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Hypoxia is a common occurrence in aquatic habitats, and it is becoming an increasingly frequent and widespread environ-
mental perturbation, primarily as the result of anthropogenic nutrient enrichment and climate change. An in-depth under-
standing of the hypoxia tolerance of fishes, and how this varies among individuals and species, is required to make accurate 
predictions of future ecological impacts and to provide better information for conservation and fisheries management. The 
critical oxygen level (Pcrit) has been widely used as a quantifiable trait of hypoxia tolerance. It is defined as the oxygen level 
below which the animal can no longer maintain a stable rate of oxygen uptake (oxyregulate) and uptake becomes dependent 
on ambient oxygen availability (the animal transitions to oxyconforming). A comprehensive database of Pcrit values, compris-
ing 331 measurements from 96 published studies, covering 151 fish species from 58 families, provides the most extensive and 
up-to-date analysis of hypoxia tolerance in teleosts. Methodologies for determining Pcrit are critically examined to evaluate its 
usefulness as an indicator of hypoxia tolerance in fishes. Various abiotic and biotic factors that interact with hypoxia are anal-
ysed for their effect on Pcrit, including temperature, CO2, acidification, toxic metals and feeding. Salinity, temperature, body 
mass and routine metabolic rate were strongly correlated with Pcrit; 20% of variation in the Pcrit data set was explained by these 
four variables. An important methodological issue not previously considered is the inconsistent increase in partial pressure of 
CO2 within a closed respirometer during the measurement of Pcrit. Modelling suggests that the final partial pressure of CO2 
reached can vary from 650 to 3500 µatm depending on the ambient pH and salinity, with potentially major effects on blood 
acid–base balance and Pcrit itself. This database will form part of a widely accessible repository of physiological trait data that 
will serve as a resource to facilitate future studies of fish ecology, conservation and management.

Key words: Carbon dioxide, critical oxygen tension, metabolic rate, oxygen and capacity limitation of thermal tolerance, 
physiological trait

Editor: Steven Cooke

Received 17 December 2015; Revised 17 March 2016; accepted 19 March 2016

Cite as: Rogers NJ, Urbina MA, Reardon EE, McKenzie DJ, Wilson RW (2016) A new analysis of hypoxia tolerance in fishes using a database of 
critical oxygen level (Pcrit). Conserv Physiol 4(1): cow012; doi:10.1093/conphys/cow012.

†Present address: Departamento de Zoología, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Casilla 160-C, 
Concepción, Chile.

D
ow

nloaded from
 https://academ

ic.oup.com
/conphys/article-abstract/4/1/cow

012/2951333 by Ifrem
er, Bibliothèque La Pérouse user on 18 June 2020



Introduction

In recent decades, there has been growing concern regarding 
the increasingly widespread and frequent occurrence of 
hypoxia in aquatic environments, associated with the increased 
discovery of hypoxic zones globally (Diaz, 2001; Diaz and 
Breitburg, 2009; Zhang et  al., 2010). Although periods of 
hypoxia can develop naturally in many aquatic systems, 
anthropogenic influences have been shown to be a major 
driver of hypoxic events in both freshwater and marine habi-
tats (Friedrich et al., 2014). In particular, eutrophication asso-
ciated with increased anthropogenic nutrient loading of lakes, 
rivers and coastal waters leads to blooms of algae and phyto-
plankton, the death of which subsequently fuels microbial res-
piration and the depletion of dissolved oxygen (Smith, 2003). 
Hypoxia has been shown to result in losses of biodiversity and 
to trigger widespread mortality events (Vaquer-Sunyer and 
Duarte, 2008). In the marine environment, more than 400 
coastal systems have been reported as eutrophication-associ-
ated ‘dead zones’ (Diaz and Rosenberg, 2008). Global warm-
ing is likely to exacerbate hypoxia in aquatic systems owing to 
increased microbial respiration rates and reduced oxygen solu-
bility with increasing water temperatures (McBryan et  al., 
2013). In addition, potential modifications to oceanic circula-
tion linked to future climate change are predicted to result in 
greater stratification and ‘deoxygenation’ of the oceans 
(Keeling and Garcia, 2002; Keeling et al., 2009). In summary, 
in the future, reduced oxygen concentrations are predicted to 
occur more extensively, more frequently and for longer periods 
of time (IPCC, 2014). Fish are among the more hypoxia sensi-
tive of aquatic taxa and, as such, the sequential loss of fauna 
from aquatic ecosystems during hypoxic events is commonly 
initiated by the loss or relocation of fish populations (Vaquer-
Sunyer and Duarte, 2008). Understanding the physiological 
responses of individual organisms to environmental stressors, 
such as hypoxia, provides a mechanistic link between environ-
mental change and population-level effects, which may be key 
to predicting future ecological impacts (Chown, 2012; 
Seebacher and Franklin, 2012; Cooke et al., 2013).

Fishes can show various behavioural responses to hypoxia, 
such as rising to the surface to breathe the uppermost layer of 
water in contact with air, increasing activity to escape the 
hypoxic area or decreasing activity to reduce oxygen demand 
(Chapman and McKenzie, 2009; Urbina et  al., 2011; 
Domenici et al., 2012). Beyond these behavioural responses, 
fishes can engage numerous profound physiological responses, 
such as changes in ventilation, cardiac activity and haemoglo-
bin–O2 binding (Richards, 2009). These physiological 
responses work primarily to sustain oxygen extraction from 
the environment in order to maintain aerobic ATP produc-
tion. This allows the majority of fishes to maintain stable oxy-
gen uptake rates across a wide range of ambient partial 
pressures of oxygen (PO2

), a response known as ‘oxyregulation’ 
(reviewed by Perry et  al., 2009). When, however, oxygen 
reduces to a threshold below which oxygen uptake rate 
 cannot be maintained, oxygen uptake declines linearly with a 

decrease in ambient PO2, a response known as ‘oxyconform-
ing’ (Pörtner and Grieshaber, 1993; Claireaux and Chabot, 
2016). This threshold, when oxygen uptake transitions from 
regulation to conforming, is referred to as the critical PO2 (Pcrit; 
Beamish, 1964; Ultsch et al., 1978). As a measure of whole-
animal oxygen extraction capacity, which varies extensively 
across species and among populations, Pcrit is widely used to 
describe the degree of hypoxia tolerance in fishes (Ultsch 
et al., 1978; Chapman et al., 2002; Nilsson et al., 2007a,b; 
Mandic et al., 2009; reviewed by Chapman and McKenzie, 
2009; Speers-Roesch et al., 2012).

Oxygen, the key variable in Pcrit measurements, is used by 
aerobic organisms as an electron acceptor in order to drive the 
production of ATP. As such, the rate of oxygen uptake is 
widely considered as a proxy for the rate of aerobic metabo-
lism, at least when in a steady state (Brown et  al., 2004; 
Nelson, 2016). Standard metabolic rate (SMR) is the oxygen 
uptake rate of an entirely inactive, post-absorptive fish and 
reflects its minimal cost of living at a given temperature 
(Beamish and Mookherjii, 1964; Chabot et al., 2016). Routine 
metabolic rate (RMR) provides a similar estimate of the cost 
of living but takes into account energy expended on maintain-
ing posture and making the small movements that are typical 
of most fishes even when in a quiescent state (McBryan et al., 
2013). In contrast, maximal metabolic rate (MMR) is the 
highest rate of oxygen uptake that can be attained in defined 
environmental conditions (Clark et  al., 2013; Norin and 
Clark, 2016). The difference between SMR and MMR is 
referred to as aerobic scope and provides for the oxygen 
demands of higher functions, such as locomotion, growth, 
behaviour and reproduction (Farrell and Richards, 2009; 
Claireaux and Chabot, 2016). In the context of this aerobic 
hierarchy, several levels of critical PO2

 are represented in 
Figure 1. As this conceptual diagram illustrates, MMR is the 
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Figure 1: Diagram illustrating the conceptual idea of the effects of 
hypoxia on the standard metabolic rate (SMR), routine metabolic rate 
(RMR), maximal metabolic rate (MMR) and aerobic scope (AS) of an 
oxyregulator. This and may not apply to species with facultative metabolic 
depression below the critical oxygen level (Pcrit). Pcmax is defined as the 
critical exeternal oxygen partial pressure at which oxygen supply no 
longer meets the maximum demand for oxygen (Portner, 2010).
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first rate to become limited as ambient oxygen decreases 
(Pcmax), from which point a decline in MMR leads to a reduc-
tion in aerobic scope. Secondly, the Pcrit for RMR is reached, 
whereby oxygen supply cannot sustain even minimal levels of 
aerobic activity. Finally, the Pcrit for SMR indicates that oxy-
gen supply cannot meet even basic oxygen demands (Pörtner 
and Lannig, 2009; Claireaux and Chabot, 2016). Below this 
threshold, anaerobiosis or suppression of metabolic rate are 
required to sustain life (Richards, 2009). Each of the three 
levels of Pcrit may indicate the difference between mortality 
and survival. If so, Pcrit may have major implications for the 
fitness of fishes living in environments prone to hypoxia and, 
as such, each of these levels can be considered as functional 
traits (McGill et al., 2006; Claireaux and Chabot, 2016).

