$; $3-40$	E5	CONO409-08	EU685543	EU685394	EU685685	
IM_2007_30629	Myurella	undulata	Vanuatu	$15^{\circ} 33.1^{\prime} \mathrm{S}, 167^{\circ} 12.2^{\prime} \mathrm{E} ; 3-40$	E5	CONO408-08	EU685542	EU685393	EU685684	
IM_2009_7115	Myurella	undulata	Mozambique	$25^{\circ} 59.0{ }^{\prime} \mathrm{S}, 32^{\circ} 54.5^{\prime} \mathrm{E} ; 0$	E5	$\mathbf{x x x}$	XxX	$\mathbf{x x x}$	$\mathbf{x x x}$	
IM_2007_30371	Oxymeris	areolata	Vanuatu	$15^{\circ} 28.7^{\prime} \mathrm{S}, 167^{\circ} 15.2^{\prime} \mathrm{E}$; 19	B	CONO406-08	JN589001	HQ401637	HQ401700	Xxx
IM_2007_30587	Oxymeris	areolata	Philippines	$9^{\circ} 37.4^{\prime} \mathrm{N}, 123^{\circ} 46.9^{\prime} \mathrm{E}$; $3-20$	B	CONO241-08	EU685513	EU685357	EU685649	
IM_2009_10013	Oxymeris	cerithina	Mozambique	$25^{\circ} 59.0^{\prime} \mathrm{S}, 32^{\circ} 54.5^{\prime} \mathrm{E} ; 0$	B	$\mathbf{x x x}$	XxX	$\mathbf{x x x}$	$\mathbf{x x x}$	
IM_2009_10014	Oxymeris	cerithina	Mozambique	$25^{\circ} 59.0{ }^{\prime} \mathrm{S}, 32^{\circ} 54.5^{\prime} \mathrm{E} ; 0$	B	XxX	XxX	XxX	XxX	

MNHN Ids	Genus	species	Country	Coordinates; depth (m)	Clade	BOLD ID	Genbank COI	GenBank 12S	GenBank 16S	GenBank 28S
IM_2009_10015	Oxymeris	cerithina	Mozambique	$25^{\circ} 59.0{ }^{\prime} \mathrm{S}, 32^{\circ} 54.5^{\prime} \mathrm{E}$; 0	B	XxX	XXX	XxX	XXX	
IM_2009_7083	Oxymeris	cerithina	Mozambique	$25^{\circ} 59.0{ }^{\prime} \mathrm{S}, 32^{\circ} 54.5^{\prime} \mathrm{E} ; 0$	B	XXX	XXX	Xxx	xxx	
IM_2009_7084	Oxymeris	cerithina	Mozambique	$25^{\circ} 59.0{ }^{\prime} \mathrm{S}, 32^{\circ} 54.5^{\prime} \mathrm{E} ; 0$	B	xxx	xxx	xxx	XxX	
IM_2009_7085	Oxymeris	cerithina	Mozambique	$25^{\circ} 59.0{ }^{\prime} \mathrm{S}, 32^{\circ} 54.5^{\prime} \mathrm{E} ; 0$	B	XXX	XXX	Xxx		
IM_2009_7086	Oxymeris	cerithina	Mozambique	$25^{\circ} 59.0{ }^{\prime} \mathrm{S}, 32^{\circ} 54.5^{\prime} \mathrm{E}$; 0	B	XxX	XxX	Xxx	xxx	
IM_2009_9979	Oxymeris	cerithina	Mozambique	$25^{\circ} 59.0{ }^{\prime} \mathrm{S}, 32^{\circ} 54.5^{\prime} \mathrm{E}$; 0	B	$\mathbf{x x x}$	XxX	XxX	$\mathbf{x x x}$	XxX
IM_2007_30490	Oxymeris	chlorata	Vanuatu	$15^{\circ} 22.6^{\prime} \mathrm{S}, 167^{\circ} 11.6^{\prime} \mathrm{E}$;	B	CONO504-08	EU685615	EU685474	EU685767	XxX
IM_2007_30377	Oxymeris	crenulata	Vanuatu	$15^{\circ} 34.4{ }^{\prime} \mathrm{S}, 167^{\circ} 13.1^{\prime} \mathrm{E}$; 9	B	CONO442-08	EU685557	EU685408	EU685699	
IM_2007_30494	Oxymeris	crenulata	Vanuatu	$15^{\circ} 34.4{ }^{\prime} \mathrm{S}, 167^{\circ} 13.1^{\prime} \mathrm{E}$; 9	B	CONO441-08	EU685556	EU685407	EU685698	$\mathbf{x x x}$
IM_2007_30372	Oxymeris	dimidiata	Vanuatu	$15^{\circ} 32.5^{\prime} \mathrm{S}, 167^{\circ} 10.5^{\prime} \mathrm{E} ; 5-10$	B	CONO487-08	EU685601	EU685460	EU685753	
IM_2007_30373	Oxymeris	dimidiata	Vanuatu		B	CONO449-08	EU685564	EU685415	EU685706	$\mathbf{x x x}$
IM_2007_30379	Oxymeris	dimidiata	Vanuatu	$15^{\circ} 32.5^{\prime} \mathrm{S}, 167^{\circ} 10.5^{\prime} \mathrm{E}$; 5-10	B	CONO486-08	EU685600	EU685459	EU685752	
IM_2007_30381	Oxymeris	dimidiata	Vanuatu	$15^{\circ} 35.4^{\prime} \mathrm{S}, 166^{\circ} 59.7^{\prime} \mathrm{E}$; 3-37	B	CONO510-08	EU685619	EU685479	EU685772	
IM_2007_30428	Oxymeris	dimidiata	Vanuatu	$15^{\circ} 38.11^{\prime} \mathrm{S}, 167^{\circ} 05.9^{\prime} \mathrm{E}$;	B	CONO495-08	EU685607	EU685466	EU685759	
IM_2009_7087	Oxymeris	dimidiata	Mozambique	$25^{\circ} 59.0{ }^{\prime} \mathrm{S}, 32^{\circ} 54.5^{\prime} \mathrm{E}$; 0	B	XxX	XxX	XxX	XxX	
IM_2009_7088	Oxymeris	dimidiata	Mozambique	$25^{\circ} 59.0{ }^{\prime} \mathrm{S}, 32^{\circ} 54.5^{\prime} \mathrm{E} ; 0$	B	$\mathbf{x x x}$	xxx		XxX	
IM_2007_30443	Oxymeris	felina	Philippines	$9^{\circ} 37.4^{\prime} \mathrm{N}, 123^{\circ} 54.5^{\prime} \mathrm{E} ; 6-8$	B	CONO208-08	EU685500	EU685345	EU685636	
IM_2007_30445	Oxymeris	felina	Philippines	$9^{\circ} 37.4^{\prime} \mathrm{N}, 123^{\circ} 54.5{ }^{\prime} \mathrm{E} ; 6$ 6-8	B	CONO210-08	EU685502	EU685347	EU685638	$\mathbf{x x x}$
IM_2007_30370	Oxymeris	maculata	Philippines	$9^{\circ} 37.4^{\prime} \mathrm{N}, 123^{\circ} 46.9^{\prime} \mathrm{E}$; 3-20	B	CONO204-08	EU685496	EU685341	EU685632	
IM_2007_30389	Oxymeris	maculata	Vanuatu	$15^{\circ} 28.7^{\prime} \mathrm{S}, 167^{\circ} 15.2^{\prime} \mathrm{E}$; 19	B	CONO405-08	EU685541	EU685391	EU685682	XXX
IM_2007_42093	Oxymeris	strigata	Panama	$08^{\circ} 11.8^{\prime} \mathrm{N}, 078^{\circ} 57.1^{\prime} \mathrm{W} ; 24$	B	CONO974-09	FJ707455.1	FJ707388.1	FJ707422.1	
IM_2007_42105	Oxymeris	strigata	Panama	$08^{\circ} 11.8^{\prime} \mathrm{N}, 078^{\circ} 57.5^{\prime} \mathrm{W} ; 22$	B	CONO979-09	FJ707460.1	FJ707393.1	FJ707428.1	
IM_2007_42137	Oxymeris	strigata	Panama	$08^{\circ} 14.7^{\prime} \mathrm{N}, 079^{\circ} 05.6^{\prime} \mathrm{W}$; 18	B	CONO990-09	FJ707471.1	FJ707404.1	FJ707439.1	
IM_2007_30395	Pellifronia	jungi	Philippines	$9^{\circ} 38^{\prime} \mathrm{N}, 123^{\circ} 40^{\prime} \mathrm{E} ; 6^{606-631}$	A	CONO292-08	EU685530	EU685375	EU685666	XXX
IM_2007_30501	Pellifronia	jungi	Solomon Islands	$8^{\circ} 26^{\prime}$ S, 159 ${ }^{\circ} 26^{\prime}$ E; 543-593	A	$\mathbf{X X X}$		EU685385	EU685676	
IM_2007_30539	Pellifronia	jungi	Vanuatu	$15^{\circ} 44^{\prime}$ S, 167 ${ }^{\circ} 03^{\prime} \mathrm{E}$; 618-722	A	XXX	XXX	XXX	XXX	
IM_2007_30584	Pellifronia	jungi	Philippines	$9^{\circ} 34^{\prime} \mathrm{N}, 123^{\circ} 38^{\prime} \mathrm{E}$; 729-733	A	CONO347-08	EU685532	EU685380	EU685671	
IM_2007_30450	Strioterebrum	brunneobandatum	Philippines	$9^{\circ} 43^{\prime} \mathrm{N}, 123^{\circ} 49^{\prime} \mathrm{E}$; $123-135$	E1	CONO256-08	EU685517	EU685362	EU685654	
IM_2007_30522	Strioterebrum	brunneobandatum	Solomon Islands	$8^{\circ} 38^{\prime} \mathrm{S}, 157^{\circ} 22^{\prime}$ E; 195-197	E1	$\mathbf{x x x}$	XxX	$\mathbf{x x x}$		
IM_2007_30454	Strioterebrum	dedonderi	Philippines	$9^{\circ} 36.4^{\prime} \mathrm{N}, 123^{\circ} 53.8^{\prime} \mathrm{E}$; $60-62$	E1	CONO263-08	EU685521	EU685366	EU685658	
IM_2007_30425	Strioterebrum	nitidum	Vanuatu	$15^{\circ} 35.4^{\prime} \mathrm{S}, 166^{\circ} 58.7^{\prime} \mathrm{E}$; 3-8	E2	CONO506-08	EU685616	EU685475	EU685768	

