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Abstract :   
 
Microplastics (MPs; <5 mm) are a macro issue recognised worldwide as a threat to biodiversity and 
ecosystems. Widely distributed in marine ecosystems, MPs have already been found in the deep-sea 
environment. However, there is little information on ecological mechanisms driving MP uptake by deep-
sea species. For the first time, this study generates data on MP contamination in mesopelagic fishes from 
the Southwestern Tropical Atlantic (SWTA) to help understand the deep-sea contamination patterns. An 
alkaline digestion protocol was applied to extract MPs from the digestive tract of four mesopelagic fish 
species: Argyropelecus sladeni, Sternoptyx diaphana (Sternoptychidae), Diaphus brachycephalus, and 
Hygophum taaningi (Myctophidae). A total of 213 particles were recovered from 170 specimens, and MPs 
were found in 67% of the specimens. Fibres were the most common shape found in all species, whereas 
polyamide, polyethylene, and polyethylene terephthalate were the most frequent polymers. The most 
contaminated species was A. sladeni (93%), and the least contaminated was S. diaphana (45%). 
Interestingly, individuals caught in the lower mesopelagic zone (500–1000 m depth) were less 
contaminated with MPs than those captured in the upper mesopelagic layer (200–500 m). Our results 
highlight significant contamination levels and reveal the influence of mesopelagic fishes on MPs transport 
in the deep waters of the SWTA. 
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Graphical abstract 
 

 
 
 

Highlights 

► Microplastics were found in deep-sea fishes from the Southwestern Tropical Atlantic. ► The most 
frequent polymers identified were PA, PE, and PET. ► Ingestion rates of microplastics varied between 
species and depth. ► Fishes ingested more microplastics in the upper mesopelagic layer. 
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islands. 36 

Introduction 37 

Since its invention, plastic production has risen considerably, reaching up to 348 million 38 

tons (Mt) in 2017 (PlasticsEurope, 2018), with a prognosis to hit 1100 Mt by 2050 (Geyer, 39 

2020). Vast quantities of plastic materials are mismanaged or illegally discarded in marine 40 

ecosystems (Koelmans et al., 2017; Ostle et al., 2019). Land-based sources contribute to about 41 

80% of plastics entering the oceans (Andrady, 2011) via riverine discharges (Meijer et al., 42 

2021). In marine ecosystems, plastic debris is weathered by natural processes (e.g., 43 

hydrodynamics, solar radiation and interaction with biota (Jambeck et al., 2015; Thompson et 44 

al., 2004) and eventually fragmented into microplastics (MPs, < 5 mm; Arthur et al., 2009).  45 

MPs are widely distributed all over the marine environment, from urban coastal areas 46 

(Lins-Silva et al., 2021) to remote regions such as the Arctic and Antarctic polar seas (Lusher 47 

et al., 2015; Waller et al., 2017). MPs accumulate in the ocean gyres (Jiang et al., 2020) due to 48 

the interaction of winds and rotatory ocean currents. In the Atlantic Ocean, remote islands are 49 

known to be contaminated with MPs, as is the case of Falklands and Ascension Islands (Green 50 

et al., 2018); the Canary Islands (Álvarez-Hernández et al., 2019); Abrolhos Archipelago, 51 

Fernando de Noronha Archipelago, and Trindade Island (Ivar do Sul et al., 2013, 2014). In the 52 

short term, these islands might retain MPs in the nearshore due to the actions of winds, waves, 53 

vortices, and eddies surrounding the islands (Lima et al., 2016). Nevertheless, not only the sea 54 

surface is impacted by MPs, but also the deep-sea, which has been pointed out as a major MPs 55 

reservoir (Woodall et al., 2014). Indeed, MPs have already been observed in the subsurface 56 

waters, sediments, and fauna of the deep sea (Lusher et al., 2016; Courtene-Jones et al., 2017; 57 

Choy et al., 2019; Jamieson et al., 2019; Kane et al., 2020). However, processes involved in the 58 

dispersion and fate of MPs into deeper ocean layers are still poorly understood.  59 

