# Cryptic species of *Archinome* (Annelida: Amphinomida) from vents and seeps

Elizabeth Borda<sup>1,9,\*</sup>, Jerry D. Kudenov<sup>2</sup>, Pierre Chevaldonné<sup>3</sup>, James A. Blake<sup>4</sup>, Daniel Desbruyères<sup>6</sup>, Marie-Claire Fabri<sup>6</sup>, Stéphane Hourdez<sup>7</sup>, Fredrik Pleijel<sup>8</sup>, Timothy M. Shank<sup>5</sup>, Nerida G. Wilson<sup>1</sup>, Anja Schulze<sup>9</sup> and Greg W. Rouse<sup>1,\*</sup>

<sup>1</sup> Scripps Institution of Oceanography, UC San Diego, La Jolla, CA 93093, USA

<sup>2</sup> Department of Biological Sciences, University of Alaska Anchorage, Anchorage, AK 99508, USA

<sup>3</sup> CNRS, UMR 7263 IMBE, Institut Méditerranéen de la Biodiversité et d'Ecologie Marine et Continentale, Aix-

Marseille Université, Station Marine d'Endoume, Rue de la Batterie des Lions, 13007 Marseille, France

<sup>4</sup> AECOM Marine and Coastal Center, Woods Hole, MA 02543, USA

<sup>5</sup> Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA

<sup>6</sup> Département Etude des Ecosystèmes Profonds, Centre de Brest de l'IFREMER, 29280 Plouzané Cedex, France

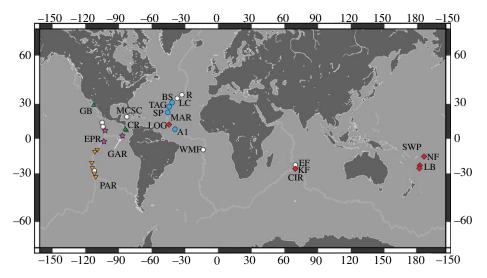
<sup>7</sup> CNRS, UPMC UMR 7127, Station Biologique de Roscoff, 29682 Roscoff, France

<sup>8</sup> Department of Marine Ecology, University of Gothenburg, Tjärnö, Strömstad, Sweden

<sup>9</sup> Marine Biology Department, Texas A&M University at Galveston, Galveston, TX 77553, USA

\*: Corresponding authors : Elisabeth Borda, email address : <u>lizborda@gmail.com</u> ; Greg W. Rouse, email address : <u>grouse@ucsd.edu</u>

#### Abstract:


Since its description from the Galapagos Rift in the mid-1980s, *Archinome rosacea* has been recorded at hydrothermal vents in the Pacific, Atlantic and Indian Oceans. Only recently was a second species described from the Pacific Antarctic Ridge. We inferred the identities and evolutionary relationships of *Archinome* representatives sampled from across the hydrothermal vent range of the genus, which is now extended to cold methane seeps. Species delimitation using mitochondrial cytochrome c oxidase subunit I (COI) recovered up to six lineages, whereas concatenated datasets (COI, 16S, 28S and ITS1) supported only four or five of these as clades. Morphological approaches alone were inconclusive to verify the identities of species owing to the lack of discrete diagnostic characters. We recognize five *Archinome* species, with three that are new to science. The new species, designated based on molecular evidence alone, include: *Archinome levinae* n. sp., which occurs at both vents and seeps in the east Pacific, *Archinome tethyana* n. sp., which inhabits Atlantic vents and *Archinome jasoni* n. sp., also present in the Atlantic, and whose distribution extends to the Indian and southwest Pacific Oceans. Biogeographic connections between vents and seeps are highlighted, as are potential evolutionary links among populations from vent fields located in the east Pacific and Atlantic Oceans, and Atlantic and Indian Oceans; the latter presented for the first time.

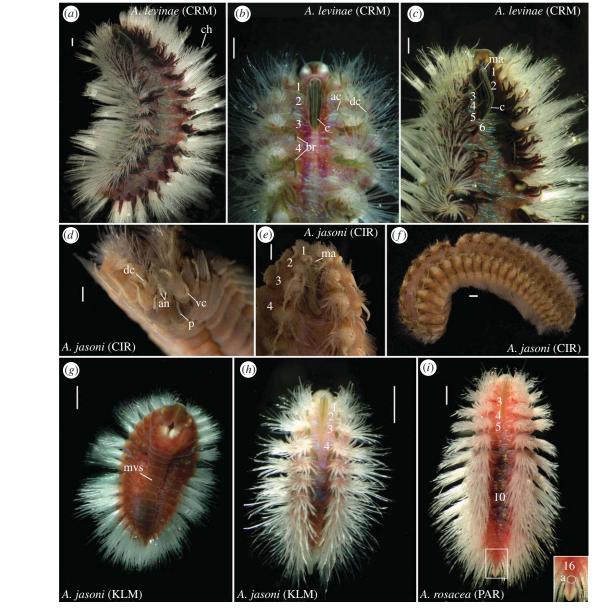
Keywords: deep sea ; hydrothermal vents ; cold methane seeps ; cryptic species ; polychaete

#### Introduction

It has been more than three decades since the discovery of deep ocean chemosynthetic communities. Over 600 animal species have been described from these habitats, mainly from hydrothermal vents near active tectonic plate boundaries, as well as from hydrocarbon seeps along continental margins [1–3]. Biodiversity patterns among deep-sea chemosynthetic fauna have been discussed at length in the context of taxonomic and environmental affinities leading to the designation of various biogeographic 'provinces' [1,3–6]. The few rigorous studies that have inferred these patterns in a phylogenetic context and on a broad scale [7–11] have focused on Pacific Ocean taxa [8,12–15]. Deep ocean currents, plate tectonics, seafloor spreading rates, oxygen levels, bathymetry, larval dispersal capabilities and sulfide or methane-rich communities, such as sunken wood and whale falls, as potential evolutionary 'stepping stones', are just some of the extrinsic factors that have been posited to drive species distributions in deep ocean chemosynthetic habitats [1,15–17].






**Figure 1.** Distribution map of *Archinome* species. Symbols indicate all known records, with sites sampled for this study denoted by triangles (*A. levinae* n. sp.), stars (*A. rosacea*), inverted triangles (*A. storchi*), circles (*A. tethyana* n. sp.), diamonds (*A. jasoni* n. sp.) and open circles (unsampled records). A1, Ashadze-1; BS, Broken Spur; CIR, Central Indian Ridge; CRM, Costa Rica Margin; EF, Edmund Field; EPR, East Pacific Rise; GAR, Galapagos Rift; GB, Guaymas Basin; KF, Kairei Field; LOG, Logatchev; LB, Lau Basins (KLM and TML); LC, Lost City; MAR, Mid-Atlantic Ridge; MCSC, Mid-Cayman Spreading Center; PAR, Pacific Antarctic Ridge; R, Rainbow; SP, Snake Pit; SWP, southwest Pacific basins; TAG, TAG; WMF, Wideawake Mussel Field. (Online version in colour.)

Significant effort has been put forth in characterizing the faunal communities of these dynamic ecosystems. Traditional taxonomy, which emphasizes the characterization of morphological diversity, cannot always account for other biological attributes, such as developmental [18] and ecological adaptations [7,19,20], leading to over or underestimates of diversity [17,21]. Molecular systematics has been a useful tool to provide a testable framework to infer evolutionary relationships of genetic lineages, independent of phenotypic, ontogenetic and ecological variation. The integration of molecular data has greatly improved our knowledge of species delimitations and distributions, however with the caveat that taxonomic, genetic and geographical diversity estimates are all sensitive to sampling [22].

103 Annelids account for approximately 20% (approx. 111 104 species) of the named hydrothermal vent animal species [2]. 105 The East Pacific Rise (EPR) has among the best-studied vent 106 annelids [23-30] and the incorporation of molecular data has 107 shed light on cryptic diversity found along this system 108 [12,14,21,31,32]. The giant vestimentiferan tubeworm, Riftia 109 pachyptila, is a dominant feature of hydrothermal vent sites 110 along the EPR and was shown to be genetically homogeneous 111 across a broad range (27° N-32° S), with a genetic break 112 identified at the Easter microplate (approx. 26° S) [14]. The 113 thermally tolerant Alvinella pompejana is known only from the 114 EPR and although morphologically similar across a distance 115 of approximately 5000 km (21° N–32° S), mitochondrial (mt) 116 data revealed a north/south genetic break [14,33]. Species of 117 Alvinella and Riftia are restricted to the east Pacific, whereas 118 Paralvinella is amphi-Pacific, though so far not recorded outside 119 of this ocean [2,34]. Major annelid clades are represented on a 120 broad geographical scale throughout diverse chemosynthetic 121 environments (e.g. Siboglinidae and Polynoidae), but among vent animals, only two 'species' have been recorded on a 122 123 global scale: the ampharetid Amphisamytha galapagensis [8,35] 124 and the amphinomid Archinome rosacea [36,37]; the latter 125 being the focus of this study, while the former is now known 126 to be a species complex [8].

Amphinomids are best represented by the stinging fireworms (e.g. Eurythoe and Hermodice), which are common inhabitants of tropical reef environments [38,39]. Archinome rosacea was the first amphinomid described from chemosynthetic habitats from the original 1979 collections from Rose Garden, located at the Galapagos Rift (GAR; 0° N; 2400 m) in the eastern Pacific [36]. Since its description in 1985, Archinome has been recorded across major spreading centres in the Pacific, Atlantic and Indian Oceans (figure 1) [2,40]. Archinome specimens (figure 2 and electronic supplementary material, figure S1) are easily recognizable among vent fauna, with prominent calcareous, bifurcate (forked) chaetae, an elongate trilobed caruncle (figure 2b,c), a fusiform (spindle-like) body shape, prominent mid-ventral muscular scutes (figure 2g) and can range in size from just a few millimetres to several centimetres. In 2006, the distribution of A. rosacea was restricted to the GAR and the northeast Pacific Rise (NEPR) [2], in contrast to earlier accounts, which proposed a more widespread range including the Guaymas Basin (GB) sedimented vents, Mid-Atlantic Ridge (MAR) and Central Indian Ridge (CIR) vent systems [41,42]. Referencing unpublished data, Desbruyères et al. [2] suggested Q2 the presence of at least three additional species, yet until recently A. rosacea remained the only named species. In 2009, Archinome storchi [40] was described from the Pacific Antarctic Ridge (PAR, 37°S). Also until recently, Archinome had only been recorded from hydrothermal vents. In 2009 and 2010, specimens were collected from cold methane seeps located at the Costa Rica margin (CRM) [43]. Archinome has been collected from a broad range of vent localities (figure 1) and depths (1000-3500 m) [40], however it is now known to occur at depths greater than 4000 m, including Ashadze-1 (A1; 12° N, MAR; 4080 m) [44].

Given *Archinome*'s broad distribution and uncertainty as to the number of species within the genus, we used an integrative systematic approach to: (i) infer the identities of *Archinome* specimens from across the 'cosmopolitan' range among vent systems; (ii) infer the evolutionary relationships among vent and seep *Archinome* and (iii) and explore the biogeographic links and diversification patterns across the Atlantic, Indian and Pacific Oceans. Proc R Soc B 20131876



165 Figure 2. Archinome species. (a) (Live) whole body, dorsal view of A. levinae n. sp. (purple morph; SIO-BIC AXXXX); (b) (Live) Dorsal view of anterior body segments Q6 of A. levinae n. sp. (SIO-BIC A1398; CRM, 9° N); (c) (Live) Dorsal view of anterior body segments of A. levinae n. sp. (purple morph; SIO-BIC AXXXX); (d) (Preserved) Frontal view of A. jasoni n. sp. (SIO-BIC A2313; CIR); (e) (Preserved) Dorsal view of anterior body segments of A. jasoni n. sp. (SIO-BIC A2313); (f) (Preserved) Whole 168 body, dorso-lateral view of A. jasoni n. sp. (SIO-BIC A2313); (g) (Live) Whole body, ventral view of A. jasoni n. sp. (KML); (h) (Live) Whole body, dorsal view of A. jasoni n. sp. (KML); (i) (Live) Dorsal view of A. storchi (PAR). Note within species variation in caruncle length and size for A. levinae n. sp. and A. jasoni n. sp. 170 Scale bars, 1 mm. a, anus; an, antennae; ac, accessory dorsal cirrus; br, branchia; c, caruncle; ch, chaetae; dc, dorsal cirrus; ma, median antenna; mvs, mid-ventral scutes; vc, ventral cirrus; numbers denote segments. (Online version in colour.) **O**7

## 2. Material and methods

## (a) Sample collection

127

128 129

136 137 138

139 140 141

149

164

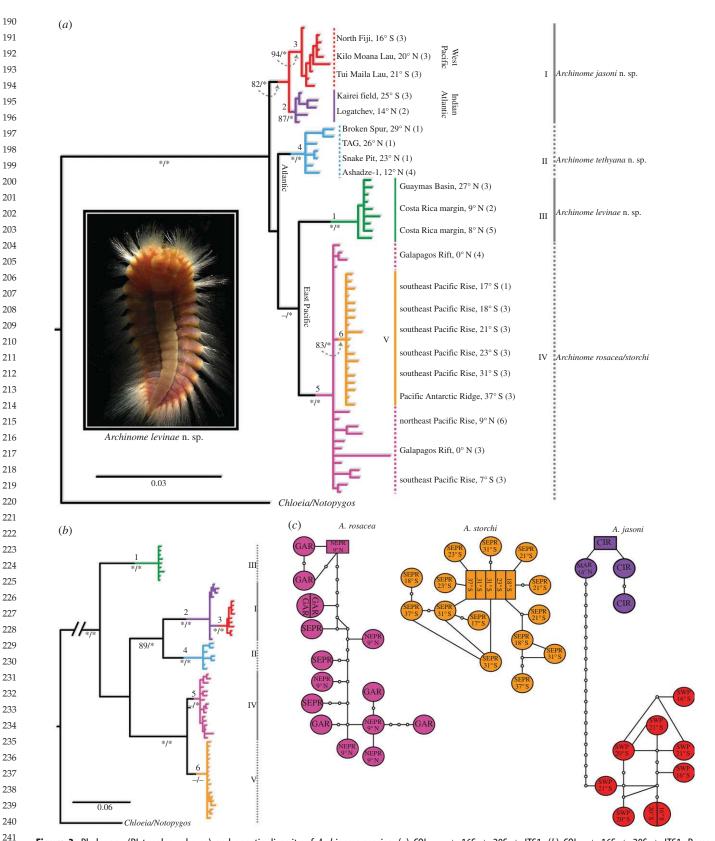
166

167

169

171

172 173


174

175

176 Archinome samples were collected using remotely operated 177 vehicles including Woods Hole Oceanographic Institution's 178 (WHOI) Jason I (R/V Knorr) and Jason II (R/V Melville), Monterey Bay Aquarium Research Institute's Tiburon (R/V Western Flyer) 179 and Institut Français de Recherche pour l'Exploitation de la 180 Mer's (IFREMER) Victor 6000 (R/V Pourquoi Pas?), and human 181 occupied vehicles Alvin (WHOI) and Nautile (IFREMER) during 182 deep-sea expeditions between 1990 through 2010. Figure 1 183 shows known records and sampling localities from vent and 184 seep communities included in this study. Specimens were 185 sampled from among larger vent fauna such as Vestimentifera 186 and mytilid bivalves, as well as from upper sediment layer 187 samples obtained from suction samplers and mesh scoops. Speci-188 mens were sorted aboard research vessels and when possible 189 relaxed in a 50:50 (7% MgCl<sub>2</sub>: seawater) MgCl<sub>2</sub> solution, followed by preservation in 10% formalin, then transferred to 70% ethanol for morphological evaluation and 80-95% Ethanol or stored at -80°C for molecular work. Molecular samples were kept cold at 4°C or frozen at -80°C or -20°C. Collection and voucher information and details regarding evaluation of morphology can be found in the electronic supplementary material, text and tables S1, S4 and S5).

## (b) Gene data collection, phylogenetic methods and genetic structure

Protocols for whole genomic DNA extraction, amplification and sequencing procedures are as reported by Borda et al. [45], unless stated otherwise. Electronic supplementary material, table S2 lists primers and annealing temperature profiles used for amplification of mt cytochrome c oxidase subunit I (COI), and mt 16S rDNA (16S). Amplification protocols for the nuclear internal transcribed spacer 1 (ITS1) and 28S rDNA (28S) followed Nygren &



**Figure 3.** Phylogeny (BI topology shown) and genetic diversity of *Archinome* species. (*a*)  $COI_{no3rd} + 16S + 28S + ITS1;$  (*b*)  $COI_{ALL} + 16S + 28S + ITS1$ . Roman numerals specify species clades; numerals 1–6 (above nodes) correspond to clades recovered in (*b*); ML bootstrap and BI posterior probabilities (boot/pp) shown below nodes; asterisk (\*) denotes boot > 90% and pp > 0.95; values below 80% denoted by minus sign '-'. (*c*)  $COI_{ALL} + 16S$  statistical parsimony haplotype networks (fixed 21-step connection limit) for *A. rosacea, A. storchi* and *A. jasoni* n. sp. Coloured circles and rectangles are scaled to size according to number of individuals per haplotype. Two or more names indicate identical shared haplotypes. Small open circles represent unsampled haplotypes. (Online version in colour.)