MNHN Ids	Genus	species	Country	Coordinates; depth (m)	Clade	BOLD ID	Genbank COI	GenBank 12S	GenBank 16S	GenBank 28S
IM_2007_30473	Strioterebrum	nitidum	Vanuatu	$15^{\circ} 35.4^{\prime} \mathrm{S}, 166^{\circ} 58.7^{\prime} \mathrm{E}$; 3-8	E2	CONO507-08	EU685617	EU685476	EU685769	
IM_2007_30614	Strioterebrum	nitidum	Vanuatu	$15^{\circ} 31.7^{\prime} \mathrm{S}$, $167^{\circ} 09.44^{\prime} \mathrm{E}$; 9-13	E2	$\mathbf{x x x}$		EU685424	EU685715	
IM_2009_10157	Strioterebrum	nitidum	South Madagascar	25²6.1-4'S, 44*55.2-6'E; 17-20	E2	XXX	XXX	XXX	Xxx	
IM_2009_10158	Strioterebrum	nitidum	South Madagascar	25 ${ }^{\circ} 24.1-2^{\prime} \mathrm{S}$, 44* ${ }^{\circ} 1.1-7^{\prime} \mathrm{E}$; $24-26$	E2	XxX	XxX	XxX	XXX	XxX
IM_2009_7114	Strioterebrum	nitidum	Mozambique	$25^{\circ} 59.0^{\prime} \mathrm{S}, 32^{\circ} 54.5^{\prime} \mathrm{E} ; 0$	E2	$\mathbf{x x x}$	XxX		XxX	
IM_2007_30610	Strioterebrum	plumbeum	Vanuatu	$15^{\circ} 35.22^{\prime}$ S, $167^{\circ} 59.4{ }^{\prime} \mathrm{E}$;	E2	CONO463-08	EU685578	EU685431	EU685722	
IM_2007_30469	Strioterebrum	plumbeum	Vanuatu	$15^{\circ} 31.7^{\prime} \mathrm{S}$, $167^{\circ} 09.44^{\prime} \mathrm{E}$; 9-13	E2	CONO456-08	EU685571	EU685422	EU685713	
IM_2007_30558	Strioterebrum	plumbeum	Vanuatu	$15^{\circ} 31.7^{\prime} \mathrm{S}, 167^{\circ} 09.4{ }^{\prime} \mathrm{E} ; 9-13$	E2	CONO455-08	EU685570	EU685421	EU685712	
IM_2007_30609	Strioterebrum	sp. 1	Vanuatu	$15^{\circ} 35.2 \mathrm{~S}^{\prime}$, $167^{\circ} 59.4{ }^{\prime} \mathrm{E}$;	E2	CONO464-08	EU685579	EU685432	EU685723	XxX
IM_2007_30611	Strioterebrum	sp. 2	Vanuatu	$15^{\circ} 35.22^{\prime}$ S, $167^{\circ} 59.4^{\prime} \mathrm{E}$;	E2	CONO462-08	EU685577	EU685430	EU685721	
IM_2007_30543	Strioterebrum	sp. 3	Vanuatu	$15^{\circ} 35.4^{\prime}$ S, $166^{\circ} 58.7^{\prime} \mathrm{E} ;$ 3-8	E2	CONO499-08	EU685611	EU685470	EU685763	
IM_2007_42068	Terebra	argosyia	Panama	$08^{\circ} 37.2^{\prime} \mathrm{N}, 079^{\circ} 01.1^{\prime} \mathrm{W}$; 25	C	CONO962-09	FJ707443.1	FJ707376.1	FJ707408.1	
IM_2007_42069	Terebra	argosyia	Panama	$08^{\circ} 37.2^{\prime} \mathrm{N}, 079^{\circ} 01.1^{\prime} \mathrm{W}$; 25	C	CONO963-09	FJ707444.1	FJ707377.1	FJ707409.1	
IM_2007_42072	Terebra	argosyia	Panama	$08^{\circ} 15.6^{\prime} \mathrm{N}, 078^{\circ} 51.6^{\prime} \mathrm{W} ; 24$	C	CONO964-09	FJ707445.1	FJ707378.1	FJ707411.1	
IM_2007_42073	Terebra	argosyia	Panama	$08^{\circ} 15.6^{\prime} \mathrm{N}, 078^{\circ} 51.6^{\prime} \mathrm{W} ; 24$	C	CONO965-09	FJ707446.1	FJ707379.1	FJ707412.1	
IM_2007_42087	Terebra	argosyia	Panama	$08^{\circ} 11.8^{\prime} \mathrm{N}, 078^{\circ} 57.1^{\prime} \mathrm{W} ; 21$	C	CONO969-09	FJ707450.1	FJ707383.1	FJ707417.1	
IM_2007_42089	Terebra	argosyia	Panama	$08^{\circ} 11.8^{\prime} \mathrm{N}, 078^{\circ} 57.1^{\prime} \mathrm{W}$; 21	C	CONO970-09	FJ707451.1	FJ707384.1	FJ707418.1	
IM_2007_42090	Terebra	argosyia	Panama	$08^{\circ} 11.8^{\prime} \mathrm{N}, 078^{\circ} 57.1^{\prime} \mathrm{W} ; 21$	C	CONO971-09	FJ707452.1	FJ707385.1	FJ707419.1	
IM_2007_42091	Terebra	argosyia	Panama	$08^{\circ} 11.8^{\prime} \mathrm{N}, 078^{\circ} 57.1^{\prime} \mathrm{W} ; 21$	C	CONO972-09	FJ707453.1	FJ707386.1	FJ707420.1	
IM_2007_42092	Terebra	argosyia	Panama	$08^{\circ} 11.8^{\prime} \mathrm{N}, 078^{\circ} 57.1^{\prime} \mathrm{W} ; 21$	C	CONO973-09	FJ707454.1	FJ707387.1	FJ707421.1	
IM_2007_42099	Terebra	argosyia	Panama	$08^{\circ} 11.8^{\prime} \mathrm{N}, 078^{\circ} 57.5^{\prime} \mathrm{W} ; 24$	C	CONO975-09	FJ707456.1	FJ707389.1	FJ707423.1	
IM_2007_42100	Terebra	argosyia	Panama	$08^{\circ} 11.8^{\prime} \mathrm{N}, 078{ }^{\circ} 57.5^{\prime} \mathrm{W} ; 24$	C	CONO976-09	FJ707457.1	FJ707390.1	FJ707424.1	
IM_2007_42103	Terebra	argosyia	Panama	$08^{\circ} 11.8^{\prime} \mathrm{N}, 078^{\circ} 57.5^{\prime} \mathrm{W} ; 22$	C	CONO977-09	FJ707458.1	FJ707391.1	FJ707426.1	
IM_2007_42104	Terebra	argosyia	Panama	$08^{\circ} 11.8^{\prime} \mathrm{N}, 078^{\circ} 57.5^{\prime} \mathrm{W} ; 22$	C	CONO978-09	FJ707459.1	FJ707392.1	FJ707427.1	
IM_2007_42119	Terebra	argosyia	Panama	$08^{\circ} 11.8^{\prime} \mathrm{N}, 078^{\circ} 57.5^{\prime} \mathrm{W}$; 22	C	CONO981-09	FJ707462.1	FJ707395.1	FJ707430.1	
IM_2007_42122	Terebra	argosyia	Panama	$08^{\circ} 11.8^{\prime} \mathrm{N}, 078^{\circ} 57.5^{\prime} \mathrm{W} ; 22$	C	CONO984-09	FJ707465.1	FJ707398.1	FJ707433.1	
IM_2007_42123	Terebra	argosyia	Panama	$08^{\circ} 11.8^{\prime} \mathrm{N}, 078{ }^{\circ} 57.5^{\prime} \mathrm{W} ; 22$	C	CONO985-09	FJ707466.1	FJ707399.1	FJ707434.1	
IM_2007_42124	Terebra	argosyia	Panama	$08^{\circ} 11.8^{\prime} \mathrm{N}, 078^{\circ} 57.5^{\prime} \mathrm{W} ; 22$	C	CONO986-09	FJ707467.1	FJ707400. 1	FJ707435.1	
IM_2007_42125	Terebra	argosyia	Panama	$08^{\circ} 11.8^{\prime} \mathrm{N}, 078^{\circ} 57.5^{\prime} \mathrm{W} ; 22$	C	CONO987-09	FJ707468.1	FJ707401.1	FJ707436.1	
IM_2007_30383	Terebra	argus	Vanuatu	$15^{\circ} 26.6{ }^{\prime} \mathrm{S}, 167^{\circ} 15.2^{\prime} \mathrm{E}$;	C	$\mathbf{x x x}$	$\mathbf{x x x}$	EU685442	EU685734	XxX
IM_2007_30375	Terebra	babylonia	Vanuatu	$9^{\circ} 32.8{ }^{\prime} \mathrm{N}, 123^{\circ} 45.9^{\prime} \mathrm{E} ; 2$	C	XXX	XXX	EU685445	EU685737	XXX