MPs can be transported from the surface to deep waters through interaction with marine 60 

communities. For example, giant larvaceans can pack MPs filtered in the surface into faecal 61 

pellets that quickly sink to the seafloor (Katija et al., 2017; Choy et al., 2019). MPs 62 

incorporation into marine snow is hypothesised to be the main sinking mechanism for buoyant 63 

polymers (Kvale et al., 2020). Additionally, many deep-sea species undertake epipelagic 64 
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vertical migrations to feed (Eduardo et al., 2020a) and may act as biological plastic transporter 65 

whenever contaminated with MPs (Ferreira et al., 2022). Although the role of mesopelagic 66 

fishes in the vertical movement of MPs in the water column has been proposed, it is still not 67 

well understood (Lusher et al., 2016; Savoca et al., 2021). Thus, widespread MPs pose several 68 

threats to marine biota (Galloway et al., 2017), as they can easily be mistaken with prey and 69 

ingested by marine species (Boerger et al., 2010). Furthermore, they might be transferred from 70 

prey to predator through trophic interactions (Ferreira et al., 2016, 2019; Nelms et al., 2018). 71 

Once ingested, MPs can cause digestive damage, decrease predatory efficiency, and induce 72 

toxic effects (Teuten et al., 2007; Moore, 2008; de Sá et al., 2015; Barboza et al., 2018). 73 

Moreover, MPs can adsorb and concentrate pollutants available in the ocean (e.g., persistent 74 

organic pollutants and heavy metals; Oehlmann et al., 2009; Ashton et al., 2010; Rochman et 75 

al., 2013c; Jamieson et al., 2017) or release their additive burden (Paluselli et al., 2019; Fauvelle 76 

et al., 2021), and may be bioaccumulated and biomagnified in the food web (Teuten et al., 2009; 77 

Batel et al., 2016).  78 

The mesopelagic layer (200–1000 m) hosts remarkable marine biodiversity that plays a 79 

pivotal role in sequestering carbon, recycling nutrients, and acting as a key trophic link between 80 

primary consumers and higher trophic levels (e.g., larger fishes, mammals, and seabirds; 81 

Drazen and Sutton, 2017; Eduardo et al., 2020a). Additionally, many mesopelagic species 82 

migrate vertically to the upper ocean layers to feed at night and return to deep waters during 83 

daylight, contributing to the connection between shallow and deep-sea ecosystems (Davison et 84 

al., 2013; St. John et al., 2016; Eduardo et al., 2020b). 85 

 MP ingestion by mesopelagic fishes has been already reported all over the world, as 86 

observed in the North Pacific Central Gyre (Boerger et al., 2010), North Pacific Subtropical 87 

Gyre (Davison and Asch, 2011), North Atlantic (Lusher et al., 2016; Wieczorek et al., 2018), 88 

Mediterranean Sea (Romeo et al., 2016), South China Sea (Zhu et al., 2019), and in the South 89 

Atlantic, around the Tristan da Cunha and St. Helena islands (McGoran et al., 2021). However, 90 

this group is still poorly investigated in deep waters due to sampling difficulties (e.g., high 91 

sampling cost and operational complexity), especially in the least developed countries (Howell 92 

et al., 2020). To date, no study has investigated MP contamination in fishes inhabiting the 93 

mesopelagic zone of the Southwestern Tropical Atlantic (SWTA). Located in the SWTA, the 94 

Fernando de Noronha Archipelago (FNA) is essential for the conservation of the marine 95 
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biodiversity in the tropical oceanic region, as it serves as a shelter, reproduction and nursery 96 

area for several species, including the mesopelagic fishes (Lima et al., 2016; Eduardo et al., 97 

2020a; Martins et al., 2021).  98 

Hatchetfishes (Sternoptychidae) and lanternfishes (Myctophidae) are among the most 99 

abundant and widespread mesopelagic fish groups in the world (Gjøsaeter and Kawaguchi, 100 

1980; Eduardo et al., 2020a, 2021). These groups present an essential linkage between the 101 

epipelagic producers and deep-sea predators since they represent a key energy source in the 102 

mesopelagic zone (Eduardo et al., 2020b, 2020a, 2021). 103 

Within the SWTA, four species in the mesopelagic compartment are outstanding in 104 

terms of abundance and/or vertical migration: the sternoptychids Argyropelecus sladeni Regan, 105 

1908 and Sternoptyx diaphana Hermann, 1781; and the myctophids Diaphus brachycephalus 106 

(Tåning, 1928) and Hygophum taaningi Becker, 1965. These species are zooplanktivorous, 107 

feeding primarily on fish larvae, amphipods, gelatinous, and euphausiids (Drazen and Sutton, 108 

2017; Eduardo et al., 2020a; Eduardo et al., 2021). Furthermore, they all perform diel vertical 109 

migration, ascending to the epipelagic zone at night mainly to forage and avoid predators 110 