Pleijel [46] and Borda *et al.* [45], respectively. All data were analysed using maximum-likelihood (ML) and Bayesian inference (BI) procedures following methods described in [45], as was the choice of outgroup to root the analyses (i.e. *Chloeia viridis*). *Notopygos ornata* was included as an additional outgroup taxon based on hypothesized affinities based on body shape and

242

243

244

245

246

branchial morphology [37,45]. Phylogenetic trees (figure 3) are based on the BI topology, unless stated otherwise (see electronic supplementary material, figures S3 and S4), with support values (i.e. ML bootstrap (boot); posterior probabilities (pp)) indicated at nodes. Haplotype networks were generated for combined COI + 16S using TCS v. 1.21 [47], based on maximum parsimony

5

# **ARTICLE IN PRESS**

278

279

280

281

282

283

284

**Table 1.** Archinome pairwise distances. Mean Timura Nei (TrN; below diagonal) and uncorrected (above diagonal) interclade and intraclade (TrN; italics along diagonal) pairwise distances for COI and ITS1 (bold).

Ш Ш IV V I. Archinome jasoni n. sp. 0.017 0.106 0.133 0.144 0.139 0.001 0.013 0.020 0.013 0.013 II. Archinome tethyana n. sp. 0.118 0.130 0.112 0.112 0.009 0.014 0.032 0.025 0.025 0.000 III. Archinome levinae n. sp. 0.150 0.145 0.125 0.130 0.004 0.020 0.033 0.031 0.032 0.000 0.168 0.124 0.047 IV. Archinome rosacea 0.140 0.006 0.013 0.025 0.032 0.004 0.004 V. A. storchi 0.161 0.125 0.147 0.049 0.003 0.014 0.026 0.033 0.004 0.000

and with a 95% probability (14-step connection limit) and fixed step connection limits ranging 10–50); gaps were treated as missing data. GenBank (165, COI: JX027992–JX028115; 28S: JX028121–JX028141; ITS: KF288935–KF288959) and voucher accession numbers are provided in the electronic supplementary material, table S1. See also the electronic supplementary material, text for extended phylogenetic methods and sequence evaluation criteria.

## 3. Results

285 We inferred the phylogenetic relationships of Archinome 286 specimens from COI (59 sequences; approx. 654 bp), 16S (65 287 sequences; approx. 472 bp), 28S (21 sequences; approx. 288 966 bp) and ITS1 (25 sequences; 572 bp). Table 1 provides 289 mean intraclade and interclade TrN corrected and uncor-290 rected pairwise distances for complete COI ( $d_{COI}$ ) and ITS1 291  $(d_{\text{ITS}})$ . COI exhibited the highest genetic divergences among 292 clade terminals with the majority of synonymous changes 293 occurring in third codon positions. COI saturation plots 294 (see electronic supplementary material, figure S2) indicated 295 that third position transitions reached saturation after 296 approximately 13% sequence divergence. First and second 297 codon position transitions and first through third codon pos-298 ition transversions were not saturated (results not shown). 299 Interclade relationships and species identification were evalu-300 ated with the inclusion (COI $_{\scriptscriptstyle ALL})$  and exclusion (COI $_{no3rd})$  of 301 COI third codon positions in combined analyses with 16S, 302 28S and ITS1 (figure 3). Results from individual and mt gene 303 analyses can be found in the electronic supplementary material, 304 figures S3 and S4. Mean COI interclade-corrected genetic dis-305 tances were 12.5%, ranging 2.7-18.3%, and mean intraclade-306 corrected genetic distances was 0.5%, ranging 0-1.1%. ITS1 307 exhibited low divergences in comparison to COI. The highest 308 corrected genetic pairwise distance was 3.6%. Mean ITS1 309 interclade-corrected genetic distance was 1.8%, ranging 310 1.0-3.6%, and mean intraclade-corrected genetic distance was 311 0.1%, ranging 0-1.0% (see table 1 amd electronic supplemen-312 tary material, table S3). Refer to the electronic supplementary 313 material, text for results regarding morphological evaluation.

The phylogenetic relationships among *Archinome* species accepted here are based on  $COI_{no3rd} + 16S + 28S + ITS$  the electronic supplementary material, text. Numerical clades 1-6 above nodes correspond to those recovered in the analyses of concatenated  $COI_{ALL} + 16S + 28S + ITS1$  (figure 3b; see also the electronic supplementary material, figure S3A). Clade I (boot/pp = 82/0.94;  $d_{COI} = 1.7\%$ ), hereafter Archinome jasoni n. sp., included the southwest (SW) Pacific vent specimens (clade 3; boot/pp = 94/1.0;  $d_{\text{COI}} = 0.5\%$ ) from North Fiji (NF; 16° S; 1985 m), Kilo Moana Lau (KML; 20° S; 2650 m) and Tui Malila Lau (TML; 21° S; 1900 m) and clade 2 (boot/ pp = 87/1.0;  $d_{COI} = 0.3\%$ ), which included specimens from Logatchev (14° N, MAR, 3038 m) and Kairei field (25° S, CIR, 2432 m). Archinome jasoni n. sp. was supported as sister to the remaining Archinome species (boot/pp = 100/0.98). The highest A. jasoni n. sp. d<sub>COI</sub> was 3.6% between specimens from NF/KML and LOG. The lowest interclade  $d_{COI}$  was 10.4% (CIR, clade 2) with clade II (boot/pp = 100/1.0); hereafter, Archinome tethyana n. sp. The A. tethyana n. sp. clade included the northern MAR specimens (clade 4; boot/ pp = 99/1.0). Sequence data for all four genes were available for A1 (MAR) specimens; only three representative 16S sequences (see electronic supplementary material, figure S3B) were available from Broken Spur (29° N; 3056 m), TAG (26° N; 3655 m) and Snake Pit (23° N; 3660 m). Clade III (clade 1; boot/pp = 98/1.0; mean  $d_{\text{COI}} = 0.4\%$ ), hereafter, Archinome levinae n. sp., included specimens from GB vents (27° N; approx. 2400 m) and CRM seeps (8-9° N; 1000-1800 m). The highest A. levinae n. sp. d<sub>COI</sub> was 0.9% and the lowest interclade  $d_{\text{COI}}$  was 13.2% (with clade IV). Archinome levinae n. sp. was sister to Clade IV (boot/pp = 98/1.0;  $d_{COI} = 2.7\%$ ), representing A. rosacea and A. storchi (Clade V) from the GAR, EPR and PAR (clades 5 and 6; figure 3b). Clade 5 ( $d_{\text{COI}} = 0.6\%$ ) included A. rosacea from GAR, as well as specimens from EPR 9° N (2500 m) and 7° S (2700 m). Clade 6 ( $d_{COI} = 0.3\%$ ; boot/pp = 83/1.0) was comprised PAR specimens and those sampled northward along the southeast Pacific Rise (SEPR) from 31° S to 17° S (2200-2500 m). Clade 6 was a subclade nested among unresolved A. rosacea representatives (see also the electronic supplementary material, figures S3B and S4A). The highest  $d_{\text{COI}}$  was 5.7%, between representatives from the

(figure 3a). The data supported four Archinome clades, I-IV,

of which three are regarded as new species and described in

GAR (*A. rosacea*) and 17° S (*A. storchi*). The lowest interclade  $d_{COI}$  was 11.9%, between *A. tethyana* n. sp. and *A. rosacea* (9° N, 7° S). The positions of *A. tethyana* n. sp. and *A. levinae* n. sp. 319 received low (boot/pp = 52/0.78) to moderate support 320 (boot/pp = 74/1.0), respectively.

321 Evaluation of concatenated  $COI_{AU} + 16S + 28S + ITS1$ 322 (figure 3b) supported that Archinome was comprised five 323 clades showing minimal geographical overlap. The resulting 324 topology was similar to that of COI<sub>ALL</sub> (see electronic sup-325 plementary material, figures S3A and S2B), with the 326 exception that A. jasoni n. sp. clade 3 was nested within 327 clade 2, instead of showing reciprocal monophyly (figure 3a). 328 The topology deviated from that observed in figure 3a, in 329 that vent/seep A. levinae n. sp. was the sister group to 330 the remaining Archinome species and reciprocally monophyle-331 tic (boot/pp = 95/1.0) A. rosacea (boot/pp = 77/0.66) and 332 A. storchi (boot/pp = 75/1.0) clades were recovered; each 333 clade with low support, however. Combined  $COI_{ALL} + 16S$ 334 data (n = 35) supported distinct networks (even with a fixed 335 50 step connection limit) for A. rosacea (n = 16) and A. storchi 336 (n = 19), each containing 15 haplotypes. A single haplotype 337 was shared between two A. rosacea individuals (GAR), while 338 one haplotype was shared among five A. storchi individuals 339 from the SEPR (figure 3c). No haplotypes were shared among 340 A. rosacea (7° S) and A. storchi (17° S) individuals found approxi-341 mately 1200 km apart. A single network (figure 3c; fixed 21-step 342 limit connection), covering approximately 25 000 km distance, 343 was recovered for A. jasoni (n = 13), with 12 haplotypes, of 344 which one was shared between two individuals from SW 345 Pacific basin ( $16^{\circ}$  S,  $20^{\circ}$  S).

### 4. Discussion

346

347 348

349

350

#### (a) Delineation of cryptic species in the deep sea

351 Accounts of cryptic species in the marine realm are no longer 352 new phenomena. Molecular phylogenies often deviate from 353 those relying on traditional taxonomic tools and continue to 354 reveal cryptic diversity [7,21,38,48]. In the deep sea, morpho-355 logical stasis may not coincide with speciation events owing 356 to stabilizing selection driven by extreme abiotic factors 357 (e.g. low dissolved oxygen, low temperatures and darkness), 358 in turn, introducing challenges in biodiversity estimates 359 [21,49]. In recent years, mtDNA has been a primary tool 360 for the detection of cryptic species [7,50], although the 361 approach remains controversial [51-54], and can be sensitive 362 to sampling [55]. As such, integrative taxonomic approaches 363 (e.g. multi-locus datasets) are recommended [21,56,57]. Mor-364 phological taxonomic approaches (e.g. light microscopy, 365 SEM) alone did not allow conclusive identification of new 366 species, as sampling was comprised individuals varying in 367 size and exhibiting variable and/or overlapping mor-368 phologies, within and among clades (figure 2 and electronic 369 supplementary material, table S5). Future work based on 370 larger sample sizes and consideration of size-related variation, 371 may reveal species-specific characters. Based on the currently 372 available material, we designate new Archinome species on 373 the basis of molecular evidence alone (see also [58]).

Our approach for estimating *Archinome* species diversity was to include broad geographical sampling and to use a multi-locus framework (figure 3). We recognize that our sampling exhibits large geographical gaps (figure 1) leaving an incomplete picture of species distributions. Our phylogenetic hypothesis for Archinome as a whole (figure 3a) required the exclusion of COI third codon position (owing to saturation), resulting in a conflicting topology when the third position was considered (figure 3b). The designation of A. levinae n. sp. and A. tethyana n. sp. was unambiguous, however, this was less so for the remaining species. In particular, A. rosacea appeared to be paraphyletic with respect to A. storchi (figure 3a). However, COI was not saturated at more restricted levels, and when the third codon position was included, it became clear that both species were reciprocally monophyletic (figure 3b). Furthermore, these two clades were disparate enough not to form a single haplotype network (figure 3c) and showed a nearly 5% COI divergence. Although we did not find clear morphological differences between A. rosacea and A. storchi in terms of the argued diagnostic features [40] (figure 2i; for further discussion, see the electronic supplementary material, table S5), we accept both as distinct species. On the same criteria, A. jasoni n. sp. was best left as a broadly distributed species (figure 3a-c), despite vast distances separating LOG, CIR and SW Pacific vent populations. COI sequence divergences were less than 4%, with no shared haplotypes. Given this low genetic divergence, the absence of clear morphological distinction and variable age classes among A. jasoni n. sp. populations (figure 2d-f), we do not have sufficient evidence to designate them as separate species at this time. We recognize the presence of two, possibly three lineages, as A. jasoni n. sp., which only further sampling will be able to resolve.

# (b) Distribution and diversification of *Archinome* across chemosynthetic systems

The diversification of Archinome appears to align (in part) with Moalic et al.'s [5] hypothesis, which proposed west Pacific vent fauna as 'ancestral' and 'central' to those found elsewhere. Our phylogenetic hypothesis deviated with respect to identifying potential links between the Atlantic and eastern Pacific seep/vent communities. However, the biogeographic roles of cold seeps and the Mid-Cayman Spreading Center (MCSC) [59], for example, were not considered in their study. Archinome jasoni n. sp. was the sister taxon to the remaining species and included one clade that was exclusive to the SW Pacific basins. Although taxonomic affinities between the CIR and west Pacific have previously been reported [6,42], only a handful of phylogenetic studies have included CIR fauna, and none have evaluated annelids prior to this study. Archinome jasoni n. sp. also included a CIR-LOG clade. Van Dover et al. [42] proposed CIR as a mid-point for faunal exchange between the Atlantic and west Pacific along the southwest and southeast Indian Ridges, respectively. This scenario appears to be consistent with the presence of A. jasoni n. sp. in both regions.

High rates of gene flow and low genetic variation have been reported for *Rimicaris* vent shrimp from 36° N to 4° S [60–64]. Zelnio & Hourdez [64] found west Pacific *Chorocaris vandoverae* as sister to *Rimicaris exoculata* + *Chorocaris chacei* (MAR); however, the phylogenetic placement of CIR *Rimicaris kairei* has not yet been inferred. The gastropod, *Alviniconcha hessleri*, reportedly occurs in the west Pacific and Indian Oceans [42], however *A*. aff. *hessleri* (CIR) was genetically distinct from its west Pacific counterpart, yet clustered among west Pacific *Alviniconcha* sp. Type 2 [65,66]. A CIR + SW Pacific clade has also been reported for *Bathymodiolus* mussels, showing little

7

# **ARTICLE IN PRESS**

379 sequence divergences among them [10,11]. Low genetic diver-380 gences were also observed among CIR and SW Pacific A. jasoni 381 n. sp., and the inclusion of MAR samples now corroborates pre-382 viously reported affinities among Atlantic, Indian and western 383 Pacific Ocean fauna [5,42]. Unlike widespread R. exoculata, we 384 recovered two species in the MAR. However, our limited 385 sampling could have missed the co-occurrence of A. jasoni 386 n. sp. and A. tethyana n. sp. Alternatively, their colonizing 387 routes leading to A1 and LOG might be significantly separate, 388 and they may never be found in sympatry. Only more 389 extensive sampling will be able to clarify this.

390 Biogeographic links between the Atlantic and east Pacific 391 were proposed by Van Dover et al. [3] and were also observed 392 here in the sister group relationship between the Atlantic 393 A. tethyana n. sp. and the eastern Pacific species. Atlantic/ 394 east Pacific affinities have been shown for several annelid 395 taxa [1,8,67] pointing towards a former connection between 396 both oceans via a deep ocean passage [68] prior to the closure 397 of the Isthmus of Panama. Recent discoveries of MCSC vent 398 fauna suggest affinities with MAR fauna [59,69], including 399 a new Rimicaris species [69] and Archinome spp. (A. Glover, 40**Q3** personal communication). Although A. tethyana n. sp. was 401 sister to the east Pacific clades, its position was not highly 402 supported. This could be attributed to missing data for 403 northern MAR specimens and/or unsampled representatives 404 from intermediate geographical regions (e.g. MCSC; to be 405 evaluated elsewhere).

406 The diversification of A. rosacea, A. storchi and A. levinae 407 n. sp. is likely attributed to vicariant events involving a for-408 merly widespread ancestor that became isolated from the 409 Atlantic; the latter possibly coincident with the rise of the 410 Central American (CA) Isthmus (approx. 15 Ma; [68]) and 411 subsequent tectonic shifts and subduction events of the 412 Pacific, Cocos and Nazca Plates. The continental margin dis-413 tribution of A. levinae n. sp. may be associated with vicariance 414 coincident with the rise of the CA Isthmus and the formation 415 of the Gulf of California in the Late Miocene (less than 8 Ma;  $41\mathbf{O4}$ [70,71]). Although records are few, shared GB/CRM species 417 have previously been reported [7,8], and now includes 418 A. levinae n. sp. Archinome samples from cold seeps at the GB (27°34' N, 111°27' W) were not available for this study, 419 420 though we suspect A. levinae n. sp. may be found there 421 given comparable depths (approx. 1700 m) and being located 422 a mere 50 km north from the GB vent communities [72]. 423 Hydrothermal vents at GB are particular with seeping 424 fluids that circulate through thick sediment layers [73]. The 425 presence of A. levinae n. sp. nearly 4000 km south at methane 426 seeps of the CRM suggests either long distance dispersal 427 capacity of larvae or perhaps the presence of overlooked che-428 mosynthetic environments along the CA margin. Genetic 429 isolation between A. levinae n. sp. and A. rosacea/A. storchi 430

may have been caused by the formation of the deep Middle American Trench [70] having served as a dispersal barrier to vent populations at GAR (approx. 1000 km south) and the EPR. The genetic break between  $7^\circ\,S$  and  $17^\circ\,S$  (SEPR), as seen between A. rosacea and A. storchi, may be owing to the sampling gap [22] or the result of vicariance associated with the formation and rotation of the Bauer microplate (between  $10^{\circ}$  and  $15^{\circ}$  S) in the Miocene [74]. This event has been proposed to have disrupted vent communities and flow of ocean currents along the SEPR, potentially restricting gene flow from more northerly populations (e.g. 7° S; [15]). Compared to other EPR taxa, Bathymodiolus, Lepetodrilus and Alvinella, appear to conform to this trend, whereas species distributions of Amphisamytha, Branchipolynoe, Hesiolyra, Riftia and Tevnia appear to be less constrained across this presumed dispersal barrier [8,14,15].

## 5. Conclusion

We evaluated the phylogeny of *Archinome* from chemosynthetic environments on a global scale to redefine the geographical distribution of *A. rosacea* and *A. storchi*, the former of which had been unclear, and revealed the presence of three previously undescribed cryptic species. Among these, *A. levinae* n. sp., inhabiting both vent and methane seep sites found 4000 km apart and *A. jasoni* n. sp., which for the first time potentially supports biogeographic links among Atlantic, Indian and Pacific Ocean vent systems. With the inclusion of representatives from poorly sampled chemosynthetic sites, in particular CIR and cold seep communities, we hope this study will provide a framework for continued elucidation of the diversification and evolution among deep-sea invertebrate species from chemosynthetic environments.

