Reproductive biology of the shorthead drum *Larimus* breviceps (Acanthuriformes: Sciaenidae) in northeastern Brazil

Santos Lucas Vinícius ^{1, 2, *}, Craveiro Cecília Fernanda Farias ², Soares Andrey ², Eduardo Leandro Nolé ^{2, 3}, Passarone Rafaela ², Da Silva Emanuell Felipe Beserra ⁴, Lucena-Frédou Flávia ²

¹ Universidade Federal do Rio Grande, Instituto de Oceanografia, Programa de Pós-graduação em Oceanografia Biológica, Rio Grande, RS, Brazil

² Departamento de Pesca e Aquicultura, Universidade Federal Rural de Pernambuco, Rua D. Manuel de Medeiros, sn, Dois Irmãos, CEP 52171-900, Recife, PE, Brazil

³ Institut de Recherche pour le Développement (IRD), MARBEC (Université Montpellier, CNRS, Ifremer, IRD), Sète, France

⁴ Instituto Federal de Educação, Ciência e Tecnologia da Paraíba – Campus Cabedelo, Laboratório de Oceanografia, Rua Santa Rita de Cássia, 1900, Jardim Camboinha, Cabedelo, PB, Brazil

* Corresponding author : Lucas Vinicius Santos, email address : contatolucassantoss@gmail.com

Abstract :

The shorthead drum Larimus breviceps is one of the main bycatch species of the shrimp fisheries in Brazil. However, studies addressing the biology and fisheries impacts on this species are still scarce. Here we describe the main aspects of the reproductive biology and the female gonadal development of L. breviceps on Paraíba, northeast Brazil. The reproductive tract was described by macroscopic and microscopic analysis. The ovaries were composed by oogonia, pre-vitellogenic, vitellogenic, mature, and atretic oocytes. A total of 970 individuals (549 females and 421 males) were caught between December 2016 and November 2017 through beach seining. The total length (TL) varied from 4.2 to 23.0 cm. Females dominated over males (1 female: 0.77 male). The length-weight relationship did not differ between the sexes, presenting a positive allometric growth. The following stages were thus defined for females: immature, initial development, advanced development, mature, and regressing. The period of highest reproductive activity occurs between November and March and immature individuals occur throughout the year. Mean length at first maturity () was estimated as 11.1 cm TL. The information provided here contributes to the overall knowledge of this species and may be helpful for further development of management practices that ensure the sustainability of marine species exploitation.

Keywords : bycatch, croaker, microscopic description, oogenesis

1. Introduction Fisheries in tropical coastal ecosystems are commonly known for the great discard of species caught as bycatch, especially in shrimp trawling (Pauly, 2005). Among gears used for shrimp harvesting, the motorized bottom trawling is most common and destructive in Brazil and elsewhere (Pina and Chaves, 2009). This activity causes high incidental mortality and increases the extinction risk of several species (Thomas et al., 2017) by declining populations, catching juveniles, and leading to several alterations in the ecosystem (e.g., great physical disturbance; Diamond et al., 2000; Arendse et al. 2007; Thomas et al., 2017). In the Northeastern Brazil, shrimp fisheries are predominantly artisanal, carried out mainly by motorized artisanal trawling boats (Dias-Neto, 2011). In the state of Paraíba, northeastern Brazil, the ordinance IBAMA nº 833/1990 prohibited this activity in the coastal areas (3 nautical miles; Moura et al., 2003). Currently, fisheries are carried out exclusively through beach seining targeting mainly the white (Penaeus schmitti), pink (Penaeus subtilis), and seabob (Xiphopenaeus kroyeri) shrimps (Santos, 2010). Despite being limited to areas nearshore, the beach seine can harvest greater diversity of bycatch species than the motorized bottom trawling (Passarone, 2020). Moreover, this activity may cause several impacts (e.g., incidental mortality of juveniles and endangered species) that, given the current state of knowledge, may go mostly unnoticed by scientists, marine resource managers, and conservation biologists. The shorthead drum, Larimus breviceps Cuvier, 1830, distributed in the Central and Southwest Atlantic (from Costa Rica to Santa Catarina in Brazil) (Vianna and Almeida, 2005; Cattani et al., 2011), may reach up to 10% of the bycatch caught by beach seine (Nunes et al., 1998; Passarone et al., 2020). This species has an important role in the food chain, either feeding on components of the ecosystem (e.g., small fishes, shrimps) or integrating the diet of mammals and other fishes (Beneditto, 2017). Furthermore, L. breviceps has high socioeconomic importance by serving as a food and income source for the local population, especially in northeastern Brazil (Nascimento, 2019). Although some aspects of its population dynamic and fisheries have been studied

in Brazil (Souza and Chaves, 2007; Silva-Júnior et al., 2013; Silva-Júnior et al., 2015;
Chaves et al., 2018; Bomfim et al., 2019), key information on the biology and ecology of
this species are still scarce.

One key basic knowledge concerns reproductive biology, which provides important information for fish stocks estimations (e.g., mean length at first maturity), anthropogenic impacts evaluation, and implementation of management actions (Sadovy, 1996; Begg, 1988). As an example, accurate estimation of mean length at first maturity may subsidize the optimization of more sustainable fishing gear and size restriction measures; while the description of the spawning season and grounds may provide managers the appropriate closed season and adequate no-taken zones (Silva-Júnior et al., 2015; Eduardo et al., 2018). However, information on reproductive biology lacks for several species, especially those caught as bycatch (Silva-Júnior et al., 2015).

109 This study aims to characterize the reproductive biology of *L. breviceps*. For 110 that, we i) define the first histological classification of the oocyte and maturity stages of 111 *L. breviceps* ovaries, ii) investigate its spawning activity based upon seasonal variation in 112 gonadal development stages, and iii) establish a mean size at first maturity of the 113 shorthead drum in northeastern Brazil. The new information provided here contributes to 114 the overall knowledge to ensure the sustainability and conservation of the species.

116 2. Material and Methods

Specimens of *L. breviceps* were collected monthly from the bycatch of an
artisanal shrimp fishery in north coast of Paraíba, northeastern Brazil (6°53'50"S,
34°51'01"W), from December 2016 to November 2017, except in May due to a series of
meteorological events that hampered the fishing activity (Fig. 1).

