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Abstract
1. Quantifying the intensity of leaf herbivory pressure is crucial for understanding 

the interaction between plants and herbivores in both applied and basic science. 
Visual estimates and digital analysis have been commonly used to estimate leaf 
herbivore damage but are time- consuming which limits the amount of data that 
can be collected and prevent answering big picture questions that require large- 
scale sampling of herbivory pressure. Recent developments in deep learning have 
provided a potential tool for automatic collection of ecological data from various 
sources. However, most applications have focused on identification and count-
ing, and there is a lack of deep learning tools for quantitative estimation of leaf 
herbivore damage.

2. Here, we trained generative adversarial networks (GANs) to predict the intact 
status of damaged leaves and applied image processing technique to estimate 
the area and percentage of leaf damage. We first described procedures for col-
lecting leaf images, training GAN models, predicting intact leaves and calculat-
ing leaf area, with a Python package provided to enable hands- on application 
of these procedures. Then, we collected a large leaf data set to train a universal 
deep learning model and developed an online app HerbiEstim to allow direct use 
of pretrained models to estimate herbivory damage of leaves. We tested these 
methods using both simulated and real leaf damage data.

3. The procedures provided in our study greatly improved the efficiency of leaf 
herbivore damage estimation. Our test demonstrated that the reconstruction of 
damaged leaf image resembled the ground- truth image with a similarity of 98.8%. 
The estimation of leaf herbivore damage exhibited a high accuracy with an aver-
aged root mean square error of 1.6% and had a general applicability to different 
plant taxa and leaf shapes.

4. Overall, our work demonstrated the feasibility of applying deep learning tech-
niques to quantify leaf herbivory intensity. The use of GANs allows automatic 
estimation of leaf damage, representing a major advantage of the method. The 
Python package and the online app with pre- trained models will facilitate the use 
of our method for the analysis of large data sets of plant–herbivore interactions.
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1  |  INTRODUC TION

Herbivory of plants by insects is a key biotic interaction that has 
been intensively investigated in both basic and applied science. 
Numerous theories and applications have been established on the 
importance of insect herbivores in plant ecology, evolution, crop 
production and ecosystem functioning, such as the green world 
hypothesis in explaining plant biomass (Hairston et al., 1960), 
the Janzen- Connell hypothesis in maintaining plant diversity 
(Janzen, 1970), the enemy release hypothesis in species invasion 
(Keane & Crawley, 2002), evolutionary arms races in plant trait 
evolution (Brodie, 1999) and agricultural practices of pest mon-
itoring and control (Myers & Sarfraz, 2015). Testing hypothe-
ses related to herbivory and applying knowledge in agricultural 
practices relies on efficient and accurate estimation of herbivory, 
defined here as the degree to which herbivores consume plant 
leaves. However, current methods for quantifying leaf herbivore 
damage are largely manual, which is time- consuming and poten-
tially biased (Getman- Pickering et al., 2020; Machado et al., 2016; 
Xirocostas et al., 2022). Automatic estimation of leaf herbivore 
damage would be extremely useful in this regard but remains 
challenging.

Early studies often estimated leaf herbivore damage by eye or 
using a transparent grid with leaf damage classified into predefined 
categories, for example, slightly (0%–25%), moderately (25%–50%) 
and heavily damaged (>50%) (Coley, 1983; Kogan et al., 1977). 
However, the data sets generated from visual estimates of herbivory 
are low resolution and potentially biased with low reproducibility, 
despite the development of tools that train researchers to reduce 
the bias of visual estimation (Xirocostas et al., 2022). Recent stud-
ies have taken advantage of digital image analysis to quantify the 
percentage of leaf damage, in which the leaf boundary was retraced 
(in the case that damages occur on leaf edges) and holes were re-
filled to estimate the area of damaged leaf tissue (Neves et al., 2014; 
Sam et al., 2020). This method is expected to provide an accurate 
estimate of leaf damage, but is limited by the operating time asso-
ciating with image scanning and analysing, for example, 10–20 s for 
scanning and 40–70 s for image processing per leaf using ImageJ 
software (O'Neal et al., 2002). Although mobile software such as 
LeafByte and Bioleaf have been developed to improve the efficiency 
of image collection and processing, the method still relies on manual 
operation which has limited the ability to collect large data sets of 
herbivore intensity for tens of thousands of leaves or more (Getman- 
Pickering et al., 2020; Machado et al., 2016).

