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Abstract :   
 
The shorthead drum Larimus breviceps is one of the main bycatch species of the shrimp fisheries in Brazil. 
However, studies addressing the biology and fisheries impacts on this species are still scarce. Here we 
describe the main aspects of the reproductive biology and the female gonadal development of L. 
breviceps on Paraíba, northeast Brazil. The reproductive tract was described by macroscopic and 
microscopic analysis. The ovaries were composed by oogonia, pre-vitellogenic, vitellogenic, mature, and 
atretic oocytes. A total of 970 individuals (549 females and 421 males) were caught between December 
2016 and November 2017 through beach seining. The total length (TL) varied from 4.2 to 23.0 cm. 
Females dominated over males (1 female: 0.77 male). The length-weight relationship did not differ 
between the sexes, presenting a positive allometric growth. The following stages were thus defined for 
females: immature, initial development, advanced development, mature, and regressing. The period of 
highest reproductive activity occurs between November and March and immature individuals occur 
throughout the year. Mean length at first maturity () was estimated as 11.1 cm TL. The information 
provided here contributes to the overall knowledge of this species and may be helpful for further 
development of management practices that ensure the sustainability of marine species exploitation. 
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1. Introduction  68 

Fisheries in tropical coastal ecosystems are commonly known for the great 69 

discard of species caught as bycatch, especially in shrimp trawling (Pauly, 2005). Among 70 

gears used for shrimp harvesting, the motorized bottom trawling is most common and 71 

destructive in Brazil and elsewhere (Pina and Chaves, 2009). This activity causes high 72 

incidental mortality and increases the extinction risk of several species (Thomas et al., 73 

2017) by declining populations, catching juveniles, and leading to several alterations in 74 

the ecosystem (e.g., great physical disturbance; Diamond et al., 2000; Arendse et al. 2007; 75 

Thomas et al., 2017). 76 

In the Northeastern Brazil, shrimp fisheries are predominantly artisanal, carried 77 

out mainly by motorized artisanal trawling boats (Dias-Neto, 2011). In the state of 78 

Paraíba, northeastern Brazil, the ordinance IBAMA nº 833/1990 prohibited this activity 79 

in the coastal areas (3 nautical miles; Moura et al., 2003). Currently, fisheries are carried 80 

out exclusively through beach seining targeting mainly the white (Penaeus schmitti), pink 81 

(Penaeus subtilis), and seabob (Xiphopenaeus kroyeri) shrimps (Santos, 2010). Despite 82 

being limited to areas nearshore, the beach seine can harvest greater diversity of bycatch 83 

species than the motorized bottom trawling (Passarone, 2020). Moreover, this activity 84 

may cause several impacts (e.g., incidental mortality of juveniles and endangered species) 85 

that, given the current state of knowledge, may go mostly unnoticed by scientists, marine 86 

resource managers, and conservation biologists.   87 

The shorthead drum, Larimus breviceps Cuvier, 1830, distributed in the Central 88 

and Southwest Atlantic (from Costa Rica to Santa Catarina in Brazil) (Vianna and 89 

Almeida, 2005; Cattani et al., 2011), may reach up to 10% of the bycatch caught by beach 90 

seine (Nunes et al., 1998; Passarone et al., 2020). This species has an important role in 91 

the food chain, either feeding on components of the ecosystem (e.g., small fishes, 92 

shrimps) or integrating the diet of mammals and other fishes (Beneditto, 2017). 93 

Furthermore, L. breviceps has high socioeconomic importance by serving as a food and 94 

income source for the local population, especially in northeastern Brazil (Nascimento, 95 

2019). Although some aspects of its population dynamic and fisheries have been studied 96 
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in Brazil (Souza and Chaves, 2007; Silva-Júnior et al., 2013; Silva-Júnior et al., 2015; 97 

Chaves et al., 2018; Bomfim et al., 2019), key information on the biology and ecology of 98 

this species are still scarce.  99 

One key basic knowledge concerns reproductive biology, which provides 100 

important information for fish stocks estimations (e.g., mean length at first maturity), 101 

anthropogenic impacts evaluation, and implementation of management actions (Sadovy, 102 

1996; Begg, 1988). As an example, accurate estimation of mean length at first maturity 103 

may subsidize the optimization of more sustainable fishing gear and size restriction 104 

measures; while the description of the spawning season and grounds may provide 105 

managers the appropriate closed season and adequate no-taken zones (Silva-Júnior et al., 106 