	140	The gonads were removed and weighed for sex and maturation stage
1 2	141	determination. Microscopic analysis was carried out in 250 ovaries to confirm the
3 4	142	macroscopic characterization and describe the maturity stages. Samples were taken from
5	143	the median portion of the ovary, fixed in10% buffered formaldehyde for 24 hours,
7	144	cleaved, fixed again for another 24 hours, and transferred to 70% alcohol for conservation.
8 9	145	The ovary fragments were dehydrated, cleared in xylol, embedded in paraffin at 60°C, cut
10 11	146	in slices of 5 μ m, and stained with hematoxylin/eosin-phloxine. Maturational stages were
12 13	147	identified through slide analyses and ovary sections photographed using an optical
14 15 16	148	microscope LEICA DM500 (LEICA, Wetzlar, Germany).
17	149	The ovaries were classified macroscopically and microscopically in different
18 19	150	reproductive phases (Brown-Peterson et al., 2011) according to the most advanced oocyte
20 21	151	stage present (West, 1990). It was measured, at most, fifty oocytes per category using the
22 23	152	software Image Tool [®] version2.0 for Windows. The mean and the standard deviation to
24 25	153	each specimen's oocyte diameter of the different germ cells were obtained. Oocyte
26 27	154	diameters were taken in the cross-section of the ovary.
28 29	155	The mean length at first maturity (L_{50} ; mean length at which 50% of the
30 31	156	individuals attain gonadal maturity for the first time) was obtained only for females. To
32 33	157	achieve it, the percentage of adults (microscopic stages II, III, IV, and V) was estimated
34 35	158	for each length class. These values were adjusted by the least-squares method to a logistic
36	159	curve, which is given according to King (2007): $P_i=1/(1+exp[-r(Li-L50)])$, where P_i is the
38	160	proportion of adult individuals for each class i , L_i is the length at each class i , L_{50} is the
39 40	161	length that corresponds to 0.5 proportion (50%) of adults in the population and r is the
41 42	162	logistic curve slope.
43 44	160	The ensuring encountry of the monthly relative frequency of
45 46	103	the consider metarosism stars and by coloulating the Consideration Index (CSI) for
47 48	165	families: CSI_CW/DW, where CW is the good weight and EW is the avisecreted weight
49	105	of the encoment. To test for significant differences in CSI between months, the Vraskel
51	100	Wallis test was reaformed (Salal and Bahlf 1087). Immeture specimens were evoluded
52 53	107	from this analysis
54 55	108	nom uns analysis.
56 57	169	The R software (version 3.4.4) was utilized to perform all statistical analyses
58	170	(Team R Core, 2018). The package sizeMat ("Size at Morphometric and Gonad Maturity
60 61	171	in R"; Torrejón-Magallanes, 2016) was used to estimate L50 values.
62		6
63 64		
65		

172	
173	3. Results
174	A total of 970 specimens of L. breviceps were collected: 549 females (56%) and
175	421 males (44%). Total length ranged from 4.20 to 23 cm (females 4.30-23 cm; males
176	4.20–22.80 cm, TL), and the total weight from 0.68 to 167.67 g (females 0.77–158.10 g;
177	males 0.68-167.67 g, TW) (Tab. 1). The LWR for females and males did not differ
178	significantly (p<0.05) presenting a positive allometric growth in all cases (b>3; p<0.05)
179	(Tab. 1). In addition, females were statistically predominant over males (1: 0.77; χ^2 ,
180	p<0.05).

Table 1. Descriptive statistics and TL-TW relation parameters of Larimus breviceps captured from December 2016 to November 2017 off the coast of Paraíba state, Northeastern Brazil [TL, total length (cm); TW, total weight (g); SD, standard deviation; min, minimum; max, maximum; SL, standard length (cm)].

	Females	Males	Pooled sexes
Length characteristics			
TL, mean \pm SD	11.31±2.94	10.46±2.62	10.97 ± 2.88
TL min–TL max	4.30–23	4.20-22.8	4.20-23
Weight characteristics			
TW, mean \pm SD	18.94±17.30	14.58±15.17	17.03 ± 16.54
TWmin–TWmax	0.77-158.10	0.68-167.67	0.68-167.67
Relations			
TL-TW equation	TW=0.00596TL ^{3.22}	TW=0.00584TL ^{3.23}	TW=0.00588TL3.23
Coefficient of determination (r ²)	0.96	0.96	0.96
t-test (coefficient b=3)	p<0.05	p<0.05	p<0.05
Growth type	Positive allometry	Positive allometry	Positive allometry
Glowin type	(3.22)	(3.23)	(3.23)
186The oocyte dev187previtellogenic oocyte, cor	elopment was class tical alveoli, vitelloge	ified in 6 phases nic oocyte, mature, o	(e.g., oogonia, ocyte in atresia)
(Fig. 3), as follows:			
.89 <i>Oogonia</i> (<i>OO</i>)			
190 The oogonia is t	he most primitive ph	nase of germinative of	cells, presenting
diameter varying from 25.9	5±4.14 μm. Its nucleus	s is wide and located in	the center of the
192 cell surrounded by a thin la	yer of cytoplasm and	containing a single and	l large nucleolus
			7

19

- (Fig. 3), as follows:
- Oogonia (OO)