The examination of trait variation across populations and 
communities, and its ecological implications, are increasingly 
becoming the basis for predicting and potentially mitigating the 
effects on biodiversity of environmental change (Chown, 2012). 
Such trait-based approaches are facilitated by the collection 
and dissemination of trait data. Large-scale multi-trait data-
bases have been compiled for various taxa, including plants 
(Kattge et al., 2011), mammals (Jones et al., 2009), marine 
polychaetes (Faulwetter et  al., 2014) and North American 
freshwater fishes (Frimpong and Angermeier, 2009). As a quan-
tifiable measure of hypoxia tolerance that is measured on indi-
viduals and is applicable at population level, Pcrit is useful for 
incorporation into trait-based approaches to the conservation 
physiology of fishes (Frimpong and Angermeier, 2009).

The field of fish physiology has generated a large body of 
literature on Pcrit, across a wide range of species and in highly 
variable abiotic and biotic conditions (Perry et al., 2009). 
Owing to the discrete and nuanced nature of each study, it is 
challenging to make broad generalizations. The aims of the 
present work were as follows: (i) to assemble a database of the 
Pcrit values reported for fishes, from published literature, in a 
format suitable for future incorporation into multi-trait-based 
analyses; (ii) to analyse the data to identify how biotic and 
abiotic factors (particularly temperature) interact with 
hypoxia and affect Pcrit; and (iii) to appraise methodologies 
for measuring Pcrit critically, and thereby evaluate its useful-
ness for quantifying hypoxia tolerance in fishes. This new 
analysis not only provides an opportunity for further quanti-
tative considerations but also serves as a tangible link between 
the physiology and the conservation of fishes.

Methods
Literature search
The citation and abstract indexes, Scopus® and Web of 
Science®, were used to collect relevant peer-reviewed literature. 
The literature search was conducted in December 2014 using 
the following terms: ‘critical oxygen’, ‘critical PO2’, ‘oxygen 
threshold’, ‘Pcrit’, ‘oxyregulate’, ‘oxyconform’ or ‘hypoxia toler-
ance’. Approximately 400 papers from relevant subject areas 
were identified. Each of these articles was individually assessed 

for relevance based on their title and abstract. Finally, 144 
papers were downloaded for a full read of the manuscript. Of 
these, only 96 papers reported Pcrit measurements in at least 
one fish species.

Database construction
In order to maximize the future usefulness of the database and 
to ensure that it fully reflects the variation in abiotic/biotic con-
ditions in which Pcrit has previously been measured in fishes, it 
was necessary to extract multiple parameters from each study. 
For each Pcrit entry, 66 columns summarize information on the 
species and origin, acclimation parameters, animal character-
istics, experimental method, results, statistical analyses, gen-
eral comments and bibliographic information (Table 1). The 
database was constructed as a single Microsoft Excel file, with 
individual columns for each parameter and rows for each Pcrit 
determination in a particular species or treatment group. As 
such, a single study may occupy several rows depending on the 
number of treatment groups and/or species for which Pcrit is 
reported. Values for Pcrit were reported in a variety of different 
oxygen units across the literature (millimetres of mercury, torr, 
percentage air saturation, milligrams of oxygen per litre and 
micromolar), but were converted here to a partial pressure of 
oxygen (in kilopascals) based on oxygen solubility values 
reported by Green and Carrit (1967) and assuming standard 
atmospheric pressure at sea level (760 mmHg), if not other-
wise reported. Likewise, all values of oxygen uptake rate were 
converted to milligrams of oxygen per kilogram per hour. To 
enable unbiased inter-species comparison, a subset of the full 
database was produced, which included only those Pcrit mea-
surements made in fishes meeting the following conditions: (i) 
in an unfed or post-absorptive state; (ii) undergoing no addi-
tional (to hypoxia) abiotic stressor; and (iii) where tempera-
ture acclimation lasted for >2 days.

Database analysis
The frequency of Pcrit measurements across families and cli-
mate zones was calculated based on the full database. 
However, comparisons of Pcrit values were made using the 
subset ‘control’ database described above. Based on the lati-
tude of where the studies were conducted, each entry was 
labelled as tropical, sub-tropical, temperature or polar. 
Analysis of variance was used to test for an effect of climate 
zone on Pcrit using the Sidak post hoc test.

Potential influences of varying respirometry methodologies 
and hypoxia exposure methods on Pcrit were explored using 
the subset ‘control’ database, in which there are 297 data 
points. Similar to the full database, the majority of studies 
measured Pcrit using closed static respirometry on individual 
fish, where oxygen is reduced via the oxygen consumption of 
the fish (n = 202). Where there were sufficient data to compare 
methods between respirometry methods within a species, a 
Student’s unpaired t-test was used to compare between 
groups. It was not possible to test for differences in hypoxia 
exposure methods within species because there were insuffi-
cient data from at least two methods.
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Stepwise multiple linear regression analysis was used to 
develop a model for predicting Pcrit based on biotic (body 
mass, RMR) and abiotic (temperature, salinity) variables. 
Earlier analysis detected no significant within-species effect of 
respirometry method (closed or flow through) on Pcrit, and it 
was therefore not included in the linear regression model. 
Acclimation variables such as temperature, PO2  and salinity 
were not included in this analysis because they were very 
highly correlated with the equivalent variables reported dur-
ing the trials. Minimal PO2 was not included in the model 
because it is driven by Pcrit.

As the multivariate model identified salinity as a relevant 
factor, the potential effect of salinity on Pcrit was explored fur-
ther by comparing Pcrit values measured in seawater (150 
entries from 82 species) with Pcrit values measured in freshwa-
ter (116 entries from 50 species). This approach was taken 
because most of the studies were conducted either in freshwa-
ter [∼0.1 practical salinity units (PSU)] or seawater (∼30–
38 PSU). Values of Pcrit were calculated as the partial pressure 
of oxygen (in kilopascals) and as the concentration of oxygen 
(in milligrams per litre), using the solubility coefficient based 

on experimental temperature and salinity (Green and Carrit, 
1967). Potential differences between groups were then tested 
by a Mann–Whitney U-test, because normality assumptions 
were violated.

Results and discussion
Database coverage
Of the 96 studies reviewed, 331 measurements of Pcrit across 
151 species were incorporated into the database. Across the 
global database, 58 families are represented, with Cyprinidae 
(n = 44), Pomacentridae (n = 41), Gobiidae (n = 24), Cichildae 
(n = 23), Salmonidae (n = 19), Cottidae (n = 18), Apogonidae 
(n = 17), Percidae (n = 13) and Sparidae (n = 12) the most fre-
quently represented. Freshwater and marine (including eury-
haline) species account for 40 and 60% of Pcrit entries, 
respectively. Water temperatures at which Pcrit values were 
determined ranged between −1.5 and 36°C, with a mean 
(±SD) of 21.7 ± 7.6°C. Values for Pcrit over the entire data set 
ranged between 1.02 kPa (Pseudocrenilabrus multicolor 
 victoriae; Reardon and Chapman, 2010) and 16.2 kPa (Solea 
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Table 1: List of the parameters incorporated into the database alongside each reported critical oxygen level value

Species and origin Stock 
acclimation

Sample 
characteristics

Experimental 
method Results Statistical 

analysis
Comments 
and reference

Family Holding time Sample size Respirometry type Oxy regulating or 
conforming

Statistical 
method

Comments

Genus Acclimation 
temperature

Mean mass BMR/RMR/SMR/MMR MO2
Pcrit calculation 
method

Reference

Species Acclimation 
salinity

Mass SD Determination 
method

Critical PO2
SMR 
determination

Year

Origin PO2
 units Mass SEM Swimming speed Critical PO2

 range Corresponding 
Author

Latitude and longitude Acclimation PO2
Mass range upper Hypoxia method Critical PO2