Recent advances in deep learning techniques have facilitated 
the collection of ecological data by automatically extracting infor-
mation from various sources such as images and audio recordings 
(Christin et al., 2019). For example, deep learning using convolutional 

neural networks (CNNs) has been applied to identify and count plant 
and animal species from photos, which generated large data sets 
in a rapid and automatic way (Ferreira et al., 2020; Norouzzadeh 
et al., 2018; Tabak et al., 2019). Although there have been attempts 
to apply CNNs in the estimation of leaf damage (da Silva et al., 2019), 
the precision of these approaches was low because many features of 
CNNs were designed for classification rather than quantitative esti-
mation. An alternative technique is generative adversarial networks 
(GANs), which has recently been applied to reconstruct damaged 
plant leaves (Hussein et al., 2021; Silva et al., 2022; Villacis- Llobet 
et al., 2020). Different from CNNs whose application mainly focuses 
on image classification, objective detection and segmentation tasks, 
GANs handle various computer vision tasks such as image to image 
translation, image synthesis and semantic image editing (Creswell 
et al., 2018). Specifically, image to image translation allows training 
models based on paired images (as input and output, respectively), 
which can be used to predict images that resemble the source image 
(Isola et al., 2017). GANs provided a potential solution for quantify-
ing leaf herbivore damage by comparing leaf area of damaged versus 
reconstructed intact leaves.

Training GAN models requires a huge amount of training data 
of paired images that include damaged and intact leaves (Ferreira 
et al., 2020). Collecting damaged leaves and reconstructing the in-
tact status to get training data can be time- consuming as one has 
to manually trace the damaged parts of the leaf and refill the holes 
to make it intact (O'Neal et al., 2002). An alternative way is to col-
lect healthy leaves and simulate artificial leaf holes that resemble 
the leaf damage observed in reality (da Silva et al., 2019). This can 
be achieved by cutting intact healthy leaves with randomly shaped 
polygons and circles. Although such random cutting simplifies leaf 
damage patterns, it has been shown to be effective to train GAN 
models with good performance in reconstructing damaged leaves 
(Hussein et al., 2021). However, the collection of training data re-
quires considering the variety of leaf shapes since the reconstruc-
tion of leaf boundaries is based on learning the leaf shape of plants 
(Creswell et al., 2018).

In this study, we used deep learning to reconstruct damaged leaves 
to their intact status and applied image processing techniques to es-
timate the area and percentage of leaf damage by herbivores. We 
first described a complete procedure including collection and prepro-
cessing of leaf images, generating artificial leaf images, training GAN 
models, reconstructing damaged leaves and measuring leaf area. A 
Python package was introduced to enable hands- on application of this 
procedure to build researchers' own deep learning models. Then, we 
collected healthy leaves from 229 plant species that commonly occur 
in North America, east Asia and Europe and trained a universal GAN 
model based on the leaves of these species. We also developed an 
online Shiny app ‘HerbiEstim’ to enable the direct use of pretrained 
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models in the estimation of leaf herbivore damage. We tested our 
methods using both artificially damaged leaves and real leaves col-
lected in the field. Overall, we showed that image processing-  and deep 
learning- based methods are a state- of- the- art solution for automatic 
quantification of leaf herbivore damage, featured with high efficiency, 
accuracy and reproducibility. The Python package and online Shiny 
app provided easy to use tools that will facilitate the collection of large 
data sets in studying leaf–herbivore interactions.