	193	located in the center of the nucleus, which tends to migrate to the periphery as the cell
1 2	194	develops.
2 3 4 5 6 7 8 9 10	195	Previtellogenic oocyte or perinucleolar (PVTO)
6 7	196	In this phase a considerable increase in cellular volume occurs, regarding the
8 9	197	previous stage, with a mean diameter of $63.80\pm3.30 \mu\text{m}$. The cytoplasm is larger than the
10 11	198	nucleus, presenting peripheric nucleolus in cells nucleus as it develops. These cells reveal
12	199	strong basophilia and they are found in all ovary development stages (Fig. 3A).
14 15 16	200	Cortical alveoli oocyte (CA)
17 18	201	The cortical alveoli formation is the main indicator of the beginning of oocyte
19 20	202	maturational development. This phase is characterized by the appearance of the oil
21 22	203	droplets, which are small spherical vesicles, initially around the nucleus, spreading over
23	204	the cytoplasm. The cortical alveoli grow in number and size as the oocyte develops. The
25 26	205	lipid vacuoles begin to accumulate in the cytoplasm (mean diameter 170.80±19.80 µm)
20	206	(Fig. 3A).
28 29 30 31 32 33 34 35 36 37 38	207	Vitellogenic oocytes (VTG ₁ , VTG ₂ , and VTG ₃)
	208	This phase endures from the appearance of egg yolk vesicles in cytoplasm until
	209	its fusion through the final maturation. The vitellogenic phase is subdivided into 3
	210	subphases, considering the accumulation of nutrients in the oocyte cytoplasm: primary
	211	vitellogenic oocytes (VTG1), the oil droplets occupy the areas around the nucleus (mean
39 40	212	diameter 264.60±10.40 µm); secondary vitellogenic oocytes (VTG2), the oil droplets
41 42	213	occupy a greater area in the cytoplasm regarding the previous stage and the yolk granules
43 44	214	accumulate in the cytoplasm (mean diameter 360.30±10.90 µm); tertiary vitellogenic
45 46	215	oocyte (VTG ₃), the oil droplets are larger than the previous stages and yolk granules
47	216	spread all over the cytoplasm (mean diameter 412.90±8.90 µm) (Fig. 3B; Fig. 3C; Fig.
49	217	3D).
50 51 52 53	218	Mature or oocyte undergoing germinal vesicle breakdown (GVBD)
54 55	219	In this phase occur the germinal vesicle migration and breakdown and the yolk
56	220	granules begin to fuse. It is observed great accumulation of yolk granules in the
57	221	cytoplasm, provoking a significant increase in its volume, with a mean diameter
59 60	222	512.30±6.30 μm (Fig. 3E).
61 62 63 64 65		8

Oocyte in atresia (OA)

The atretic oocyte is the degeneration of oocyte follicles. Although these cells are observed in higher frequency in the regressing stage, they may occur in all ovary development stages (except in the immature stage). They present an undefined format due to the rupture of the membrane during the process of resorption (Fig. 3F).

Y

"Figure 3. Phases of oocyte development in the Larimus breviceps captured from December 2016 to November 2017 off the coast of Paraíba state, northeastern Brazil. A) previtellogenic oocyte phase (PVTO), and oocytes in cortical alveolar (CA) phase; B) oocyte in primary vitellogenic subphase (VTG1); C) oocyte in secondary vitellogenic subphase (VTG₂); D) oocyte in tertiary vitellogenic subphase (VTG₃); E) oocyte undergoing germinal vesicle breakdown (GVBD); F) oocyte in atresia (OA). n, nucleus; 7 8 n_u, nucleolus; ca, cortical alveoli; y, yolk granules; od, oil droplets; vm, vitelline membrane; zr, zona radiata." According to the macroscopic and microscopic analysis of 250 ovaries 13 14 15 16 17 examined, the females were classified in five maturation stages: immature, initial development, advanced development, spawning capable or mature and regressing (Tab. 2). From the total of ovaries analyzed, 46.40% were immatures, 26% in initial development, 6.40% in advanced development, 11% were mature, and 10% regressing. Table 2. Macroscopic and microscopic photos and descriptions of ovarian development stages of Larimus breviceps captured from December 2016 to November 2017 off the coast of Paraíba state, northeastern Brazil.

Figure 5. Female monthly gonadosomatic index (±, standard deviation) and maturational stages proportion of Larimus breviceps captured from December 2016 to November 2017 off the coast of Paraíba state, northeastern Brazil (black line: GSI; numbers of individuals on the top of the bars).

4. Discussion

б

42

48

50

This is the first study to analyze the ovary and oocytary development of Larimus breviceps caught in shallow waters by artisanal fishermen. Additionally, we brought new information on the sex ratio, length at first maturity, and reproductive season of this species. This data increases biological knowledge of an important bycatch species and may thus support sustainable management and conservation practices.

Larimus breviceps may reach 32 cm TL and occurs up to 60 m depth (Cervigón, 1993; Aparecido et al., 2019). This study performed sampling in shallow waters (< 10 m depth) and specimens ranged from 4.20 to 23 cm TL. Hence, the larger specimens (> 20 cm), which occupy deeper waters, were not fully collected by the beach seine utilized. However, adults and juveniles were similarly represented (50%:50%), indicating a balanced representation of the species ontogeny, raising the concerns of the relevance of L. breviceps juveniles within this fishery, which occur throughout the year. This has been also observed in adjacent areas (Silva-Júnior et al., 2015). High catches of juveniles were also observed for motorized bottom trawls, where immature specimens of L. breviceps represented up to 80% of the catches (Silva-Júnior et al., 2015; Bomfim et al., 2019), indicating that similar effects over juveniles are observed for both gears.