MNHN Ids	Genus	species	Country	Coordinates; depth (m)	Clade	BOLD ID	Genbank COI	GenBank 12S	GenBank 16S	GenBank 28S
IM_2007_30380	Terebra	babylonia	Vanuatu	$9^{\circ} 32.8{ }^{\prime} \mathrm{N}, 123^{\circ} 45.9^{\prime} \mathrm{E} ; 2$	C	CONO474-08	EU685589	EU685446	EU685738	
IM_2007_42144	Terebra	berryi	Panama	$08^{\circ} 14.7^{\prime} \mathrm{N}, 079^{\circ} 05.6^{\prime} \mathrm{W} ; 18$	E4	XXX	XXX	XxX	XXX	
IM_2007_42167	Terebra	berryi	Panama	$08^{\circ} 33^{\prime} \mathrm{N}, 079^{\circ} 04^{\prime} \mathrm{W}$; 19	E4	XXX	XxX	XxX	Xxx	
IM_2007_42097	Terebra	cf. variegata	Panama	$08^{\circ} 11.8^{\prime} \mathrm{N}, 078^{\circ} 57.1^{\prime} \mathrm{W} ; 26$	E4	XxX	XxX	Xxx	Xxx	
IM_2007_42128	Terebra	cf. variegata	Panama	$08^{\circ} 14.9^{\prime} \mathrm{N}, 079^{\circ} 05.7^{\prime} \mathrm{W} ; 14$	E4	XXX	XxX	XXX	XxX	
IM_2007_42133	Terebra	cf. variegata	Panama	$08^{\circ} 14.8^{\prime} \mathrm{N}, 079^{\circ} 05.9^{\prime} \mathrm{W} ; 13$	E4	XXX	XXX	XXX	XXX	
IM_2007_42135	Terebra	cf. variegata	Panama	$08^{\circ} 14.8^{\prime} \mathrm{N}, 079^{\circ} 05.9^{\prime} \mathrm{W} ; 13$	E4	XXX	XXX	XxX	Xxx	
IM_2007_42146	Terebra	cf. variegata	Panama	$08^{\circ} 14.7^{\prime} \mathrm{N}, 079^{\circ} 05.6^{\prime} \mathrm{W} ; 18$	E4	XXX	XXX	XXX	Xxx	
IM_2007_42158	Terebra	cf. variegata	Panama	$08^{\circ} 24.5^{\prime} \mathrm{N}, 079^{\circ} 04.7^{\prime} \mathrm{W} ; 18$	E4	$\mathbf{X X X}$	XXX	XxX	XXX	
IM_2007_16735	Terebra	cingulifera	Philippines	$9^{\circ} 36^{\prime} \mathrm{N}, 123^{\circ} 44^{\prime} \mathrm{E}$; 382-434	C	CONO340-08	EU015735	EU685379	EU685670	EU015620
IM_2007_30382	Terebra	cingulifera	Vanuatu	$15^{\circ} 26.66^{\prime} \mathrm{S}, 167^{\circ} 15.2^{\prime} \mathrm{E}$;	C	XXX	XXX	EU685443	EU685735	XxX
IM_2007_30484	Terebra	cingulifera	Solomon Islands	$8^{\circ} 38^{\prime} \mathrm{S}, 157^{\circ} 22^{\prime} \mathrm{E} ; 195-197$	C	$\mathbf{x x x}$	XxX		XxX	
IM_2007_30485	Terebra	cingulifera	Vanuatu	$15^{\circ} 32.5^{\prime} \mathrm{S}, 167^{\circ} 10.5^{\prime} \mathrm{E}$; 5-10	C	CONO490-08	EU685603	EU685462	EU685755	
IM_2007_30487	Terebra	cingulifera	Solomon Islands	$8^{\circ} 40^{\prime} \mathrm{S}$, 157 ${ }^{\circ} 23^{\prime}$ E; 214-243	C	CONO382-08	EU685536	EU685386	EU685677	
IM_2007_30562	Terebra	cingulifera	Philippines	$16^{\circ} 04^{\prime} \mathrm{N}, 121^{\circ} 57^{\prime} \mathrm{E}$; $98-107$	C	XXX	XXX		XxX	
IM_2007_30563	Terebra	cingulifera	Philippines	$16^{\circ} 05,85^{\prime} \mathrm{N}, 121^{\circ} 58,85^{\prime} \mathrm{E} ; 83$	C	XXX	XXX		XXX	
IM_2007_30564	Terebra	cingulifera	Philippines	$15^{\circ} 54^{\prime} \mathrm{N}, 121^{\circ} 42^{\prime} \mathrm{E} ;$; 125-198	C	XXX	XxX		Xxx	
IM_2007_30576	Terebra	cingulifera	Vanuatu	$15^{\circ} 36.8^{\prime} \mathrm{S}, 167^{\circ} 08.7^{\prime} \mathrm{E}$; 3-36	C	XXX	XXX		XxX	
IM_2009_10171	Terebra	cingulifera	South Madagascar	25 ${ }^{\circ} 04.7^{\prime} \mathrm{S}$, $47^{\circ} 03.4^{\prime} \mathrm{E} ; 64-65$	C	XXX		XxX	Xxx	
IM_2007_42095	Terebra	elata	Panama	$08^{\circ} 11.8^{\prime} \mathrm{N}, 078^{\circ} 57.1^{\prime} \mathrm{W} ; 26$	E4	XXX	XxX	XxX	XXX	
IM_2007_42096	Terebra	elata	Panama	$08^{\circ} 11.8^{\prime} \mathrm{N}, 078^{\circ} 57.1^{\prime} \mathrm{W} ; 26$	E4	XXX	XXX	XXX	XXX	
IM_2007_42111	Terebra	elata	Panama	$08^{\circ} 11.8^{\prime} \mathrm{N}, 078^{\circ} 57.5^{\prime} \mathrm{W} ; 22$	E4	XXX	XXX	XxX	Xxx	
IM_2007_42127	Terebra	elata	Panama	$08^{\circ} 11.8^{\prime} \mathrm{N}, 078^{\circ} 57.5^{\prime} \mathrm{W} ; 22$	E4	XXX		XXX	XxX	
IM_2007_42147	Terebra	elata	Panama	$08^{\circ} 14.7^{\prime} \mathrm{N}, 079^{\circ} 05.4^{\prime} \mathrm{W} ; 18$	E4	XXX	XXX	XXX	XxX	
IM_2007_42155	Terebra	elata	Panama	$08^{\circ} 24.5^{\prime} \mathrm{N}, 079^{\circ} 04.7^{\prime} \mathrm{W} ; 18$	E4	XXX	XxX	XXX	Xxx	
IM_2007_42162	Terebra	elata	Panama	$08^{\circ} 31.2^{\prime} \mathrm{N}, 079^{\circ} 06.8^{\prime} \mathrm{W} ; 32$	E4	XXX	XXX	XXX	XxX	
IM_2007_42163	Terebra	elata	Panama	$08^{\circ} 31.2^{\prime} \mathrm{N}, 079^{\circ} 06.8^{\prime} \mathrm{W} ; 32$	E4	$\mathbf{x x x}$	XxX	XxX	XxX	
IM_2007_30423	Terebra	fijiensis	Vanuatu	$15^{\circ} 33^{\prime} \mathrm{S}$, $167^{\circ} 16.7^{\prime} \mathrm{E} ; 92$	E2	CONO520-08	EU685625	EU685485	EU685778	
IM_2007_42152	Terebra	formosa	Panama	$08^{\circ} 16.9^{\prime} \mathrm{N}, 079^{\circ} 02.7^{\prime} \mathrm{W} ; 39$	C	CONO991-09	FJ707472.1	FJ707405.1	FJ707440.1	
IM_2007_30394	Terebra	finiculata	Vanuatu		C	CONO450-08	EU685565	EU685416	EU685707	XxX
IM_2009_7108	Terebra	funiculata	Mozambique	$25^{\circ} 59.0^{\prime} \mathrm{S}, 32^{\circ} 54.5^{\prime} \mathrm{E} ; 0$	C	$\mathbf{x x x}$	$\mathbf{x x x}$	XXX	$\mathbf{x x x}$	