Acknowledgements. We thank the captains and crews of the R/V Atlantis, R/V Western Flyer, R/V Knorr, R/V Melville, R/V L'Atalante, R/V Pourquoi-Pas? and the pilots of ROVs Tiburon, ROVs Jason I and Jason II, and Victor 6000 and the pilots and crews of HOVs Alvin and Nautile for their technical support. Special thanks to Bob Vrijenhoek, chief scientist of the cruises to the SEPR (2005) and SWP (2005), for inviting G.W.R., F.P. and N.G.W. aboard. We are grateful to Didier Jollivet, chief scientist of the BioSpeedo 2004 cruise (R/V L'Atalante, HOV Nautile), Yves Fouquet, chief scientist of the Serpentine 2007 cruise (R/V Pourquoi Pas? ROV Victor 6000) and to Lisa Levin, chief scientist of the CRROCKS cruises (2009; 2010). Thanks also to Bob Vrijenhoek, Rich Lutz, Didier Jollivet and Cindy Van Dover for providing specimens from GB, MAR and CIR. We also thank Dieter Fiege and Gordon Bock for initial discussions on the morphology of Archinome. Harim Cha kindly accessioned the material into the SIO-BIC.

Funding statement. Financial support for this study was provided by NSF DBI-0706856, Census of Marine Life TAWNI, SSB Mini-PEET and EOL Rubenstein Fellowship (E.B.), with additional support from DBI-1036186 (A.S.) and OCE-1029160 (G.W.R.).

## References

- Tunnicliffe V, McArthur AG, McHugh D. 1998 A
   biogeographical perspective of the deep-sea
   hydrothermal vent fauna. *Adv. Mar. Biol.* 34,
   353-442. (doi:10.1016/S0065-2881(08)60213-8)
   Desbruyères D, Segonzac M, Bright M. 2006
- Handbook of deep-sea hydrothermal vent fauna.
  Linz, Austria: Denisia 18.
- Van Dover CL, German CR, Speer KG, Parson LM, Vrijenhoek RC. 2002 Evolution and biogeography of deep-sea vent and seep invertebrates. *Science* 295, 1253–1257. (doi:10.1126/science.1067361)
- Rogers AD *et al.* 2012 The discovery of new deep-sea hydrothermal vent communities in the southern ocean and implications for biogeography.

*PLoS Biol.* **10**, e1001234. (doi:10.1371/journal. pbio.1001234)

 Moalic Y, Desbruyères D, Duarte CM, Rozenfeld AF, Bachraty C, Arnaud-Haond S. 2011 Biogeography revisited with network theory: retracing the history of hydrothermal vent communities. *Syst. Biol.* 61, 127–137. (doi:10.1093/sysbio/syr088)

- 442 6. Bachraty C, Legendre P, Desbruyères D. 2008
  443 Biogeographic relationships among deep-sea
  444 hydrothermal vent faunas at global scale. *Deep-Sea*445 *Res.* 56, 1371–1378. (doi:10.1016/j.dsr.2009.
  446 01.009)
- 447 7. Johnson SB, Waren A, Vrijenhoek RC. 2008 DNA
   448 barcoding of *Lepetodrilus* limpets reveals cryptic
   449 species. *J. Shellfish Res.* 27, 43–51. (doi:10.2983/
   450 0730-8000)
- 451 8. Stiller J, Rousset V, Pleijel F, Chevaldonné P,
  452 Vrijenhoek RC, Rouse GW. 2013 Phylogeny,
  453 biogeography and systematics of hydrothermal vent
  454 and methane seep *Amphsamytha* (Ampharetidae,
  455 Annelida), with descriptions of three new species.
  456 Syst. Biodivers. 11, 35–65. (doi:10.1080/14772000.
  457 2013.772925)
- Gollner S, Fontaneto D, Martinez Arbizu P. 2011
   Molecular taxonomy confirms morphological
   classification of deep-sea hydrothermal vent
   copepods (Dirivultidae) and suggests broad
   physiological tolerance of species and frequent
   dispersal along ridges. *Mar. Biol.* 158, 221–231.
   (doi:10.1007/s00227-010-1553-y)
- Kyuno A, Shintaku M, Fujita Y, Matsumoto H,
  Utsumi M, Watanabe H, Fujiwara Y, Miyazaki J.
  2009 Dispersal and differentiation of deep-sea
  mussels of the genus *Bathymodiolus* (Mytilidae,
  Bathymodiolinae). *J. Mar. Biol.* 2009, 625672.
  (doi:10.1155/2009/625672)
- 471 11. Miyazaki J, de Oliveira ML, Fujita Y, Matsumoto H,
  472 Fujiwara Y. 2010 Evolutionary process of deep-sea
  473 Bathymodiolus mussels. PLoS ONE 5, e10363.
  474 (doi:10.1371/journal.pone.0010363)
- 475 12. Chevaldonné P, Jollivet D, Desbruyères D, Lutz RA,
  476 Vrijenhoek RC. 2002 Sister-species of eastern Pacific
  477 hydrothermal vent worms (Ampharetidae,
  47**Q5** Alvinellidae, Vestimentifera) provide new
  479 mitochondrial COI clock calibration. *Cah. Biol. Mar.*480 **43**, 367–370.
- Tyler PA, German CR, Ramirez-Llodra E, Van Dover
   CL. 2002 Understanding the biogeography of
   chemosynthetic ecosystems. *Oceanol. Acta* 25,
   227–241. (doi:10.1016/S0399-1784(02)01202-1)
- Hurtado LA, Lutz RA, Vrijenhoek RC. 2004 Distinct
  patterns of genetic differentiation among annelids
  of eastern Pacific hydrothermal vents. *Mol. Ecol.*13, 2603 2615. (doi:10.1111/j.1365-294X.2004.
  02287.x)
- Plouviez S, Shank TM, Faure B, Daguin-Thiebaut C,
  Viard F, Lallier FH, Jollivet D. 2009 Comparative
  phylogeography among hydrothermal vent species
  along the East Pacific Rise reveals vicariant processes
  and population expansion in the South. *Mol. Ecol.* **18**, 3903 3917. (doi:10.1111/j.1365-294X.2009.
  04325.x)
- 497 16. Tyler PA, Young CM. 1999 Reproduction and
   498 dispersal at vents and cold seeps. *J. Mar. Biol.* 499 *Assoc. UK* **79**, 193–208. (doi:10.1017/
   500 S0025315499000235)
- 501
   17.
   Vrijenhoek RC. 2010 Genetic diversity and

   502
   connectivity of deep-sea hydrothermal vent

   503
   metapopulations. *Mol. Ecol.* **19**, 4391–4411.

   504
   (doi:10.1111/j.1365-294X.2010.04789.x)

- Shank TM, Lutz RA, Vrijenhoek RC. 1998 Molecular systematics of shrimp (Decapoda: Bresiliidae) from deep-sea hydrothermal vents, I: enigmatic 'small orange' shrimp from the Mid-Atlantic Ridge are juvenile *Rimicaris exoculata. Mol. Mar. Biol. Biotechnol.* 7, 88–96.
- Goffredi SK, Hurtado LA, Hallam S, Vrijenhoek RC. 2003 Evolutionary relationships of deep-sea vent and cold seep clams (Mollusca: Vesicomyidae) of the 'pacifica/lepta' species complex. Mar. Biol. 142, 311–320. (doi:10.1007/s00227-002-0941-3)
- Johnson SB, Young CR, Jones WJ, Waren A, Vrijenhoek RC. 2006 Migration, isolation, and speciation of hydrothermal vent limpets (Gastropoda; Lepetodrilidae) across the Blanco Transform Fault. *Biol. Bull.* **210**, 140–157. (doi:10. 2307/4134603)
- Vrijenhoek RC. 2009 Cryptic species, phenotypic plasticity, and complex life history: assessing deepsea fauna diversity with molecular markers. *Deep-Sea Res.* 56, 1713–1723. (doi:10.1016/j.dsr2.2009. 05.016)
- Audzijonyte A, Vrijenhoek RC. 2010 When gaps really are gaps: statistical phylogeography of hydrothermal vent invertebrates. *Evolution* 64, 2369–2384. (doi:10.1111/j.1558-5646.2010. 00987.x)
- Cavanaugh CM, Gardiner SL, Jones ML, Jannasch HW, Waterbury JB. 1981 Prokaryotic cells in the hydrothermal vent tube worm *Riftia pachyptila* Jones: possible chemoautotrophic symbionts. *Science* 213, 340–342. (doi:10.1126/science. 213.4505.340)
- Marsh AG, Mullineaux LS, Young CM, Manahan DT. 2001 Larval dispersal potential of the tubeworm *Riftia pachyptila* at deep-sea hydrothermal vents. *Nature* 411, 77–80. (doi:10.1038/35075063)
- Fisher CR *et al.* 1988 Physiology, morphology, and biochemical composition of *Riftia pachyptila* at Rose Garden in 1985. *Deep-Sea Res.* 35, 1745–1758. (doi:10.1016/0198-0149(88)90047-7)
- Fisher CR, Childress JJ, Sanders NK. 1988 The role of vestimentiferan hemoglobin in providing an environment suitable for chemoautotrophic sulfideoxidizing endosymbionts. *Symbiosis* 5, 229–246.
- Grzymski JJ *et al.* 2008 Metagenome analysis of an extreme microbial symbiosis reveals eurythermal adaptation and metabolic flexibility. *Proc. Natl Acad. Sci. USA* **105**, 17 516–17 521. (doi:10.1073/pnas. 0802782105)
- Le Bris N. 2007 How does the annelid *Alvinella* pompejana deal with an extreme hydrothermal environment? *Rev. Environ. Sci. Biotech.* 6, 197–221. (doi:10.1007/s11157-006-9112-1)
- 29. Pradillon F, Gaill F. 2007 Adaptation to deep-sea hydrothermal vents: some molecular and developmental aspects. *J. Mar. Sci. Technol.* **15**, 37–53.
- Gagnière N *et al.* 2010 Insights into metazoan evolution from *Alvinella pompejana* cDNAs. *BMC Genomics* **11**, 634. (doi:10.1186/1471-2164-11-634)
- 31. Jollivet D, Desbruyeres D, Bonhomme F, Moraga D. 1995 Genetic differentiation of deep-sea

hydrothermal vent alvinellid populations (Annelida: Polychaeta) along the East Pacific Rise. *Heredity* **74**, 376–391. (doi:10.1038/hdy.1995.56)

- Young CR, Fujio S, Vrijenhoek RC. 2008 Directional dispersal between mid-ocean ridges: deep-ocean circulation and gene flow in *Ridgeia piscesae. Mol. Ecol.* **17**, 1718–1731. (doi:10.1111/j.1365-294X. 2008.03609.x)
- Plouviez S, Le Guen D, Lecompte O, Lallier FH, Jollivet D. 2010 Determining gene flow and the influence of selection across the equatorial barrier of the East Pacific Rise in the tube-dwelling polychaete *Alvinella pompejana. BMC Evol. Biol.* **10**, 220. (doi:10.1186/1471-2148-10-220)
- Rousset V, Rouse GW, Feral J-P, Desbruyeres D, Pleijel F. 2003 Molecular and morphological evidence of Alvinellidae relationships (Terebelliformia, Polychaeta, Annelida). *Zool. Scr.* 32, 185–197. (doi:10.1046/j.1463-6409.2003. 00110.x)
- Zottoli RA. 1983 Amphisamytha galapagensis, a new species of ampharetid polychaete from the vicinity of abyssal hydrothermal vents in the Galapagos Rift, and the role of this species in rift ecosystems. Proc. Biol. Soc. Wash. 96, 379–391.
- Blake JA. 1985 Polychaeta from the vicinity of deepsea geothermal vents in the eastern Pacific. 1. Euphrosinidae, Phyllodocidae, Hesionidae, Nereidae, Glyceridae, Dorvilleidae, Orbiniidae, and Maldanidae. *Bull. Biol. Soc. Wash.* 6, 67–101.
- Kudenov JD. 1991 A new family and genus of the order Amphinomida (Polychaeta) from the Galapagos hydrothermal vents. In *Proceedings of the* 2nd International Polychaeta Conference (eds ME Petersen, JB Kirkegaard), Copenhagen, 1986. Systematics, Biology and Morphology of World Polychaeta. Ophelia 5, 111–120.
- Barroso R, Klautau M, Sole-Cava AM, Paiva PC. 2010 Eurythoe complanata (Polychaeta: Amphinomidae), the 'cosmopolitan' fireworm, consists of at least three cryptic species. Mar. Biol. 157, 69–80. (doi:10.1007/s00227-009-1296-9)
- Arhens J, Borda E, Barroso R, Campbell AM, Wolf A, Nugues M, Paiva P, Rouse GW, Schulze A. 2013 The curious case of *Hermodice carunculata* (Annelida: Amphinomidae): genetic homogeneity throughout the Atlantic Ocean and adjacent basins. *Mol. Ecol.* 22, 2280–2291. (doi:10.1111/mec.12263)
- Fiege D, Bock G. 2009 A new species of Archinome (Polychaeta: Archinomidae) from hydrothermal vents on the Pacific Antarctic Ridge 37° S. J. Mar. Biol. Assoc. UK 89, 689–696. (doi:10.1017/ S0025315409000174)
- Desbruyères D, Segonzac M. (eds) 1997 Handbook of deep-sea hydrothermal vent fauna. Brest, France: IFREMER.
- Van Dover CL *et al.* 2001 Biogeography and ecological setting of Indian Ocean hydrothermal vents. *Science* 294, 818–823. (doi:10.1126/science.1064574)
- Levin LA *et al.* 2012 A hydrothermal seep on the Costa Rica margin: middle ground in a continuum of reducing ecosystems. *Proc. R. Soc. B* 279, 2580–2588. (doi:10.1098/rspb.2012.0205)

- 505 44. Fabri MC, Bargain A, Briand P, Gebruk A, Fouquet Y, 506 Morineaux M, Desbruyères D. 2011 Hydrothermal 507 vent community of a new deep-sea field Ashadze-1, 508  $12^\circ~58'~\text{N}$  on the Mid-Atlantic Ridge and a 509 comparison of all northern Atlantic chemosynthetic 510 ecosystems. J. Mar. Biol. Assoc. UK 91, 1-13.
- 511 (doi:10.1017/S0025315410000731) 512 45 Borda E, Kudenov JD, Beinhold C, Rouse GW. 2012 513 Towards a revised Amphinomidae (Annelida: 514 Amphinomida): description and affinities of a new 515 genus and species from the Nile deep-sea Fan,
- 516 Mediterranean Sea. Zool. Scr. 41, 307-325. (doi:10. 517 1111/j.1463-6409.2012.00529.x) 518 46. Nygren A, Pleijel F. 2011 From one to ten in a
- 519 single stroke: resolving the European Eumida 520 sanguinea (Phyllodocidae, Annelida) species 521 complex. Mol. Phylogenet. Evol. 58, 132-141. 522 (doi:10.1016/j.ympev.2010.10.010)
- 523 47. Clement M, Posada D, Crandall KA. 2000 TCS: a 524 computer program to estimate gene genealogies. 525 Mol. Ecol. 4, 331-346.
- 526 48. Knowlton N. 2000 Molecular genetic analyses of 527 species boundaries in the sea. Hydrobiologia 420, 528 73-90. (doi:10.1023/A:1003933603879)
- 529 49. Bickford D, Lohman DJ, Sodhi NS, Ng PKL, Meier R, 530 Winker K, Ingram KK, Das I. 2007 Cryptic species as 531 a window on diversity and conservation. Trends Ecol. 532 *Evol.* **22**, 148–155. (doi:10.1016/j.tree.2006.11.004)
- 533 50. Hebert PD, Penton EH, Burns JM, Janzen DH, 534 Hallwachs W. 2004 Ten species in one: DNA 535 barcoding reveals cryptic species in the neotropical 536 skipper butterfly Astraptes fulgerator. Proc. Natl 537 Acad. Sci. USA 101, 14812-14817. (doi:10.1073/ 538 pnas.0406166101)
- 51. Meyer CP, Paulay G. 2005 DNA barcoding: error rates 539 540 based on comprehensive sampling. PLoS Biol. 3, 541 e422. (doi:10.1371/iournal.pbio.0030422)
- 542 52. Cameron S, Rubinoff D, Will K. 2006 Who will 543 actually use DNA barcoding and what will it cost? 544 Syst. Biol. 55, 844-847. (doi:10.1080/10635150 545 600960079)
- 546 53. Rubinoff D, Cameron S, Will K. 2006 A genomic 547 perspective on the shortcomings of mitochondrial 548 DNA for 'barcoding' identification. J. Hered. 97, 549 581-594. (doi:10.1093/jhered/esl036)
- 550 54. Moritz C, Cicero C. 2004 DNA barcoding: promise 551 and pitfalls. PLoS Biol. 2, e354. (doi:10.1371/ 552 journal.pbio.0020354)