- 62

	289	The catch of juveniles as bycatch is a frequent problem in shrimp fishing in
1 2 3 4	290	Brazil and elsewhere. In the L. breviceps case, this catch may be particularly alarming
	291	since this type of fishery encompasses the surfing zone, an important habitat that provides
5	292	optimal conditions, in terms of food and shelter, for the growth of juveniles (Gibson et
7	293	al., 1996; Paes, 2002). Larimus breviceps is classified as a marine migrant species (Bessa
8	294	et al., 2013; Passarone et al., 2019), and uses this area as a transition zone between the
10 11	295	estuary (Costa et al., 2012) and the adult stock. Therefore, the high catches within this
12 13	296	phase/stage of the life history may plummet fish abundance to low levels, jeopardizing
14 15	297	ecosystem processes and impacting low-income communities' livelihoods and food
16	298	security (Baum and Worm, 2009; Cinner, 2014).
14 15 16 17 18 19 20 21 22 23 24 25 26 27	200	Concerning the Length Weight relationship (LWD) of L browiens, the positive
20	299	Concerning the Length-weight relationship (LWR) of L. <i>Dreviceps</i> , the positive allowed by (L, Z, W, R) of (L, Z, W, R) .
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40	300	anometry $(b=3.20; p<0.05)$ found in the present study was within limits indicated by Encade (2006) (2.50 to 2.50), avidencing a greater increase time weight then in length. The
	301	Proese (2006) (2.50 to 5.50), evidencing a greater increment in weight than in length. The
	302	of the species in the area (Silve 2021). However, in general, this allometry scores to be
	303	of the species in the area (Siva, 2021). However, in general, this another y seems to be
	304	standard for the species and the genus. This pattern was also observed for <i>L. breviceps</i>
	305	bettern travils in the southern (h. 2.20). Fraites et al. 2011) and southeastern Brazil
	306	bottom trawis in the southern $(0=5.20)$; Frenas et al., 2011) and southeastern Brazin (b. 2.10; Wisama et al. 2004) and for graving of the same serves in México (L. southing
	307	(b=5.10; Vianna et al., 2004), and for species of the same genus in Mexico (L. accuvis (b=2.28) and L. efficience (b=2.08). Elemes Ortage et al. 2017).
	308	(b=5.58) and L. ejjuigens $(b=5.08)$; Piores-Oriega et al., 2017).
	309	As for the LWR, the sex ratio may also supply data on important aspects of the
	310	reproductive ecology, providing basic information to access population structure,
41 42	311	reproductive potential, and stock size (Stratoudakis et al., 2006). In this study, the sex
43 44	312	ratio significantly differed from 1:1 (1 F: 0.78 M; p<0.05). This may be linked to the
45 46	313	population's reproductive success since a higher proportion of females may increase the
47 48	314	population's reproductive potential (Coelho et al., 1987). In the British Guiana, an equal
49	315	proportion of sexes captured by bottom trawling was observed (McConnell, 1962). Yet,
51	316	in the Brazilian northeastern, also using bottom trawling, a higher proportion of males
52 53	317	was reported (Silva-Júnior et al., 2015). These divergences may be caused by fishing
54 55 56	318	pressures, trawling area, and intrinsic biogeographic features (Rijnsdorp et al., 2010).
57 58	319	The validation of macroscopic stages with microscopic features gives an
59 60 61	320	accurate description of the reproductive biology of marine organisms and confidence in
62 63		14
64 65		

$1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 13 \\ 14 \\ 15 \\ 16 \\ 17 \\ 19 \\ 20 \\ 21 \\ 22 \\ 24 \\$	321	the analysis and outputs necessary for fishery management and resource conservation.
	322	However, this validation is rare in fishes and absent to the species of the genus Larimus.
	323	Therefore, the comparisons in this study were made to the family level. There are several
	324	differences between stages nomenclatures and their respective descriptions among
	325	Sciaenidae species (Farmer et al., 2008; Almeida et al., 2016). In addition, we have
	326	noticed differences in color and body cavity occupation for most of the stages. Despite
	327	that, all Scianidae species studied are group-synchronous or asynchronous batch spawners
	328	(Hutchings et al., 2006; Yamaguchi et al., 2006; Dadzie et al., 2007). Additionally, oocyte
	329	stages between undergoing germinal vesicle break down (GVBD) and atresia were not
	330	encompassed in this study (e.g., germinal vesicle migration and hydrate oocytes) and a
	331	low frequency of GVBD was observed, therefore, the species oocyte maturation and
	332	spawn may occur rapidly. This strategy results from a large investment by the parents to
	333	produce a high number of offspring at each reproductive cycle (Pianka, 1970). Moreover,
	334	in our study area, L. breviceps spawns throughout the year with a peak reported between
25 26	335	November and March. This pattern was also observed throughout the Brazilian coast to
27 28	336	motorized bottom trawling (Pernambuco and Santa Catarina; Souza and Chaves, 2007;
29	337	Silva-Júnior et al., 2015). The energy allocation for reproduction over a wide period
31	338	defines behavioral strategies to maximize reproductive success and guarantee offspring
32 33	339	survival in different environmental conditions, allowing juveniles' development and
34 35	340	survival (Yamahira, 2004; Winemiller, 2005).
37 38	341	Overall, the maturation in early ages is typical in Sciaenidae and in short-lived

maturation in early ages is typical in Sciaenidae and in short-lived 341 fishes, which tend toward r-strategist life histories (Shlossman and Chitteden, 1981). This 342 343 was the case of L. breviceps, with an estimated L_{50} of 11.10 cm TL, lower than those found in adjacent areas using motorized bottom trawling (13.50 cm TL; Silva-Júnior et 344 al. 2015). These differences may be associated with sampling strategy (depth, gear, and 345 effort), gonadal classification (e.g., this is the first study performing microscopical 346 analysis to validate the macroscopic stages), and/or fishing pressure differences among 347 348 locations (Ashworth and Ormond, 2005).

In the study area, fishing is a relevant socioeconomic activity, representing a source of food and income for a large part of the population (Nascimento, 2019). The shorthead drum, as a marine migrant species, plays an important role by connecting different areas, using the estuary for breeding, the surf zone for protection and growth, and deeper marine areas for the adult stock, revealing high ecosystemic connectivity that

 $\begin{array}{c} 4\,3\\ 4\,4\\ 4\,5\\ 4\,6\\ 7\\ 4\,8\\ 4\,9\\ 5\,0\\ 5\,1\\ 5\,5\\ 5\,5\\ 5\,5\\ 5\,5\\ 5\,6\\ 6\,1\\ 6\,2\\ 6\,3\end{array}$