2015; Eduardo et al., 2018). However, information on reproductive biology lacks for 107 

several species, especially those caught as bycatch (Silva-Júnior et al., 2015).  108 

This study aims to characterize the reproductive biology of L. breviceps. For 109 

that, we i) define the first histological classification of the oocyte and maturity stages of 110 

L. breviceps ovaries, ii) investigate its spawning activity based upon seasonal variation in 111 

gonadal development stages, and iii) establish a mean size at first maturity of the 112 

shorthead drum in northeastern Brazil. The new information provided here contributes to 113 

the overall knowledge to ensure the sustainability and conservation of the species.   114 

 115 

2. Material and Methods 116 

Specimens of L. breviceps were collected monthly from the bycatch of an 117 

artisanal shrimp fishery in north coast of Paraíba, northeastern Brazil (6°53’50”S, 118 

34°51’01”W), from December 2016 to November 2017, except in May due to a series of 119 

meteorological events that hampered the fishing activity (Fig. 1). 120 
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 122 

Figure 1. Study area on the north coast of Paraíba State, northeastern Brazil. Black dots 123 

represent a real example of a fishing operation (Passarone et al., 2019).  124 

The collection was performed monthly through beach seining, deployed from 125 

500 meters off (depth of 6 meters to the surf zone), and pulled toward the coast, using a 126 

non-motorized craft, employed by the local fishers. The net had 2 cm body mesh side 127 

length and 1.5 cm cod-end mesh side length (entrance dimension horizontal x vertical: 128 

120 x 6m). Fish collected were kept on ice then transported to the laboratory.  129 

Total length (TL) and the total weight (TW) were recorded and, since data did 130 

not follow the necessary assumptions for the parametric test, the nonparametric Kruskal-131 

Wallis followed by Dunn’s post-hoc test was used to test for months and sexes differences 132 

(see Zar, 2009). The sex-ratios (males individuals/females individuals) determined totally 133 

and by size classes (1.0 cm) (Supplementary Material 1), were statistically tested for 134 

significant deviations from the expected 1:1 ratio with a χ2 test (p<0.05) (Dagnelie, 1975). 135 

The length-weight relationship (LWR) was considered isometric when b=3, negative 136 

allometric when b<3, and positive allometric when b>3 (Froese, 2006). The allometry 137 

coefficients were further tested for significant deviations from b=3 by Student’s t-test. A 138 

maximum likelihood ratio test was used in comparisons of LWR between the sexes. 139 
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The gonads were removed and weighed for sex and maturation stage 140 

determination. Microscopic analysis was carried out in 250 ovaries to confirm the 141 

macroscopic characterization and describe the maturity stages. Samples were taken from 142 

the median portion of the ovary, fixed in10% buffered formaldehyde for 24 hours, 143 

cleaved, fixed again for another 24 hours, and transferred to 70% alcohol for conservation. 144 

The ovary fragments were dehydrated, cleared in xylol, embedded in paraffin at 60ºC, cut 145 

in slices of 5 μm, and stained with hematoxylin/eosin-phloxine.  Maturational stages were 146 

identified through slide analyses and ovary sections photographed using an optical 147 

microscope LEICA DM500 (LEICA, Wetzlar, Germany). 148 

The ovaries were classified macroscopically and microscopically in different 149 

reproductive phases (Brown-Peterson et al., 2011) according to the most advanced oocyte 150 

stage present (West, 1990). It was measured, at most, fifty oocytes per category using the 151 

software Image Tool© version2.0 for Windows. The mean and the standard deviation to 152 

each specimen's oocyte diameter of the different germ cells were obtained. Oocyte 153 

diameters were taken in the cross-section of the ovary.   154 

The mean length at first maturity (L50; mean length at which 50% of the 155 

individuals attain gonadal maturity for the first time) was obtained only for females. To 156 

achieve it, the percentage of adults (microscopic stages II, III, IV, and V) was estimated 157 

for each length class. These values were adjusted by the least-squares method to a logistic 158 

curve, which is given according to King (2007): Pi=1/(1+exp[-r(Li-L50)]), where Pi is the 159 

proportion of adult individuals for each class i, Li is the length at each class i, L50 is the 160 

length that corresponds to 0.5 proportion (50%) of adults in the population and r is the 161 

logistic curve slope.  162 

The spawning season was evaluated through the monthly relative frequency of 163 

the gonadal maturation stages and by calculating the Gonadosomatic Index (GSI) for 164 

females: GSI=GW/EW, where GW is the gonad weight and EW is the eviscerated weight 165 

of the specimen. To test for significant differences in GSI between months, the Kruskal-166 