- 55. Wiemers M, Fiedler K. 2007 Does the DNA barcoding gap exist? A case study in blue butterflies (Lepidoptera: Lycaenidae). Front. Zool. 4, 8. (doi:10. 1186/1742-9994-4-8)
- 56. Will KW, Mishler BD, Wheeler QD. 2005 The perils of DNA barcoding and the need for integrative taxonomy. Syst. Biol. 54, 844-851. (doi:10.1080/ 10635150500354878)
- 57. Dasmahapatra KK, Elias M, Hill RI, Hoffman JI, Mallet J. 2010 Mitochondrial DNA barcoding detects some species that are real, and some that are not. Mol. Ecol. Resour. 10, 264-273. (doi:10.1111/j. 1755-0998.2009.02763.x)
- 58. Cook LG, Edwards RD, Crisp MD, Hardy NB. 2010 Need morphology always be required for new species descriptions? Invert. Syst. 24, 322-326. (doi:10.1071/IS10011)
- 59. Connelly DP et al. 2012 Hydrothermal vent fields and chemosynthetic biota on the world's deepest seafloor spreading centre. Nat. Commun. 3, 620. (doi:10.1038/ncomms1636)
- 60. Williams AB, Rona PA. 1986 Two new caridean shrimps (Bresiliidae) from a hydrothermal field on the Mid-Atlantic Ridge. J. Crus. Biol. 6, 446-462. (doi:10.2307/1548184)
- 61. Shank TM, Black MB, Halanych KM, Lutz RA, Vrijenhoek RC. 1999 Miocene radiation of deep-sea hydrothermal vent shrimp (Caridea: Bresiliidae): evidence from mitochondrial cytochrome oxidase subunit I. Mol. Phylogenet. Evol. 13, 244-254. (doi:10.1006/mpev.1999.0642)
- 62. Teixeira S, Serrão EA, Arnaud-Haond S. 2012 Panmixia in a fragmented and unstable environment: the hydrothermal shrimp Rimicaris exoculata disperses extensively along the Mid-Atlantic Ridge. PLoS ONE 7, e38521. (doi:10.1371/ iournal.pone.0038521)
- 63. Teixeira S. 2010 Recent population expansion and connectivity in the hydrothermal shrimp Rimicaris exoculata along the Mid-Atlantic Ridge. J. Biogeogr. **38**, 564-574. (doi:10.1111/j.1365-2699.2010. 02408.x)
- 64. Zelnio KA, Hourdez S. 2009 A new species of Alvinocaris (Crustacea: Decapoda: Caridea: Alvinocarididae) from hydrothermal vents at the Lau Basin, southwest Pacific, and a key to the species of Alvinocarididae. Proc. Biol. Soc. Wash. 122, 52-71. (doi:10.2988/07-28.1)

- 65. Kojima S, Fujikura K, Okutani T, Hashimoto J. 2004 Phylogenetic relationship of Alviniconcha gastropods from the Indian Ocean to those from the Pacific Ocean (Mollusca: Provannidae) revealed by nucleotide sequences of mitochondrial DNA. Venus **63**, 65-68.
- 66. Suzuki Y et al. 2006 Host symbiont relationships in hydrothermal vent gastropods of the genus Alviniconcha from the southwest Pacific. Appl. Environ. Microb. 72, 1388-1393. (doi:10.1128/AEM. 72.2.1388-1393.2006)
- 67. Black MB, Halanych KM, Maas PAY, Hoeh WR, Hashimoto J, Desbruyères D, Lutz RA, Vrijenhoek RC. 1997 Molecular systematics of vestimentiferan tubeworms from hydrothermal vents and cold-water seeps. Mar. Biol. 130, 141-149. (doi:10.1007/ s002270050233)
- 68. Burton KW, Ling H-F, O'Nions RK. 1997 Closure of the Central American Isthmus and its effect on deep-water formation in the North Atlantic. Nature **386**, 382–385. (doi:10.1038/386382a0)
- 69. Nye V, Copley J, Plouviez S. 2011 A new species of Rimicaris (Crustacea: Decapoda: Caridea: Alvinocarididae) from hydrothermal vent fields on the Mid-Cayman Spreading Centre, Caribbean. J. Mar. Biol. Assoc. UK 92, 1057-1072. (doi:10. 1017/S0025315411002001)
- 70. Helenes J, Carreno AL, Carrillo RM. 2009 Middle to Late Miocene chronostratigraphy and development of the northern Gulf of California. Mar. Micropaleontol. 72, 10-25. (doi:10.1016/j. marmicro.2009.02.003)
- 71. Fisher RL. 1961 Middle America trench; topography and structure. Geol. Soc. Am. Bull. 72, 703-719. (doi:10. 1130/0016-7606(1961)72[703:MATTAS]2.0.C0;2)
- 72. Simoneit BRT, Lonsdale PF, Edmond JM, Shanks III WC. 1990 Deep-water hydrocarbon seeps in Guaymas Basin, Gulf of California. Appl. Geochem. 5, 41-49. (doi:10.1016/0883-2927(90)90034-3)
- 73. Lonsdale P, Becker K. 1985 Hydrothermal plumes, hot springs, and conductive heat flow in the Southern Trough of Guaymas basin. Earth Planet. Sci. Lett. 73, 211-225. (doi:10.1016/0012-821X(85)90070-6)
- 74. Eakins BW, Lonsdale PF. 2003 Structural patterns and tectonic history of the Bauer microplate, eastern tropical Pacific. Mar. Geophys. Res. 24, 171-205. (doi:10.1007/s11001-004-5882-4)

9

- 562
- 563 564

566 567

**Electronic Supplementary Material:** 

## Cryptic species of Archinome (Annelida: Amphinomida) from vents and seeps

Elizabeth Borda<sup>1,10</sup>\*, Jerry D. Kudenov<sup>2</sup>, Pierre Chevaldonné<sup>3</sup>, James A. Blake<sup>4</sup>, Daniel

Desbruyères<sup>5</sup>, Marie-Claire Fabri<sup>5</sup>, Stéphane Hourdez<sup>6</sup>, Fredrik Pleijel<sup>7</sup>, Timothy M. Shank<sup>8</sup>,

Nerida G. Wilson<sup>9</sup>, Anja Schulze<sup>10</sup> and Greg W. Rouse<sup>1</sup>\*

<sup>1</sup>Scripps Institution of Oceanography, La Jolla, California, 92034, USA <sup>2</sup>University of Alaska Anchorage, Anchorage, Alaska, 99508 USA

<sup>3</sup>CNRS - UMR 7263 IMBE, Institut Méditerranéen de la Biodiversité et d'Ecologie Marine et

Continentale, Aix-Marseille Université, Station Marine d'Endoume, Rue de la Batterie des Lions, 13007 Marseille, France

<sup>4</sup>Marine and Coastal Research Center, AECOM, Woods Hole, Massachusetts, 02543 USA.

<sup>5</sup>Département Etude des Ecosystèmes Profonds, Centre de Brest de l'IFREMER, 29280 Plouzané Cedex, France

<sup>6</sup>CNRS-UPMC UMR 7127, Station Biologique de Roscoff, 29682 Roscoff, France <sup>7</sup>University of Gothenburg, Tjärnö, Strömstad, Sweden

<sup>8</sup>Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543 USA <sup>9</sup>The Australian Museum, Sydney, NSW 2010, Australia <sup>10</sup>Texas A&M University at Galveston, Galveston, TX, 77553, USA

\*Corresponding authors: lizborda@gmail.com; grouse@ucsd.edu

## **PDF includes:**

Materials and Methods: Additional gene data collection and phylogenetic methods

Materials and Methods: Morphological Evaluation

**Results: Systematics** 

Discussion

References

Table S1

Table S2

Table S3

Table S4

Table S5

Figure Legends

Figure S1

Figure S2

Figure S3

#### MATERIALS AND METHODS

#### Additional gene data collection and phylogenetic methods

Use of COI Folmer primers [1] occasionally resulted in the co-amplification of nonsymbiotic, γ-proteobacteria [2, 3], therefore, alternative degenerate primers [4] and/or *Archinome* specific primers were used (Table S2). Sequences were analyzed using an ABI PRISM<sup>®</sup> 3730 (Applied Biosystems, Inc.) at the University of Hawaii at Manoa Advanced Studies in Genomics, Proteomics and Bioinformatics and an ABI PRISM<sup>®</sup> 3130 at the Texas A&M University at Galveston Marine Genomics Lab. All gene fragments were aligned using MUSCLE [5, 6] and visualized and trimmed using MESQUITE 2.71 [7]; COI was also visualized and aligned according to amino acid translation. jModelTest [8] was used to infer appropriate evolutionary models for each gene [88 models: COI: TrN+I; 16S: GTR+I+G; 28S: TIM1+G; ITS1: TIM2+I; 24 models: COI/16S: GTR+I+G; 28S: GTR+G; ITS1: HKY+I] as selected by the Akaike information criterion. DAMBE [9] was used to estimate COI saturation via saturation plots of transitions/transversions against TrN corrected genetic distances. MEGA 5 [10] was used to calculate TrN corrected and uncorrected pairwise distances.

#### **Morphological Evaluation**

Specimens evaluated for morphology ranged between 0.2 mm–38 mm in length, with a minimum of 5 and maximum of 36 chaetigers; truly large individuals (>20 mm) were exceedingly rare by comparison to the vast preponderance that were <10 mm in length. The greatest morphological variation was present in the position of the anus on terminal chaetigers. All *Archinome* specimens are consistent with the re-description proposed by Kudenov [11], however certain taxonomic terminology needs clarification. The usage of "dorsal" cirri *sensu* 

Kudenov [11] and "lateral" cirri *sensu* Kudenov [11] and Fiege and Bock [12], describing the dorsal most cirri in *Archinome* (and other amphinomids) has led to confusion in assessing homology with respect to other annelid groups, which typically only have dorsal and ventral cirri [13]. The ciliated "dorsal" cirri of *Archinome* lack a blood vessel and are always associated with dorsal branchiae. Thus, the "dorsal" cirrus [11; 12], should be referenced as the "accessory dorsal" cirri *sensu* Yáñez-Rivera and Carrera-Parra [14], while vascularized "lateral" cirri [11, 12] are homologous to the "true" dorsal cirri of other annelids [13]. Images of live and preserved specimens were taken with a Nikon E4300, Canon PowerShot G9 or Canon EOS REBEL T1i cameras on Leica MZ8 or MZ9.5 stereomicroscopes. Images were edited and figures were made using Adobe® Illustrator® CS3 and Adobe® Photoshop® CS3 (Adobe® Systems, Inc). Specimens evaluated for morphology are deposited in the US National Museum of Natural History (USNM), Senckenberg Museum Frankfurt (SMF) and Scripps Institution of Oceanography Benthic Invertebrate Collection (SIO-BIC).

#### RESULTS

#### **Morphological Results**

*Archinome* specimens studied were consistent with the general diagnoses of *A. rosacea* (and *A. storchi*; Fig. S1). We compared key diagnostic features [11, 12], which were expanded to include other traits (Table S4-S5) among *Archinome* specimens from different geographic regions and clades. While anatomical differences exist, based on the material presently available we found little consistent evidence to delineate species on the basis of morphology alone. Despite large geographic and/or ecological distances separating the *Archinome* specimens sampled, morphological variation appeared to be inconsistent and generally associated with

segmental stage and size. Of the 54 morphological traits included here (Table S5), 28 were common to all specimens examined. The remaining 26 traits exhibited variation of which 8 branchial and chaetal features (Table S4: 36-37, 40-42, 46-48) tend to be less subject to preservation artifacts, a selection of which are addressed below. Thus, the normally reliable morphological characters used in the systematics of Amphinomida [15, 16] largely overlap and provide little consistent support in the delineation of *Archinome* species (Table S5).

#### Median antenna

The form and length of the median antenna have been emphasized as key diagnostic characters to distinguish *A. storchi* and *A. rosacea*. It was found to be cirriform in *A. rosacea* (GAR1, USNM 81788), *A. storchi* (SEPR, SIO-BIC A3543; PAR, SMF 17876) and *A. levinae* n. sp. (CRM, SIO-BIC A1316), but conical in small *A. rosacea* (GAR2, USNM 1221442). However, the median antenna is similarly short in both *A. rosacea* and *A. levinae* n. sp., and long in *A. storchi*. Likewise, the median antenna of *A. jasoni* n. sp. (CIR, SIO-BIC A3544; SWP, SIO-BIC A3546-47) was cirriform (sometimes claviform), but papilliform in large specimens of *A. jasoni* n. sp. (MAR, SIO-BIC A3548); all are generally short to minute. These data led us to surmise that median antenna form and length likely have limited value as a systematic feature in this genus.

#### Dorsal anus

The position of the dorsal anus, which was described as the main diagnostic feature separating *A. rosacea* from *A. storchi* (originally noted as chaetiger 17 vs. 19, respectively), was not consistent within and among clades relative to the results recovered by molecular data. The dorsal position of the anus appeared to be size/segmental stage dependent and unreliable for clear species diagnoses. In the case of *A. storchi*, which was originally described from a 23-chaetiger

specimen, the dorsal anus position was not consistent among our sampling of SEPR representatives, where the majority were <23 chaetigers specimens and with an anus position location similar to *A. rosacea* (e.g., Fig. 3I). However, the dorsal anus of *A. rosacea* specimens with up to 23 chaetigers (including "reduced" posterior segments) from North East Pacific Rise was positioned on chaetiger 18 and extended through 2 to 3 chaetigers, clearly overlapping that of *A. storchi* (Table S5). Examining this character across specimens of other *Archinome* species also was found to be variable in larger specimens (>23 chaetigers). For instance, the dorsal anus of *A. jasoni* n. sp. commenced on chaetiger 21 or 22, and continued through 3 or 4 chaetigers in MAR (14°N) and CIR specimens, respectively (Table S5). In MAR (23°N) specimens of *A. tethyana* n. sp. (SIO-BIC A3548), the dorsal anus, first situated on chaetiger 25, coursed through 3 chaetigers, whereas that of *A. levinae* n. sp. overlapped the placement of those in both *A. rosacea* and *A. storchi* (Table S5).

#### Branchia

The number of branchial filaments present on the first gill was used to distinguish *A. rosacea* and *A. storchi* [12]. However, this character appeared to be dependent on size/segmental stage, and likely not highly informative. For example, filaments numbered 1 or 3 per first gill in small (GAR1, 2; SEPR) and large specimens (NEPR; PAR) of *A. rosacea* and *A. storchi*, respectively; they also numbered 3 in large *A. levinae* n. sp. (CRM). By comparison, the branchial filaments of *A. jasoni* n. sp. (CIR; SWP; MAR) totaled 2-5 compared to 4 in *A. tethyana* n. sp. (MAR). Thus, the separation of *A. storchi* and *A. rosacea* was not supported based on the number of filaments in the first branchia. Moreover, the broad overlap between the various specimens examined strongly suggested that this trait is likely size/segmental stage dependent.

Maximal numbers of branchial filaments in mid-body segments were also used to distinguish *A. storchi* from *A. rosacea* [12]. However, this trait also appeared to partly be size- and perhaps habitat-dependent [see also 17]. While a maximum of 8 and 7 filaments per branchia were detected in comparably sized specimens of *A. rosacea* and *A. storchi*, respectively, more than 15 filaments per gill were present in *A. levinae* n. sp. Those of *A. jasoni* n. sp. (CIR) also numbered 15-16 filaments per gill, in direct contrast to 4-5 in MAR and SWP specimens of *A. jasoni* n. sp.; 7-9 filaments were maximally present per mid-body chaetiger of *A. tethyana* n. sp.

#### Midventral scutes

Anterior midventral scutes exhibited varying degrees of fusion such that annular rings between them were either partially or completely absent. Scutes of chaetigers 2-3 were typically distinct and separate in small specimens of all examined *Archinome* specimens generally, and typified by both *A. rosacea* (GAR) and *A. storchi* (SEPR). Those of chaetigers 2-3 are generally fused in larger specimens of *A. rosacea*, *A. storchi* and *A. levinae* n. sp., although chaetiger 4 was also partly fused in *A. rosacea* (SIO-BIC A3543). Similarly, scutes of chaetigers 2-4 were fused in specimens of *A. jasoni* n. sp. (CIR, SWP) from the Indo-Pacific, compared to chaetigers 2-5 in Atlantic specimens of *A. jasoni* n. sp. (MAR) and *A. tethyana* n. sp. In our opinion, fusion of contiguous anterior scutes appeared to be an size/segmental stage dependent character in the delineation of *Archinome* species.

#### Caruncle

Caruncle form and placement are central to the systematics of Amphinomida [15, 16], but seemed to be of limited usefulness in differentiating *Archinome* species. In the former case, all were elongate and trilobed (Fig. S1). In the latter instance, caruncles in large specimens extended to chaetiger 3 in *A. levinae* n. sp. in contrast to chaetigers 4-5 in *A. rosacea* and *A. storchi*.

Caruncle placement in large *A. levinae* n. sp. is similar to that in small specimens of both *A. rosacea* (GAR) and *A. storchi*. Comparably, caruncles generally reached chaetiger 3 (or to 5) in *A. jasoni* n. sp. (CIR, MAR, SWP) or chaetigers 3-4 in *A. tethyana* n. sp. (MAR). *Chaetae* 

Measurements of long and short "prongs" of bifurcate chaetae [18] have proved useful in the systematics of Amphinomida [19]. However, measurements of prong ratios were generally similar among specimens of comparable size, variable among size classes, and appeared to be of limited applicability as morphological species characters.

Prong angles have only recently been used in amphinomid systematics [19] and newly applied here with mixed results (Table S5). Measurements of notochaetal angles were 23° in *A. rosacea*, *A. storchi* and *A. levinae* n. sp., while neurochaetal angles were 22° in the former two taxa, and unavailable in the latter; values do not support morphological differences between these taxa. However, juvenile *A. rosacea* (GAR) consistently displayed highly divergent prong angles. Similarly, noto- and neurochaetal prong angles were 31° and 24°, respectively, in *A. jasoni* n. sp. (CIR, SWP, MAR), although neurochaetae of SWP specimens had larger angles. This character may provide useful information in future, but not in the present context.