39

40 41

- 63 64
- 65

 supports the importance of ecosystem conservation (Costa et al., 2012; Bessa et al., 2013 Despite the ecologic importance of <i>Larimus breviceps</i>, the lack of studies (e.g 356 reproduction; diet; age; growth; mortality) prevents a complete assessment of the ecologic). y f n
 supports the importance of ecosystem conservation (Costa et al., 2012; Bessa et al., 2013 Despite the ecologic importance of <i>Larimus breviceps</i>, the lack of studies (e.g 356 reproduction; diet; age; growth; mortality) prevents a complete assessment of the ecologic). y f n n
 ¹/₂ 355 Despite the ecologic importance of <i>Larimus breviceps</i>, the lack of studies (e.g ³/₄ 356 reproduction; diet; age; growth; mortality) prevents a complete assessment of the ecolog 	y f n n
³ ₄ 356 reproduction; diet; age; growth; mortality) prevents a complete assessment of the ecolog	y f n
	f n n
$\frac{5}{2}$ 357 and hamper the development of management practices that ensure the sustainability of	n n
7 358 the fishery. However, given the multi-specific nature of this fishery, the shorthead drun	n
 must be considered in an ecosystem approach for management, considering other mai 	
¹⁰ 11 360 bycatch and target species.	
12 13 14 361	
 362 Declaration of competing interest 	
¹⁸ 19 363 The authors declare that they have no known competing financial interests of	r
²⁰²¹ 364 personal relationships that could have influenced the work reported in this paper.	
22 23 365	
 25 26 366 Credit authorship contribution statement 	
27 28 367 Lucas Vinícius Santos: Writing - original draft, Investigation, Microscopic analysi	3,
 368 Formal analysis and Review. Cecília Fernanda Farias Craveiro: Microscopic analysis 	S
³¹ ₃₂ 369 and Editing. Andrey Paulo Cavalcanti Soares: Formal analysis and Editing. Leandr	0
 33 34 370 Nolé Eduardo: Editing. Rafaela Passarone: Editing. Emanuell Felipe Beserra d 	a
$\frac{35}{36}$ 371 Silva: Project administration and Editing. Flávia Lucena-Frédou: Project	rt
 37 372 administration, Conceptualization, Supervision and Editing. 	
³⁹ / ₄₀ 373	
42 374 Acknowledgement	
44 45 375 We acknowledge the fishermen for their contribution to the success of the	e
$\frac{46}{47}$ 376 operations. The present study could not have been done without the work of participant	s
⁴⁸ ₄₉ 377 from the BIOIMPACT Laboratory (UFRPE) and Laboratório de Oceanografia (IFPE).
$\frac{50}{51}$ 378 Thanks also to Paulo Guilherme Vasconcelos de Oliveira (UFRPE) for providing the	e
 ⁵² 379 microtome for microscopic analysis. 	
54 55 380	
56 57 381	
58 59	
60 382	
	6
64 65	

383 Funding

This study is a contribution of the projects "Shrimp NE N" (Grant Number: 445766/2015-8), which has receive funding from the Secretaria da Pesca e Aquicultura (MAPA/SAP) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and of "Subsídios para o manejo sustentável da pesca de camarões no litoral norte da Paraíba", also financed by CNPQ. It is also a contribution of the LMI TAPIOCA. The first author was supported by Fundação de Amparo a Ciência e Tecnologia do Estado de Pernambuco (FACEPE). Leandro Eduardo was supported by Coordenção de Aperfeiçoamento de Pessoal de Nível Superior (CAPES-88882.436215/2019-01; CAPES/Print-88887.364976/2019-00) and FUNBIO/Humanize under the grant "Programa Bolsas Funbio - Conservando o Futuro 2018 (011/2019)". Flávia Lucena Frédou was supported by a research grant of CNPq.

395

References

Almeida, Z. S., Santos, N. B., Sousa, L. H., Carvalho-Neta, R. N. F. & Andrade, T. S. O.
M. 2016. Biologia reprodutiva da pescada amarela (*Cynoscion acoupa*) capturada na baía
de São Marcos, Maranhão, Brasil. *Biota Amazônia*, v. 6, n. 1, p. 46-54.
http://dx.doi.org/10.18561/2179-5746/biotaamazonia.v6n1p46-54

401 Aparecido, K. C., Negro, T. D., Tutui, S. L. S., Souza, M. R. & Thomás, A. R. G. 2019.
402 *Larimus breviceps* Cuvier, 1830 at the inner continental shelf of São Paulo and Paraná
403 states. In: Vaz- Dos- Santos, A. M. & Rossi- Wongtschowski, L. D. B. (Eds.). Growth
404 in Fisheries resources from the Southwestern Atlantic. São Paulo: Instituto
405 Oceanográfico – USP, 162 – 164.

40 406 Arendse, C. J., Govender, A. & Branch, G. M. 2007. Are closed fishing seasons an effective means of increasing reproductive output? A per-recruit simulation using the limpet *Cymbula granatina* as a case history. *Fish. Res.*, v. 85, n. 1–2, p. 93–100. https://doi.org/10.1016/j.fishres.2007.01.001

45
410 Ashworth, J. S. & Ormond, R. F. G. 2005. Effects of fishing pressure and trophic group
411 on abundance and spillover across boundaries of a no-take zone. *Biol. Conserv.*, v. 121,
412 n. 3, p. 333–344. <u>https://doi.org/10.1016/j.biocon.2004.05.006</u>

Baum, J. K. & Worm, B. 2009. Cascading top- down effects of changing oceanic
predator abundances. *J. Anim. Ecol.*, v. 78, p. 699–714. <u>https://doi.org/10.1111/j.1365-</u>
<u>2656.2009.01531.x</u>

416 Begg, G. A. 1998. Reproductive biology of school mackerel (*Scomberomorus queenslandicus*) and spotted mackerel (*S. muroi*) in Queensland east-coast waters. *Mar.*418 *Freshwater Res.*, v. 49, p. 261-270.