 SD DOI

Acclimation pH Mass range lower Rate of hypoxia onset Critical PO2
 SEM Full citation

Acclimation time Mean length PO2
 set-point time Critical PO2

 units

Diet Length SD Minimal PO2
Air breathing 
threshold

Energy content Length SEM PO2
 unit Common PO2

 units

Ration unit Length range 
upper

Salinity

Ration size Length range 
lower

Temperature

Photoperiod 
(light:dark)

Life stage pH

Feeding regimen Sex PCO2

Last feed Photoperiod 
(light:dark)

Access to air

Abbreviations: BMR, basal metabolic rate; DOI, digital object identifier; MMR, maximal metabolic rate; MO2
, oxygen uptake rate; PCO2

, partial pressure of carbon diox-
ide; Pcrit, critical oxygen level; PO2

, partial pressure of oxygen; RMR, routine metabolic rate; SMR, standard metabolic rate.
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solea larvae; McKenzie et al., 2008) with a mean (±SD) Pcrit in 
the ‘control’ data set of 5.15 ± 2.21 kPa. Plots of species and 
their reported Pcrit values from the subset data set are provided 
in the Supplementary Data (Supplementary Fig. 1).

The geographical coverage of the database includes at least 
one entry from every continent, although North America, 
Europe and Australasia are by far the most heavily represented 
and, when combined, account for 87% of Pcrit entries. Perhaps 
unsurprisingly, most studies of Pcrit in fishes have been concen-
trated around the major fish physiology research groups in 
Europe, North America and Australia. Arguably, this intro-
duces an element of bias into the database, given the incom-
plete representation of all habitats and species at a global scale. 
Based on the full database, tropical studies are the most fre-
quently represented (n = 125 Pcrit measurements, dominated by 
Lizard Island Research Station, Australia, n = 98), followed by 
subtropical (n = 104) and temperate regions (n = 100), domi-
nated by Canada and Europe. The polar regions are the most 
under-represented (n = 2). Within the subset ‘control’ database, 
there was a significant difference in mean Pcrit across climatic 
regions (ANOVA, F2,297 = 4.054, P = 0.018), where tropical 
fishes had the lowest Pcrit (mean ± SEM: 4.92 ± 0.190 kPa) < 
sub-tropical fishes (5.0 ± 0.24 kPa) < temperate fishes 
(5.74 ± 0.24 kPa). However, the Sidak post hoc test suggested 
that Pcrit values for tropical fishes were significantly lower only 
than temperate fishes (P = 0.021). There was no difference in 
mean Pcrit between subtropical and either tropical (P = 0.991) 
or temperate Pcrit (P = 0.085). Owing to low sample size, the 
polar Pcrit values were not included in the ANOVA across tem-
peratures but, interestingly, had a higher mean Pcrit than the 
other three climatic zones (7.9 ± 1.6 kPa).

Additionally, the species studied tend to be those conducive 
to respirometry trials. In particular, large, active or highly sen-
sitive species, such as those of the Scombridae family (tuna, 
mackerels and bonitos) are generally under-represented in the 
literature (Blank et al., 2007). For example, the majority of 
Pcrit values reported in the database were measured on fish 
<1 kg body mass.

Methodology used to determine critical 
oxygen level
The relationship between ambient PO2  and oxygen uptake in 
fishes has been investigated since the study of Keys (1930). 
Even at that early stage, there was considerable discussion 
among physiologists regarding the validity of different meth-
odologies. Technological developments, particularly methods 
for measuring dissolved oxygen content such as galvanic oxy-
gen electrodes and, more recently, fibre-optic sensors, have 
made the performance of high-resolution measurements of 
oxygen uptake in fishes increasingly common (Clark et al., 
2013; Nelson, 2016). Nevertheless, the literature examined 
for the purpose of building this database is characterized by 
considerable variation in terms of methods used to determine 
Pcrit. For example, the majority of studies (56%) used closed 
respirometry for Pcrit estimates, 21% used flow-through respi-
rometry, 20% used intermittent respirometry, and 3% used 
other approaches, such as indirect estimation of gill oxygen 
uptake (Table 2). Most studies (70%) depleted ambient oxy-
gen through the fish’s own respiration, whereas 30% of stud-
ies bubbled nitrogen gas into the water to reduce ambient 
oxygen levels. The majority of studies (80%) measured RMR 
for Pcrit estimates; the remaining 20% measured SMR. These 
methodological differences and their implications are impor-
tant to consider when interpreting collated Pcrit data.

Closed respirometry, whereby the fish is placed within a 
sealed chamber from which water is intermittently sampled 
for measurement of dissolved oxygen content, provides the 
simplest method of measuring oxygen uptake rate (Steffensen, 
1989), as follows:

 
M V V O tO r f2

bw= − × ÷ ×[( ) ] ( ),∆ ∆2  

where MO2 represents oxygen uptake rate, Vr is respirometer 
volume, Vf is fish volume, ΔO2 is change in ambient oxygen con-
tent, t is time, and bw is fish mass (‘body weight’). Importantly, 
water needs to be recirculated within the chamber to ensure 
adequate mixing, thus preventing the stratification of dissolved 
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Table 2: The breakdown of the number of data points representing each respirometry type and oxygen removal method in the subset database

Oxygen depletion method

Respirometry type Fish respiration N2 equilibration N2 and O2 
equilibration

N2 and CO2 
equilibration

N2, O2 and air 
equilibration Total

Closed static (individual) 202 1 0 0 0 203

Closed static (grouped) 13 0 0 0 0 13

Closed flow-through (individual) 13 14 0 0 3 30

Intermittent flow (individual) 13 26 2 1 0 42

Mesocosm (grouped, large tuna) 0 1 0 0 0 1

Open flow-through (grouped) 7 0 0 0 0 7

Opercular mask 1 0 0 0 0 1
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oxygen within the chamber (Keys, 1930). Whether spontaneous 
movements and ventilation are sufficient to provide mixing 
depends on the species and achieving the correct fish-to-respi-
rometer volume ratio. For closed determinations of Pcrit, hypoxia 
is generated by allowing the fish to deplete available oxygen 
through its own respiration, therefore negating the need to strip 
dissolved oxygen from the water artificially through equilibra-
tion with nitrogen. For this reason, closed respirometry is par-
ticularly useful for conducting measurements of Pcrit in the field 
or at remote locations where facilities such as a supply of N2 may 
not be readily available (Rosenberger and Chapman, 2000; 
Nilsson et al., 2007b).

However, there are several important considerations 
regarding the use of closed respirometry for determination of 
Pcrit. For instance, the rate of oxygen depletion during closed 
respirometry is determined by the ratio of fish size (or oxygen 
uptake rate) to respirometer volume. A lack of control over 
the development of hypoxia can be problematic in compara-
tive studies that use the same respirometer to measure Pcrit in 
fish of different size and/or metabolic rate. As an illustrative 
example, the depletion of oxygen levels from 20 to 1 kPa by 
Australian barramundi (Lates calcarifer) took between 1.5 
and 4 h depending on the temperature (26 or 36°C; Collins 
et al., 2013). From our database, it is evident that there is very 
little, if any, standardization in terms of the rate of oxygen 
depletion between Pcrit studies, irrespective of which respirom-
etry method is employed. This is in contrast to measurements 
of other physiological threshold traits, such as the determina-
tion of critical temperature, which tends to be made at consis-
tent warming or cooling rates among studies (0.2–0.3°C min−1; 
Beitinger et al., 2000; Mora and Maya, 2006; Murchie et al., 
2011). It is unclear whether the rate of decline in ambient 
oxygen will significantly affect Pcrit, but it is likely that a lon-
ger time scale would allow for greater respiratory adjust-
ments, and hence, reveal lower Pcrit values than more acute 
hypoxic exposures. Indeed, our own anecdotal observations 
in European flounder (Platichthys flesus) suggest that these 
fish tend to oxyconform across the entire range of ambient PO2 
when exposed to a very rapid reduction of oxygen (from 21 to 
2 kPa in <2 h).