Calculations of triangular areas formed by prongs of bifurcate chaetae (chaetal areas) were developed as new meristic characters to differentiate *Archinome* species (Table S4). That is, notochaetal areas estimated for large *A. rosacea*, *A. levinae* n. sp., and *A. storchi* were 8, 7.1, and  $1.8 \times 10^3 \mu m^2$ , respectively. Neurochaetal values of *A. rosacea* and *A. storchi* ranged up to 5.2 and  $1.6 \times 10^3 \mu m^2$ ; data for *A. levinae* n. sp. were unavailable. These area estimates produced results suggesting that *A. rosacea* is similar to *A. levinae* n. sp., both of which differed from *A. storchi*. However, chaetal areas in small specimens of *A. rosacea* and *A. storchi* differed

consistently. By comparison, estimates of notochaetal areas for *A. jasoni* n. sp. (CIR, SWP) were generally lower, notwithstanding high values in SWP specimens; whereas those for *A. jasoni* n. sp. (MAR) were notably smaller. Neurochaetal areas of *A. jasoni* n. sp. ranged from 3-5.4 x10<sup>3</sup>  $\mu$ m<sup>2</sup> (CIR, SWP) and 3.5 x10<sup>3</sup>  $\mu$ m<sup>2</sup> (MAR). Noto- and neurochaetal area estimates of *A. tethyana* n. sp. (MAR) were 2.6 and 2.4 x10<sup>3</sup>  $\mu$ m<sup>2</sup>. These characters generally did not provide consistently meaningful insights leading to a resolution of *Archinome* species, and reinforced our surmise that morphological variability in this feature is largely associated with size/segmental stage.

### Pygidial "eyespots"

The presence of pygidial pigmentation, also referred to as "eyespots" [11] was one of the more reliable morphological traits that may vary geographically. However, pigmentation patterns appeared to fade over time in alcohol-stored specimens. The "eyespots" in *A. rosacea, A. storchi* and *A. levinae* n. sp. were present as a single lateral stripe of pigment [11] that did not continue around the tip of the pygidial cirrus; pigmented areas were not detectable in preserved juvenile *A. rosacea* and *A. storchi*. This morphological character did not differentiate between the three taxa, in contrast to that provided by the molecular data. Pygidial "eyespots" in *A. jasoni* n. sp. (CIR, MAR) were present as a terminal distal patch of pigment restricted to the distal tip of the cirrus; pigment patterns appeared larger and more diffuse in MAR specimens, and were not detectable in SWP specimens. The "pygidial eyespots" of *A. tethyana* n. sp. were present as a dorsal patch of pigment extending from base to distal tip of the cirrus. The latter two species seemed to lack the highly defined pigmentation patterns present in *A. rosacea, A. storchi* and *A. levinae* n. sp.; it is surmised that alcohol leaches pygidial pigments.

#### **Systematics**

#### Genus Archinome Kudenov, 1991

Type species: Euphrosine rosacea Blake 1985

*Species included*: *Archinome rosacea* (Blake, 1985), *Archinome storchi* Fiege and Bock, 2009, *Archinome jasoni* n. sp., *Archinome tethyana* n. sp. and *Archinome levinae* n. sp.

*Diagnosis:* Body short, fusiform, with mid-ventral scutes, up to 38 segments; iridescent purple or pink (live; Fig 2). Prostomium, bearing five appendages including median antenna arising from anterior part of caruncle, antennae and palps. Dark, deeply embedded pigmentation "eyespots," numbering two pairs. Caruncle, narrow, elongate and trilobed, fused to body at chaetiger 2 (chaetal segments), unattached thereafter. Segmental lobes large and laterally bursiform. Parapodia biramous, notopodia and neuropodia well separated. Notochaetal fascicles arrayed in radial whorls. Dorsal, accessory dorsal and ventral cirri present on all segments, except terminal chaetigers. Ramified branchiae, digitiform tuft, first appearance on chaetiger 3 (Fig. 2B, C, E, I). Chaetae bifurcate. Anus position dorsal on posterior chaetigers. Pygidium with unpaired median cirrus.

*Distribution:* Pacific, Atlantic and Indian Oceans. Recorded from the East Pacific Rise (including Pacific Antarctic Ridge), Guaymas Basin, Galapagos Rift, Mid Atlantic Ridge, Mid Cayman Spreading Center, Central Indian Ridge, southwest Pacific basins and the Costa Rica Margin.

Habitat: Hydrothermal vents and cold methane seeps.

*Biology:* Inhabits the crevices and surfaces of deep-sea mussel beds, tubeworm and/or near shrimp aggregations. Active predator and carnivore of mollusks, crustaceans and other polychaetes [20]. The eversible ventral proboscis, armed with transverse ridges, is used to capture prey. When disturbed, will assume a defensive posture by curling its body dorsoventrally

displaying expansive chaetae, looking like a hedgehog or porcupine.

*Remarks:* The generic diagnosis of *Archinome* is emended here to correct an error in the original description [11], where branchiae in *A. rosacea* begin from chaetiger 3, and not from chaetiger 2 as originally stated and tend to lack them on the last 1-2 segments.

Archinome rosacea (Blake, 1985)

Euphrosine rosacea Blake, 1985

Archinome rosacea Kudenov, 1991

Type Locality: Rose Garden, Galapagos Rift

*Material examined*: USNM 81788 (HOLOTYPE); USNM 81789 (PARATYPES; n=150); USNM 81790-92; USNM 1221442.

Molecular vouchers: WHOI 4115-3-[1-6], Rose Bud, Galapagos Rift, 00°46'16"N,

86°13'36"W, 2451 m, low temperature vents, *Alvin* Dive 4115 (AT-11), Coll: Tim Shank; SIO-BIC A2875-A2877, North East Pacific Rise, 09°46'25"N, 104°16'40"W, 2505 m; high temperature vents; *Alvin* Dive 3763, Coll: Tim Shank; SIO-BIC A2881-A2882, North East Pacific Rise, *Nautile* Dive 1738, Coll: Stéphane Hourdez; SIO-BIC A2883, North East Pacific Rise, *Nautile* Dive 1742, Coll: Stéphane Hourdez; SIO-BIC A2890, Yaquina, South East Pacific Rise, 07°25'14"S, 107°47'41"W, 2746 m; *Nautile* Dive 1572, Coll: Stéphane Hourdez; SIO-BIC A2891, Yaquina, South East Pacific Rise, 07°22'14"S, 107°47'07"W, 2719 m; *Nautile* Dive 1571, Coll: Stéphane Hourdez; SIO-BIC A2862, Sarah Spring, South East Pacific Rise, 07°25'S, 107°47'W, 2750 m; *Nautile* Dive 1573, Coll: Stéphane Hourdez.

*Diagnosis*: Morphology – as described for genus. Genetics – Sequences from WHOI4115-3-3 are designated as diagnostic for *A. rosacea*: COI (JX028059), 16S (JX027994), 28S (JX028122)

and ITS1 (KF288955). Intraspecific range:  $d_{COI} = 0.0-0.9\%$ . Interspecific range:  $d_{COI} = 4.3 - 18.3\%$ .

*Distribution* [Emended]: East Pacific Ocean. Galapagos Rift, East Pacific Rise from at least 9°N to 7°S. Depth range: ~2400 – 2750 m.

Habitat: Hydrothermal vents.

*Remarks*: *Archinome rosacea* is distinguished from other *Archinome* species geographically (Fig. 1), as a clade (IV) (Fig. 2) and by being at least 4% divergent from other species. *Archinome rosacea* was originally collected from Rose Garden. However, when scientists returned to this site in 2002 they discovered that Rose Garden had been destroyed by volcanic activity [21]. Therefore, genetic data from the original type locality do not exist, therefore we provide genetic data from Rosebud, located ~300 km northwest from the former Rose Garden. Live images of *A. rosacea sensu stricto* are not available and only formalin preserved material was available from the type locality. Based on the current representatives, at this time we find a restricted range for *A. rosacea* to Galapagos Rift, the northern South East Pacific Rise and North East Pacific Rise to at least 9°N.

#### Archinome storchi Fiege and Bock, 2009

(Fig. 3I)

Type Locality: Pacific Antarctic Ridge

*Material examined*: HOLOTYPE – SMF17876; SIO-BIC A3543

*Molecular vouchers*: SIO-BIC A2389, Oasis Vent, SEPR, 17°25'23"S, 113°12'17"W, 2585 m; *Nautile* Dive 1590, Coll: Stéphane Hourdez; SIO-BIC A2353-2354, SEPR, 23°32'46"S, 115°34'10"W, 2598 m; *Alvin* Dive 4096 (AT-11), Coll: Greg Rouse, Nerida Wilson; SIO-BIC A2355-A2357, SEPR, 31°51'47"S, 112°02'32"W, 2334 m; *Alvin* Dive 4092 (AT-11), Coll: Greg Rouse, Nerida Wilson; SIO-BIC A2359-A2361, SEPR, 31°00'54"S, 111°55'55"W, 2334 m; *Alvin* Dive 4094 (AT-11), Coll: Greg Rouse, Nerida Wilson; SIO-BIC A2316-A2317, German Flats, SEPR, 37°47'33"S, 110°54'57"W, 2216 m; high temperature vents; *Alvin* Dive 4088, Coll: Greg Rouse, Nerida Wilson; SIO-BIC A2318, German Flats, SEPR, 37°47'29"S, 110°54'51"W, 2220 m; *Alvin* Dive 4090, Coll: Greg Rouse, Nerida Wilson. *Diagnosis*: Morphology – as described for genus. Genetics – Sequences from SIO-BIC A2318

are designated as diagnostic for *A. storchi*: COI (JX028067), 16S (JX028002), 28S (JX028125) and ITS1 (KF288937). Intraspecific range:  $d_{COI} = 0.0-1.1\%$ . Interspecific range:  $d_{COI} = 4.3 - 17.4\%$ .

*Distribution* [Emended]: Southeast Pacific Ocean. South East Pacific Rise, from at least 17°S–31°S (Fig. 1) and Pacific Antarctic Ridge. Depth range: 2200–2900 m.

Habitat: Hydrothermal vents.

*Remarks*: With respect to morphology, the diagnostic feature established for *A. storchi* (position of the anus in the holotype, a 23 chaetiger specimen, was not found to reliably distinguish *A. storchi* and *A. rosacea*, particularly in juvenile specimens (<22 chaetigers). This feature was found to be size dependent (i.e., number of chaetigers) and to overlap with *A. rosacea*. Genetically, we distinguished *A. storchi* from *A. rosacea* on the basis of reciprocal monophyly between from Pacific Antarctic Ridge and Galapagos Rift representatives (COI and COI<sub>ALL</sub>+16S+28S+ITS1) and with d<sub>COI</sub> ranging 4.3-5.7% (Fig. 3; Table 1). We recognize that an average sequence divergence of 5%, the presence of overlapping diagnostic characters with *A. rosacea*, and the lack of reciprocal monophyly with *A. rosacea* in 16S, 28S and ITS1, would otherwise not support the designation of separate species, however, given that *A. storchi* has

been previously designated and there is no evidence for taxonomic overlap in the South East Pacific Rise, we choose to retain the name *A. storchi* for Clade V. We expand the distributional range of *A. storchi* to at least 17°S along the South East Pacific Rise (Fig. 1), therefore, the sequenced specimen from 17°S in Wiklund et al. [23] is identified as *A. storchi*, instead of *A. rosacea*.

#### Archinome jasoni, new species

*Type Material*: HOLOTYPE – SIO-BIC A2375, Tui Malila Lau, South West Pacific Lau Basin, 21°59'N, 176°34'E, 1900 m, 16 May 2005, 1 specimen preserved in 95% Ethanol, *Jason 2* Dive 140, COLL: Greg Rouse. PARATYPES – SIO-BIC A2376-A2377, Tui Malila Lau, South West Pacific Lau Basin, 21°59'N, 176°34'E, 1900 m, 16 May 2005, 2 specimen preserved in 95% Ethanol, *Jason 2* Dive 140, COLL: Greg Rouse; SIO-BIC A2365-2367, White Lady, North Fiji, South West Pacific Lau Basin, 16°59'N, 173°54'E, 1985 m, 27 May 2005, 3 specimens preserved in 95% Ethanol, *Jason 2* Dive 149, COLL: Greg Rouse; SIO-BIC A2369-2371, Kilo Moana Lau, South West Pacific Lau Basin, 20°59'N, 173°54'E, 2650. SIO-BIC A2313-A2315, Kairei Field, Central Indian Ridge, 25°19'N, 70°02'E, 2432 m, 7 April, 2001, 3 specimens preserved in 80% Ethanol, *Jason 1S* Dive 297, CoLL: Greg Rouse.

*Diagnosis*: Morphology – As described for genus. Genetic data – Sequences from SIO-BIC A2375 (COI: JX028092; 16S: JX028027; 28S: JX028131; ITS: KF288946) and SIO-BIC A2313 (COI: JX028064; 16S: JX027999; 28S: JX028124; ITS: KF288935) are designated as the genetic diagnoses for each of the two *A. jasoni* n. sp. clades, respectively. Intraspecific range:  $d_{COI} = 0.0-3.6\%$ . Interspecific range:  $d_{COI} = 10.4-18.3\%$ .

Type Localities: Tui Malila Lau, South West Pacific Lau Basin.

*Distribution*: Atlantic, Indian and southwest Pacific Oceans. Depth range: ~1900–3040 m. *Habitat*: Hydrothermal vents.

*Etymology*: Named after ROVs *Jason I* and *Jason II/Medea*, which were used to the collect specimens studied here.

*Remarks*: *Archinome jasoni* n. sp. is distinguished from other *Archinome* species geographically (Fig. 1), as a clade I (Fig. 3) and by being at least 10% divergent (COI) from other *Archinome* species. In addition, the evaluation of COI+16S supported a single network (starting at a fixed 21-step connection limit; compared to a fixed connection limits greater than 50 for the *rosacea/storchi* split) for populations representing the southwest Pacific basins, the Indian and Atlantic oceans. Therefore, we took a conservative approach and accept a broad distribution for *A. jasoni* n. sp., until additional sampling becomes available. Voucher material for *A. jasoni* n. sp. from Logatchev is unavailable.

#### Archinome tethyana, new species

*Type Material:* HOLOTYPE – SIO-BIC A2871, Ashadze-1, Mid Atlantic Ridge, 12°58'N, 44°51'W, 4080 m, 2010, 1 specimen preserved in 95% Ethanol, *Victor6000* Dive 312, Coll: Marie-Claire Fabri. PARATYPES – SIO-BIC A2872-A2874, Ashadze-1, Mid Atlantic Ridge, 12°58'N, 44°51'W, 4080 m, 2010, 3 specimens preserved in 95% Ethanol, *Victor6000* Dive 312, Coll: Marie-Claire Fabri.

Type Locality: Ashadze-1, 12° N, MAR (4080 m).

*Diagnosis*: *Morphology* – as described for genus. *Genetics* – Sequences from SYNTYPES SIO-BIC A2874 (COI: JX028114; 16S: JX028055; 28S: JX028140) and SIO-BIC A2871 (16S: JX028052; ITS: KF288958) are designated as the genetic diagnoses for *A. tethyana*. Interspecific range:  $d_{COI} = 10.4-15.3\%$ . *Distribution*: Northern Atlantic Ocean. Mid Atlantic Ridge. Depth range: 3000–4080 m. *Habitat*: Hydrothermal vents.

*Etymology*: The specific epithet is derived from the Tethys Seaway, which formally connected the Pacific and Atlantic basins and circulated around the equator. The Tethys is symbolic for the "intermediate" phylogenetic position *A. tethyana* n. sp. between eastern and western Pacific Ocean clades.

*Remarks*: *Archinome tethyana* n. sp. is distinguished geographically (Fig. 1), as distinct Clade II (Fig. 3) and by being at least 10% divergent (with COI) from other *Archinome* species.

#### Archinome levinae, new species

*Type Material:* HOLOTYPE – SIO-BIC A1365, Costa Rica Mound 11, Costa Rica Margin, 08°55'11"N, 84°18'19"W, 1045 m, 26 February 2009, 1 specimen preserved in 95% Ethanol, *Alvin* Dive 4505 (AT-15), COLL: Greg Rouse, Danwei Huang. PARATYPES – SIO-BIC A1482, Costa Rica Mound 12, Costa Rica Margin, 08°55'47"N, 84°18'48"W, 1008 m, 21 February 2009, 1 specimen preserved in 95% Ethanol, *Alvin* Dive 4501 (AT-15), COLL: Greg Rouse, Danwei Huang; SIO-BIC A1334, Costa Rica Mound 12, Costa Rica Margin, 08°55'42"N, 84°18'47"W, 1000 m, 23 February 2009, 1 specimen preserved in 95% Ethanol, *Alvin* Dive 4502 (AT-15), COLL: Greg Rouse, Danwei Huang; SIO-BIC A1334, Costa Rica Mound 12, Costa Rica Mound 12, Costa Rica Mound 12, Costa Rica Mound 12, Costa Rica Margin, 08°55'50"N, 84°18'25"W, 1005 m, 24 February 2009, 1 specimen preserved in 95% Ethanol, *Alvin* Dive 4503 (AT-15), COLL: Erik Cordes, Jen Gonzalez; SIO-BIC A1398, Costa Rica Mound Quepos, Costa Rica Margin, 09°01'49"N, 84°37'22"W, 1433 m, 26 February 2009, 1 specimen preserved in 95% Ethanol, *Alvin* Dive 4505 (AT-15), COLL: Greg Rouse, Danwei Huang; SIO-BIC A1631, Costa Rica Jaco Scarp, Costa Rica Margin, hydrothermal

seeps, 09°07'00"N, 84°50'06"W, 1817 m, 07 March 2009, 1 specimen preserved in 95% Ethanol, *Alvin* Dive 4513 (AT-15), Coll: Greg Rouse, Danwei Huang; SIO-BIC A2309-A2311, Guaymas Basin, Gulf of California, 27°00'N, 111°24'W, 2432 m, February 2003, 4 specimens preserved in 80% Ethanol, *Tiburon* Dive 551 (Western Flyer), Coll: Robert Vrijenhoek; ADDITIONAL MATERIAL: SIO-BIC A2312 (not included in study), Guaymas Basin, Gulf of California, 27°00'N, 111°24'W, 2432 m, February 2009, 5 specimens preserved in 80% Ethanol, *Tiburon* Dive 551 (Western Flyer), Coll: Robert Vrijenhoek.