		C.	
1 2 3 4 5 6 7 8 9 0 1 1 2 3 4 5 6 7 8 9 0 1 1 2 3 4 5 6 7 8 9 0 1 1 2 3 4 5 6 7 8 9 0 1 1 2 3 4 5 6 7 8 9 0 1 2 2 2 3 4 5 6 7 8 9 0 1 2 2 2 3 4 5 6 7 8 9 0 1 2 2 2 3 4 5 6 7 8 9 0 1 2 2 3 4 5 6 7 8 9 0 1 2 2 3 4 5 6 7 8 9 0 1 2 2 3 4 5 6 7 8 9 0 1 2 2 3 4 5 6 7 8 9 0 1 2 2 3 4 5 6 7 8 9 0 1 2 2 3 4 5 6 7 8 9 0 1 2 2 3 4 5 6 7 8 9 0 1 2 2 3 4 5 6 7 8 9 0 1 2 2 2 3 4 5 6 7 8 9 0 1 2 2 2 3 4 5 6 7 8 9 0 1 2 2 2 3 4 5 6 7 8 9 0 1 2 2 2 3 4 5 6 7 8 9 0 1 2 2 2 3 4 5 6 7 8 9 0 1 2 2 2 3 4 5 6 7 8 9 0 1 2 2 2 3 4 5 6 7 8 9 0 1 2 2 2 3 4 5 6 7 8 9 0 1 2 2 2 3 4 5 6 7 8 9 0 1 2 2 2 3 4 5 6 7 8 9 0 1 2 2 2 3 4 5 6 7 8 9 0 1 2 2 2 3 4 5 6 7 8 9 0 1 2 2 2 3 4 5 6 7 8 9 0 1 2 2 2 3 4 5 6 7 8 9 0 1 2 2 2 3 4 5 6 7 8 9 0 1 2 2 2 3 4 5 6 7 8 9 0 1 2 2 2 3 4 5 6 7 8 9 0 1 2 2 2 3 4 5 6 7 8 9 0 1 2 2 3 4 5 6 7 8 9 0 1 1 2 3 4 5 6 7 8 9 0 1 1 2 3 4 5 6 7 8 9 0 1 1 2 3 4 5 6 7 8 9 0 1 1 2 3 4 5 6 7 8 9 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	419 420 421 422	Beneditto, C. C. V. B. 2017. On the feeding habit of the Guiana Dolphin <i>Sotalia Guianensi</i> (Van Bénedèn, 1864) (Mammalia: Cetartiodactyla: Delphinidae) in southeastern Brazil (~220S): has there been any change in more than two decades? <i>J. of Threat. Taxa</i> , v. 9, n. 2, p. 9840–9843. <u>10.11609/jott.2745.9.2.9840-984</u>	
	423 424 425 426	Bessa, E., Santos, F. B., Pombo, M., Denadai, M., Fonseca, M. & Turra, A. 2013. Population ecology, life history and diet of the shorthead drum <i>Larimus breviceps</i> in a tropical bight in southeastern Brazil. <i>J. Mar. Biol. Assoc. U. K.</i> , v. 94, n. 3, p. 615–622. https://doi.org/10.1017/S0025315413001690	
	427 428 429	Bomfim, A. C., Farias, D. S. D., Morais, I. C. C., Rossi, S., Gavilan, S. A. & Silva, F. J. L. 2019. The impact of shrimp trawl bycatch on fish reproduction in northeastern Brazil. <i>Biota Amazônia</i> , Macapá, v. 9, n. 1, p. 37–42. <u>http://dx.doi.org/10.18561/2179-5746</u>	
	430 431 432 433	Brown-Peterson, N. J., Wyanski, D. M., Saborido-Rey, F., Macewicz, B. J. & Lowerre-Barbieri, S. K. 2011. A Standardized Terminology for Describing Reproductive Development in Fishes. <i>Mar. Coast. Fish.</i> , v. 3, n. 1, p. 52-70. 10.1080/19425120.2011.555724	
	434 435 436 437	Cattani, A. P., Santos, L. O., Spach, H. L., Budel, B. R. & Gondim-Guanais, J. H. D. 2011. Avaliação da ictiofauna da fauna acompanhante da pesca do camarão sete-barbas do município de Pontal do Paraná, litoral do Paraná, Brasil. <i>Bol. Inst. Pesca</i> , São Paulo, v. 37, n. 2, p. 247–260.	
	438 439	Cervigón, F. 1993. Los peces marinos de Venezuela. Volume 2. Fundación Científica Los Roques, Caracas. Venezuela. 497 p.	
	440 441 442	Chaves, P. T. C., Azeredo, F. G. & Pinheiro, E. 2018. Fecundidade de peixes e tamanhos máximos de captura: instrumento auxiliar à gestão de pesca. <i>Bol. Inst. Pesca</i> , v. 43, n. 4, p. 542-556. <u>10.20950/1678-2305.2017v43n4p542</u>	
	443 444	Cinner, J. 2014. Coral reef livelihoods. Curr. Opin. Env. Sust., v. 7, p. 65-71. https://doi.org/10.1016/j.cosust.2013.11.025	
	445 446 447 448	Coelho, J. A. P., Graças-Lopes, R., Rodrigues, E. S. & Puzzi, A. 1987. Aspectos biológicos do Sciaenidae <i>Stellifer brasiliensis</i> (Schultz, 1945) presente na pesca artisanal dirigida ao camarão sete-barbas (São Paulo, Brasil). <i>B. Inst. Pesca</i> , v. 14, p. 1–10. <u>https://www.scielo.br/pdf/rbzool/v19n2/v19n2a16.pdf</u>	
	449 450 451	Costa, M. D. P., Schwingel, P. R., Souza-Conceição, J. M. & Spach, H. L. 2012. Distribuição espaço-temporal de lavas de Sciaenidae em um estuário subtropical (Santa Catarina, Brasil). <i>Braz. J. Aquat. Sci. Technol.</i> , v. 16, n. 2, p. 51-59.	
	452 453 454	Dadzie, S. 2007. Vitellogenesis, oocyte maturation pattern, spawning rhythm and spawning frequency in <i>Otolithes ruber</i> (Schneider, 1801) (Sciaenidae) in the Kuwaiti waters of the Arabian Gulf. <i>Sci. Mar.</i> , v. 71, n. 2, p. 239–248.	
	455 456 457	Dagnelie, P. 1975. <i>Théorie et méthodes statistiques: applications agronomiques</i> . Volume 2: les méthodes de l'inférence stastique. Gembloux, Les presses agronomiques de Gembloux. 464p.	
	458 459 460	Diamond, S. L., Cowell, L. G. & Crowder, L. B. 2000. Population effects of shrimp trawl bycatch on Atlantic croaker. <i>Can. J. Fish. Aquat. Sci.</i> , v. 57, p. 2010–2021. <u>10.1139/cjfas-57-10-2010</u>	
60 61 62 63		18	