(Eduardo et al., 2020a; Eduardo et al., 2021). However, these species present strong niche 111 

segregation, belonging to functional groups with different diet preferences, isotopic 112 

composition, and vertical distribution (Eduardo et al., 2020a; Eduardo et al., 2021). These 113 

ecological differences, therefore, might also influence MP uptake. 114 

In this study, we identify the patterns of MP contamination in mesopelagic fishes from 115 

the SWTA and their relationship with different ecological habits. Specifically, this study aims 116 

(i) to describe the occurrence of MP contamination in four mesopelagic species from the 117 

SWTA, (ii) to identify the main shapes and polymer nature of the ingested particles, and (iii) to 118 

investigate whether there are differences in MP ingestion rates according to depth and period 119 

(day or night).  120 

Materials and Methods 121 

Study area 122 

The study area is located along the Fernando de Noronha Ridge, SWTA, with 123 

oligotrophic and warm waters influenced by the South Equatorial Current (SEC) and South 124 
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Equatorial Undercurrent (SEUC) (Assunção et al., 2020), specifically the Fernando de Noronha 125 

Archipelago (FNA), Rocas Atoll (RA), and adjacent seamounts (Figure 1). These areas are 126 

important for marine biodiversity and are recognised as an EBSA “Ecologically and 127 

Biologically Significant Marine Area” (CBD, 2014). Furthermore, FNA is inserted in a Marine 128 

Protected Area (MPA), with a National Marine Park (PARNAMAR) and an Environmental 129 

Protection Area (EPA), which is classified as a UNESCO natural heritage. The RA is also 130 

inserted in an MPA, and it is situated at the top of a submarine mountain chain, with its base at 131 

4000 m depth, located 148 km west of the Fernando de Noronha Archipelago (Soares et al., 132 

2010). 133 

Sample collection and laboratory procedures 134 

Mesopelagic fishes were collected using a micronekton trawl (body mesh: 40 mm, cod-135 

end mesh: 10 mm) during the day and at night, from 90 to 800 m depth for 30 min at 2–3 kt 136 

(Eduardo et al., 2020b). Samples were collected along the Fernando de Noronha Ridge during 137 

the scientific survey ABRACOS 2 (Acoustics along the BRAzilian COaSt), carried out from 138 

9th April to 6th May 2017, onboard the French RV Antea (Bertrand, 2017). After each sampling, 139 

the specimens were labelled, frozen, and subsequently identified. 140 

Figure 1. Fernando de Noronha Ridge, off northeastern Brazil (STWA). Sampling stations for each species are 

indicated by coloured circles. 
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Four mesopelagic species were selected for this study: Argyropelecus sladeni (n = 15); 141 

Sternoptyx diaphana (n = 33); Diaphus brachycephalus (n = 69); and Hygophum taaningi (n = 142 

53). Specimens were measured (nearest 0.1 cm of total length and standard length), weighed 143 

(nearest 0.01 g of total weight), and dissected (Table I). The digestive tracts (stomach and 144 

intestine) were carefully removed, weighed, and frozen again for the digestion analysis. 145 

Contamination control 146 

Before the extraction procedures, several steps were carefully carried out to ensure 147 

quality assurance/quality control (QA/QC) and avoid possible airborne and cross-148 

contamination, following the protocol described by Justino et al. (2021). This QA/QC includes 149 

using 100% cotton lab coats, face masks, and disposable gloves in a cleaned and reserved room, 150 

with a limited flow of people during the whole process. Additionally, all solutions were filtered 151 

using a vacuum pump system (equipped with laboratory glassware) through a 47 mm GF/F 0.7 152 

µm pore size glass fibre filter (Whatman). Extraction tools were cleaned with ethanol 70%, 153 

rinsed with filtered distilled water and checked for contamination.  154 

Before starting the chemical digestion, blank procedures were done for each set of 10 155 

samples. For the blanks, a beaker was filled with 50 mL of NaOH (1 mol L-1) solution, covered 156 

with a glass lid, and then treated with the same protocol applied to the samples (see next 157 

section). A total of 4 particles were observed in the blank procedures, of which two were 158 

filaments (one red and one white), and two resembled paint chips (blue). The red filament was 159 

further identified as polylactic acid (PLA), and the blue particle resembled a paint chip as 160 

styrene-butadiene rubber (SBR). Particles identified in the samples with any similarity to those 161 

observed in the blanks were excluded from further analysis. 162 

Microplastic extraction protocol 163 

An alkaline digestion protocol using sodium hydroxide (NaOH) was used for extracting 164 