2  |  MATERIAL S AND METHODS

2.1  |  Image processing-  and deep learning- based 
procedures for estimating leaf herbivore damage

2.1.1  |  Image processing improves the efficiency of 
image collection

Scanning or photographing multiple leaves in a single image (with no 
overlap among leaves) is much faster than taking single leaf images. We 
applied image processing techniques to automatically extract leaves 
from multiple leaf images into single leaf images in order to improve the 
efficiency of image collection. To do that, we first applied a blur pro-
cess to dilute the salt- and- pepper style noise in the image and remove 
the impure background using Otsu's automatic thresholding (Bangare 
et al., 2015). Then, we performed canny edge detection based on au-
tomatically determined thresholds to find the external contours of 
individual leaves (Xu et al., 2017). The external contours depicted in-
dividual leaf segments which were extracted and assigned to separate 
images. We placed individual leaf objectives in the middle of a blank 
squared image with a constant margin to standardize the display of leaf 
images (Figure 1). The leaf processing was conducted with OpenCV 
(version 4.2.0) and Python (version 3.8.5).

2.1.2  |  Generate artificial leaf damage as training 
data set

We used image processing to generate artificial leaf damage from 
healthy (intact) leaves by randomly removing leaf pixels under 
different scenarios (da Silva et al., 2019). The healthy leaf images 
were collected and standardized to a size of 256 × 256 pixels. We 
considered two simple cutting scenarios, polygons and circles, and 
assumed that the two kinds of damage can occur simultaneously 
on a healthy leaf (Hussein et al., 2021). For the polygonal damage, 
we first selected a random pixel from within the leaf boundary as 
the central point and a random radius ranging from 5 to 20 pixels. 
We defined a start angle as 0 to draw the first pixel based on the 
radius and trigonometry. We then changed the radius by adding a 
random value ranging from −4 to 5 pixels and also added the angle 
by a random value ranging from 10° to 40°. According to the new 
radius and angle, we drew another pixel. As such, we continued to 
modify the radius, add the angle and draw pixels until the angle 

exceeded 360°. We jointed all the pixels in lines sequentially to 
generate a polygon. This process was repeated a random number 
of times ranging from 1 to 6 to simulate leaf damage of different 
degrees. For the circular damage scenario, we selected a random 
number (ranging from 5 to 20) of leaf pixels and draw circles with 
random radius ranging from 1 to 5 pixels to simulate tiny but dense 
holes on leaves (Figure 2). The parameters used in this method can 
generate different levels of leaf damage that range from 0% to 80% 
with a frequency distribution resembling that of leaf damage in re-
ality (Avila- Sakar et al., 2003).

2.1.3  |  GAN models

GAN models are generative models characterized by training a pair 
of networks, namely a generator G and a discriminator D (Creswell 
et al., 2018). The G network generates ‘forgery’ images with the aim 
to make them realistic while the D network is responsible for dis-
criminating if the ‘forgery’ image from G is different from the real 
one. The two networks are trained simultaneously and interactively, 
that is, the generator G keeps updating the ability to produce forger-
ies of better quality with the ‘guide’ from discriminator D until the 
forgery and real images are indistinguishable. Because the generator 
G has no direct access to real images, it generates images by map-
ping data from a latent space to the space of the image, expressed 
as G:G(z) → R∣y∣, where z ∈ R∣z∣ represents a sample from the latent 
space (random noise vector) and y ∈ R∣y∣ is a sample in the image 
space. However, in the case of image to image translation, the ‘for-
gery’ image is based on not only latent variable z but also the input 
image. Thus, we applied conditional GANs called pix2pix, an exten-
sion of GANs that include a label x as a parameter in the input of 
G, expressed as G(z, x) → R∣y∣, where x is the information content of 
input image (Isola et al., 2017).