MNHN Ids	Genus	species	Country	Coordinates; depth (m)	Clade	BOLD ID	Genbank COI	GenBank 12S	GenBank 16S	GenBank 28S
IM_2009_7109	Terebra	funiculata	Mozambique	$25^{\circ} 59.0{ }^{\prime} \mathrm{S}$, $32^{\circ} 54.5^{\prime} \mathrm{E}$; 0	C	XXX	XXX	XXX	XXX	
IM_2009_7110	Terebra	funiculata	Mozambique	$25^{\circ} 59.0^{\prime} \mathrm{S}, 32^{\circ} 54.5^{\prime} \mathrm{E} ; 0$	C	$\mathbf{x x x}$	XXX	XXX	Xxx	
IM_2007_30376	Terebra	guttata	Vanuatu	15 ${ }^{\circ} 33.1^{\prime} \mathrm{S}$, $167^{\circ} 12.2^{\prime} \mathrm{E} ; 3-40$	C	CONO439-08	EU685554	EU685405	EU685696	
IM_2007_30387	Terebra	guttata	Vanuatu	$15^{\circ} 33.1^{\prime} \mathrm{S}, 167^{\circ} 12.2^{\prime} \mathrm{E} ; 3-40$	C	CONO438-08	EU685553	EU685404	EU685695	
IM_2007_30431	Terebra	laevigata	Philippines	$9^{\circ} 36.8^{\prime} \mathrm{N}, 123^{\circ} 52.2^{\prime} \mathrm{E}$;	C	CONO262-08	EU685520	EU685365	EU685657	
IM_2007_30573	Terebra	laevigata	Vanuatu	$15^{\circ} 29.6^{\prime} \mathrm{S}, 167^{\circ} 14.9$ ' E; 2-5	C	XxX	XxX	XxX	XxX	
IM_2007_30597	Terebra	laevigata	Vanuatu	$15^{\circ} 26.6^{\prime} \mathrm{S}, 167^{\circ} 15.2^{\prime} \mathrm{E}$;	C	CONO471-08	EU685586	EU685440	EU685732	
IM_2007_30603	Terebra	laevigata	Vanuatu	$15^{\circ} 43.4{ }^{\prime} \mathrm{S}$, $167^{\circ} 15.0^{\prime} \mathrm{E}$; 6	C	CONO484-08	EU685598	EU685457	EU685750	
IM_2007_30613	Terebra	laevigata	Vanuatu	$15^{\circ} 31.7^{\prime} \mathrm{S}, 167^{\circ} 09.4^{\prime} \mathrm{E}$; 9-13	C	CONO458-08	EU685573	EU685425	EU685716	
IM_2007_30632	Terebra	laevigata	Vanuatu	15 ${ }^{\circ} 31.7^{\prime} \mathrm{S}$, 167 ${ }^{\circ} 09.44^{\prime} \mathrm{E} ; 9$ 9-13	C	CONO457-08	EU685572	EU685423	EU685714	
IM_2009_10016	Terebra	laevigata	Mozambique	$25^{\circ} 59.0{ }^{\prime} \mathrm{S}, 32^{\circ} 54.5^{\prime} \mathrm{E} ; 0$	C	$\mathbf{x x x}$		$\mathbf{x x x}$	Xxx	
IM_2009_10017	Terebra	laevigata	Mozambique	$25^{\circ} 59.0{ }^{\prime} \mathrm{S}, 32^{\circ} 54.5^{\prime} \mathrm{E} ; 0$	C	XXX	XxX	XxX	Xxx	
IM_2009_10018	Terebra	laevigata	Mozambique	$25^{\circ} 59.0{ }^{\prime} \mathrm{S}, 32^{\circ} 54.5^{\prime} \mathrm{E} ; 0$	C	XXX	XxX	XxX	Xxx	
IM_2009_10019	Terebra	laevigata	Mozambique	$25^{\circ} 59.0{ }^{\prime} \mathrm{S}, 32^{\circ} 54.5^{\prime} \mathrm{E} ; 0$	C	XXX	XxX	Xxx	Xxx	
IM_2009_7104	Terebra	laevigata	Mozambique	$25^{\circ} 59.0{ }^{\prime} \mathrm{S}, 32^{\circ} 54.5^{\prime} \mathrm{E} ; 0$	C	XxX	XxX	Xxx	Xxx	
IM_2009_7105	Terebra	laevigata	Mozambique	$25^{\circ} 59.0{ }^{\prime} \mathrm{S}, 32^{\circ} 54.5^{\prime} \mathrm{E} ; 0$	C	XXX	XXX	XxX	Xxx	
IM_2009_7106	Terebra	laevigata	Mozambique	$25^{\circ} 59.0{ }^{\prime} \mathrm{S}, 32^{\circ} 54.5^{\prime} \mathrm{E} ; 0$	C	XXX	XxX	XxX	Xxx	XxX
IM_2009_7107	Terebra	laevigata	Mozambique	$25^{\circ} 59.0{ }^{\prime} \mathrm{S}, 32^{\circ} 54.5^{\prime} \mathrm{E} ; 0$	C	XXX		XxX	Xxx	
IM_2009_9947	Terebra	laevigata	Mozambique	$25^{\circ} 59.0{ }^{\prime} \mathrm{S}, 32^{\circ} 54.5^{\prime} \mathrm{E} ; 0$	C	XXX	XXX	XxX	XXX	
IM_2007_42083	Terebra	larvaeformis	Panama	$08^{\circ} 11.8^{\prime} \mathrm{N}, 078^{\circ} 57.1^{\prime} \mathrm{W} ; 21$	E4	XxX	XxX	Xxx	Xxx	
IM_2007_42106	Terebra	larvaeformis	Panama	$08^{\circ} 11.8^{\prime} \mathrm{N}, 078^{\circ} 57.5^{\prime} \mathrm{W} ; 22$	E4	XxX	XXX	XXX	XXX	
IM_2007_42113	Terebra	larvaeformis	Panama	$08^{\circ} 11.8^{\prime} \mathrm{N}, 078^{\circ} 57.5^{\prime} \mathrm{W} ; 22$	E4	XxX	XxX	XXX	Xxx	
IM_2007_42149	Terebra	larvaeformis	Panama	$08^{\circ} 14.7^{\prime} \mathrm{N}, 079^{\circ} 05.4^{\prime} \mathrm{W} ; 18$	E4	XxX	$\mathbf{x x x}$	XxX	Xxx	
IM_2007_42131	Terebra	ornata	Panama	$08^{\circ} 16.9^{\prime} \mathrm{N}, 079^{\circ} 02.7^{\prime} \mathrm{W} ; 39$	C	CONO988-09	FJ707469.1	FJ707402.1	FJ707437.1	
IM_2007_30374	Terebra	punctatostriata	Vanuatu	$15^{\circ} 31.4^{\prime} \mathrm{S}, 167^{\circ} 09.7^{\prime} \mathrm{E}$; 4-18	C	$\mathbf{x x x}$		EU685427	EU685718	
IM_2007_42070	Terebra	puncturosa	Panama	$08^{\circ} 15.6^{\prime} \mathrm{N}, 078^{\circ} 51.6^{\prime} \mathrm{W} ; 24$	E4	XXX	$\mathbf{x x x}$	$\mathbf{x x x}$	$\mathbf{X X X}$	
IM_2007_42081	Terebra	puncturosa	Panama	$08^{\circ} 11.8^{\prime} \mathrm{N}, 078{ }^{\circ} 57.1^{\prime} \mathrm{W} ; 21$	E4	XXX	XXX	XxX	Xxx	
IM_2007_42116	Terebra	puncturosa	Panama	$08^{\circ} 11.8^{\prime} \mathrm{N}, 078{ }^{\circ} 57.5^{\prime} \mathrm{W} ; 22$	E4	XXX	XXX	XxX	XXX	
IM_2007_42171	Terebra	puncturosa	Panama	$08^{\circ} 33^{\prime} \mathrm{N}, 079^{\circ} 04^{\prime} \mathrm{W} ; 19$	E4	XXX	XXX	XxX	Xxx	
IM_2009_7116	Terebra	quoygaimardi	Mozambique	$25^{\circ} 59.0^{\prime} \mathrm{S}, 32^{\circ} 54.5^{\prime} \mathrm{E}$; 0	C	XXX	XxX	XXX	Xxx	xxx
IM_2009_7118	Terebra	quoygaimardi	Mozambique	$25^{\circ} 59.0{ }^{\prime} \mathrm{S}, 32^{\circ} 54.5^{\prime} \mathrm{E} ; 0$	C	xxx		xxx	xxx	