Wallis test was performed (Sokal and Rohlf, 1987). Immature specimens were excluded 167 

from this analysis.  168 

The R software (version 3.4.4) was utilized to perform all statistical analyses 169 

(Team R Core, 2018). The package sizeMat (“Size at Morphometric and Gonad Maturity 170 

in R”; Torrejón-Magallanes, 2016) was used to estimate L50 values. 171 
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 172 

3. Results 173 

A total of 970 specimens of L. breviceps were collected: 549 females (56%) and 174 

421 males (44%). Total length ranged from 4.20 to 23 cm (females 4.30–23 cm; males 175 

4.20–22.80 cm, TL), and the total weight from 0.68 to 167.67 g (females 0.77–158.10 g; 176 

males 0.68–167.67 g, TW) (Tab. 1). The LWR for females and males did not differ 177 

significantly (p<0.05) presenting a positive allometric growth in all cases (b>3; p<0.05) 178 

(Tab. 1). In addition, females were statistically predominant over males (1: 0.77; χ², 179 

p<0.05). 180 

Table 1. Descriptive statistics and TL–TW relation parameters of Larimus breviceps 181 
captured from December 2016 to November 2017 off the coast of Paraíba state, 182 
Northeastern Brazil [TL, total length (cm); TW, total weight (g); SD, standard deviation; 183 

min, minimum; max, maximum; SL, standard length (cm)]. 184 

  Females  Males Pooled sexes 

Length characteristics    

TL, mean ± SD 11.31±2.94 10.46±2.62  10.97±2.88 

TL min–TL max 4.30–23 4.20–22.8 4.20–23 

Weight characteristics    

TW, mean ± SD 18.94±17.30 14.58±15.17 17.03±16.54 

TWmin–TWmax 0.77–158.10 0.68–167.67 0.68–167.67 

Relations    

TL-TW equation TW=0.00596TL3.22 TW=0.00584TL3.23 TW=0.00588TL3.23 

Coefficient of determination (r²) 0.96 0.96 0.96 

t–test (coefficient b=3) p<0.05 p<0.05 p<0.05 

Growth type 
Positive allometry 

(3.22) 

Positive allometry 

(3.23) 

Positive allometry 

(3.23) 

 185 

The oocyte development was classified in 6 phases (e.g., oogonia, 186 

previtellogenic oocyte, cortical alveoli, vitellogenic oocyte, mature, oocyte in atresia) 187 

(Fig. 3), as follows: 188 

Oogonia (OO) 189 

 The oogonia is the most primitive phase of germinative cells, presenting 190 

diameter varying from 25.95±4.14 µm. Its nucleus is wide and located in the center of the 191 

cell surrounded by a thin layer of cytoplasm and containing a single and large nucleolus 192 
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located in the center of the nucleus, which tends to migrate to the periphery as the cell 193 

develops.  194 

Previtellogenic oocyte or perinucleolar (PVTO) 195 

In this phase a considerable increase in cellular volume occurs, regarding the 196 

previous stage, with a mean diameter of 63.80±3.30 µm. The cytoplasm is larger than the 197 

nucleus, presenting peripheric nucleolus in cells nucleus as it develops. These cells reveal 198 

strong basophilia and they are found in all ovary development stages (Fig. 3A). 199 

Cortical alveoli oocyte (CA) 200 

The cortical alveoli formation is the main indicator of the beginning of oocyte 201 

maturational development. This phase is characterized by the appearance of the oil 202 

droplets, which are small spherical vesicles, initially around the nucleus, spreading over 203 

the cytoplasm. The cortical alveoli grow in number and size as the oocyte develops. The 204 

lipid vacuoles begin to accumulate in the cytoplasm (mean diameter 170.80±19.80 µm) 205 