To train the pix2pix model, the damaged and intact leaves are 
paired and combined as a single image with the damaged leaf on 
the right (denoted as x) and the intact leaf on the left (denoted as 
y). During the training process, the information on damaged leaf x 
is passed to generator G, which maps the noise data z conditional 
on the input image x and generates a fake image y′. The generated 
y′ conditional on x (i.e. the y′ + x pair) is passed to discriminator D, 
which performs a x- conditional discrimination on y′ and the real 
image y (i.e. compare the y + x and y′ + x pairs). The interaction be-
tween G and D networks generates loss functions including the ad-
versarial loss and the L1 loss that help improve the prediction ability 
of G until the generated fake image is indistinguishable from the real 
image (Figure 3).

2.1.4  |  Estimation of leaf area and percentage of 
leaf damage

The trained pix2pix models can be used to reconstruct the intact sta-
tus of plant leaves. To improve the accuracy of the reconstruction, 
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4  |    WANG et al.

we resized single leaf images to the same size as the training data 
(i.e. 256 × 256 pixels) and recorded the resized ratio for each leaf 
image. After reconstruction, we used image processing to calculate 
the number of leaf- belonging pixels for both damaged and recon-
structed leaves, and multiplied it by the square of the resized ratio 
to obtain the size of pixels in the raw image. Based on the resolu-
tion of the scanned raw image, that is, dots per linear inch (dpi), we 
estimated the leaf area of damaged and reconstructed leaves and 
calculated the percentage of leaf area loss. The method can also be 
applied to photographed images without scales, in which case only 
the percentage of leaf damage is estimated.

2.2  |  Application development

2.2.1  |  A Python package

The Python package includes five main functions ‘split’, ‘synthetic’, 
‘train’, ‘predict’ and ‘calculation’ (see Appendix S1; Wang, 2024). The 
‘split’ function takes multiple leaf images as input, extracts leaves 
to separate images and returns standardized single leaf images. The 
‘synthetic’ function can automatically generate training data which 
take intact leaves as input and return images with a pair of leaves 
including an intact leaf on the left and an artificially damaged leaf 

F I G U R E  1  Overview of the complete 
procedure for leaf damage estimation 
using deep learning and image processing 
techniques.
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    |  5WANG et al.

on the right of the image. The ‘calculation’ function takes single leaf 
images as input, calculates the number of leaf- belonging pixels and 
estimates leaf area based on image resolution. This function re-
turns a csv document that records the leaf area of both damaged 
and intact leaves, as well as the percentage of leaf damage. Lastly, 
the ‘train’ and ‘predict’ functions were used to launch pix2pix code 
developed by Zhu et al. (2017) to train the GAN model and predict 
the intact status of damaged leaves, respectively (Isola et al., 2017; 
Zhu et al., 2017).

2.2.2  |  Pretrained deep learning models

The procedures and Python package allow researchers to train deep 
learning models based on training data from their study systems. To 
facilitate the general use of our methods, we collected intact plant 
leaves from the field and also from published plant leaf data sets 
including Swedish leaf data set (Söderkvist, 2001) and LeafSnap data 

set (Kumar et al., 2012), in order to train a universal model that can 
be generally applied to plant taxa and leaf shapes. A total of 6667 
intact leaves from 229 plant species that commonly occur in North 
America, east Asia and Europe were collected to include a variety 
of leaf shapes and colours (i.e. Swedish data set: 300 images from 
15 species; LeafSnap data set: 2701 images from 140 plant species; 
and our collected data: 3666 images from 74 plant species, also see 
Table S1). These leaves were visually checked to ensure clearness 
and intactness, and the leaves of each species were collected ran-
domly to represent the diverse leaf shapes within plant species. The 
collected images from various databases differed in background, 
quality and size, and thus, we standardized the leaf images to the 
same size with blank backgrounds using image processing.

We took 80% of these leaf images (5337) to generate 50,000 
randomly damaged leaves as training data to train a universal pix-
2pix model. The network weights were randomly initialized from a 
Gaussian distribution with a mean of 0 and a standard deviation of 
0.02 with a batch size of 1. The generators and discriminators were 
trained using the Adam optimizer with a learning rate of 0.0002 and 
momentum of 0.5. The model was trained for 50 epochs at constant 
learning rate and another 50 epochs at linearly decaying learning rate 
until zero. Other network parameters were left at default settings 
(Zhu et al., 2017). The model training was implemented with PyTorch 
(version 2.0) in Python (version 3.8.4) on a high- performance com-
puter equipped with an NVIDIA GeForce RTX 3060 GPU.