MNHN Ids	Genus	species	Country	Coordinates; depth (m)	Clade	BOLD ID	Genbank COI	GenBank 12S	GenBank 16S	GenBank 28S
IM_2009_9946	Terebra	quoygaimardi	Mozambique	$25^{\circ} 59.0{ }^{\prime} \mathrm{S}, 32^{\circ} 54.5^{\prime} \mathrm{E}$; 0	C	$\mathbf{X x X}$	XXX	XXX	XXX	
IM_2007_30464	Terebra	sp. 1	Philippines	$9^{\circ} 35.3^{\prime} \mathrm{N}, 123^{\circ} 52.2^{\prime} \mathrm{E}$; 84-87	E2	CONO206-08	EU685498	EU685343	EU685634	
IM_2007_30516	Terebra	sp. 2	Chesterfield Islands	$24^{\circ} 46^{\prime} \mathrm{S}$, $159^{\circ} 43^{\prime} \mathrm{E}$; $400-418$	E3	XXX	XXX	XXX	XXX	
IM_2007_30617	Terebra	sp. 3	Vanuatu	$15^{\circ} 31.7^{\prime}$ S, $167^{\circ} 09.7^{\prime} \mathrm{E}$; 18-21	E2	CONO430-08	EU685549	EU685400	EU685691	
IM_2007_30618	Terebra	sp. 3	Vanuatu	$15^{\circ} 31.7^{\prime} \mathrm{S}, 167^{\circ} 09.7^{\prime} \mathrm{E}$; 18-21	E2	CONO431-08	EU685550	EU685401	EU685692	$\mathbf{x x x}$
IM_2007_30633	Terebra	sp. 4	Solomon Islands	$9^{\circ} 07^{\prime} \mathrm{S}, 158^{\circ} 21^{\prime} \mathrm{E}$; 267-329	E3	XXX	XXX	XXX	XXX	
IM_2007_30946	Terebra	sp. 5	Chesterfield Islands	$20^{\circ} 21^{\prime} \mathrm{S}$, 158 ${ }^{\circ} 46^{\prime} \mathrm{E}$; $345-351$	E5	XXX		XXX	Xxx	
IM_2007_42151	Terebra	specillata	Panama	$08^{\circ} 16.9^{\prime} \mathrm{N}, 079^{\circ} 02.7^{\prime} \mathrm{W} ; 39$	E4	XXX	XxX	XxX	Xxx	
IM_2007_42154	Terebra	specillata	Panama	$08^{\circ} 24.5^{\prime} \mathrm{N}, 079^{\circ} 04.7^{\prime} \mathrm{W} ; 18$	E4	XXX	XXX	XXX	XXX	
IM_2007_42168	Terebra	specillata	Panama	$08^{\circ} 33^{\prime} \mathrm{N}, 079^{\circ} 04^{\prime} \mathrm{W}$; 19	E4	XxX	xxx	XxX	XxX	
IM_2007_30386	Terebra	subulata	Vanuatu	$15^{\circ} 36.6^{\prime} \mathrm{S}, 167^{\circ} 10.1^{\prime} \mathrm{E}$; 8-20	C	CONO436-08	EU685551	EU685402	EU685693	
IM_2007_30444	Terebra	subulata	Philippines	$9^{\circ} 37.4^{\prime} \mathrm{N}, 123^{\circ} 54.5{ }^{\prime} \mathrm{E}$; 6-8	C	CONO209-08	EU685501	EU685346	EU685637	
IM_2007_30483	Terebra	subulata	Philippines		C	CONO277-08	EU685524	EU685369	EU685661	$\mathbf{x x x}$
IM_2007_16731	Terebra	succincta	Philippines	$9^{\circ} 30^{\prime} \mathrm{N}, 123^{\circ} 42^{\prime} \mathrm{E}$; $356-396$	E3	CONO331-08	EU015732	EU685378	EU685669	EU015617
IM_2007_30385	Terebra	succincta	Vanuatu	$15^{\circ} 26.6^{\prime}$ S, $167^{\circ} 15.2^{\prime} \mathrm{E}$;	E2	CONO470-08	EU685585	EU685439	EU685731	
IM_2007_30419	Terebra	succincta	Vanuatu	$15^{\circ} 35.4^{\prime}$ S, 166 ${ }^{\circ} 58.7^{\prime}$ E; 3-8	E2	$\mathbf{x x x}$	XXX	XXX	XXX	
IM_2007_30433	Terebra	succincta	Vanuatu	$15^{\circ} 33.4^{\prime}$ S, $167^{\circ} 12.4{ }^{\prime} \mathrm{E}$; 2-6	E2	CONO516-08	EU685621	EU685481	EU685774	
IM_2007_30434	Terebra	succincta	Vanuatu	$15^{\circ} 33.4^{\prime} \mathrm{S}, 167^{\circ} 12.4^{\prime} \mathrm{E}$; 2-6	E2	CONO517-08	EU685622	EU685482	EU685775	
IM_2007_30440	Terebra	succincta	Vanuatu	$15^{\circ} 31.7^{\prime}$ S, $167^{\circ} 09.7^{\prime}$ E; $18-21$	E2	CONO426-08	EU685545	EU685396	EU685687	XXX
IM_2007_30456	Terebra	succincta	Vanuatu	$15^{\circ} 31.7^{\prime}$ S, $167^{\circ} 09.7^{\prime} \mathrm{E}$; $18-21$	E2	CONO427-08	EU685546	EU685397	EU685688	
IM_2007_30458	Terebra	succincta	Vanuatu	$15^{\circ} 31.7^{\prime}$ S, $167^{\circ} 09.7^{\prime} \mathrm{E}$; $18-21$	E2	CONO428-08	EU685547	EU685398	EU685689	
IM_2007_30468	Terebra	succincta	Vanuatu	$15^{\circ} 35.4^{\prime}$ S, $166^{\circ} 58.7^{\prime} \mathrm{E}$; 3-8	E2	XXX	XXX	XXX	XXX	
IM_2007_30470	Terebra	succincta	Vanuatu	$15^{\circ} 35.4^{\prime}$ S, $166^{\circ} 58.7^{\prime} \mathrm{E} ; 3-8$	E2	XxX	XxX	XXX	XXX	
IM_2007_30475	Terebra	succincta	Vanuatu		E2	CONO451-08	EU685566	EU685417	EU685708	
IM_2007_30476	Terebra	succincta	Vanuatu		E2	CONO452-08	EU685567	EU685418	EU685709	
IM_2007_30479	Terebra	succincta	Solomon Islands	$7^{\circ} 14^{\prime} \mathrm{S}$, 158 ${ }^{\circ} 29^{\prime}$ E; 286-423	E3	CONO379-08	EU685534	EU685381	EU685672	
IM_2007_30582	Terebra	succincta	Philippines	$9^{\circ} 39^{\prime} \mathrm{N}, 123^{\circ} 48^{\prime} \mathrm{E}$; 255-268	E3	CONO285-08	EU685527	EU685372		
IM_2007_30601	Terebra	succincta	Vanuatu	$15^{\circ} 41^{\prime} \mathrm{S}, 167^{\circ} 00^{\prime} \mathrm{E} ; 517-614$	E3	CONO492-08	EU685605	EU685464	EU685757	
IM_2007_30622	Terebra	succincta	Vanuatu		E2	$\mathbf{X x X}$	$\mathbf{x x X}$	$\mathbf{x x x}$	XXX	
IM_2007_30626	Terebra	succincta	Vanuatu	$15^{\circ} 31.7^{\prime}$ S, $167^{\circ} 09.7^{\prime} \mathrm{E}$; $18-21$	E2	CONO425-08	EU685544	EU685395	EU685686	
IM_2007_30634	Terebra	succincta	Vanuatu	$15^{\circ} 31.7^{\prime} \mathrm{S}, 167^{\circ} 09.7^{\prime} \mathrm{E}$; 18-21	E2	CONO429-08	EU685548	EU685399	EU685690	