*Type Locality*: 8-9°N, Costa Rica Margin (1008 m)

*Diagnosis*: *Morphology* – As described for genus. *Genetics* – Sequences from SIO-BIC A1365 (COI: JX028080; 16S: JX028015; 28S: JX028128; ITS: KF288942) are designated as the genetic diagnoses for *A. levinae* n. sp. Amino acid (AA) *valine* (present in all other *Archinome* species) is substituted for *isoleucine* in COI. Intraspecific range:  $d_{COI} = 0.0-0.9\%$ . Interspecific range:  $d_{COI} = 13.2 - 15.9\%$ .

*Distribution*: East Pacific Ocean and Gulf of California. Costa Rican continental margin and Guaymas Basin. Depth range: 1000–2432 m.

Habitat: Hydrothermal vents and cold methane seeps.

*Etymology*: Named after Professor Lisa Levin (Scripps Institution of Oceanography) for her great contributions to deep-sea exploration and biology and for her love of worms.

*Remarks*: *Archinome levinae* n. sp. is distinguished from other *Archinome* species geographically (Fig. 1), being supported as distinct Clade III (Fig. 3), by being at least 13% divergent (with COI) from other *Archinome* species and for being the first amphinomid recorded from both vent and seeps. *Archinome levinae* n. sp. is also characterized by the substitution of amino acid *valine* for *isoleucine*, as attributed to a non-synonymous base change of nucleotides

guanine and adenine, respectively.

#### DISCUSSION

Archinome rosacea was originally described as a member of the family Euphrosinidae (Amphinomida) in the genus *Euphrosine* (i.e., *Euphrosine rosacea*). Blake [22] noted affinities to the "fireworm" family Amphinomidae (Amphinomida), but considered them to be "superficial." Kudenov [11] proposed that the presence of a mixture of morphological characters used to recognize taxa into either amphinomid family (i.e., Amphinomidae and Euphrosinidae) warranted the recognition of a new genus, *Archinome*, and establishment of Archinomidae [11]. Recent molecular phylogenetic work has shown that *Archinome* is a member of Amphinomidae [19, 23], however. The family level status of *Archinome* species is beyond the scope of this study and will be addressed in future work (Borda *et al.*, in preparation). For now, we provide an emended diagnosis of the genus, address the taxonomic statuses of *A. rosacea* and *A. storchi* and describe three new species. In order to provide a framework for unambiguously identifying a suite of *Archinome* species we designated sequenced individuals as type for each of the new species and assigned genetic representatives for *A. rosacea* and *A. storchi*.

With respect to the evaluation of morphology, the absence of consistent diagnosable features attributable to the four species that we consider here was challenged by the topological conflicts among analyses of the concatenated data sets (Fig. 3). Evaluation of ~650 bp of "barcoding COI" supported six distinct clades (Fig. S3A), which were not fully corroborated by 16S, 28S and ITS1 (Fig. S3B-D). Phylogenetic noise owing to COI 3<sup>rd</sup> codon position saturation is attributed to the observed topological incongruence observed among the combined data analyses, and its inclusion would have led us to an incorrect phylogenetic hypothesis for *Archinome* (Fig. 3B; Fig.

S4B) [24], the latter being mostly driven by the saturated COI signal. However, we accept the presence of *A. rosacea* and *A. storchi* as separate species in the SEPR and a broadly distributed *A. jasoni* found in the Atlantic, Indian and southwest Pacific Oceans, as COI was not saturated below 6% sequence divergence (Fig. S2).

#### REFERENCES

- 1 Folmer, O., Black, M., Hoeh, W., Lutz, R. & Vrijenhoek, R. 1994 DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. *Mol. Mar. Biol. Biotechn.* 3, 294–299.
- Vrijenhoek, R. C. Cryptic species, phenotypic plasticity, and complex life history: assessing deep-sea fauna diversity with molecular markers. 2009 *Deep-Sea Res. Pt. II*, 56, 1713–1723. (doi: <u>10.1016/j.dsr2.2009.05.016</u>)
- 3 Siddall, M. E., Fontanella, F. M., Watson, S. C., Kvist, S. & Erséus, C. 2009 Barcoding bamboozled by bacteria: convergence to metazoan mitochondrial primer targets by marine microbes. *Syst Biol* 58, 445–451.
- 4 Meyer, C. P., Geller, J. B. & Paulay, G. 2005 Fine scale endemism on coral reefs: archipelagic differentiation in turbinid gastropods. *Evolution* 59, 113–125.
- 5 Edgar, R. C. 2004 MUSCLE: a multiple sequence alignment method with reduced time and space complexity. *BMC Bioinformatics* **5**, 113.
- 6 Edgar, R. C. 2004 MUSCLE: multiple sequence alignment with high accuracy and high throughput. *Nucleic Acids Res* 32, 1792–1797.
- 7 Maddison, W. P. & Maddison, D. R. 2010 Mesquite: a modular system for evolutionary analysis. Version 2.73 <u>http://mesquiteproject.org</u>.
- 8 Posada, D. 2008 jModelTest: phylogenetic model averaging. *Mol. Biol. Evol.* 25, 1253–1256.
  (doi: 10.1093/molbev/msn083)
- 9 Xia, X. & Xie, Z. 2001 DAMBE: software package for data analysis in molecular biology and evolution. J. Hered. 92, 371–373.

- 10 Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M. & Kumar, S. 2011 MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. *Mol. Biol. Evol.* 28, 2731–2739. (doi: 10.1093/molbev/msr121)
- 11 Kudenov, J. D. 1991 A new family and genus of the order Amphinomida (Polychaeta) from the Galapagos hydrothermal vents. In: Petersen M. E & Kirkegaard J. B. (eds) Proceedings of the 2nd International Polychaeta Conference, Copenhagen, 1986. Systematics, Biology and Morphology of World Polychaeta. *Ophelia* 5, 111–120.
- 12 Fiege, D. & Bock, G. 2009 A new species of *Archinome* (Polychaeta: Archinomidae) from hydrothermal vents on the Pacific Antarctic Ridge 37°S. *J. Mar. Biol. Assoc. U.K.* 89, 689–696. (doi: http://dx.doi.org/10.1017/S0025315409000174)
- 13 Rouse, G. W. & Pleijel, F. 2001 Polychaetes. New York: Oxford University Press.
- 14 Yáñez-Rivera, B. & Carrera-Parra, L. F. 2011 Reestablishment of *Notopygos megalops* McIntosh, description of *N. caribea* sp. n. from the Greater Caribbean and barcoding of "amphiamerican" *Notopygos* species (Annelida, Amphinomidae) *ZooKeys* 223, 69–84.
- 15 Gustafson, G. 1930 Anatomische studien über die polychäten-familien Amphinomidae und Euphrosynidae. *Zoologiska bidrag från Uppsala*, pp. 305-471.
- 16 Kudenov, J. D. 1995 Family amphinomidae lamarck, 1818. In *Taxonomic atlas of the benthic fauna of the Santa Maria Basin and Western Santa Barbara Channel Vol. 4-7.* (eds. J. A. Blake, B. Hilbig & P. H. Scott), pp. 207-215. Santa Barbara: Santa Barbara Museum of Natural History.
- 17 Arhens J., Borda E., Barroso R., Campbell A. M., Wolf A., Nugues M., Paiva P., Rouse G.W. & Schulze A. 2013 The curious case of *Hermodice carunculata* (Annelida:

Amphinomidae): genetic homogeneity throughout the Atlantic Ocean and adjacent basins. *Mol. Ecol.* **22**, 2280-2291.

- 18 Vogt, J. D. & Kudenov, J. D. 1994 Morphometric variation in the bifurcate notosetae of two Euphrosine species. In, Dauvin, J.C., Laubier, L. & Reish, D. J. (eds.), Actes de la 4eme Conference Internationale des Polychetes. Memoir. Mus. Natl. Natl. Hist. 162: 291-298.
- 19 Borda, E., Kudenov, J. D., Beinhold, C. & Rouse, G. W. 2012 Towards a revised Amphinomidae (Annelida: Amphinomida): description and affinities of a new genus and species from the Nile deep-sea Fan, Mediterranean Sea. *Zool. Scri.* 41, 307–325.
- 20 Ward, M. E., Jenkins, C. D. & Van Dover, C. L. 2003 Functional morphology and feeding strategy of the hydrothermal-vent polychaete *Archinome rosacea* (family Archinomidae).
   *Can. J. Zool.* 81, 582–590.
- 21 Shank, T., Fornari, D., Yoerger, D., Humphris, S., Bradley, A., Hammond, S., Lupton, J., Scheirer, D., Collier, R., Reysenbach, A-L. et al. 2003 Deep Submergence Synergy: Alvin and ABE Explore the Galápagos Rift at 86°W EOS 84, 425-440.
- Blake, J. A. 1985 Polychaeta from the vicinity of deep-sea geothermal vents in the eastern Pacific. 1. Euphrosinidae, Phyllodocidae, Hesionidae, Nereidae, Glyceridae, Dorvilleidae, Orbiniidae, and Maldanidae. *Bull. Biol. Soc. Wash.* 6, 67–101.
- 23 Wiklund, H., Nygren, A., Pleijel, F. & Sundberg, P. 2008 The phylogenetic relationships between Amphinomidae, Archinomidae and Euphrosinidae (Amphinomida: Aciculata: Polychaeta), inferred from molecular data. *J. Mar. Biol. Assoc. U. K.* 88, 509-513.
- 24 Townsend, J. P., Su, Z. & Tekle, Y. I. 2012 Phylogenetic signal and noise: predicting the power of a data set to resolve phylogeny. *Syst. Biol.* 61, 835–849.
  (doi:10.1093/sysbio/sys036)

**Table S1.** Collection locality data, voucher information and GenBank accession numbers for *Archinome* specimens and outgroup taxa included in this study. Species ID based on phylogenetic hypothesis Fig. 3A. Dive # vehicle designation: A=HOV *Alvin* (WHOI); T=ROV *Tiburon* (MBARI); N=HOV *Nautile* (IFREMER); V=ROV *Victor 6000* (IFREMER); J1=ROV *Jason* (WHOI); J2= ROV *Jason II* (WHOI); HOV=Human occupied vehicle; ROV=remote operated vehicle. Habitat type designation for each locality: V=vent; S=seep.

| LOCALITY                | SPECIES ID | DIVE # | COORDINATES       | <b>DEPTH (М)</b> | VOUCHER ID    | COI      | 16S      | 28S      | ITS1     |
|-------------------------|------------|--------|-------------------|------------------|---------------|----------|----------|----------|----------|
| Galapagos Rift          |            |        |                   |                  |               |          |          |          |          |
| Rose Bud (V)            | A. rosacea | A4115  | 00º48'N, 86º13'W  | 2451             | WHOI 4115-3-1 | JX028057 | JX027992 |          | KF288954 |
| Rose Bud (V)            | A. rosacea | A4115  | 00º48'N, 86º13'W  | 2451             | WHOI 4115-3-2 | JX028058 | JX027993 | JX028121 |          |
| Rose Bud (V)            | A. rosacea | A4115  | 00º48'N, 86º13'W  | 2451             | WHOI 4115-3-3 | JX028059 | JX027994 | JX028122 | KF288955 |
| Rose Bud (V)            | A. rosacea | A4115  | 00º48'N, 86º13'W  | 2451             | WHOI 4115-3-4 | JX028060 | JX027995 |          | KF288956 |
| Rose Bud (V)            | A. rosacea | A4115  | 00º48'N, 86º13'W  | 2451             | WHOI 4115-3-5 | JX028061 | JX027996 |          | KF288957 |
| Rose Bud (V)            | A. rosacea | A4115  | 00º48'N, 86º13'W  | 2451             | WHOI 4115-3-6 | JX028062 | JX027997 |          |          |
| Galapagos Rift (V)      | A. rosacea | A2223  | 00º48'N, 86º09'W  | 2515             |               | JX028108 | JX028043 |          |          |
| Pacific Antarctic Ridge | 9          |        |                   |                  |               |          |          |          |          |
| 37ºS (V)                | A. storchi | A4088  | 37º47'N, 110º54'W | 2216             | SIO-BIC A2316 | JX028065 | JX028000 |          | KF288936 |
| 37ºS (V)                | A. storchi | A4088  | 37º47'N, 110º54'W | 2216             | SIO-BIC A2317 | JX028066 | JX028001 |          |          |
| 37ºS (V)                | A. storchi | A4090  | 37º47'N, 110º54'W | 2220             | SIO-BIC A2318 | JX028067 | JX028002 | JX028125 | KF288937 |
| North East Pacific Rise | 9          |        |                   |                  |               |          |          |          |          |
| Guaymas Basin (V)       | A. levinae | T551   | 27º00'N, 111º24'W | 2432             | SIO-BIC A2309 | JX028063 | JX027998 | JX028123 |          |
| Guaymas Basin (V)       | A. levinae | T551   | 27º00'N, 111º24'W | 2432             | SIO-BIC A2310 | JX028101 | JX028036 | JX028134 |          |
| Guaymas Basin (V)       | A. levinae | T551   | 27º00'N, 111º24'W | 2432             | SIO-BIC A2311 | JX028102 | JX028037 |          |          |
| 9⁰N (V)                 | A. rosacea | A3763  | 9º46'N, 104º16'W  | 2505             | SIO-BIC A2875 | JX028109 | JX028044 |          |          |
| 9⁰N (V)                 | A. rosacea | A3763  | 9º46'N, 104º16'W  | 2505             | SIO-BIC A2876 | JX028110 | JX028045 |          |          |
| 9⁰N (V)                 | A. rosacea | A3763  | 9º46'N, 104º16'W  | 2505             | SIO-BIC A2877 | JX028111 | JX028046 |          |          |
| 9⁰N (V)                 | A. rosacea | N1738  | 9º47'N, 104º16'W  | 2515             | SIO-BIC A2881 | JX028105 | JX028040 | JX028137 |          |
| 9⁰N (V)                 | A. rosacea | N1738  | 9º47'N, 104º16'W  | 2515             | SIO-BIC A2882 | JX028106 | JX028041 |          |          |
| 9⁰N (V)                 | A. rosacea | N1742  | 9º47'N, 104º16'W  | 2515             | SIO-BIC A2883 | JX028107 | JX028042 | JX028138 |          |
| South East Pacific Ris  | е          |        |                   |                  |               |          |          |          |          |
| 7ºS (V)                 | A. rosacea | N1572  | 07º24'S, 107º47'W | 2746             | SIO-BIC A2890 | JX028083 | JX028018 |          |          |
| 7ºS (V)                 | A. rosacea | N1571  | 07º22'S, 107º47'W | 2719             | SIO-BIC A2891 | JX028084 | JX028019 | JX028129 | KF288943 |
| 7°S (V)                 | A. rosacea | N1573  | 07º25'S, 107º47'W | 2750             | SIO-BIC A2892 | JX028085 | JX028020 |          |          |
| 17ºS (V)                | A. storchi | N1590  | 17º25'S, 113º12'W | 2585             | SIO-BIC A2389 | JN086543 | JN086552 | JN086523 |          |
| 18ºS (V)                | A. storchi | N1585  | 18º36'S, 113º24'W | 2680             |               | JX028086 | JX028021 | JX028130 |          |
| 18ºS (V)                | A. storchi | N1585  | 18º36'S, 113º24'W | 2680             |               | JX028087 | JX028022 |          | KF288944 |
| 18ºS (V)                | A. storchi | N1585  | 18º36'S, 113º24'W | 2680             |               | JX028088 | JX028023 |          |          |
| 21ºS (V)                | A. storchi | N1577  | 21º33'S, 114º17'W | 2838             |               | JX028089 | JX028024 |          |          |
| 21ºS (V)                | A. storchi | N1577  | 21º33'S, 114º17'W | 2838             |               | JX028090 | JX028025 |          | KF288945 |
| 21ºS (V)                | A. storchi | N1577  | 21º33'S, 114º17'W | 2838             |               | JX028091 | JX028026 |          |          |
| 23ºS (V)                | A. storchi | A4096  | 23º32'S, 115º34'W | 2595             | SIO-BIC A2353 | JX028074 | JX028009 |          | KF288940 |
| 23ºS (V)                | A. storchi | A4096  | 23º32'S, 115º34'W | 2595             | SIO-BIC A2354 | JX028075 | JX028010 |          |          |