We also built plant species- specific models for five plant species: 
Acer mono, Ormosia glaberrima, Quercus mongolica, Randia canthioides 
and Ulmus japonica. For each species, we used 200 healthy intact 
leaves to simulate 5000 artificially damaged leaves as training data. 
The setting of training species- specific models was the same as the 
universal model.

2.2.3  |  Online Shiny app: HerbiEstim

To make the methods accessible to users without powerful com-
puting platform, we developed an online Shiny app HerbiEstim to 
estimate the leaf area and leaf damage based on pretrained deep 
learning models. In the app, users upload scanned or photographed 
leaf images and provide the dpi of images (if available) and the app 
will reconstruct the intact status for each leaf and calculate the area 
and percentage of leaf damage. After running, the app shows the 
actual and reconstructed leaves in pairs so that researchers can visu-
ally inspect the reconstruction of leaves to control data quality. The 
estimated leaf area and percentage of leaf damage are shown in the 
app and available for download in csv file format. The app estimates 
the percentage of leaf damage at a speed of 0.25 s per leaf. Apart 
from the universal model trained in our study, we also included case- 
specific pretrained models in the Shiny app, which are specific for 
leaf shapes or plant taxa. The Shiny app encourages researchers to 
share their pretrained models so that others that work with the same 
plant taxa or leaf shapes can potentially use these models.

F I G U R E  2  The simulation of artificially damaged leaves (a–d) 
and the frequency distribution of proportions of leaf damage (e). 
The damaged leaves were generated by cutting intact leaves (a) 
with random circles (b), polygons (c) and both (d).
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2.3  |  Test and case study

2.3.1  |  Test using artificial leaf damage

We tested our methods using the remaining set of 20% of collected 
leaf images (1332), which are mostly from the same plant species as 
the training data set. Based on these leaves, 5000 damaged leaves 
were simulated as the testing data set (and thus the ground- truth 
images are available for the damaged leaves). We also collected 
500 leaves for a variety of plant species that are not included in 
the training data set, by randomly selecting leaves from a published 
leaf data set (imageCLEF2012, https:// www. image clef. org/ 2012/ 
plant ). Based on these leaves, 1000 leaf damage images were ar-
tificially generated as the second testing data set to evaluate the 
performance of our model when applied to a plant species not used 
for the training. We considered the performance of our model from 
two perspectives: How similar is it between the reconstructed intact 
leaf and the ground- truth image (i.e. image similarity); and how close 
is the predicted leaf damaged compared to ground- truth value (i.e. 
the accuracy of leaf damage estimates). To quantify the similarity 
between two images, we calculated the structural similarity index 
measure (SSIM). This metric compares the luminance, contrast and 
structure between two images and gives an overall score that range 
from 0 to 1, with 1 indicting a perfect match between two images 
and 0 indicating the worst match (Wang et al., 2004). To evaluate 
the accuracy of leaf damage estimates, we calculated the root mean 
square error of estimated leaf damage (RMSE) by the following 
equations

where the predicted and ground- truth percentage of leaf damage are 
included, and n represents the number of tested images.

2.3.2  |  Test using real leaf damage

We randomly collected 311 leaves from five plant species: A. 
mono, O. glaberrima, Q. mongolica, R. canthioides and U. japonica, 
that is, around 60 leaves per plant species in the field and scanned 
the leaves. We used LeafByte software to manually estimate the 
percentage of leaf damage for each leaf image (Getman- Pickering 
et al., 2020). Specifically, the software allowed us to trace leaf 
boundaries for the leaves that were damaged and refill holes to 
calculate the ‘restored’ leaf area. The percentage of leaf damage 
was calculated based on the actual and restored leaf area. We cal-
culated the RMSE to compare the leaf damage estimated by our 
method (both universal and species- specific models) with that es-
timated by LeafByte.