MNHN Ids	Genus	species	Country	Coordinates; depth (m)	Clade	BOLD ID	Genbank COI	GenBank 12S	GenBank 16S	GenBank 28S
IM_2009_10085	Terebra	succincta	North New-Caledonia	$20^{\circ} 17^{\prime} \mathrm{S}, 163^{\circ} 50^{\prime} \mathrm{E}$; 590-809	E3	$\mathbf{x x x}$	XxX	XXX	XxX	
IM_2007_17938	Terebra	textilis	Vanuatu	$15^{\circ} 35.4^{\prime}$ S, 166 ${ }^{\circ} 58.7^{\prime}$ E; 3-8	E2	CONO509-08	EU015750	EU685478	EU685771	EU015635
IM_2007_30441	Terebra	textilis	Vanuatu	$15^{\circ} 33.4^{\prime}$ S, $167^{\circ} 12.4{ }^{\prime} \mathrm{E}$; 2-6	E2	$\mathbf{x x x}$	$\mathbf{x x x}$		Xxx	
IM_2007_30451	Terebra	textilis	Philippines	$9^{\circ} 36.8^{\prime} \mathrm{N}, 123^{\circ} 52.2^{\prime} \mathrm{E}$;	E2	CONO261-08	EU685519	EU685364	EU685656	
IM_2007_30474	Terebra	textilis	Vanuatu	$15^{\circ} 35.4^{\prime}$ S, $166^{\circ} 58.7^{\prime} \mathrm{E}$; 3-8	E2	CONO508-08	EU685618	EU685477	EU685770	XxX
IM_2007_30545	Terebra	textilis	Vanuatu	$15^{\circ} 31.3^{\prime}$ S, $167^{\circ} 09.99^{\prime} \mathrm{E}, 1-6$	E2	CONO497-08	EU685609	EU685468	EU685761	
IM_2007_30547	Terebra	textilis	Vanuatu	$15^{\circ} 31.3^{\prime}$ S, 167 ${ }^{\circ} 09.9$ ' E; 1-6	E2	CONO496-08	EU685608	EU685467	EU685760	
IM_2007_30616	Terebra	textilis	Vanuatu		E2	CONO454-08	EU685569	EU685420	EU685711	
IM_2007_30621	Terebra	textilis	Vanuatu		E2	CONO453-08	EU685568	EU685419	EU685710	
IM_2009_10088	Terebra	textilis	North Madagascar	$14^{\circ} 31,9^{\prime}$ S, $47^{\circ} 26,54^{\prime}$ E; 46-54	E2	XXX	XXX		XXX	XXX
IM_2009_10093	Terebra	textilis	North Madagascar	$15^{\circ} 30,15^{\prime}$ S, 46 4, 3^{\prime} E; 29-36	E2	XXX	XXX		XXX	
IM_2009_10095	Terebra	textilis	North Madagascar	$15^{\circ} 30,15^{\prime} \mathrm{S}, 46^{\circ} 4,3^{\prime} \mathrm{E} ; 29-36$	E2	XXX	XXX		Xxx	XxX
IM_2009_9957	Terebra	textilis	North Madagascar	$12^{\circ} 35,92^{\prime} \mathrm{S}, 48^{\circ} 35,22^{\prime} \mathrm{E}$; $50-52$	E2	$\mathbf{x x x}$	XxX		XXX	
IM_2007_30409	Terebra	tricolor	Vanuatu	$15^{\circ} 33.11^{\prime}$ S, $167^{\circ} 17.8^{\prime} \mathrm{E}$; 15-25	C	CONO404-08	EU685540	EU685390	EU685681	
IM_2007_30493	Terebra	tricolor	Vanuatu	$15^{\circ} 38.5^{\prime}$ S, $167^{\circ} 15.1^{\prime} \mathrm{E}$; 13	C	CONO488-08	EU685602	EU685461	EU685754	
IM_2007_30424	Terebra	trismacaria	Solomon Islands	$8^{\circ} 37^{\prime}$ S, 157 ${ }^{\circ} 21^{\prime}$ E; 150-160	E2	CONO380-08		EU685383	EU685674	XXX
IM_2007_30492	Terebra	trismacaria	Solomon Islands	$8^{\circ} 40^{\prime} \mathrm{S}$, 157 ${ }^{\circ} 23^{\prime}$ E; 214-243	E2	CONO384-08	EU685538	EU685388	EU685679	
IM_2007_30499	Terebra	trismacaria	Solomon Islands	$8^{\circ} 40^{\prime} \mathrm{S}$, $157^{\circ} 23^{\prime} \mathrm{E}$ - 214-243	E2	CONO385-08	EU685539	EU685389	EU685680	
IM_2007_30579	Terebra	trismacaria	Solomon Islands	$8^{\circ} 40^{\prime} \mathrm{S}, 157^{\circ} 23^{\prime} \mathrm{E} ; 214-243$	E2	CONO383-08	EU685537	EU685387	EU685678	
IM_2007_30446	Terenolla	руgmaea	Philippines	$9^{\circ} 37.4^{\prime} \mathrm{N}, 123^{\circ} 54.5^{\prime} \mathrm{E}$; 4-5	E1	CONO211-08	EU685503	EU685348	EU685639	
IM_2007_30448	Terenolla	pygmaea	Philippines	$9^{\circ} 37.4^{\prime} \mathrm{N}, 123^{\circ} 54.5^{\prime} \mathrm{E} ; 4-5$	E1	CONO212-08	EU685504	EU685349	EU685640	
IM_2007_30449	Terenolla	pygmaea	Philippines	$9^{\circ} 37.4^{\prime} \mathrm{N}, 123^{\circ} 54.5{ }^{\prime} \mathrm{E}$; 4-5	E1	CONO213-08	EU685505	EU685350	EU685641	
IM_2007_30511	Terenolla	pygmaea	Philippines	$9^{\circ} 35.7^{\prime} \mathrm{N}, 123^{\circ} 44.44^{\prime} \mathrm{E} ; 0-2$	E1	CONO236-08	EU685509	EU685354	EU685645	
IM_2009_10121	Terenolla	pygmaea	South Madagascar		E1	XxX	XXX	XxX	XxX	$\mathbf{x x x}$
IM_2007_30411	Triplostephanus	anilis	Vanuatu	$15^{\circ} 35.4^{\prime} \mathrm{S}, 166^{\circ} 58.7^{\prime} \mathrm{E}$; 3-8	C	CONO493-08	XXX	XXX	XXX	
IM_2007_30552	Triplostephanus	anilis	Vanuatu	$15^{\circ} 35.2^{\prime} \mathrm{S}, 167^{\circ} 59.4^{\prime} \mathrm{E}$;	C	CONO473-08	EU685588	EU685444	EU685736	$\mathbf{x x x}$
IM_2009_10068	Triplostephanus	anilis	Mozambique	$25^{\circ} 59.0^{\prime} \mathrm{S}, 32^{\circ} 54.5^{\prime} \mathrm{E}$; 0	C	$\mathbf{x x x}$	XxX	Xxx	$\mathbf{x x x}$	
IM_2009_10069	Triplostephanus	anilis	Mozambique	$25^{\circ} 59.0{ }^{\prime} \mathrm{S}, 32^{\circ} 54.5^{\prime} \mathrm{E} ; 0$	C	XXX	XXX	XXX	XXX	
IM_2009_10070	Triplostephanus	anilis	Mozambique	$25^{\circ} 59.0{ }^{\prime} \mathrm{S}, 32^{\circ} 54.5^{\prime} \mathrm{E} ; 0$	C	XXX	XXX	XxX	XXX	
IM_2009_10071	Triplostephanus	anilis	Mozambique	$25^{\circ} 59.0{ }^{\prime} \mathrm{S}, 32^{\circ} 54.5^{\prime} \mathrm{E} ; 0$	C	XXX	XXX	XXX	XXX	
IM_2009_10072	Triplostephanus	anilis	Mozambique	$25^{\circ} 59.0{ }^{\prime} \mathrm{S}, 32^{\circ} 54.5^{\prime} \mathrm{E} ; 0$	C	xxx	XxX	XxX	xxx	