A further issue associated with closed respirometry is the 
build-up of the waste products of metabolism, in particular 
CO2 (Keys, 1930; Steffensen 1989; Urbina et al., 2012). It has 
been argued that the level of CO2 accumulation within a 
closed respirometer is unlikely to impact on CO2 excretion by 
fishes significantly, given that they normally exhibit a blood 
partial pressure of CO2 (PCO2) of around 2–4 mmHg, much 
higher than normal ambient levels (Ishimatsu et al., 2005; 
Nilsson et al., 2007a). However, a precedent has been set, 
albeit at more severe levels of hypercarbia (2.25–20 mmHg), 
to show that elevated PCO2 can increase Pcrit in European eels 
(Anguilla anguilla; Cruz-Neto and Steffensen, 1997), although 
no effect on Pcrit was observed when eels were given enough 
time to acclimate fully in terms of acid–base regulation 
(McKenzie et  al., 2003), or in spot fish (Leiostomus xan-
thurus) and mummichog (Fundulus heteroclitus; Cochran and 

Burnett, 1996). Given the potential influence of hypercarbia, 
it would be prudent to report any change in water PCO2 along-
side values for Pcrit that have been determined through closed 
respirometry, but this has rarely been the case throughout the 
existing literature. A single study so far has evaluated this 
potential confounding factor in determining Pcrit, but in this 
unusual oxyconforming species (inanga, Galaxias maculatus) 
elevated PCO2 had no effect on oxygen uptake rate at any level 
of ambient oxygen (Urbina et al., 2012). Furthermore, the 
authors pointed out that the effect of CO2 on MO2 in fishes 
appears to be species specific (Gilmour, 2001; Ishimatsu et al., 
2008).

An important issue that does not appear to have been con-
sidered previously is that the extent to which PCO2 increases 
within a closed respirometer will be highly dependent on the 
starting water chemistry, in particular pH and salinity (Fig. 2). 
A higher seawater pH indicates a greater total alkalinity (TA). 
In turn, this gives increased capacity for buffering added CO2 
and limiting the increase in PCO2 for a given increase in total 
CO2 attributable to net excretion by the fish in a respirometer. 
Therefore, the lower the starting water pH, the larger the 
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Figure 2: Model of the estimated partial pressure of carbon dioxide 
(PCO2

) reached, in water of different salinities and starting pH values, 
after the addition of 140 µM CO2. The value of 140 µM approximates 
the increase in total CO2 attributable to excretion by a fish at 15°C 
during a closed respirometry experiment. In this theoretical example, 
the oxygen level is allowed to decline as a result of respiration from a 
normoxic partial pressure of >20 kPa (∼245 µM) to a common Pcrit value 
of ∼6 kPa (∼74 µM), and we have assumed a respiratory quotient (CO2 
excreted ÷ O2 consumed) of 0.85 for fish (Kieffer et al., 1998). At each 
starting pH, the total alkalinity (TA) and total CO2 were calculated from 
the pH and assuming equilibration with atmospheric PCO2

 (395 µatm). 
When excreted CO2 is dissolved in water, the total CO2 increases 
accordingly (in this case, by 140 µM) but TA remains unchanged 
(Riebesell et al., 2010). For each starting pH, we therefore used the 
CO2sys program (for the national bureau of standards pH scale) to 
calculate the final PCO2

 that would result from increasing total CO2 by 
140 µM while TA remained constant. This was repeated for salinities of 
20, 25, 30, 35 and 40 practical salinity units (PSU) and starting pH values 
of 7.5–8.5 to cover ranges experienced in many marine laboratories.
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overall change in PCO2
 over the course of the Pcrit measure-

ment. From the models shown in Figure 2, it is clear that pH 
has a massive influence on the ambient PCO2 reached within 
such a closed respirometry scenario, with final PCO2 values 
ranging by 5-fold, from ∼650 µatm (0.49 mmHg) to 
∼3500 µatm (2.66 mmHg) at the highest (8.5) and lowest 
(7.5) starting pH values shown, respectively. Note that even 
the lowest of these final PCO2 values has been shown (in exper-
iments designed to mimic future ‘ocean acidification’ scenar-
ios) to have significant detrimental effects in fishes (Munday 
et al., 2009). When the starting pH is low, the highest PCO2 
values of ∼3500 µatm occur, which are more than 3.5 times 
higher than the ‘business as usual’ for end-of-century global 
CO2 projections (representative concentration pathway sce-
nario 8.5; Meinshausen et al., 2011). It is also relevant to note 
that salinity has a major modulating effect, in particular 
within the middle of the range of starting pH values. For 
example, at a starting pH of 8.0, the final PCO2 will vary from 
slightly <1500 µatm (1.14 mmHg) at the highest salinity 
(40 PSU) to >2500 µatm (1.90 mmHg) at the lowest salinity 
(20 PSU).

The larger ambient PCO2 values indicated above would cer-
tainly be expected to cause significant blood acid–base distur-
bance during the time scale of a typical closed respirometry 
experiment (minutes to hours) and thus have the potential to 
influence Pcrit via alterations in the oxygen binding affinity of 
haemoglobin. It is therefore important to recognize this vari-
ability in PCO2 when conducting closed respirometry experi-
ments to determine hypoxia tolerance, and particularly, when 
interpreting Pcrit measurements.

Flow-through respirometry is a technique whereby oxygen 
content of the inflowing (O2,in) and outflowing (O2,out) 
water is continuously measured at a fixed water flow rate 
through the respirometer (Fw). By application of the Fick prin-
ciple, oxygen uptake (MO2

) is determined by:

 
M F O OO w2

out= − ÷( , , ) .2 2in bw
 

Although flow-through respirometry avoids the accumulation 
of metabolites in the chamber, it suffers from problems pri-
marily related to the ‘wash-out’ effect, whereby a significant 
lag can develop between changes in the fish’s real MO2 and 
changes in observed O2,out. The degree of wash-out depends 
on the dilution factor, which is a function of water mixing, 
volume and flow rate (Steffensen, 1989).

Intermittent flow-through respirometry is generally consid-
ered the ideal method of MO2 determination in fishes because 
it involves none of the problems associated with closed or 
flow-through techniques (Steffensen, 1989; Clark et al., 2013). 
The term ‘intermittent’ or ‘semi-closed’ in this context refers to 
the transitioning between a closed phase for determination of 
MO2 and a flush phase for restoring O2 to a set level and remov-
ing metabolites from the respirometer. As the equipment and 
software for automating flush–recirculation cycles and simul-
taneous data acquisition from multiple chambers have become 
more sophisticated and widely available, intermittent 

 flow-through respirometry has been increasingly used 
(Svendsen et al., 2016). However, Pcrit measurements via this 
preferred technique account for only 20% of values incorpo-
rated into the present database.

Flow-through techniques allow for the supply of hypoxic 
water to the respirometry chamber. This hypoxic water can be 
produced by bubbling with N2 via a solenoid valve linked to 
an O2 probe (Schurmann and Steffensen, 1997) or by bub-
bling with set gas mixtures of variable O2 and N2 content. 
Both methods allow for finer control of the hypoxic exposure 
compared with allowing the fish to deplete ambient oxygen 
levels dependent on its own MO2. Progressive hypoxia can be 
generated in a stepwise fashion such that multiple MO2 mea-
surements can be made at a specific PO2, thereby increasing the 
likelihood of determining an MO2 that is representative of true 
SMR or RMR (Rantin et al., 1993).

Using the present database, we were able to explore differ-
ences in respirometry methods within three species, Atlantic 
salmon (Salmo salar), common carp (Cyprinus carpio) and 
Nile tilapia (Oreochromis niloticus), for which the sample size 
for at least two methods was greater than n > 2. Between 
closed static or closed flow-through respirometers, there was 
no difference in Pcrit of common carp (Student’s unpaired 
t-test, t = 1.429, d.f. = 6, P = 0.203). Likewise, between closed, 
static respirometers (individual fish) and open flow respirom-
etry (with grouped fish), there was no difference in Pcrit in 
Atlantic salmon (Student’s unpaired t-test, t = −0.678, d.f. = 8, 
P = 0.517). There was no difference in Pcrit between closed, 
flow-through or intermittent flow-through respirometry 
within Nile tilapia (Student’s unpaired t-test, t = −0.644, 
d.f. = 6, P = 0.543). In both Atlantic salmon and common 
carp, oxygen levels were reduced by the respiration of the fish, 
whereas in Nile tilapia the oxygen was reduced by nitrogen 
equilibration. A direct comparison in the shiner perch 
(Cymatogaster aggregata) found, however, that Pcrit measured 
by intermittent flow-through respirometry was significantly 
lower than that measured by closed respirometry (Snyder 
et al., 2016). Thus, more direct comparisons are needed to 
investigate whether the two most common methodologies 
might provide different estimates of Pcrit.