(Fig. 3A).  206 

Vitellogenic oocytes (VTG1, VTG2, and VTG3) 207 

This phase endures from the appearance of egg yolk vesicles in cytoplasm until 208 

its fusion through the final maturation. The vitellogenic phase is subdivided into 3 209 

subphases, considering the accumulation of nutrients in the oocyte cytoplasm: primary 210 

vitellogenic oocytes (VTG1), the oil droplets occupy the areas around the nucleus (mean 211 

diameter 264.60±10.40 µm); secondary vitellogenic oocytes (VTG2), the oil droplets 212 

occupy a greater area in the cytoplasm regarding the previous stage and the yolk granules 213 

accumulate in the cytoplasm (mean diameter 360.30±10.90 µm); tertiary vitellogenic 214 

oocyte (VTG3), the oil droplets are larger than the previous stages and yolk granules 215 

spread all over the cytoplasm (mean diameter 412.90±8.90 µm) (Fig. 3B; Fig. 3C; Fig. 216 

3D). 217 

Mature or oocyte undergoing germinal vesicle breakdown (GVBD) 218 

In this phase occur the germinal vesicle migration and breakdown and the yolk 219 

granules begin to fuse. It is observed great accumulation of yolk granules in the 220 

cytoplasm, provoking a significantincrease in its volume, with a mean diameter 221 

512.30±6.30 µm (Fig. 3E). 222 
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Oocyte in atresia (OA) 223 

The atretic oocyte is the degeneration of oocyte follicles. Although these cells 224 

are observed in higher frequency in the regressing stage, they may occur in all ovary 225 

development stages (except in the immature stage). They present an undefined format due 226 

to the rupture of the membrane during the process of resorption (Fig. 3F). 227 
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“Figure 3. Phases of oocyte development in the Larimus breviceps captured from 229 

December 2016 to November 2017 off the coast of Paraíba state, northeastern Brazil. A) 230 
previtellogenic oocyte phase (PVTO), and oocytes in cortical alveolar (CA) phase; B) 231 
oocyte in primary vitellogenic subphase (VTG1); C) oocyte in secondary vitellogenic 232 
subphase (VTG2); D) oocyte in tertiary vitellogenic subphase (VTG3); E) oocyte 233 
undergoing germinal vesicle breakdown (GVBD); F) oocyte in atresia (OA). n, nucleus; 234 
nu, nucleolus; ca, cortical alveoli; y,yolk granules; od, oil droplets; vm, vitelline 235 

membrane; zr, zona radiata.” 236 

According to the macroscopic and microscopic analysis of 250 ovaries 237 

examined, the females were classified in five maturation stages: immature, initial 238 

development, advanced development, spawning capable or mature and regressing (Tab. 239 

2). From the total of ovaries analyzed, 46.40% were immatures, 26% in initial 240 

development, 6.40% in advanced development, 11% were mature, and 10% regressing. 241 

Table 2. Macroscopic and microscopic photos and descriptions of ovarian development 242 
stages of Larimus breviceps captured from December 2016 to November 2017 off the 243 

coast of Paraíba state, northeastern Brazil.244 
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The ovaries are rudimentary, thin, and characterized by a transparent hue, without apparent 

oocytes and vascularization (0.01 ± 0.004 g). The mean gonadosomatic index (GSI) was 0.15. 

This stage only presented oogonia and previtellogenic oocytes. The connective tissue found 

between the follicles are scarce and the ovarian wall is thin. There is no evidence of lipid droplets 

in oocytes. 

The ovaries presented a yellow-transparent hue, no apparent oocyte and vascularization (0.03 ± 

0.009 g). The mean GSI was 0.20. Microscopically, it was observed the emergence of cortical 

alveolar (CA), that characterizes the beginning of the reproductive development, and thereafter 

the primary vitellogenic oocytes (VTG
1
), the greater development oocyte of this stage. 

The ovaries in this stage are characterized by a yellow hue, oocytes and vascularization may be 

apparent (0.04 ± 0.02 g). The mean GSI was 0.22. The presence of secundary vitellogenic 

oocytes (VTG
2
) and a few CA and VTG

1
 were observed. 

The ovaries in this stage are turgid and large, with intense orange hue and high vascularization. 

The oocytes are large, abundant, and visible all over the ovary (0.80 ± 0.90 g). The mean GSI 

was 0.47. Microscopically it is possible to observe the presence of tertiary vitellogenic oocytes 

(VTG
3
) and oocytes undergoing germinal vesicle breakdown (GVBD). The post ovulatory 

follicles (POF) are also present, indicating an active spawning. POF is an oocyte residual and 

confirms that a successful spawn took place, and that no oocyte absorption was held by the fish. 

The ovaries are flaccid with thick ovarian wall. Although blood vessels are present, the ovaries 

are less vascularized, regarding the previously stage (0.11 ± 0.14 g). The mean GSI was 0.19. 