MNHN Ids	Genus	species	Country	Coordinates; depth (m)	Clade	BOLD ID	Genbank COI	GenBank 12S	GenBank 16S	GenBank 28S
IM_2009_7120	Triplostephanus	anilis	Mozambique	$25^{\circ} 59.0{ }^{\prime} \mathrm{S}, 32^{\circ} 54.5^{\prime} \mathrm{E} ; 0$	C	XxX	XXX	XXX	XXX	
IM_2009_7121	Triplostephanus	anilis	Mozambique	$25^{\circ} 59.0{ }^{\prime} \mathrm{S}, 32^{\circ} 54.5^{\prime} \mathrm{E} ; 0$	C	XxX	XXX	XXX	XXX	
IM_2009_7122	Triplostephanus	anilis	Mozambique	$25^{\circ} 59.0{ }^{\prime} \mathrm{S}, 32^{\circ} 54.5^{\prime} \mathrm{E} ; 0$	C	XXX	XXX	XxX	Xxx	
IM_2009_7123	Triplostephanus	anilis	Mozambique	$25^{\circ} 59.0{ }^{\prime} \mathrm{S}, 32^{\circ} 54.5^{\prime} \mathrm{E} ; 0$	C	XXX	XxX	XxX	Xxx	
IM_2007_30402	Triplostephanus	cumingii	Fiji	$18^{\circ} 26.44^{\prime} \mathrm{S}, 178^{\circ} 02.4{ }^{\prime} \mathrm{E}$; $50-51$	C	$\mathbf{x x x}$		EU685487	EU685779	
IM_2007_30390	Triplostephanus	fenestratus	Philippines	$9^{\circ} 29^{\prime} \mathrm{N}, 123^{\circ} 44^{\prime} \mathrm{E}$; 271-318	C	CONO305-08	EU685531	EU685376	EU685667	
IM_2007_30410	Triplostephanus	fenestratus	Philippines	$9^{\circ} 39^{\prime} \mathrm{N}, 123^{\circ} 48^{\prime} \mathrm{E}$; 255-268	C	CONO287-08	EU685529	EU685374	EU685665	
IM_2007_30418	Triplostephanus	fenestratus	Philippines	$9^{\circ} 39^{\prime} \mathrm{N}, 123^{\circ} 48^{\prime} \mathrm{E}$; 255-268	C	CONO286-08	EU685528	EU685373	EU685664	
IM_2007_30538	Triplostephanus	fenestratus	Philippines	$9^{\circ} 39^{\prime} \mathrm{N}, 123^{\circ} 48^{\prime} \mathrm{E}$; 255-268	C	XxX	Xxx	$\mathbf{x x x}$		
IM_2007_30553	Triplostephanus	fenestratus	Vanuatu	$15^{\circ} 42^{\prime} \mathrm{S}, 167^{\circ} 02^{\prime} \mathrm{E} ; 268-445$	C	XXX	XXX	XXX	XxX	
IM_2007_30559	Triplostephanus	fenestratus	Philippines	$9^{\circ} 39^{\prime} \mathrm{N}, 123^{\circ} 48^{\prime} \mathrm{E}$; 255-268	C	XXX		XXX	XXX	
IM_2009_10073	Triplostephanus	fenestratus	North Madagascar	$14^{\circ} 30^{\prime} \mathrm{S}$, $47^{\circ} 27^{\prime} \mathrm{E}$; $274-325$	C	XXX	XXX	XXX	XxX	
IM_2009_10074	Triplostephanus	fenestratus	North Madagascar	$14^{\circ} 30^{\prime} \mathrm{S}$, $47^{\circ} 27^{\prime} \mathrm{E}$; $274-325$	C	XXX	XxX	XxX	XXX	
IM_2009_10075	Triplostephanus	fenestratus	North Madagascar	$14^{\circ} 30^{\prime} \mathrm{S}$, $47^{\circ} 27^{\prime} \mathrm{E}$; $274-325$	C	XxX	XxX	XXX	XXX	
IM_2009_10076	Triplostephanus	fenestratus	North Madagascar	$14^{\circ} 30^{\prime} \mathrm{S}$, $47^{\circ} 27^{\prime} \mathrm{E}$; $274-325$	C	XxX	XxX	XxX	Xxx	$\mathbf{x x x}$
IM_2009_10077	Triplostephanus	fenestratus	North Madagascar	$14^{\circ} 30^{\prime} \mathrm{S}$, $47^{\circ} 27^{\prime} \mathrm{E}$; 274-325	C	xxx	xxx	XxX	xxx	
IM_2009_10078	Triplostephanus	fenestratus	North Madagascar	$14^{\circ} 30^{\prime} \mathrm{S}$, $47^{\circ} 27^{\prime} \mathrm{E}$; 274-325	C	$\mathbf{x x x}$	XxX	XXX	XXX	
IM_2007_15724	Triplostephanus	fujitai	Philippines	$9^{\circ} 27^{\prime} \mathrm{N}, 123^{\circ} 49^{\prime} \mathrm{E}$; 273-356	C	CONO306-08	EU015725	EU685377	EU685668	EU015610
IM_2007_30482	Triplostephanus	fujitai	Vanuatu	$15^{\circ} 42^{\prime} \mathrm{S}, 167^{\circ} 02^{\prime}$ E; 268-445	C	CONO181-08	EU685492		EU685628	
IM_2007_30544	Triplostephanus	jenningsi	Vanuatu	$15^{\circ} 28.6{ }^{\prime}$ S, 167 ${ }^{\circ} 15.1^{\prime}$ E; 3-31	C	CONO483-08	EU685597	EU685456	EU685749	$\mathbf{x x x}$
IM_2007_30533	Triplostephanus	sp.	Philippines	$9^{\circ} 42.1^{\prime} \mathrm{N}, 123^{\circ} 51.4^{\prime} \mathrm{E} ; 3-4$	E2	$\mathbf{X X X}$	$\mathbf{x x x}$		XXX	
IM_2007_30534	Triplostephanus	sp.	Philippines	$9^{\circ} 42.1^{\prime} \mathrm{N}, 123{ }^{\circ} 51.4^{\prime} \mathrm{E} ; 3-4$	E2	CONO243-08	EU685514	EU685359	EU685651	
IM_2007_30404	Triplostephanus	triseriatus	Philippines	$9^{\circ} 35.3^{\prime} \mathrm{N}, 123^{\circ} 52.2^{\prime} \mathrm{E} ; 8{ }^{\text {8 }}$ 8-87	C	CONO205-08	EU685497	EU685342	EU685633	XXX
IM_2009_10082	Triplostephanus	triseriatus	North Madagascar	$12^{\circ} 35,92^{\prime} \mathrm{S}, 48^{\circ} 35,22^{\prime} \mathrm{E} ; 50-52$	C	$\mathbf{x x x}$	XxX	XXX	XxX	
IM_2009_10084	Triplostephanus	triseriatus	North Madagascar	$12^{\circ} 35,92^{\prime} \mathrm{S}, 48^{\circ} 35,22^{\prime} \mathrm{E} ; 50-52$	C	XXX	XxX	XxX	Xxx	
IM_2009_10100	Triplostephanus	triseriatus	South Madagascar	$25^{\circ} 22.4{ }^{\prime} \mathrm{S}, 47^{\circ} 02.8^{\prime} \mathrm{E} ; 89-95$	C	XXX	XXX	XXX	XXX	
IM_2009_10102	Triplostephanus	triseriatus	South Madagascar	25 ${ }^{\circ} 02.45^{\prime} \mathrm{S}, 47^{\circ} 03.2 \mathrm{C}^{\prime} \mathrm{E}$; $54-56$	C	XXX	XxX	Xxx	XxX	
IM_2009_10108	Triplostephanus	triseriatus	South Madagascar	$25^{\circ} 22.4{ }^{\prime} \mathrm{S}, 47^{\circ} 02.8^{\prime} \mathrm{E} ; 89-95$	C	XXX	XXX	XxX	xxx	
IM_2009_10166	Triplostephanus	triseriatus	South Madagascar	$25^{\circ} 04.7^{\prime} \mathrm{S}, 47^{\circ} 03.4^{\prime} \mathrm{E} ; 64-65^{\text {c }}$	C	XXX	XXX	XxX	xxx	
IM_2009_10167	Triplostephanus	triseriatus	South Madagascar	$25^{\circ} 04.7^{\prime} \mathrm{S}$, $47^{\circ} 03.4^{\prime} \mathrm{E} ; 64^{\text {c-65 }}$	C	XXX	XxX	XxX	Xxx	
IM_2009_10168	Triplostephanus	triseriatus	South Madagascar	$25^{\circ} 04.7^{\prime} \mathrm{S}, 47^{\circ} 03.4{ }^{\prime} \mathrm{E}$; $64-65$	C	XXX	XxX	XxX	XxX	