To determine Pcrit, MO2 is plotted against ambient PO2 in 
order to identify the inflection point at which MO2 transitions 
from being independent of ambient oxygen to dependent on 
ambient oxygen. Within this procedure, a great deal of subtle 
variation exists among studies. Most obvious is the differential 
use of SMR or RMR, with the majority (84%) of studies 
reporting a Pcrit for RMR. Arguably, the Pcrit exhibited for 
RMR is more ecologically relevant, given that this level of MO2 
is likely to be exhibited most of the time in the field (Ultsch 
et al., 1978; Pörtner, 2010). Indeed, for some highly active spe-
cies, such as salmonids, Pcrit determined during active swim-
ming may be most useful in considering the ecological 
implications of hypoxia (Fry, 1957). Activity level may affect 
Pcrit in unexpected ways, such as in the Adriatic sturgeon 
(Acipenser naccarii), which exhibits a well-developed ability to 
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oxyregulate (Pcrit = 4.9 ± 0.5 kPa) when permitted to swim at a 
low sustained speed but oxyconforms across the entire range 
of declining ambient oxygen when its activity is restricted in a 
static respirometer (McKenzie et  al., 2007). Some species 
exhibit a relatively high Pcrit for RMR at a PO2

 that is well 
above the P50 (half of the hemoglobin oxygen binding sites are 
saturated with oxygen) of their haemoglobin. In these 
instances, Pcrit may indicate a behavioural change and not sim-
ply a physical limitation of oxygen supply (McBryan et al., 
2013).

Of the studies that determine the Pcrit for SMR, the meth-
ods used for quantifying SMR vary considerably. Some stud-
ies use the single lowest MO2 value recorded at normoxia, 
whereas others take the average of a set number of the lowest 
MO2 values (Iversen et al., 2010). More sophisticated and 
robust methods involve extrapolating the average MO2 mea-
sured at specified swimming speeds back to zero activity 
(Wilson et al., 1994; Cook et al., 2014) or the use of percen-
tiles and frequency distributions to assess all normoxic MO2 
data (Dupont-Prinet et al., 2013). As the critical level for 
basal metabolism, Pcrit determinations based on SMR should 
theoretically reflect a true physiological limitation of oxygen 
extraction capacity (McBryan et al., 2013), although this may 
not be true in species for which metabolic depression below 
Pcrit has a facultative component. Given that the Pcrit for RMR 
is likely to be encountered at higher PO2 than that for SMR 
(Fig. 1), intra- or inter-species comparisons among studies 
reporting different levels of Pcrit may not be entirely valid. 
Whether SMR or RMR measurements are used to reflect nor-
moxic MO2, it is essential that sufficient time is allowed for 
the fish to acclimate to the respirometry chamber; otherwise, 
apparent reductions in MO2

 as hypoxia develops may be an 
artefact of increasing habituation rather than true oxycon-
forming (Nilsson et al., 2004).

The method used to establish the point of intersection 
between continuous oxyregulation and oxyconforming MO2 
data is also inconsistent among studies. The slope of these lines 
will determine the Pcrit and vice versa; therefore, determining 
which data points should be included within each line is criti-
cal to establishing an accurate estimate of Pcrit (Yeager and 
Ultsch, 1989). This can be achieved graphically by fitting a 
least-squares linear regression through data points that show a 
progressive decline in MO2 such that it intersects with a regres-
sion line fitted through normoxic MO2 data (Monteiro et al., 
2013). A number of mathematical methods for performing so-
called piece-wise or segmented linear regression analyses are 
available, which provide greater robustness to estimates of Pcrit 
and are used in the majority of studies incorporated into the 
present database (Nickerson et al., 1989; Yeager and Ultsch, 
1989; Leiva et al., 2015). These approaches assume that the 
response of MO2 to declining PO2 is biphasic and consists of two 
entirely linear elements, with an abrupt transition between the 
two. Such assumptions are not necessarily met by real-world 
data, and indeed, concentration-dependent reaction kinetics 
make truly linear relationships between MO2 and PO2 unlikely 
(Marshall et al., 2013). Recent developments in non-linear 

regression techniques are now being promoted as a more accu-
rate approach to determining biological thresholds such as Pcrit 
(Stinchcombe and Kirkpatrick, 2012; Marshall et al., 2013).

Critical oxygen level as a hypoxia tolerance 
trait
A low Pcrit is generally associated with greater hypoxia toler-
ance because it indicates a higher capacity for oxygen extrac-
tion and tissue delivery at low PO2 (Mandic et  al., 2009). 
Maintaining aerobic metabolism during hypoxia is advanta-
geous because it is up to 30-fold more efficient than anaero-
bic ATP production (per unit substrate consumed) and avoids 
accumulation of the deleterious by-products (e.g. H+) of 
anaerobic metabolism (Richards, 2009). Hypoxia-induced 
physiological modifications that increase oxygen extraction 
capacity, such as increased gill surface area (Nilsson, 2007) 
and haemoglobin –O2 binding (Brix et al., 1999), are observed 
in fishes that frequently encounter hypoxia, suggesting that 
maintaining aerobic metabolism is a primary hypoxia sur-
vival strategy (Mandic et al., 2009). However, when ambient 
PO2 declines below Pcrit, survival depends on the availability of 
substrate for O2-independent ATP production (primarily gly-
colysis) and the ability to reduce metabolic demand 
(Richards, 2009).

How long a fish can maintain a balance between ATP 
demand and supply below its Pcrit, and thus delay the onset of 
cellular dysfunction, necrosis and subsequent death, is a key 
component of hypoxia tolerance (Nilsson and Östlund-
Nilsson, 2008; Urbina and Glover, 2012; Speers-Roesch et al., 
2013). Speers-Roesch et al. (2013) showed that Pcrit does not 
entirely predict hypoxia tolerance at lower oxygen levels. The 
authors used three species of sculpin (Blepsias cirrhosis, 
Leptocottus armatushave and Oligocottus maculosus), which 
exhibit different Pcrit values (1.76, 1.48 and 1.03 kPa, respec-
tively), and exposed them to hypoxia levels that were 30% 
below each of their respective Pcrit values while recording the 
time to loss of equilibrium. The loss of equilibrium was con-
sistent between only two of the three species (L. armatushave 
and O. maculosus). Similar relative hypoxia exposures in the 
epaulette shark (Hemiscyllium ocellatum) and shovelnose ray 
(Aptychotrema rostrata) revealed lower lactate accumulation 
in epaulette sharks, indicating enhanced metabolic depression 
in this species (Speers-Roesch et  al., 2012). Furthermore, 
Nilsson and Östlund-Nilsson (2008) showed that Pcrit did not 
correlate with body mass in juvenile and adult damselfish 
(Pomacentridae) ranging between 10 mg and 40 g but that 
smaller fish were much less tolerant to hypoxia below Pcrit, 
owing to their limited capacity for meeting ATP demand 
through anaerobic metabolism. These findings were further 
supported in G. maculatus (Urbina and Glover, 2013). These 
results illustrate the benefit of considering Pcrit alongside other 
methods of determining hypoxia tolerance, such as measure-
ments of tissue-specific lactate accumulation and determina-
tions of the loss of equilibrium of 50% of the fish, in order to 
assess overall hypoxia tolerance (Urbina and Glover, 2013; 
Speers-Roesch et al., 2013; Claireaux and Chabot, 2016).
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A recent review by Salin et al. (2015) argues that whole-
animal oxygen consumption measurements may provide only 
a partial proxy for energy metabolism because of variation, 
within and between individuals, in the amount of ATP pro-
duced per molecule of oxygen consumed by mitochondria 
(P/O ratio). Environmental factors such as ambient tempera-
ture, food intake and diet composition have been shown both 
to increase and to decrease P/O ratios in the mitochondria of 
a variety of organisms (Salin et al., 2015). Hence, conclusions 
based on oxygen consumption rate alone could lead to mis-
leading conclusions regarding respiratory performance during 
environmental changes. To our knowledge, the effect of 
hypoxia on P/O ratios in fish has yet to be investigated, and as 
such, provides an interesting avenue for further research.