Dias-Neto, J. 2011. Proposta de Plano Nacional de Gestão para o uso Sustentável de Camarões Marinhos do Brasil. Brasília, DF. IBAMA. Eduardo, L. N., Lira, A. S., Frédou, T. & Lucena-Frédou, F. 2018. Population structure and reproductive biology of Haemulopsis corvinaeformis (Perciformes, Haemulidae) in the south coast of Pernambuco, northeastern Brazil. Iheringia. Série Zoologia, v. 108 p. 7 1-8. https://doi.org/10.1590/1678-4766e2018007 Farmer, B. M. 2008. Comparisons of the biological and genetic characteristics of the Mulloway Argyrosomus japonicus (Sciaenidae) in different regions of Western Australia. Thesis (Doctor of philosophy) - Murdoch University. Ferreira, P. V. C, Amorim, A. L. A, Pessoa, W. V. N. & Ramos, J. A. A. 2017. Influência das fases da lua na abundância de Larimus breviceps na zona de arrebentação da praia de Miramar - PB. Revista principia, v. 36, p. 107-115. 10.18265/1517-03062015v1n36p107-115 Flores-Ortega, J. R., Granados-Amores, J., Zavala-Leal, I., Nieto-Navaro, J. T. & Palacios-Salgado, D. S. 2017. Length-weight relationships of 20 fish species from Bahía de Matanchen, in the southeast Gulf of California, Mexico. J. Appl. Ichthyol., v. 33, p. 152–154. 10.1111/jai.13227 Freitas, M. O., Vasconcelos, S. M., Hostim-Silva, M. & Spach, H. L. 2011. Length-weight relationships for fishes caught by shrimp trawl in Santa Catarina coast, south Atlantic, Brazil. J. Appl. Ichthyol., v. 27, n. 6, p. 1427-1428. https://doi.org/10.1111/j.1439-0426.2011.01749.x Froese, R. 2006. Cube law, condition factor and weight-length relationships: history, meta-analysis and recommendations. J. Appl. Ichthyol., v. 22, n. 4, p. 241-253. 10.1111/j.1439-0426.2006.00805.x Gibson, R. N., Robb, L., Burrows, M. T. & Ansell, A. D. 1996. Tidal, diel and longer term changes in the distribution of fishes on a Scottish sandy beach. Mar. Ecol. Prog. 37 Ser., v. 130, p. 1-17. Hutchings, K., M. H. Griffiths & J.G. Field. 2006. Regional variation in the life history of the canary drum Umbrina canariensis (Sciaenidae), in South African waters. Fish. Res., v. 77, n. 3, p. 312-325. doi:10.1016/j.fishres.2005.10.011 IBAMA (Instituto Brasileiro do Meio Ambiente e dos Recursos Naturais Renováveis). 1990. Ordinance 833/1990, June 7, 1990. To prohibit trawling by motorized vessels in the state of Paraíba, up to a distance of three miles from the coast. Available in: http://extwprlegs1.fao.org/docs/pdf/bra13797.pdf. accessed May 5, 2021. King, M. 2007. Fisheries biology, assessment and management. Oxford, Blackwell Publishing, 341 p. 10.1002/9781118688038 McConnell, R. H. L. 1962. The fishes of the British Guiana continental shelf, Atlantic coast of South America, with notes on their natural history. J. Linnean Soc. Lond., Zool., v. 44, n. 301, p. 669-700. https://doi.org/10.1111/j.1096-3642.1962.tb01964.x 57 Moura, G. F., Melo, G. N. & Sampaio, J. A. A. 2003. Estudos biométricos das espécies de camarões peneídeos de importância econômica no litoral de Lucena, Paraíba. Bol. Téc. Cient. Centr. Pesq. Nord, v. 11, p. 189-210.

1 2 3 4	503 504 505 506	Nascimento, G. C. C., Lucena-Córdula, E. B. & Silva, M. C. B. C. 2019. Aspectos socioeconômicos da pesca artesanal do camarão marinho na enseada de Lucena-Paraíba, Brasil. <i>Sociedade e Território</i> , v. 31, n. 2, p. 120-138. <u>https://doi.org/10.21680/2177-8396.2019v31n2ID15327</u>
5 6 7 8	507 508 509	Nunes, C. R. R. & Rosa, R. S. 1998. Composição e distribuição da ictiofauna acompanhante em arrastos de camarão na costa da Paraíba, Brasil. <i>Trabalhos Oceanográficos da Universidade Federal de Pernambuco</i> , v. 26, n. 2, p. 67-83.
9 10 11	510 511	Paes, E. T. 2002. Nécton marinho. In Biologia marinha (R.C. Pereira & A. Soares-Gomes, orgs.). Interciência, Rio de Janeiro, p. 159-193.
113 14 15 16 17 18 20 212 23 24 25 26 228 29 30 1223 24 25 27 89 312 33 45 36 78 90 142	512 513 514 515 516	Passarone, R., Aparecido, K. C., Eduardo, L. N., Lira, A. S., Silva, L. V. S., Justino, A. K. S., Craveiro, C., Silva, E. F. & Frédou, F. L., 2019. Ecological and conservation aspects of bycatch fishes: Na evaluation of shrimp fisheries impacts in Northeastern Brazil. <i>Braz. J. Oceanogr.</i> , v. 67, p. 1–10. <u>https://doi.org/10.1590/s1679-87592019029106713</u>
	517 518 519 520	Passarone, R. 2020. Avaliação da fauna acompanhante da pesca camareira e comparação entre as modalidades de arrasto de praia e arrasto motorizado na Paraíba, nordeste brasileiro. Dissertação (Mestrado em Ecologia) - Universidade Federal Rural de Pernambuco.
	521 522	Pauly, D. 2005. Tropical fishes: patterns and propensities. J. Fish. Biol., v. 53, p. 1–17. https://doi.org/10.1111/j.1095-8649.1998.tb01014.x
	523	Pianka, E.R. 1970. On r-and K-selection. Am. Nat., v. 104, p. 592–597.
	524 525 526	Pina, J. V. & Chaves, P. T. 2009. Incidência da pesca de arrasto camaroeiro sobre peixes em atividade reprodutiva: uma avaliação no litoral norte de Santa Catarina, Brasil. <i>Atlântica</i> , v. 31, n. 1, p. 99–106. <u>10.5088/atl. 2009.31.1.99</u>
	527 528 529 530	Rijnsdorp, A. D., Damme, C. J. G. V.& Witthames, P. R. 2010. Implications of fisheries induced changes in stock structure and reproductive potential for stock recovery of a sex dimorphic species, North Sea plaice. <i>ICES J. Mar. Sci.</i> , v. 67, p. 1931–1938. https://doi.org/10.1093/icesjms/fsq049
	531 532	Sadovy, Y. 1996. Reproduction of reef fisheries species. p. 15-50. In: Polunin N. V. C. & C. M. Roberts (Eds.). Reef fisheries. London, Chapman and Hall, 477p.
43 44 45	533 534	Santos, M. C. F. 2010. Ordenamento da pesca de camarões no Nordeste do Brasil. <i>Bol. Téc. Cient. CEPENE</i> , Tamandaré (PE), v. 18, n. 1, p. 91-98.
46 47 48 49	535 536 537	Silva, L.V. S. 2021. Biologia Reprodutiva e ecologia trófica do peixe Larimus breviceps (Perciformes: Sciaenidae) no litoral da Paraíba. Monografia - Universidade Federal Rural de Pernambuco.
50 51 52	538 539	Shlossman, P. A. & Chittenden, J. 1981. Reproduction, movements and population dynamics of the sand seatrout, <i>Cynoscion arenarius. Fish. Bull.</i> , v. 79, n. 4, p. 649–669.
53 54 55 56 57	540 541 542	Silva-Júnior, C. A. B., Araújo, M. E. & Feitosa, C. V. 2013. Sustainability of capture of fish bycatch in the prawn trawling in northeastern Brazil. <i>Neotrop. Ichthyol.</i> , v. 11, p. 133–142. <u>https://doi.org/10.1590/S1679-62252013000100016</u>
58 59 60	543 544	Silva-Júnior, C. A. B., Viana, A. P., Frédou, F. L. & Frédou, T. 2015. Aspects of the reproductive biology and characterization of Scianidae captured as bycatch in the prawn
61 62 63 64 65		20