MNHN Ids	Genus	species	Country	Coordinates; depth (m)	Clade	BOLD ID	Genbank COI	GenBank 12S	GenBank 16S	GenBank 28S
IM_2009_10169	Triplostephanus	triseriatus	South Madagascar	$25^{\circ} 04.7^{\prime} \mathrm{S}$, $47^{\circ} 03.4{ }^{\prime} \mathrm{E}$; $64-65$	C	XxX	XxX	XxX	XxX	
IM_2009_10170	Triplostephanus	triseriatus	South Madagascar	$25^{\circ} 04.7^{\prime} \mathrm{S}, 47^{\circ} 03.4{ }^{\prime} \mathrm{E}$; 64-65	C	XxX	XxX	XxX	XxX	
IM_2009_10172	Triplostephanus	triseriatus	South Madagascar	$25^{\circ} 04.7^{\prime} \mathrm{S}$, $47^{\circ} 03.4{ }^{\prime} \mathrm{E}$; $64-65$	C	XXX	XXX	XXX	XXX	
IM_2009_10173	Triplostephanus	triseriatus	South Madagascar	$25^{\circ} 04.7^{\prime} \mathrm{S}$, $47^{\circ} 03.44^{\prime} \mathrm{E}$; $64-65$	C	XxX	XxX	XxX	XxX	
IM_2009_10911	Triplostephanus	triseriatus	Australia	$27^{\circ} 02^{\prime} 069^{\prime \prime} \mathrm{S}, \underset{7,8}{153^{\circ} 19^{\prime} 00 " \mathrm{E} ; 3,5-}$	C	XXX	XXX		XXX	
IM_2009_9948	Triplostephanus	triseriatus	North Madagascar	$12^{\circ} 35,92^{\prime} \mathrm{S}, 48^{\circ} 35,22^{\prime} \mathrm{E} ; 50-52$	C	XXX	XXX	XXX	XxX	
IM_2009_9949	Triplostephanus	triseriatus	North Madagascar	$12^{\circ} 35,92^{\prime} \mathrm{S}, 48^{\circ} 35,22^{\prime} \mathrm{E} ; 50-52$	C	xxx	xxx	xxx	xxx	
IM_2009_9950	Triplostephanus	triseriatus	North Madagascar	$12^{\circ} 35,92^{\prime} \mathrm{S}, 48^{\circ} 35,22^{\prime} \mathrm{E}$; $50-52$	C	$\mathbf{x x x}$	$\mathbf{x x x}$	$\mathbf{x x x}$	$\mathbf{x x x}$	
IM_2007_40568	Cochlespira	pulchella			Outgroup	FRANZ207-08	EU685627	EU685488	EU685781	
IM_2007_17922	Conus	nereis			Outgroup	CONO339-08	EU015734	EU685489	EU685782	EU015619
IM_2007_40569	Harpa	kajiyamai			Outgroup		EU685626	EU685491	EU685783	
IM_2007_17685	Iotyrris	cingulifera			Outgroup	CONO515-08	EU127881	EU685490	EU685780	EU127890

łd!ısnuew ıoułn \forall Vd-HIN
Table 2
Primers used for gene amplification and sequencing. $\mathrm{PCG}=$ Protein Coding Gene

Gene	Primer name	Primer Sequences ($5^{\prime}-3^{\prime}$)	Sens	Tm	References	Length of Amplification	Gene type
COI	LCOI1490	GGT CAA CAA ATC ATA AAG ATA TTG G	F	48/50	Folmer et al., 1994	660	mtDNA PCG
COI	HCOI2198	TAA ACT TCA GGG TGA CCA AAA AAT CA	R	48/50	Folmer et al. 1994		
16S	16Sa-L	CGC CTG TtT ATC AAA AAC AT	F	51	Palumbi, 1996	460	mtDNA rRNA
16S	16Sb-H2	CTC CGG ttt gan CTC AGA TCA	R	51	Palumbi 1996		
12 S	12SA	AAA CTG GGA TTA GAT ACC CCA CTA T	F	51	Palumbi 1996	370	mtDNA rRNA
12 S	12SB	GAG GGT GAC GGG CGG TGT GT	R	51	Palumbi 1996		
28 S	Cl^{\prime}	ACC CGC TGA ATT TAA GCA T	F	56	Jovelin and Justine, 2001	830	
28 S	D2	TCC GTG ttt CAA GAC GGG	R	56	Jovelin and Justine, 2001		nDNA rRNA

ıduosnuew дouın $\forall \forall d-H I N$
Matrix of the anatomical characters used for the character mapping. Numbers in parentheses in the column "MNHN vouchers" correspond to specimens used to reconstruct the phylogenetic tree when the dissected specimen was not available or when its sequencing failed. JDT and YK: species dissected by John D. Taylor and Yuri Kantor.
2. Venom gland (VG): 0 - absent, 1 - present
3. Odontophore (OD): 0 - absent, 1 - present
4. Accessory proboscis structure (APS): 0 - absent, 1 - present - solid recurved, 3 - flat, 4 - semienrolled, 5 - hypodermic
5. Marginal radular teeth (RadT): 0 - radula absent, 1 - duplex, 2 - solid recurved, 3 - flat, 4 - semienrolled, 5 - hypodermic
6. Salivary gland(s) (SG): $0-$ absent, $1-$ present

Species	MNHN vouchers	clade	PR	VG	OD	APS	RadT	SG

Clathroterebra poppei	IM_2007_30546	E3	1	1	0	$?$	1	1
Duplicaria bernardi	IM_2009_10908	F	0	0	1	0	2	1
Duplicaria sp. 1	IM_2009_10111	F	0	0	1	0	2	1
Duplicaria sp. 2	IM_2009_10164	F	0	0	1	0	2	1
Duplicaria sp. 3	IM_2009_10134	E2	0	0	0	0	0	0
Euterebra fuscolutea	IM_2009_10127	F	0	0	1	0	2	1
Hastula hectica	YK (IM_2009_10104)	D	1	1	0	0	5	1
Hastula lanceata	IM_2007_30535	D	1	1	0	0	5	$?$
Hastula penicillata	IM_2007_30540	D	1	1	0	0	5	1
Hastula strigillata	IM_2007_30607	D	$?$	1	1	0	5	$?$
Hastula stylata	IM_2009_10106	D	1	1	0	0	4	1
Hastulopsis amoena	IM_2009_10909	E1	0	0	0	$?$	0	$?$
Hastulopsis conspersa	IM_2007_30619	E1	0	0	0	0	0	0
Hastulopsis minipulchra	IM_2009_10129	E5	0	0	0	0	0	0
Hastulopsis pseudopertusa	IM_2009_9953 (9954)	E5	0	0	0	0	0	1
Myurella affinis	IM_2007_30439	E1	0	0	0	1	0	0
Myurella flavofasciata	IM_2007_30465	E1	0	0	0	$?$	0	$?$
Myurella kilburni	IM_2007_30461	E5	1	1	0	0	5	1
Myurella lineaperlata	IM_2007_30635	E2	1	1	1	0	3	1
Myurella nebulosa	IM_2007_30408	E1	0	0	0	1	0	1
Oxymeris dimidiata	JDT (IM_2007_30373)	B	0	0	0	0	0	1
Oxymeris felina	IM_2007_30443	B	0	0	0	0	0	0

Table 4 Bayesfactor obtained with bayestraits from comparing the posterior probabilities of the independent and dependent models for seven discrete characters $(\mathrm{PR}=$ Proboscis, $\mathrm{VG}=$ venom gland, $\mathrm{OD}=$ Odontophore, $\mathrm{APS}=$ Accessory proboscis Structure, RadT1 and $2=$ Marginal radular Teeth - see text for

Mol Phylogenet Evol. Author manuscript; available in PMC 2013 July 01.