MPs from the digestive tract of fish (Justino et al., 2021). Digestive tract samples were rinsed 165 

with filtered distilled water to remove any particles adhering to the external tissue before being 166 

placed in a beaker and submerged in NaOH (1 mol L-1; PA 97%) solution (the proportion used 167 

was 1:100 (w/v), i.e. 1 g of digestive tract weight for 100 mL NaOH solution), covered by a 168 

glass lid and oven-dried at 60 °C for 24 h. After that, samples were filtered using a vacuum 169 

pump system through a 47 mm GF/F. After filtration, samples were carefully set in a Petri dish 170 
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and covered. These filters were oven-dried again at 60 °C for 24 h. Then, filters were visually 171 

examined for MPs identification using a stereomicroscope (Zeiss Stemi 508, with 40–50 times 172 

magnification with a size detection limit of 0.07–5 mm). The particles suspected to be MPs 173 

were photographed (Axiocam 105 Color), counted, and measured in length (mm) (Zeiss Zen 174 

3.2). MPs were categorised according to their shape (Figure 2; Justino et al., 2021) as fibres 175 

(filamentous shape), fragments (irregular shape), films (flat shape), foams (soft with an 176 

irregular shape), or pellets (spherical shape). 177 

Laser Direct Infrared (LDIR) Analysis of MPs polymers 178 

A subset (10% of the total particles extracted) of samples was selected to identify the 179 

main types of MPs polymers using the LDIR analyser Agilent 8700 Chemical Imaging System 180 

using the Microplastic Starter 1.0 library. The LDIR analyser scans the particles (size range 20–181 

5000 µm) in an automatic mode and obtains a spectral curve using a wavelength range of 1800–182 

975 cm-1. The information is collected with the Clarity image software (© Agilent version 1.3.9) 183 

and compared with the polymer spectrum library (~400 references spectra). A particle was 184 

considered as identified if the accordance of its spectrum with the reference spectrum was ≥ 185 

70% (Ourgaud et al., In prep). 186 

 187 

Figure 2. Shapes of microplastics identified in the mesopelagic fishes: a) fibre; b) fragment; c) foam; d) pellet; e) film. 188 

Data analysis 189 
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Kruskal-Wallis test was used to verify whether ingested MPs presented significant 190 

differences among species (A. sladeni, S. diaphana, D. brachycephalus, and H. taaningi) 191 

considering the number and size of MPs. We also used Kruskal-Wallis to test whether the total 192 

number of MPs ingested varied according to depth. When the Kruskal-Wallis test presented 193 

significant differences, post hoc pairwise comparisons, Dunn’s test was used to investigate the 194 

sources of variance (Dunn, 1964). Mann-Whitney tests were applied to determine differences 195 

in the MPs ingested according to the period (day or night). A Spearman’s correlation test was 196 

used to evaluate the relationship between MPs ingestion and biological parameters of fishes 197 

(standard length and total weight). All statistical analyses were performed with the software R 198 

version 3.6.3 (R Core Team, 2020) and were conducted considering a level of significance of 199 

5%. 200 

Results 201 

A total of 213 microplastic (MPs) particles were recovered from the 170 analysed 202 

specimens (frequency of occurrence 67%). MPs were presented in 93% of Argyropelecus 203 

sladeni, 75% of Diaphus brachycephalus, 62% of Hygophum taaningi, and 45% of Sternoptyx 204 

diaphana specimens (Table I). According to the number of MPs, ingestion significantly differed 205 

between species (chi-squared = 20.437, df = 3, p < 0.05), with A. sladeni being the most 206 

contaminated (1.66 ± 1.23 MPs ind.-1), followed by D. brachycephalus (1.63 ± 1.41 MPs ind.-207 

1), H. taaningi (1.07 ± 1.20 MPs ind.-1), and S. diaphana (0.54 ± 0.71 MPs ind.-1) (Table I). 208 

Dunn’s post hoc test showed that S. diaphana differed from A. sladeni and D. brachycephalus. 209 

Additionally, there was no relationship between the MPs ingested by fish species and the 210 

biological parameters (standard length and the total weight) (Spearman’s rank correlation, p > 211 