| Table S1 (CONT'D)      |             |        |                   |                   |               |          |          |          |          |
|------------------------|-------------|--------|-------------------|-------------------|---------------|----------|----------|----------|----------|
| LOCALITY               | SPECIES     | DIVE # | COORDINATES       | <b>D</b> ЕРТН (М) | VOUCHER ID    | COI      | 16S      | 28S      | ITS1     |
| South East Pacific Ris | se          |        |                   |                   |               |          |          |          |          |
| 23ºS (V)               | A. storchi  | A4096  | 23º32'S, 115º34'W | 2595              |               | JX028076 | JX028011 | JX028126 |          |
| 31ºS (V)               | A. storchi  | A4092  | 31º51'S, 112º02'W | 2334              | SIO-BIC A2355 | JX028068 | JX028003 |          |          |
| 31ºS (V)               | A. storchi  | A4092  | 31º51'S, 112º02'W | 2334              | SIO-BIC A2356 | JX028069 | JX028004 |          |          |
| 31ºS (V)               | A. storchi  | A4092  | 31º51'S, 112º02'W | 2334              | SIO-BIC A2357 | JX028070 | JX028005 |          |          |
| 31ºS (V)               | A. storchi  | A4094  | 31º00'S, 111º55'W | 2334              | SIO-BIC A2359 | JX028071 | JX028006 |          | KF288938 |
| 31ºS (V)               | A. storchi  | A4094  | 31º00'S, 111º55'W | 2337              | SIO-BIC A2360 | JX028072 | JX028007 |          |          |
| 31ºS (V)               | A. storchi  | A4094  | 31º0'S, 111º55'W  | 2337              | SIO-BIC A2361 | JX028073 | JX028008 |          | KF288939 |
| Costa Rica Margin      |             |        |                   |                   |               |          |          |          |          |
| 8⁰N (S)                | A. levinae  | A4501  | 08º55'N, 84º18'W  | 1008              | SIO-BIC A1482 | JX028077 | JX028012 | JX028127 |          |
| 8ºN (S)                | A. levinae  | A4502  | 08º55'N, 84º18'W  | 1000              | SIO-BIC A1334 | JX028078 | JX028013 |          |          |
| 8⁰N (S)                | A. levinae  | A4503  | 08º55'N, 84º18'W  | 1005              | SIO-BIC A1349 | JX028079 | JX028014 |          | KF288941 |
| 8⁰N (S)                | A. levinae  | A4505  | 08º55'N, 84º18'W  | 1045              | SIO-BIC A1365 | JX028080 | JX028015 | JX028128 | KF288942 |
| 9⁰N (S)                | A. levinae  | A4508  | 09º01'N, 84º37'W  | 1433              | SIO-BIC A1398 | JX028081 | JX028016 |          |          |
| 9⁰N (HS)               | A. levinae  | A4513  | 09º07'N, 84º50'W  | 1817              | SIO-BIC A1631 | JX028082 | JX028017 |          |          |
| Mid Atlantic Ridge     |             |        |                   |                   |               |          |          |          |          |
| Broken Spur (V)        | A. tethyana | A3124  | 29º10'N, 43º10'W  | 3056              |               |          | JX028047 |          |          |
| TAG (V)                | A. tethyana | A3126  | 26º08'N, 44º49'W  | 3655              |               |          | JX028048 |          |          |
| Snake Pit (V)          | A. tethyana | A3128  | 23º22'N, 44º56'W  | 3660              |               |          | JX028049 |          |          |
| Logatchev (V)          | A. jasoni   | A3133  | 14º45'N, 44º58'W  | 3038              |               | JX028112 | JX028050 |          |          |
| Logatchev (V)          | A. jasoni   | A3133  | 14º45'N, 44º58'W  | 3038              |               |          | JX028051 |          |          |
| Ashadze-1 (V)          | A. tethyana | V312   | 12º58'N, 44º51'W  | 4080              | SIO-BIC A2871 |          | JX028052 |          | KF288958 |
| Ashadze-1 (V)          | A. tethyana | V312   | 12º58'N, 44º51'W  | 4080              | SIO-BIC A2872 |          | JX028053 |          | KF288959 |
| Ashadze-1 (V)          | A. tethyana | V312   | 12º58'N, 44º51'W  | 4080              | SIO-BIC A2873 | JX028113 | JX028054 | JX028139 |          |
| Ashadze-1 (V)          | A. tethyana | V312   | 12º58'N, 44º51'W  | 4080              | SIO-BIC A2874 | JX028114 | JX028055 | JX028140 |          |
| Central India Ridge    |             |        |                   |                   |               |          |          |          |          |
| Kairei Field (V)       | A. jasoni   | J1S297 | 25º19'S, 70º02'E  | 2432              | SIO-BIC A2313 | JX028064 | JX027999 | JX028124 | KF288935 |
| Kairei Field (V)       | A. jasoni   | J1S297 | 25º19'S, 70º02'E  | 2432              | SIO-BIC A2314 | JX028103 | JX028038 | JX028135 |          |
| Kairei Field (V)       | A. jasoni   | J1S297 | 25º19'S, 70º02'E  | 2432              | SIO-BIC A2315 | JX028104 | JX028039 | JX028136 | KF288953 |
| Southwest Pacific Bas  | sins        |        |                   |                   |               |          |          |          |          |
| North Fiji (V)         | A. jasoni   | J2-149 | 16º59'S, 173º54'E | 1985              | SIO-BIC A2365 | JX028098 | JX028033 |          | KF288952 |
| North Fiji (V)         | A. jasoni   | J2-149 | 16º59'S, 173º54'E | 1985              | SIO-BIC A2366 | JX028099 | JX028034 |          |          |
| North Fiji (V)         | A. jasoni   | J2-149 | 16º59'S, 173º54'E | 1985              | SIO-BIC A2367 | JX028100 | JX028035 | JX028133 |          |
| Kilo Moana (V)         | A. jasoni   | J2-140 | 20°59'S, 176°08'E | 2650              | SIO-BIC A2369 | JX028095 | JX028030 |          | KF288949 |
| Kilo Moana (V)         | A. jasoni   | J2-140 | 20°59'S, 176°08'E | 2650              | SIO-BIC A2370 | JX028096 | JX028031 |          | KF288950 |
| Kilo Moana (V)         | A. jasoni   | J2-140 | 20º59'S, 176º08'E | 2650              | SIO-BIC A2371 | JX028097 | JX028032 |          | KF288951 |

| Table S1 (CONT'D)  |                  |        |                   |                  |                 |          |          |          |          |
|--------------------|------------------|--------|-------------------|------------------|-----------------|----------|----------|----------|----------|
| LOCALITY           | SPECIES          | DIVE # | COORDINATES       | <b>DEPTH (М)</b> | VOUCHER ID      | COI      | 16S      | 28S      | ITS1     |
| Tui Malila Lau (V) | A. jasoni        | J2-144 | 21º59'S, 176º34'E | 1900             | SIO-BIC A2375   | JX028092 | JX028027 | JX028131 | KF288946 |
| Tui Malila Lau (V) | A. jasoni        | J2-144 | 21º59'S, 176º34'E | 1900             | SIO-BIC A2376   | JX028093 | JX028028 |          | KF288947 |
| Tui Malila Lau (V) | A. jasoni        | J2-144 | 21º59'S, 176º34'E | 1900             | SIO-BIC A2377   | JX028094 | JX028029 | JX028132 | KF288948 |
|                    |                  |        |                   |                  |                 |          |          |          |          |
| OUTGROUP           | LOCAL            | ITY    | COORDINATES       | <b>DEPTH (M)</b> | VOUCHER ID      | COI      | 16S      | 28S      |          |
| Chloeia viridis    | Florida, USA     |        | 24º27'N, 83º11'W  | n/a              | UF Annelida 478 | JN086546 | JN086555 | JN086527 |          |
| Notopygos ornata   | Acapulco, Mexico |        | 16°51'N, 99°54'W  | n/a              | ECO-OH-P0223    | JX028115 | JX028056 | JX028141 |          |

|       | Primer     | SEQUENCE5'-3'                                  | REFERENCE              |
|-------|------------|------------------------------------------------|------------------------|
| 16S   |            |                                                |                        |
| arL   |            | CGCCTGTTTATCAAAAACAT                           | Palumbi et al., 1991   |
| brH   |            | CCGGTCTGAACTCAGATCACGT                         | Palumbi et al., 1991   |
| AnnF  |            | GCGGTATCCTGACCGTRCWAAGGTA                      | Sjölin et al. (2005)   |
| AnnR  |            | TCCTAAGCCAACATCGAGGTGCCAA                      | Sjölin et al. (2005)   |
| COI   |            |                                                | ,                      |
| dgLCC | )          | GGTCAACAAATCATAAAGAYATYGG                      | Meyer et al. (2005)    |
| dgHCC | )          | TAAACTTCAGGGTGACCAAARAAYCA                     | Meyer et al. (2005)    |
| AROC  | OI2F       | AAGACATCGGCACCCTATACCTCA                       | This study             |
| AROC  | OI559R     | AGAGGTGTTTAGGTTCCGGTCTGT                       | This study             |
| 16S:  | 94ºC (3m); | 5 cycles: 94°C (30m), 46°C (30m), 72°C (45s);  | 30 cycles: 94°C (30m), |
|       | 50°C (30m  | ), 72ºC (45s); 72ºC (7m)                       | -                      |
| COI:  |            | 30 cycles: 94°C (1m), 52°C (1m), 72°C (45s); 7 | ′2ºC (7m)              |

**Table S2.** Primers used for COI and 16S amplification and sequencing reactions.

**Table S3.** Mean TrN corrected (below diagonal) and uncorrected (above diagonal) pairwise distances for COI (italics) and ITS1 (bold italics) among select *Archinome* populations. Roman numerals reflect *Archinome* clades on Figure 3. CIR=Central Indian Ridge; SWP=Southwest Pacific Basins; LOG=Logatchev; A1=Ashadze-1; GB=Guaymas Basin; CRM=Costa Rica Margin; GAR=Galapagos Rift; NEPR=North East Pacific Rise; SEPR=South East Pacific Rise.

|               | Ι      | Ι            | Ι      | II     | III    | III       | IV          | IV    | IV    | V         | V      |
|---------------|--------|--------------|--------|--------|--------|-----------|-------------|-------|-------|-----------|--------|
|               |        | SWP          | LOG    | A1     | GB     |           | GAR         |       | SEPR1 | SEPR2     | SEPR3  |
|               | (25⁰N) | (16-20ºS)    | (14ºN) | (12ºN) | (27⁰N) | (8-9°N)   | (0°N)       | (9ºN) | (7ºS) | (17-18ºS) | (37ºS) |
| CIR           | *      | 0.029        | 0.003  | 0.100  | 0.133  | 0.132     | 0.136       | 0.136 | 0.134 | 0.133     | 0.133  |
| <b>U</b> II ( |        | 0.001        |        | 0.013  |        | 0.019     | 0.012       |       | 0.013 | 0.013     | 0.013  |
| SWP           | 0.030  | *            | 0.032  | 0.109  | 0.132  | 0.134     | 0.148       | 0.148 | 0.147 | 0.141     | 0.141  |
| 5001          | 0.001  |              |        | 0.014  |        | 0.020     | 0.013       |       | 0.014 | 0.014     | 0.014  |
| LOG           | 0.003  | 0.034        | *      | 0.101  | 0.135  | 0.134     | 0.137       | 0.137 | 0.136 | 0.134     | 0.134  |
| LUG           |        |              |        |        |        |           |             |       |       |           |        |
|               | 0.110  | 0.121        | 0.112  | *      | 0.130  | 0.129     | 0.112       | 0.112 | 0.111 | 0.113     | 0.111  |
| A1            |        | 0.014        |        | ĥ      |        | 0.032     | 0.025       |       | 0.025 | 0.025     | 0.025  |
| 0.0           | 0.149  | 0.148        | 0.152  | 0.146  | *      | 0.004     | 0.126       | 0.126 | 0.126 | 0.130     | 0.131  |
| GB            |        |              |        |        | ^      |           |             |       |       |           |        |
| 0.014         | 0.149  | 0.151        | 0.151  | 0.145  | 0.004  | *         | 0.124       | 0.124 | 0.124 | 0.129     | 0.130  |
| CRM           | 0.019  | 0.020        |        | 0.033  |        | *         | 0.031       |       | 0.032 | 0.032     | 0.032  |
| 0.45          | 0.157  | 0.173        | 0.159  | 0.125  | 0.141  | 0.139     | *           | 0.005 | 0.008 | 0.047     | 0.047  |
| GAR           | 0.012  | 0.013        |        | 0.025  |        | 0.032     | *           |       | 0.004 | 0.004     | 0.004  |
|               | 0.157  | 0.173        | 0.159  | 0.125  | 0.141  | 0.139     | 0.005       | *     | 0.008 | 0.047     | 0.046  |
| NEPR          |        |              |        |        |        |           |             | *     |       |           |        |
|               | 0.155  | 0.171        | 0.157  | 0.123  | 0.141  | 0.139     | 0.008       | 0.008 | *     | 0.047     | 0.046  |
| SEPR1         | 0.013  | 0.014        |        | 0.026  |        | 0.033     | 0.004       |       | *     | 0.006     | 0.006  |
| _             | 0.154  | 0.164        | 0.155  | 0.125  | 0.147  | 0.145     | 0.050       | 0.049 | 0.049 | *         | 0.003  |
| SEPR2         | 0.013  | 0.014        |        | 0.026  |        | 0.033     | 0.004       |       | 0.006 | *         | 0.000  |
|               | 0.154  | 0.164        | 0.155  | 0.124  | 0.148  | 0.146     | 0.049       | 0.048 | 0.048 | 0.003     |        |
| SEPR3         | 0.013  | <b>0.014</b> |        | 0.024  |        | 0.033     | <b>0.04</b> |       | 0.040 | 0.000     | *      |
|               |        | sonin sp     |        |        |        | 4 levinae |             |       |       | A storchi |        |

I. A. jasoni n. sp. II. A. tethyana n. sp. III. A. levinae n. sp. IV. A. rosacea V. A. storchi

Table S4. Summary of morphological characters evaluated among Archinome species.

- 1. Number of chaetigers
- 2. Length (mm), excluding prostomial appendages
- 3. Width (mm), excluding chaetae
- 4. Body shape
- 5. Body shape, cross section, mid section
- 6. Median antenna, shape (homologous to nuchal cirrus, sensu Fiege and Bock, 2009)
- 7. Median antenna, length (l) to width (w) ratio: a) minute,  $\langle 2x; b \rangle$  short, 2–3x; c) long,  $\rangle 6x$
- 8. Antennae, shape (homologous to dorsomedial antennae, sensu Fiege and Bock, 2009)
- 9. Antennae, length (l) to width (w) ratio: a) short, >6x; b) moderate, 6-8x; c) long, >9x
- 10. Antennae, extending laterally to: a) prostomial margins; b) notopodium, chaetiger 1; c) notopodium chaetiger 2
- 11. Palps, shape
- 12. Palps, length relative to antennae
- 13. Palps, length (l) to width (w) ratio
- 14. Palps, extending laterally to neuropodium chaetiger 1
- 15. Mouth, opening between chaetigers 2-3
- 16. Midventral muscular scutes
- 17. Midventral muscular scutes fused anteriorly, from chaetiger 2 through chaetigers (number). Note: Scutes normally separated by well-defined segmental annuli in small specimens, fused into large plates that are either partially (denoted by /) or completely (denoted by -) lacking segmental annuli in larger specimens.
- 18. Eyespots, 1 pair dorsal and 1 pair ventral on prostomium
- 19. Caruncle, shape
- 20. Caruncle, extending to chaetiger (number)
- 21. Caruncle, position within chaetiger from 20: a) anterior margin; b) mid-chaetiger; c) posterior margin
- 22. Caruncle, fixed to body wall through chaetiger 2; b) through chaetiger 4, overlapping chaetiger 5
- 23. Caruncle, free of body wall: a) chaetigers 3; b) chaetigers 3-4; c) chaetigers 3-5
- 24. Chaetiger 1, size
- 25. Parapodia, type
- 26. Notopodia, shape
- 27. Notopodia, shape
- 28. Neuropodia, shape
- 29. Neuropodia, shape
- 30. Dorsal cirri
- 31. Dorsal cirriphore
- 32. Ventral cirri
- 33. Dorsal accessory cirri
- 34. Branchia (type)
- 35. Branchia, first chaetiger appearance
- 36. Branchia, number of filaments
- 37. Branchia, maximum number of filaments
- 38. Chaetae, overall features