trawling in the northeastern Brazil. Acta Sci. Biol. Sci., Maringá, v. 37, n. 1, p. 1-8. https://doi.org/10.4025/actascibiolsci.v37i1.24962 Sokal, R. R. & Rohlf, F. J. 1987. Introduction to biostatistics. New York, Freeman Publication, 363p. б Souza, L. M. & Chaves, P. T. 2007. Atividade reprodutiva de peixes (Teleostei) e o defeso da pesca de arrasto no litoral norte de Santa Catarina, Brasil. Rev. Bras. Zool., v. 24, n. 4, p. 1113-1121. 10.1590/S0101-81752007000400031 Stratoudakis, Y., Bernal, M., Ganias, K. & Uriarte, A. 2006. The daily egg production method: recent advances, current applications and future challenges. Fish and Fish., v. 7, p. 35-57. https://doi.org/10.1111/j.1467-2979.2006.00206.x Team, R. C. 2018. R version 3.4. 4: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. Thomas, L., Venu, S., Malakar, B., Nagesh, R. & Basumatary, G. 2017. An assessment on the impact of bottom trawling to the demersal fisheries and benthic diversity of Andaman Islands, India. Reg. Stud. Mar. Sci., v. 10. p. 20–26. 10.1016/j.rsma.2016.12.009 Torrejón-Magallanes, J. 2016. sizeMat: Estimate Size at Sexual Maturity. R package version 0.3.0. [https://CRAN.R-project.org/package=sizeMat]. Vianna, M. & Almeida, T. 2005. Bony fish bycatch in the southern Brazil pink shrimp (Farfantepenaeus brasiliensis and F. paulensis) fishery. Braz. Arch. Biol. Tech., v. 48, p. 611-623. https://doi.org/10.1590/S1516-89132005000500014 Vianna, M., Costa, F. E. S. & Ferreira, C. N. 2004. Length-weight relationship of fish caught as by-catch by shrimp fishery in the southeastern coast of Brazil. Bol. Inst. Pesca, v. 30, n. 1, p. 81-85. West, G. 1990. Methods of assessing ovarian development in fishes: a review. Australian J. Mar. Freshwater Res., v. 41, n. 2, p. 199-222. http://dx.doi.org/10.1071/ MF9900199 Winemiller, K. O. & Layman, C. A. Food web science: Moving on the path from abstraction to prediction, In: Ruiter, P.C., Wolters, V. & Moore, J.C. (eds.), 2005. Dynamic Food Webs: Multispecies Assemblages, Ecosystem Development and Environmental Change. Amsterdam: Elsevier, p. 10-23. Yamaguchi, A., T. Todoroki, & G. Kume. 2006. Reproductive cycle, sexual maturity and diel-reproductive periodicity of white croaker, Pennahia argentata (Sciaenidae), in Sound, Japan. Fish. Res., v. 82, 1-3,95-100. Ariake n. p. https://doi.org/10.1016/j.fishres.2006.08.012 Yamahira, K. 2004. How do multiple environmental cycles in combination determine reproductive timing in marine organisms? A model and test. Funct. Ecol., v. 18, n. 1, p. 4-15. https://doi.org/10.1046/j.0269-8463.2004.00795.x Zar, J.H., 2009. Biostatistical Analysis. Prentice-Hall International. Upper Saddle River, 56 57 Prentice-Hall. 960p. 58 59 60

CRediT authorship contribution statement

Lucas Vinícius Santos: Writing - original draft, Investigation, Microscopic analysis, Formal analysis and Review. Cecília Fernanda Farias Craveiro: Microscopic analysis and Editing. Andrey Paulo Cavalcanti Soares: Formal analysis and Editing. Leandro Nolé Eduardo: Editing. Rafaela Passarone: Editing. Emanuell Felipe Beserra da Silva: Project administration and Editing. Flávia Lucena-Frédou: Project administration, Conceptualization, Supervision and Editing.

Declaration of conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.