0.05). 212 

In general, the mean size of ingested MPs also varied according to the species (chi-213 

squared = 12.247, df = 3, p < 0.05). Argyropelecus sladeni (0.74 ± 0.53 mm ind.-1) showed the 214 

longest size of MPs ingested, followed by H. taaningi (0.49 ± 0.80 mm ind.-1), D. 215 

brachycephalus (0.44 ± 0.53 mm ind.-1), and S. diaphana (0.36 ± 0.82 mm ind.-1), with 216 

significant differences observed between A. sladeni and S. diaphana (Table I). Overall, fish MP 217 

contamination levels were not significantly different between day or night sampling, regardless 218 

of species (chi-squared = 1.4024, df = 1, p > 0.05), and by species individually (p > 0.05). 219 

However, ingestion differed among the sampling depths (chi-squared = 18.80, df = 6, p < 0.05). 220 
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Fishes were generally most contaminated at 230 m (1.73 ± 1.25 MPs ind.-1), followed by 430 221 

m (1.66 ± 0.57 MPs ind.-1), and 610 m (1.62 ± 1.44 MPs ind.-1), and less contaminated at 800 222 

m (0.57 ± 0.75 MPs ind.-1) (Figure 3). Statistically significant differences were observed 223 

between depths of 800 and 230 m and between depths of 800 and 610 m (p < 0.05). Regarding 224 

the shape of MPs ingested by fishes, most were fibres (64%), followed by fragments (19%), 225 

pellets (6%), films and foams (4%). However, the shape of ingested MPs did not vary between 226 

the species (chi-squared = 3.1683, df = 4, p > 0.05). Fibres were mainly observed in S. diaphana 227 

(83%), A. sladeni (76%), H. taaningi (63%), and D. brachycephalus (58%), followed by 228 

fragments in D. brachycephalus (23%), H. taaningi (21%), A. sladeni (12%) and S. diaphana 229 

(11%). Pellets were found in H. taaningi (12%), S. diaphana and D. brachycephalus (5%), and 230 

films were found in A. sladeni (12%), D. brachycephalus (5%), H. taaningi (1%). Foams were 231 

only found in D. brachycephalus (7%) and H. taaningi (1%) (Figure 4Error! Reference source 232 

not found.Error! Reference source not found.).  233 

Overall, plastic polymers were identified in 80% of particles from the subset of samples. 234 

Natural particles identified as cellulose were observed in 15% of all particles, and 5% were 235 

unidentified. The most common polymers found were polyamide (PA) at 25% abundance, 236 

followed by polyethylene (PE) and polyethylene terephthalate (PET), with a similar abundance 237 

at 19%. The other polymers contributed to a similar percentage of 6-7% and included the 238 

ethylene-vinyl acetate (EVA), polyvinylchloride (PVC), styrene-butadiene rubber (SBR), 239 

polylactic acid (PLA), alkyd varnish and chlorinated polyisoprene (Figure 5). 240 

 241 

Table I. Biological aspects and sampling data of the species analysed. Abbreviations: SL, standard length; TW, total weight; 242 

FO%, frequency of occurrence; SD, standard deviation. 243 

Family/Species  Sampling  Biometry  Microplastics occurrence 

 n Depth (m)  SL (cm) 

range 

TW (g) 

range 
 FO% MPs          

mean ± SD 

Length (mm) 

mean ± SD 

Sternoptychidae          

Argyropelecus sladeni 15 430; 610; 615; 800  3.00–5.85 0.70–3.18  93 1.66 ± 1.23 0.74 ± 0.53 

Sternoptyx diaphana 33 615; 800  

 

1.92–3.06 0.18–0.97  

 

45 0.54 ± 0.71 0.36 ± 0.82 

Myctophidae          

Diaphus brachycephalus 69 230; 610; 700  

 

2.51–4.98 0.34–2.15  

 

75 1.63 ± 1.41 0.40 ± 0.55 

Hygophum taaningi 53 90  

 

4.13–5.99 1.14–2.68  

 

62 1.07 ± 1.20 0.49 ± 0.80 

 244 

 245 
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 246 

Figure 3. Mean number (± standard deviation) of MPs ingested per depth strata. 247 

 248 

Figure 4. Relative abundances (%) of MP shapes ingested per fish species. 249 
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 250 

Figure 5. Polymers identified using the LDIR analyser. a) Particle composition in the samples analysed, and b) Percentage of 251 
microplastic polymers found in the samples. 252 

 253 

Discussion 254 

This study confirmed that the mesopelagic fishes from the SWTA are contaminated with 255 