3  |  RESULTS

3.1  |  Efficiency of proposed procedures

Scanning multiple leaves in one image and splitting it to single- leaf 
images saved more than half of the time in leaf image collection com-
pared to single- leaf image scanning. Generating artificially damaged 
leaves as training data is also fast which allows simulation of tens of 
thousands of images in a few minutes. The time required for train-
ing GAN models varied depending on the size of training data and 
the number of epochs but generally took a few hours, for example, 
4 h for 5000 images of training data and 100 epochs with a single 
NVIDIA GeForce RTX 3060 GPU. The leaf reconstruction and cal-
culation of leaf area took around 0.25 s per leaf on an Intel Core i5 
CPU computer. Overall, these procedures can achieve a very high 
efficiency allowing estimates for millions of leaves in less than a day, 
which reduced labour and saved time compared with the weeks or 

RMSE =

√

1

n

∑

(Predicted−GroundTruth)
2
,

F I G U R E  3  The overall structure of pix2pix model. The model is composed of two major elements, the generator G and the discriminator 
D. G is used to generate a fake image y′ (process 2) from a latent space z (or noise source) based on the information of input images x 
(process 1, here x image represents the damaged leaf). Then, the real image y (y is the intact status of x leaf) and the fake image y′ (generated 
by G to resemble an intact leaf) will be paired with x, respectively, leading to x- conditional y and y′ (process 3). After that, the D will perform 
x- conditional discrimination on real image y and fake image y′ (process 4) and have an evaluation on whether y and y′ are distinguishable or 
not (process 5). Meantime, the D will compute adversarial loss, which will be used to tune the G (process 6). To note, the model calculates L1 
loss between y and y′, which also serve as a tuning for G (process 7). The aim of these processes is to make the G learn to generate a fake y′ 
that is so identical to the real image y that even the D can't tell. The D serves as a judge and also a guide that help improve the performance 
of G.
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months that would be required for manual digital analysis of this 
number of leaves.

3.2  |  Accuracy of pretrained GAN models

The universal model accurately reconstructed artificially damaged 
leaves with an averaged similarity of 98.8% ± 1.2% (SSIM) between 
reconstructed leaves and ground truth (Figure 4). With real leaf dam-
age, most of the leaf reconstruction were satisfying (Figure 4), and 
only a few heavily and irregularly damaged leaves were not reason-
ably reconstructed (Figure 5). Overall, the universal model achieved 
a high accuracy in estimating the percentage of artificial leaf dam-
age, and such high accuracy was consistent whether the targeted 
plant species was included or not included in the training data set 
(Figure 6a,e). The model also showed a high accuracy in the test with 

real leaf damages, which revealed a close estimation with the manu-
ally digital analysis (RMSE = 1.6%, Figure 6c).

The reconstruction of artificially damaged leaves with plant 
species- specific models demonstrated a similarity of 98.4% ± 1.1% 
(SSIM) to the ground- truth image. The prediction of artificially 
damaged leaves based on species- specific model was close to the 
ground- truth value (RMSE = 2.4%), and the prediction for real leaf 
damage was also comparable to the manually digital analysis with 
RMSE of 1.6% (Figure 6b,d).

4  |  DISCUSSION

Deep learning techniques have the potential to revolutionize data 
collection in ecology (Christin et al., 2019). Biotic interactions be-
tween plants and insect herbivores are one of the research areas 