As a hypoxia-tolerance trait, low Pcrit can often, but not 
always, indicate an ability to survive in hypoxic water. It does 
not consider the use of hypoxia-avoidance strategies, such as 
adaptations for emersion, aquatic surface respiration and air 
breathing (Chapman and McKenzie, 2009). The inanga 
(G.  maculatus), which inhabits lowland streams prone to 
severe hypoxia, is a rare example of a fish species that appears 
to be an entirely obligate oxyconformer and thus demon-
strates no discernible Pcrit (Urbina et al., 2012). Likewise, sev-
eral species of Gymnotiform electric fishes from South 
America, which inhabit naturally hypoxic floodplain pools, 
also appear to be obligate oxyconformers with no Pcrit 
(Reardon E. E., personal communication), an observation that 
is also anecdotally supported in Brachyhypopmus brevirostris 
(Crampton, 1998). In some of these species, such as the 
inanga, a lack of scales and a large surface area-to-volume 
ratio indicate a high capacity for cutaneous O2 uptake whilst 
emersed, and hence, provide a short-term means to escape 
aquatic hypoxia (Urbina et al., 2011). The oxygen thresholds 
for aquatic surface respiration, air breathing and emergence 
were incorporated into the database, but only where they 
have been reported alongside Pcrit measurements. Such exam-
ples demonstrate the limitation of Pcrit as a universal and com-
parative measure of hypoxia tolerance between species and 
emphasize the benefit of multi-trait-based approaches.

Biotic and abiotic interactions
Environmental stressors, such as hypoxia, rarely occur in iso-
lation, and the interaction between stressors is of key concern 
in the context of predicting the ecological impacts of future 
environmental change (Crain et  al., 2008). As a typical 
threshold effect, the response of fish to hypoxia is likely to 
result in ‘ecological surprises’, whereby seemingly resilient 
populations suddenly collapse once a critical threshold is 
crossed (McBryan et al., 2013). Additive or synergistic inter-
actions with hypoxia could hasten the arrival of such thresh-
olds, meaning that small environmental shifts could result in 
large effects on the performance of a population. 
Theoretically, any abiotic or biotic factor that affects either 
oxygen supply (cardiorespiratory capacity) or oxygen 
demand (metabolic rate) of an individual, and the balance 
therein, will have implications for its hypoxia tolerance. As 

an indicator of hypoxia tolerance, the effects of a wide range 
of abiotic and biotic interactions on Pcrit in fish have been 
published (Table 3).

The stepwise multiple linear regression found that biotic 
(body mass, RMR) and abiotic (temperature, salinity) vari-
ables were highly correlated with Pcrit (see Table 4). A signifi-
cant regression (F4,1154 = 10.565, P < 0.001) predicted 19.5% 
of the variation in the data, based on an adjusted r2 (multiple 
linear regression). Predicted Pcrit is equal to 5.689 + 0.047 
(salinity) − 0.083(temperature) + 1.931(body mass) + 0.001 
(RMR), where salinity is measured in practical salinity units, 
temperature in degrees Celsius, body mass in kilograms, and 
RMR in milligrams of oxygen per litre. All four variables were 
significant predictors of Pcrit in the full model (Table 4).

Temperature is by far the most widely studied abiotic fac-
tor potentially interacting with hypoxia (reported in 30 spe-
cies) and is particularly relevant, given ongoing global climate 
change (Ficke et al., 2007; Pörtner, 2010). As ectotherms, 
oxygen demand in fishes increases in a roughly exponential 
manner with temperature (inter-species mean Q10 of 1.83; 
Clarke and Johnston, 1999), and the intrinsic link between 
temperature and environmental hypoxia has become the 
basis of an overarching concept termed ‘oxygen and capacity 
limitation of thermal tolerance’ (Pörtner, 2001, 2010). 
Essentially, this concept suggests that the thermal tolerance of 
ectotherms is dictated by their capacity to meet the oxygen 
demands of aerobic metabolism. Increased temperature both 
elevates basal oxygen demand (SMR) and reduces oxygen 
supply (via its effect on oxygen solubility), whereas hypoxia 
reduces the oxygen supply. Hence, temperature and hypoxia 
are likely to act synergistically in fishes. Within species, 
increasing temperature generally results in a higher Pcrit, but 
among species, the slope of the relationship between temper-
ature and Pcrit is highly variable (Fig. 3). For example, the 
Atlantic salmon (S. salar) exhibits a steep linear increase of 
Pcrit in comparison to the shallower slope seen in the common 
carp (C. carpio) across a similar temperature range (Ott et al., 
1980; Remen et al., 2013). A surprising exception to the gen-
erally positive intra-species correlation between temperature 
and Pcrit was observed in four out of six species of darter 
(Etheostoma), for which Pcrit was lower at 20 than 10°C 
(Ultsch et al., 1978). Variation in the sensitivity of species to 
temperature in terms of hypoxia tolerance may arise because 
of differences in their potential for thermal acclimation. 
Explanations for this variation may include reducing the 
metabolic impact of increased temperature or enhancing oxy-
gen extraction capacity (Ott et  al., 1980; Pörtner, 2010). 
Species exhibit highly contrasting capacities for plastic accli-
mation responses. At opposite ends of this spectrum, crucian 
carp (Carassius carassius) can dramatically increase respira-
tory surface area through gill remodelling in response to tem-
perature and hypoxia (Sollid et al., 2005), whereas certain 
tropical reef fish species (Ostorhinchus doederleini and 
Pomacentrus moluccensis) demonstrate no thermal acclima-
tion ability even over a relatively modest temperature range 
(29–32°C; Nilsson et al., 2010).
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Table 3: Summary of biotic and abiotic factors and their interactions with the intra-species critical oxygen level as reported by studies included 
in the database

Variable Species Effect on Pcrit Reference

Increasing temperature

Gadus morhua Increase Schurmann and Steffensen (1997)

Lates calcarifer Increase Collins et al. (2013)

Scyliorhinus canicula Increase Butler and Taylor (1975)

Salmo salar Increase Barnes et al. (2011)

S. salar Increase Remen et al. (2013)

Dentex dentex Increase Cerezo Valverde et al. (2006)

Tautogolabrus adspersus Increase Corkum and Gamperl (2009)

Gadus ogac Increase Corkum and Gamperl (2009)

Bellapiscis medius Increase Hilton et al. (2008)

Bellapiscis lesleyae Increase Hilton et al. (2008)

Morone saxatilis Increase Lapointe et al. (2014)

Carassius carassius Increase Sollid et al. (2005)

Gobiodon histrio Increase Sørensen et al. (2014)

Gobiodon erythrospilus Increase Sørensen et al. (2014)

Oreochromis niloticus Increase Fernandes and Rantin (1989)

Cyprinus carpio Increase Ott et al. (1980)

Oncorhynchus mykiss Increase Ott et al. (1980)

Pomacentrus moluccensis Increase Nilsson et al. (2010)

Ostorhinchus doederleini Increase Nilsson et al. (2010)

Carassius auratus grandoculis No effect Yamanaka et al. (2013)

Etheostoma boschungi Decrease Ultsch et al. (1978)

Etheostoma fusiforme Decrease Ultsch et al. (1978)

Etheostoma flabellare Decrease Ultsch et al. (1978)

Etheostoma rufilineatum Decrease Ultsch et al. (1978)

Increasing salinity

Cottus asper Decrease Henriksson et al. (2008)

Leptocottus armatus No effect Henriksson et al. (2008)

Cyprinus carpio Increase De Boeck et al. (2000)

Cyprinodon ariegatus Increase Haney and Nordlie (1997)

Increased PCO2

Fundulus heteroclitus No effect Cochran and Burnett (1996)

Leiostomus xanthurus No effect Cochran and Burnett (1996)

Anguilla anguilla Increase Cruz-Neto and Steffensen (1997)

Platichthys flesus Increase Rogers (2015)

Hypoxic acclimation

Pagrus auratus No effect Cook et al. (2013)

S. salar No effect Remen et al. (2013)

Hemiscyllium ocellatum Decrease Routley et al. (2002)

Spinibarbus sinensis Decrease Dan et al. (2014)

C. auratus Decrease Fu et al. (2011)

Poecilia latipinna Decrease Timmerman and Chapman (2004 a,b)

(Continued)
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Table 3: continued

Variable Species Effect on Pcrit Reference

Reared in hypoxic environment

Pseudocrenilabrus multicolor Decrease Reardon and Chapman (2010)

Exercise pre-conditioning

C. auratus Decrease Fu et al. (2011)

Fed

Astronotus ocellatus Increase De Boeck et al. (2013)

Oreochromis niloticus Increase Mamun et al. (2013)