MPs. The four species analysed here exhibited a high MP detection frequency in their digestive 256 

tract (67%). These findings bring new information into the contamination of the deep sea and 257 

shed light on the potential role of marine organisms in MPs sinking. 258 

  Worldwide, few studies have documented plastic ingestion by mesopelagic fishes. For 259 

example, in the North Pacific Gyre, Davison and Asch (2011) reported an MP detection 260 

frequency of 9.2% of the fishes sampled, whereas Boerger et al. (2010) found 35% in the same 261 

area. In the Mediterranean Sea, Romeo et al. (2016) found MPs in 2.7% of sampled 262 

lanternfishes, whereas Zhu et al. (2019) reported the presence of MPs in more than 90% of the 263 

deep-sea fishes sampled in the South China Sea. In the Islands of Tristan da Cunha and St. 264 

Helena, McGoran et al. (2021) found 73.3% of species contaminated with MPs; and in the 265 
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North Atlantic, Lusher et al. (2016) found 11% of individuals contaminated, in contrast with 266 

Wieczorek et al. (2018) which detected MPs in 73% of the mesopelagic fish specimens from 267 

the same area. The substantial divergence in the frequency of occurrence of MPs recovered in 268 

mesopelagic fishes may be due to several factors such as ecological behaviour, site-specific 269 

oceanographic differences, laboratory procedures, and sampling methods. However, 270 

differences in the extraction methods, an issue previously addressed by Wieczorek et al. (2018), 271 

might also influence the contamination rate. A lack of standardisation of the protocols for MPs 272 

extraction in organisms is the main issue for comparing studies on plastic contamination. The 273 

scientific community emphasises the importance of employing reliable and replicable research 274 

methods (Hermsen et al., 2018; Markic et al., 2020; Müller, 2021), not only concerning the 275 

choice of a suitable extraction method for MPs (e.g., digestion and QA/QC protocols), but also 276 

an adequate sample size (> 10; Justino et al., 2021) and size detection threshold of the particles, 277 

which is determinant in the number of plastics recovered (Savoca et al., 2021). Such decisions 278 

are important to avoid the bias of over/underestimation due to cross-contamination and loss of 279 

samples and were carefully considered in the present study. 280 

The wide availability of MPs is expected to threaten biodiversity throughout the marine 281 

environment. Plastic debris is found all along the coastal zone, continental slope, around 282 

oceanic islands, seamounts, and even in the deepest parts of the ocean (Cai et al., 2018; 283 

Monteiro et al., 2018; Lins-Silva et al., 2021; Pinheiro et al., 2021). Differences in the 284 

ecological habits, such as feeding strategy and migration, might influence the MP uptake by 285 

marine species. A clear distinction was observed in our study between the number of MPs 286 

ingested by species. For example, A. sladeni exhibited the highest number of particles (mean 287 

of 1.66 ± 1.23 MPs ind.-1; FO=93%), while S. diaphana exhibited the lowest number (0.54 ± 288 

0.71 MPs ind.-1; FO=45%). A distinct pattern from that recorded in previous studies on 289 

mesopelagic fishes, where two of the most up-to-date references did not observe any differences 290 

between species and depths (Lusher et al., 2016; Wieczorek et al., 2018). 291 

The difference observed in MPs ingestion might be explained by the species vertical 292 

migration behaviour. For example, in our study area, A. sladeni is mostly distributed at 400–293 

500 m during the daytime, mainly feeding on fish larvae and ostracods (Eduardo et al., 2020a). 294 

On the other hand, S. diaphana is found chiefly in deeper waters (700–900 m), primarily feeding 295 

on amphipods (Eduardo et al., 2020a). Likewise, in the daytime, D. brachycephalus is mainly 296 
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distributed in the upper mesopelagic layer at 200–500 m, while H. taaningi was predominantly 297 

found in deeper waters (700–1000 m) (Eduardo et al., 2020a, 2021). However, the H. taaningi 298 

analysed in this study were only caught in the epipelagic zone, probably captured during 299 

migration towards superficial areas. Even though all species analysed in this study performed 300 

diel vertical migration (DVM), we did not observe any significant differences in the MP 301 

concentration in specimens sampled day or night. However, differences in MP number were 302 

observed depending on the depth strata. 303 

Indeed, the most contaminated species (A. sladeni and D. brachycephalus) were mainly 304 

caught in the upper mesopelagic layer (230–430 m), and S. diaphana, which ingested a lower 305 

number of MPs particles, was captured in the lower mesopelagic layer (800 m). Therefore, we 306 

suggest that when migrating to the upper layers, these species interact with MPs and, when 307 

returning, they probably act as vectors of MPs to the deeper ocean layers (Figure 6). For 308 

instance, in the study area, myctophids constitute 85% of the viperfish diet, the most abundant 309 

mesopelagic micronektivore fish species (Eduardo et al., 2020b). To our best knowledge, there 310 

is no information on MP in sediment and bottom organisms for the SWTA region, making the 311 

real impact of MP and their transportation into the deep sea speculative. However, coupling the 312 

data gathered in the present study with the widely acknowledged fact that mesopelagic species 313 

transport carbon to deep waters (Davison et al., 2013; Drazen and Sutton, 2017; Eduardo et al., 314 