F I G U R E  4  Examples of leaf reconstruction using the pretrained universal model for artificially damaged leaves (a–d) and real leaf damage 
data (e, f). The artificial leaf damage was generated from intact leaves which were taken as the ground truth, and real leaf damage data were 
manually estimated using LeafByte software to measure leaf damage. Both green and dark leaf colours were included. Plant species in (a–h) 
are Quercus robur, Tilia americana, Neolitsea phanerophlebia, Magnolia championii, Ormosia glaberrima, Randia canthioides, Ulmus japonica, 
Quercus mongolica, respectively.
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that have been suffering from a lack of fast and automatic meth-
ods for data collection (Williams & Abbott, 1991). In our study, we 
combined image processing and deep learning techniques to build 
a pipeline for automatic estimation of leaf herbivore damage from 
images. We also developed a Python package and an online Shiny 
app with pretrained deep learning models to enable practical use of 
our methods. We demonstrated a high accuracy of the method in 
quantifying leaf damage which is comparable to manual estimation 
using software such as LeafByte (Getman- Pickering et al., 2020). 
Our study provided a practical solution for automated assessment 
of leaf herbivory damage, which will facilitate collecting large data 
sets of herbivory intensity to study plant–herbivore interactions in 
both applied and basic science.

Both CNN-  and GAN- based deep learning models can be used to 
quantify the degree of leaf damage but with different computational 
approaches (da Silva et al., 2019; Hussein et al., 2021). CNNs can 
directly predict leaf damage from leaf images (i.e. return a label indi-
cating the degree of leaf damage), while GANs can predict the intact 
status of damaged leaves (i.e. return a reconstructed leaf image that 
can be used to calculate leaf area and the degree of leaf damage) (da 
Silva et al., 2019; Hussein et al., 2021). We suggest that GANs are 

superior to CNNs for leaf damage estimation for several reasons. 
First, GANs generate intact leaf images that allow visual checks of 
the reconstruction of damaged leaves. Researchers can pick out the 
unsuccessful reconstructions by a quick visual skim through images 
and manually determine their leaf damage to improve the overall ac-
curacy of the method (Isola et al., 2017; Zhu et al., 2017). In contrast, 
the CNNs directly return values of estimated leaf damage without 
information on the confidence of the prediction. Second, GANs can 
achieve higher accuracy than CNNs because CNNs are designed to 
classify objectives into categories instead of for quantitative esti-
mation. For example, previous attempts to use CNNs in quantifying 
leaf damage has revealed an averaged bias (RMSE) of 4.6% while in 
our study we showed an averaged bias of 1.6% (da Silva et al., 2019). 
Lastly, we showed that a relatively small training data set (3000–
5000 images) is enough to train GANs with good performance in 
reconstructing damaged leaves, comparing to training data sets of 
tens of thousands of images required for training CNNs, which con-
sequentially reduces the time and computing resources needed for 
model training (da Silva et al., 2019).

We showed that GAN models can achieve a high accuracy in re-
constructing the intact status of leaves and estimating leaf damage. 

F I G U R E  5  Examples of failures in 
leaf reconstruction using the pretrained 
universal model. (a–f) are the real leaf 
damages of Ormosia glaberrima and 
their unsatisfying reconstructions. 
The inappropriate leaf reconstructions 
primarily occur on irregularly or heavily 
damaged leaves.

F I G U R E  6  Tests of the universal model (a, c, e) and plant species- specific models (b, d) using artificial testing data (a, b, e) and real testing 
data (c, d). In (a, b, e) the predicted proportion of leaf damage was correlated with the ground truth (a, 5000 leaf damages generated from the 
same plant species as the training data set; b, 5000 leaf damages generated for five plant species; and e, 1000 leaf damages generated from 
different plant species than the training data set). In (c, d) the predicted proportion of leaf damage was correlated with manually measured 
leaf damage (c, 311 real leaf images from 5 plant species predicted by the universal model; and d, the same 311 images predicted by species- 
specific models). The equation indicating the slope and intercept of these relationships (Pred: predicted; GroundT: ground- truth; ManuallyM: 
manually measured), the explained variance (R2) and the root mean square error (RMSE) between estimates were shown.
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We considered both universal models and case- specific models (i.e. 
plant species- specific models). The universal model was trained 
based on artificially damaged leaves of multiple woody plant species 
and thus can be applied to estimate leaf damage for different plant 
taxa and leaf shapes. The universal model achieved good accuracy 
in leaf damage estimation with an averaged RMSE of 1.6%, which is 
comparable to the error of manual damage estimation with LeafByte 
and ImageJ (Getman- Pickering et al., 2020), and is more accurate 
than visual estimates of leaf damage (Johnson et al., 2016). Although 
the universal model showed a general applicability to different plant 
taxa and leaf shapes, it is not guaranteed that the model can pre-
dict intact leaves for all plant taxa. For example, herbaceous or fern 
species could have different leaf shape and/or leaf damage patterns 
compared to the woody plants that we used for model training, and 
therefore, the performance of the universal model may be reduced 
when applied to non- woody plant life forms. In the case where 
universal model is not applicable, researchers can train their own 
case- specific models using the procedures and packages we pro-
vided (see Supporting Information). Our tests have shown that the 
effort required for training case- specific model is reasonable, and 
the case- specific model can achieve an accuracy comparable with 
the universal model.