39. Notochaetae, type

- 40. Notochaetae, long:short prong ratio. Prongs measured from distal tip of each prong to inner chaetal junction from where tines diverge from one another (Vogt & Kudenov 1994).
- 41. Notochaetae, prong angle, degrees. Angle measured between distal tips of each prong to inner chaetal junction from where times diverge from one another.
- 42. Notochaetae, area  $\mu m^2 x 10^3$ . Measured prong lengths and angles used to calculate area ( $\mu m^2$ ) of triangle formed using the formula Area = (A<sup>2</sup>+B<sup>2</sup>-2ABcos(C)))<sup>½</sup> where A and B represent lengths of long and short prongs, and C is the angle in radians.
- 43. Notochaetae, asperites. Taxonomic term describing variously developed minute file-like points or denticles on surface of chaetal shafts proximal to distal prongs.
- 44. Notochaetae, spurred
- 45. Neurochaetae, type
- 46. Neurochaetae, long:short prong ratio. Prongs measured from distal tip of each prong to inner chaetal junction from where tines diverge from one another (Vogt & Kudenov 1994).
- 47. Neurochaetae, prong angle, degrees. Angle measured between distal tips of each prong to inner chaetal junction from where tines diverge from one another.
- 48. Neurochaetae, area  $\mu m^2 x 10^3$ . Measured prong lengths and angles used to calculate area  $(\mu m^2)$  of triangle formed using the formula Area =  $(A^2+B^2-2ABcos(C)))^{\frac{1}{2}}$  where A and B represent lengths of long and short prongs, and C is the angle in radians.
- 49. Neurochaetae, asperites. Taxonomic term describing variously developed minute file-like points or denticles on surface of chaetal shafts proximal to distal prongs.
- 50. Neuroacicula, spurred
- 51. Pygidial, cirrus
- 52. Anus, dorsal opening on segments
- 53. Anus, extending through segments
- 54. Pygidial "eyespots": (0) 1 pair of lateral stripes, terminally absent; (1) transverse distal band, terminal; (2) distal patch, terminal; (3) middorsal patch, base to tip; (4) absent

|             | A. rosacea**              | A. rosacea              | A. rosacea              | A. storchi              | A. storchi**           | A. jasoni n. sp.             | A. jasoni n. sp.             | A. jasoni n. sp.         | A. jasoni n. sp.             | A. tethyana n. sp.      | A. levinae n. sp.          |
|-------------|---------------------------|-------------------------|-------------------------|-------------------------|------------------------|------------------------------|------------------------------|--------------------------|------------------------------|-------------------------|----------------------------|
|             | GAR<br>(0°N)              | NEPR<br>(9°N)           | GAR<br>(0°N)            | SEPR<br>(17°S)          | PAR<br>(37°S)          | CIR<br>(25°S)                | MAR<br>(14°N)                | SWP<br>(22°S)            | SWP<br>(22°S)                | MAR<br>(23°N)           | CRM<br>(9°N)               |
| 1           | 18                        | 23                      | 10                      | 11                      | 23                     | 32                           | 24                           | 20                       | 18                           | 33                      | 23                         |
| 2<br>3<br>4 | 12 mm<br>5.5 mm           | 14 mm<br>5.5 mm         | 1.2 mm<br>0.8 mm        | 1.2 mm<br>1 mm          | 15 mm<br>4.5 mm        | 27 mm<br>10.5 mm<br>Fusiform | 9 mm<br>3 mm                 | 8 mm<br>2.5 mm           | 7 mm<br>2.5 mm               | 38 mm<br>7 mm           | 14 mm<br>6 mm              |
| 5           |                           |                         |                         |                         | -                      | Trapezoidal                  |                              |                          |                              |                         |                            |
| 6           | Cirriform                 | Cirriform               | Conical                 | Cirriform               | Cirriform              | Cirriform                    | Papilliform                  | Cirriform                | Claviform                    | Cirriform               |                            |
| 7<br>8      | Short                     | Short                   | Short                   | Short                   | Long                   | Minute<br>Cirriform          | Minute                       | Short                    | Short                        | Minute                  | Minute                     |
| 9<br>10     | Short<br>Prost.<br>margin | Short<br>Noto.<br>ch. 1 | Short<br>Noto.<br>ch. 1 | Short<br>Noto.<br>ch. 1 | Long<br>Noto.<br>ch. 1 | Moderate<br>Noto.<br>ch. 1-2 | Moderate<br>Noto.<br>ch. 1-2 | Long<br>Noto.<br>ch. 1-2 | Moderate<br>Noto.<br>ch. 1-2 | Short<br>Noto.<br>ch. 2 | Moderate<br>Noto.<br>ch. 2 |
| 11          | Aalaaa                    | Aalaaa                  | Lawwar                  | Longer                  | Charter                | Cirriform                    | Charter                      | Charter                  | Charter                      | Charter                 | Aalaaa                     |
| 12<br>13    | As long<br>6.3x           | As long<br>6.4x         | Longer<br>5.5x          | Longer<br>5.2           | Shorter<br>6.6-7x      | Shorter<br>5.5x              | Shorter<br>3.1x              | Shorter<br>7.6x          | Shorter<br>7.5x              | Shorter<br>3.6x         | As long<br>6.5x            |
| 14          | 0.07                      | 0.47                    | 0.07                    | 0.2                     | 0.0 7 X                | 1                            | 0.17                         | 1.07                     | 1.57                         | 0.07                    | 0.07                       |
| 15          |                           |                         |                         |                         |                        | 2-3                          |                              |                          |                              |                         |                            |
| 16          |                           |                         |                         |                         |                        | Present                      |                              |                          |                              |                         |                            |
| 17          | 2-3                       | 2-3/4                   | 2-3                     | 2-3                     | 2-3                    | 2-4                          | 2-5                          | 2-4                      | 2-4                          | 2-5                     | 2-3                        |
| 18          |                           |                         |                         |                         | 1 pair de              | orsal, 1 pair v              | ventral                      |                          |                              |                         |                            |
| 19          |                           |                         |                         |                         |                        | ngate, trilobe               |                              |                          |                              |                         |                            |
| 20          | 5                         | 4                       | 3                       | 3                       | 4<br>Mid               | 3<br>Deat                    | 3<br>Mid                     | 3<br>Deet                | 5                            | 4<br>Mid                | 3<br>Dect                  |
| 21          | Ant.<br>mar.              | Ant.<br>mar.            | Mid.<br>chaet           | Mid.<br>chaet           | Mid.<br>chaet          | Post.<br>mar.                | Mid.<br>chaet.               | Post.<br>mar.            | Ant.<br>mar.                 | Mid.<br>chaet.          | Post.<br>mar.              |

Table S5. Comparison of morphological characters (Table S4) among select Archinome specimens. \*\*Holotype

## Table S5. (cont'd)

|          | A. rosacea** | A. rosacea    | A. rosacea   | A. storchi     | A. storchi**  | A. jasoni n. sp.      | A. jasoni n. sp. | A. jasoni n. sp. | A. jasoni n. sp. | A.tethyana n. sp. | A. levinae n. sp. |
|----------|--------------|---------------|--------------|----------------|---------------|-----------------------|------------------|------------------|------------------|-------------------|-------------------|
| 22       | GAR<br>(0°N) | NEPR<br>(9°N) | GAR<br>(0°N) | SEPR<br>(17°S) | PAR<br>(37°S) | CIR<br>(25°S)<br>2    | MAR<br>(14°N)    | SWP<br>(22°S)    | SWP<br>(22°S)    | MAR<br>(23°N)     | CRM<br>(9°N)      |
| 23       | 3-5          | 3-4           | 3            | 3              | 3-4           | 3                     | 3                | 3                | 3-5              | 3-4               |                   |
| 24       | Reduced      | Reduced       | Reduced      | Reduced        | Reduced       | Reduced               | Enlarged         | Enlarged         | Enlarged         | Reduced           | Reduced           |
| 25       |              |               |              |                |               | Biramous              |                  |                  |                  |                   |                   |
| 26       |              |               |              |                |               | Conical               |                  |                  |                  |                   |                   |
| 27       |              |               |              |                |               | Circular              |                  |                  |                  |                   |                   |
| 28       |              |               |              |                | M             | ound-shaped           | ł                |                  |                  |                   |                   |
| 29       |              |               |              |                |               | Circular              |                  |                  |                  |                   |                   |
| 30       |              |               |              |                |               | Present               |                  |                  |                  |                   |                   |
| 31       |              |               |              |                |               | Present               |                  |                  |                  |                   |                   |
| 32       |              |               |              |                |               | Present               |                  |                  |                  |                   |                   |
| 33<br>34 |              |               |              |                |               | Present<br>Digitiform |                  |                  |                  |                   |                   |
| 35       |              |               |              |                |               | 3                     |                  |                  |                  |                   |                   |
| 36       | 1-2          | 3             | 1            | 1              | 3             | 5                     | 2                | 3                | 3                | 4                 | 3                 |
| 37       | 6            | 7-8           | 1            | 1              | 7             | 15-16                 | 4                | 5                | 5                | 7-9               | >15               |
| 38       | -            |               |              |                |               | calcareous,           |                  | -                | -                | - •               |                   |
| 39       |              |               |              |                | ,             | Bifurcate             |                  |                  |                  |                   |                   |
| 40       | 5.3-10.7:1   | 3.8-6.3:1     | 7.4-10.4     | 2.8-5.2:1      | 2.7-5.2:1     | 4.8-8.7:1             | 4.2-7.6:1        | 4.3-5.9:1        | 3.2-5.2:1        | 3-6:1             | 4.25:1            |
| 41       | 23.2         | 22.9          | 26.9         | 22.9           | 23.3          | 32.4                  | 28.3             | 31.2             | 30.5             | 21.6              | 22.5              |
| 42       | 7.7          | 7.4           | 0.6          | 1.7            | 2             | 4.2                   | 2.1              | 4.1              | 12               | 2.6               | 7.1               |
| 43       |              |               |              |                |               | Present               |                  |                  |                  |                   |                   |

#### Table S5. (cont'd)

|      | A. rosacea**  | A. rosacea    | A. rosacea    | A. storchi     | A. storchi**  | A. jasoni n. sp. | A.tethyana n. sp. | A. levinae n. sp. |
|------|---------------|---------------|---------------|----------------|---------------|------------------|------------------|------------------|------------------|-------------------|-------------------|
|      | GAR1<br>(0°N) | NEPR<br>(9°N) | GAR2<br>(0°N) | SEPR<br>(17°S) | PAR<br>(37°S) | CIR<br>(25°S)    | MAR1<br>(14°N)   | SWP1<br>(22°S)   | SWP2<br>(22°S)   | MAR2<br>(23°N)    | CRM<br>(9°N)      |
| 44   |               |               |               |                |               | Present          |                  |                  |                  |                   |                   |
| 45   |               |               |               |                |               | Bifurcate        |                  |                  |                  |                   |                   |
| 46   | 2.1-4.7:1     | 2.3-4.6:1     | 9.3-17.8      | 2.7-4.6:1      | 2.7-4.6:1     | 3.2-5:1          | 2.5-5.8:1        | 3.4-6.1:1        | 1.6-2.7          | 2-5.1:1           | 2.3-5.1:1         |
| 47   | 22.6          | 20.8          | 38            | 22.7           | 22.7          | 25.2             | 20.3             | 30.9             | 21.5             | 17.4              | n/a               |
| 48   | 2.7           | 5.2           | 0.26          | 1.6            | 1.6           | 5.4              | 3.5              | 3                | 4.9              | 2.4               | n/a               |
| 49   |               |               |               |                |               | Present          |                  |                  |                  |                   |                   |
| 50   |               |               |               |                |               | Present          |                  |                  |                  |                   |                   |
| 51   |               |               |               |                | Th            | ick, elongate    | Э                |                  |                  |                   |                   |
| 52   | 17-18         | 18-20         | 9             | 10             | 19-20         | 22-26            | 21-23            | 18-19            | 16-17            | 25-27             | 19-20             |
| 53   | 2             | 2-3           | 1             | 1              | 2             | 2-4              | 2-3              | 2                | 2                | 2-3               | 2                 |
| 54   | 0             | 0             | 4             | 4              | 0             | 1                | 2                | 4                | 4                | 3                 | 0                 |
| A ro |               | LISNM 81788   | Holotypo      |                |               | A iasoni         | n sn (MAR) S     |                  |                  |                   |                   |

A. rosacea (GAR1) USNM 81788, Holotype

A. rosacea (NEPR) SIO-BIC A3542

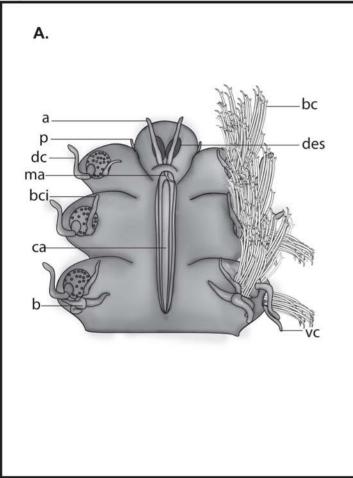
A. rosacea (GAR2) USNM 1221442

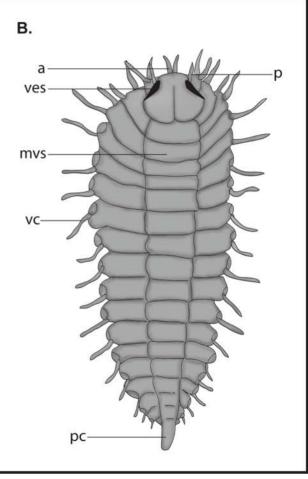
A. storchi (SEPR) SIO-BIC A3543

1

A. storchi (PAR) SMF 17876, Holotype A. jasoni n. sp. (CIR) SIO-BIC A3544

A. jasoni n. sp. (MAR) SIO-BIC A3545


A. jasoni n. sp. (SWP) SIO-BIC A3546


A. jasoni n. sp. (SWP) SIO-BIC A3547 A. tethyana n. sp. (MÁR) SIO-BIC A3548

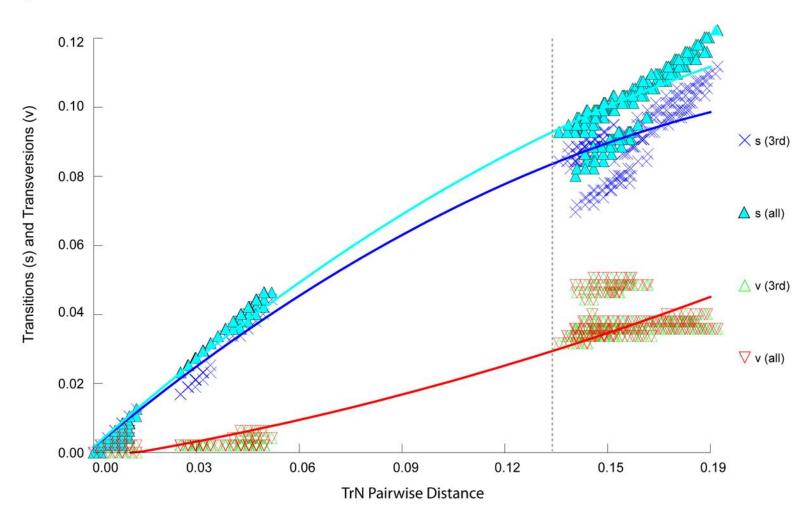
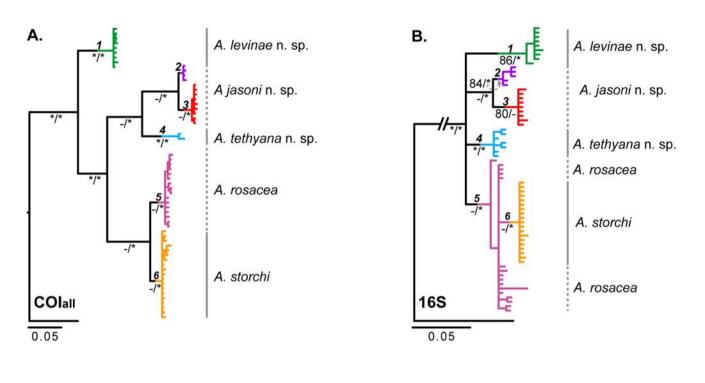
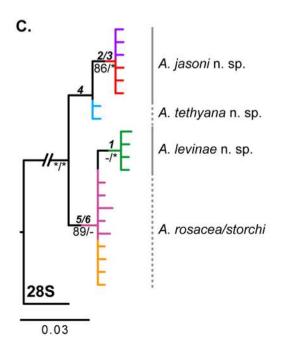
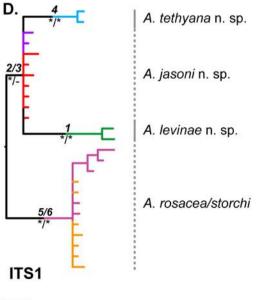
A. levinae n. sp. (CRM) SIO-BIC A1316

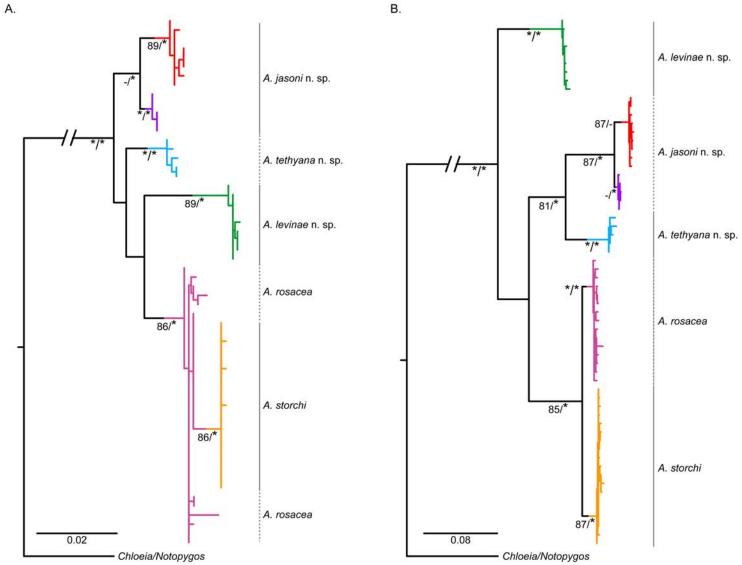
## 1 ESM FIGURE LEGENDS

| 3  | Figure S1. General aspects of Archinome morphology and main diagnostic characters. A. Doral                           |
|----|-----------------------------------------------------------------------------------------------------------------------|
| 4  | view of anterior-most body segments. B. Ventral view of diagnostic characters. a=antenna;                             |
| 5  | b=branchia; bc=bifurcate chaetae; bci=dorsal accessory cirrus; c=chaetae; ca=caruncle;                                |
| 6  | dc=dorsal cirrus; des=dorsal eyespot; ma=median antenna; mvs=midventral scute; p=palps;                               |
| 7  | pc=pygidial cirrus; vc=ventral cirrus; ves=ventral eyespot                                                            |
| 8  |                                                                                                                       |
| 9  | Figure S2. Saturation plot of transitions (s) and transversions (v) of all three codon positions                      |
| 10 | (all) and third codon position alone (3rd) against the TrN corrected genetic distances of                             |
| 11 | Archinome COI sequences.                                                                                              |
| 12 |                                                                                                                       |
| 13 | Figure S3. Phylogenetic hypotheses of Archinome (BI topology shown) based on single gene                              |
| 14 | analyses. A. COI <sub>ALL</sub> ; B. 16S; C. 28S; D. ITS1. ML bootstrap and BI posterior probabilities                |
| 15 | (boot/pp) shown at nodes; * denote boot >90% and pp >0.95; values below 80% not shown.                                |
| 16 |                                                                                                                       |
| 17 | Figure S4. Phylogenetic hypotheses of Archinome (ML topology shown) based on COI and 16S.                             |
| 18 | A. COI <sub>N03RD</sub> +16S; B. COI <sub>ALL</sub> +16S. ML bootstrap and BI posterior probabilities (boot/pp) shown |
| 19 | at nodes; * denote boot >90% and pp >0.95; values below 80% not shown.                                                |
| 20 |                                                                                                                       |







Figure S3