2020a), it seems that these species may also be transporting MPs to the deep sea.  315 

Furthermore, our data support previous hypotheses that the deeper layers are less 316 

contaminated (Kvale et al., 2020; Zobkov et al., 2019). In Monterey Bay, California, Choy et 317 

al. (2019) also observed a similar pattern: a peak concentration of MPs in the mesopelagic zone 318 

at a range of 200–600 m depth. Additionally, the size of MPs ingested was also influenced by 319 

the depth in which species were caught (Ferreira et al., 2022). Argyropelecus sladeni ingested 320 

the longest MPs, whereas S. diaphana ingested significantly smaller MPs, coinciding with 321 

surveys investigating MP size in the water column (Dai et al., 2018; Zobkov et al., 2019). The 322 

ingestion of smaller size plastics was also observed in deep-water species in the North-East 323 

Atlantic (Pereira et al., 2020). The sinking of MPs is associated with biological activities such 324 

as biofouling, marine snow, faecal pellets, and plastic pump, contributing to the dispersion of 325 

smaller particles in the deeper layers (Van Sebille et al., 2020). We corroborate previous 326 
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findings by linking MP size to depth since we found the smallest particles in species inhabiting 327 

the deepest layers. 328 

In our study, fibres were the common MP shape for all species (64%), and polyamide 329 

(PA), polyethylene (PE), and polyethylene terephthalate (PET) were the most common 330 

polymers identified, which are mainly used in the fishery and the textile industry (Lima et al., 331 

2021). Previous research has already found lower density polymers as polyethylene in 332 

mesopelagic fishes (Wieczorek et al., 2018); these buoyant microplastics can be ingested by 333 

fish when they migrate towards epipelagic areas, thereby transporting these particles to deeper 334 

areas. Sources of fibres are related to the release of untreated water from the washing machine 335 

into aquatic environments (De Falco et al., 2019) and extensive fishery activities (Chen et al., 336 

2018; Xue et al., 2020). Despite FNA including MPAs, this archipelago has a high influx of 337 

tourists and extensive subsistence and recreational fishing activities (Lopes et al., 2017). Nets 338 

and fishing lines are known to degrade and fragment in the environment by physical factors, 339 

such as solar radiation (Andrady, 2011). Indeed, microfibres are the most common type 340 

Figure 6. Schematic representation of the microplastic ingestion by mesopelagic fishes in the Southwestern Tropical Atlantic. 

White dotted arrows indicate the ingestion by trophic link, and yellow dotted circles the probable microplastic accumulation zone. Jo
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observed in marine ecosystems (Kanhai et al., 2018; Lima et al., 2021) and recorded in the FNA 341 

and nearby islands (Ivar do Sul et al., 2014; Lima et al., 2016). Additionally, the Equatorial 342 

Atlantic is not perceived as an accumulation zone of fibres in surface water masses, decreasing 343 

the sinking of this type of MPs to deeper layers where fishes were captured (Lima et al., 2021). 344 

However, in the short-term, these islands might retain MPs in the nearshore due to the actions 345 

of winds, waves, vortices, and eddies surrounding the islands (Lima et al., 2016; Gove et al., 346 

2019). The most contaminated species were captured around the FNA, suggesting that 347 

proximity to the MPs sources also influences ingestion rates.  348 

Fibres are reported as the most ingested shape by mesopelagic fishes (Wieczorek et al., 349 

2018; McGoran et al., 2021) and were also found in deep-sea amphipods in the Mariana trench 350 

(Jamieson et al., 2019); these tiny zooplankton act as energy sources in the oceanic trophic web. 351 

All fish species analysed here are zooplanktivorous, and amphipods are one of their main prey 352 

(Eduardo et al., 2020a, 2021). In the Mediterranean Sea, Romeo et al. (2016) observed 353 

similarities in the size of MPs and the size of the copepods, prey of lanternfishes, suggesting 354 

active and selective ingestion of MPs. We observed a similar pattern, as the dimensions of the 355 