While our methods offer a general solution for estimating leaf 
herbivore damage, they do come with several limitations that will 
necessitate future development and optimization. First, the recon-
struction of heavily damaged leaves can sometimes yield unsatis-
factory results (see Figure 5), which is understandable as tracing 
the boundaries of heavily damaged leaves is difficulty even for 
manual estimation. As a result, the method may underestimate 
leaf damage at higher damage levels, as indicated by the slope 
of the relationship between predicted and ground- truth herbiv-
ory (the coefficient of the slope is slightly less than 1, Figure 6). 
To address this limitation, we strongly recommend conducting a 
visual inspection of leaf images to identify and rectify unsatisfac-
tory reconstructions. This may require a modest additional effort 
but can significantly enhance overall accuracy and data quality. 
Fortunately, heavily damaged leaves represent only a small fraction 
of total leaf damage in natural ecosystems. For instance, in a study 
conducted in natural forests (unpublished data, Zihui Wang), only 
less than 5% of leaf images failed in damage reconstruction with 
our model. Second, our method primarily focused on leaf chewing 
damage (i.e. complete removal of leaf materials) and regular dam-
age shapes (such as circles and polygons); therefore, it may struggle 
with reconstructing irregular leaf damage and damage associated 
with colour changes. The challenges associated with reconstruct-
ing irregular leaf damage can potentially be mitigated by optimizing 
the ‘synthetic’ function to generate training data featuring irregular 
damage shapes such as the linear damage caused by leaf miners 
(da Silva et al., 2019). However, it is worth noting that our method 
is not applicable to leaf damage that only changes leaf colours (i.e. 
yellowish spots caused by sap feeders) or damage that only shows 
on the upper or lower side of leaves (i.e. slight damage caused by 

some leaf miners). Researchers should evaluate the dominant leaf 
damage type in their study system before applying this method.

Another limitation is that our method requires clear leaf images 
with a blank background, containing only leaves without overlaps 
among them. This may limit the collection of in situ leaf images (i.e. 
without detaching leaves from the plant). To address this, research-
ers can adopt practices such as using blank paper as a background 
when scanning or photographing leaves and preprocessing images 
containing non- leaf features or non- blank backgrounds before ap-
plying the method. Lastly, the universal model was trained based on 
simple leaves and separated leaflets of compound leaves, and there-
fore, it cannot directly predict whole compound leaves. It is possible 
to train a model based on whole compound leaves, but such a model 
may be highly specific since the shape of compound leaves can vary 
greatly among plant taxa.

By combining deep learning and image processing, we pro-
vided a state- of- the- art solution for automatic estimation of leaf 
herbivore damage. The method will allow researchers to quantify 
leaf herbivory intensity in complex systems with much less effort 
compared to traditional methods. Moreover, the method and tools 
can be potentially modified to solve other problems related to 
damage estimation such as leaf disease damage or butterfly wing 
damage. We hope that our method will motivate the collection 
of large data sets of plant–leaf herbivore interaction to address 
big picture questions in plant ecology, entomology, agronomy and 
forestry.
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