Microscopically it was observed GVBD, atretic oocytes, and POF (Fig. Vf). 
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The mean length at first maturity (L50) was estimated as 11.10 cm TL (10.90 – 252 

11.30 of confidence interval) for 549 females. The smallest adult individual presented 253 

7.80 cm TL, whereas those with TL above 13.80 cm were adults (Fig. 4). A total of 254 

50.10% of the individuals captured showed TL lower than the L50. 255 

 256 

Figure 4. Mean length at first maturity for females of Larimus breviceps captured from 257 
December 2016 to November 2017 off the coast of Paraíba state, northeastern Brazil 258 

(dotted lines represent the confidence interval). 259 

Regarding the months, it was found a higher frequency of immature females in 260 

April (83.50%), initial development in July (60%), advanced development in December261 

 (66.60%), spawning capable in February (60%), and regressing in October (27%). 262 

Immature individuals were present throughout the year and mature females were only 263 

present from November to April. This period of the year also presented the gonadosomatic 264 

indexes (GSI) peaks: December and February. After February, the GSI starts to decrease, 265 

being relatively constant from April to October (p<0.05) (Fig. 5).  266 
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 267 

Figure 5. Female monthly gonadosomatic index (±, standard deviation) and maturational 268 
stages proportion of Larimus breviceps captured from December 2016 to November 2017 269 
off the coast of Paraíba state, northeastern Brazil (black line: GSI; numbers of individuals 270 

on the top of the bars).  271 

4. Discussion 272 

This is the first study to analyze the ovary and oocytary development of Larimus 273 

breviceps caught in shallow waters by artisanal fishermen. Additionally, we brought new 274 

information on the sex ratio, length at first maturity, and reproductive season of this 275 

species. This data increases biological knowledge of an important bycatch species and 276 

may thus support sustainable management and conservation practices.  277 

Larimus breviceps may reach 32 cm TL and occurs up to 60 m depth (Cervigón, 278 

1993; Aparecido et al., 2019). This study performed sampling in shallow waters (< 10 m 279 

depth) and specimens ranged from 4.20 to 23 cm TL. Hence, the larger specimens (> 20 280 

cm), which occupy deeper waters, were not fully collected by the beach seine utilized.  281 

However, adults and juveniles were similarly represented (50%:50%), indicating a 282 

balanced representation of the species ontogeny, raising the concerns of the relevance of 283 

L. breviceps juveniles within this fishery, which occur throughout the year. This has been 284 

also observed in adjacent areas (Silva-Júnior et al., 2015). High catches of juveniles were 285 

also observed for motorized bottom trawls, where immature specimens of L. breviceps 286 

represented up to 80% of the catches (Silva-Júnior et al., 2015; Bomfim et al., 2019), 287 

indicating that similar effects over juveniles are observed for both gears.   288 
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The catch of juveniles as bycatch is a frequent problem in shrimp fishing in 289 

Brazil and elsewhere. In the L. breviceps case, this catch may be particularly alarming 290 

since this type of fishery encompasses the surfing zone, an important habitat that provides 291 

optimal conditions, in terms of food and shelter, for the growth of juveniles (Gibson et 292 

al., 1996; Paes, 2002). Larimus breviceps is classified as a marine migrant species (Bessa 293 

et al., 2013; Passarone et al., 2019), and uses this area as a transition zone between the 294 

estuary (Costa et al., 2012) and the adult stock. Therefore, the high catches within this 295 

phase/stage of the life history may plummet fish abundance to low levels, jeopardizing 296 

ecosystem processes and impacting low-income communities' livelihoods and food 297 

security (Baum and Worm, 2009; Cinner, 2014).  298 

Concerning the Length-Weight relationship (LWR) of L. breviceps, the positive 299 

allometry (b=3.20; p<0.05) found in the present study was within limits indicated by 300 

Froese (2006) (2.50 to 3.50), evidencing a greater increment in weight than in length. The 301 

positive allometry may be related to the high feeding intensity and/or reproductive events 302 

of the species in the area (Silva, 2021). However, in general, this allometry seems to be 303 

standard for the species and the genus. This pattern was also observed for L. breviceps 304 

caught by beach seining in the Brazilian northeast (b=3.06; Ferreira et al., 2017), by 305 

bottom trawls in the southern (b=3.20; Freitas et al., 2011) and southeastern Brazil 306 