Perca fluviatilis Increase Thuy et al. (2010)

Fatty acid-enriched diet

Solea solea (larvae) Decrease McKenzie et al. (2008)

S. solea (juveniles) Decrease McKenzie et al. (2008)

Increasing body mass

Hypostomus plecostomus Decrease Perna and Fernandes (1996)

Astronotus ocellatus Decrease Sloman et al. (2006)

Pomacentridae No effect Nilsson and Östlund-Nilsson (2008)

Pre- to post-settlement (larvae)

Chromis atripectoralis Decrease Nilsson et al. (2007a,b)

Pomacentrus amboinensis Decrease Nilsson et al. (2007a,b)

Larvae to juveniles

C. auratus grandoculis Decrease Yamanaka et al. (2013)

Juveniles to adults

Reinhardtius hippoglossoides Decrease Dupont-Prinet et al. (2013)

Increasing brood size 
(mouthbrooders)

Zoramia fragilis Increase Östlun-Nilsson and Nilsson (2004)

Zoramia leptacantha Increase Östlun-Nilsson and Nilsson (2004)

Mycobacteriosis infection

Morone saxatilis Increase Lapointe et al. (2014)

Acidified water

Salmo gairdneri Increase Ultsch et al. (1980)

Cyprinus carpio Increase Ultsch et al. (1980)

Metal exposure

Brycon amazonicus Increase Monteiro et al. (2013) (Hg2+)

C. carassius Increase Schjolden et al. (2007) (Cu2+)

Perca fluviatilis Increase Bilberg et al. (2010) (AgNO3)

P. fluviatilis Increase Bilberg et al. (2010) (nano-Ag)

Organophosphate exposure

Oreochromis niloticus Increase Thomaz et al. (2009)

Anaemia

Pagrus auratus Increase Cook et al. (2011)

Abbreviations: PCO2
, partial pressure of carbon dioxide; Pcrit, critical oxygen level.
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Unlike intra-species Pcrit, there is no apparent relationship 
between temperature and inter-species Pcrit (Fig. 3), suggesting 
that evolution may have nullified the thermal sensitivity of 
hypoxia tolerance across species. It has been shown that the 
difference in RMR between a typical cold-water and warm-
water fish is less than expected, given the thermal sensitivity of 
RMR within individual species (intra-species median 
Q10 = 2.4; Clarke and Johnston, 1999). In addition, gill surface 
area appears to scale in a linear manner with metabolic rate, 
implying that natural selection equips fishes with the oxygen 
extraction capacity required to match demand at higher tem-
peratures (Nilsson and Östlund-Nilsson, 2008). Selective pres-
sures for small gills, such as the osmorespiratory compromise 
(Nilsson, 1986; Gonzalez and McDonald, 1992; Urbina and 
Glover, 2015), gill parasites and risks associated with gill 

injury, are likely to limit respiratory surface area so that oxy-
gen extraction capacity does not exceed that required by a par-
ticular species for survival in its natural range (Nilsson, 2007). 
Thus, generalizations regarding hypoxia tolerance across tem-
peratures cannot be established firmly at the inter-species level.

Although salinity has long been recognized as a key envi-
ronmental factor, studies evaluating the effects of salinity on 
Pcrit are scarce. A previous study in the euryhaline sheephead 
minnow (Ciprinodon variegatus), acclimated to salinities 
from freshwater (0 PSU) to hypersaline waters (100 PSU), 
showed a marked effect on Pcrit (Haney and Nordlie 1997) as 
environmental salinity rose. Inter-specific comparisons in the 
database agree with this previous intra-specific finding; that is, 
salinity had a significant influence on Pcrit, whereby freshwater 
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Table 4: Results of the stepwise linear regression analysis where salinity, body mass, routine metabolic rate (RMR) and temperature had zero-
order r correlations with Pcrit (P < 0.05) and with each other, where values were reported

Zero-order r (n = 159)

Variable Salinity 
(psu) Temperature (°C) Body mass (kg) RMR (mg O2 l−1) Pcrit 

(kPa) β sr2 b

Salinity 0.317 −0.165 0.354 0.279 0.346 0.099 0.047

Temperature 0.366 −0.141 −0.314 0.081 −0.083

Body mass −0.166 0.166 0.242 0.056 1.931

RMR 0.17 0.202 0.032 0.001

Mean 23.54 23.1 0.1 323.84 5.4 Intercept = 4.027

SD 15.36 7.9 0.3 434.04 2.1 Adjusted r2 = 0.195 P < 0.001

Abbreviations: Pcrit, critical oxygen level; RMR, routine metabolic rate. In the full model, all four variables were significant predictors of Pcrit.

Figure 3: The effect of temperature on inter-species critical oxygen level (Pcrit; black dashed line) and intra-species Pcrit (continuous lines).
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species (including a few euryhaline species) presented a 23% 
lower Pcrit than seawater species (also including a few euryha-
line species; Fig. 4A; P ≤ 0.001).

As explained in earlier sections, any factor influencing the 
oxygen demand (metabolic rate) of an individual will be likely 
to have implications for its hypoxia tolerance. Given that tele-
ost fishes must maintain a tight regulation of their internal 
salts and water composition (osmolality), as external salinity 
changes or becomes extreme, fishes must expend increased 
efforts to maintain internal homeostasis (Urbina and Glover, 
2015). As many of the mechanisms of osmoregulation involve 
the action of ATP-driven pumps (i.e. Na+,K+-ATPase) in order 
to pump ions against a concentration gradient, increased costs 
of osmoregulation may explain, in part, some of these differ-
ences in Pcrit, at least for intra-specific comparisons. However, 

from our database (inter-specific), where more freshwater vs. 
seawater species comparison are presented, it is likely that 
other mechanisms are explaining differences in Pcrit. Given 
that seawater species separated million years ago from a fresh-
water ancestor (actinoptyergians, 300–180 million years ago; 
Vega and Wiens, 2012), both fresh- and seawater species have 
adapted to their respective environments, and therefore, have 
also optimized their energy allocated to osmoregulation. 
Thus, the differences in Pcrit found in the present study, rather 
than being explained by energy-related/oxygen demand issues, 
could be associated with intrinsic characteristics of both 
media (freshwater vs. seawater). Owing to differences in size, 
organic matter load and stability, hypoxia is much more prev-
alent and common in freshwater than in seawater environ-
ments. As such, the driver for an enhanced hypoxia tolerance 
(lower Pcrit) could potentially explain the lower Pcrit found in 
freshwater species. A future phylogenetic analysis might con-
tribute to test this hypothesis.

It is also worth noting that the difference found in Pcrit 
when presented as the partial pressure of oxygen (in kilopas-
cals) was no longer found when Pcrit was calculated as the 
concentration (in milligrams per litre; (Fig. 4B; P > 0.05). This 
could potentially highlight the importance of working with 
partial pressure, because this is what drives diffusion when 
considering gases. Alternatively, it could indicate that the oxy-
gen concentration is more relevant when considering Pcrit val-
ues, because it determines the total amount of oxygen that is 
potentially available for diffusion as water flows over the gills, 
i.e. for the same oxygen uptake, salinity (through its effect on 
solubility) will have a big effect on the difference between 
inspired and expired PO2.

The biological processes that consume O2 also produce 
CO2; therefore, hypoxia and hypercarbia can often co-occur 
in aquatic environments (Ultsch, 1996; Cruz-Neto and 
Steffensen, 1997; Gilmour, 2001). Despite this, the interactive 
effect of environmental hypercarbia on hypoxia tolerance has 
been relatively understudied. As previously discussed 
(Table 3), there are conflicting reports within the available 
literature regarding to the effect of hypercarbia on the Pcrit of 
fishes (Cochran and Burnett, 1996; Cruz-Neto and Steffensen, 
1997; McKenzie et al., 2003). The most likely mechanism by 
which hypercarbia could negatively impact hypoxia tolerance 
is through respiratory acidosis, leading to Bohr/Root effects 
on haemoglobin and reduced oxygen transport capacity 
(Jensen et al., 1993; Cruz-Neto and Steffensen, 1997). In this 
respect, hypercarbia is partly akin to the far more extreme 
acidosis that can occur in poorly buffered freshwater environ-
ments subjected to acid precipitation or drainage. Acidification 
of the surrounding water by addition of sulphuric acid (water 
pH range 7.4–4.0, at constant atmospheric PCO2) increases Pcrit 
in both rainbow trout (Oncorhynchus mykiss) and common 
carp (Cyprinus carpio; Ultsch et al., 1980). The time required 
to compensate for acid–base disturbance is highly variable 
among species (10–24 h during moderate hypercarbia; 
Melzner et al., 2009), and as such, the effect of hypercarbia 
and acidification on hypoxia tolerance is likely to be  dependent 
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Figure 4: The effect of environmental salinity on inter-species critical 
oxygen level (Pcrit), expressed as partial pressure of oxygen (in 
kilopascals; A) and concentration of oxygen (in milligrams per litre; B). 
Data are shown as means + SEM, including data from 82 species in 
seawater and 50 species in freshwater. *Unpaired t-test, significant 
when P < 0.050.
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largely on the species in question as well as the severity and 
duration of the hypercarbic or acid exposure (Jensen et al., 
1993).