MPs found in the SWTA were similar to those of common prey of the species (< 2 mm), e.g., 356 

amphipods and fish larvae in this region (Figueiredo et al., 2020). Through experiments, Li et 357 

al. (2021) demonstrated that fish could capture MPs passively by breathing but that some of 358 

them are also ingested inadvertently due to the similarity between their prey or the tiny sizes, 359 

which are hard to distinguish. Thus, MPs in mesopelagic fishes analysed here might be 360 

accidentally consumed when confused as prey or by trophic transfer through ingestion of 361 

contaminated prey. However, due to methodological limitations in our study, we cannot state 362 

that these species interacted with MP by ingestion through food or swallowed by accident. 363 

Regardless of the uptake routes (ingestion or breathing) of MPs in the mesopelagic 364 

fishes, the contamination rates (MP extracted from the digestive tract) observed in this study 365 

can be used as an indicator for the levels of MP available in the environment. The less 366 

contaminated species, S. diaphana captured in the deepest region, is evidence of the lower 367 

availability of MP particles in these areas. Additionally, this fact is corroborated by the smaller 368 

dimensions of MP extracted from S. diaphana, as expected for greater depths. 369 

MPs’ wide availability in the deep ocean layers may be harmful to the marine 370 

community, which is poorly investigated, but already interacts with these anthropogenic 371 
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particles. In addition to organic additives (phthalates, OPEs, bisphenols) contained in plastics 372 

(Paluselli et al., 2019; Fauvelle et al., 2021), the surface of MPs can adsorb organic pollutants 373 

such as polychlorinated biphenyls (PCBs) and polycyclic aromatic hydrocarbons (PAHs; 374 

Rochman et al., 2013a), the latter process being enhanced by a longer transit time of MPs in 375 

meso- and bathypelagic waters (Rochman et al., 2013b; Jamieson et al., 2017). All of these 376 

compounds may very likely migrate into their surrounding environment, such as the digestive 377 

tract of biological species. Besides, MPs ingestion can cause adverse effects in fishes, such as 378 

physical injuries and blockage of the digestive tract, or even developmental, reproductive and 379 

locomotor toxicity (Teuten et al., 2009; Bhagat et al., 2020). Additionally, smaller MPs can 380 

bioaccumulate in tissues (Lee et al., 2019; Sökmen et al., 2020).  381 

Conclusions 382 

This study was the first to assess microplastic (MP) contamination in mesopelagic fishes 383 

in the Southwestern Tropical Atlantic (SWTA). The four species analysed here were 384 

contaminated with MPs in their digestive tract. The primary polymer types identified were 385 

polyamide (PA), polyethylene (PE), and polyethylene terephthalate (PET). Ingestion rates of 386 

MPs varied between species and depth. However, no difference between day or night sampling 387 

was observed. Thus, even though all species interact at some level with MPs, individuals caught 388 

at the lower mesopelagic zone seem to be less exposed to MPs than those captured in the upper 389 

mesopelagic layer.  390 

Mesopelagic fishes may act as a vector of MP to the deep sea as they perform vertical 391 

migrations, presenting an important link between epipelagic and lower mesopelagic layers 392 

(Lusher et al., 2016; Savoca et al., 2021). They also play an essential role in the energy transfer 393 

in the ecosystem, transferring the energy of primary and secondary consumers to the top oceanic 394 

predators, which are valuable for the fishery stocks. So, the presence of MPs in the SWTA 395 

mesopelagic ecosystem will likely pose several risks to marine ecosystems if high 396 

contamination is confirmed in the near future. 397 

Further research on MP contamination is needed, especially concerning the deep-sea 398 

community, whose crucial role in the marine ecosystem functioning has been proven. 399 

Additionally, including the effects of oceanographic parameters (e.g., oceanic currents, 400 

microturbulence, salinity) and ecological interactions (e.g., prey-predator interaction) into the 401 
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evaluation of MPs uptake is also needed since there are many factors involved in the transport, 402 

sinking, and uptake of MPs in the deep ocean. Finally, the pressure of anthropogenic impacts 403 

is rapidly increasing in the SWTA, so there is an urgent need to comprehend how 404 

contaminations occur and affect the ecosystem to establish mitigation measures. 405 
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Research Highlights 1 

Microplastics were found in deep-sea fishes from the Southwestern Tropical 2 

Atlantic. 3 

The most frequent polymers identified were PA, PE, and PET. 4 

Ingestion rates of microplastics varied between species and depth. 5 

Fishes ingested more microplastics in the upper mesopelagic layer. 6 
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