(b=3.10; Vianna et al., 2004), and for species of the same genus in México (L. acclivis 307 

(b=3.38) and L. effulgens (b=3.08); Flores-Ortega et al., 2017).   308 

As for the LWR, the sex ratio may also supply data on important aspects of the 309 

reproductive ecology, providing basic information to access population structure, 310 

reproductive potential, and stock size (Stratoudakis et al., 2006). In this study, the sex 311 

ratio significantly differed from 1:1 (1 F: 0.78 M; p<0.05). This may be linked to the 312 

population's reproductive success since a higher proportion of females may increase the 313 

population's reproductive potential (Coelho et al., 1987). In the British Guiana, an equal 314 

proportion of sexes captured by bottom trawling was observed (McConnell, 1962). Yet, 315 

in the Brazilian northeastern, also using bottom trawling, a higher proportion of males 316 

was reported (Silva-Júnior et al., 2015). These divergences may be caused by fishing 317 

pressures, trawling area, and intrinsic biogeographic features (Rijnsdorp et al., 2010).  318 

The validation of macroscopic stages with microscopic features gives an 319 

accurate description of the reproductive biology of marine organisms and confidence in 320 
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the analysis and outputs necessary for fishery management and resource conservation. 321 

However, this validation is rare in fishes and absent to the species of the genus Larimus. 322 

Therefore, the comparisons in this study were made to the family level. There are several 323 

differences between stages nomenclatures and their respective descriptions among 324 

Sciaenidae species (Farmer et al., 2008; Almeida et al., 2016). In addition, we have 325 

noticed differences in color and body cavity occupation for most of the stages. Despite 326 

that, all Scianidae species studied are group-synchronous or asynchronous batch spawners 327 

(Hutchings et al., 2006; Yamaguchi et al., 2006; Dadzie et al., 2007). Additionally, oocyte 328 

stages between undergoing germinal vesicle break down (GVBD) and atresia were not 329 

encompassed in this study (e.g., germinal vesicle migration and hydrate oocytes) and a 330 

low frequency of GVBD was observed, therefore, the species oocyte maturation and 331 

spawn may occur rapidly. This strategy results from a large investment by the parents to 332 

produce a high number of offspring at each reproductive cycle (Pianka, 1970). Moreover, 333 

in our study area, L. breviceps spawns throughout the year with a peak reported between 334 

November and March. This pattern was also observed throughout the Brazilian coast to 335 

motorized bottom trawling (Pernambuco and Santa Catarina; Souza and Chaves, 2007; 336 

Silva-Júnior et al., 2015). The energy allocation for reproduction over a wide period 337 

defines behavioral strategies to maximize reproductive success and guarantee offspring 338 

survival in different environmental conditions, allowing juveniles' development and 339 

survival (Yamahira, 2004; Winemiller, 2005).  340 

Overall, the maturation in early ages is typical in Sciaenidae and in short-lived 341 

fishes, which tend toward r-strategist life histories (Shlossman and Chitteden, 1981). This 342 

was the case of L. breviceps, with an estimated L50 of 11.10 cm TL, lower than those 343 

found in adjacent areas using motorized bottom trawling (13.50 cm TL; Silva-Júnior et 344 

al. 2015).  These differences may be associated with sampling strategy (depth, gear, and 345 

effort), gonadal classification (e.g., this is the first study performing microscopical 346 

analysis to validate the macroscopic stages), and/or fishing pressure differences among 347 

locations (Ashworth and Ormond, 2005).  348 

In the study area, fishing is a relevant socioeconomic activity, representing a 349 

source of food and income for a large part of the population (Nascimento, 2019). The 350 

shorthead drum, as a marine migrant species, plays an important role by connecting 351 

different areas, using the estuary for breeding, the surf zone for protection and growth, 352 

and deeper marine areas for the adult stock, revealing high ecosystemic connectivity that 353 
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supports the importance of ecosystem conservation (Costa et al., 2012; Bessa et al., 2013). 354 

Despite the ecologic importance of Larimus breviceps, the lack of studies (e.g., 355 

reproduction; diet; age; growth; mortality) prevents a complete assessment of the ecology 356 

and hamper the development of management practices that ensure the sustainability of 357 

the fishery. However, given the multi-specific nature of this fishery, the shorthead drum 358 

must be considered in an ecosystem approach for management, considering other main 359 

bycatch and target species. 360 
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