Exposure to toxicants, such as trace metal contamination, 
appears to reduce hypoxia tolerance in fishes. Specifically, 
exposure to elevated concentrations of copper (300 µg l−1), 
mercury (150 µg l−1) and silver (63 µg l−1) have been demon-
strated to increase Pcrit in various species (Table 3). The accu-
mulation of toxic metals on the gills can stimulate the 
hypersecretion of mucus, which acts as a barrier to diffusion 
of external toxicants into the blood (McDonald and Wood, 
1993; Wilson et al., 1994). In addition, some trace metals 
cause hyperplasia and hypertrophy of gill epithelia cells that 
results in the fusing and thickening of gill lamellae (Schjolden 
et al., 2007; Bilberg et al., 2010). As a consequence, respira-
tory function is compromised as a result of reduced diffusion 
area and increased diffusion distance (McDonald and Wood, 
1993). The organophosphate insecticide trichlorfon has been 
shown to increase Pcrit by inducing similar changes in gill mor-
phology as well as by promoting vasoconstriction that reduces 
lamellar blood flow in Nile tilapia (Oreochromis niloticus; 
Thomaz et al., 2009). These potential interactions between 
toxic contaminants and hypoxia in fishes are clearly of con-
cern, particularly given that both stressors predominantly 
threaten freshwater and coastal marine systems and are there-
fore likely to coincide (McDonald and Wood, 1993; Diaz and 
Rosenberg, 2008).

Determinations of Pcrit in fishes have almost universally 
been made in unfed, post-absorptive individuals which, 
although providing a useful basis for comparing absolute 
hypoxia tolerance among species and individuals, does not 
fully account for the digestive state typical of fishes in their 
natural setting. An increase in oxygen uptake following inges-
tion of food, termed specific dynamic action (SDA), is required 
in order to meet the energetic costs associated with mechani-
cal and biochemical digestion and assimilation (Jobling, 
1993). Shortly after a meal, oxygen uptake in fish typically 
rises rapidly, reaching a peak two to three times higher than 
pre-fed levels within a few hours. The shape and duration of 
the SDA is highly dependent on the species in question as well 
as the meal size and composition (Secor, 2009). Measurements 
of Pcrit in fishes undergoing SDA have revealed significant 
increases in Pcrit compared with unfed control fishes, showing 
that increased aerobic demand during digestion has negative 
consequences for hypoxia tolerance (Table 3). In common 
perch (Perca fluviatilis) force-fed a 5% body mass ration, Pcrit 
at 20 h post-feeding was increased by 1.44-fold compared 
with sham-fed individuals (Thuy et  al., 2010). Likewise, 
oscars (Astronotus ocellatus) fasted for 14 days showed a 1.6-
fold lower Pcrit than individuals fed a daily 1% body mass 
ration up to 24 h prior to Pcrit determination (De Boeck et al., 
2013). In such experiments, the requirement for a stable MO2 
on which to base a determination of Pcrit means that measure-
ments at peak SDA are not feasible, and thus, are likely to 
underestimate the effect of digestion on hypoxia tolerance 
(Thuy et al., 2010).

Several studies have investigated the effect of hypoxia accli-
mation on Pcrit (Table3). Broadly, short-term physiological 
acclimation to hypoxia appears to be achieved through either 
enhanced O2 extraction capacity or metabolic depression. In 
goldfish (Carassius auratus), 48 h of severe (0.63 kPa) hypoxia 
induced dramatic increases in both lamellar surface area and 
blood haemoglobin content, leading to a 49% reduction in Pcrit 
compared with individuals held at normoxia (Fu et al., 2011). 
Likewise, sailfin molly (Poecilia latipinna) demonstrated 
increased haemoglobin and red blood cell concentrations and 
a reduced Pcrit following a 6 week exposure to severe hypoxia 
(Timmerman and Chapman, 2004a). Depression of RMR at 
normoxia and a subsequent reduction in Pcrit following chronic 
hypoxic exposure has been observed in the epaulette shark 
(H. ocellatum; Routley et al., 2002) and qingbo (Spinibarbus 
sinensis; Dan et al., 2014). However, some less hypoxia-toler-
ant species appear to demonstrate no physiological acclima-
tion potential through hypoxic pre-conditioning. Daily 
exposure to 6 h of moderate hypoxia (10.5 kPa) for 33 days 
had no effect on Pcrit in post-smolt Atlantic salmon (S. salar; 
Remen et al., 2013). Additionally, chronic (6 week) moderate 
hypoxia produced no change in the Pcrit of juvenile snapper 
(Pagrus auratus; Cook et al., 2013).

As hypoxia is likely to become an increasingly predomi-
nant aquatic perturbation in the future (Vaquer-Sunyer and 
Duarte, 2008; Keeling et al., 2009), the degree of physiologi-
cal plasticity for hypoxia tolerance will be a key determinant 
of species performance. The potential for long-term and trans-
generational hypoxia acclimation with respect to Pcrit has been 
largely unstudied. A transgenerational transfer of hypoxia 
tolerance has been demonstrated in zebrafish (Danio rerio) 
larvae after 2–4 weeks of parental hypoxia exposure, but this 
was based on determinations of time to loss of equilibrium 
(4 kPa O2) rather than through measurement of Pcrit (Ho and 
Burggren, 2012). Reardon and Chapman (2010) demon-
strated a strong element of developmental plasticity in the Pcrit 
of the Egyptian mouthbrooder (Pseudocrenilabrus multi-
color) when reared in hypoxic conditions. In addition, intra-
species population effects on Pcrit across habitats of differing 
O2 regimens have been observed in several species, indicating 
that a high degree of phenotypic plasticity for Pcrit exists 
within these populations (Timmerman and Chapman, 2004b; 
Reardon and Chapman 2010; Fu et al., 2011).

Future applications
The comprehensive Pcrit database presented here provides the 
opportunity for a variety of further analyses with potential to 
offer fundamental physiological, as well as wider ecological, 
insights. For example, further analyses could involve compar-
ing species Pcrit values within a phylogenetic context as a 
means to investigate the evolutionary relationships of hypoxia 
tolerance among species (Mandic et al., 2009). Likewise, com-
bining species Pcrit data with information on the spatial distri-
bution of populations would help to refine our understanding 
of the ecological relevance of Pcrit as a physiological trait. Such 
an analysis would be particularly relevant to predicting the 
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impacts on fish populations likely to arise from the increas-
ingly widespread occurrence of hypoxic zones in aquatic envi-
ronments around the globe (Friedrich et al., 2014). Given the 
variability found in the reported Pcrit for different fish species, 
it is likely that hypoxic events will have consequences that are 
very dependent on individual species. This highlights the com-
plexity of predicting the effects that hypoxia will have at 
 community and ecosystem levels, and the potential for 
hypoxia to have differential effects on predator-prey interac-
tions, migrations, and ultimately, global fisheries.

The integration of the present database with similar data-
bases of other widely measured physiological parameters in 
fishes should offer useful insights into interactions among 
traits. Such physiological data are of great value for improv-
ing the predictive capacity of models as an aid to the manage-
ment and conservation of aquatic systems (Jørgensen et al., 
2012; Cooke et al., 2013). Traits for which databases are cur-
rently under construction include the metabolic response to 
feeding (SDA), aerobic scope, growth rate and critical tem-
perature. On completion, the combined data set will be made 
widely accessible via an online data repository facility, such as 
that provided by Dryad (http://datadryad.org/). Thus, it is 
envisaged that these data will prove to be a tangible link 
between the field of fish physiology and future studies of ecol-
ogy, conservation and management.

Supplementary material
Supplementary material is available at Conservation 
Physiology online.
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